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Abstract 

Chiba University is developing the microsatellite which, makes use of the 

Electron Density -Temperature Probe (EDTP) sensors, the Global Navigation 

Satellite System (GNSS) Radio Occultation (RO) Receiver and Beacon 

Signal for Total Electron Content (TEC) measurement in Ionosphere layer of 

the Earth.  

The objective of this research is to provide global coverage of the slant and 

vertical resolution of electron density in the ionosphere from 60-700 km from 

the Earth's surface. The electron density is essential to determine the quality 

of communication in high frequency (HF) radio communication, in satellite 

communication, and accuracy of global positioning. Nowadays, many 

researchers investigate the relationship between the electron density variation 

to global land deformation and earthquake events.  

In this research, two novel methods are proposed to generate a circularly 

polarized (CP) signal and to enhance the axial ratio bandwidth (ARBW) 

based on the asymmetrical rectangular truncation and additional rectangular 

parasitic patch. This antenna will be used for the beacon transmitter in 2.2 

GHz, bandwidth 40 MHz and, data communication in 2.5 GHz, bandwidth 

100 MHz are proposed for small satellite or nanosatellite.  

The first method introduces a pair of rectangular truncations and a shifted 

feed line to generate a circular polarization (CP) wave. The next step is to 

improve the 3-dB ARBW by attaching a rectangular-formed head on the 

feeding line. The designed antenna is fabricated to verify the simulated results. 

The measured antenna presents good agreement with the simulated one of 

18.3% by achieving the ARBW of 14.9%.  

The second method is the insertion of one parasitic patch to improve CP 

bandwidth and gain of an antenna. In this method, the linearly-polarized (LP) 

wave is converted to a circularly-polarized wave by truncating two 



 

 

 

 

rectangular-formed slots, shifting the feeding line, and attaching a 

rectangular-shaped parasitic patch. The designed antenna is fabricated to 

verify the simulated results such as reflection coefficient, axial ratio 

bandwidth, gain. The measured result performs the 3-dB ARBW of 35.8% 

from 2.16-2.95 GHz and its reflection coefficient bandwidth of 47.3% from 

1.77-2.81 GHz with peak gain 5 dBic at frequency 2.2 GHz. Thus, these 

designed antennas can be implemented for a small satellite, nanosatellite, and 

other applications that require a wideband circularly-polarized antenna, 

bidirectional pattern, and compact-designed structure.  



 

 

 

 

 

抽象 

電離層の電子密度情報は、高周波（HF）通信の安定性とグローバル

位置情報の精度を向上させるために重要であり、さらに近年では、

電離層の変動とグローバル地殻変動の関連性についての研究も多く

行われている。千葉大学では現在、電離層における全電子数

（TEC）を観測するため、小型衛星搭載用の電子密度・温度プロー

ブ（EDTP）センサ、掩蔽 GPS (GPS-RO)、ビーコン信号送信装置を

開発している。本研究の目的は、高度 60～700 kmの電離層における

スラント方向及び垂直方向の電子密度の全球情報を取得するため、

これら 3つの円偏波アンテナシステムを開発することにある。円偏

波信号の生成と軸比バンド幅（ARBW）を向上させるために、非対

称の四角型切かけ付及び四角型寄生付の２種類の手法を用いたアン

テナを提案した。小型衛星搭載用に適した仕様として、ビーコン信

号送信装置用のアンテナは中心周波数 2.2 GHz、バンド幅 40 MHz、

データ通信用アンテナは中心周波数 2.5 GHz、バンド幅 100 MHzを

目標として開発を行った。四角型切かけ付の試作アンテナの ARBW

の測定結果は 14.9%であり、これに対してシミュレーション結果の

ARBW は 18.3%であった。バンド幅と利得をさらに向上するために

試作した寄生付アンテナでは、周波数帯 2.16-2.95 GHz における 3-



 

 

 

 

dB の ARBWが 35.8%で、周波数帯 1.77-2.81 GHz の Sパラメータの

バンド幅が 47.3%で、最大利得 5 dBicが週数数 2.2 GHzとなった。

これらの数値は利得 4 dBic、ARBWと Sパラメータの最低周波数帯

域 15.7%以上を満足したので、本研究の成果は広帯域、双方向パタ

ーン、コンパクトな構造が必要される小型衛星搭載広帯域円偏波ア

ンテナの実現になり、今後の電離層の研究への貢献が期待できる。 
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CHAPTER 1 

 

1. INTRODUCTION 

 

1.1 Research Motivations  

 

In Global Positioning System (GPS) and Navigation Systems, the electron 

density in the ionosphere produces signal delays that cause range errors. In 

High Frequency (HF) from 3 to 30 MHz, radio signals can propagate to a very 

far receiver by skywave process, reflected by the ionosphere. Now, many 

researchers investigate the relationship between total electron content (TEC) 

and the electron density variation to global land deformation and earthquake 

events.  

The range error in the ionosphere can be corrected in dual‐frequency methods 

by a coherent phase combination in frequency L1 and L2. This error also can 

be corrected in the single‐frequency method, with additional information that 

is corresponding to the total electron content and electron density of the 

ionosphere. So, TEC parameters play an essential role in the study of 

ionospheric dynamics and for forecasting, besides of correction for range 

error in a positioning system, and remote sensing applications.  

The ionosphere is not a stable layer that supports the use of single-frequency 

throughout the months, weeks or even over in a day. The ionosphere alters 

with the seasons, the solar cycle, geographic and during any given day. The 

Sun goes experience a periodic rise and fall which affects ionosphere activity. 

At solar minimum, the ionosphere reflected only the lower frequencies, but 
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at solar maximum, the ionosphere will reflect and propagate the higher 

frequency of the HF band.  

The total number of electrons between two points along a radio wave path is 

defined as TEC. 1 TEC unit (TECU) is 1016 electrons/m². Ionospheric TEC is 

predicted by measuring the carrier phase delays of received radio signals 

transmitted from satellites located above the ionosphere.  

Josaphat Microwave Remote Sensing Laboratory (JMRSL) study and 

research the microsatellite development which uses payloads: Electron 

Density Probe and Electron Temperature Probe (EDTP) sensors, the GNSS-

RO [1] and radio beacon [2]. The missions of this research are to provide 

atmospheric and ionospheric data such as the neutral atmosphere temperature, 

total electron content (TEC), the ionospheric temperature, and electron 

density. The ionospheric data are important to investigate the behaviors of 

electrons in the ionosphere, and the relationship between the ionospheric 

electron density fluctuation to the land deformation. The EDTP will collect 

the temperature and the electron density globally on the height of satellite 

orbit. The GNSS-RO receiver measures the TEC along the propagation path 

of radio waves transmitted by the GNSS satellites, which passed and refracted 

by the ionosphere and atmosphere [3]. The radio beacon transmits 

unmodulated, phase-coherent waves from satellite to receiver on the ground 

[4, 5].  

The previous research for TEC and scintillation measurement used beacon 

signal has measurement methods such as 1. from space to ground named as 

CERTO beacon, 2. from space to space named as CITRIS and 3. from the 

ground to space named as Doppler Orbitography and Radio positioning 

Integrated by Satellite (DORIS) [4, 6].  The transmitter radio on satellites uses 

three frequencies band at the 1066.75 MHz, 400.32 MHz, and 150.01 MHz. 

The radiated effective power is around 1- 4 watt in Right-Handed Circular 

Polarization (RHCP). The three frequencies are received simultaneously in 
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the beacon receiver on the ground. The total electron content (TEC) between 

the satellite in space and receiver on the ground can be provided using two 

frequency (L1 and L2) with differential phase technique. The three 

frequencies were selected to enhance the scintillation area, to reduce noise 

effect, and TEC ambiguities. The CP antenna is tight to polarization mismatch, 

the effect of multi-path, and effect of the faraday, especially for satellites that 

relatively small size has no stabilization and attitude controller. The antenna 

was designed to give good radiation of the ground by using the crossed-yagi 

antenna. The crossed-yagi antenna uses phase shifter to generate CP wave.  

The idea to use single-frequency GPS and Beacon measurements for 

ionospheric delay estimation and electron density are not new with a method 

of range code and carrier phase measurement, but until now, the literature on 

this research is relatively limited, mainly because of the code noise problem. 

TEC and electron density measurement presented in [7] by using single-

frequency show result that TEC difference by single and dual frequencies 

commonly not exceeded 1.5 - 3 TECu. This method will reduce half of the 

transmitter power suitable for nanosatellite or picosatellite.  

Now, an advanced electronic system makes it possible for the fabrication of 

nanosatellites and picosatellites that capable of performing simple and 

complex missions in space [8, 9]. However, a small satellite, especially for 

nanosatellite and picosatellite have limitations in size and power supply. 

Antenna for beacon [4] used the crossed-dipole Yagi is not suitable for a 

nanosatellite.  

Microstrip antenna has relatively light, compact size and easy in fabrication, 

making this antenna type is suitable for a satellite system.  

The objective of this research is to offer a novel circular-slotted antenna 

(CSA) having a wide CP operation, higher gain, small size, and relatively 

inexpensive in center frequency 2.2 GHz as requirements of the beacon sensor 

and communication onboard a small satellite or a nanosatellite. The 
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conventional CSA commonly offers small bandwidth [10, 11]. Generating CP 

wave, some methods proposed to a circularly-ring slot, for example, 

truncating two unsymmetrical rectangular slots on diagonal, inserting a 

parasitic patch, and shifting the feed line. The novel method proposed in this 

research is improving the axial ratio bandwidth by added a rectangular 

parasitic. This structure produces higher antenna gain and generates a 

bidirectional radiation pattern. 

 

 

1.2 Research Contributions 

 

The research contributions are summarized as follows: 

• We have developed and fabricated a novel method to generate a 

circularly polarized (CP) wave in L band with center frequency in 2.2 

GHz by making use of a pair of unsymmetrical rectangular truncation on 

the centered-circular slot.  

• We have developed and fabricated a novel method to enhance the CP 

bandwidth of a CSA antenna for beacon frequency in 2.2 GHz with a 

bandwidth of 40 MHz and data communication 2.5 GHz with a 

bandwidth of 100 MHz by making use of a pair of the unsymmetrical 

rectangular truncation incorporated with parasitic path and shifted 

feedline. 

• We have fabricated the antennas and measured its performance. The 

comparison of the simulated results and measured results show a good 

agreement. 
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1.3 Thesis Outlines 

 

This thesis is compiled in five chapters, as expressed below : 

• Chapter 1 provides the introduction, motivation, objective, 

contribution of this research, and outline of the thesis. 

• Chapter 2 provides the background, theory, and context related to 

the materials discussed in the subsequent chapters. This chapter 

covers a description of the ionosphere, total electron content (TEC), 

techniques for TEC measurement by dual frequencies, single 

frequency, and the printed-slotted antenna. 

• Chapter 3 provides the methods to generate circularly polarized 

waves and to enhance axial ratio for satellite and radio beacon. 

Improvement of the gain and the axial ratio of a wideband antenna 

is presented. 

• Chapter 4 provides the experiment process and measurement 

results of the antenna type 1 and antenna type 2. 

• Chapter 5 gives the research conclusion, contribution, and next 

works. 
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CHAPTER 2 

 

2. BACKGROUND AND RELATED 

RESEARCH 

 

2.1 IONOSPHERE 

 

The atmosphere is stratified from ground to space with many layers due to 

the gravity of the earth. The known criterion is temperature. This defines the 

troposphere, stratosphere, mesosphere, and thermosphere, where the 

temperature decreases or increases alternately with height, as shown in figure 

2.1 [12]. The transition region between the two layers is called a pause. The 

tropopause, in this case, separates the troposphere layer and stratosphere layer. 

Another criterion is based on the composition in the atmospheric. In the 

atmosphere, lower than 100 kilometers, the gases are mixed well and 

homogeneous. Turbulence mixes the air well-named turbosphere. At higher 

heights, diffusion is stronger than turbulence named the diffusosphere. 

Another criterion is also based on the atmosphere's physical behaviors such 

as electrons, ions, and the electric field [13]. 
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Figure 2. 1 The earth's atmosphere layer: the thermal structure in kelvin, the 

density of ion in cm-3, density of neutral in cm-3. 

 

The ionosphere is atmosphere parts where the electrons and the ions affect 

the propagation of radio waves. These charged particles make the index of 

refraction for radio waves differ from unity. Electrons and ionized positive 

ions are created from the atmospheric gases by photoionization by extreme 

ultraviolet radiation. The sun is mainly the source of ionizing radiation. 

Additional minor sources are by energetic particles, solar wind, cosmic rays. 

The excess energy of the ionizing photons in the thermosphere rises the 

temperature, as the kinetic energy of the free electrons. The ionosphere is 

roughly  80 to 1000 kilometers altitude. At the height of around 450 km, the 

electron density reaches its maximum.  

To identify the ionosphere layers, it labeled by the letters of D, E, and F.  The 

D layer is the lowest until 80 km. This layer appears during the day affected 
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by the radiation of the sun. Recombination of ions and electrons is relatively 

quickly, caused by the density of the air that is still high in this layer. The next 

layer is labeled the E layer, above the D layer. This layer appears at a height 

from 100 km to 125 km. Ionization levels drops immediately caused by the 

electrons and ions recombine instantly after sunset.  The E layer virtually 

disappears at night, overthought a small number of residual ionizations 

remains.  

For long-distance and more stable communication, the F layer is very 

important. During the day, the F layer is divided into two sub-layers, like F1 

and F2. At night, the two layers are combined into a single F layer. The F-

layer height change depending on the time of day and the season.  

The F1 layer is at around 300 km, and the F2 layer is at around 400 km or 

more, in the summer season. In the winter, it is about 300 km for the F1 layer 

and is about 200 km for the F2 layer. In the night, the F layer is generally 

around 250 to 300 km.  In this layer, the rate of recombination is very slow, 

was caused the layer is higher, and air density is much lower. The ionization 

process remains until night, so it affects the radio waves. 

The ionosphere has essential things on the earth as protection of life from the 

dangerous ionizing radiation from the sun and the universe. The 

photoionization process absorbed the radiation. The ionosphere affects the 

quality of communication, depending on the radio frequency we want to use. 

The limiting frequency in radio propagation by using the ionosphere is the  

frequency below that a wave component is reflected by, and the frequency 

above that it penetrates through an ionosphere. The critical frequency varies 

with atmospheric conditions and time of day as the result of electron 

limitation. 

Ionosphere`s influence on radio propagation is such as reflection, scattering, 

absorption, refraction, as shown in figure 2.2. 
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Earth-satellite communications are influenced by the ionosphere [14]. 

Scintillation causes noise and unstable signal in communication links [15]. 

Refraction reduces the accuracy of the satellite-based navigation systems. The 

ionosphere reflects radio waves at frequencies below the plasma frequency 

[16]. These low frequencies are emitted by solar or other planets that are very 

important in astronomy. However, while we want radio communication 

between two points not passing the ionosphere, the ionosphere is very useful.  

The reflective properties of the ionosphere at a frequency below 30 MHz [16] 

make reliable communication between the transmitters and the receivers at a 

very far distance. 

 

 

 

 

 

 

 

 

 

 

Figure 2. 2 Schematic of the ionosphere's effect on radio propagation  

(left to right: scattering, diffraction, reflection). 

 

The ionosphere is the earth's layer from about 80 until 1,000 km from the 

earth's surface which, consists of a high density of ions and electrons that 

capable of reflecting the radio waves. The essential parameters in the 
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ionosphere are the electron density Ne. Electron density varies with place and 

time. Because the ionosphere is stratified, the variation of electron density is 

higher in the vertical than the horizontal direction. The electron density of the 

ionosphere as a height function is called the ionosphere's vertical profile. 

Ionospheric TEC is determined by measuring the carrier phase delays of 

received signals that emitted from satellites located on middle orbit and low 

orbit, often using Global Positioning System satellites and beacon [17, 5]. The 

TEC is strongly correlated to solar activity.  

 

 

 

Figure 2. 3. Profile from Chapman model of ionization rate. [18] 
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The density of electron in the ionosphere differs with geographic latitude, 

longitude, season, the cycle of solar, and times of the day.  Line integration 

of the vertical profile from the transmitter in space to receiver in-ground and 

vice versa gives the electron column density that is called TEC. Total electron 

content (TEC) is specified as the number of electrons on a line between two 

receivers in TECU, where 1 TEC unit (TECU) is 1016 electrons in squared 

meters. The TEC is an important parameter to determine the scintillation and 

phase delay of a radio wave passed a medium. Many researchers investigate 

the relationship between the electron density variation to global land 

deformation and earthquake events [19, 20].  

There is a difference between vertical TEC and slant TEC. Slant TEC is the 

electron density in a column while the angle of the line of sight not 90 degrees 

between transmitter and receiver, and vertical TEC equals slant TEC while 

the line of sight is 90 degrees. Comparison of slant TEC while the angle of 

the line of sight varies from 0 degrees until 75 degrees (Figure 2.3). 

 

 

2.2 OBSERVATION TECHNIQUES 

 

Mainly, there are two methods to measure electron density of ionosphere: by 

in situ measurements or by remote sensing measurement. Now, many 

techniques for ionosphere monitoring, such as ground-based and space-based.  

In-situ measurements require sensors being placed in the ionosphere. These 

can be carried by installing the sensor on satellites to sense the ionosphere 

directly or by rockets launched into the lower ionosphere. Rockets have 

limitation in place and in time beside of these devices are very costly.  

Remote sensing techniques enable the measurement of ionospheric electron 

density by radio wave transmission. Variation of radio wave parameters such 
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as the amplitude, the phase delay, the polarization, or the angle of arrival is 

used to calculate the density of electron in the ionosphere. Variations of the 

index of refraction of the ionosphere correlate to electron density, frequency. 

Many instruments for electron density measurement are such as ionosonde 

[21], incoherent scatter radar [22], global positioning system (GPS) [23,25] 

and radio beacon [24, 21]. The ionosonde is active radar that transmitted the 

radio wave from ground to ionosphere in sweep frequency from 1 MHz until 

around 20 MHz. The time difference between transmitted time and received 

time is related to the ionosphere height. An ionosonde is a radar ground-based, 

a powerful instrument for ionospheric research such as for TEC and density 

of electron, but operational of this instrument is relatively expensive, and it 

just measures the bottom side of the ionosphere layer. Figure 2.4 shows the 

method of ionosonde measurement. 

 

 

 

Figure 2. 4. Ionosonde (a) Total reflection (b) Oblique reflection 



 

 

13 
2.2 OBSERVATION TECHNIQUES  

 

 

 

 

GPS satellites emit radio waves on frequencies of L1 in 1.57 GHz and L2 in 

1.22 GHz. The velocity of a radio wave at the GHz band depends on the 

frequency and electron density of the ionosphere. This advantage enables us 

to extract the TEC in the line of sight from a satellite in space to the receiver 

on the ground. GPS is a space-based technique that orbited at an altitude of 

20,200 km from the ground, as shown in figure 2.5, but in this measurement, 

the signal is strongly influenced by the plasmasphere layer.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. GPS and Beacon method for electron density measurement  

 

For the dual-frequencies observation using GPS (L1 and L2), TEC in the slant 

direction is calculated from a combination of the pseudo-range (P) and phase 

observations (ϕ) as equation [2.1-2.3] below, 
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TEC =  

1

40.3
 (

𝑓1
2 𝑓2

2

𝑓1
2 − 𝑓2

2) (𝑃2 − 𝑃1) [2.1] 

 

  
TEC =  

1

40.3
 (

𝑓1
2 𝑓2

2

𝑓1
2 − 𝑓2

2) (𝜙2 − 𝜙1) [2.2] 

 

 TEC =  9.52 (𝑃2 − 𝑃1) [2.3] 

 

 

where, 

P1 and P2 are pseudo ranges, ϕ1 and ϕ2 are phases of carriers L1 and L2,  

f1 and f2 are carrier frequencies of L1 and L2. 

 

 

2.3 BEACON METHOD 

 

Beacon is an electronic instrument transmitted radio wave which allows 

direction-finding equipment to find relative direction. This radio wave, which 

picked up by radio direction finding or systems for the angle of arrival on cars, 

buses, aircraft, and vehicles, will determine the direction to the beacon source. 

This radio beacon on satellite in low earth orbit transmit a signal to the ground 

receiver passed the lower ionosphere. The phase difference between these two 

signals determines TEC on the ionosphere. 
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Multi-antenna operation is required in order to have access to rising good 

links and communication from the transmitter on the space to receivers on the 

ground, as shown in figure 2.6. 

 

 

 

Figure 2. 6. Type of direction of antenna patterns  

 

Meanwhile, satellite beacon at low earth orbit satellites (LEO) at an altitude 

of 750-1000 km provide ionospheric measurement results slightly affected by 

the plasmasphere layer. Receiver systems on the ground of the beacon signal 

measure the difference of phase of two signals in the frequency of 150 MHz 

and frequency of 400 MHz transmitted from low earth orbit to obtain the TEC 

value.  The measurement technique is depicted in figure 2.5 and figure 2.7 

below. 

 

V 

Radiation 

V 

Radiation Antenna 
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Figure 2. 7 Radio wave path, satellite trajectory and grid from 100-1000 km 

 

The mathematic equation for TEC calculation based on the equation [2.4-2.6] 

below, 

      
𝑢 = 𝐴 cos {2𝜋𝑓 (

𝑥

𝑐𝑝
− 𝑡)}  = 𝐴cos {2𝜋𝑓 (

𝑛𝑥

𝑐
− 𝑡)} [2.4] 

 

 𝑛 =  
𝑐

𝑐𝑝
= 1 −  {𝐴/(2𝑓2)}𝑁 [2.5] 

 

 𝛹 =  
2𝜋𝑓𝐿

𝑐
 −  

𝜋𝐴

𝑐𝑓
 ∫𝑁 𝑑𝑥 +  𝜂 [2.6-a] 
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 𝑇𝐸𝐶 = ∫𝑁 𝑑𝑥 [2.6-b] 

where,  

u is a sinusoidal signal; A is the amplitude of signal; f  is signal frequency; x 

is the distance from the satellite to the receiver; c is light speed, n is the index 

of refractive, N is electron density. 

 

2.4  BEACON SENSOR ONBOARD SMALL 

SATELLITE  

 

The ionosphere layer, which is the boundary in the atmosphere of the earth 

from 80 to 1000 km, has electrons and photons. Many instruments like 

satellites, rockets have already launched to study that region. The small 

satellite and microsatellite for ionosphere monitoring discussed in papers [26, 

27]. Large size satellites have limitation to get more data in spatial beside of 

relatively expensive in manufacturing and launching to its orbit. A 

constellation of small satellites or nanosatellites provides more data in space 

sampling and time sampling. Although small satellite or nanosatellite has 

limitation in size and power, some nanosatellite concept is proposed for 

scientific mission [28, 29].  

GAIA I is a microsatellite developed by Chiba University, in Josaphat 

Microwave Remote Sensing Laboratory (JMRSL), and National Institute of 

Aeronautics Space (LAPAN), is intended for getting the distribution of 

electron density in low altitude of 60 until 600 km in vertical of earth`s layer.  

For covering wider area of the ionosphere region are needed the 

complementary satellites which present more ionospheric data in time 

sampling and space sampling like beacon sensor.  
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The first step in the design process of an antenna for a satellite is to determine 

the specifications of the antenna as the proposed application. The 

specifications of the antenna have to be derived at the earlier stage from a 

mission requirement, the design and manufacturing of an antenna. The 

antenna specification is imposed by communications requirements, platform 

requirements, and mission aspects requirements. 

The specification based on communication requirements is such as center 

frequency, dissipation factor, minimum antenna gain, bandwidth, polarization, 

and radiation pattern. The requirement for platform limitation is such as 

antenna size, weight, and compactness. The specification for mission 

requirements is such as antenna beamwidth, space-based material. The 

antenna in space must be strong enough for space environment such as for 

radiation of solar, magnetic field, for ionospheric plasma, for thermal 

condition and for launch condition.  

Typical materials for antennas are metal alloys, polymer, ceramic, coating, 

and polymer composites.  The metal alloy has a specification for thermal 

treatments, surface finish and corrosion protection. Polymers are such as 

thermoset resins, epoxy and thermoplastics. Polymer composites are based on 

carbon, glass, aramid, quartz fibers. The proposed antenna uses NPC-H220A 

with specification low dielectric loss for micro and millimeter-wave band, the 

dielectric constant of 2.17, dissipation factor of 0.0005 and flexing strength 

50 N/mm2. 

The very important thing is the cost of the antenna. The total cost of research 

is as minimum as possible with maximum performance. 

The diagram block of beacon transmitter is depicted in figure 2.8, that consists 

of a local oscillator (LO), frequency multiplier from 100 MHz to 2.2 GHz and 

2.5 GHz, bandpass filter in 2.2 GHz and 2.5 GHz, power amplifier, directional 

coupler (DC) and a wideband antenna. Antenna for Tx beacon and for data 

telemetry [30] having bi-directional radiation patterns to overcome the 
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unstable direction to beacon receiver on the ground while the satellite 

spinning around. The solar panel is installed on 4 sides of the satellite for the 

supply of electricity, as shown in figure 2.9.  

 

 

 

Figure 2. 8. Block diagram of the beacon transmitter and communication 

system 

  

 

Figure 2. 9. Illustration of antenna position, tilted 45 degrees, for beacon 

transmitter in 2.2 GHz and data transmitter in 2.5 GHz 
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The intensity of the beacon signals on the ground receiver is calculated by 

assuming the emitted power of 1 watt from LEO orbit, the propagation 

distance of 3000 km, and bi-directional antennas at both points. Received 

power and voltage in a 50-ohm antenna induced at the ground antenna are 

around 4.9 ×10-15 watt and 4.9 ×10-7 volts in the frequency of 2.2 GHz. 

Illustration with a signal with a single frequency from space to the ground is 

shown in figure 2.10. 

 

 

 

Figure 2. 10. Illustration of the beacon signal with a single frequency 
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2.5  CP PRINTED SLOTTED ANTENNA  

Parameters of an antenna are determined by its reflection coefficient, 

impedance, polarization, gain, bandwidth, radiation beamwidth, and pattern. 

The reflection coefficient defines the total power reflected from the antenna 

to transmitter due to impedance of both the antennas is unmatched. If the 

reflection coefficient is 0-dB, it meant all radiated power is reflected. This 

condition can damage the transmitter system. Commonly, the acceptable 

minimum value for the reflection coefficient is -10 dB. It means the input 

power is delivered to antenna and emitted to space at least 90%, and the 

reflected power is around 10 %. 

Gain is another useful parameter expressing an antenna performance. It is a 

measure that describes antenna efficiency and its directional pattern. The gain 

of the antenna determines the portion of power transmitted to the main 

direction from the power source in antenna input. The antenna gain is 

compared to an isotropic antenna having the gain of 0-dB, as shown on 

equation [2.7]. 

 
𝐺𝑎𝑖𝑛 =  

𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
 4𝜋 =  

𝑈(𝜃, ∅)

𝑃𝑖𝑛
 [2.7] 

In microstrip antenna, rectangular and circular are the most common shapes, 

and both of them radiate similar broad patterns. Antenna size can be reduced 

by adding vertical shorting plates, slot-loading, high permittivity dielectric 

material, metamaterial and multi-feed.  

 

 

 

 

 

Figure 2. 11. Different geometries for compact microstrip design, in the 

rectangular, circular, triangular, square ring, and circular ring shapes. 
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The circular ring, square ring, and triangular patch have smaller areas 

compared to that of a circular patch and a square patch operating at the same 

resonant frequency, as shown in figure 2.11 and electrical current flow in 

figure 2.12. 

 

 

 

 

 

 

 

Figure 2. 12. The electrical current flow (indicated by the arrows) on a 

square patch and a square ring patch of the same size. 

 

The basic equation for microstrip design will be approximately a half-

wavelength long in the dielectric. 

 

 𝑊 = 
1

2𝑓𝑟 √𝜇0 𝜖0

 √
2

𝜖𝑟 + 1
 [2.8] 

 

 𝐿 =  
1

2𝑓𝑟 √𝜖𝑟𝑒𝑓𝑓√𝜇0 𝜖0

 − 2∆𝐿 [2.9] 

 

The resonant frequency 𝑓𝑟 in hertz, the dielectric constant of the substrate 𝜖𝑟, 

the height of the substrate ℎ and extended on each end by a distance ∆𝐿. The 

∆𝐿 is a function of the effective dielectric constant 𝜖𝑟𝑒𝑓𝑓 and the width-to-

height ratio 𝑊 ℎ⁄ . 
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The pattern of radiation is a graphical representation of the radiation 

properties in space coordinates [31] that described the distribution of power 

radiation and depicted in a three-dimensional coordinates system, as shown 

in Figure 2.13.  

 

 

Figure 2. 13. The pattern of antenna radiation in a coordinate system 

 

Mainly, there are three patterns of antenna radiation, such as isotropic 

(electric field intensity is similar in all direction), omnidirectional (similar 

power and electric field intensity in all azimuth angle but varying in angle of 

elevation) as depicted in Figure 2.14(a), and directional (the asymmetric 

pattern and most power or electric field intensity in the main beam) as 

depicted in Figure 2.14(b).  

 

Solutions of Maxwell’s equations as a plane wave is shown in equation 2.10 

  

 𝐸⃗ =  𝐸⃗ 0𝑒
𝑖(𝑘̂𝑥̂− 𝜔𝑡) [2.10] 
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 𝐵⃗ =  𝐵⃗ 0𝑒
𝑖(𝑘̂𝑥̂− 𝜔𝑡) [2.11] 

   

 𝐵⃗ 0 = 
1

𝜔
 (𝑘̂ 𝑥 𝐸⃗ 0) [2.12] 

where, 

𝐸⃗ 0  is called polarization vector for electric field and 𝐵⃗ 0  is called the 

polarization vector for the magnetic field.  The angular frequency 𝜔 and the 

wave vector  𝑘̂ are related by, 

 |𝑘̂| =  
𝜔

𝑐
 [2.13] 

 

Magnitudes of electric field and magnetic field are related by equation 2.14 

 

 |𝐸⃗ 0| = 𝑐 |𝐵⃗ 0| [2.14] 

 

In-plane wave, the polarization vector of the electric field 𝐸⃗ 0, the magnetic 

field 𝐵⃗ 0, and the direction 𝑘⃗  are all orthogonal. 

The equation for the electric field which propagates in the z-axis is expressed 

as in equation 2.15 below, 

 

 
𝐸⃗ =  𝐸⃗ 0 𝑒

𝑖𝜔(
𝑧
𝑐
−𝑡)

 [2.15] 

where,  

 𝐸⃗ 0 = (𝐸𝑥, 𝐸𝑦, 0 ) 

𝐸𝑥  and 𝐸𝑦 have amplitudes and phases. In the exponential form, we can write 

as equation below,  

 𝐸𝑥 = |𝐸𝑥| 𝑒
𝑖𝜑𝑥 [2.16] 
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 𝐸𝑦 = |𝐸𝑦| 𝑒
𝑖𝜑𝑦 [2.17] 

 

In polarization vector, we consider the relative size of 𝐸𝑥, 𝐸𝑦 and the phase 

difference    φ =  𝜑𝑥 − 𝜑𝑦. 

 

The antenna polarization is determined by its orientation of the electric field 

emitted by an antenna. If a half-wavelength is oriented in vertically above the 

Earth, it will radiate fields in the far-field dominated in 𝐸𝜃(𝜃, 𝜑). In this case, 

the polarization is called vertical polarization. If a half-wavelength is 

horizontally oriented above the Earth, the radiated electric fields to be 

dominated in  𝐸𝜑(𝜃, 𝜑) the direction in the far-field. 

 

 

 

 

 

 

 

 

 

 

Figure 2. 14 (a). Omni-directional pattern (left), (b). Directional 

pattern (right) 

 

The polarization of the antenna is then called horizontal polarization. Both 

horizontal and vertical polarizations are linear polarization as shown in figure 

2.15. 

The electrical field emitted by an antenna can be expressed as shown in 

equation [2.18] below, 
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 𝐸⃗ (𝜃, 𝜑) =  𝜃  𝐸𝜃(𝜃, 𝜑)𝑒𝑗𝜙1 + 𝜑⃗  𝐸𝜑(𝜃, 𝜑)𝑒𝑗𝜙2 [2.18] 

 

Here, the magnitudes of the electric field components in the far-field of the 

antenna is denoted of 𝐸𝜃(𝜃, 𝜑) and 𝐸𝜑(𝜃, 𝜑) respectively. 

 

Figure 2. 15. Electric field and magnetic field in  linear polarization 

 

 

For a plane wave, if there is no phase difference between 𝐸𝑥  and 𝐸𝑦  in a 

cartesian coordinate system or 𝐸𝜃(𝜃, 𝜑) and 𝐸𝜑(𝜃, 𝜑) in a polar coordinate 

system, the wave is linearly polarized, as shown in equation 2.19 below. 

 

 𝐸⃗ 0 = (𝐸𝑥, 𝐸𝑦, 0 ) [2.19] 

 

If 𝐸𝑦 = 0 and 𝐸𝑥  ≠ 0, the wave as shown in equation 2.20 below, 

 

 𝐸⃗ =  𝐸0𝑥̂𝑒𝑖(𝑘𝑧− 𝜔𝑡) [2.20] 
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To generate CP wave, it must generate the electric fields with two orthogonal 

components in the far-field area, as shown in Equation 2.5. 

Circular polarization can be achieved only if the electric field has two 

orthogonal signals which have the same magnitudes and a 900 phase 

difference of the two components, as shown in equation [2.21, 2.22] below. 

 

 𝐸𝜃(𝜃, 𝜑) =  𝐸𝜑(𝜃, 𝜑) [2.21] 

 

 𝜙2 − 𝜙1 = ± 
𝜋

2
 [2.22] 

 

The antenna bandwidth has specified the interval of frequencies within which 

the performance of the antenna fulfilled to a determined-parameters. The 

electric field and magnetic field in circular polarization is shown in figure 

2.16.  The antenna parameters such as the impedance of input, pattern, beam 

width, polarization, gain, radiation efficiency  in frequency interval with an 

acceptable value. The input impedance is commonly specified under 10 dB 

as an acceptable value for input impedance bandwidth. An antenna with 

circular polarization has specified standard as the axial ratio bandwidth while 

the value is under 3-dB.  

 

Figure 2. 16. Electric field and magnetic field in circular polarization 
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2.6 RELATED RESEARCH 

 

Many antennas in linear and circular polarization have been proposed for 

small satellites and nanosatellites, such as for GPS transmitter and 

communication systems [32, 33, 34].  

Some of them are a single narrowband or a wideband antenna, and the others 

use a dual-band frequency with narrowband. CP antennas proposed and 

designed for the satellite GPS, and Galileo is a helix antenna with a bifilar 

design [35], a slot antenna with an annular-ring shape [36], and spiral having 

six turns [37]. Some antennas with dual bands are proposed for the GNSS 

receiver: a stacked patch with a branched-line hybrid feeding line and 

proximity probes [37] and a microstrip antenna having dual-connected probes 

[38].  

Meanwhile, antenna for data transmission also adopts a circular polarization 

wave. Communication antennas in S-band have been presented, such as 

spirals with conical shape [34], [39], helix antennas with the quadrifilar 

design [40], [34], antennas with a conical linear spiral  [41] and with parasitic 

elements [42]. Thus, an investigation of the antenna`s characteristics with 

small size, and lightweight is necessary. Circularly Polarized (CP) antennas 

are very important for satellites because of their strength to multi-path effects, 

polarization mismatch, and Faraday`s rotation effect.  

Faraday`s rotation is a magnetic and optical phenomenon, as an interaction 

between a magnetic field and light  in a medium. The Faraday`s rotation 

causes a spin of the polarization plane, that is proportional to the part of the 

magnetic field in the direction of wave propagation. This phenomenon 
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happens in most optically transparent dielectric  materials under the influence 

of the magnetic field.  

Particularly for nanosatellite, the circularly-polarized antenna with the wide 

beam is very important, because the angles in elevation and in azimuth are 

uncertain position. The CP microstrip antennas have been broadly developed 

for the satellite antenna by considering its compact size and also relatively 

lightweight, which is a critical issue for small satellite nanosatellite. 

A printed-slotted antenna has advantages compared to the above-discussed 

antennas for satellites and others for space-based applications. Based on the 

feeding line method, microstrip-slotted antenna, mainly has two methods: 1). 

a coplanar waveguide (CPW) feed, commonly generate a wider bandwidth 

and 2). a microstrip feed line commonly generates a higher antenna gain. The 

first method is classified into a wide slot and a ring-shaped slot.  

Commonly, antennas with a ring-shaped slot generate narrower bandwidth 

compared to an antenna with a wider slot, but it provides a smaller size of the 

antenna. By enlarging the size of the slot, the 3-dB axial ratio bandwidth can 

be improved.  

It is presented that a slotted antenna having an annular-ring shape fabricated 

on an RT 5880 laminate reaches the 3-dB axial ratio bandwidth until 65% in 

frequency of L band [36]. A slotted antenna with a squared-ring design 

printed on an FR4 laminate generates the 3-dB axial ratio bandwidth of 45% 

at a frequency of 3.32 GHz [43]. The wider 3-dB axial ratio of 68%, the 

maximum gain of 4.0 at 4 GHz, is produced by an antenna with CPW-feeding 

line, two diamond-shaped wide symmetric apertures [45]. An antenna with 

CPW-fed having squared-slot and three inverted-L-shape fragments achieves 

the 3 dB AR bandwidth of 80% [45]. 

The literature of antennas for beacon proposed for total electron content 

(TEC)  measurement that using two frequencies is very limited, as discussed 

in [6, 44], but these antennas have the unappropriated size and unpractical for 
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a nanosatellite. In reference [47] proposes a dual-band circularly-polarized 

antenna in UHF-band and S-band with microstrip antenna, but this antenna 

produces a relatively narrow impedance and axial ratio bandwidth. 

CP printed-slotted antennas have been proposed to widen the 3-dB axial ratio 

powered with a coplanar waveguide and a microstrip feeding line. A slot 

antenna fed by coplanar waveguide having a lightning-shaped feeding line 

and inverted-L strips [48] produces the 3-dB axial ratio of 48.8% and achieves 

peak gain around 3.4 dBic. A coplanar-fed stair-shaped slot antenna [49] 

produces the 3-dB axial ratio of 31.2%, and the gain achieved 3.7 dBi. 

Antenna, with a ring slot powered by microstrip-line, has a narrow bandwidth 

of more than  6 %, such as presented in [50]. Higher gain has been achieved 

by a wide-slotted antenna having air between microstrip-line-feeding and 

reflecting plate, as presented in reference [51]. The antenna produces the 3-

dB ARBW of 12 % and obtains an antenna gain of 5.5 dBic. A circular-

shaped-slotted antenna presented in reference [52] achieves the 3-dB axial 

ratio of 44 % in frequency 2.9-4.5 GHz and obtains a peak gain of 5 dBic.  

The conventional circularly-slotted antenna generates linear polarization. 

Circular-ring-slotted antenna fed by strip line in [53] transforming linear to 

circular polarization produces the 3 dB axial ratio bandwidth of 9 %. 

Modifying the structure of patch, such as introduces an annular ring slot and 

a hybrid coupler [54], produces 75 MHz, but the antenna gain is lower than 

2.5 dB. In [55], two linked-slotted rings enhance the axial ratio bandwidth of 

2.65-3.7 GHz, but antenna gain until 2 dBic. Nevertheless, the methods 

proposed previously yield the 3-dB axial ratio narrower than the impedance 

bandwidth of the antenna. A new technique is necessary to broaden the 3 dB 

ARBW. Methods for this goal, by including a rectangular-shaped-slanted slot 

on a circular-shaped patch [56] and by a narrow slot horizontally on a 

triangular-shaped patch antenna [57]. However, these methods did not 
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succeed to enhance the impedance bandwidth, the 3-dB axial ratio bandwidth, 

and the antenna gain. 

 

Table 2. 1 Performance comparison of circularly-polarized (CP) slot antennas 

 

 

The CP wave was produced by adding two truncations, a simple feeding line 

having 50 ohms, and an additional parasitic patch. Truncations were realized 

by two asymmetrical slots with rectangularly-shaped to generate circular 

polarization wave. The feeding line is moved to the negative side, x-axis, to 

raise the gain. Added a stub on the head of the feeding line to tune the 

impedance. The 3-dB axial ratio improvement of the CSA, a rectangularly-

shaped parasitic, is added into the circular-shaped slot, which generates the 

second resonance in higher frequency. 

The dimensions and performance of the fabricated antenna are compared to 

other CP printed-slot antennas summarized in Table 2.1. The proposed 

antenna has a higher peak gain compared to those reported in reference [44, 

48, 50], has a broader 3 dB ARBW compared to reference in [48, 50], and has 

a smaller size compared to reference in [51]. 

 

 

 

Reference 𝑓𝑐 (GHz) 
3 dB (ARBW) 

(%) 

 (IBW) 

 (%) 

Peak Gain 

(dBic) 

Dimension 

(mm) 

[42] 3.625 68 107 4 60 x 60 x 1.6 

[46] 2.745 48 51 4.2 60 x 60 x 0.8 

[48] 1.59 6.3 14.7 3.6 54 x 54 x 1.6 

[50] 2.375 12 39 5.5 120 x 120 x 33 

Proposed 2.2 35.8 47.3 5 95 x 100 x 1.6 



 

 

32 
2.6 RELATED RESEARCH  

 

 

 

 

 

CHAPTER 3 

 

3. WIDEBAND CP ANTENNA FOR 

SMALL SATELLITE AND 

COMMUNICATION  

 

This thesis describes 2 simulated and fabricated antennas named antenna type 

1 and antenna type 2. The design of antenna type 1 and antenna type 2 is 

almost similar, but antenna type 2 has a wider 3-dB axial ratio bandwidth by 

added a rectangular-shaped parasitic patch on the circular slot.  

Antenna type 1 can be used for the beacon antenna in the frequency of 2.2 

GHz and use another antenna for data communication. Nanosatellite has 

limitations in size and power supply. Antenna type 2 will overcome the 

problem of the size limitation with the modification design having a wider  3-

dB axial ratio bandwidth. 

Antenna type 2 proposed for beacon antenna in 2.2 GHz with bandwidth 

around 40 MHz and a communication system at 2.5 GHz with bandwidth 

around 100 MHz. The antenna is developed on the printed circuit board 

(PCB) material and substrate material which has a relative permittivity 𝜀𝑟 is 

2.17, the thickness is 1.6 mm, the loss tangent is 0.0005. The copper on the 

top side and bottom side of the substrate has a thickness of 0.035 mm.  
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Both antennas, type 1 and type 2, are designed and fabricated based on CSA 

design. The novel techniques proposed here are changing the polarization of 

conventional CSA microstrip antenna from linear to circular and widening 

the 3-dB axial ratio bandwidth. The first technique introduces unsymmetrical 

rectangular truncation on CSA diagonal, then called type 1 of CSA antenna. 

The second one employs a combination of unsymmetrical rectangular 

truncation and a rectangular parasitic on the slot. 

 

3.1 CIRCULARLY-SLOTTED ANTENNA (CSA) 

 

The antenna of type 1 is printed on a single substrate, that consists of the 

grounding in the front side, and the feeding line on the bottom side of the 

substrate.  The antenna is designed with a square patch, with length size (𝐿) 

of 100mm and width (𝑊) of 100mm. A slot with a circular form is developed 

in the center of the patch with a radius (𝑅) of 26.5 mm. Grounded patch has 

two asymmetrical rectangular truncations with the width size of (𝑊𝑠) of 16 

mm, length size of (𝐿𝑠1) of 48 mm and (𝐿𝑠2) of 42 mm. The feeding line has 

a bottom width (𝑊𝑓1) of 4.5 mm, up width (𝑊𝑓2)  of 10 mm, the bottom length 

(𝐿𝑓1) of 40 mm, the up length (𝐿𝑓2) of 8mm. The detailed geometry of the 

CSA is depicted in Figure 3.1. 
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Figure 3. 1 Design of the antenna with a circularly-slotted, shifted, and 

deformed feeding line and truncation on the diagonal patch. 

 

3.2 GENERATION STEPS FOR CIRCULAR 

POLARIZATION WAVE  

 

The steps for the generation of circular polarization waves are in 3 steps. Step 

1 is a conventional model having a square patch with a slot on patch center 

with radius (𝑅), the width of the feeding line 𝑊𝑓1 and 𝑊𝑓2, and the length of 

𝐿𝑓1 and 𝐿𝑓2. The conventional model has a circular slot, and the feeding line 

shifted on the x-axis of 𝑋𝑓 as depicted in Figure 3.2.a. Step 2 consists of a 

shifted feedline of 𝑋𝑓  and added two rectangular truncations with equal 

length of 𝐿𝑠1 and 𝐿𝑠2 on the patch diagonal, as depicted in Figure 3.2.b. For 
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tuning the impedance frequency center is by deforming the feeding line with 

modifying the upper feedline 𝑊𝑓2 wider than bottom feedline 𝑊𝑓1.  Step 3 is 

to modify the truncation with an asymmetrical length of 𝐿𝑠1  and 𝐿𝑠2 . The 

truncation 𝐿𝑠1 is longer than 𝐿𝑠2  as shown in Figure 3.1 as the final step of 

the type 1 antenna.  

 

(a)               (b) 

Figure 3. 2 Design of the antenna models. (a) step 1 as a conventional 

model. (b) step 2.  

 

Figure 3.1, 3.2 depicts steps to generate circular polarization wave, started 

from step 1 as a conventional model, step 2, and step 3. Dimensions in detail 

the proposed antenna are shown in Table 3.1 Comparison of the simulated 

design of the model steps, model 1, and model 2 is showed in figure 3.3 and 

is summarized in Table 3.2. 
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Table 3. 2 Result of simulation in step 1, step 2, and step 3. 

 

 

 

 

Table 3. 1 Dimension of the Antenna in step 1, step 2 and step 3. 

Steps 
𝐿 

(mm) 

𝑊 

(mm) 

𝑅 

(mm) 

𝐿𝑠1 

(mm) 

𝐿𝑠2 

(mm) 

𝑊𝑓1 

(mm) 

𝑊𝑓2 

(mm) 

𝑋𝑓1 

(mm) 

Step 1 100 100 26.5 no slot no slot 3.8 3.8 0 

Step 2 100 100 26.5 42 42 3.8 3.8 -5 

Step 3 100 100 26.5 48 42 4.5 10 -5 

Steps 
𝑓𝑐𝑖𝑏𝑤 

(GHz) 

IBW(GHz), % fcarbw 

(GHz) 

3-dB ARBW 

(GHz), % 

Gain 

(dBic) 

Step 1  2.20 1.99-2.65, 30.22 none none 2.5 

Step 2 2.25 2.06-2.97, 40.57 2.23 1.97-2.5, 23.76 2.46 

Step 3 2.1 1.76-3.17, 67.4 2.23 2.02-2.43, 18.3 4.2 
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(a)    

 

          (b) 
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(c) 

Figure 3. 3 Comparison Results (a) the reflection coefficient (𝑆11) 

(dB); (b) the axial ratio of antenna (dB); and (c) antenna gain (dBic). 

 

 

3.3  AR ENHANCEMENT WITH TRUNCATION AND 

A PARASITIC PATCH  

 

The steps for designing the antenna consist of model conventional, model 1, 

as depicted in Figure 3.4.(a), (b). The conventional design of  CSA, as 

illustrated in Figure 3.4 (a), generates the linear polarization radiation. The 

radius (𝑅) of the slot determines the resonant frequency of the antenna. The 

antenna is simulated on a substrate with a relative permittivity (𝜀𝑟) of 2.17, 

thickness (h) of 1.6 mm, loss tangent of 0.0005, and slot radius (𝑅) of 26.5 

mm. The antenna of type 2 having a width (W) of 95 mm and the length (L) 

of 100 mm generates the resonant frequency of 2.17 GHz. The feedline as 
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depicted in figure 3.4. (a) has a length 𝐿𝑓1 of 40 mm, 𝐿𝑓2 of 8 mm, width 𝑊𝑓1 

of 4 mm, and 𝑊𝑓2 of 4 mm. Figure 3.5 depicts the final design, named as 

antenna type 2. The dimensions of the CSA model are shown in Table 3.3.  

 

 

(a) Step 1 as conventional model 

 

(b) Step 2 with rectangular truncation 

 

Figure 3. 4 Geometry of CSA; (a) Step 1 as conventional model (b) Step 2 
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Figure 3. 5 The geometry of antenna type 2. The feed line and the edge 

profile are drawn on the right side and the bottom side, respectively. 

 

Table 3. 3. Dimensions of CSA, from step 1, step 2, and step 3. 

 

Steps 
𝑅 

(mm) 

𝐿𝑠1 

(mm) 

𝐿𝑠2 

(mm) 

𝑊𝑓1 

(mm) 

𝑊𝑓2 

(mm) 

𝑋𝑓1 

(mm) 

𝐿𝑝 

mm) 

𝑊𝑝 

(mm) 

𝑋𝑝 

(mm) 

𝑌𝑝 

(mm) 

Step 1 26.5 - - 4 4 0 - - - - 

Step 2 26.5 40.79 40.79 4 4 -9 - - - - 

Step 3 26.5 48 40 4 10 -9 12 31 8 5 
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3.3.1 A Pair Symmetrical Rectangular Truncation 

 

Antenna with circular polarization wave is produced from the linear 

polarization antenna by modified the truncation [58, 30] and shifting the 

feeding line to the left and right side from the center. This step shifted the 

feeding line to the negative side of the x-axis and added two symmetrical 

rectangular-shaped slots. The feeding line is moved to the negative side 𝑋𝑓1 

of 9 mm. The rectangular-shaped truncation has a length 𝐿𝑠1 of 40.79 mm 

from the origin, the width 𝑊𝑠1 of 16 mm and 𝐿𝑠2 of 40.79 mm from the origin, 

the width 𝑊𝑠2 of 16 mm. This design generates the circularly-polarized wave 

and enhances the gain. The length of 𝐿𝑠1  and 𝐿𝑠2  influences the resonant 

frequency by reason of it changes the slot size. The longer of 𝐿𝑠1 the higher 

the resonant frequency. This step is achieved a wider impedance bandwidth 

than the conventional model one. Effects of the truncation length to 

reflectance coefficient, axial ratio, and antenna gain, as shown in Figure 3.6. 

The truncation length varies from 0 mm, 30 mm and 40.79 mm. While the 

truncation length of 0 mm, the center frequency of the reflectance coefficient 

is shifted to the frequency of 2.37 GHz, and the bandwidth of impedance 

achieve until 1.11 GHz. The antenna obtains a gain of 1.92 dBic in 2.2 GHz 

and reaches a gain of 2.4 dBic on the frequency of 2.6 GHz. While the length 

of the slot extended to be 30 mm, the center of frequency is moved to 2.59 

GHz, the frequency higher than before. This step model reaches the gain in 

4.06 dBic. 
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(a) 

 

(b) 
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(c) 

Figure 3. 6  (a) S11 (dB) (b) Axial ratio (dB) and (c) antenna gain (dBic), 

while truncation length varies from 0 mm, 30 mm and 40.79 mm 

 

But the weakness of this design, it fails to generate the axial ratio value 

smaller than 3-dB. While the rectangular truncation length to be  40.79 mm, 

it generates the 3-dB axial ratio at the center frequency of 2.34 GHz and 

generates the 3dB bandwidth of 270 MHz. While the length of truncation is 

extended more than 40.79 mm, the 3-dB axial ratio to be wider, but the 

resonance frequency of the reflectance coefficient is moved to the higher 

frequency.  

 

3.3.2 Rectangular-shaped Parasitic Patch  

 

Improvement of the CSA is needed to enhance the 3-dB axial ratio 

performance. Antenna in step 1 has the 3-dB axial ratio narrower than 
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impedance bandwidth. Many techniques were proposed to improve the 3-dB 

axial ratio, such as by parasitic patch [59, 60].  

 

 

 

Figure 3.7. Comparison of 3 dB axial ratio bandwidth of the parasitic patch 

with an ellipse, a circular and a rectangular shape   

 

Figure 3.7 shows a comparison of the 3 dB axial ratio of the three types of 

parasitic shape. An antenna with a circular-shaped parasitic generates 

narrower the 3 dB axial ratio bandwidth than ellipse shape. But an antenna 

with a rectangular-shaped parasitic generates a wider the 3-dB axial ratio 

bandwidth. 

A parasitic or additional patch with rectangular-shaped on the circular-shaped 

slot was implemented to an antenna on step 1 to produce the new resonant 

frequency. Impact of the additional patch is as a new current line which 

correlates to the length of parasitic 𝑊𝑝, a width of the parasitic 𝐿𝑝 and its 

position at the x-axis and y-axis. The impact of the width, length, and position 

on the y-axis and x-axis are analyzed and simulated.  Figure 3.8 (a), Figure 

3.8 (b), and Figure 3.8 (c) also Figure 3.8 (d) depict results of the simulation 
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by varying width, length, and position. Figure 3.8 (a) shows the influence of 

the parasitic width (𝑊𝑝 ) varying from 0 mm, 20 mm, and 31 mm. This 

simulation is done with fixed other parameters with the parasitic length (𝐿𝑝) 

of 12 mm placed on the x-axis (𝑋𝑝) of 8-mm and y-axis (𝑌𝑝) of 5-mm. When 

the parasitic width of 0 mm, the antenna can reach the 3-dB axial ratio 

bandwidth of 270 MHz. When the parasitic width (𝑊𝑝) of 20 mm, it produces 

the 3-dB axial ratio until 210 MHz and generates the gain to be lower of 3.47 

dBic in the resonant frequency of 2.2 GHz. While the parasitic width (𝑊𝑝) is 

extended until 31 mm, the antenna generates the 3 dB in two frequencies, in 

the lower frequency of 2.35 GHz and frequency of 3.44 GHz. The 3-dB axial 

ratio in lower frequency achieved of 360 MHz and in higher frequency 

achieved 160MHz. This design yields a gain of 3.6 dBic in 2.2 GHz as the 

resonant frequency. This simulation indicates when the width of a parasitic 

patch more than 31 mm, it generates better axial ratio bandwidth.  

Figure 3.7 (b) depicts the impact of the parasitic length (𝐿𝑝) from 2 mm, 6 

mm and 12 mm. This simulation is done with  fixed other parameters, the 

parasitic width (𝑊𝑝) in 31mm placed on the x-axis (𝑋𝑝) of 8 mm and y-axis 

(𝑌𝑝) of 5 mm. While the parasitic length (𝐿𝑝) of 2 mm, this model generates 

two the circular frequency in 2.35 GHz and in 2.58 GHz, with the 3-dB 

bandwidth of 229 MHz on a lower frequency and 180 MHz on a higher 

frequency. While the patch length (𝐿𝑝) of 6 mm, it generates the 3-dB axial 

ratio of 300 MHz and 220 MHz in frequency 2.37 GHz and 3.55 GHz. While 

the patch length (𝐿𝑝) is extended till 12 mm, this design generates the 3dB 

axial ratio of 310 MHz and 250 MHz in the center frequency of 2.38 GHz and 

3.49 GHz. Fortunately, the center frequency of the 3dB axial ratio is moved 

to be closer to each other and generate the gain until 4.1 dBic.  
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(a) 

 

(b) 

 the 3-dB, as targeted line  

 the 3-dB, as targeted line  
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(c) 

 

(d) 

Figure 3. 8 The axial ratio results with the variation of  (a). The parasitic 

length (𝐿𝑝) (b). The parasitic width (𝑊𝑝) (c). The parasitic point on the y-

axis (𝑌𝑝) (d). The parasitic point on x-axis (𝑋𝑝). 

 the 3-dB, as targeted line  

 the 3-dB, as targeted line  



 

 

48 
3.3  AR ENHANCEMENT WITH TRUNCATION AND A PARASITIC PATCH  

 

 

 

Figure 3.8(c) depicts the effect of the parasitic position on the y-axis (𝑌𝑝) 

varying from -5 mm, 0 mm, and 5 mm. The other parameters in this 

simulation are fixed with parasitic width (𝑊𝑝) of 31 mm, (𝐿𝑝) of 12 mm. 

While the center of the parasitic (𝑌𝑝) on -5 mm, it generates the 3-dB center 

frequency on 2.63 GHz and on 3.7 GHz. When the parasitic center 𝑌𝑝 of 0mm, 

it produces the 3-dB CF on 2.56 GHz and on 3.56 GHz. If the parasitic center 

(𝑌𝑝) placed on 5 mm, it generates the 3-dB on 2.39 GHz and on 3.45 GHz. 

Based on this simulation, it shows that the parasitic position on the y-axis (𝑌𝑝) 

sensitive to the center frequency of the 3-dB.  

Figure 3.8(d) refers to the effect of the parasitic position on x-axis (𝑋𝑝) on -9 

mm, 0 mm, and 8 mm. This step makes others parameter in fix value, with 

the parasitic width (𝑊𝑝) of 31 mm, the parasitic length (𝐿𝑝) of 12 mm. While 

the parasitic center (𝑋𝑝 ) placed on -9 mm, it generates the 3-dB center 

frequency bandwidth until 190 MHz. If the parasitic center 𝑋𝑝 placed on 0 

mm, it generates the 3-dB ARBW of 290 MHz in lower frequency and 190 

MHz in higher frequency. If the parasitic center 𝑋𝑝 of 8 mm, the 3-dB center 

frequency generates the 3-dB ARBW of 340MHz and 250MHz. The 

simulation result shows that the parasitic center 𝑋𝑝  generate a higher 

frequency while its position on the positive x-axis.  

However, a combination of slots having symmetrical length and a rectangular 

parasitic patch produces a narrow 3-dB ARBW. The next process is to extend 

the truncation length (𝐿𝑠1) on the bottom side to be 48.79 mm and truncation 

length (𝐿𝑠2) on the upside to be 40.79 mm. This unsymmetrical rectangular 

truncation can enhance the 3-dB axial ratio until 51.5 %, in the frequencies of 

2.1 - 3.3 GHz. This design step generates higher gain until 4.71 dBic in 2.2 

GHz. The maximum gain of this design is 4.8 dBic in 2.28 GHz. But this 

design has a weakness that the impedance frequency is moved to a higher 

frequency from  2.27 GHz until 3.32 GHz, and the deepest curve of the 
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reflection coefficient reaches -45 dB at 2.69 GHz. The frequency of 

impedance must be moved to a lower frequency around 2.2 GHz as an antenna 

requirement. A technique to overcome this weakness is by modifying  the 

feedline width on the upside (𝑊𝑓2) to be 10 mm, as depicted in figure 3.5. 

This design produces the bandwidth of impedance from 1.8 GHz until 2.7 

GHz, the antenna gain up to 4.65 dBic. The 3-dB axial ratio is from 2.21 GHz 

to 3.26 GHz or equal to 51.52 %, the deepest curve of 0.28 dB at 2.4 GHz. 

The tuning of the feeding line is an important thing to obtain good results. 

Results of step 1 as model conventional, step 2 is depicted in figure 3.8 and 

its performances are shown in table 3.4. Figure 10 show the distribution of 

electric field in frequency 2.2 GHz of : 0 degrees, 90 degrees and 180 degrees. 

 

 

(a). S11 
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(b). Antenna Gain 

 

 

(c). Axial Ratio 

 

Figure 3. 9. Results comparison of (a). 𝑆11 (b). Axial ratio (c). Antenna 

gains in step 1, step 2 of the antenna design 



 

 

51 
3.3  AR ENHANCEMENT WITH TRUNCATION AND A PARASITIC PATCH  

 

 

 

 

 

 

  

 

 

 

(a)                                                 (b) 

 

 

 

 

 

 

 

                                              (c) 

Figure 3.10. Distribution of Electric field in frequency 2.2 GHz of : 

(a) 0 degrees (b) 90 degrees and (c) 180 degrees 

 

 

Table 3. 4 Simulation results of step 1, step 2 of the proposed antenna 

 

Steps 
fcibw 

(GHz) 

Impedance 

Bandwidth (GHz) 

fcarbw 

(GHz) 

3-dB ARBW 

(GHz), % 

Gain 

(dBic) 

Step 1 
2.1789 

 

1.9899-2.5839/ 

27.26% 
- - 1.852  

Step 2 
3.0249 

 

2.1009-3.4149/ 

43.43% 
2.36  

2.16-2.52/ 

15.25% 
3.65 

Step 3 2.1879 
1.8489-2.7159/ 

39.62% 
2.42 

2.13-3.26/ 

46.69% 
4.663  
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CHAPTER 4 

 

4. EXPERIMENT AND MEASUREMENT  

 

This chapter explains the steps of the experiment, the result of measurement, 

and discussion. The simulation results were compared to the measured results 

to know the antenna performance.  

 

4.1 EXPERIMENT PROCESS 

 

In Computer Simulation Technology (CST), the antenna was designed and 

simulated to analyses the best performance of the antenna. The next step is 

the fabrication of the antenna. To create an antenna layout for fabrication, 

DraftSight software such as Corel draw is needed to change the DXF file 

resulted from CST software. The photosensitive film is needed to copy the 

antenna layout on the front side and backside of a printed circuit board (PCB) 

by lightning with ultraviolet. Layout development and etching of the PCB 

employ chemical GEN-L and chemical EB-750 Etchant.  The process of 

manufacturing the designed and simulated antenna by using chemicals is 

shown in Fig. 4.1.  

Verification of the simulated results, both of the manufactured circular-

slotted antennas are measured by using Network Analyzer, Agilent, E5062A. 

Measurement is done to take a value of antenna parameters such as the 
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reflectance coefficient (S11), the impedance, the 3 dB AR, the pattern, and the 

antenna gain.  

 

Figure 4. 1 Experimental process of antenna fabrication using PCB, Gen-L, 

EB-750, and Alkali. 

 

The AR is measured by transmitting the fabricated antenna by two calibrated 

RHCP and LHCP tester antennas over the frequency interval. Port of the 

calibrated antenna is set to port 1 of the network analyzer, and the port of 

fabricated antenna is connected to port 2 of the vector network analyzer. The 

AR of the antenna is determined as Equation 4.0 below. 

 

 𝐴𝑅(𝑑𝐵) = 20 𝑙𝑜𝑔 [
𝑃𝑅𝐻𝐶𝑃 + 𝑃𝐿𝐻𝐶𝑃

𝑃𝑅𝐻𝐶𝑃 − 𝑃𝐿𝐻𝐶𝑃
] (4.0) 

 

 

where,  

P is measured power, and AR is the axial ratio of the antenna under test. 
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The antenna pattern was measured by illuminating the antenna with the LHCP 

and the RHCP-calibrated antenna at their x-z axis, y-z axis. The fabricated 

antenna is spun 3600 from 00 to 3590 to measure the electric field power for 

each angle point in one determined frequency. The configuration of antenna 

and VNA port is like the AR setup. Results for each frequency are LHCP and 

RHCP antenna pattern at x-z, y-z axes.   

Measurement of antenna gain is set up by illuminating the fabricated antenna 

and a dipole antenna as a reference. A gain of the LHCP and RHCP antenna 

can be determined using the mathematic equation as below, Equation 4.1 and 

Equation 4.2. 

 

 𝐺𝑅𝐻𝐶𝑃 (𝑑𝐵𝑖𝑐) = (𝑃𝑅𝐻𝐶𝑃(𝑑𝐵) − 𝑃𝑑𝑖𝑝𝑜𝑙𝑒  (𝑑𝐵) − 0.85 (4.1) 

 

 𝐿𝑅𝐻𝐶𝑃 (𝑑𝐵𝑖𝑐) = (𝑃𝐿𝐻𝐶𝑃(𝑑𝐵) − 𝑃𝑑𝑖𝑝𝑜𝑙𝑒  (𝑑𝐵) − 0.85 (4.2) 
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Figure 4. 2 Setup of antenna measurement: antenna, controller, PC, and 

network analyzer.  

 

A gain of the fabricated antenna is G. Number of -0.85 is a result of a half-

wave dipole antenna 2.15 dB, and gain correction of -3 dB, while CP antenna 

is compared to a dipole antenna. The experimental setup is illustrated in Fig. 

4.2 for cable connection and Fig. 4.3 (a) for coefficient reflection,  (b) for gain 

and axial ratio measurement. 
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(a) Reflection Coefficient Measurement 

 

 

(b) Axial ratio dan Gain measurement 

 

Figure 4. 3 (a) Reflection coefficient measurement, (b) Axial ratio, and gain 

measurement in an anechoic chamber. 
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4.2. RESULTS OF TYPE-1 ANTENNA 

 

Photograph of type-1 fabricated antenna can be seen in Figure 4.4. Figure 

4.5.a shows that the reflection coefficient of the simulation result compared 

with the measurement results shows good agreement, even though the deep 

of measured result better than the simulation result. The reflection coefficient 

of the measured antenna under 10 dB is 58% from 1.7 - 3 GHz.  Fig. 4.5.b 

shows that the axial ratio of the simulation result compared with the 

measurement results shows good agreement. The measured 3-dB ARBW is 

14.88% from 2.02 – 2.35 GHz. This type-1 fabricated antenna generates a 

left-handed circular polarization (LHCP). This antenna achieves a peak gain 

of 4.5 dBic at a frequency of 2.2 GHz, as shown in figure 4.5.c. 

 

 

 

(a) 
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(b) 

Figure 4. 4 Photograph of the type-1 manufactured antenna (a) front side as 

grounded-patch, (b) backside as a feeding line. 

 

(a) Reflection coefficient (S11) 
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 (b) Axial Ratio (AR) 

 

(c)  Gain  

Figure 4. 5 Comparison of simulated and measured results of (a) S11, (b) 

AR, (c) Gain of type-1 fabricated antenna. 
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4.3 RESULTS OF TYPE 2 ANTENNA 

 

The design of antenna type-1 is modified to enhance the ARBW to be type 2 

circularly-slotted antenna by added a parasitic patch. The performance must 

be tested to know the performance.  Photograph of antenna type-2 can be seen 

in Fig. 4.6.  

 

 

 

(a) Front side, as grounded-patch 
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(b) Backside, as a feeding line 

 

Figure 4. 6 (a) Front side as grounded-patch, (b) backside as a feeding line 

 

The reflection coefficient of the fabricated antenna, as shown in Fig. 4.7.(a) 

is 862.5 MHz from 1.85 to 2.71 GHz. It presents a good agreement with the 

simulated result. The center of resonant frequency is shifted to a higher 

frequency from 2.2 GHz to be 2.3 GHz. The measured bandwidth is wider 

than the simulated one in lower frequency. The 3-dB ARBW of the fabricated 

antenna produces a bandwidth of 787.5 MHz, from an interval frequency of 

2.1 to 2.95 GHz. The measured result is narrower than the simulation results 

as described in Figure 4.7(b). The frequency of the 3-dB AR is all inside of 

the reflection coefficient bandwidth. This confirms that the parasitic patch 

significantly enhances the axial ratio of type 1 circularly-slotted antenna. 
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(a) S11 

 

 

(a) Axial Ratio (AR) 

Figure 4. 7.  Comparison of simulated and measured results of  

(a) S11,  (b) AR of type-2 antenna. 
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The antenna under test (AUT) is radiated with left-handed circular 

polarization and right-handed circular polarization waves at x-z, y-z axis. The 

fabricated antenna produces a bi-directional pattern with RHCP at θ =1800 

and LHCP at θ = 00. Radiation patterns of far-field on x-z, y-z axis at 1.8 GHz, 

2.2 GHz, 2.6 GHz are depicted in Figure 4.8. 

 

(a) 1.8 GHz 

 

 

(b) 2.2 GHz 
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(c) 

Figure 4. 8 Comparison of the measured and simulated radiation patterns on 

x-z axis at (a) 1.8 GHz, (b) 2.2 GHz, (c) 2.6 GHz 

 

The measured radiation pattern in the frequency of 1.8 GHz, 2.2 GHz, and 

2.6 GHz shows excellent consistency with the simulated results. This 

measured radiation pattern approves that the proposed antenna produces a 

circularly- polarized operation as predicted at the front and backside. 
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Figure 4. 9  Comparison of measured and simulated antenna gain 

 

Figure 4.9 depicts the measured and simulated results of LHCP gain. It 

produces an average gain of around 4 dBic. It is similar on 2.4 - 2.6 GHz to 

the simulated one, but higher gain at a frequency from 1.7 - 2.4 GHz and 

lower gain at a frequency under 4 dBic from 2.6 to 3.1 GHz.  
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CHAPTER 5 

5. CONCLUSIONS AND NEXT WORK 

 

5.1 CONCLUSIONS 

The focus of this thesis is on study and design antenna for ionospheric 

research based on remote sensing satellite in 2.2 GHz and for its 

communication 2.5 GHz. The proposed antennas are circularly-polarized 

antennas by using a microstrip material installed onboard a small satellite. For 

this application, two types of circularly-polarized circular-slotted antennas 

were designed and developed. 

The proposed antenna is simulated on CST software by determining antenna 

specification : the center frequency, minimum gain, bandwidth, pattern, size, 

polarization and compactness. Commonly, a higher frequency band is 

selected in order to make an antenna satisfying size requirements, especially 

for a small satellite. In previous beacon satellites, such as CERTO beacon 

using a crossed-yagi antenna in the frequency of 150 MHz and 400 MHz and 

Cosmic 2 using helix antenna in the frequency of 400 MHz, 965 MHz and 

2200 MHz. But those antennas are not sufficient for small satellites caused 

relatively big size.  

Circularly-polarized antennas are the best choice for satellites because of their 

strength to multi-path effects, polarization mismatch, and Faraday`s rotation 

effect. The Faraday`s rotation causes a spin of the polarization plane, that is 

proportional to the part of the magnetic field in the direction of wave 

propagation.  

The first type of antenna is fabricated on a single substrate, with a substrate 

thickness of 1.6 mm. The antenna consists of a ground part on the front side 
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and a feeding line on the backside of the substrate. The antenna is designed 

with a square-shaped patch, with the size the length 𝐿 of 100 mm, the width 

W of 100 mm, and a circularly-shaped slot is developed in the patch center 

with the radius 𝑟 of 26.5 mm. 

The antennas apply a linearly-polarized conventional type of the circularly-

slotted antenna as a basic design. Modifications were done on the ground side 

by giving truncations and on the feedline by shifting and tuning the antenna 

to manage the antenna impedance.  

The first type generates circularly-polarized wave radiation by implementing 

two rectangular truncations and a shifted feed line from its center. 

Improvement of the 3-dB ARBW, it requires setting the length of truncation.  

It can be approved that a pair of rectangular truncation has an important 

impact to enhance the 3-dB axial ratio bandwidth and the gain. This design is 

developed for only the beacon transmitter. The measured results of the 

antenna for beacon transmitter confirm of performance with impedance 

bandwidth of 58% from 1.7 - 3 GHz and CP bandwidth of 14.88 % in 

frequency 2.02 – 2.35 GHz. The antenna gain can reach 4.5 dBic at 2.2 GHz. 

The second type of antenna is fabricated on a single substrate, with a substrate 

thickness of 1.6 mm. The antenna consists of a ground part on the front side 

and a feeding line on the backside of the substrate. The antenna is designed 

with a square-shaped patch, with the size, the length 𝐿 of 100 mm, the width 

W of 95 mm and a circularly-shaped slot is developed in the patch center with 

the radius 𝑟 of 26.5 mm. 

The second type antenna uses the design of the first type with an additional 

parasitic patch on the circularly-shape slot. The shape of parasitic is very 

critical to the 3-dB axial ratio bandwidth enhancement. In the simulation 

process, by using three types of parasitic shapes such as a circularly-shape 

parasitic, an elliptically-shape parasitic, a rectangularly-shape parasitic, the 

rectangularly-shape parasitic  can generate a wider 3-dB ARBW. The 
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simulated and fabricated antenna successfully enhances the 3-dB ARBW of 

35.7% and the maximum gain of 5 dBic. Both of this fabricated antenna is 

developed for a beacon transmitter in 2.2 GHz with a bandwidth of 40 MHz 

and communication in 2.5 GHz with BW of 100 MHz. Both of the proposed 

antennas, type one and type 2, have bi-directional radiation patterns. 

Finally, the designed antenna can be used to wideband circularly-polarized 

antenna applications for small satellites for beacon transmitter, 

communication, and other applications. 

 

5.2 CONTRIBUTIONS 

This thesis makes contributions of the axial ratio and gain enhancement for 

nanosatellite using a parasitic patch on microstrip CSA.   

The contributions offered in this thesis on the microstrip antenna are 

concluded as follows: 

• A novel method to generate circularly polarized (CP) wave in L band 

with center frequency in 2.2 GHz by making use of a pair of 

unsymmetrical rectangular truncation on the centered-circular slot.  

• A novel method is to broaden the CP bandwidth of a CSA antenna for 

beacon frequency in 2.2 GHz with a bandwidth of 40 MHz and data 

communication 2.5 GHz with a bandwidth of 100 MHz. This antenna 

design is making use of a pair of the unsymmetrical rectangular 

truncation incorporated with parasitic path and shifted feedline. 

• Measured and simulated results indicate good consistency of the 

fabricated antennas. 
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5.3 NEXT WORKS 

 

The research in this dissertation may be continued for the next research,  such 

as listed below : 

1.  Design and development of an antenna with higher CP antenna gain. 

2.  Development of a CSA array for antenna beacon receiver on the 

ground to obtain improved gain. 

3.  To test the performance of the fabricated antenna for beacon signal 

transmission and data transmission simultaneously in a single 

frequency. 
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Appendix 2 – Design Steps, Simulation in CST and 

Measurement Process. 

 

CST uses many methods to solve many applications such as FIT (Finite 

Integration Technique) for its transient solver, FEM (Finite Element Method) 

for its frequency-domain solver, MoM (Method of Moment) for its integral 

equation solver. It also has an optical simulation tool for large structures, 

based on the SBR Shooting and bouncing rays method (Physical Optics), it’s 

called a solver in their lingo.  

CST has many solver modules. The time-domain solver uses the Finite 

Integration Technique (FIT). HFSS predominantly uses the Finite Element 

Method (FEM). CST Microwave Studio provides many solver modules. 

Moreover, besides its prominent time-domain solver primely presenting the 

Perfect Boundary Approximation (PBA). 

Here, below are steps of design and simulation of the circularly-slotted 

antenna (CSA) using CST Microwave Studio. 

 

 

 

 

 

 

 

 

 



 

 

83 
Appendix 2 – Design Steps, Simulation in CST and Measurement Process.  

 

 

 

1. In this step, we can choose a suitable application such as EMC/ EMI, 

EDA/Electronic, Charged Particle Dynamics. For antenna design, we 

select “MW & RF & Optical”, choose “Antennas” and then click the 

button “Next >”.  

 

 

2. In this step, how to create a new template for microstrip antenna, select 

“Planar (Patch, Slot, etc.)” and click the button “Next >”. 
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3. In this step, we can select the recommended solvers such as Time Domain, 

Frequency Domain, and Multilayer. For the design, choose “Time Domain” 

for wideband or multiband antenna and then click the button “Next >”. 

 

 
 

4. In this step, it shows units of the dimension, frequency, time, temperature, 

etc. If it is okay, click the button “Next >”. 
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5. This step, we will choose the frequency interval for simulation. We can 

monitor the E field, the H field, the far-field, the power flow, the power 

loss, etc. We can add other parameters. We can select and define the 

frequencies for study. In this study, I select in frequencies of 2 GHz, 2.2 

GH, and 2.4 GHz. 
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6. In this step, we name the template of our work, for example, “Antenna – 

Planar_14”, then click the button “Finish”. 

 

 
 

 
7. In this step, a template will appear on our work display, a rectangular-

shaped.  
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8. In this step, we create a rectangular-shaped or square-shaped based on the 

size of the structure (length, width, and thickness). We can also determine 

the material type such NPC by selecting a button Brick on Modelling Tab. 

This step is creating a substrate. 

 

 
 

 

9. This step is to create a Grounded-Patch to determine the length, width, and 

thickness of the material. Here, the material is copper (pure), as depicted 

below. 
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10. This step is to create a Feeding line and to determine the length, width, 

and thickness of the material. Here, the material is copper (pure), as depicted 

below. 

 

 
 

 

11. Creating a Circular-shaped Slot and determining length, width, and 

thickness of the material. Here, the material is a vacuum, as depicted below. 
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12. Creating a rectangular-shaped Slot on the bottom side, determining the 

length, width, and thickness of the material. Here, the material is a 

vacuum, as depicted below. 

 
 

 

13. Creating a shifted Rectangular Slot on the bottom side, determining the 

length, width, and thickness of the material. Here, the material is a 

vacuum, as depicted below. 
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14. Creating a Rectangular Slot in the center. Determining the length, width, 

and thickness of the material. Here, the material is a vacuum, as depicted 

below. 

 

 
 

 

15. Translating a Rectangular-shaped Slot on the center to the upside. 

Determining the length, width, and thickness of the material.  
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16. Shifting a feeding line to the left side. Determining the length of shifting 

as depicted below 

 

 

 
 

17. Changing the feeding line width on the upside for impedance tuning. 
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18. Creating an additional parasitic patch, on a circular-shaped slot.  

Determining length, width, and thickness, the material, and position of the 

parasitic. Here, the material is copper, as depicted below. 

 

 

 
 

 

19. This step shows the simulation result of S11 (the Reflection coefficient) 

in the frequency of 2.19 GHz. 
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20. This step shows the simulation result of real impedance (R, in ohm). The 

real impedance is 55.8 ohms at frequency  2.2 GHz 

 

 
 

21. This shows the simulation result of the reactance of impedance (X, in 

ohm). The reactance is – 0.83 ohms at frequency 2.199 GHz 

 



 

 

94 
Appendix 2 – Design Steps, Simulation in CST and Measurement Process.  

 

 

 

 
 

 

 

22. This one shows the simulation result of the Axial Ratio (ARBW, in dB). 

We can see that the 3 dB ARBW is from 2.15 GHz – 3.25 GHz. 
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Steps for antenna fabrication consist of 7 steps : 

• Design/Layout Preparation 

After antenna design has completed in CST, the design is printed in 

paper or tracing paper. The white color is copper, and the black color 

is slotted, as shown figure below. 

 

 

• Lamination Process. 

The lamination process is to attach the photosensitive film on the 

patch. 

 

 

 

Patch 

Photosensitive 

film 

Laminating 

machine 
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• Ultra Violet (UV) Exposure 

The UV exposure is to print the designed antenna on the Patch and 

result after the UV process, as shown on the figure below. 

 

 

 

 

 

• Development of Antenna 

• Etching 

• Remove Lamination 

• Cleanup 
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Appendix 3 – Finite Integration Technique (FIT) in CST 

Steps of Maxwell Equations for cubic grids in CST. 

 

∮ 𝐸 𝑑𝑙
𝜕𝑠

= −∬
𝜕𝐵

𝜕𝑡
 𝑑𝑆

𝑠
  [A.1] 

 

                             ∬ 𝐷 𝑑𝑆
𝜕𝑉

= ∭ 𝜌 𝑑𝑉
𝑉

        [A.2] 

 

∮ 𝐻 𝑑𝑙
𝜕𝑠

= −∬ (
𝜕𝐷

𝜕𝑡
+ 𝐽) 𝑑𝑆

𝑠
                    [A.3] 

 

       ∬ 𝐵 𝑑𝑆
𝜕𝑉

=  0                                [A.4] 

 

Equation A.1, A.2, A.3, and A.4 are Maxwell equations in integral 

forms for the electric field, electric density, magnetic field and 

magnetic density. 

  

For the simulation in FIT, a structure is divided into grids, as shown 

below Figure A.1. 

 

 

Figure A.1 Steps of Maxwell equation for a single grid in FIT 
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In a single grid, as shown below, consist of an electric field (e) and 

magnetic density (b) in a normal plane. 

 

 

 

 

 

 

 

Figure A.2 Electric field and magnetic density in a single grid for 

FIT 

 

Maxwell equation in a normal plane of a single grid as shown in the 

equation below. 

              𝑒𝑖 − 𝑒𝑗 − 𝑒𝑘 − 𝑒𝑙 = −
𝜕

𝜕𝑡
 𝑏𝑛                                   [A.5] 

 

        [1 −1 −1 −1] [

𝑒𝑖

𝑒𝑗
𝑒𝑘

𝑒𝑙

] =  − 
𝑑

𝑑𝑡
 [𝑏𝑛]                         [A.6] 

 

                                 𝐶 𝑒 =  −
𝑑

𝑑𝑡
 𝑏                                           [A.7] 

 

 

Equation A.5, A.6, and A.7 are a step of the Maxwell equation in a 

single grid for Equation A.1. The same process can be done to solve 

other equations A.2, A.3 and A.4. 
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Maxwell equation in a grid is summarized as equation below Equation 

A.7, A.8, A.9 and A.10.   

 

              𝐶 𝑒 =  −
𝑑

𝑑𝑡
 𝑏         [A.7] 

                 𝑆𝑑 = 𝑞                                                  [A.8] 

                𝐶 ℎ =  
𝑑

𝑑𝑡
 𝑑 + 𝑗                                      [A.9] 

                     𝑆𝑏 = 0                                                 [A.10] 

 

 

 

 

 

 


