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Preface

This thesis deals with the theory of Ulrich ideals in a Cohen-Macaulay local ring and

related topics. The notion of Ulrich ideals is a generalization of stable maximal ideals,

which dates back to 1971, when the monumental paper [40] of J. Lipman was published.

The modern treatment of Ulrich ideals was started by [24, 25] in 2014, and has been

explored in connection with the representation theory of rings. In [24], the basic properties

of Ulrich ideals are summarized, whereas in [25], Ulrich ideals in two-dimensional rational

singularities are closely studied with a concrete classification.

For a moment, let (R,m) be a Cohen-Macaulay local ring with d = dimR and I

an m-primary ideal of R. Suppose that our ideal I contains a parameter ideal Q =

(a1, a2, · · · , ad) of R as a reduction, that is, the equality In+1 = QIn holds true for some

integer n ≥ 0. Then the notion of Ulrich ideals is defined as follows.

Definition A ([24]). We say that I is an Ulrich ideal of R, if the following conditions

are satisfied.

(1) I ̸= Q,

(2) I2 = QI, and

(3) I/I2 is a free R/I-module.

We notice that Condition (2) together with Condition (1) are equivalent to saying

that the associated graded ring grI(R) =
⊕

n≥0 I
n/In+1 of I is a Cohen-Macaulay ring

and a(grI(R)) = 1 − d, where a(grI(R)) denotes the a-invariant of grI(R) ([27, Remark

3.10], [30, Remark (3.1.6)]). Therefore, these two conditions are independent of the choice

of reductions Q of I. In addition, assuming Condition (2) is satisfied, Condition (3) is

equivalent to saying that I/Q is a free R/I-module ([24, Lemma 2.3]). Therefore, if I is

an Ulrich ideal of R, then I satisfies that I2 = QI and I = Q :R I, that is I is a good

ideal in the sense of [15]. We also notice that Condition (3) is automatically satisfied if

I = m. Therefore, when the residue class field R/m of R is infinite, the maximal ideal

m is an Ulrich ideal of R if and only if R is not a regular local ring, possessing minimal

multiplicity ([43]). From this perspective, Ulrich ideals are a kind of generalization of

stable maximal ideals, which Lipman [40] started to analyze in 1971.
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Because Ulrich ideals are a very special kind of ideals, it seems natural to expect that,

in the behavior of Ulrich ideals, there might be contained ample information on base rings,

once they exist. Therefore, we consider the following two questions.

Problem B. Clarify the existence and ubiquity of Ulrich ideals in a given Cohen-

Macaulay local ring R.

Problem C. Find the relation between the behavior of Ulrich ideals and the structure

of the base ring.

For a commutative ring R, let Q(R) be the total ring of fractions of R, and let X :

Y = {a ∈ Q(R) | aY ⊆ X} for each R-submodules X and Y of Q(R). We denote by

µR(∗) the number of elements in a minimal system of generators.

Regarding these two problems, S. Goto, S.-i. Iai, and K.-i. Watanabe [15] found a

beautiful correspondence between the set of Ulrich ideals and the set of birational module-

finite extensions, when the base ring R is a Gorenstein local ring of dimension one. We

denote by XR the set of Ulrich ideals of R.

Theorem D (cf. [15, Theorem 4.2], [13, Proposition 3.1]). Let R be a Gorenstein local

ring with dimR = 1. We denote by A0
R the set of birational module-finite extensions

A of R such that A is a Gorenstein ring with µR(A) = 2. Then, there exist bijective

correspondences

XR → A0
R, I 7→ I : I, and A0

R → XR, A 7→ R : A.

This theorem says that the ubiquity of Ulrich ideals could be grasped through the

behavior of GorensteinR-subalgebra of Q(R). In [14], they determined all the Ulrich ideals

in one-dimensional Gorenstein local rings R of finite CM-representation type, computing

all members of A0
R. However, this theorem says nothing about the case where R is not a

Gorenstein ring of dimension one. It seems natural to ask what happens when R is not

necessarily Gorenstein or dimR ≥ 2.

In Chapter 1 we will extend the correspondence in Theorem D to the correspondence

between the set of trace ideals and the set of birational extensions, for arbitrary com-

mutative rings. The aim of this chapter is to explore the structure of (not necessarily

Noetherian) commutative rings in connection with their trace ideals. Let R be a commu-

tative ring. For R-modules M and X, let

τM,X : HomR(M,X)⊗R M → X

7



denote the R-linear map defined by τM,X(f ⊗m) = f(m) for all f ∈ HomR(M,X) and

m ∈ M . We set τX(M) = Im τM,X . Then, τX(M) is an R-submodule of X, and we say

that an R-submodule Y of X is a trace module in X, if Y = τX(M) for some R-module

M . When X = R, we call trace modules in R, simply, trace ideals in R. There is a recent

movement in the theory of trace ideals, raised by H. Lindo and N. Pande [37, 38, 39].

Besides, J. Herzog, T. Hibi, and D. I. Stamate [31] studied the traces of canonical modules,

and gave interesting results. The main activity in the present chapter is focused on the

study of the structure of the set of regular trace ideals in R. Let I be an ideal of a

commutative ring R and suppose that I is regular, that is I contains a non-zerodivisor

of R. Then, as is essentially shown by [38, Lemma 2.3], I is a trace ideal in R if and

only if R : I = I : I. We denote by X T
R the set of regular trace ideals in R, and explore

the structure of X T
R in connection with the structure of YR, where YR denotes the set of

birational extensions A of R such that aA ⊆ R for some non-zerodivisor a of R. We also

consider the set ZR of regular ideals I of R such that I2 = aI for some a ∈ I. We then

have the following natural correspondences

ξ : ZR → YR, ξ(I) = I : I,

η : YR → X T
R , η(A) = R : A,

ρ : X T
R → YR, ρ(I) = I : I

among these sets. The basic framework is the following.

Proposition E (cf. Proposition 1.13, Lemma 1.10 (1)). The correspondence ξ : ZR → YR

is surjective, and the following conditions are equivalent.

(1) ρ : X T
R → YR is surjective.

(2) η : YR → X T
R is injective.

(3) A = R : (R : A) for every A ∈ YR.

Our strategy is to make use of these correspondences in order to analyze the structure

of commutative rings R which are not necessarily Noetherian (see, e.g., [11]).

The purpose of Chapter 2 is to investigate the behavior of chains of Ulrich ideals in

a one-dimensional Cohen-Macaulay local ring. For a moment, let (R,m) be a Cohen-

Macaulay local ring with dimR = 1. Our main targets of this chapter are chains In ⊊
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In−1 ⊊ · · · ⊊ I1 (n ≥ 2) of Ulrich ideals in R. Let I be an Ulrich ideal of R with a

reduction Q = (a). We set A = I : I in the total ring of fractions of R. Hence, A is

a birational finite extension of R, and I = aA. Firstly, we study the close connection

between the structure of the ideal I and the R-algebra A. Secondly, let J be an Ulrich

ideal of R and assume that I ⊊ J . Then, we will show that µR(J) = µR(I) and that

J = (b) + I for some a, b ∈ m with I = abA. Consequently, we have the following, which

is one of the main results of this chapter.

Theorem F (= Theorem 2.3). Let (R,m) be a Cohen-Macaulay local ring with dimR = 1.

Then the following assertions hold true.

(1) Let I be an Ulrich ideal of R and A = I : I. Let a1, a2, . . . , an ∈ m (n ≥ 2) and

assume that I = a1a2 · · · anA. For 1 ≤ i ≤ n, let Ii = (a1a2 · · · ai) + I. Then each Ii

is an Ulrich ideal of R and

I = In ⊊ In−1 ⊊ · · · ⊊ I1.

(2) Conversely, let I1, I2, . . . , In (n ≥ 2) be Ulrich ideals of R and suppose that

In ⊊ In−1 ⊊ · · · ⊊ I1.

We set I = In and A = I : I. Then there exist elements a1, a2, . . . , an ∈ m such that

I = a1a2 · · · anA and Ii = (a1a2 · · · ai) + I for all 1 ≤ i ≤ n− 1.

By using this theorem, we shall study the case where the base rings R are not regular

but possess minimal multiplicity ([43]), and R is a GGL ring ([16]). We give a con-

crete method of computing Ulrich ideals of non-Gorenstein GGL ring, and explore many

examples.

In Chapter 3 we discuss three different topics on 2-AGL rings. The notion of 2-almost

Gorenstein local ring (2-AGL ring for short) is a generalization of the notion of almost

Gorenstein local ring from the point of view of Sally modules of canonical ideals. The first

topic is to clarify the structure of minimal presentations of canonical ideals, and the second

one is the study of the question of when certain fiber products, so called amalgamated

duplications are 2-AGL rings. We also explore Ulrich ideals in 2-AGL rings, mainly two-

generated ones. The existence of two-generated Ulrich ideals is basically a substantially

strong condition for R, especially in the case where R is a 2-AGL ring.
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In Chapter 4 we investigate the structure and ubiquity of Ulrich ideals in a hypersurface

ring of arbitrary dimension. Even for the case of hypersurface rings, there seems known

only scattered results which give a complete list of Ulrich ideals, except the case of finite

CM-representation type and the case of several numerical semigroup rings. Therefore,

in this chapter, we focus our attention on a hypersurface ring which is not necessarily

finite CM-representation type. In what follows, let (S, n) be a regular local ring with

dimS = d+1 (d ≥ 1). We take 0 ̸= f ∈ n and set R = S/(f). We shall give the following

characterization of Ulrich ideals in R, which is one of the main results of this chapter.

For each a ∈ S, let a denote the image of a in R.

Theorem G (= Theorem 4.5). Suppose that (S, n) is a regular local ring with dimS =

d+ 1 (d ≥ 1) and 0 ̸= f ∈ n. Set R = S/(f). Then we have

XR =

(a1, a2, · · · , ad, b)

∣∣∣∣∣∣∣∣∣
a1, a2, . . . , ad, b ∈ n be a system of parameters of S,
and there exist x1, x2, . . . , xd ∈ (a1, a2, · · · , ad, b) and ε ∈ U(S)

such that b2 +
d∑

i=1

aixi = εf .

 ,

where U(S) denotes the set of unit elements of S.

By using this theorem, we compute many examples in the case where S = k[[X,Y ]] is

the formal power series ring over a field k. On the other hand, the structure of minimal

free resolutions of Ulrich ideals was closely explored in [24, 29]. We construct a minimal

free resolution of R/I more concretely, for an Ulrich ideal I of a hypersurface ring R.

We also give a matrix factorization of the d-th syzygy module of R/I, which is an Ulrich

module with respect to I.

Chapter 1 and 2 of this thesis are respectively reproduction of the contents of [13] and

[12], which are joint papers with S. Goto and S. Kumashiro already published on journals.

Chapter 3 is a reproduction of the contents of [14], which is a joint paper with S. Goto

and N. Taniguchi submitted for publication. The results of Chapter 4 are based on the

work [34]. Co-authors have already given reproduction permission.
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1 Correspondence between trace
ideals and birational extensions
with application to the analysis of
the Gorenstein property of rings

1.1 Introduction

This chapter aims to explore the structure of (not necessarily Noetherian) commutative

rings in connection with their trace ideals. Let R be a commutative ring. For R-modules

M and X, let

τM,X : HomR(M,X)⊗R M → X

denote the R-linear map defined by τM,X(f ⊗m) = f(m) for all f ∈ HomR(M,X) and

m ∈ M . We set τX(M) = Im τM,X . Then, τX(M) is an R-submodule of X, and we say

that an R-submodule Y of X is a trace module in X, if Y = τX(M) for some R-module

M . When X = R, we call trace modules in R, simply, trace ideals in R. There is a recent

movement in the theory of trace ideals, raised by H. Lindo and N. Pande [37, 38, 39].

Besides, J. Herzog, T. Hibi, and D. I. Stamate [31] studied the traces of canonical modules,

and gave interesting results. We explain below our motivation for the present researches

and how this chapter is organized, claiming the main results in it.

The present researches are strongly inspired by [37, 38, 39]. In [38] Lindo asked when

every ideal of a given ring R is a trace ideal in it, and noted that this is the case when

R is a self-injective ring. Subsequently, Lindo and Pande [39] proved that the converse is

also true if R is a Noetherian local ring. Our researches have started from the following

complete answer to their prediction, which we shall prove in Section 1.4.

Theorem 1.1 (= Theorem 1.20). Suppose that R is a Noetherian ring and let X be an

R-module. Then the following conditions are equivalent.

(1) Every R-submodule of X is a trace module in X.

(2) Every cyclic R-submodule of X is a trace module in X.

(3) There is an embedding

0 → X →
⊕

m∈MaxR

ER(R/m)
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of R-modules, where for each m ∈ MaxR, ER(R/m) denotes the injective envelope of

the cyclic R-module R/m.

However, the main activity in the present chapter is focused on the study of the

structure of the set of regular trace ideals in R. Let I be an ideal of a commutative ring

R and suppose that I is regular, that is I contains a non-zerodivisor of R. Then, as is

essentially shown by [38, Lemma 2.3], I is a trace ideal in R if and only if R : I = I : I,

where the colon is considered inside the total ring Q(R) of fractions of R. We denote by

X T
R the set of regular trace ideals in R, and explore the structure of X T

R in connection

with the structure of YR, where YR denotes the set of birational extensions A of R such

that aA ⊆ R for some non-zerodivisor a of R. We also consider the set ZR of regular

ideals I of R such that I2 = aI for some a ∈ I. We then have the following natural

correspondences

ξ : ZR → YR, ξ(I) = I : I,

η : YR → X T
R , η(A) = R : A,

ρ : X T
R → YR, ρ(I) = I : I

among these sets. The basic framework is the following.

Proposition 1.2 (cf. Proposition 1.13, Lemma 1.10 (1)). The correspondence ξ : ZR →
YR is surjective, and the following conditions are equivalent.

(1) ρ : X T
R → YR is surjective.

(2) η : YR → X T
R is injective.

(3) A = R : (R : A) for every A ∈ YR.

Our strategy is to make use of these correspondences in order to analyze the structure

of commutative rings R which are not necessarily Noetherian (see, e.g., [11]). This ap-

proach is partially inspired by and originated in [15], where certain specific ideals (called

good ideals) in Gorenstein local rings are closely studied. Similarly, as in [15] and as is

shown later in Sections 1.2 and 1.3, the above correspondences behave very well, especially

in the case where R is a Gorenstein ring of dimension one. We actually have η ◦ ρ = 1XT
R

and ρ ◦ η = 1YR
in that case (Lemma 1.10). Nevertheless, being different from [15], our

present interest is in the question of when the correspondence ρ : X T
R → YR is bijective.
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As is shown in Section 1.2 (Example 1.14), in general there is no hope for the surjectivity

of ρ in the case where dimR ≥ 2, even if R is a Noetherian integral domain of dimension

two. On the other hand, with very specific, so to speak extremal exceptions (Proposi-

tion 1.28), the surjectivity of ρ guarantees the Gorenstein property of R, provided R is

a Cohen-Macaulay local ring of dimension one. In fact, we will prove in Section 1.5 the

following, in which let us refer to [18] for the notion of almost Gorenstein local ring.

Theorem 1.3 (= Theorem 1.29). Let (R,m) be a Cohen-Macaulay local ring of dimension

one. Let B = m : m and let J(B) denote the Jacobson radical of B. Then the following

assertions are equivalent.

(1) ρ : X T
R → YR is bijective.

(2) ρ : X T
R → YR is surjective.

(3) Either R is a Gorenstein ring, or R satisfies the following two conditions.

(i) B is a DVR and J(B) = m.

(ii) There is no proper intermediate field between R/m and B/J(B).

When this is the case, R is an almost Gorenstein local ring in the sense of [18].

Therefore, ρ is surjective if and only if R is a Gorenstein ring, provided R is the semigroup

ring of a numerical semigroup over a field.

In Section 1.6, we introduce the notion of anti-stable and strongly anti-stable rings.

We say that a commutative ring R is anti-stable (resp. strongly anti-stable), if HomR(I, R)

is an invertible module over the ring EndRI (resp. HomR(I, R) ∼= EndRI as an EndRI-

module), for every regular ideal I of R. The purpose of Section 1.6 is to provide some

basic properties of anti-stable rings and strongly anti-stable rings, mainly in dimension

one.

Here, let us remind the reader that R is said to be a stable ring, if every ideal I of R

is stable, that is I is projective over EndRI ([45]). The notion of stable ideals and rings

is originated in the famous articles [1] and [40] of H. Bass and J. Lipman, respectively,

and there are known many deep results about them ([45]). Our definition of anti-stable

rings is, of course, different from that of stable rings. It requires the projectivity of the

dual module HomR(I, R) of I, only for regular ideals I of R, claiming nothing about the

13



projectivity of I itself. Nevertheless, with some additional conditions in dimension one,

R is also a stable ring, once it is anti-stable, as we shall show in the following.

Theorem 1.4 (= Theorem 1.43). Let R be a Cohen-Macaulay ring with dimRM = 1 for

every M ∈ MaxR. If R is an anti-stable ring, then R is a stable ring.

The results of Section 1.6 are obtained as applications of the observations developed

in Sections 1.2, 1.3, and 1.5. One can also find, in the forthcoming paper [11], further

developments of the theory of anti-stable rings of higher dimension.

Similarly as [36], our research is motivated by the works [37, 38, 39] of Lindo and Pande,

so that the topics of Section 1.6 are similar to those of [36], but these two researches were

done with entire independence of each other. In [39], Lindo and Pande posed a problem

what kind of properties a Noetherian ring R enjoys, if every ideal of R is isomorphic to a

trace ideal in it. In [36], T. Kobayashi and R. Takahashi have given complete answers to

the problem. We were also interested in the problem, and thereafter, came to the notion of

anti-stable ring. If the ideal I considered is regular, the condition (C) that I is isomorphic

to a trace ideal is equivalent to saying that HomR(I, R) ∼= EndRI as an EndRI-module

(Lemma 1.35). Therefore, if we restrict our attention, say on integral domains R, the

condition that every regular ideal satifies condition (C) is equivalent to saying that R

is a strongly anti-stable ring. However, in general, these two conditions are apparently

different (e.g., consider the case where every non-zerodivisor of the ring is invertible in

it, and see [36, Theorem 3.2]). It must be necessary, and might have some significance,

to start a basic theory of anti-stable and strongly anti-stable rings in our context, with a

different viewpoint from [36], which we have performed in Section 1.6.

In what follows, unless otherwise specified, R denotes a commutative ring. Let Q(R)

be the total ring of fractions of R. For R-submodules X and Y of Q(R), let

X : Y = {a ∈ Q(R) | aY ⊆ X}.

If we consider ideals I, J of R, we set I :R J = {a ∈ R | aJ ⊆ I}; hence

I :R J = (I : J) ∩R.

When (R,m) is a Noetherian local ring of dimension d, for each finitely generated R-

module M , let µR(M) (resp. ℓR(M)) denote the number of elements in a minimal system

of generators (resp. the length) of M . We denote by

e(M) = lim
n→∞

d!·ℓR(M/mn+1M)

nd

14



the multiplicity of M . Let r(R) = ℓR(Ext
d
R(R/m, R)) stand for the Cohen-Macaulay type

of R, where we assume the local ring R is Cohen-Macaulay.

1.2 Correspondence between trace ideals and birational exten-
sions of the base ring

Let R be a commutative ring and let M,X be R-modules. We denote by τM,X :

HomR(M,X) ⊗R M → X the R-linear map such that τM,X(f ⊗ m) = f(m) for all

f ∈ HomR(M,X) and m ∈ M . Let τX(M) = Im τM,X . Then, τX(M) is an R-submodule

of X, and we say that an R-submodule Y of X is a trace module in X, if Y = τX(M) for

some R-module M . When X = R, we simply say that Y is a trace ideal in R. With this

notation we have the following.

Proposition 1.5 ([38, Lemma 2.3]). For an R-submodule Y of X, the following conditions

are equivalent.

(1) Y is a trace module in X.

(2) Y = τX(Y ).

(3) The embedding ι : Y → X induces the isomorphism ι∗ : HomR(Y, Y ) → HomR(Y,X)

of R-modules.

(4) f(Y ) ⊆ Y for all f ∈ HomR(Y,X).

We denote by W the set of non-zerodivisors of R. Let FR be the set of regular ideals

of R, that is the ideals I of R with I ∩W ̸= ∅. We then have the following, characterizing

trace ideals.

Corollary 1.6. Let I ∈ FR. Then the following conditions are equivalent.

(1) I is a trace ideal in R.

(2) I = (R : I)I.

(3) I : I = R : I.

Proof. Since I ∩W ̸= ∅, we have natural identifications R : I = HomR(I, R) and I : I =

HomR(I, I), so that the equivalence of conditions (1) and (3) follows from Proposition

1.5. Suppose that I = (R : I)I. Then R : I ⊆ I : I, whence R : I = I : I. Conversely,
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if I : I = R : I, then (R : I)I = (I : I)I ⊆ I, while I ⊆ (R : I)I, since 1 ∈ R : I. Thus

(R : I)I = I.

We now consider the following sets:

X T
R = {I ∈ FR | I is a trace ideal in R} ,

YR = {A | R ⊆ A ⊆ Q(R), A is a subring of Q(R) such that aA ⊆ R for some a ∈ W} ,

ZR =
{
I ∈ FR | I2 = aI for some a ∈ I

}
.

If R is a Noetherian ring, then YR is the set of birational finite extensions of R. In what

follows, we shall clarify the relationship among these sets. We begin with the following.

Proposition 1.7. The following assertions hold true.

(1) Let X be an R-submodule of Q(R) and set Y = R : X. Then Y = R : (R : Y ).

(2) Let I ∈ ZR and assume that I2 = aI with a ∈ I. Then a ∈ W and I : I = a−1I.

Proof. (1) Since X ⊆ R : Y , Y = R : X ⊇ R : (R : Y ), so that Y = R : (R : Y ).

(2) We have a ∈ W , because I ∈ FR. Since a ∈ I, I : I ⊆ a−1I, while a−1I ⊆ I : I,

because a−1I·I = a−1I2 = a−1(aI) = I. Hence I : I = a−1I.

Lemma 1.8. The following assertions hold true.

(1) Let I ∈ X T
R and a ∈ I ∩W . We set J = (a) :R I. Then, J ⊆ I and J2 = aJ , so that

J ∈ ZR.

(2) Let I ∈ ZR and write I2 = aI with a ∈ I. We set J = (a) :R I. Then, I ⊆ J and

J ∈ X T
R .

Proof. (1) We set A = I : I. Then, A = R : I by Corollary 1.6. Hence, J = (a) :R I =

(a) : I = a(R : I) = aA, where the second equality follows from the fact that a ∈ I ∩W .

Therefore, J2 = aJ and J = a(I : I) ⊆ I.

(2) Notice that J = (a) : I = a(R : I). Let A = I : I. Then, I = aA, since A = a−1I

by Proposition 1.7 (2), so that R : I = R : aA = a−1(R : A). Therefore, J = R : A,

whence

J : J = (R : A) : (R : A) = R : A(R : A) = R : (R : A) = R : J.

Thus, J ∈ X T
R .
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Let I ∈ FR. We say that I is a good ideal of R, if I2 = aI and I = (a) :R I for some

a ∈ I (cf. [15]). Let GR denote the set of good ideals in R. We then have the following,

characterizing good ideals.

Proposition 1.9. X T
R ∩ ZR = GR = {I ∈ X T

R | (a) :R I ∈ X T
R for some a ∈ I ∩W}.

Proof. Let I ∈ X T
R ∩ ZR and set A = I : I. We write I2 = aI with a ∈ I. Then, since

I = aA and A = R : I (see Proposition 1.7 and Corollary 1.6), (a) :R I = (a) : I =

a(R : I) = aA = I, so that I is a good ideal of R. Conversely, suppose that I is a good

ideal of R and assume that I2 = aI and I = (a) :R I with a ∈ I. Then I ∈ ZR, while

(a) :R I ∈ X T
R by Lemma 1.8 (2). Hence I ∈ X T

R ∩ ZR.

Assume that I ∈ X T
R and that (a) :R I ∈ X T

R for some a ∈ I ∩W . We set J = (a) :R I.

Then, J2 = aJ and J ⊆ I, by Lemma 1.8 (1). For the same reason, we get (a) :R J ⊆ J ,

because J ∈ X T
R and a ∈ J . Therefore, I ⊆ (a) :R J ⊆ J ⊆ I; hence I = J . Thus,

I2 = aI and I = (a) :R I, that is I ∈ GR.

Let us consider three correspondences

ξ : ZR → YR, ξ(I) = I : I,

η : YR → X T
R , η(A) = R : A,

ρ : X T
R → YR, ρ(I) = I : I.

Here, we briefly confirm the well-definedness of η. Let A ∈ YR and set I = R : A. Since

I is an ideal of A, we get I : I = (R : A) : I = R : AI = R : I. Therefore, I ∈ X T
R , which

shows η is well-defined.

With this notation, we have the following, which plays a key role in this chapter.

Lemma 1.10. The following assertions hold true.

(1) The correspondence ξ : ZR → YR is surjective. For each I, J ∈ ZR, ξ(I) = ξ(J)

if and only if I ∼= J as an R-module, so that YR = ZR/ ∼=, that is the set of the

isomorphism classes in ZR.

(2) η(ρ(I)) = R : (R : I) for every I ∈ X T
R .

(3) ρ(η(A)) = R : (R : A) for every A ∈ YR.
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Consequently, ρ(X T
R ) = {A ∈ YR | A = R : (R : A)}, η(YR) = {I ∈ X T

R | I = R : (R : I)},
and we have a bijective correspondence η(YR) → ρ(X T

R ), I 7→ I : I.

Proof. (1) Let A ∈ YR and choose a ∈ W so that aA ⊆ R. We set I = aA. We then have

I2 = aI and I : I = aA : aA = A : A = A, whence I ∈ ZR, and ξ is surjective, because

ξ(I) = A. Let I, J ∈ ZR and choose a ∈ I, b ∈ J so that I2 = aI and J2 = bJ . Then,

I : I = a−1I and J : J = b−1J . Hence, if ξ(I) = ξ(J), then a−1I = b−1J , so that I ∼= J

as an R-module. Conversely, suppose that I, J ∈ ZR and I ∼= J . Then J = αI for some

invertible element α of Q(R), whence ξ(J) = J : J = αI : αI = I : I = ξ(I).

(2) (3) Notice that η(ρ(I)) = R : (I : I) = R : (R : I) for every I ∈ X T
R and

ρ(η(A)) = (R : A) : (R : A) = R : A(R : A) = R : (R : A)

for every A ∈ YR.

The last assertions follow from the fact that R : (R : Y ) = Y for every R-submodule Y

of Q(R), once Y = R : X for some R-submodule X of Q(R) (see Proposition 1.7 (1)).

Corollary 1.11. The correspondence ρ induces a bijection

GR → {A ∈ YR | aA = R : A for some a ∈ W}, I 7→ I : I.

Proof. Let I ∈ GR. We then have, by Proposition 1.9, I2 = aI and I = (a) :R I for

some a ∈ I. Since I = (a) : I = R : a−1I, I = R : (R : I) by Proposition 1.7 (1).

Therefore, setting A = I : I (= a−1I), because A = R : I by Corollary 1.6, we get

R : A = R : (R : I) = I = aA. Hence, ρ(I) = A belongs to the set of the right

hand side. By Lemma 1.10, the induced correspondence is automatically injective, since

I = R : (R : I) for every I ∈ GR = X T
R ∩ ZR.

To see the induced correspondence is surjective, let A ∈ YR and assume that aA =

R : A for some a ∈ W . Let I = aA; hence I = η(A) ∈ X T
R . We then have I2 = aI and

I : I = aA : aA = A, so that I ∈ X T
R ∩ ZR and ρ(I) = A.

If R is a Gorenstein ring of dimension one, L = R : (R : L) for every finitely generated

R-submodule L of Q(R) such that Q(R)·L = Q(R). Therefore, by Lemma 1.10 we readily

get the following.

Corollary 1.12. Suppose that R is a Gorenstein ring of dimension one. Then, η◦ρ = 1XT
R

and ρ ◦ η = 1YR
, so that the correspondence ρ : X T

R → YR is bijective.
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We note the following.

Proposition 1.13. The following conditions are equivalent.

(1) ρ : X T
R → YR is surjective.

(2) η : YR → X T
R is injective.

(3) A = R : (R : A) for every A ∈ YR.

Proof. (1) ⇔ (3) See Lemma 1.10.

(2) ⇒ (3) Let A ∈ YR and set L = R : (R : A). Therefore, L = ρ(η(A)) ∈ YR, while

η(A) = R : A = R : L = η(L), where the second equality follows from Proposition 1.7

(1). Hence, A = L, because η is injective.

(3) ⇒ (2) We have ρ ◦ η = 1YR
by Lemma 1.10, so that ρ is surjective.

We explore one example, which shows that when dimR ≥ 2, in general we cannot

expect the bijectivity of the correspondence ρ.

Example 1.14. Let S = k[X,Y ] be the polynomial ring over a field k. We set

R = k[X4, X3Y,XY 3, Y 4] and T = k[X4, X3Y,X2Y 2, XY 3, Y 4] in S. Let m =

(X4, X3Y,XY 3, Y 4)R. Then T = R and m = R : T . We have dimR = 2 and

depthRm = 1, whence Rm is not Cohen-Macaulay. With this setting the following as-

sertions hold true.

(1) X T
R = {I | I is an ideal of R with htR I ≥ 2, and I ̸⊆ m or IT = I}. Hence, mℓ ∈

X T
R for all ℓ > 0.

(2) YR = {T,R}, and the correspondence η : YR → X T
R is injective.

(3) The isomorphism classes in ZR are [(X4, X6Y 2)] and [R], where for each I ∈ ZR, [I]

denotes the isomorphism class of I in ZR.

Proof. T =
∑

n≥0 S4n is the Veronesean subring of S with order 4, whence T is a

normal ring with dimT = 2. We get m = T+ ∩ R, where T+ is the maximal ideal

(X4, X3Y,X2Y 2, XY 3, Y 4)T of T . Because T = R + kX2Y 2 and m·X2Y 2 ⊆ m, T = R,

the normalization of R, and mT = m. Hence, R : T = m, and dimR = dimRm = 2.

However, because T/R ∼= R/m, depthRm = 1, whence Rm is not Cohen-Macaulay. We
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get YR = {T,R}, since ℓR(T/R) = 1. Therefore, since m = R : T , the correspondence

η : YR → X T
R is injective, and by Lemma 1.10 (1) the isomorphism classes in ZR are

exactly [(X4, X6Y 2)] (notice that (X4, X6Y 2) = X4T ) and [R].

Let us check Assertion (1). Firstly, let I be an ideal of R with htRI ≥ 2 such that

I ̸⊆ m or IT = I. We will show that I ∈ X T
R . We may assume I ̸= R. Suppose that

I ̸⊆ m and let p ∈ SpecR such that I ⊆ p. Then, Rp = Tp, since p ̸= m, so that Rp is

a Cohen-Macaulay ring with dimRp = 2. Therefore, gradeRI = 2, and hence I ∈ X T
R by

Proposition 1.5.

Suppose that IT = I and let f ∈ HomR(I, R). Let ι : R → T denote the embedding.

Then, the composite map g : I
f→ R

ι→ T is T -linear, because it is the restriction of the

homothety of some element of Q(R) = Q(T ), while gradeT I = htT I = 2, since htRI = 2.

Consequently, because T : I = T , we have g(I) ⊆ I, so that f(I) ⊆ I. Thus, I ∈ X T
R by

Proposition 1.5.

Conversely, let I ∈ X T
R . Therefore, I is a non-zero ideal of R with R : I = I : I.

Hence, R : I = R or R : I = T , because YR = {R, T}. If R : I = R, then gradeRI ≥ 2.

Therefore, htRI ≥ 2, and I ̸⊆ m, because depthRm = 1. Suppose that R : I = T . Then, I

is an ideal of T . We have to show htRI ≥ 2. Assume the contrary and choose p ∈ SpecR

so that I ⊆ p and htRp = 1. We then have Rp = Tp, and

Rp : IRp = [R : I]p = [I : I]p = Tp = Rp.

This is impossible, because IRp is a proper ideal in the DVRRp = Tp. Therefore, htRI ≥ 2,

which completes the proof of Assertion (1).

1.3 The case where R is a Gorenstein ring of dimension one

We now concentrate our attention on the case where R is a Gorenstein ring of dimen-

sion one.

Proposition 1.15. Assume that R is a Gorenstein ring of dimension one. We then have

the following.

(1) I : I is a Gorenstein ring for every I ∈ GR.

(2) Let A ∈ YR and suppose that A is a Gorenstein ring. Then, A = I : I for some

I ∈ GR, if R is semi-local.
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Consequently, when R is semi-local, the correspondence ρ induces the bijection

GR → {A ∈ YR | A is a Gorenstein ring}.

Proof. (1) Let A = I : I. Then, by Corollary 1.11, R : A = aA for some a ∈ W , so that

A is a Gorenstein ring (see [32, Satz 5.12]; remember that HomR(A,R) ∼= R : A.)

(2) We have R : A = aA for some a ∈ W , because R : A is a canonical ideal of A and

A is semi-local. Hence, by Corollary 1.11, A = I : I for some I ∈ GR.

When (R,m) is a Gorenstein local ring of dimension one, we furthermore have the

following, which characterizes Gorenstein local rings of dimension one, in which every

regular trace ideal is a good ideal. The problem of when A is a Gorenstein ring for

every A ∈ YR is originated in the paper of H. Bass [1], where one can find many deep

observations related to the problem. The equivalence of Assertions (1) and (3) in the

following theorem is essentially due to [1, (7.7) Theorem].

Theorem 1.16. Let R be a semi-local Gorenstein ring of dimension one. Then the

following conditions are equivalent.

(1) Every A ∈ YR is a Gorenstein ring.

(2) X T
R = GR.

When (R,m) is a local ring, one can add the following.

(3) e(R) ≤ 2.

Proof. (2) ⇒ (1) We have by Lemma 1.10 A = I : I for some I ∈ X T
R , so that by

Proposition 1.15 (1) A is a Gorenstein ring.

(1) ⇒ (2) Every good ideal of R belongs to X T
R by Proposition 1.9. Conversely, let

I ∈ X T
R and set A = I : I. Then, by Proposition 1.15 (2), A = J : J for some J ∈ GR,

since A is a Gorenstein ring. Therefore, I = J , because I, J ∈ X T
R and the correspondence

ρ is bijective (Corollary 1.12).

Suppose that (R,m) is a local ring.

(3) ⇒ (1) See [28, Lemma 12.2].

(2) ⇒ (3) We may assume that R : m = m : m; otherwise, R is a DVR, since xm = R

for some x ∈ R : m. Therefore, m ∈ X T
R = GR, whence m2 = am for some a ∈ m. Thus,

e(R) = 2, because R is a Gorenstein ring.
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We close this section with a few examples. To state Example 1.17, we need the notion

of idealization, which we now briefly explain. Let R be a commutative ring and M an

R-module. We set A = R ⊕M as an additive group, and define the multiplication in A

by (a, x)·(b, y) = (ab, ay + bx) for (a, x), (b, y) ∈ A. Then, A forms a commutative ring,

which is denoted by A = R⋉M , and called the idealization of M over R.

Example 1.17. Let V be a DVR with t a regular parameter. Let R = V ⋉V denote the

idealization of V over itself. Then, R is a Gorenstein local ring with dimR = 1, e(R) = 2,

and X T
R = {tnV × V | n ≥ 0}.

Proof. Because R ∼= V [X]/(X2) where X denotes an indeterminate, R is a Gorenstein

local ring with dimR = 1, e(R) = 2. Let K = Q(V ). Then, Q(R) = K ⋉ K, and

R = V ⋉K. Consequently

YR = {V ⋉ L | L is a finitely generated V -submodule of K such that V ⊆ L}.

Therefore, X T
R = {tnV × V | n ≥ 0} by Corollary 1.12, because R is a Gorenstein local

ring with dimR = 1 and R : [V ⋉ L] = AnnV (L/V ) × V for every finitely generated

V -submodule L of K such that V ⊆ L.

Example 1.18. Let k be a field.

(1) Let R = k[[t4, t5, t6]]. Then R is a Gorenstein ring, possessing

X T
R =

{
(t8, t9, t10, t11), (t6, t8, t9), (t5, t6, t8), (t4, t5, t6), R

}
∪
{
(t4 − at5, t6) | a ∈ k

}
and

YR =
{
k[[t]], k[[t2, t3]], k[[t3, t4, t5]], k[[t4, t5, t6, t7]], R

}
∪
{
k[[t2 + at3, t5]] | a ∈ k

}
,

and the correspondence ρ : X T
R → YR is bijective.

(2) Let R = k[[t3, t4, t5]]. Then R is not a Gorenstein ring, possessing

X T
R =

{
(t3, t4, t5), R

}
and YR =

{
k[[t]], k[[t2, t3]], R

}
,

and the correspondence ρ : X T
R → YR is not surjective.

Proof. (1) We set V = k[[t]] (the formal power series ring) and S = k[[t4, t5, t6, t7]]. We

will show the set YR consists of the rings in the list. Let m and mS denote the maximal

ideals of R and S, respectively. We begin with the following.
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Claim 1. The following assertions hold true.

(1) Set Ba = k[[t2 + at3, t5]] for each a ∈ k. Then S ⊊ Ba ⊆ k[[t2, t3]], Ba = S + S·(t2 +
at3), and ℓS(Ba/S) = 1.

(2) Let a, b ∈ k. Then Ba = Bb if and only if a = b.

Proof. (1) We set T = k[[(t2 + at3)2, t5, (t2 + at3)3, (t2 + at3)·t5]]. Then, T ⊆ Ba, and

T ⊆ S, since S = k + t4V . Because

mTS +m2
S ⊇ (t4, t5, t6, t7)S = mS = t4V,

we get mTS = mS, whence T = S (remember that T/mT = S/mS = k). Consequently,

T = S ⊊ k[[t2, t3]], and Ba = S + S·(t2 + at3), because t5 ∈ mS. Therefore, µS(Ba) = 2,

and ℓS(Ba/S) = 1, since mSBa = mS ⊆ S.

(2) Suppose Ba = Bb. Then, since the k-space Ba/mSBa (resp. Bb/mSBb) is spanned

by the images of 1 and t2 + at3 (resp. 1 and t2 + bt3), we have

t2 + at3 = α + β(t2 + bt3) + γ

for some α, β ∈ k and γ ∈ t4V . Hence, α = 0, β = 1, and a = bβ, so that a = b.

By this claim, we see R,S, k[[t3, t4, t5]], Ba (a ∈ k), k[[t2, t3]], V ∈ YR. The relation of

embedding among these rings is the following.

V

k[[t2, t3]]

Ba = k[[t2 + at3, t5]]

jjjjjjjjjjjjjjjj
k[[t3, t4, t5]]

RRRRRRRRRRRRR

S = k[[t4, t5, t6, t7]]

lllllllllllll

TTTTTTTTTTTTTTTT

R

We have to show that YR consists of these rings. To see it, let A ∈ YR and assume that

R ⊊ A ⊊ V . Then, because R is a Gorenstein local ring with R : m = R+kt7 and R ⊊ A,

we get S = R+ kt7 ⊆ A. Let us assume that S ⊊ A and set ℓ = ℓS(A/S). Then ℓ = 1, 2,

since ℓS(V/S) = 3. We write mAV = tnV with an integer n > 0. We then have n ≤ 4,
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since t4 ∈ mA. Because A = k + mA ̸⊆ S = k + t4V and A ̸= V , we furthermore have

n = 2 or 3.

Suppose that ℓ = 1. If n = 3, then choosing an element f = t3+g with g ∈ t4V = mS,

we see t3 ∈ A, so that k[[t3, t4, t5]] ⊆ A. Therefore, k[[t3, t4, t5]] = A, because ℓS(A/S) = 1

and S ⊊ k[[t3, t4, t5]] ⊆ A. Let n = 2 and choose an element f = t2 + at3 ∈ A with a ∈ k.

Then, Ba ⊆ A, and ℓS(Ba/S) = 1 by Claim (1), whence A = Ba. Suppose now that

ℓ = 2. Then ℓA(V/A) = 1, whence mA = A : V = tnV , so that

A = k + tnV = k[[tn, tn+1, . . . , t2n−1]]

with n = 2 or 3. This proves that YR = {R,S, k[[t3, t4, t5]], Ba (a ∈ k), k[[t2, t3]], V }.
Because X T

R = {R : A | A ∈ YR} by Corollary 1.12 it is direct to show that X T
R

consists of the following ideals R : V = (t8, t9, t10, t11), R : k[[t2, t3]] = (t6, t8, t9), R :

k[[t3, t4, t5]] = (t5, t6, t8), R : S = (t4, t5, t6) = m, R, and R : Ba = (t4 − at5, t6) with a ∈ k.

Let us note a proof for the fact that R : Ba = (t4 − at5, t6). We set I = R : Ba. Firstly,

notice that Ba = R + R·(t2 + at3), since t5, (t2 + at3)2 ∈ m. We then have t6 ∈ I, since

R : V = t8V ⊆ I. Let φ ∈ I and write φ = αt4 + βt5 + γt6 + δ with α, β, γ ∈ k and

δ ∈ R : V . Then, αt4+βt5 ∈ I, and (αt4+βt5)(t2+at3) ∈ R if and only if (αa+β)t7 ∈ R

if and only if β = −αa, which shows I = (t4 − at5, t6).

(2) The fact YR = {k[[t3, t4, t5], k[[t2, t3]], V } readily follows from Assertion (1). The

assertion on X T
R is a special case of the following.

Proposition 1.19. Let (R,m) be a one-dimensional Cohen-Macaulay local ring and let

V = R denote the integral closure of R in Q(R). Assume that R ̸= V but mV ⊆ R. Then

X T
R = {m, R}.

Proof. Because R ̸= V , we have R : m = m : m, whence m ∈ X T
R , so that {m, R} ⊆ X T

R .

Let I ∈ X T
R and set A = I : I (= R : I). If R = A, then gradeRI ≥ 2, and I = R.

Suppose that R ⊊ A. Then, I ⊆ m, whence V ⊆ R : m ⊆ A = R : I = I : I ⊆ V .

Therefore, A = V . Consequently, I is an ideal of V , whence I ∼= V ∼= m as V -modules

(remember that V is a direct product of finitely many principal ideal domains). Therefore,

τR(I) = τR(m) = m, because I ∼= m as an R-module. Hence X T
R = {m, R}.

We will use Proposition 1.19 later in Section 1.5, in order to prove Proposition 1.28.
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1.4 Modules in which every submodule is a trace module

In this section, we are interested in the question of, for a given R-module X, when

every R-submodule of X is a trace module in it. As is shown in [38], this is the case when

X = R and R is a self-injective ring. Our goal is the following, which is known by [39,

Theorem 3.5] in the case where R is a Noetherian local ring and X = R.

Theorem 1.20. Suppose that R is a Noetherian ring and let X be an R-module. Then

the following conditions are equivalent.

(1) Every R-submodule of X is a trace module in X.

(2) Every cyclic R-submodule of X is a trace module in X.

(3) There is an embedding

0 → X →
⊕

m∈MaxR

ER(R/m)

of R-modules, where for each m ∈ MaxR, ER(R/m) denotes the injective envelope of

the cyclic R-module R/m.

To prove Theorem 1.20, we need some preliminaries. The following is a direct conse-

quence of Proposition 1.5.

Proposition 1.21. The following assertions hold true.

(1) Let Y be an R-submodule of X. If every cyclic R-submodule of Y is a trace module

in X, then Y is a trace module in X.

(2) Let Z and Y be R-submodules of X and assume that Z ⊆ Y . If Z is a trace module

in X, then Z is a trace module in Y .

(3) ([38]) If R is a self-injective ring, then every ideal of R is a trace ideal in R.

We begin with the following.

Lemma 1.22. Let Y be an R-submodule of X and assume that Y is a finitely presented

R-module. Then the following conditions are equivalent.

(1) Y is a trace module in X.

(2) Ym is a trace module in Xm for all m ∈ MaxR.
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(3) Yp is a trace module in Xp for all p ∈ SpecR.

Proof. Let ι : Y → X denote the embedding and let

ι∗ : HomR(Y, Y ) → HomR(Y,X)

be the induced homomorphism. We set C = Coker ι∗. By Proposition 1.5, Y is a trace

module in X, if and only if C = (0), that is Cp = (0) for all p ∈ SpecR. On the other

hand, since Y is finitely presented, we have

S−1 [HomR(Y, Z)] = HomS−1R(S
−1Y, S−1Z)

for every R-module Z and for every multiplicatively closed subset S in R. Hence, the

condition that Y is a trace module in X is a local condition.

For each R-module X, let ER(X) stand for the injective envelope of X. We firstly

consider the case where R is a local ring.

Theorem 1.23. Let (R,m) be a Noetherian local ring and set E = ER(R/m). Let X be

an R-module. Then the following conditions are equivalent.

(1) Every R-submodule of X is a trace module in X.

(2) There is an embedding 0 → X → E of R-modules.

Proof. (1) ⇒ (2) We may assume that X ̸= (0). Let V = (0) :X m. We want to show

that ER(X) ∼= E, that is, ℓR(V ) = 1 and V is an essential R-submodule of X. To do

this, it suffices to show that for every non-zero finitely generated R-submodule M of

X, ℓR(M) < ∞ and ℓR ((0) :M m) = 1. First of all, we show depthRM = 0. In fact,

suppose that depthRM > 0, and let a ∈ m be a non-zerodivisor on M . We then have

by Proposition 1.5 aM = τX(aM) and M = τX(M), since both aM and M are trace

modules in X, while τX(aM) = τX(M), because aM ∼= M . Hence, aM = M , which is

impossible because M ̸= (0). We now fix one socle element 0 ̸= x ∈ (0) :M m of M .

Let N be an arbitrary non-zero R-submodule of M . Then, since R/m is a homomorphic

image of N/mN and since R/m ∼= Rx, we get a homomorphism f : N → M such that

f(N) = Rx, which implies x ∈ N , because N is a trace module in X (see Proposition

1.5). Therefore, if dimRM > 0, then x ∈ mnM for all n > 0, because mnM ̸= (0), so that

x ∈
∩

n>0m
nM = (0), which is a contradiction. Hence, dimRM = 0, that is ℓR(M) <∞.
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The above observation also shows that x ∈ Ry for every 0 ̸= y ∈ (0) :M m, whence

ℓR ((0) :M m) = 1, and therefore, X is an R-submodule of E.

(2) ⇒ (1) By Proposition 1.21 (2), we may assume X = E. Let Y be an R-submodule

of E. It suffices to show that f(Y ) ⊆ Y for all f ∈ HomR(Y,E). We take a homomorphism

g : E → E so that f = g ◦ ι, where ι : Y → E denotes the embedding. Let R̂ denote the

m-adic completion of R, and remember that E is an R̂-module such that

HomR(E,E) = HomR̂(E,E) = R̂.

Choose α ∈ R̂ so that g is the homothety by α. We then have αY ⊆ Y , because every

R-submodule of E is actually an R̂-submodule of E. Therefore

f(Y ) = g(Y ) = αY ⊆ Y,

and hence Y is a trace module in E.

We are now ready to prove Theorem 1.20.

Proof of Theorem 1.20. (1) ⇔ (2) See Proposition 1.21 (1).

(3) ⇒ (1) Let m ∈ MaxR. We then have the embedding 0 → Xm → ERm(Rm/mRm),

since

[
⊕

n∈MaxR

ER(R/n)]m = ERm(Rm/mRm).

Therefore, by Theorem 1.23, for every cyclic R-submodule Y of X, Ym is a trace module

in Xm for all m ∈ MaxR, so that Lemma 1.22 guarantees that Y is a trace module in X.

Hence, by Proposition 1.21 (2), every R-submodule of X is a trace module in X.

(1) ⇒ (3) Let m ∈ MaxR. Since every cyclic Rm-submodule of Xm is a localization of

a cyclic R-submodule of X, by Lemma 1.22 every Rm-submodule of Xm is a trace module

in Xm. Therefore, by Theorem 1.23, for every m ∈ MaxR we have

AssRm Xm ⊆ {mRm} and ℓRm ((0) :Xm mRm) ≤ 1.

Consequently, AssRX ⊆ MaxR and ℓR ((0) :X m) ≤ 1 for all m ∈ MaxR, so that

ER(X) ∼=
⊕

m∈MaxR

ER(R/m)⊕µ(m)

with µ(m) ∈ {0, 1} for each m ∈ MaxR.
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The following is a direct consequence of Theorem 1.20.

Corollary 1.24 (cf. [39, Theorem 3.5]). For a Noetherian ring R, the following conditions

are equivalent.

(1) Every ideal of R is a trace ideal in R.

(2) R is a self-injective ring.

For the implication (1) ⇒ (2) in Corollary 1.24, we cannot remove the assumption

that R is a Noetherian ring. To explain more precisely about this phenomenon, let R be a

commutative ring. We say that R is a Von Neumann regular ring, if for each a ∈ R, there

exists an element b ∈ R such that a = aba (cf. [47]). Here, we need only the definition,

but interested readers can find in [6] a basic characterization of Von Neumann regular

rings.

Lemma 1.25. Let R be a Von Neumann regular ring. Then τR(I) = I for every ideal I

of R.

Proof. Let φ : I → R be an R-linear map and a ∈ I. Then, a = aba for some b ∈ R, so

that φ(a) = aφ(ba) ∈ I. Thus, φ(I) ⊆ I.

We have learned the following example from M. Hashimoto.

Example 1.26. Let K be a commutative ring and assume that there exists an integer

p ≥ 2 such that ap = a for every a ∈ K. We consider the direct product S =
∏

i∈ΛKi of

infinitely many copies {Ki = K}i∈Λ of K, and set R = Z·1 +
⊕

i∈ΛKi in S. Then, R is a

subring of S, and R is Von Neumann regular, since ap = a for every a ∈ S. We have that

S is an essential extension of R, but R ̸= S, because Λ is infinite. Therefore, R is not a

self-injective ring.

Let us note one more example. The following fact is known, when chk = 2 and αi = 1

for every i ∈ Λ. Indeed, with the same notation as Example 1.27, if chk = 2 and αi = 1

for all i ∈ Λ, then R = k[{Ti}i∈Λ]/(T 2
i − 1 | i ∈ Λ) where Ti = Xi − 1 for each i ∈ Λ, so

that R = k[G], the group algebra of the direct sum G =
⊕

i∈ΛCi of infinitely many copies

of the cyclic group Ci = Z/(2). Therefore, thanks to [8, Theorem], R is not self-injective.

We have learned this result from K. Kurano, and we are grateful to him, since the method

of proof given in [8] works also in the setting of Example 1.27, as we will briefly confirm

below.
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Example 1.27. Let Λ = {1, 2, 3, . . .} be the set of positive integers. Let {Xi}i∈Λ be a

family of indeterminates and {αi}i∈Λ a family of positive integers. We set S = k[{Xi}i∈Λ]
over a field k, a = (Xαi+1

i | i ∈ Λ), and consider the ring R = S/a. Then, R is not a

self-injective ring, but τR(I) = I for every ideal I of R.

Proof. Let xi denote, for each i ∈ Λ, the image of Xi in R. For each n ∈ Λ, we set

Rn = k[x1, x2, . . . , xn] in R. Then, R =
∪

n∈ΛRn, and

Rn = k[X1, X2, . . . , Xn]/(X
α1+1
1 , Xα2+1

2 , . . . , Xαn+1
n ),

so that Rn is a self-injective ring for every n ∈ Λ. Let a ∈ R and assume that a ∈ Rn.

Then

(0) :R [(0) :R a] ⊆
∪
ℓ≥n

{(0) :Rℓ
[(0) :Rℓ

a]} ,

whence (0) :R [(0) :R a] = (a), because (0) :Rℓ
[(0) :Rℓ

a] = a·Rℓ for all ℓ ≥ n (here we

use the fact that Rℓ is a self-injective ring). Therefore, τR(I) = I for every ideal I of R,

because τR((a)) = (0) :R [(0) :R a] = (a) for each a ∈ R.

To see that R is not self-injective, we set for each n ∈ Λ

an =

{
1, if n = 1

1 + x1 + x1x2 + x1x2x3 + . . .+ x1x2 · · ·xn−1, if n > 1

and set In = (xα1
1 , x

α2
2 , . . . , x

αn
n ). Then, In ⊆ In+1, and I =

∪
n∈Λ In, where I = (xαi

i | i ∈
Λ). We then have an+1x = anx for every x ∈ In, which one can show by a simple use

of induction on n, since xαi+1
i = 0 for all i ∈ Λ. Therefore, we may define the R-linear

map φ : I → R so that φ(x) = anx if x ∈ In. We now assume that R is a self-injective

ring. Then, there must exist an element a ∈ R such that ax = φ(x) for every x ∈ I,

namely ax = anx for every x ∈ In. Choose n ∈ Λ so that a ∈ Rn. Then, because

(a− an+2)x
αn+2

n+2 = 0, we get a− an+2 ∈ (0) :R x
αn+2

n+2 = (xn+2). Let f ∈ k[X1, X2, . . . , Xn]

such that a is the image of f in R. Then

f = 1 +X1 +X1X2 + . . .+X1X2 · · ·Xn+1 +Xn+2g + h

for some g ∈ S and h ∈ a. Substituting Xi by 0 for all i ≥ n + 2, we may assume that

g = 0 and h ∈ (Xα1+1
1 , Xα2+1

2 , . . . , X
αn+1+1
n+1 )T , where T = k[X1, X2, . . . , Xn+1], that is

f = 1 +X1 +X1X2 + . . .+X1X2 . . . Xn+1 +
n+1∑
i=1

Xαi+1
i hi
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with hi ∈ T . This is, however, impossible, because f ∈ k[X1, X2, . . . , Xn] and the mono-

mial X1X2 · · ·Xn+1 is not involved in the polynomial
∑n+1

i=1 X
αi+1
i hi. Thus, R is not a

self-injective ring.

It seems interesting, but hard, to ask for a complete characterization of (not necessarily

Noetherian) commutative rings, in which every ideal is a trace ideal.

1.5 Surjectivity of the correspondence ρ in dimension one

In this section, let (R,m) be a Cohen-Macaulay local ring of dimension one. We

are interested in the question of when the correspondence ρ : X T
R → YR is bijective.

The second example in Example 1.18 seems to suggest that R is a Gorenstein ring, if

dimR = 1 and ρ is bijective. Unfortunately, this is still not the case, as we show in the

following. Here, we say that a one-dimensional Cohen-Macaulay local ring (R,m) has

maximal embedding dimension, if m2 = am for some a ∈ m ([43]). We refer to [18, 28] for

the notion of almost Gorenstein local ring.

Proposition 1.28 (cf. [35, Example 4.7]). Let K/k be a finite extension of fields. Assume

that k ̸= K and there is no intermediate field F such that k ⊊ F ⊊ K. Let B = K[[t]] be

the formal power series ring over K and set R = k[[Kt]] in B. Set n = [K : k]. We then

have the following.

(1) R is a Noetherian local ring with B = R and m = tB, where m denotes the maximal

ideal of R. Hence B = m : m = R : m.

(2) R is an almost Gorenstein local ring, possessing maximal embedding dimension n ≥ 2.

(3) R is not a Gorenstein ring, if n ≥ 3.

(4) X T
R = {m, R} and YR = {B,R}, so that ρ : X T

R → YR is a bijection.

Proof. Let ω1 = 1, ω2, . . . , ωn be a k-basis of K. Then R = k[[ω1t, ω2t, . . . , ωnt]], whence

R is a Noetherian complete local ring. Since B/mB ∼= K, B =
∑n

i=1Rωi, so that

tB = m. Hence, m is also an ideal of B, m = mB = tB, and m2 = tm. Because

B is a module-finite extension of R and ωi = ωit
ω1t

∈ Q(R) for all 1 ≤ i ≤ n, we have

B = R. Therefore, R is an almost Gorenstein ring by [18, Corollary 3.12], possessing

maximal embedding dimension e(R) = n. Consequently, R is not a Gorenstein ring, if
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n ≥ 3. We get X T
R = {m, R} by Proposition 1.19, because R ̸= B but mB ⊆ R. The

assertion that YR = {B,R} is due to [35, Example 4.7]. Let us note a brief proof for the

sake of completeness. Let A ∈ YR and let n denote the maximal ideal of A. We then

have n = m, because n = mB ∩ A = m ∩ A = m. Consequently, we have an extension

k = R/m ⊆ A/m ⊆ K = B/m of fields, so that R/m = A/m, or A/m = B/m by the

choice of the extension K/k. Hence, R = A or A = B, and thus YR = {R,B}. Therefore,
because m : m = tB : tB = B and R : R = R, the correspondence ρ : X T

R → YR is a

bijection.

In what follows, we intensively explore the question of when the correspondence ρ :

X T
R → YR is bijective. The goal is the following, which essentially shows that except the

case of Proposition 1.28, the surjectivity of ρ implies the Gorenstein property of the ring

R.

Theorem 1.29. Let (R,m) be a Cohen-Macaulay local ring of dimension one. We set

B = m : m and let J(B) denote the Jacobson radical of B. Then the following assertions

are equivalent.

(1) ρ : X T
R → YR is bijective.

(2) ρ : X T
R → YR is surjective.

(3) Either R is a Gorenstein ring, or the following two conditions are satisfied.

(i) B is a DVR and J(B) = m.

(ii) There is no proper intermediate field between R/m and B/J(B).

When this is the case, R is an almost Gorenstein local ring.

We set B = m : m. Let J(B) be the Jacobson radical of B. To prove Theorem 1.29,

we need some preliminaries. Let us begin with the following.

Lemma 1.30. Suppose that R is not a DVR. Then R ̸= B and ℓR (B/R) = r(R).

Proof. We have R : m = m : m, since R is not a DVR. The second assertion is clear, since

ℓR ((R : m)/R) = r(R).

Proposition 1.31. Suppose that R ̸= B and that ρ : X T
R → YR is surjective. Then there

is no proper intermediate ring between R and B.
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Proof. We have m, R ∈ X T
R and B,R ∈ YR. Let A be an extension of R such that

R ⊊ A ⊆ B. We write A = ρ(I) = R : I with I ∈ X T
R . Then I ⊆ m, since A ̸= R.

Therefore, A = R : I ⊇ R : m = B, so that A = B.

The following is the heart of our argument.

Theorem 1.32. Let (R,m) be a non-Gorenstein Cohen-Macaulay local ring of dimension

one. Assume that R is m-adically complete and there is no proper intermediate ring

between R and B. Then the following assertions hold true.

(1) B = R, and B is a DVR with J(B) = m.

(2) [B/m : R/m] = r(R) + 1 ≥ 3.

(3) There is no proper intermediate field between R/m and B/m.

(4) X T
R = {m, R} and the correspondence ρ is bijective.

Proof. We have mB = m, and R ̸= B, since R is not a DVR (Lemma 1.30). Let x ∈ B\R.
Then B = R[x] and B/m = k[x], where k = R/m and x denotes the image of x in B/m.

Let n (> 0) be the degree of the minimal polynomial of x over k. We then have

B = R +Rx+Rx2 + · · ·+Rxn−1

and n = µR(B), so that n− 1 = r(R) by Lemma 1.30. Therefore, n ≥ 3 since R is not a

Gorenstein ring, so that x2 ̸∈ R since the elements 1, x, . . . , xn−1 form a minimal system

of generators of the R-module B. Hence

B = R[x2] = R +Rx2 +Rx4 + · · ·+Rx2(n−1).

Let us write x =
∑n−1

i=0 cix
2i with ci ∈ R. We then have x(1 − ax) = c0, where a =∑n−1

i=1 cix
2i−2. We will show that x ̸∈ J(B). If c0 ̸∈ m, then x is a unit of B, whence

x ̸∈ J(B). Assume that c0 ∈ m. Then, if x ∈ J(B), 1 − ax is a unit of B, so that x =

(1− ax)−1c0 ∈ mB = m, which is a contradiction. Therefore, x ̸∈ J(B) for all x ∈ B \R,
which shows J(B) ⊆ R, whence J(B) = m. Therefore, we have B = m : m = J(B) : J(B).

Hence, BM = MBM : MBM for all M ∈ MaxB, which implies the local ring BM is a

DVR (see Lemma 1.30). Therefore, because B is integrally closed in Q(B) = Q(R), we

get B = B = R.
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Since R is m-adically complete, we have a decomposition

B = B1 ×B2 × · · · ×Bℓ

of B into a finite product of DVR’s {Bj}1≤j≤ℓ. We want to show that ℓ = 1. Let

ej = (0, . . . , 0, 1Bj
, 0, . . . , 0) in B and set e =

∑ℓ
j=1 ej. Assume now that ℓ ≥ 2. We then

have B = R[e1], since e1 ̸∈ R and since there is no proper intermediate ring between R

and B. Hence B = Re+Re1, since e21 = e1. This is however impossible, because

µR(B) = ℓR(B/mB) = 1 + r(R) > 2.

Thus, ℓ = 1, that is B = R is a DVR with the maximal ideal J(B) = m. It remains

the proof of Assertions (3) and (4). Assume that there is contained a field F such that

R/m ⊆ F ⊆ B/m. We consider the natural epimorphism ε : B → B/m of rings. Then,

since ε−1(F ) is an intermediate ring between R and B, either ε−1(F ) = R, or ε−1(F ) = B,

which shows either F = R/m, or F = B/m.

Let I ∈ X T
R and assume that I ̸= R. Then, since I ⊆ m, we have

B = m : m = R : m ⊆ R : I = I : I ⊆ R = B,

whence I : I = B, so that I is an ideal of B. Let us write I = aB with 0 ̸= a ∈ B. We

then have

B = R : I = R : aB = a−1(R : B) = a−1m,

since m = R : B, so that m = aB = I. Thus, X T
R = {m, R}, which shows the correspon-

dence ρ is bijective. This completes the proof of Theorem 1.32.

We are now ready to prove Theorem 1.29.

Proof of Theorem 1.29. (1) ⇒ (2) This is clear.

(3) ⇒ (1) See Lemma 1.10, Proposition 1.31, and Theorem 1.32 (4).

(2) ⇒ (3) We may assume that R is not a Gorenstein ring. Passing to the m-adic

completion R̂ of R, without loss of generality we may also assume that R is m-adically

complete. Then by Proposition 1.31, there is no proper intermediate ring between R and

B, so that the assertion follows from Theorem 1.32.

If ρ is bijective but R is not a Gorenstein ring, we then have B = m : m is a DVR, so

that R is an almost Gorenstein ring by [18, Theorem 5.1].
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We note the following, which is a direct consequence of Theorem 1.29.

Corollary 1.33. Let (R,m) be a Cohen-Macaulay local ring of dimension one. Suppose

that one of the following conditions is satisfied.

(i) The field R/m is algebraically closed.

(ii) R is a local ring, and R/m ∼= R/n, where n denotes the maximal ideal of R.

Then the following assertions are equivalent.

(1) R is a Gorenstein ring.

(2) The correspondence ρ : X T
R → YR is bijective.

(3) The correspondence ρ : X T
R → YR is surjective.

When R is a numerical semigroup ring over a field, Condition (ii) of Corollary 1.33 is

always satisfied.

1.6 Anti-stable rings

Let R be a commutative ring and let FR denote the set of regular ideals of R. Then,

because (R : I)·(I : I) ⊆ R : I, for every I ∈ FR the R-module R : I has also the

structure of an (I : I)-module. Keeping this fact together with the natural identifications

R : I = HomR(I, R) and I : I = EndRI in our mind, we give the following.

Definition 1.34. We say that R is an anti-stable (resp. strongly anti-stable) ring, if R : I

is an invertible I : I-module (resp. R : I ∼= I : I as an (I : I)-module) for every I ∈ FR.

Therefore, every Dedekind domain is anti-stable, and every UFD is a strongly anti-stable

ring. Notice that when R is a Noetherian semi-local ring, R is anti-stable if and only if it

is strongly anti-stable. Indeed, let I ∈ FR, and set A = I : I, M = R : I. Then, A is also

a Noetherian semi-local ring, and therefore, because M has rank one as an A-module, M

must be cyclic and free, once it is an invertible module over A.

Let us recall here that R is said to be a stable ring, if every ideal I of R is stable, that is

projective over its endomorphism ring EndRI ([45]). When R is a Noetherian semi-local

ring and I ∈ FR, I is a stable ideal of R if and only if I ∈ ZR, that is I2 = aI for

some a ∈ I ([40], [45, Proposition 2.2]). Our definition of anti-stable rings is, of course,
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different from that of stable rings. However, we shall later show in Corollary 1.43 that

the anti-stability of rings implies the stability of rings, under suitable conditions.

First of all, we will show that R is a strongly anti-stable ring if and only if every

I ∈ FR is isomorphic to a trace ideal in R.

Lemma 1.35. Let I ∈ FR and set A = I : I. Then the following conditions are equivalent.

(1) I ∼= J as an R-module for some J ∈ X T
R .

(2) I ∼= τR(I) as an R-module.

(3) R : I ∼= A as an R-module.

(4) R : I ∼= A as an A-module.

(5) R : I = aA for some unit a of Q(R).

Proof. (1) ⇔ (2) Since τR(I) ∈ X T
R , the implication (2) ⇒ (1) is clear. Since J = τR(J)

for every J ∈ X T
R (Proposition 1.5), we have τR(I) = J , if J ∈ X T

R and I ∼= J as an

R-module, whence the implication (1) ⇒ (2) follows.

(4) ⇒ (3) This is clear.

(3) ⇒ (4) Because the given isomorphsim R : I → A of R-modules is the restriction

of the homothety of some unit a of Q(R), it must be also a homomorphism of A-modules,

whence R : I ∼= A as an A-module.

(4) ⇔ (5) This is now clear.

(1) ⇒ (3) We have I = aJ for some unit a of Q(R), whence R : I = R : aJ =

a−1(R : J), and I : I = aJ : aJ = J : J . Thus, R : I ∼= I : I as an R-module, because

R : J = J : J .

(5) ⇒ (2) We have τR(I) = (R : I)I = aA·I = aI, whence τR(I) ∼= I as an R-

module.

For a Noetherian ring R, we set Ht1(R) = {p ∈ SpecR | htRp = 1}. Let us note the

following example of strongly anti-stable rings. We include a brief proof.

Example 1.36 ([36, Corollary 3.10]). For a Noetherian normal domain R, R is a strongly

anti-stable ring if and only if R is a UFD.
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Proof. Suppose that R is a strongly anti-stable ring and let p ∈ Ht1(R). Then, since R is

normal, the R-module p is reflexive with p : p = R, while R : p ∼= p : p by Lemma 1.35.

Hence, p ∼= R, so that R is a UFD. Conversely, suppose that R is a UFD and let I ∈ X T
R .

Then, I ∼= J for some ideal J of R with gradeRJ ≥ 2, so that I ∼= τR(I), since J ∈ X T
R

by Corollary 1.6. Thus, R is a strongly anti-stable ring.

We explore one example of anti-stable rings which are not strongly anti-stable.

Example 1.37. Let k be a field and S = k[t] the polynomial ring. Let ℓ ≥ 2 be an

integer and set R = k[t2, t2ℓ+1]. We consider the maximal ideal I = (t2 − 1, t2ℓ+1 − 1) in

R. Then, τR(I) = R, and I ̸∼= J as an R-module for any J ∈ X T
R . Therefore, R is not a

strongly anti-stable ring, while R is an anti-stable ring, because dimR = 1 and for every

M ∈ MaxR, RM is an anti-stable local ring. See Theorem 1.42 for details.

Proof. Let p ∈ SpecR. If I ̸⊆ p, then IRp = Rp. If I ⊆ p, then t2 ̸∈ p = I, whence

Rp = Sp is a DVR, because R : S = (t2, t2ℓ+1)R, so that IRp
∼= Rp. We now notice that

I ⊆ τR(I) ⊆ R. Hence, either I = τR(I) or τR(I) = R. If I = τR(I), then setting p = I,

we get Rp is a DVR and IRp = τRp(IRp) ⊊ Rp, while τRp(IRp) = Rp, because IRp
∼= Rp.

This is absurd. Hence τR(I) = R. Consequently, I ̸∼= J for any J ∈ X T
R . In fact, if I ∼= J

for some J ∈ X T
R , then J = τR(J) = τR(I) = R, so that µR(I) = 1. We write I = fR

with some monic polynomial f ∈ R. Let k denote the algebraic closure of k and choose

a ∈ k so that f(a) = 0. Then, since a2 = a2ℓ+1 = 1, we get a = 1, whence f = (t − 1)n

with 0 < n ∈ H, where H = ⟨2, 2ℓ+ 1⟩ denotes the numerical semigroup generated by

2, 2ℓ+1. Therefore, 2−n, (2ℓ+1)−n ∈ H, because t2− 1, t2ℓ+1− 1 ∈ fR. Hence, n = 2,

and 2ℓ+ 1 ∈ 2 +H, which is impossible. Thus, I is not a principal ideal of R, and I ̸∼= J

for any J ∈ X T
R .

The key in our argument is the following, which plays a key role also in [11].

Lemma 1.38. Let R be a strongly anti-stable ring. Then the correspondence ρ : X T
R → YR

is surjective. More precisely, let A ∈ YR and set J = R : A. Then J ∈ GR = X T
R ∩ ZR.

Proof. Let A ∈ YR and choose b ∈ W so that bA ⊆ R. Then, since bA ∈ FR, by Lemma

1.35 bA ∼= J as an R-module for some J ∈ X T
R . Let us write J = aA with a a unit

of Q(R) (hence a ∈ J ∩ W ). We then have J : J = aA : aA = A : A = A, whence

A = J : J = R : J = R : aA = a−1(R : A), so that R : A = aA = J ∈ X T
R ∩ ZR.

Therefore, ρ(J) = J : J = A, and the correspondence ρ : X T
R → YR is surjective.
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Let us recall one of the fundamental results on stable rings, which we need to prove

Theorem 1.40.

Proposition 1.39 ([45, Lemma 3.2, Theorem 3.4]). Let R be a Cohen-Macaulay semi-

local ring and assume that dimRM = 1 for every M ∈ MaxR. If e(RM) ≤ 2 for every

M ∈ MaxR, then R is a stable ring.

We should compare the following theorem with [11, Theorem 3.6].

Theorem 1.40. Let R be a Cohen-Macaulay local ring of dimension one. Then, R is an

anti-stable ring, if and only if e(R) ≤ 2.

Proof. Suppose that e(R) ≤ 2. Let I ∈ FR and set A = I : I. Then, by Proposition 1.39

R is a stable ring. Hence, I2 = aI for some a ∈ I, whence A = a−1I. Therefore, I ∼= A

as an R-module. We now consider J = (R : I)I. Then, J = τR(I) ∈ X T
R , whence

J : J = R : J = R : (R : I)I = [R : (R : I)] : I = I : I,

where the last equality follows from the fact that R is a Gorenstein ring. Consequently,

A = J : J ∼= J (since J ∈ FR), so that I ∼= J = τR(J). Thus, R is an anti-stable ring.

Conversely, suppose that R is an anti-stable ring. First of all, we will show that R is

a Gorenstein ring. Assume the contrary. Then, passing to the m-adic completion of R,

by Proposition 1.31 and Theorem 1.32 we get X T
R = {m, R}. Consequently, either I ∼= m

or I ∼= R, for every ideal I ∈ FR. We set n = µR(m) and write m = (x1, x2, . . . , xn)

with non-zerodivisors xi of R. Then, n > 2 since R is not a Gorenstein ring, and setting

I = (x1, x2, . . . , xn−1), we have either I ∼= m or I ∼= R, both of which violates the fact

that n = µR(m) > 2. Thus R is a Gorenstein ring. We want to show e(R) ≤ 2. Assume

that e(R) ≥ 2 and consider B = m : m. Then, B ∈ YR and R ̸= B, because R is not a

DVR. Consequently, because m = R : B, by Lemma 1.38 m2 = am for some a ∈ m, which

implies e(R) = 2, since R is a Gorenstein ring.

We say that a Noetherian ring R satisfies the condition (S1) of Serre, if depthRp ≥
inf{1, dimRp} for every p ∈ SpecR.

Corollary 1.41. Let R be a Noetherian ring and suppose that R satisfies (S1). Then,

e(Rp) ≤ 2 for every p ∈ Ht1(R), if R is an anti-stable ring.
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Proof. Let p ∈ Ht1(R) and set A = Rp. Hence A is a Cohen-Macaulay local ring of

dimension one. Let I ∈ FA and set J = I ∩ R. We will show that A : I is a cyclic

(I : I)-module. We may assume that I ̸= A. Hence, J is a p-primary ideal of R, since

I is a pRp-primary ideal of A = Rp. Hence, because J ∈ FR (remember that R satisfies

(S1)), R : J is a projective (J : J)-module. Therefore, A : I = [R : J ]p is a cyclic module

over I : I = [J : J ]p, since it has rank one over the semi-local ring I : I. Thus, e(A) ≤ 2

by Theorem 1.40.

We now come to the main results of this section.

Theorem 1.42. Let R be a Noetherian ring and suppose that R satisfies (S1). Let us

consider the following four conditions.

(1) R is anti-stable.

(2) R is strongly anti-stable.

(3) Every I ∈ FR is isomorphic to τR(I).

(4) e(Rp) ≤ 2 for every p ∈ Ht1(R).

Then, we have the implications (3) ⇔ (2) ⇒ (1) ⇒ (4). If R is semi-local (resp. dimR =

1), then the implication (1) ⇒ (2) (resp. (4) ⇒ (1)) holds true.

Proof. (3) ⇔ (2) ⇒ (1) ⇒ (4) See Lemma 1.35 and Theorem 1.41.

If R is semi-local, then every birational module -finite extension of R is also semi-local,

so that the implication (1) ⇒ (2) follows.

Suppose that dimR = 1. Let I ∈ FR and set A = I : I. Then, by Theorem 1.40

RM : IRM = [R : I]M is a cyclic AM -module for every M ∈ MaxR, so that R : I is an

invertible A-module. Hence, the implication (4) ⇒ (1) follows.

Theorem 1.43. Let R be a Cohen-Macaulay ring with dimRM = 1 for everyM ∈ MaxR.

If R is an anti-stable ring, then R is a stable ring.

Proof. For every M ∈ MaxR, e(RM) ≤ 2 by Corollary 1.41. Let I be an arbitrary ideal

of R and set A = EndRI. Then, because RM is a stable ring by Proposition 1.39, for

every M ∈ MaxR IRM is a projective AM -module, so that I is a projective A-module.

Thus, R is a stable ring.
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2 The structure of chains of Ul-
rich ideals in Cohen-Macaulay lo-
cal ring of dimension one

2.1 Introduction

The purpose of this chapter is to investigate the behavior of chains of Ulrich ideals, in a

one-dimensional Cohen-Macaulay local ring, in connection with the structure of birational

finite extensions of the base ring.

The notion of Ulrich ideals is a generalization of stable maximal ideals, which dates

back to 1971, when the monumental paper [40] of J. Lipman was published. The mod-

ern treatment of Ulrich ideals was started by [24, 25] in 2014, and has been explored

in connection with the representation theory of rings. In [24], the basic properties of

Ulrich ideals are summarized, whereas in [25], Ulrich ideals in two-dimensional rational

singularities are closely studied with a concrete classification. However, in contrast to

the existing research on Ulrich ideals, the theory pertaining to the one-dimensional case

does not seem capable of growth. Some part of the theory, including research on the

ubiquity as well as the structure of the chains of Ulrich ideals, seems to have been left

unchallenged. In the current chapter, we focus our attention on the one-dimensional case,

clarifying the relationship between Ulrich ideals and the birational finite extensions of the

base ring. The main objective is to understand the behavior of chains of Ulrich ideals in

one-dimensional Cohen-Macaulay local rings.

To explain our objective as well as our main results, let us begin with the definition

of Ulrich ideals. Although we shall focus our attention on the one-dimensional case, we

would like to state the general definition, in the case of any arbitrary dimension. Let

(R,m) be a Cohen-Macaulay local ring with d = dimR ≥ 0.

Definition 2.1 ([24]). Let I be an m-primary ideal of R and assume that I contains a

parameter ideal Q = (a1, a2, . . . , ad) of R as a reduction. We say that I is an Ulrich ideal

of R, if the following conditions are satisfied.

(1) I ̸= Q,

(2) I2 = QI, and
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(3) I/I2 is a free R/I-module.

We notice that Condition (2) together with Condition (1) are equivalent to saying

that the associated graded ring grI(R) =
⊕

n≥0 I
n/In+1 of I is a Cohen-Macaulay ring

and a(grI(R)) = 1 − d, where a(grI(R)) denotes the a-invariant of grI(R) ([27, Remark

3.10], [30, Remark (3.1.6)]). Therefore, these two conditions are independent of the choice

of reductions Q of I. In addition, assuming Condition (2) is satisfied, Condition (3) is

equivalent to saying that I/Q is a free R/I-module ([24, Lemma 2.3]). We also notice that

Condition (3) is automatically satisfied if I = m. Therefore, when the residue class field

R/m of R is infinite, the maximal ideal m is an Ulrich ideal of R if and only if R is not

a regular local ring, possessing minimal multiplicity ([43]). From this perspective, Ulrich

ideals are a kind of generalization of stable maximal ideals, which Lipman [40] started to

analyze in 1971.

Here, let us briefly summarize some basic properties of Ulrich ideals, as seen in [24, 29].

Although we need only a part of them, let us also include some superfluity in order to

show what specific properties Ulrich ideals enjoy. Throughout this chapter, let r(R) denote

the Cohen-Macaulay type of R, and let SyziR(M) denote, for each integer i ≥ 0 and for

each finitely generated R-module M , the i-th syzygy module of M in its minimal free

resolution.

Theorem 2.2 ([24, 29]). Let I be an Ulrich ideal of a Cohen-Macaulay local ring R of

dimension d ≥ 0 and set t = n − d (> 0), where n denotes the number of elements in a

minimal system of generators of I. Let

· · · → Fi
∂i→ Fi−1 → · · · → F1

∂1→ F0 = R → R/I → 0

be a minimal free resolution of R/I. Then r(R) = t·r(R/I) and the following assertions

hold true.

(1) I(∂i) = I for i ≥ 1.

(2) For i ≥ 0, βi =


ti−d·(t+ 1)d (i ≥ d),(
d
i

)
+ t·βi−1 (1 ≤ i ≤ d),

1 (i = 0).

(3) Syzi+1
R (R/I) ∼= [SyziR(R/I)]

⊕t for i ≥ d.
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(4) For i ∈ Z, ExtiR(R/I,R) ∼=


(0) (i < d),

(R/I)⊕t (i = d),

(R/I)⊕(t2−1)·ti−(d+1)
(i > d).

Here I(∂i) denotes the ideal of R generated by the entries of the matrix ∂i, and βi =

rankRFi.

Because Ulrich ideals are a very special kind of ideals, it seems natural to expect that,

in the behavior of Ulrich ideals, there might be contained ample information on base rings,

once they exist. As stated above, this is the case of two-dimensional rational singularities,

and the present objects of study are rings of dimension one.

In what follows, unless otherwise specified, let (R,m) be a Cohen-Macaulay local ring

with dimR = 1. Our main targets are chains In ⊊ In−1 ⊊ · · · ⊊ I1 (n ≥ 2) of Ulrich

ideals in R. Let I be an Ulrich ideal of R with a reduction Q = (a). We set A = I : I

in the total ring of fractions of R. Hence, A is a birational finite extension of R, and

I = aA. Firstly, we study the close connection between the structure of the ideal I and

the R-algebra A. Secondly, let J be an Ulrich ideal of R and assume that I ⊊ J . Then, we

will show that µR(J) = µR(I), where µR(∗) denotes the number of elements in a minimal

system of generators, and that J = (b)+ I for some a, b ∈ m with I = abA. Consequently,

we have the following, which is one of the main results of this chapter.

Theorem 2.3. Let (R,m) be a Cohen-Macaulay local ring with dimR = 1. Then the

following assertions hold true.

(1) Let I be an Ulrich ideal of R and A = I : I. Let a1, a2, . . . , an ∈ m (n ≥ 2) and

assume that I = a1a2 · · · anA. For 1 ≤ i ≤ n, let Ii = (a1a2 · · · ai) + I. Then each Ii

is an Ulrich ideal of R and

I = In ⊊ In−1 ⊊ · · · ⊊ I1.

(2) Conversely, let I1, I2, . . . , In (n ≥ 2) be Ulrich ideals of R and suppose that

In ⊊ In−1 ⊊ · · · ⊊ I1.

We set I = In and A = I : I. Then there exist elements a1, a2, . . . , an ∈ m such that

I = a1a2 · · · anA and Ii = (a1a2 · · · ai) + I for all 1 ≤ i ≤ n− 1.
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Let I and J be Ulrich ideals of R and assume that I ⊊ J . We set B = J : J . Let us

write J = (b) + I for some b ∈ m. We then have that J2 = bJ and that B is a local ring

with the maximal ideal n = m +
I

b
, where

I

b
=

{
i

b
| i ∈ I

}
(= b−1I). We furthermore

have the following.

Theorem 2.4.
I

b
is an Ulrich ideal of the Cohen-Macaulay local ring B of dimension one

and there is a one-to-one correspondence a 7→ a

b
between the Ulrich ideals a of R such

that I ⊆ a ⊊ J and the Ulrich ideals b of B such that
I

b
⊆ b.

These two theorems convey to us that the behavior of chains of Ulrich ideals in a given

one-dimensional Cohen-Macaulay local ring could be understood via the correspondence,

and the relationship between the structure of Cohen-Macaulay local rings R and B could

be grasped through the correspondence, which we shall closely discuss in this chapter.

We now explain how this chapter is organized. In Section 2.2, we will summarize some

preliminaries, which we shall need later to prove the main results. The proof of Theorems

2.3 and 2.4 will be given in Section 2.3. In Section 2.4, we shall study the case where the

base rings R are not regular but possess minimal multiplicity ([43]), and show that the

set of Ulrich ideals of R are totally ordered with respect to inclusion. In Section 2.5, we

explore the case where R is a GGL ring ([16]).

In what follows, let (R,m) be a Cohen-Macaulay local ring with dimR = 1. Let

Q(R) (resp. XR) stand for the total ring of fractions of R (resp. the set of all the Ulrich

ideals in R). We denote by R, the integral closure of R in Q(R). For a finitely generated

R-module M , let µR(M) (resp. ℓR(M)) be the number of elements in a minimal system

of generators (resp. the length) of M . For each m-primary ideal a of R, let

e0a(R) = lim
n→∞

ℓR(R/a
n)

n

stand for the multiplicity of R with respect to a. By v(R) (resp. e(R)) we denote the

embedding dimension µR(m) of R (resp. e0m(R)). Let R̂ denote the m-adic completion of

R.

2.2 Preliminaries

Let us summarize preliminary facts on m-primary ideals of R, which we need through-

out this chapter.
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In this section, let I be an m-primary ideal of R, for which we will assume Condition

(C) in Definition 2.6 to be satisfied. This condition is a partial extraction from Definition

2.1 of Ulrich ideals; hence every Ulrich ideal satisfies it (see Remark 2.7).

Firstly, we assume that I contains an element a ∈ I with I2 = aI. We set A = I : I

and
I

a
=

{x
a
| x ∈ I

}
= a−1I

in Q(R). Therefore, A is a birational finite extension of R such that R ⊆ A ⊆ R, and

A =
I

a
, because I2 = aI; hence I = aA. We then have the following.

Proposition 2.5. If I = (a) :R I, then A = R : I and I = R : A, whence R : (R : I) = I.

Proof. Notice that I = (a) :R I = (a) : I = a[R : I] and we have A = R : I, because

I = aA. We get R : A = I, since R : A = R :
I

a
= a[R : I] = aA.

Let us now give the following.

Definition 2.6. Let I be an m-primary ideal of R and set A = I : I. We say that I

satisfies Condition (C), if

(i) A/R ∼= (R/I)⊕t as an R-module for some t > 0, and

(ii) A = R : I.

Consequently, I = R : A by Condition (i), when I satisfies Condition (C).

Remark 2.7. Let I ∈ XR. Then I satisfies Condition (C). In fact, choose a ∈ I so that

I2 = aI. Then, I/(a) ∼= (R/I)⊕t as an R/I-module, where t = µR(I)−1 > 0 ([24, Lemma

2.3]). Therefore, I = (a) :R I, so that I satisfies the hypothesis in Proposition 2.5, whence

A = R : I. Notice that A/R ∼= I/(a) ∼= (R/I)⊕t, because I = aA.

We assume, throughout this section, that our m-primary ideal I satisfies Condition

(C). We choose elements {fi}1≤i≤t of A so that

A = R +
t∑

i=1

Rfi.

Therefore, the images {fi}1≤i≤t of {fi}1≤i≤t in A/R form a free basis of the R/I-module

A/R. We then have the following.
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Lemma 2.8. aA ∩R ⊆ (a) + I for all a ∈ R.

Proof. Let x ∈ aA ∩ R and write x = ay with y ∈ A. We write y = c0 +
∑t

i=1 cifi

with ci ∈ R. Then, aci ∈ I for 1 ≤ i ≤ t, since x = ac0 +
∑t

i=1(aci)fi ∈ R. Therefore,

(aci)fi ∈ IA = I for all 1 ≤ i ≤ t, so that x ∈ (a) + I as claimed.

Corollary 2.9. Let J be an m-primary ideal of R and assume that J contains an element

b ∈ J such that J2 = bJ and J = (b) :R J . If I ⊆ J , then J = (b) + I.

Proof. We set B = J : J . Then B = R : J and J = bB by Proposition 2.5, so that

B = R : J ⊆ A = R : I, since I ⊆ J . Consequently, J = bB ⊆ bA ∩ R ⊆ (b) + I by

Lemma 2.8, whence J = (b) + I.

In what follows, let J be an m-primary ideal of R and assume that J contains an

element b ∈ J such that J2 = bJ and J = (b) :R J . We set B = J : J . Then

B = R : J =
J

b
by Proposition 2.5. Throughout, suppose that I ⊊ J . Therefore, since

J = (b) + I by Corollary 2.9, we get

B =
J

b
= R +

I

b
.

Let a =
I

b
. Therefore, a is an ideal of A containing I, so that a is also an ideal of B with

R/(a ∩R) ∼= B/a.

With this setting, we have the following.

Lemma 2.10. The following assertions hold true.

(1) A/B ∼= (B/a)⊕t as a B-module.

(2) a ∩R = I :R J .

(3) ℓR([I :R J ]/I) = ℓR(R/J).

(4) I = [b·(I :R J)]A.

Proof. (1) Since A = R+
∑t

i=1Rfi, we get A/B =
∑t

i=1Bfi where fi denotes the image

of fi in A/B. Let {bi}1≤i≤t be elements of B =
J

b
and assume that

∑t
i=1 bifi ∈ B. Then,

since
∑t

i=1(bbi)fi ∈ R and bbi ∈ R for all 1 ≤ i ≤ t, we have bbi ∈ I, so that bi ∈
I

b
= a.

Hence A/B ∼= (B/a)⊕t as a B-module.
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(2) This is standard, because J = (b) + I and a =
I

b
.

(3) Since J/I = [(b) + I]/I ∼= R/[I :R J ], we get

ℓR([I :R J ]/I) = ℓR(R/I)− ℓR(R/[I :R J ]) = ℓR(R/I)− ℓR(J/I) = ℓR(R/J).

(4) We have [b·(I :R J)]A ⊆ I, since b·(I :R J) ⊆ I and IA = I. To see the reverse

inclusion, let x ∈ I. Then x ∈ J = bB ⊆ bA. We write x = b[c0 +
∑t

i=1 cifi] with ci ∈ R.

Then bci ∈ I for 1 ≤ i ≤ t since x ∈ R, so that (bci)fi ∈ I for all 1 ≤ i ≤ t, because

I is an ideal of A. Therefore, bc0 ∈ I, since x = bc0 +
∑t

i=1(bci)fi ∈ I. Consequently,

ci ∈ I :R b = I :R J for all 0 ≤ i ≤ t, so that x ∈ [b·(I :R J)]A as wanted.

Corollary 2.11. J/(b) ∼= ([I :R J ]/I)
⊕t as an R-module. Hence ℓR(J/(b)) = t·ℓR(R/J).

Proof. We consider the exact sequence

0 → B/R → A/R → A/B → 0

of R-modules. By Lemma 2.10 (1), A/B is a free B/a-module of rank t, possessing the

images of {fi}1≤i≤t in A/B as a free basis. Because A/R is a free R/I-module of rank

t, also possessing the images of {fi}1≤i≤t in A/R as a free basis, we naturally get an

isomorphism between the following two canonical exact sequences;

0 // B/R i //

≀
��

A/R //

≀
��

A/B //

≀
��

0

0 // ([a ∩R]/I)⊕t i //

⟲

(R/I)⊕t ////

⟲

(B/a)⊕t // 0

Since B/R =
J

b
/R ∼= J/(b) and a ∩R = I :R J by Lemma 2.10 (2), we get

J/(b) ∼= ([I :R J ]/I)
⊕t.

The second assertion now follows from Lemma 2.10 (3).

The following is the heart of this section.

Proposition 2.12. The following conditions are equivalent.

(1) J ∈ XR.

(2) µR([I :R J ]/I) = 1.
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(3) [I :R J ]/I ∼= R/J as an R-module.

When this is the case, µR(J) = t+ 1.

Proof. The implication (3) ⇒ (2) is clear, and the reverse implication follows from the

equality ℓR([I :R J ]/I) = ℓR(R/J) of Lemma 2.10 (3).

(1) ⇒ (3) Suppose that J ∈ XR. Then J/(b) is R/J-free, so that by Corollary 2.11,

[I :R J ]/I is a free R/J-module, whence [I :R J ]/I ∼= R/J by Lemma 2.10 (3).

(3) ⇒ (1) We have J/(b) ∼= ([I :R J ]/I)⊕t ∼= (R/J)⊕t by Corollary 2.11, so that by

Definition 2.1, J ∈ XR with µR(J) = t+ 1.

We now come to the main result of this section, which plays a key role in Section 2.5.

Theorem 2.13. The following assertions hold true.

(1) Suppose that J ∈ XR. Then there exists an element c ∈ m such that I = bcA.

Consequently, I ∈ XR and µR(I) = µR(J) = t+ 1.

(2) Suppose that t ≥ 2. Then I ∈ XR if and only if J ∈ XR.

Proof. (1) Since J ∈ XR, by Proposition 2.12 we get an element c ∈ m such that I :R J =

(c) + I. Therefore, by Lemma 2.10 (4) we have

I = [b·(I :R J)]A = [b·((c) + I)]A = bcA+ bIA = bcA+ bI,

whence I = bcA by Nakayama’s lemma. Let a = bc. Then I2 = (aA)2 = a·aA = aI, so

that (a) is a reduction of I; hence A =
I

a
. Consequently, I/(a) ∼= A/R ∼= (R/I)⊕t, so

that I ∈ XR with µR(I) = t + 1. Therefore, µR(I) = µR(J), because µR(J) = t + 1 by

Proposition 2.12.

(2) We have only to show the only if part. Suppose that I ∈ XR and choose a ∈ I so

that I2 = aI; hence A =
I

a
. We then have µR(I) = t+ 1, since I/(a) ∼= A/R ∼= (R/I)⊕t.

Consequently, since J = (b) + I, we get

µR(J/(b)) = µR([(b) + I]/(b)) ≤ µR(I) = t+ 1.

On the other hand, we have µR(J/(b)) = t·µR([I :R J ]/I), because J/(b) ∼= ([I :R J ]/I)
⊕t

by Corollary 2.11. Hence

t·(µR([I :R J ]/I)− 1) ≤ 1,

so that µR([I :R J ]/I) = 1 because t ≥ 2. Thus by Proposition 2.12, J ∈ XR as

claimed.
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2.3 Chains of Ulrich ideals

In this section, we study the structure of chains of Ulrich ideals in R. First of all,

remember that all the Ulrich ideals of R satisfy Condition (C) stated in Definition 2.6

(see Remark 2.7), and summarizing the arguments in Section 2.2, we readily get the

following.

Theorem 2.14. Let I, J ∈ XR and suppose that I ⊊ J . Choose b ∈ J so that J2 = bJ .

Then the following assertions hold true.

(1) J = (b) + I.

(2) µR(J) = µR(I).

(3) There exists an element c ∈ m such that I = bcA, so that (bc) is a reduction of I,

where A = I : I.

We begin with the following, which shows that Ulrich ideals behave well, if R possesses

minimal multiplicity. We shall discuss this phenomenon more closely in Section 2.4.

Corollary 2.15. Suppose that v(R) = e(R) > 1 and let I ∈ XR. Then µR(I) = v(R) and

R/I is a Gorenstein ring.

Proof. We have m ∈ XR and r(R) = v(R) − 1, because v(R) = e(R) > 1. Hence

by Theorem 2.14 (2), µR(I) = µR(m) = v(R). The second assertion follows from the

equality r(R) = [µR(I)− 1]·r(R/I) (see [29, Theorem 2.5]).

For each I ∈ XR, Assertion (3) in Theorem 2.14 characterizes those ideals J ∈ XR

such that I ⊊ J . Namely, we have the following.

Corollary 2.16. Let I ∈ XR. Then

{J ∈ XR | I ⊊ J} = {(b) + I | b ∈ m such that (bc) is a reduction of I for some c ∈ m} .

Proof. Let b, c ∈ m and suppose that (bc) is a reduction of I. We set J = (b) + I. We

shall show that J ∈ XR and I ⊊ J . Because bc ̸∈ mI, we have b, c /∈ I, whence I ⊊ J .

If J = (b), we then have I = bcA ⊆ J = (b) where A = I : I, so that cA ⊆ R. This is

impossible, because c ̸∈ R : A = I (see Lemma 2.5). Hence, (b) ⊊ J . Because I2 = bcI,

we have J2 = bJ + I2 = bJ + bcI = bJ . Let us check that J/(b) is a free R/J-module.
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Let {fi}1≤i≤t (t = µR(I)− 1 > 0) be elements of A such that A = R +
∑t

i=1Rfi, so that

their images {fi}1≤i≤t in A/R form a free basis of the R/I-module A/R (remember that

I satisfies Condition (C) of Definition 2.6). We then have

J = (b) + I = (b) + bcA = (b) +
t∑

i=1

R·(bc)fi.

Let {ci}1≤i≤t be elements of R and assume that
∑t

i=1 ci·(bcfi) ∈ (b). Then, since∑t
i=1 cic·fi ∈ R, we have cic ∈ I = bcA, so that ci ∈ bA ∩ R for all 1 ≤ i ≤ t. Therefore,

because bA ∩ R ⊆ (b) + I = J by Lemma 2.8, we get ci ∈ J , whence J/(b) ∼= (R/J)⊕t.

Thus, J = (b) + I ∈ XR.

The equality µR(I) = µR(J) does not hold true in general, if I and J are incomparable,

as we show in the following.

Example 2.17. Let S = k[[X1, X2, X3, X4]] be the formal power series ring over a field

k and consider the matrix M =
(
X1 X2 X3
X2 X3 X1

)
. We set R = S/[a + (X2

4 )], where a denotes

the ideal of S generated by the 2 × 2 minors of M. Let xi denote the image of Xi in R

for each i = 1, 2, 3, 4. Then, (x1, x2, x3) and (x1, x4) are Ulrich ideals of R with different

numbers of generators, and they are incomparable with respect to inclusion.

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. (1) This is a direct consequence of Corollary 2.16.

(2) By Theorem 2.14, we may assume that n > 2 and that our assertion holds true for

n − 1. Therefore, there exist elements a1, a2, . . . , an−1 ∈ m such that (a1a2 · · · an−1) is a

reduction of In−1 and Ii = (a1a2 · · · ai) + In−1 for all 1 ≤ i ≤ n− 2. Now apply Theorem

2.14 to the chain In ⊊ In−1. We then have In−1 = (a1a2 · · · an−1) + In together with one

more element an ∈ m so that (a1a2 · · · an−1)·anA = In. Hence

Ii = (a1a2 · · · ai) + In−1 = (a1a2 · · · ai) + In

for all 1 ≤ i ≤ n− 1.

In order to prove Theorem 2.4, we need more preliminaries. Let us begin with the

following.

Theorem 2.18. Suppose that I, J ∈ XR and I ⊊ J . Let b ∈ J such that J2 = bJ and

B = J : J . Then the following assertions hold true.
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(1) B = R +
I

b
and

I

b
= I : J .

(2) B is a Cohen-Macaulay local ring with dimB = 1 and n = m+
I

b
the maximal ideal.

Hence R/m ∼= B/n.

(3)
I

b
∈ XB and µB(

I

b
) = µR(I).

(4) r(B) = r(R) and e(B) = e(R). Therefore, v(B) = e(B) if and only if v(R) = e(R).

Proof. We set A = I : I. Hence R ⊊ B ⊊ A by Proposition 2.5. Let t = µR(I)− 1.

(1) Because J = (b) + I and B =
J

b
, we get B = R +

I

b
. We have I : J ⊆ I

b
, since

b ∈ J . Therefore,
I

b
= I : J , because

J · I
b
= I · J

b
= IB ⊆ IA = I.

(2) It suffices to show that B is a local ring with maximal ideal n = m +
I

b
. Let

a =
I

b
. Choose c ∈ m so that I = bcA. We then have a = cA ⊆ mA ⊆ J(A), where J(A)

denotes the Jacobson radical of A. Therefore, n = m+ cA is an ideal of B = R+ cA, and

n ⊆ J(B), because A is a finite extension of B. On the other hand, because R/m ∼= B/n,

n is a maximal ideal of B, so that (B, n) is a local ring.

(3) We have a2 = ca, since a = cA. Notice that a ̸= cB, since A ̸= B. Then, because

a/cB ∼= A/B ∼= (B/a)⊕t by Lemma 2.10 (1), we get a ∈ XB and µB(a) = t+ 1 = µR(I).

(4) We set L = (c) + I. Then, since bcA = I, L ∈ XR and µR(L) = µR(I) = t + 1 by

Corollary 2.16 and Theorem 2.14 (2). Therefore, r(R) = t·r(R/L) by [29, Theorem 2.5],

while r(B) = t·r(B/a) for the same reason, because a ∈ XB by Assertion (3). Remember

that the element c is chosen so that I :R J = (c) + I (see the proof of Theorem 2.13 (1)).

We then have r(B/a) = r(R/[I :R J ]), because B = R + a and

R/L = R/[a ∩R] ∼= B/a

where the first equality follows from Lemma 2.10 (2). Thus

r(B) = t·r(B/a) = t·r(R/L) = r(R),

as is claimed. To see the equality e(B) = e(R), enlarging the residue class field of R, we

may assume that R/m is infinite. Choose an element α ∈ m so that (α) is a reduction of
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m. Hence αB is a reduction of mB, while mB is a reduction of n, because

nA = (m+ cA)A = mA = (mB)A.

Therefore, αB is a reduction of n, so that

e(B) = ℓB(B/αB) = ℓR(B/αB) = e0αR(B) = e0αR(R) = e(R),

where the second equality follows from the fact that R/m ∼= B/n and the fourth equality

follows from the fact that ℓR(B/R) < ∞. Hence e(B) = e(R) and r(B) = r(R). Because

v(R) = e(R) > 1 if and only if r(R) = e(R) − 1, the assertion that v(B) = e(B) if and

only if v(R) = e(R) now follows.

We need one more lemma.

Lemma 2.19. Suppose that I, J ∈ XR and I ⊊ J . Let α ∈ J . Then J = (α) + I if and

only if J2 = αJ.

Proof. It suffices to show the only if part. Suppose J = (α) + I. We set A = I : I,

B = J : J , and choose b ∈ J so that J2 = bJ . Then J = bB and B ⊆ A, whence

JA = bA, while JA = [(α) + I]A = αA + I. We now choose c ∈ m so that I = bcA (see

Theorem 2.14 (3)). We then have bA = JA = αA+bcA, whence bA = αA by Nakayama’s

lemma. Therefore, JA = αA, whence (α) is a reduction of J , so that J2 = αJ .

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. Let I, J ∈ XR such that I ⊊ J . We set A = I : I and B = J : J .

Let b ∈ J such that J = (b)+ I. Then J2 = bJ by Lemma 2.19 and B is a local ring with

n = m+
I

b
the maximal ideal by Theorem 2.18.

Let a ∈ XR such that I ⊆ a ⊊ J . First of all, let us check the following.

Claim 2.
a

b
∈ XB and

a

b
= a : J .

Proof of Claim 2. Since b ∈ J , a : J ⊆ a

b
. On the other hand, since

B = R : J ⊆ R : a = a : a

by Lemma 2.5, we get

J · a
b
= a · J

b
= aB ⊆ a·(a : a) = a,
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so that
a

b
is an ideal of B =

J

b
and a : J =

a

b
. Since

I

b
∈ XB by Theorem 2.18 (3), to

show that
a

b
∈ XB, we may assume I ⊊ a. We then have, by Theorem 2.3 (2), elements

a1, a2 ∈ m such that I = ba1a2A and a = (ba1) + I; hence
a

b
= a1R +

I

b
. We get

a

b
= a1B +

I

b
, since

a

b
is an ideal of B. Therefore,

a

b
∈ XB by Corollary 2.16, because

a1a2B is a reduction of
I

b
= a1a2A.

We now have the correspondence φ defined by a 7→ a

b
, and it is certainly injective.

Suppose that b ∈ XB and
I

b
⊊ b. We take α ∈ b so that b2 = αb. Then, since B is a

Cohen-Macaulay local ring with maximal ideal m+
I

b
, we have b = αB +

I

b
by Theorem

2.14. Let us write α = a + x with a ∈ m and x ∈ I

b
. We then have b = aB +

I

b
, so that

b2 = ab by Lemma 2.19. Set L =
I

b
. Then, since A = I : I = L : L, by Theorem 2.14 we

have an element β ∈ n = m+L such that L = aβA; hence aβ ∈ L. Let us write β = c+ y

with c ∈ m and y ∈ L. We then have ac = aβ − ay ∈ L and yA ⊆ L, so that because

L = aβA ⊆ acA+ a·yA ⊆ acA+mL,

we get L = acA by Nakayama’s lemma. Therefore, I = abcA. On the other hand, since

aB = aR + a·I
b
, we get b = aB +

I

b
= aR +

I

b
. Hence, because bb = (ab) + I and

I = (ab)cA, we finally have that bb ∈ XR and

I = abcA ⊊ bb = (ab) + I ⊊ J

by Theorem 2.3 (1). Thus, the correspondence φ is bijective, which completes the proof

of Theorem 2.4.

2.4 The case where R possesses minimal multiplicity

In this section, we focus our attention on the case where R possesses minimal multi-

plicity. Throughout, we assume that v(R) = e(R) > 1. Hence, m ∈ XR and µR(I) = v

for all I ∈ XR by Corollary 2.15, where v = v(R). We choose an element α ∈ m so that

m2 = αm.

Let I, J ∈ XR such that I ⊊ J and assume that there are no Ulrich ideals contained

strictly between I and J . Let b ∈ J with J2 = bJ and set B = J : J . Hence B =
J

b
, and

J = (b) + I by Theorem 2.14. Remember that by Theorem 2.18, B is a local ring and
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v(B) = e(B) = e(R) > 1. We have n2 = αn by the proof of Theorem 2.18 (4), where n

denotes the maximal ideal of B.

We furthermore have the following.

Lemma 2.20. The following assertions hold true.

(1) ℓR(J/I) = 1.

(2) I = bn = Jn. Hence, the ideal I is uniquely determined by J , and I : I = n : n.

(3) (bα) is a reduction of I. If I = (bα) + (x2, x3, . . . , xv), then J = (b, x2, x3, . . . , xv).

Proof. By Theorem 2.4, we have the one-to-one correspondence

{a ∈ XR| I ⊆ a ⊊ J} φ−→ {b ∈ XB|
I

b
⊆ b}, a 7→ a

b
,

where the set of the left hand side is a singleton consisting of I, and the set of the right

hand side contains n. Hence n =
I

b
, that is I = bn = Jn, because J = bB. Therefore,

I2 = b2n2 = bα·bn = bα·I, so that (bα) is a reduction of I. Because

J/I = bB/bn ∼= B/n

and R/m ∼= B/n by Theorem 2.18 (2), we get ℓR(J/I) = 1. Assertion (3) is clear, since

J = (b) + I.

Let I, J be ideals of R such that I ⊊ J and ℓR(J/I) < ∞. Then we say that a chain

I = Iℓ ⊊ Iℓ−1 ⊊ . . . ⊊ I1 = J of ideals in R is a composition series which connects I with

J , if ℓR(Ii/Ii+1) = 1 for all 1 ≤ i ≤ ℓ− 1, where ℓ = ℓR(J/I) + 1. With this terminology,

since ℓR(R/I) <∞ for all I ∈ XR, we have the following.

Corollary 2.21. Suppose that I, J ∈ XR and I ⊊ J . Then there exists a composition

series I = Iℓ ⊊ Iℓ−1 ⊊ · · · ⊊ I1 = J connecting I with J such that Ii ∈ XR for all

1 ≤ i ≤ ℓ.

The following is the heart of this section.

Theorem 2.22. The set XR is totally ordered with respect to inclusion.
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Proof. Suppose that there exist I, J ∈ XR such that I ⊈ J and J ⊈ I. Since I ⊊ m and

J ⊊ m, thanks to Corollary 2.21, we get composition series

I = Iℓ ⊊ Iℓ−1 ⊊ · · · ⊊ I1 = m and J = Jn ⊊ Jn−1 ⊊ · · · ⊊ J1 = m

connecting I with m and J with m, respectively, such that Ii, Jj ∈ XR for all 1 ≤ i ≤ ℓ

and 1 ≤ j ≤ n. We may assume ℓ ≤ n. Then Lemma 2.20 (2) shows that Ii = Ji for all

1 ≤ i ≤ ℓ, whence J ⊆ Jℓ = Iℓ ⊆ I. This is a contradiction.

Remark 2.23. Theorem 2.22 is no longer true, unless R possesses minimal multiplicity.

For example, let k be a field and consider R = k[[t3, t7]] in the formal power series ring

k[[t]]. Then, XR = {(t6 − ct7, t10) | 0 ̸= c ∈ k}, which is not totally ordered, if ♯k > 2. See

Example 2.37 (3) also.

Let us now summarize the results in the case where R possesses minimal multiplicity.

Theorem 2.24. Let I ∈ XR and take a composition series

(E) I = Iℓ ⊊ Iℓ−1 ⊊ · · · ⊊ I1 = m

connecting I with m such that Ii ∈ XR for every 1 ≤ i ≤ ℓ = ℓR(R/I). We set B0 = R

and Bi = Ii : Ii for 1 ≤ i ≤ ℓ and let ni = J(Bi) denote the Jacobson radical of Bi for

each 0 ≤ i ≤ ℓ. Then we obtain a tower

R = B0 ⊊ B1 ⊊ · · · ⊊ Bℓ−1 ⊊ Bℓ ⊆ R

of birational finite extensions of R and furthermore have the following.

(1) (αi) is a reduction of Ii for every 1 ≤ i ≤ ℓ.

(2) Bi = ni−1 : ni−1 for every 1 ≤ i ≤ ℓ.

(3) For 0 ≤ i ≤ ℓ−1, (Bi, ni) is a local ring with v(Bi) = e(Bi) = e(R) > 1 and n2i = αni.

(4) Choose x2, x3, . . . , xv ∈ I so that I = (αℓ, x2, . . . , xv). Then Ii = (αi, x2, x3, . . . , xv)

for every 1 ≤ i ≤ ℓ. In particular, m = (α, x2, x3, . . . , xv), so that the series (E) is a

unique composition series of ideals in R which connects I with m.

(5) Let J be an ideal of R and assume that I ⊆ J ⊆ m. Then J = Ii for some 1 ≤ i ≤ ℓ.
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Proof. The uniqueness of composition series in Assertion (4) follows from the fact that

the maximal ideal m/I of R/I is cyclic, and then, Assertion (5) readily follows from the

uniqueness. Assertions (1), (2), (3), and the first part of Assertion (4) follow by standard

induction on ℓ.

Corollary 2.25. Suppose that there exists a minimal element I in XR. Then ♯XR = ℓ <

∞ with ℓ = ℓR(R/I).

Proof. Since XR is totally ordered by Theorem 2.22, I is the smallest element in XR, so

that I ⊆ J for all J ∈ XR. Therefore, by Theorem 2.24 (5), J is one of the Ii’s in the

compoosition series I = Iℓ ⊊ Iℓ−1 ⊊ · · · ⊊ I1 = m.

Corollary 2.26. If R̂ is a reduced ring, then XR is a finite set.

Proof. Since by Theorem 2.24 ℓR(R/I) ≤ ℓR(R/R) < ∞ for every I ∈ XR, the set XR

contains a minimal element, so that XR is a finite set.

Here let us note the following.

Example 2.27. Let (S, n) be a two-dimensional regular local ring. Let n = (X,Y ) and

consider the ring A = S/(Y 2). Then v(A) = e(A) = 2 and

XA = {(xn, y) | n ≥ 1}

where x, y denote the images of X,Y in A, respectively. Hence ♯XA = ∞.

Proof. Let In = (xn, y) for each n ≥ 1. Then (xn) ⊊ In and I2n = xnIn. Let J(A) = (x, y)

be the maximal ideal of A. We then have J(A)2 = xJ(A), whence v(A) = e(A) = 2.

Because In = (xn) :A y, we get In/(x
n) ∼= A/In. Therefore, In ∈ XA for all n ≥ 1. To

see that XA consists of these ideals In’s, let I ∈ XA and set ℓ = ℓA(A/I). Then I ⊆ Iℓ

or I ⊇ Iℓ, since XA is totally ordered. In any case, I = Iℓ, because ℓA(A/Iℓ) = ℓ. Hence

XA = {(xn, y) | n ≥ 1}.

We close this section with the following. Here, the hypothesis about the existence

of a fractional canonical ideal K is equivalent to saying that R contains an m-primary

ideal I such that I ∼= KR as an R-module and such that I possesses a reduction Q = (a)

generated by a single element a of R ([18, Corollary 2.8]). The latter condition is satisfied,

once Q(R̂) is a Gorenstein ring and the field R/m is infinite.
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Theorem 2.28. Suppose that there exists a fractional ideal K of R such that R ⊆ K ⊆ R

and K ∼= KR as an R-module. Then the following conditions are equivalent.

(1) ♯XR = ∞.

(2) e(R) = 2 and R̂ is not a reduced ring.

(3) The ring R̂ has the form R̂ ∼= S/(Y 2) for some regular local ring (S, n) of dimension

two with Y ∈ n \ n2.

Proof. (1) ⇒ (2) The ring R̂ is not reduced by Corollary 2.26. Suppose R is not a

Gorenstein ring; hence R ⊊ K and e(R) > 2. We set a = R : K. Let I ∈ XR. Then, since

µR(I) = v = e(R) > 2 by Corollary 2.15, we have a ⊆ I by [29, Corollary 2.12], so that

ℓR(R/I) ≤ ℓR(R/a) < ∞. Therefore, the set XR contains a minimal element, which is a

contradiction.

(3) ⇒ (1) See Example 2.27 and use the fact that there is a one-to-one correspondence

I 7→ IR̂ between Ulrich ideals of R and R̂, respectively.

(2) ⇒ (3) Since v(R) = e(R) = 2, the completion R̂ has the form R̂ = S/I, where

(S, n) is a two-dimensional regular local ring and I = (f) a principal ideal of S. Notice

that e(S/(f)) = 2 and
√

(f) ̸= (f). We then have (f) = (Y 2) for some Y ∈ n \ n2,

because f ∈ n2 \ n3.

Remark 2.29. In Theorem 2.28, the hypothesis on the existence of fractional canonical

ideals K is not superfluous. In fact, let V denote a discrete valuation ring and consider

the idealization R = V ⋉ F of the free V -module F = V ⊕n (n ≥ 2). Let t be a regular

parameter of V . Then for each n ≥ 1, In = (tn)×F is an Ulrich ideal of R ([24, Example

2.2]). Hence XR is infinite, but v(R) = e(R) = n+ 1 ≥ 3.

Higher dimensional cases are much wilder. Even though (R,m) is a two-dimensional

Cohen-Macaulay local ring possessing minimal multiplicity, the set XR is not necessarily

totally ordered. Before closing this section, let us note examples.

Example 2.30. We consider two examples.

(1) Let S = k[[X0, X1, . . . , Xn]] (n ≥ 3) be the formal power series ring over a field k.

Let ℓ ≥ 1 be an integer and consider the 2× n matrix

M =

(
X1 X2 · · · Xn

Xℓ
0 X1 · · · Xn−1

)
.
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We set R = S/I2(M), where I2(M) denotes the ideal of S generated by the 2 × 2

minors of the matrix M. Then, R is a Cohen-Macaulay local ring of dimension two,

possessing minimal multiplicity. For this ring, we have

XR = {(xi0, x1, x2, . . . , xn) | 1 ≤ i ≤ ℓ},

where xi denotes the image of Xi in R for each 0 ≤ i ≤ n. Therefore, the set XR is

totally ordered with respect to inclusion.

(2) Let (S, n) be a regular local ring of dimension three. Let F,G,H,Z ∈ n and assume

that n = (F,G, Z) = (G,H,Z) = (H,F, Z). (For instance, let S = k[[X,Y, Z]] be

the formal power series ring over a field k with ch k ̸= 2, and choose F = X,G =

X + Y,H = X − Y .) We consider the ring R = S/(Z2 − FGH). Then R is a two-

dimensional Cohen-Macaulay local ring of minimal multiplicity two. Let f, g, h, z de-

note, respectively, the images of F,G,H,Z in R. Then, (f, gh, z), (g, fh, z), (h, fg, z)

are Ulrich ideals of R, but any two of them are incomparable.

2.5 The case where R is a GGL ring

In this section, we study the case where R is a GGL ring. The notion of GGL rings is

given by [16]. Let us briefly review the definition.

Definition 2.31 ([16]). Suppose that (R,m) is a Cohen-Macaulay local ring with d =

dimR ≥ 0, possessing the canonical module KR. We say that R is a generalized Gorenstein

local (GGL for short) ring, if one of the following conditions is satisfied.

(1) R is a Gorenstein ring.

(2) R is not a Gorenstein ring, but there exists an exact sequence

0 → R
φ−→ KR → C → 0

of R-modules and an m-primary ideal a of R such that

(i) C is an Ulrich R-module with respect to a and

(ii) the induced homomorphism R/a⊗R φ : R/a → KR/aKR is injective.

When Case (2) occurs, we especially say that R is a GGL ring with respect to a.
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Since our attention is focused on the one-dimensional case, here let us summarize a

few results on GGL rings of dimension one. Suppose that (R,m) is a Cohen-Macaulay

local ring of dimension one, admitting a fractional canonical ideal K. Hence, K is an

R-submodule of R such that K ∼= KR as an R-module and R ⊆ K ⊆ R. One can consult

[18, Sections 2, 3] and [32, Vortrag 2] for basic properties of K. We set S = R[K] in

Q(R). Therefore, S is a birational finite extension of R with S = Kn for all n ≫ 0, and

the ring S = R[K] is independent of the choice of K ([4, Theorem 2.5]). We set c = R : S.

First of all, let us note the following.

Lemma 2.32 (cf. [18, Lemma 3.5]). c = K : S and S = c : c = R : c.

Proof. Since R = K : K ([32, Bemerkung 2.5 a)]), we have c = (K : K) : S = K : KS =

K : S, while R : c = (K : K) : c = K : Kc = K : c. Hence R : c = K : c = K : (K : S) =

S ([32, Definition 2.4]). Therefore, c : c = (K : S) : c = K : Sc = K : c = S.

We then have the characterization of GGL rings.

Theorem 2.33 ([16]). Suppose that R is not a Gorenstein ring. Then the following

conditions are equivalent.

(1) R is a GGL ring with respect to some m-primary ideal a of R.

(2) K/R is a free R/c-module.

(3) S/R is a free R/c-module.

When this is the case, one necessarily has a = c, and the following assertions hold true.

(i) R/c is a Gorenstein ring.

(ii) S/R ∼= (R/c)⊕r(R) as an R-module.

The following result is due to [16, 29]. Let us include a brief proof of Assertion (1) for

the sake of completeness.

Theorem 2.34 ([16, 29]). Suppose that R is not a Gorenstein ring. Let I ∈ XR. Then

the following assertions hold true.

(1) If I ⊆ c, then I = c.
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(2) If µR(I) ̸= 2, then c ⊆ I.

(3) c ∈ XR if and only if R is a GGL ring and S is a Gorenstein ring.

Proof. (1) Let I ∈ XR and assume that I ⊆ c. We choose an element a ∈ I so that

I2 = aI. We then have I ̸= (a) and I/I2 is a free R/I-module. Let A = I : I; hence

I = aA. On the other hand, because c ⊆ I, by Lemmata 2.5 and 2.32 we have

A = R : I ⊇ R : c = S ⊇ K.

Claim 3. A is a Gorenstein ring and A/K is the canonical module of R/I.

Proof of Claim 3. Taking the K-dual of the canonical exact sequence 0 → I → R →
R/I → 0, we get the exact sequence

0 → K
ι→ K : I → Ext1R(R/I,K) → 0,

where ι : K → K : I denotes the embedding. On the other hand, K : I = A, because

I = R : A = (K : K) : A = K : KA = K : A

(remember that K ⊆ A). Therefore, since I = K : A is a canonical ideal of A ([32,

Korollar 5.14]) and I = aA ∼= A, A is a Gorenstein ring, and A/K ∼= Ext1R(R/I,K).

We consider the exact sequence 0 → (a)/aI → I/aI → I/(a) → 0 of R/I-modules.

Then, because I = aA, we get the canonical isomorphism between the exact sequences

0 // R/I
i //

≀
��

A/I //

≀
��

A/R //

≀
��

0

0 // (a)/aI i //

⟲

I/aI ////

⟲

I/(a) // 0

of R/I-modules, where A/I is a Gorenstein ring, since A is a Gorenstein ring and I = aA.

Therefore, since A/I (∼= I/aI) is a flat extension of R/I, R/I is a Gorenstein ring, so

that A/K ∼= R/I by Claim 3. Consequently, the exact sequence

0 → K/R → A/R → A/K → 0

of R/I-modules is split, whence K/R is a non-zero free R/I-module, because so is A/R (∼=
I/(a)). Hence, c = R : S ⊆ R : K = R :R K = I, so that I = c.
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Thanks to Theorem 2.34, we get the following.

Theorem 2.35. Let R be a GGL ring and assume that R is not a Gorenstein ring. Then

the following assertions hold true.

(1) {I ∈ XR| c ⊊ I} = {(a) + c | a ∈ m such that c = abS for some b ∈ m}.
In particular, c ∈ XR, once the set {I ∈ XR| c ⊊ I} is non-empty.

(2) µR(I) = r(R) + 1 for all I ∈ XR such that c ⊆ I.

(3) {I ∈ XR| c ⊆ I} = {I ∈ XR| µR(I) ̸= 2}.

Therefore, if R possesses minimal multiplicity, then the set XR is totally ordered, and c

is the smallest element of XR.

Proof. (1) Let us show the first equality. First of all, assume that c ∈ XR. Then since

S = c : c, for each α ∈ c, (α) is a reduction of c if and only if c = αS, so that the required

equality follows from Corollary 2.16. Assume that c /∈ XR. Hence, by Theorem 2.34 (3),

S is not a Gorenstein ring, because R is a GGL ring. Therefore, since c = K : S is a

canonical module of S (Lemma 2.32 and [32, Korollar 5.14]), we have c ̸= αS for any

α ∈ c, whence the set {(a) + c | a ∈ m such that abS = c for some b ∈ m} is empty. On

the other hand, since S = c : c = R : c and S/R ∼= (R/c)⊕r(R) (see Theorem 2.33 (ii)),

the m-primary ideal c of R satisfies Condition (C) in Definition 2.6. Therefore, if the set

{I ∈ XR | c ⊊ I} is non-empty, then c ∈ XR by Theorem 2.13 (2), because r(R) ≥ 2.

Thus, {I ∈ XR | c ⊊ I} = ∅.
(2) By Assertion (1), we may assume c ∈ XR. Then, c = αS for some α ∈ c, and

therefore, µR(c) = r(R) + 1, since c/(α) ∼= S/R ∼= (R/c)⊕r(R). Thus, by Theorem 2.14,

µR(I) = µR(c) = r(R) + 1 for every I ∈ XR with c ⊆ I.

(3) The assertion follows from Assertion (2) and Theorem 2.34 (3).

The last assertion follows from Assertion (3), since µR(I) = v(R) > 2 for every I ∈ XR

(see Corollary 2.15).

Combining Theorems 2.3 and 2.35, we have the following.

Corollary 2.36. Let R be a GGL ring and assume that R is not a Gorenstein ring. Then

the following assertions hold true.
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(1) Let a1, a2, . . . , an, b ∈ m (n ≥ 1) and assume that c = a1a2 · · · anbS. We set Ii =

(a1a2 · · · ai) + c for each 1 ≤ i ≤ n. Then c ∈ XR and Ii ∈ XR for all 1 ≤ i ≤ n,

forming a chain c ⊊ In ⊊ In−1 ⊊ . . . ⊊ I1 in XR.

(2) Conversely, let I1, I2, . . . , In ∈ XR (n ≥ 1) and assume that c ⊊ In ⊊ In−1 ⊊ . . . ⊊ I1.

Then c ∈ XR and there exist elements a1, a2, . . . , an, b ∈ m such that c = a1a2 · · · anbS
and Ii = (a1a2 · · · ai) + c for all 1 ≤ i ≤ n.

Concluding this chapter, let us note a few examples of GGL rings.

Example 2.37. Let k[[t]] be the formal power series ring over a field k.

(1) Let H = ⟨5, 7, 9, 13⟩ denote the numerical semigroup generated by 5, 7, 9, 13 and

R = k[[t5, t7, t9, t13]] the semigroup ring ofH over k. Then, R is a GGL ring, possessing

S = k[[t3, t5, t7]] and c = (t7, t9, t10, t13). For this ring R, S is not a Gorenstein ring,

and XR = ∅.

(2) Let R = k[[t4, t9, t15]]. Then, R is a GGL ring, possessing S = k[[t3, t4]] and c =

(t9, t12, t15) = t9S. For this ring R, XR = {c}.

(3) Let R = k[[t6, t13, t28]]. Then, R is a GGL ring, possessing S = k[[t2, t13]] and c =

(t24, t26, t28) = t24S. For this ring R, the set {I ∈ XR | c ⊊ I} consists of the following

families.

(i) {(t6 + at13) + c | a ∈ k},

(ii) {(t12 + at13 + bt19) + c | a, b ∈ k}, and

(iii) {(t18 + at25) + c | a ∈ k}.

For each a ∈ k, we have a maximal chain

c ⊊ (t18 + at25) + c ⊊ (t12 + at19) + c ⊊ (t6 + at13) + c

in XR. On the other hand, for a, b ∈ k such that a ̸= 0,

c ⊊ (t12 + at13 + bt19) + c

is also a maximal chain in XR.
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(4) Let H = ⟨6, 13, 28⟩. Choose integers 0 < α ∈ H and 1 < β ∈ Z so that α ̸∈ {6, 13, 28}
and GCD(α, β) = 1. We consider R = k[[tα, t6β, t13β, t28β]]. Then, R is a GGL ring

with v(R) = 4 and r(R) = 2. For this ring R, S = k[[tα, t2β, t13β]], and c = t24βS. For

instance, take α = 12 and β = 5n, where n > 0 and GCD(2, n) = GCD(3, n) = 1.

Then, c = t120nS = (t12)10nS, so that the set {I ∈ XR | c ⊊ I} seems rather wild,

containing chains of large length.
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3 Ulrich ideals and 2-AGL rings

3.1 Introduction

The series [4, 9, 18, 19, 20, 21, 22, 26, 28, 29] of researches are motivated and supported

by the strong desire to stratify Cohen-Macaulay rings, finding new and interesting classes

which naturally include that of Gorenstein rings. As is already pointed out by these

works, the class of almost Gorenstein local rings (AGL rings for short) could be a very

nice candidate for such classes. The prototype of AGL rings is found in the work [2]

of V. Barucci and R. Fröberg in 1997, where they introduced the notion of AGL ring

for one-dimensional analytically unramified local rings, developing a beautiful theory on

numerical semigroups. In 2013, S. Goto, N. Matsuoka, and T. T. Phuong [18] extended

the notion of AGL ring given by [2] to arbitrary one-dimensional Cohen-Macaulay local

rings, by means of the first Hilbert coefficients of canonical ideals. They broadly opened

up the theory in dimension one, which prepared for the higher dimensional notion of

AGL ring provided in 2015 by [28]. Subsequently in 2017, T. D. M. Chau, S. Goto, S.

Kumashiro, and N. Matsuoka [4] defined the notion of 2-AGL ring as a possible successor

of AGL rings of dimension one. To explain the motivations for the present researches, we

need to remind the reader of 2-AGL rings more precisely.

Throughout, let (R,m) be a Cohen-Macaulay local ring with dimR = 1, possessing the

canonical module KR. We say that an ideal I in R is a canonical ideal of R, if I ̸= R, and

I ∼= KR as an R-module. In what follows, we assume that the ring R possesses a canonical

ideal, which contains a parameter ideal Q = (a) of R as a reduction. This assumption

is automatically satisfied if R has an infinite residue class field. Let T = R(Q) = R[Qt]

and R = R(I) = R[It] be the Rees algebras of Q and I respectively, where t denotes an

indeterminate. We set SQ(I) = IR/IT and call it the Sally module of I with respect to

Q ([48]). Let ei(I) (i = 0, 1) be the i-th Hilbert coefficients of R with respect to I, that

is, the integers satisfy the equality

ℓR(R/I
n+1) = e0(I)

(
n+ 1

1

)
− e1(I) for all n≫ 0

where ℓR(M) denotes, for each R-module M , the length of M . We set rank SQ(I) =

ℓTp([SQ(I)]p) which is called the rank of SQ(I), where p = mT . We then have

rank SQ(I) = e1(I)− [e0(I)− ℓR(R/I)]
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([23, Proposition 2.2 (3)]). Note that rank SQ(I) is an invariant of R, independent of the

choice of canonical ideals I and the reductions Q of I (see [4, Theorem 2.5]). With this

notation we have the following.

Definition 3.1. ([4, Definition 1.3]) We say that R is a 2-almost Gorenstein local ring

(2-AGL ring for short), if rank SQ(I) = 2, that is, e1(I) = e0(I)− ℓR(R/I) + 2.

Because R is a non-Gorenstein AGL ring if and only if rank SQ(I) = 1 ([18, Theorem

3.16]), 2-AGL rings could be considered to be one of the successors of AGL rings.

We set K = a−1I in the total ring Q(R) of fractions of R. Therefore, K is a fractional

ideal of R such that R ⊆ K ⊆ R (here R stands for the integral closure of R in Q(R))

and K ∼= KR, which we call a canonical fractional ideal of R. We set S = R[K]. Hence,

S is a module-finite birational extension of R, and it is independent of the choice of K

([4, Theorem 2.5 (3)]). Let c = R : S. We are now able to state the characterization of

2-AGL rings given by [4], which we shall often refer to, in the present chapter.

Theorem 3.2 ([4, Theorem 1.4]). The following conditions are equivalent.

(1) R is a 2-AGL ring.

(2) There is an exact sequence 0 → B(−1) → SQ(I) → B(−1) → 0 of graded T -modules,

where B = T /mT (∼= (R/m)[t]).

(3) K2 = K3 and ℓR(K
2/K) = 2.

(4) I3 = QI2 and ℓR(I
2/QI) = 2.

(5) R is not a Gorenstein ring but ℓR(S/[K : m]) = 1.

(6) ℓR(S/K) = 2.

(7) ℓR(R/c) = 2.

When this is the case, m·SQ(I) ̸= (0), whence the exact sequence given by condition (2)

is not split, and we have

ℓR(R/I
n+1) = e0(I)

(
n+ 1

1

)
− (e0(I)− ℓR(R/I) + 2)

for all n ≥ 1.
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As is noted above, the notion of 2-AGL ring could be considered to be one of the

successors of the notion of AGL ring. However, if 2-AGL rings claim that they are

orthodox successors of AGL rings, it must be proved, showing that they really inherit

several distinctive properties which AGL rings usually keep. In the present chapter, to

certify the orthodoxy of 2-AGL rings for the further studies, we investigate three topics

on 2-AGL rings, which are closely studied already for the case of AGL rings. The first

topic concerns minimal presentations of canonical ideals. In Section 3.2, we will give a

necessary and sufficient condition for a given one-dimensional Cohen-Macaulay local ring

R to be a 2-AGL ring, in terms of minimal presentations of canonical fractional ideals.

Our results Theorems 3.5 and 3.12 exactly correspond to those about AGL rings given by

[28, Theorem 7.8].

In Section 3.3, we investigate a generalization of so called amalgamated duplications

of R ([5]), including certain fiber products, and prove that R is a 2-AGL ring if and only

if so is the fiber product R×R/c R. By [4, Theorem 4.2] R is a 2-AGL ring if and only if

so is the trivial extension R ⋉ c of c over R, which corresponds to [18, Theotem 6.5] for

the case of AGL rings.

In Sections 3.4 and 3.5, we are interested in Ulrich ideals in 2-AGL rings. The existence

of two-generated Ulrich ideals is basically a substantially strong condition for R, which

we closely discuss in Section 3.4, especially in the case where R is a 2-AGL ring. Here, we

should not rush, but should explain about what are Ulrich ideals. The notion of Ulrich

ideal/module dates back to the work [24] in 2014, where the authors introduced the notion,

generalizing that of MGMCM modules (maximally generated maximal Cohen-Macaulay

modules) ([3]), and started the basic theory. The maximal ideal of a Cohen-Macaulay

local ring with minimal multiplicity is a typical example of Ulrich ideals, and the higher

syzygy modules of Ulrich ideals are Ulrich modules. In [24, 25], all the Ulrich ideals of

Gorenstein local rings of finite CM-representation type and of dimension at most 2 are

determined, by means of the classification in the representation theory. On the other

hand, in [29], the first author, R. Takahashi, and the third author studied the structure

of the complex RHomR(R/I,R) for Ulrich ideals I in a Cohen-Macaulay local ring R

of arbitrary dimension, and proved that in a one-dimensional non-Gorenstein AGL ring

(R,m), the only possible Ulrich ideal is the maximal ideal m ([29, Theorem 2.14 (1)]). In

Section 3.5, we study the natural question of how and what happens about 2-AGL rings.

To state our conclusion, let XR denote the set of Ulrich ideals in R. We then have the
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following, which we will prove in Section 3.5. The assertion exactly corresponds to [29,

Theorem 2.14 (1)], the result of the case where R is an AGL ring of dimension one.

Theorem 3.3 (= Corollary 3.38). Suppose that (R,m) is a 2-AGL ring with minimal

multiplicity, possessing a canonical fractional ideal K. Then

XR =

{
{c,m}, if K/R is R/c-free,

{m}, otherwise.

For one-dimensional Gorenstein local rings R of finite CM-representation type, the

list of Ulrich ideals is known by [24]. The proof given by [24] is based on the techniques

in the representation theory of maximal Cohen-Macaulay modules. It might have some

interests to give a straightforward proof, making use of the results in [28, Section 12] from

a different point of view. In Section 3.6 we shall perform it as an appendix.

In what follows, unless otherwise specified, letR be a one-dimensional Cohen-Macaulay

local ring with maximal ideal m. For each finitely generated R-module M , let µR(M)

(resp. ℓR(M)) denote the number of elements in a minimal system of generators of M

(resp. the length of M). We denote by KR the canonical module of R.

3.2 Minimal presentations of canonical ideals in 2-AGL rings

In this section, we explore the structure of minimal presentations of canonical ideals

of 2-AGL rings. Before going ahead, we summarize some known results on 2-AGL rings,

which we shall often refer to throughout this chapter. Let (R,m) be a Cohen-Macaulay

local ring with dimR = 1, admitting the canonical module KR. We assume that R

possesses a canonical fractional ideal K, that is an R-submodule of Q(R) such that R ⊆
K ⊆ R, where R denotes the integral closure of R in Q(R), and K ∼= KR as an R-

module. Let S = R[K] and set c = R : S. We denote by r(R) = ℓR(Ext
1
R(R/m, R)) the

Cohen-Macaulay type of R.

Proposition 3.4 ([4, Proposition 3.3]). Suppose that R is a 2-AGL ring with r = r(R).

Then the following assertions hold true.

(1) c = K : S = R : K.

(2) There is a minimal system x1, x2, . . . , xn of generators of m such that c = (x21) +

(x2, x3, . . . , xn).

65



(3) S/K ∼= R/c and S/R ∼= K/R⊕R/c as R/c-modules.

(4) K/R ∼= (R/c)⊕ℓ ⊕ (R/m)⊕m as an R/c-module for some ℓ > 0, m ≥ 0 such that

ℓ+m = r − 1.

(5) µR(S) = r + 1.

Therefore, if R is a 2-AGL ring, then ℓR(K/R) = 2ℓ+m. Hence, K/R is a free R/c-module

if and only if ℓR(K/R) = 2(r − 1).

Let us now fix the setting of this section. In what follows, we assume that R = T/a,

m = n/a, for some regular local ring (T, n) with dimT = n ≥ 3 and an ideal a of T such

that a ⊆ n2. Suppose that R is not a Gorenstein ring. For each a ∈ T , let a denote the

image of a in R.

Firstly, suppose that R is a 2-AGL ring, and write c = (x21) + (x2, x3, . . . , xn) with a

minimal system x1, x2, . . . , xn of generators of m (see Proposition 3.4 (2)). We chooseXi ∈
n so that xi = Xi in R, whence n = (X1, X2, . . . , Xn). Let J = (X2

1 ) + (X2, X3, . . . , Xn).

We then have T/J ∼= R/c, since ℓT (T/J) = ℓR(R/c) = 2, so that a ⊆ J and c = J/a. On

the other hand, by Proposition 3.4 (4) we have

K/R ∼= (R/c)⊕ℓ ⊕ (R/m)⊕m

with ℓ > 0,m ≥ 0 such that ℓ+m = r(R)−1. Hence, lettingK = R+
∑ℓ

i=1Rfi+
∑m

j=1Rgj

with fi, gj ∈ K, we may assume that

ℓ∑
i=1

(R/c)·fi ∼= (R/c)⊕ℓ and
m∑
j=1

(R/c)·gj ∼= (R/m)⊕m,

where fi, gj denote the images of fi, gj in K/R. With this notation, we have the following,

which corresponds to [28, Theorem 7.8] for AGL rings.

Theorem 3.5. The T -module K has a minimal free presentation of the form

F1
M−→ F0

N−→ K → 0,

where the matrices N and M are given by

N = [ −1 f1f2···fℓ g1g2···gm ]

66



and

M =



a11a12···a1n ··· aℓ1aℓ2···aℓn b11b12···b1n ··· bm1bm2···bmn c1c2···cq
X2

1X2···Xn 0 0 0 0 0 0

0
... 0 0 0 0 0

...
... X2

1X2···Xn

...
...

...
...

0 0 0 X1X2···Xn 0 0 0

0 0 0 0
... 0 0

0 0 0 0 0 X1X2···Xn 0


with aij ∈ J (1 ≤ i ≤ ℓ, 1 ≤ j ≤ n), bik ∈ J (1 ≤ i ≤ m, 2 ≤ k ≤ n), and q ≥ 0. The

matrix M involves the information on a system of generators of a, and we have

a =
ℓ∑

i=1

I2
( ai1 ai2 ··· ain
X2

1 X2 ··· Xn

)
+

m∑
i=1

I2
(
bi1 bi2 ··· bin
X1 X2 ··· Xn

)
+ (c1, c2, . . . , cq),

where I2(L) denotes, for a 2 × n matrix L with entries in T , the ideal of T generated by

2× 2 minors of L.

Proof. Let

F1
A−→ F0

[−1 f1f2···fℓ g1g2···gm ]−→ K −→ 0

be a part of a minimal T -free resolution of K with F0 = T ⊕ T⊕ℓ ⊕ T⊕m, which gives rise

to a presentation

F1
A′
−→ G0

N′
−→ K/R −→ 0

of K/R, where N′ = [ f̄1f̄2···f̄ℓ ḡ1ḡ2···ḡm ], and A′ is the (ℓ + m) × s matrix obtained from

A by deleting the first row. On the other hand, since K/R ∼= (T/J)⊕ℓ ⊕ (T/n)⊕m, the

T -module K/R has a minimal presentation of the form

G1 = [T⊕ℓ ⊕ T⊕m]⊕n = T⊕ℓn ⊕ T⊕mn B−→ G0 = T⊕ℓ ⊕ T⊕m N′
−→ K/R −→ 0,

where the matrix B is given by

B =


X2

1X2···Xn 0 0 0 0 0

0
... 0 0 0 0

...
... X2

1X2···Xn

...
...

...
0 0 0 X1X2···Xn 0 0

0 0 0 0
... 0

0 0 0 0 0 X1X2···Xn

 .

Therefore, comparing with two presentations of K/R, we get a commutative diagram
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G1
B //

ξ

��

G0
//

∼=
��

K/R //

∼=
��

0

F1
A′

//

η

��

G0
//

∼=
��

K/R //

∼=
��

0

G1
B // G0

// K/R // 0

of T -modules, where η ◦ ξ is an isomorphism. Hence, A′ Q = (B | O) for some s × s

invertible matrix Q with entries in T (here O denotes the null matrix). Setting M = AQ,

we get M =

 ∗

A′

Q =

 ∗ ∗

B O

, whence a required minimal presentation

F1
M−→ F0

N−→ K −→ 0

of K follows.

Let us prove that aij, bij ∈ J . We set Z1 = X2
1 , and Zi = Xi for each 2 ≤ i ≤ n.

Then, aij · (−1) + Zj · fi = 0 for every 1 ≤ i ≤ ℓ and 1 ≤ j ≤ n, whence aij ∈ J , because

cK ⊆ cS = c and c = J/a. Since bij · (−1) + Zj · gi = 0 for j ≥ 2, we have bij ∈ J .

The last assertion about the generating system of the defining ideal a of R follows

from the fact that Z1, Z2, . . . , Zn forms a regular sequence on T . We refer to [28, Proof

of Theorem 7.8] for details.

As a consequence of Theorem 3.5, we have the following. It exactly corresponds to

[28, Corollary 7.10] for AGL rings.

Corollary 3.6. With the same notation as in Theorem 3.5, the following assertions hold

true.

(1) Suppose that n = 3. Then, r(R) = 2, q = 0, ℓ = 1, and m = 0, so that M =[ a11 a12 a13
X2

1 X2 X3

]
.

(2) If R has minimal multiplicity, then q = 0.

Proof. (1) Consider the minimal T -free resolution

0 −→ F2

tM−→ F1 −→ F0 −→ R −→ 0,

where the matrix M has the form stated in Theorem 3.5. We then have

r(R) + 1 = rankTF1 = ℓn+mn+ q = 3·[r(R)− 1] + q,
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so that 4− 2·r(R) = q ≥ 0. Therefore, r(R) = 2, and q = 0, since R is not a Gorenstein

ring. Thus, ℓ = 1, m = 0, because ℓ+m = r(R)− 1.

(2) Since R has multiplicity n, we have r(R) = n− 1, while by [43, Theorem 1 (iii)],

n(n− 2) = ℓn+mn+ q. Hence, q = 0, because ℓ+m+ 1 = n.

In this chapter we will refer so often to examples arising from numerical semigroup

rings, that let us explain here about a canonical form of generators for their canon-

ical modules. Let 0 < a1, a2, . . . , aℓ ∈ Z (ℓ > 0) be positive integers such that

GCD (a1, a2, . . . , aℓ) = 1. We set

H = ⟨a1, a2, . . . , aℓ⟩ =

{
ℓ∑

i=1

ciai | 0 ≤ ci ∈ Z for all 1 ≤ i ≤ ℓ

}
and call it the numerical semigroup generated by the numbers {ai}1≤i≤ℓ. Let V = k[[t]]

be the formal power series ring over a field k. We set R = k[[H]] = k[[ta1 , ta2 , . . . , taℓ ]] in

V and call it the semigroup ring of H over k. The ring R is a one-dimensional Cohen-

Macaulay local domain with R = V and m = (ta1 , ta2 , . . . , taℓ), the maximal ideal. Let

c(H) = min{n ∈ Z | m ∈ H for all m ∈ Z such that m ≥ n}

be the conductor of H and set f(H) = c(H) − 1. Hence, f(H) = max (Z \H), which is

called the Frobenius number of H. Let

PF(H) = {n ∈ Z \H | n+ ai ∈ H for all 1 ≤ i ≤ ℓ}

denote the set of pseudo-Frobenius numbers of H. Therefore, f(H) coincides with the

a-invariant of the graded k-algebra k[ta1 , ta2 , . . . , taℓ ] and ♯PF(H) = r(R) ([30, Example

(2.1.9), Definition (3.1.4)]). We set f = f(H) and

K =
∑

c∈PF(H)

Rtf−c

in V . Then K is a fractional ideal of R such that R ⊆ K ⊆ R and

K ∼= KR =
∑

c∈PF(H)

Rt−c

as an R-module ([30, Example (2.1.9)]). Therefore, K is a canonical fractional ideal of R.

Notice that tf ̸∈ K but mtf ⊆ R, whence K : m = K +Rtf .

Before stating the concrete example, let us explore the properties of 2-AGL numerical

semigroup rings.
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Proposition 3.7. Suppose that R is a 2-AGL ring. Then

K/R =
⊕

c∈PF(H)\{f}

R·tf−c

where (∗) denotes the image in K/R.

Proof. We set r = r(R), f = cr and write PF(H) = {c1, c2, . . . , cr}. Let us consider

I = {i ∈ Λ | AnnR/c tf−ci = (0)}, J = {i ∈ Λ | AnnR/c tf−ci ̸= (0)}

where c = R : R[K] and Λ = {1, 2, · · · , r− 1}. Notice that I ∪ J = Λ and I ̸= ∅. Since R
is a 2-AGL ring, there exists b ∈ H such that (0) :R/c m = m/c = [(tb) + c]/c. Then, for

each i ∈ I, we have tb·tf−ci ̸= 0 and m·tf−ci+b = (0) in K/R. Hence f + b− ci ∈ PF(H),

and the elements {tb·tf−ci}i∈I in K/R are linearly independent over k. Therefore

K/R =
∑
i∈I

R·tf−ci
⊕∑

j∈J

R·tf−cj =
⊕
i∈Λ

R·tf−ci

as desired.

For the moment, suppose that R is a 2-AGL ring and we maintain the notation as

in the proof of Proposition 3.7. Choose b = aj for some 1 ≤ j ≤ ℓ. We then have

f + b − ci ∈ PF(H) for each i ∈ I, while f − cj ∈ PF(H) for each j ∈ J if J ̸= ∅. By

writing I = {c1 < c2 < · · · < cp} (p > 0) and J = {d1 < d2 < · · · < dp} (q ≥ 0), we have

the following.

Theorem 3.8. The following assertions hold true.

(1) f + b = ci + cp+1−i for every 1 ≤ i ≤ p.

(2) If J ̸= ∅, then f = dj + dq+1−j for every 1 ≤ j ≤ q.

Proof. The assertions follow from the fact that the maps

{ci | i ∈ I} → {ci | i ∈ I}, x 7→ f + b− x, {cj | j ∈ J} → {cj | j ∈ J}, x 7→ f − x

are well-defined and bijective.

As a consequence, we get the following, which corresponds to the case where J = ∅.

Corollary 3.9. Suppose that R is a 2-AGL ring. Then the following conditions are

equivalent.

70



(1) K/R ∼= (R/c)⊕(r−1) as an R-module.

(2) There is an integer 1 ≤ j ≤ ℓ such that f + aj = ci + cr−i for every 1 ≤ i ≤ r − 1.

Let us now go back to state the example of Theorem 3.5. With the notation of Theorem

3.5, we cannot expect q = 0 in general, as we show in the following.

Example 3.10 (cf. [4, Example 5.5]). Let V = k[[t]] be the formal power series ring

over a field k, and set R = k[[t5, t7, t9, t13]]. Hence, R = k[[H]], the semigroup ring

of the numerical semigroup H = ⟨5, 7, 9, 13⟩. We then have f(H) = 11 and PF(H) =

{8, 11}, whence K = R + Rt3 and R[K] = k[[t3, t5, t7]] = R + Rt3 + Rt6. Therefore,

c = (t10, t7, t9, t13) and ℓR(R/c) = 2, so that by Theorem 3.2, R is a 2-AGL ring with

r(R) = 2. We are interested in the defining ideal a of R. Let T = k[[X,Y, Z,W ]]

be the formal power series ring, and let φ : T → R be the k-algebra map defined by

φ(X) = t5, φ(Y ) = t7, φ(Z) = t9, and φ(W ) = t13. Then, R has a minimal T -free

resolution of the form

F : 0 → T 2 M→ T 6 N→ T 5 L→ T → R → 0,

where the matrices M,N, and L are given by

tM =
[

W X2 XY Y Z Y 2−XZ Z2−XW
X2 Y Z W 0 0

]
,

N =

 −Z2+XW 0 X2Z −X3 0 W
Y 2−XZ −X2Y X3 0 −W 0

0 0 W −Z 0 Y
0 −W 0 Y −Z −X
0 Z −Y 0 X 0

 ,
L = [ Y 2−XZ Z2−XW X4−YW X3Y−ZW X2Y Z−W 2 ] .

The T -dual of F gives rise to the presentation

T 6
tM→ T 2 → K → 0

of the canonical fractional ideal K = R +Rt3, so that

K/R ∼= T/(X2, Y, Z,W ) ∼= R/c.

We have a = Kerφ = I2
(

W X2 XY Y Z
X2 Y Z W

)
+ (Y 2 −XZ,Z2 −XW ).

We note one example of 2-AGL rings of minimal multiplicity, whence q = 0.
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Example 3.11 (cf. [4, Example 5.6]). Let V = k[[t]] be the formal power series ring over

a field k, and set R = k[[H]], where H = ⟨4, 9, 11, 14⟩. Then, f(H) = 10 and PF (H) =

{5, 7, 10}, whence K = R + Rt3 + Rt5 and R[K] = k[[t3, t4, t5]] = R + Rt3 + Rt5 + Rt6.

Therefore, c = (t8, t9, t11, t14) and ℓR(R/c) = 2, so that by Theorem 3.2, R is a 2-AGL

ring possessing minimal multiplicity 4 and r(R) = 3. We consider the k-algebra map

φ : T → R defined by φ(X) = t4, φ(Y ) = t9, φ(Z) = t11, and φ(W ) = t14, where

T = k[[X,Y, Z,W ]] denotes the formal power series ring. Then, R has a minimal T -free

resolution

F : 0 → T 3 M→ T 8 N→ T 6 L→ T → R → 0

where the matrices M,N, and L are given by

tM =
[
−Z −X3 −W −X2Y Y W X4 X2Z
X2 Y Z W 0 0 0 0
0 0 0 0 X Y Z W

]
,

N =


−X2Z 0 X4 0 0 0 W −Z

0 0 W −Z 0 W 0 −Y
0 W 0 −Y −X2Y X3 0 0

−W 0 0 X2 0 −Z Y 0
0 Z −Y 0 −W 0 0 X
Y −X2 0 0 Z 0 −X 0

 ,
L = [ Y 2−XW X5−Y Z Z2−X2W X3Z−YW X4Y−ZW X2Y Z−W 2 ] .

Taking T -dual of F, we have the presentation

T 8
tM→ T 3 → K → 0

of K = R +Rt3 +Rt5, so that

K/R ∼= T/(X2, Y, Z,W )⊕ T/n ∼= R/c⊕R/m.

Hence, K/R is not R/c-free. We have Kerφ = I2
(
−Z −X3 −W −X2Y
X2 Y Z W

)
+ I2

(
Y W X4 X2Z
X Y Z W

)
.

We are now asking for a sufficient condition for R = T/a to be a 2-AGL ring in terms

of the presentation of the canonical ideal. Let us maintain the setting in the preamble of

this section, assuming R possesses a canonical fractional ideal K of the form

K = R +
ℓ∑

i=1

Rfi +
m∑
j=1

Rgj

where fi, gj ∈ K, and ℓ > 0, m ≥ 0 with ℓ +m + 1 = r(R). We then have the following.

We should compare it with [28, Theorem 7.8].
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Theorem 3.12. Let X1, X2, . . . , Xn be a regular system of parameters of T and assume

that K has a presentation of the form

F1
M−→ F0

N−→ K → 0 (♯)

where N and M are matrices of the form stated in Theorem 3.5, satisfying the condition

that aij, bpk ∈ (X2
1 ) + (X2, X3, . . . , Xn) for every 1 ≤ i ≤ ℓ, 1 ≤ j ≤ n, 1 ≤ p ≤ m, and

2 ≤ k ≤ n. Then R is a 2-AGL ring.

Proof. The presentation (♯) gives rise to a presentation

F1
B−→ G0

L−→ K/R −→ 0

of K/R, where L = [ f̄1f̄2···f̄ℓ ḡ1ḡ2···ḡm ] (here ∗ denotes the image in K/R), and the matrix

B has the form stated in the proof of Theorem 3.5. Hence

K/R ∼= (T/J)⊕ℓ ⊕ (T/n)⊕m,

so that n·(K/R) ̸= (0), since ℓ > 0. Therefore, c ⊊ m. We set J = (X2
1 )+(X2, X3, . . . , Xn)

and let I = JR. Then, since aik ∈ J , inside of K/R we get

X2
1 ·fi = ai1 and Xk·fi = aik

for every 1 ≤ i ≤ ℓ and 2 ≤ k ≤ n. Hence, X2
1 ·fi, Xk·fi ∈ I. We similarly have Xk·gj ∈ I

for all 1 ≤ j ≤ m and 2 ≤ k ≤ n, because bjk ∈ J . Moreover, X2
1 ·gj ∈ J for every

1 ≤ j ≤ m. Thus, IK ⊆ I, whence IS ⊆ I, because S = R[K] = Kq for q ≫ 0.

Therefore, I ⊆ c ⊊ m, so that I = c, since ℓR(R/I) ≤ 2. Thus, ℓR(R/c) = 2, and R is a

2-AGL ring by Theorem 3.2.

As a consequence of Theorem 3.12, we have the following.

Corollary 3.13. Let (T, n) be a regular local ring with dimT = n ≥ 3 and n =

(X1, X2, . . . , Xn). Choose positive integers ℓ1, ℓ2, . . . , ℓn > 0 so that ℓ1 ≥ 2 and set

a = I2

(
X2

1 X2 ··· Xn−1 Xn

X
ℓ2
2 X

ℓ3
3 ··· Xℓn

n X
ℓ1
1

)
. Then R = T/a is a 2-AGL ring, for which K/R is a

free R/c-module of rank n− 2.

Proof. Since
√

a+ (X1) = n, gradeTa = n−1, so that a is a perfect ideal of T , whence R =

T/a is a Cohen-Macaulay local ring with dimR = 1, and a minimal T -free resolution of R
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is given by the Eagon-Northcott complex associated to the matrix
(

X2
1 X2 ··· Xn−1 Xn

X
ℓ2
2 X

ℓ3
3 ··· Xℓn

n X
ℓ1
1

)
([7]). We take the T -dual of the resolution and get the following presentation

T⊕n(n−2) M′
→ T⊕(n−1) ε→ KR → 0

of the canonical module KR of R, where the matrix M′ is given by

M′ =


X

ℓ2
2 −X

ℓ3
3 ···(−1)nXℓn

n (−1)n+1X
ℓ1
1 0

X2
1−X2···(−1)n+1Xn X

ℓ2
2 −X

ℓ3
3 ···(−1)nXℓn

n (−1)n+1X
ℓ1
1

. . .
X2

1−X2···(−1)n+1Xn X
ℓ2
2 −X

ℓ3
3 ···(−1)nXℓn

n (−1)n+1X
ℓ1
1

0 X2
1−X2···(−1)n+1Xn

 .

Let xi denote, for each 1 ≤ i ≤ n, the image of Xi in R. Since x21x
ℓ1
1 = xℓ22 xn, xix

ℓ1
1 =

x
ℓi+1

i+1 xn for every 2 ≤ i ≤ n − 1 and x1 is a parameter of R, we have that every xi is a

non-zerodivisor in R. We set y =
x
ℓ2
2

x2
1
, and

fi =

{
x
ℓi+1

i+1 if 1 ≤ i ≤ n− 1

xℓ11 if i = n
gi =

{
x21 if i = 1

xi if 2 ≤ i ≤ n
.

Then fi = giy for all 1 ≤ i ≤ n, so that yn =
∏n

i=1 fi∏n
i=1 gi

= xℓ1−2
1 xℓ2−1

2 · · ·xℓn−1
n ∈ R. Hence,

y ∈ R. Let K =
∑n−2

i=0 Ry
i. Therefore, R ⊆ K ⊆ R. We will show that K is a canonical

fractional ideal of R. Indeed, because [ −1 y −y2 ···(−1)n−1yn−2 ]·M′ = 0, the T -linear map

ψ : T⊕(n−1) → K defined by ψ(ei) = (−1)iyi−1 for 1 ≤ i ≤ n − 1 (here {ei}1≤i≤n−1

denotes the standard basis of T⊕n−1) factors through KR. Let σ : KR → K be the R-

linear map such that ψ = σε. Then, K = Imσ, and σ is a monomorphism. Indeed, assume

that X = Ker σ ̸= (0), and choose p ∈ AssRX. Then, (KR)p ∼= KRp , since p ∈ AssR KR,

while Kp
∼= Rp, since K is isomprphic to some m-primary ideal of R (here m denotes the

maximal ideal of R). Consequently, we get the exact sequence

0 → Xp → KRp → Rp → 0

of Rp-modules, which forces Xp = (0), because ℓRp(KRp) = ℓRp(Rp). This is a con-

tradiction. Thus, KR
∼= K. We identify KR = K and ε = ψ. Then, because

(Xℓ1
1 , X

ℓ2
2 , . . . , X

ℓn
n ) ⊆ (X2

1 , X2, . . . , Xn), the matrix M′ is transformed with elementary

column operations into the following matrix

M =


a11a12···a1n ··· ··· an−2,1an−2,2···an−2,n

X2
1X2···Xn 0 ··· 0

0
... 0

...
...

...
0 0 ··· X2

1X2···Xn


with aij ∈ (Xℓ1

1 , X
ℓ2
2 , . . . , X

ℓn
n ), so that Theorem 3.12 shows R is a 2-AGL ring. Since

K/R ∼= (T/(X2
1 , X2, . . . , Xn))

⊕n−2, K/R is a free R/c-module of rank n− 2.
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3.3 2-AGL rings obtained by fiber products

In this section we study the problem of when certain fiber products, or more generally,

quasi-trivial extensions of one-dimensional Cohen-Macaulay local rings are 2-AGL rings.

Let R be a commutative ring and I an ideal of R. For an element α ∈ R, we set

A(α) = R⊕ I as an additive group and define the multiplication on A(α) by

(a, x) · (b, y) = (ab, ay + bx+ α(xy))

for (a, x), (b, y) ∈ A(α). Then, A(α) forms a commutative ring which we denote by

A(α) = R
α
⋉ I, and call it the quasi-trivial extension of R by I with respect to α. We

consider A(α) to be an R-algebra via the homomorphism ξ : R → A(α), a 7→ (a, 0).

Therefore, A(α) is a ring extension of R, and A(α) is a finitely generated R-module, when

I is a finitely generated ideal of R. Notice that if α = 0, then A(0) = R⋉I is the ordinary
idealization I over R, introduced by M. Nagata [41, Page 2], and [(0)× I]2 = (0) in A(0).

If α = 1, then A(1) is called in [5] the amalgamated duplication of R along I, and

A(1) ∼= R×R/I R, (a, i) 7→ (a, a+ i),

the fiber product of the two copies of the natural homomorphism R → R/I. Hence, if R

is a reduced ring, then so is A(1).

Let us note the following.

Lemma 3.14. Let (R,m) be a (not necessarily Noetherian) local ring. Assume that I ̸= R

or α ∈ m. Then A(α) is a local ring with maximal ideal m× I.

Proof. Let (a, x) ∈ A(α)\(m×I). Then, a+αx ̸∈ m, since a ̸∈ m but αx ∈ m. Therefore,

setting b = a−1 and y = −(a + αx)−1·xb, we get (a, x)(b, y) = 1 in A(α). Hence, A(α) is

a local ring, because m× I is an ideal of A(α).

Remark 3.15. When I = R, A(−1) is not a local ring, even if (R,m) is a local ring. In

fact, assume that A(−1) is a local ring. Then, because m×R is a maximal ideal of A(−1)

and (1, 1) ̸∈ m × R, we have (1, 1)(b, y) = (1, 0) for some (b, y) ∈ A(−1), so that b = 1

and y + b+ (−1)·1·y = 0. This is absurd.

In what follows, let (R,m) be a one-dimensional Cohen-Macaulay local ring with a

canonical fractional ideal K. We set S = R[K] and c = R : S. Let T be a birational

module-finite extension of R (hence R ⊆ T ⊆ R), and assume that K ⊆ T but R ̸= T .

We set I = R : T . Hence, I = K : T by [18, Lemma 3.5 (1)], so that K : I = T .
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Proposition 3.16. T/K ∼= KR/I . Hence, ℓR(T/K) = ℓR(R/I).

Proof. Take the K-dual of the exact sequence 0 → I → R → R/I → 0, and consider the

resulting exact sequence 0 → K → K : I → Ext1R(R/I,K) → 0. We then have T/K ∼=
Ext1R(R/I,K) = KR/I , since K : I = T . Therefore, ℓR(T/K) = ℓR(KR/I) = ℓR(R/I).

Let α ∈ R and set A = R
α
⋉ I. Then, since I ̸= R, A is a Cohen-Macaulay local ring

with dimA = 1 and n = m × I, the unique maximal ideal (Lemma 3.14). We are now

interested in the question of when A is a 2-AGL ring. Notice that we have the extensions

A ⊆ T
α
⋉ T ⊆ Q(R)

α
⋉Q(R) = Q(A)

of rings. We set L = T × K in T
α
⋉ T . Hence, L is an A-submodule of T

α
⋉ T , and

A ⊆ L ⊆ A.

We begin with the following, which plays a key role in this section.

Proposition 3.17. L ∼= KA and A[L] = T
α
⋉ T .

Proof. Since I = K : T , I∨ ∼= T where (−)∨ = HomR(−, K), and we have the natural

isomorphism

σ : A∨ = HomR(R⊕ I,K)
∼=→ I∨ ⊕R∨ ∼=→ T ⊕K = L

of R-modules. Let Z = T ⊕ T . Then, the R-module Z becomes a T
α
⋉ T -module by the

following action

(a, x)⇀ (b, y) = ((a+ αx)b, ay + bx)

for each (a, x) ∈ T
α
⋉ T and (b, y) ∈ Z. It is routine to check that L which is considered

inside of Z is an A-submodule of Z, and that the above R-isomorphism σ : A∨ → L is

actually an A-isomorphism. We now consider the homomorphism ψ : T
α
⋉T → Z of T

α
⋉T -

modules defined by ψ(1) = (1, 0). Then, ψ is an isomorphism, since ψ(a, x) = (a+αx, x)

for each (a, x) ∈ T
α
⋉ T . Notice that for each (a, x) ∈ T

α
⋉ T , (a, x) ∈ T ×K if and only if

ψ(a, x) ∈ T ×K. Therefore, L which is considered inside of T
α
⋉ T is isomorphic to KA,

because L which is considered inside of Z is isomorphic to A∨ = KA. Since KT = T , we

have Ln = T
α
⋉ T for every n ≥ 2. Thus, A[L] = T

α
⋉ T , since A[L] =

∪
ℓ≥1 L

ℓ = Ln for

n≫ 0.

Let rR(I) = ℓR(Ext
1
R(R/m, I)) denote the Cohen-Macaulay type of the R-module I.
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Corollary 3.18. r(A(α)) = µR(T ) + r(R) = rR(I) + µR(K/I). Hence, the Cohen-

Macaulay type of A(α) is independent of the choice of α ∈ R.

Proof. With the same notation as in Proposition 3.17, because nL = (m × I)(T ×K) =

mT × mK, we have an R-isomorphism L/nL ∼= T/mT ⊕ K/mK. Therefore, since

R/m = A/n, r(A) = µR(T ) + r(R), which is independent of α. Consequently, because∑
f∈HomR(I,K) f(I) = (K : I)I = TI = I where the second equality follows from the fact

that I = K : T , by [17, Theorem 3.3] we get r(A) = rR(I) + µR(K/I).

We now come to the main result of this section.

Theorem 3.19. With the same notation as above, the following conditions are equivalent.

(1) The fiber product R×R/I R is a 2-AGL ring.

(2) The idealization R⋉ I is a 2-AGL ring.

(3) A(α) = R
α
⋉ I is a 2-AGL ring for every α ∈ R.

(4) A(α) = R
α
⋉ I is a 2-AGL ring for some α ∈ R.

(5) ℓR(T/K) = 2.

(6) ℓR(R/I) = 2.

Proof. We maintain the same notation as in Proposition 3.17. Since A[L] = T
α
⋉ T ,

A[L]/L ∼= T/K as an R-module, so that ℓA(A[L]/L) = ℓR(T/K), because R/m = A/n.

Thus, the assertion readily follows from Proposition 3.16, Theorem 3.2, and Proposition

3.4.

Corollary 3.20. Suppose that R is a 2-AGL ring. If A(α) = R
α
⋉ I is a 2-AGL ring for

some α ∈ R, then T = S and I = c.

Proof. We have S = R[K] ⊆ T , since K ⊆ T . Therefore, S = T , because ℓR(T/K) =

ℓR(S/K) = 2 by Theorems 3.2 and 3.19.

Choosing T = S, we have the following. The equivalence of assertions (2) and (3)

covers [4, Theorem 4.2]. We should compare the result with [18, Theorem 6.5] for the

assertion on AGL rings.
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Corollary 3.21. Let R be a one-dimensional Cohen-Macaulay local ring with a canonical

fractional ideal K and assume that R is not a Gorenstein ring. We set S = R[K] and

c = R : S. Then the following conditions are equivalent.

(1) R×R/c R is a 2-AGL ring.

(2) R⋉ c is a 2-AGL ring.

(3) R is a 2-AGL ring.

We note one example.

Example 3.22. Let k be a field and set R = k[[t4, t7, t9]]. Then K = R+Rt5, so that R

is an AGL ring with r(R) = 2, because mK ⊆ R ([18, Theorem 3.11]). Hence c = m. Let

T = k[[t4, t5, t6, t7]]. Then, T = R + Rt5 + Rt6, and I = R : T = (t7, t8, t9). Therefore,

because ℓR(R/I) = 2, by Theorem 3.19 and Corollary 3.18 A(α) = R
α
⋉ I is a 2-AGL ring

with r(A(α)) = µR(T ) + r(R) = 3 + 2 = 5 for every α ∈ R. In particular, R ×R/I R and

R⋉ I are 2-AGL rings.

3.4 Two-generated Ulrich ideals in 2-AGL rings

In this section, we explore Ulrich ideals in 2-AGL rings, mainly two-generated ones.

One can find in [12], for arbitrary Cohen-Macaulay local rings of dimension one, a beautiful

and complete theory of Ulrich ideals which are not two-generated.

First of all, let us briefly recall the definition of Ulrich ideals. Although we will soon

restrict our attention on the one-dimensional case, let us give it for arbitrary dimension.

So, let (R,m) be a Cohen-Macaulay local ring with dimR = d ≥ 0, and I an m-primary

ideal of R. We assume that I contains a parameter ideal Q of R as a reduction.

Definition 3.23. ([24, Definition 1.1]) We say that I is an Ulrich ideal in R, if the

following conditions are satisfied.

(1) I ̸= Q, but I2 = QI.

(2) I/I2 is a free R/I-module.

Here let us summarize a few basic result on Ulrich ideals, which we later use in this

section. To state them, we need the notion of G-dimension. For the moment, let R be a

Noetherian ring. A totally reflexive R-module is by definition a finitely generated reflexive
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R-module G such that ExtpR(G,R) = (0) and ExtpR(HomR(G,R), R) = (0) for all p > 0.

Note that every finitely generated free R-module is totally reflexive. The Gorenstein

dimension (G-dimension for short) of a finitely generated R-module M , denoted by G-

dimRM , is defined as the infimum of integers n ≥ 0 such that there exists an exact

sequence

0 → Gn → Gn−1 → · · · → G0 →M → 0

of R-modules with each Gi totally reflexive. A Noetherian local ring R is called G-regular,

if every totally reflexive R-module is free. This is equivalent to saying that the equality

G-dimRM = pdRM holds true for every finitely generated R-modules M ([44]).

Proposition 3.24 ([29, Theorem 2.5, Corollary 2.13, Theorem 2.8]). Let I be an Ulrich

ideal in R and set n = µR(I). Then the following assertions hold true.

(1) (n− d)·r(R/I) = r(R).

(2) Suppose that there exists an exact sequence 0 → R → KR → C → 0 of R-modules

where KR denotes the canonical module of R. If n ≥ d+ 2, then AnnRC ⊆ I.

(3) n = d+ 1 if and only if G-dimRR/I <∞.

Let I be an m-primary ideal of R, containing a parameter ideal Q of R as a reduction.

Assume that I2 = QI and consider the exact sequence

0 → Q/QI → I/I2 → I/Q→ 0

of R-modules. We then have that I/I2 is a free R/I-module if and only if so is I/Q. If

I2 = QI and µR(I) = d + 1, the latter condition is equivalent to saying that Q :R I = I,

that is I is exactly a good ideal in the sense of [15]. It is known by [24] that when R is a

Gorenstein ring, every Ulrich ideal I in R is (d+1)-generated (if it exists), and I is a good

ideal of R (see [24, Lemma 2.3, Corollary 2.6]). Similarly as good ideals, Ulrich ideals

are characteristic ideals, but behave very well in their nature ([24, 25]). The existence of

(d + 1)-generated Ulrich ideals gives a strong influence to the structure of R, which we

shall confirm in this section.

We now be back to the following setting. Let (R,m) be a Cohen-Macaulay local ring

with dimR = 1, and let XR be the set of Ulrich ideals in R. In general, it is quite difficult

to list up the members of XR (see, e.g., [24]). Here, to grasp what kind of sets XR is, first

of all we explore one example. To do this, we need the following.
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Lemma 3.25 (cf. [13, Proposition 3.1]). Let R be a Gorenstein local ring with dimR = 1.

We denote by AR the set of birational module-finite extensions A of R such that A is a

Gorenstein ring, and set A0
R = {A ∈ AR | µR(A) = 2}. Then, there exist bijective

correspondences

A0
R → XR, A 7→ R : A, and XR → A0

R, I 7→ I : I.

Proof. Let GR be the set of ideals I in R such that I2 = aI and I = (a) :R I for some

non-zerodivisor a ∈ I. We then have by [13, Proposition 3.1] a bijective correspondence

GR → AR, I 7→ I : I. Because XR = {I ∈ GR | µR(I) = 2} and I : I = a−1I for every

I ∈ GR and every reduction (a) of I, we get µR(I : I) = µR(I), so that I : I ∈ A0
R for

each I ∈ XR. Conversely, let A ∈ A0
R and write A = I : I with I ∈ GR. Let (a) be a

reduction of I. Then, A = I : I = a−1I, so that µR(I) = µR(A) = 2, while R : A = I,

because A = R : I by [13, Proposition 2.5] and I = R : (R : I) (remember that R is a

Gorenstein ring). Hence, I ∈ XR, and the correspondences follow.

Example 3.26. Let k be a field and set R = k[[tn, tn+1, . . . , t2n−2]] (n ≥ 3), where t is an

indeterminate. Then, R is a Gorenstein ring, and

XR =


{(t4, t6)} (n = 3),

{(t4 − αt5, t6) | α ∈ k} (n = 4),

∅ (n ≥ 5).

When n = 4, we have (t4 − αt5, t6) = (t4 − βt5, t6), only if α = β.

Proof. Our ring R is a Gorenstein ring, since the numerical semigroup H =

⟨n, n+ 1, . . . , 2n− 2⟩ is symmetric ([33]). Therefore, in order to determine the mem-

bers of XR, by Lemma 3.25 it suffices to list the members of A0
R, taking R : A for each

A ∈ A0
R. We set V = k[[t]].

(1) (The case where n = 3) Let A ∈ A0
R. Then R ⊊ A ⊊ V , whence t5 ∈ R : m ⊆ A,

which follows from the fact that the image of t5 in Q(R)/R is a unique socle of Q(R)/R

and (0) ̸= A/R ⊆ Q(R)/R. Therefore

k[[t3, t4, t5]] ⊆ A ⊆ k[[t2, t3]].

Hence A = k[[t2, t3]], because k[[t3, t4, t5]] is not a Gorenstein ring and

ℓk(k[[t
2, t3]]/k[[t3, t4, t5]]) = 1. It is direct to show R : A = R : t2 = (t4, t6). Hence

XR = {(t4, t6)}.
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(2) (The case where n = 4) Let A ∈ A0
R. Then, t7 ∈ R : m ⊆ A, and

k[[t4, t5, t6, t7]] ⊆ A ⊆ k[[t2, t3]]. We have A ̸⊆ k[[t3, t4, t5]]. Indeed, if A ⊆ k[[t3, t4, t5]],

then A = k[[t3, t4, t5]] or A = k[[t4, t5, t6, t7]], because ℓk(k[[t
3, t4, t5]]/k[[t4, t5, t6, t7]]) = 1.

This is, however, impossible, since both k[[t3, t4, t5]] and k[[t4, t5, t6, t7]] are not a Goren-

stein rings. Hence

k[[t4, t5, t6, t7]] ⊊ A ⊆ k[[t2, t3]], A ̸⊆ k[[t3, t4, t5]].

We choose ξ ∈ A so that ξ ̸∈ k[[t3, t4, t5]]. Then, since k[[t4, t5, t6, t7]] = k + t4V ⊆ A, we

may assume that ξ = t2 + αt3 with α ∈ k. Therefore, because

k[[t4, t5, t6, t7]] ⊊ R[ξ] = k[[t2 + αt3, t4, t5, t6]] ⊆ A ⊆ k[[t2, t3]]

and ℓk(k[[t
2, t3]]/k[[t4, t5, t6, t7]]) = 2, we have ℓk(k[[t

2, t3]]/R[ξ]) ≤ 1. Hence, A = R[ξ] or

A = k[[t2, t3]], where k[[t2, t3]] ̸∈ A0
R since µR(k[[t

2, t3]]) = 3. Thus, A = R[ξ], and we

have R : A = R : R[ξ] = R : ξ = (t4 − αt5, t6). Hence, XR = {(t4 − αt5, t6) | α ∈ k},
because A0

R = {R[t2 + αt3] | α ∈ k}.
(3) (The case where n = 2q+1 with q ≥ 2) Assume that XR ̸= ∅ and choose I ∈ XR. We

set A = I : I. Then A ∈ A0
R. We have tnV ⊆ k[[tn, tn+1, . . . , t2n−1]] ⊆ A, since the image

of t2n−1 in Q(R)/R is a unique socle of Q(R)/R. We set C = A : V = tcV (c ≥ 0), the

conductor of A. Hence, c ≤ n = 2q+1, because tnV ⊆ A. Let ℓ = ℓk(V/A). We then have

2ℓ = c, since A is a Gorenstein ring ([32, Korollar 3.5]), so that ℓ ≤ q. Let mA denote the

maximal ideal of A. Then, (mA/mA)
2 = (0), since ℓk(A/mA) = ℓR(A/mA) = µR(A) = 2.

We look at the chain

A/mA ⊋ mA/mA ⊋ (mA/mA)
2 = (0)

of ideals in the ring A = A/mA, and take ξ ∈ mA, so that mA/mA = (ξ) (here ξ denotes

the image of ξ in A). Then, ξ ̸= 0, but ξ
2
= 0 in A. Consequently, ξ2 ∈ mA ⊆ tnV and

A = R+Rξ, since A/mA = k+kξ. Therefore, 2ν(ξ) ≥ n = 2q+1, so that ν(ξ) ≥ q+1 (here

ν(∗) denotes the valuation of V ). Thus, A = R + Rξ ⊆ k[[tq+1, tq+2, . . . , t2q+1]], whence

A = k[[tq+1, tq+2, . . . , t2q+1]], because ℓk(V/k[[t
q+1, tq+2, . . . , t2q+1]]) = q and ℓk(V/A) =

ℓ ≤ q. This is, however, impossible, since A is a Gorenstein ring but k[[tq+1, tq+2, . . . , t2q+1]]

is not. Thus XR = ∅.
(4) (The case where n = 2q with q ≥ 3) Assume that XR ̸= ∅ and choose I ∈ XR. We

set A = I : I. We then have t2n−1 ∈ A, considering the image of t2n−1 in Q(R)/R. We
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set ℓ = ℓk(V/A) and C = A : V . Then C = t2ℓV , since A is a Gorenstein ring. Therefore,

ℓ ≤ q, because tnV ⊆ A and n = 2q. On the other hand, considering the chain

A/mA ⊋ mA/mA ⊋ (mA/mA)
2 = (0)

of ideals in the ring A = A/mA and taking ξ ∈ mA so that mA/mA = (ξ), we get ξ ̸= 0

and ξ
2
= 0 in A. Therefore, ξ2 ∈ mA ⊆ tnV and A = R+Rξ, because A/mA = k + kξ.

Consequently, 2ν(ξ) ≥ n = 2q. Hence, ν(ξ) ≥ q, so that

A = R +Rξ ⊊ k[[tq, tq+1, . . . , t2q−1]] ⊆ V,

where the strictness of the first inclusion follows from the fact that k[[tq, tq+1, . . . , t2q−1]] is

not a Gorenstein ring. Therefore, because ℓk(V/A) = ℓ and ℓk(V/k[[t
q, tq+1, . . . , t2q−1]]) =

q − 1, we get q − 1 < ℓ, whence ℓ = q. We set T = k[[t2q, tq+1, . . . , t4q−1]]. Then

ℓk(A/T ) = q − 1, since ℓk(V/T ) = 2q − 1. Because

A/T ⊆ V/T = kt+ kt2 + · · ·+ kt2q−1,

where ∗ denotes the image in V/T , we obtain elements ξ1, ξ2, . . . , ξq−1 ∈
∑2q−1

i=1 kti so that

A = T +
∑q−1

i=1 kξi. Therefore

A = T [ξ1, ξ2, . . . , ξq−1] = k[[ξ1, ξ2, . . . , ξq−1, t
2q, . . . , t4q−1]],

whence ξ1, ξ2, . . . , ξq−1 ∈ mA and (ξ1, ξ2, . . . , ξq−1) ⊆ mA/mA. We now notice that if∑q−1
i=1 aiξi ∈ mA with ai ∈ k, then

∑q−1
i=1 aiξi ∈ t2qV , whence ai = 0 for all 1 ≤ i ≤ q − 1.

Therefore, 1 = ℓk(mA/mA) ≥ q − 1 ≥ 2. This is a required contradiction.

Let us make sure of the last assertion. Suppose that n = 4 and (t4 − αt5, t6) =

(t4 − βt5, t6) where α, β ∈ k. We write t4 − αt5 = f(t4 − αt5) + gt6 for some f, g ∈ R. By

setting f = c0+ c1t
4+ c2t

5+ c3t
6+η, g = d0+d1t

4+d2t
5+d3t

6+ ξ for some ci, dj ∈ k and

η, ξ ∈ t8V , we then have t4 − αt5 = c0t
4 − βc0t

5 + d0t
6 + (higher terms). Hence, c0 = 1

and α = βc0 = β, as desired.

Let us give here simple examples of 2-AGL rings, which contain numerous two-

generated Ulrich ideals.

Example 3.27. Let (R,m) be an AGL ring with dimR = 1 and suppose that R is not a

Gorenstein ring, say R = k[[t3, t4, t5]], the semigroup ring of H = ⟨3, 4, 5⟩ over a field k.

Let α ∈ m and consider the quasi-trivial extension A = R
α
⋉R of R with respect to α (see
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Section 3) Then, A is a 2-AGL ring by [4, Theorem 3.10], because A is a free R-module

with ℓR(A/mA) = 2. Let q be a parameter ideal of R and assume that α ∈ q. We set

I = q × R. Then, I is an Ulrich ideal of A with µA(I) = 2. Therefore, if α = 0, then

q×R is an Ulrich ideal of A for every parameter ideal q of R ([24, Example 2.2]).

Proof. Let q = (a) and set f = (a, 0) ∈ I. Then, I2 = fI, since I2 = (a2)× (aR+ αR) =

(a2) × aR = fI. Note that I/fA = [(a) ⊕ R]/[(a) ⊕ (a)] ∼= R/(a) and A/I = [R ⊕
R]/[(a) ⊕ R] ∼= R/(a) as R-modules. We then have ℓA(A/I) = ℓA(I/fA) = ℓR(R/(a)).

Hence, A/I ∼= I/fA as an A-module, because I/fA is a cyclic A-module. Thus, I ∈ XA

with µA(I) = 2.

Two-generated Ulrich ideals are totally reflexive R-modules (Proposition 3.24 (3)),

possessing minimal free resolutions of a very restricted form. Let us note the following,

which we need to prove Theorem 3.29. We include a brief proof for the sake of complete-

ness.

Proposition 3.28 (cf. [24, Example 7.3]). Suppose that I is an Ulrich ideal of R and

assume that µR(I) = 2. We write I = (a, b) with (a) a reduction of I. Therefore, b2 = ac

for some c ∈ I. With this notation, the minimal free resolution of I is given by

F : · · · → R2

−b −c
a b


−→ R2

−b −c
a b


−→ R2

(
a b

)
−→ I → 0,

Hence pdR I = ∞. The ideal I is so called a totally reflexive R-module, because I is

reflexive, ExtpR(I, R) = (0), and ExtpR(HomR(I, R), R) = (0) for all p > 0.

Proof. Here we don’t assume that R is a Gorenstein ring, but the proof given in [24,

Example 7.3] still works to get the minimal free resolution F of I. Since

I = (a) :R I = (a) : I = a(R : I),

we have I ∼= R : I ∼= I∗, where I∗ = HomR(I, R). Note that the R-dual F∗ of F
remains exact. In fact, assume that

( −b a
−c b

)
( x
y ) = 0. Then, since −bx + ay = 0, we

have ( −y
x ) =

(
−b −c
a b

) (
f
g

)
for some f, g ∈ R. Therefore, ( x

y ) =
( −b a
−c b

) ( −g
f

)
, which shows

that F∗ is exact, because
( −b a
−c b

)2
= 0. Consequently, ExtpR(I, R) = (0) for all p > 0,

whence ExtpR(I
∗, R) = (0) for all p > 0, because I ∼= I∗. On the other hand, by the above

argument we have an exact sequence

0 → I → R⊕2 → I → 0
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whose R-dual 0 → I∗ → R⊕2 → I∗ → 0 remains exact. Therefore, I is a reflexive

R-module. Thus, I is a totally reflexive R-module.

We now start the analysis of the question of how many two-generated Ulrich ideals

are contained in a given 2-AGL ring. Let K be a canonical fractional ideal of R. Let

S = R[K] and set c = R : S. We then have the following, which shows the existence of

two-generated Ulrich ideals is a substantially strong restriction.

Theorem 3.29. Suppose that R is a 2-AGL ring and let K be a canonical fractional ideal

of R. Let c = (x21) + (x2, x3, . . . , xn) with a minimal system x1, x2, . . . , xn of generators

of m. Assume that R contains an Ulrich ideal I with µR(I) = 2. Then the following

assertions hold true.

(1) K/R is a free R/c-module.

(2) I + c = m.

(3) c = (x2, x3, . . . , xn).

Consequently, µR(c) = n− 1, and x21 ∈ (x2, x3, . . . , xn).

Proof. (1) We have K/R ∼= (R/c)⊕ℓ ⊕ (R/m)⊕m with ℓ > 0,m ≥ 0 such that ℓ + m =

r(R) + 1 (Proposition 3.4 (4)). To show assertion (1), let us assume that m > 0. Then,

since I is totally reflexive (Proposition 3.28) and ExtpR(I,K) = (0) for every p > 0, we

get ExtpR(I,K/R) = (0), so that

ExtpR(I, R/m) = (0) for all p > 0,

because R/m is a direct summand of K/R. This is impossible, since pdR I = ∞. Hence,

m = 0, and K/R is R/c-free.

(2) Let us use the same notation as in Proposition 3.28. Hence, I has a minimal free

resolution of the form

F : · · · → R2

−b −c
a b


−→ R2

−b −c
a b


−→ R2

(
a b

)
−→ I → 0.

Remember that ExtpR(I, R/c) = (0) for all p > 0, because ExtpR(I,K) = ExtpR(I, R) = (0)

for all p > 0 and R/c is a direct summand of K/R. Let x denote, for each x ∈ R,

84



the image of x in R/c. Then, taking the R/c-dual of the resolution F, we get the exact

sequence

(E) 0 → HomR(I, R/c) → (R/c)⊕2

−b a

−c b


−→ (R/c)⊕2

−b a

−c b


−→ (R/c)⊕2 → · · · ,

which shows that I ⊈ c. Therefore, I + c = m, since ℓR(R/c) = 2.

(3) To show assertion (3), we notice that m/c = (x1) = (a, b), and ℓR(m/c) = 1. Hence

m2 ⊆ c. We set J = (x2, x3, . . . , xn), and consider the following two cases.

Case 1 (a ̸= 0). Let us write a = αx1 + ξ for some α ∈ R and ξ ∈ J . Then,

since a ̸= 0, α /∈ m and b ∈ m/c = (a). Let b = βa + γ with β ∈ R and γ ∈ c.

Then, I = (a, b) = (a, γ), whence replacing b with γ, we may assume that α = 1 and

b ∈ c. Therefore,
(

−b a
−c b

)
=

(
0 x1
−c 0

)
, so that c ̸= 0 by the exactness of the sequence (E).

Consequently, writing c = δx1+ρ with δ /∈ m and ρ ∈ J , we have δx21 ≡ ac = b2 ≡ 0 mod J.

Hence x21 ∈ J , so that c = J , as claimed.

Case 2 (a = 0). Let a = αx21 + β with α ∈ R and β ∈ J . Let us write b = γx1 + δ

with γ ∈ R and δ ∈ J . Then, since m/c = (b) ̸= (0), we get γ ̸∈ m. Let c = ρx1 + η with

ρ ∈ R and η ∈ J . Then, since b2 = ac, we have γ2x21 ≡ αρx31 mod J. Hence, x21 ∈ J , and

c = J .

Corollary 3.30. Suppose that (R,m) is a 2-AGL ring with infinite residue class field.

Let I be an Ulrich ideal I in R with µR(I) = 2. Then, there exists a minimal system

x1, x2, . . . , xn of generators of m and b ∈ c such that c = (x2, x3, . . . , xn) and I = (x1, b)

with I2 = x1I.

Proof. Choose a minimal system x1, x2, . . . , xn of generators of m such that c = (x21) +

(x2, x3, . . . , xn). Then, c = (x2, x3, . . . , xn) by Theorem 3.29. We write I = (a, b) where

both the ideals (a), (b) are reductions of I. If a ̸∈ c, then since m/c = (a) where ∗ denotes

the image in m/c, we get b = αa+β with α ∈ R and β ∈ c. Hence I = (a, b) = (a, β) and

m = (a) + c. If a ∈ c, then m/c = (b), so that a = αb+ β, whence I = (β, b).

The following result is involved in [29, Theorem 2.8], since Cohen-Macaulay local rings

of minimal multiplicity are G-regular ([44]). Let us give a brief proof in our context.

Corollary 3.31. Let R be a 2-AGL ring and let K be a canonical fractional ideal of

R. Assume that S = R[K] is a Gorenstein ring. If R has minimal multiplicity, then R

contains no two-generated Ulrich ideals.
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Proof. Because R = K : K ([32, Bemerkung 2.5]) and KS = S,

c = R : S = K : S ∼= HomR(S,K).

Therefore, since S is a Gorenstein ring, we have c ∼= S, so that n− 1 = µR(c) = µR(S) =

r(R) + 1, where the first (resp. third) equality follows from Theorem 3.29 (resp. Propo-

sition 3.4 (4)). Thus, R doesn’t have minimal multiplicity, because r(R) = n − 1 other-

wise.

The condition that c ∈ XR is a strong restriction on 2-AGL rings R. We need the

following, in order to see that 2-AGL rings might contain Ulrich ideals, which are not

two-generated.

Proposition 3.32. Suppose that R is a 2-AGL ring, possessing a canonical fractional

ideal K. Let S = R[K] and set c = R : S. Then the following conditions are equivalent.

(1) c ∈ XR.

(2) S is a Gorenstein ring and K/R is a free R/c-module.

Proof. (2) ⇒ (1) Since c = K : S ∼= HomR(S,K), we have c = fS for some f ∈ S,

whence c2 = fc. Therefore, c/c2 is a free R/c-module if and only if so is S/R, because

c/fR ∼= S/R. The latter condition is equivalent to saying that K/R is a free R/c-module,

which follows from the exact sequence

0 → R/c → S/c → S/R → 0

and the fact that S/R ∼= K/R⊕R/c (Proposition 3.4 (3)).

(1) ⇒ (2) By [18, Corollary 3.8], S is a Gorenstein ring, since c2 = fc for some

f ∈ c. Therefore, c = fS for some f ∈ c, since c = K : S. Thus, c/c2 ∼= S/fS = S/c,

whence S/c is a free R/c-module. Consequently, K/R is a free R/c-module, since S/R ∼=
K/R⊕R/c.

Let us explore an example, which shows the set XR depends on the characteristic of

the base fields. For the ring stated in Example 3.33, we have the complete list of Ulrich

ideals in it.

Example 3.33. Let V = k[[t]] be the formal power series ring over a field k and set

R = k[[t6, t8, t10, t11]]. Then the following assertions hold true.
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(1) R is a 2-AGL ring with r(R) = 2 and S = k[[t2, t11]] is a Gorenstein ring with c =

(t6, t8, t10) ∈ XR. We have c = (x2, x3, x4) and x
2
1 ∈ c, where x1 = t11, x2 = t6, x3 = t8,

and x4 = t10.

(2) Let I ∈ XR and set n = µR(I). Then, n = 2, 3, and n = 3 if and only if I = c.

(3) If ch k ̸= 2, then the set of two-generated Ulrich ideals is{
(t6 + c1t

8 + c2t
10, t11) | c1, c2 ∈ k

}
∪
{
(t8 + c1t

10 + c2t
12, t11) | c1, c2 ∈ k

}
and we have the following.

(i) (t6 + c1t
8 + c2t

10, t11) = (t6 + d1t
8 + d2t

10, t11), only if c1 = d1 and c2 = d2.

(ii) (t8 + c1t
10 + c2t

12, t11) = (t8 + d1t
10 + d2t

12, t11), only if c1 = d1 and c2 = d2.

(4) If ch k = 2, then the set of two-generated Ulrich ideals is{
(t6 + c1t

8 + c2t
10, t11) | c1, c2 ∈ k

}
∪
{
(t8 + c1t

10 + c2t
12, t11 + dt12) | c1, c2, d ∈ k

}
∪
{
(t6 + c1t

8 + c2t
11, t10 + dt11) | c1, c2, d ∈ k, d ̸= 0

}
and we have the following.

(i) (t6 + c1t
8 + c2t

10, t11) = (t6 + d1t
8 + d2t

10, t11), only if c1 = d1 and c2 = d2.

(ii) (t8 + c1t
10 + c2t

12, t11 + dt12) = (t8 + d1t
10 + d2t

12, t11 + et12), only if c1 = d1,

c2 = d2, and d = e.

(iii) (t6+c1t
8+c2t

11, t10+dt11) = (t6+d1t
8+d2t

11, t10+et11), only if c1 = d1, c2 = d2,

and d = e.

(5) The Ulrich ideals inR generated by monomials in t are {(t6, t11), (t8, t11), c = (t6, t8, t10)}.

Proof. (1) Because K = R + Rt2, we have r(R) = 2 and S = k[[t2, t11]], so that S is a

Gorenstein ring, and c = (t6, t8, t10), since S = R + Rt2 + Rt4. We have ℓR(S/K) = 2,

since S/K = k·t4 + k·t15, where t4 and t15 denote the images of t4 and t15 in S/K,

respectively. Therefore, R is a 2-AGL ring by Theorem 3.2. Because K/R is a cyclic

R-module, K/R ∼= R/c, whence c ∈ XR by Proposition 3.32.

(2) Since (n− 1)·r(R/I) = r(R) = 2 by Proposition 3.24 (1), we get n = 2, 3. Suppose

n = 3. Then, c ⊆ I by Proposition 3.24 (2), since K/R ∼= R/c. On the other hand, if
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c ⊊ I, we then have by [12, Theorem 3.1] c = bcS for some b, c ∈ m. This is, however,

impossible, because c = t6S and b, c ∈ m ⊆ t6V . Therefore, I = c, if n = 3.

(3), (4) We denote by ν(∗) the valuation of V . Let I ∈ XR and suppose that µR(I) = 2.

Let us write I = (a, b) where a, b ∈ R. First we may assume I2 = aI and ν(a) < ν(b).

We then have ν(a) < 11. Indeed, if ν(a) ≥ 12, then a, b ∈ c = (t6, t8, t10), so that

I ⊆ c, which is absurd (remember that I + c = m). Besides, we notice that ν(a) is even,

because I/(a) ∼= R/I as an R-module. Therefore, ν(a) = 6, 8, 10. In addition, we have

the following.

Claim 4. The following assertions hold true.

(i) If ν(a) = 6, then ν(b) = 10, 11.

(ii) If ν(a) = 8, then ν(b) = 11.

(iii) One has ν(a) ̸= 10.

(iv) If ch k ̸= 2, then (ν(a), ν(b)) ̸= (6, 10).

Proof of Claim 4. (i) We first consider the case where ν(a) = 6. Then we get ν(b) < 12.

In fact, if ν(b) ≥ 12, then the images of 1, t8, t10, t11 in R/I are linearly independent over

the field k, so that ℓR(R/I) ≥ 4. This makes a contradiction, because I/(a) ∼= R/I.

Hence ν(b) ≤ 11. We are now assuming that ν(b) = 8. Since b2 = ac for some c ∈ I, we

notice that ν(c) = 10. Let us write c = aρ + bη where ρ, ξ ∈ m. We then have c ∈ t12V ,

which is impossible. Consequently, ν(b) = 10, 11 as claimed.

(ii) Suppose that ν(a) = 8. By setting b2 = a2φ + abψ for some φ, ψ ∈ m, we have

ν(b) ̸= 10. Let us write a = t8 + αt10 + βt11 + ξ, where α, β ∈ k and ξ ∈ R with

ν(ξ) ≥ 12. If ν(b) ≥ 12, then b ∈ c, so that a /∈ c, because I + c = m. Hence β ̸= 0

(remember that c = (t6, t8, t10)). Therefore, if ν(b) ≥ 14 (resp. ν(b) = 12), then the

images of 1, t6, t8, t10, t12 (resp. 1, t6, t8, t10, t14) in R/I are linearly independent over k, so

that ℓR(R/I) ≥ 5, which makes a contradiction, because R/I ∼= I/(a). Hence ν(b) = 11.

(iii) Let us assume that ν(a) = 10. Since b2 ∈ (a2, ab), we have ν(b) ̸= 11, 12, whence

ν(b) ≥ 14. Thus b ∈ c and a /∈ c. Then the images of 1, t6, t8, t10, t14, t16 in R/I are linearly

independent over k, which is absurd.

(iv) Suppose that ν(a) = 6 and ν(a) = 10. We may assume a = t6+ c1t
8+ c2t

11+ c3t
19

and b = t10 + d1t
11 + d2t

19, where ci, dj ∈ k. Look at the isomorphism R/I ∼= k[Y,W ]/a,

where a is the ideal of k[Y,W ] generated by
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(−c1Y − c2W − c3YW )3 − Y (−d1W − d2YW ), Y 2 − (−c1Y − c2W − c3YW )(−d1W − d2YW ),

(−d1W−d2YW )2−(−c1Y−c2W−c3YW )2Y, and W 2−(−c1Y−c2W−c3YW )2(−d1W−d2YW ).

Hence (Y,W )3 + a = (Y,W )3 + (Y 2, d1YW,W
2). If d1 = 0, then ℓR(R/I) ≥ 4, which

is impossible. Therefore d1 ̸= 0. Since I2 = aI, we can write b2 = a2φ + abψ for some

φ, ψ ∈ m. By comparing the coefficients of t21, we have 2d1 = 0, so that ch k = 2.

Consequently, if ch k ̸= 2, then (ν(a), ν(b)) ̸= (6, 10), as desired.

Notice that, for each 0 ̸= f ∈ R, we have tn+16V ⊆ (f), where n = ν(f). It follows

from the equalities tn+16V = fV ·t16V = f ·(R : V ) and the fact that (R : V ) is an ideal

of R.

(3) Suppose that ch k ̸= 2. First we consider the case where ν(a) = 6 and ν(b) = 11.

Then t33V ⊆ (ab), so that I = (t6 + c1t
8 + c2t

10, t11) for some c1, c2 ∈ k. On the other

hand, if we set J = (t6 + c1t
8 + c2t

10, t11) with c1, c2 ∈ k, then J is an Ulrich ideal of

R. Let a = t6 + c1t
8 + c2t

10. Notice that tn ∈ aJ for each even integer n ≥ 18, because

tn = tn−12·a2 − tn−12·(c21t16 + · · ·+ c22t
20). Therefore, J2 = aJ + (t22) = aJ . Moreover, we

have the isomorphism R/J ∼= k[Y, Z]/a, where

a =
(
(−c1Y − c2Z)

3 − Y Z, Y 2 − (−c1Y − c2Z)Z,Z
2 − (−c1Y − c2Z)

2Y, (−c1Y − c2Z)Z
)

which yields ℓR(R/J) = 3, because a + (Y, Z)3 = (Y, Z)2. Hence R/J ∼= J/(a), so that

J ∈ XR.

Let us assume ν(a) = 8 and ν(b) = 11. We may assume a = t8 + c1t
10 + c2t

12 and

b = t11 + dt12 where c1, c2, d ∈ k. The equality I2 = aI yields that 2d = 0 by comparing

the coefficients of t23. Hence d = 0. Conversely, let J = (t8 + c1t
10 + c2t

12, t11) for some

c1, c2 ∈ k. Then tn ∈ aJ for each even integer n ≥ 22, where a = t8 + c1t
10 + c2t

12. We

have the isomorphism R/J ∼= k[X,Z]/a, where

a =
(
X3 − (−c1Z − c2X

2)Z, (−c1Z − c2X
2)2 −XZ,Z2 −X2(−c1Z − c2X

2),−X2Z
)

while a = (X3, Z2, X2Z,XZ) = (X3, XZ, Z2). Therefore, ℓR(R/J) = 4 and J ∈ XR. The

last assertions follow from the same technique as in the proof of Example 3.26.

(4) Suppose that ch k = 2. Thanks to the proof of (3), if ν(a) = 6, ν(b) = 11 (resp.

ν(a) = 8, ν(b) = 11), then we have I = (t6 + c1t
8 + c2t

10, t11) (resp. I = (t8 + c1t
10 +

c2t
12, t11 + dt12)) where c1, c2 ∈ k (resp. c1, c2, d ∈ k).
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Let us assume ν(a) = 6 and ν(b) = 10. We then have I = (t6+c1t
8+c2t

11+c3t
19, t10+

d1t
11 + d2t

19) for some c1, c2, c3, d1, d2 ∈ k. Consider the same isomorphism R/I ∼=
k[Y,W ]/a as in the proof of Claim 4 (iv). Then (Y,W )3+a = (Y,W )3+(Y 2, d1YW,W

2).

Since I ∈ XR, we have ℓR(R/I) = 3, whence d1 ̸= 0 and a = (Y,W )2. Therefore, YW ∈ a

and t19 ∈ I. Consequently, I = (t6 + c1t
8 + c2t

11, t10 + d1t
11). For the converse, let

J = (t6+c1t
8+c2t

11, t10+d1t
11) and set a = t6+c1t

8+c2t
11, where c1, c2, d1 ∈ k and d1 ̸= 0.

Since d1 ̸= 0, we see that ℓR(R/J) = 3 by the above isomorphism R/J ∼= k[Y,W ]/a. The

fact that tn ∈ (a2) for each even integer n ≥ 20 implies (t10 + d1t
11)2 ∈ (a2). Hence

J2 = aJ , so that J ∈ XR. Similarly for the proof of Example 3.26, we have the last

assertions.

(5) Follows from the assertions (2), (3), and (4).

Closing this section, since the ring as in Example 3.33 is obtained from the gluing

of the numerical semigroup ⟨3, 4, 5⟩, let us explore the 2-AGL rings arising as gluing of

numerical semigroup rings.

In what follows, let 0 < a1, a2, . . . , aℓ ∈ Z (ℓ > 0) be positive integers such that

GCD(a1, a2, . . . , aℓ) = 1. We set H1 = ⟨a1, a2, . . . , aℓ⟩ and assume that a1, a2, . . . , aℓ forms

a minimal system of generators of H1. Let 0 < α ∈ H1 be an odd integer such that α ̸= ai

for every 1 ≤ i ≤ ℓ. We consider H = ⟨2a1, 2a2, . . . , 2aℓ, α⟩ the gluing of H1 and the set

of non-negative integers N. The reader is referred to [42, Chapter 8] for basic properties

of gluing of numerical semigroups. Let V = k[[t]] be the formal power series ring over a

field k and set R1 = k[[H1]], R = k[[H]] the semigroup rings of H1 and H, respectively.

We denote by m1 (resp. m) the maximal ideal of R1 (resp. R). Notice that µR(m) = ℓ+1

and R is a free R1-module of rank 2. By letting PF(H1) = {p1, p2, . . . , pr}, the canonical

fractional ideal K1 of R1 has the form K1 =
∑r

i=1R1·tpr−pi , while K =
∑r

i=1R·t2(pr−pi)

is the canonical fractional ideal of R, where r = r(R1) and pr = f(H1). We then have

R⊗R1 K1
∼= K and hence K/R ∼= R⊗R1 (K1/R1) as an R-module. We set c = R : R[K].

With this notation we have the following.

Proposition 3.34. Suppose that R1 is an AGL ring, but not a Gorenstein ring. Then

the following assertions hold true.

(1) R is a 2-AGL ring, c = m1R, and µR(c) = ℓ ≥ 3.

(2) c ∈ XR if and only if R1 has minimal multiplicity.
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(3) R doesn’t have minimal multiplicity. Therefore, m /∈ XR.

Proof. (1) SinceR is a freeR1-module of rank 2 and ℓR(R/m1R) = 2, we conclude thatR is

a 2-AGL ring ([4, Theorem 3.10]). Besides, we have c = AnnRK/R = (AnnR1 K1/R1)R =

m1R, whence µR(c) = ℓ ≥ 3.

(2) The isomorphisms c/c2 ∼= R ⊗R1 (m1/m1
2) ∼= R ⊗R1 (R1/m1)

⊕ℓ ∼= (R/c)⊕ℓ show

that c/c2 is a free R/c-module. Hence, c ∈ XR if and only if c2 = fc for some f ∈ c.

The latter condition is equivalent to saying that c2 = t2aic for some 1 ≤ i ≤ ℓ, that is

m1
2 = t2aim1, as desired.

(3) We notice that µR(m) = ℓ+1 and e(R) = min{2a1, 2a2, . . . , 2aℓ, α}. Suppose that
e(R) = 2ai for some 1 ≤ i ≤ ℓ. Since ℓ = µR1(m1) ≤ e(R1) ≤ a1, we get

e(R)− µR(m) = 2ai − (ℓ+ 1) ≥ 2ℓ− (ℓ+ 1) = ℓ− 1 ≥ 2

which implies that R doesn’t have minimal multiplicity. Thereafter, we consider the

case where e(R) = α. Suppose that R has minimal multiplicity, that is e(R) = µR(m),

in order to seek a contradiction. Since α is an odd integer, we notice that ℓ is even,

because α = e(R) = µR(m) = ℓ + 1. Besides, α < 2ai for each 1 ≤ i ≤ ℓ. Let us

write α = α1a1 + α2a2 + · · · + αℓaℓ where αi ≥ 0. Then one of the {αi}1≤i≤ℓ is positive.

Therefore, α = αiai for some 1 ≤ i ≤ ℓ, so that αi = 1 and α = ai. This makes a

contradiction. Hence R doesn’t have minimal multiplicity.

Consequently, we have the following.

Theorem 3.35. Suppose that R1 is an AGL ring, but not a Gorenstein ring. Then the

following assertions hold true.

(1) Let I ∈ XR. Then either µR(I) = 2 or I = c.

(2) The set of two-generated Ulrich ideals which are generated by monomials in t is{
(t2m, tα) | 0 < m ∈ H1, α−m ∈ H1, 2(α− 2m) ∈ H

}
.

Proof. (1) Thanks to Proposition 3.24 (2), if µR(I) ≥ 3, then c ⊆ I. Since R is a 2-AGL

ring and m /∈ XR, we conclude that I = c.

(2) Let I ∈ XR such that µR(I) = 2 and I is generated by monomials in t. We write

I = (tp, tq) where 0 < p < q and p, q ∈ H. Notice that, for each 0 < h ∈ H with h ̸= α,
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we have that th ∈ c. Since I+ c = m by Theorem 3.29 (2), we get I ̸⊆ c, which yields that

p = α or q = α. The isomorphism R/I ∼= I/(tp) ensures that p is even, so that α = q.

Therefore 0 < p < α. Let us write p =
∑ℓ

i=1 (2ai) ci + cα = 2
(∑ℓ

i=1 aici

)
+ cα where

ci, c ≥ 0. As p < α, we have c = 0. Therefore, p = 2m for some 0 < m ∈ H1. Moreover,

because I2 = t2mI, we have 2(α− 2m) ∈ H, but α− 2m /∈ H. Since R/I = R/(t2m, tα) ∼=
R1/(t

m, tα) and ℓR(R/I) = m, we obtain that tα ∈ tmR1. Hence α−m ∈ H1.

Conversely, let I = (t2m, tα) where 0 < m1 ∈ H1, α −m ∈ H1, and 2(α − 2m) ∈ H.

We then have I2 = t2mI + (t2α) = t2mI, while R/I ∼= R1/(t
m, tα) = R1/t

mR1, so that

ℓR(R/I) = m. Therefore I ∈ XR, as desired.

Example 3.36. Let H1 = ⟨4, 7, 9⟩ and α ≥ 11 an odd integer. We set R1 = k[[t4, t7, t9]]

the numerical semigroup ring of H1 over a field k. By Example 3.22, R1 is an AGL ring

with r(R1) = 2. Let H = ⟨8, 14, 18, α⟩ and set R = k[[H]]. Then µR(I) = 2 for each

I ∈ XR. Moreover, we have the following.

(1) If α = 11, 13, then XR = ∅.

(2) If α ≥ 15, then (t8, tα) ∈ XR.

(3) If α = 15 and ch k = 2, then (t8 + ct14, tα) ∈ XR for every c ∈ k, and we have

(t8 + c1t
14, tα) = (t8 + c1t

14, tα), only if c1 = c2.

(4) If α ≥ 17, then (t8 + ct14, tα) ∈ XR for every c ∈ k, and we have (t8 + c1t
14, tα) =

(t8 + c1t
14, tα), only if c1 = c2.

3.5 G-regularity in 2-AGL rings

The condition that K/R is a free R/c-module gives an agreeable restriction on the

behavior of 2-AGL rings, as we have shown in Proposition 3.32 (see also [4, Section 5]).

However, even though K/R is not R/c-free, 2-AGL rings also enjoy nice properties. We

will show in the following that every 2-AGL ring R is G-regular in the sense of [44],

namely, totally reflexive R-modules are all free, provided K/R is not R/c-free.

Theorem 3.37. Suppose that R is a 2-AGL ring, possessing a canonical fractional ideal

K. We set c = R : R[K], and assume that K/R is not a free R/c-module. Let M be a

finitely generated R-module. If ExtpR(M,R) = (0) for all p≫ 0, then pdRM <∞. Hence

R is G-regular in the sense of [44].
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Proof. Let L = Ω1
R(M) be the first syzygy module of M . For every p ≥ 2 we have

Extp−1
R (L,R) ∼= ExtpR(M,R), which shows ExtpR(L,K/R) = (0) for all p ≫ 0, because

ExtpR(L,K) = (0). Therefore, since R/m is a direct summand of K/R (Proposition 3.4

(4)), ExtpR(L,R/m) = (0) for p≫ 0, so that pdR L <∞. Hence pdRM <∞.

We should compare the following result with [29, Theorem 2.14 (1)], where a corre-

sponding result for one-dimensional AGL rings is given.

Corollary 3.38. Suppose that (R,m) is a 2-AGL ring with minimal multiplicity, possess-

ing a canonical fractional ideal K and c = R : R[K]. Then

XR =

{
{c,m}, if K/R is R/c-free,

{m}, otherwise.

Proof. Since R has minimal multiplicity, m ∈ XR, so that XR ̸= ∅.
(1) Suppose that K/R is R/c-free. Then, by [4, Proposition 5.7 (1)], m : m is a

local ring, while S = R[K] is a Gorenstein ring, since R is a 2-AGL ring with minimal

multiplicity ([4, Corollary 5.3]). Therefore, thanks to Proposition 3.32, c = R : S ∈ XR,

so that {c,m} ⊆ XR. Let I ∈ XR. Then, because R has minimal multiplicity, µR(I) ≥ 3

by Corollary 3.31. Therefore, since K/R is R/c-free, we get c = (0) :R K/R ⊆ I ([29,

Corollary 2.13]). Thus, I = c or I = m, because ℓR(R/c) = 2.

(2) Suppose that K/R is not R/c-free and let I be an Ulrich ideal of R. Then,

µR(I) ≥ 3 by Theorem 3.29. Therefore, thanks to the proof of case (1), I = c or I = m.

Thus, I = m, because c ̸∈ XR by Proposition 3.32.

We close this chapter with the following, where two kinds of 2-AGL rings of minimal

multiplicity are given, one is R/c-free and the other one is not.

Example 3.39. Let V = k[[t]] denote the formal power series ring over a field k and

set R1 = k[[t3, t7, t8]], R2 = k[[t4, t9, t11, t14]]. Let Ki be a canonical fractional ideal of

Ri. Then, both R1 and R2 are 2-AGL rings. We have K1/R1 is a free R/c1-module, but

K2/R2 is not R/c2-free, where ci = Ri : Ri[Ki]. Therefore, XR1 = {(t6, t7, t8), (t3, t7, t8)},
and XR2 = {(t4, t9, t11, t14)}.

Proof. We have K1 = R + Rt and K2 = R + Rt + Rt5. Hence, R1[K1] = R[t] = V ,

and R2[K2] = R[t3, t5] = k[[t3, t4, t5]], so that ℓR1(R1[K1]/K1) = ℓR2(R2[K2]/K2) = 2.

Therefore, by Theorem 3.2, both R1 and R2 are 2-AGL rings. Because ℓR1(K1/R1) =
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2 and ℓR2(K2]/R2) = 3, K1/R1 is a free R/c1-module, but K2/R2 is not R/c2-free

(use Proposition 3.4 (4)). Notice that R1 and R2 have minimal multiplicity 3 and 4,

respectively. Hence, the results readily follow from Corollary 3.38, since c1 = R1 : V =

t6V = (t6, t7, t8).

3.6 Appendix: Ulrich ideals in one-dimensional Gorenstein lo-
cal rings of finite Cohen-Macaulay representation type

In [24], the authors determined all the Ulrich ideals in one-dimensional Gorenstein

local rings R of finite CM-representation type, while in [28, Section 12] most birational

module-finite extensions of these rings have been searched. Since the proof given by

[24] depends on the techniques in the representation theory of maximal Cohen-Macaulay

modules, it might have some interests to give a straightforward proof, making use of the

results of [28, Section 12] and determining the members of A0
R by Lemma 3.25, as well.

We note it as an appendix.

In this appendix, let (R,m) be a Gorenstein complete local ring of dimension one with

algebraically closed residue class field k of characteristic 0. Suppose that R has finite

CM-representation type. Then, by [49, (8.5), (8.10), and (8.15)] we get

R ∼= k[[X,Y ]]/(f),

where k[[X,Y ]] is the formal power series ring over k, and f is one of the following

polynomials.

(An) X
2 − Y n+1 (n ≥ 1)

(Dn) X
2Y − Y n−1 (n ≥ 4)

(E6) X
3 − Y 4

(E7) X
3 −XY 3

(E8) X
3 − Y 5

With this notation we have the following.

Theorem 3.40 ([24, Theorem 1.7]). The set XR is given by the following.

(An) XR =

{
{(x, yq) | 0 < q ≤ ℓ} if n = 2ℓ− 1 with ℓ ≥ 1,

{(x, yq) | 0 < q ≤ ℓ} if n = 2ℓ with ℓ ≥ 1.
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(Dn) XR =

{{
(x2, y), (x, yℓ+1)

}
if n = 2ℓ+ 3 with ℓ ≥ 1,{

(x2, y), (x− yℓ, y(x+ yℓ)), (x+ yℓ, y(x− yℓ))
}

if n = 2(ℓ+ 1) with ℓ ≥ 1.

(E6) XR = {(x, y2)}

(E7) XR = {(x, y3)}

(E8) XR = ∅

where x and y denote the images of X and Y in the corresponding rings, respectively.

Proof. For a ring A, let J(A) denote its Jacobson radical. We denote by R the integral

closure of R in Q(R), and by BR the set of birational module-finite extensions of R.

(1) (E6) See Example 3.26.

(2) (E8) Let R = k[[t3, t5]] and V = k[[t]]. By [28, Proposition 12.7 (3)], BR =

{R, k[[t3, t5, t7]], k[[t3, t4, t5]], k[[t2, t3]], V }, among which k[[t3, t5, t7]], k[[t3, t4, t5]] are not

Gorenstein rings, and µR(V ) = µR(k[[t
2, t3]]) = 3. Hence, A0

R = ∅, so that XR = ∅ by

Lemma 3.25.

(3) (E7) Let R = k[[X,Y ]]/(X3 − XY 3). We set S = k[[X,Y ]], V = k[[t]], and

f = X3 −XY 3. Then, since (f) = (X) ∩ (X2 − Y 3), we get the tower

R = S/(f) ⊆ S/(X)⊕ S/(X2 − Y 3) = k[[Y ]]⊕ k[[t2, t3]] ⊆ k[[Y ]]⊕ V = R

of rings, where we identify S/(X) = k[[Y ]] and S/(X2 − Y 3) = k[[t2, t3]] ⊆ V .

Claim 5. AR = {R, k[[Y ]]⊕ k[[t2, t3]], k[[Y ]]⊕ V, k + J(R)}.

Proof of Claim 5. Let A ∈ BR such that R ̸= A and let p2 : R → V denote the projection.

We set B = p2(A). Since k[[t2, t3]] ⊆ B ⊆ V , B = k[[t2, t3]] or B = V . Suppose that A

is not a local ring. Then, A decomposes into a direct product of local rings, since A is a

module-finite extension of the complete local ring R, so that we may choose a non-trivial

idempotent e ∈ A. Then, since R = k[[X]] ⊕ V , we get e = (1, 0), or (0, 1), whence

(1, 0), (0, 1) ∈ A, so that A = A(1, 0) + A(0, 1) = k[[Y ]] ⊕ B. Suppose that A is a local

ring. In this case, the argument in [28, Pages 2708–2710] shows that if B = V , then

A ∼= k[[Y, Z]]/(Z(Y −Z2)) = k[[(Y, t2), (0, t)]] = k+J(R), and that if B = k[[t2, t3]], then

A is an AGL but not a Gorenstein ring. Thus we have the assertion.
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Since J(R) = R(Y, t2) +R(0, t) +R(0, t2), we have k + J(R) = R+R(0, t) +R(0, t2),

whence µR(k + J(R)) = 3. Therefore, A0
R = {k[[Y ]]⊕ k[[t2, t3]]}, so that by Lemma 3.25

XR = {(x, y3)}, since R : (k[[Y ]]⊕ k[[t2, t3]]) = (x, y3).

(4) (Dn) (i) (The case where n = 2ℓ+3 with ℓ ≥ 1). Let R = k[[X,Y ]]/(X2Y −Y 2ℓ+2).

We set S = k[[X,Y ]], V = k[[t]], and f = Y (X2 − Y 2ℓ+1). We consider the tower

R = S/(f) ⊆ S/(Y )⊕ S/(X2 − Y 2ℓ+1) = k[[X]]⊕ k[[t2, t2ℓ+1]] ⊆ k[[X]]⊕ V = R

of rings, where we identify S/(Y ) = k[[X]] and S/(X2 − Y 2ℓ+1) = k[[t2, t2ℓ+1]]. We then

have the following.

Claim 6. AR =
{
R, k + J(R)

}
∪ {k[[X]]⊕ k[[t2, t2q+1]] | 0 ≤ q ≤ ℓ}

Proof of Claim 6. Let A ∈ BR such that R ̸= A and let p2 : R → V denote the projection.

We set B = p2(A). Then, by [28, Corollary 12.5 (1)] B = k[[t2, t2q+1]] for some 0 ≤ q ≤ ℓ,

since k[[t2, t2ℓ+1]] ⊆ B ⊆ V . If A is not a local ring, then the same proof as in Claim 5

works, to get A = k[[X]] ⊕ B. If A is a local ring, then by the argument in [28, Pages

2710–2711] we have A ∼= k[[X,Z]]/[(Z) ∩ (X − Z2ℓ+1)] = k + J(R).

Consequently, A0
R =

{
k[[X]]⊕ k[[t2, t2ℓ+1]], k + J(R)

}
. We have(

k[[X]]⊕ k[[t2, t2ℓ+1]]
)
/R ∼= S/(X2, Y )

and k + J(R) = R +R(0, t). Therefore, Lemma 3.25 shows the assertion, because

R :
(
k[[X]]⊕ k[[t2, t2ℓ+1]]

)
= (x2, y) and R :

(
k + J(R)

)
= (x, yℓ+1).

(4) (Dn) (ii) (The case where n = 2ℓ+2 with ℓ ≥ 1). Let R = k[[X,Y ]]/(X2Y −Y 2ℓ+1).

We set S = k[[X,Y ]], V = k[[t]], and f = Y (X2 − Y 2ℓ). Consider the tower

R = S/(f) ⊆ S/(Y )⊕ T = k[[X]]⊕ T = R

of rings, where T = S/(X2 − Y 2ℓ). By [28, Page 2711] an intermediate ring R ⊊ A ⊆ R

is an AGL ring but not a Gorenstein ring, if A is a local ring. Therefore, every A ∈ AR

is not local, if R ̸= A.

Claim 7. AR =
{
R,S/(X − Y ℓ)⊕ S/(Y (X + Y ℓ)), S/(X + Y ℓ)⊕ S/(Y (X − Y ℓ)

)
} ∪{

k[[X]]⊕ T [ x
yq
] | 0 ≤ q ≤ ℓ

}
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Proof of Claim 7. Let A ∈ AR such that R ̸= A. Note that R = k[[X]]⊕ S/(X − Y ℓ)⊕
S/(X + Y ℓ). Let {ei}i=1,2,3 be the orthogonal primitive idempotents of R. Then, ei ∈ A

for some 1 ≤ i ≤ 3, since A is not a local ring. If A ̸= R, such ei is unique for A.

(i) (The case where e1 ∈ A). Let p : R → S/(X − Y ℓ) ⊕ S/(X + Y ℓ) denote the

projection. Then

T := S/(X − Y ℓ) ∩ (X + Y ℓ) ⊆ p(A) ⊆ T = S/(X − Y ℓ)⊕ S/(X + Y ℓ)

so that, by [28, Corollary 12.5 (2)] p(A) = T [ x
yq
] for some 0 ≤ q < ℓ. Hence, A =

k[[X]]⊕ T [ x
yq
].

(ii) (The case where e2 ∈ A). Let p : R → k[[X]]⊕ S/(X + Y ℓ) denote the projection.

Because A ̸= R, we have

S/(Y ) ∩ (X + Y ℓ) ⊆ p(A) ⊊ k[[X]]⊕ S/(X + Y ℓ),

which shows p(A) = S/(Y ) ∩ (X + Y ℓ) = S/(Y (X + Y ℓ)). Thus, A = S/(X − Y ℓ) ⊕
S/(Y (X + Y ℓ)). Similarly, A = S/(X + Y ℓ) ⊕ S/(Y (X − Y ℓ)) if e3 ∈ A, which proves

Claim 7.

Therefore,

A0
R =

{
k[[X]]⊕ T, S/(X − Y ℓ)⊕ S/(Y (X + Y ℓ)), S/(X + Y ℓ)⊕ S/(Y (X − Y ℓ))

}
,

so that XR =
{
(x2, y), (x− yℓ, y(x+ yℓ)), (x+ yℓ, y(x− yℓ))

}
.

(5) (An) (i) (The case where n = 2ℓ with ℓ ≥ 1). Let R = k[[t2, t2ℓ+1]]. Then,

A0
R = {k[[t2, t2q+1 | 0 ≤ q ≤ ℓ − 1]]} by [28, Corollary 12.5 (1)], whence XR = {(x, yq) |

0 < q ≤ ℓ}.

(5) (An) (ii) (The case where n = 2ℓ− 1 with ℓ ≥ 1). Let R = k[[X,Y ]]/(X2 − Y 2ℓ).

We set S = k[[X,Y ]] and f = X2−Y 2ℓ = (X−Y ℓ)(X+Y ℓ). We then have ℓR(R/R) = ℓ

by the exact sequence

0 → R = S/(f) −→ R = S/(X − Y ℓ)⊕ S/(X + Y ℓ) −→ S/(X,Y ℓ) → 0

of R-modules. Let A ∈ AR such that R ̸= A. Then, by [28, Corollary 12.5 (2)] A =

R
[

x
yq

]
for some 0 < q ≤ ℓ in Q(R). If n = ℓ, then A = R is a Gorenstein ring with

µR(R) = 2, so that (x, yℓ) = R : R ∈ XR.
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Let us now assume that 0 < q < ℓ. Since ( x
yq
)2 = x2y−2q = y2ℓy−2q = y2(ℓ−q) ∈ R,

we have A = R + R· x
yq
. We will show that A is a Gorenstein local ring with µR(A) = 2.

Indeed, set let n = mA + x
yq
A of A, and let M be an arbitrary maximal ideal of A. We

choose a maximal ideal N of R so thatM = N ∩A. We then have N ⊇ J(R) ⊇ yR+ x
yq
R,

whence M = N ∩A ⊇ n, so that M = n because n is a maximal ideal of A. Hence, (A, n)

is a local ring. Consequently, 2 ≤ µR(A) = ℓR(A/mA) ≤ e(A) ≤ e(R) = 2. Thus A ∈ X 0
R.

Note that R : A = R :R
x
yq
, because A = R+R x

yq
. We now take a ∈ R : x

yn
. Then, setting

b = a· x
yq

∈ R, we have ax = byq, so that AX−BY q = C(X2−Y 2ℓ) for some C ∈ S. Here

a, b are the images of A,B respectively. Therefore X(A − CX) = Y q(B − Y 2ℓ−q). Since

X,Y q forms an S-regular sequence, we have A − CX = Y qD for some D ∈ S. Hence,

a ∈ (x, yq)R, so that R : A = (x, yq). Therefore XR = {(x, yq) | 0 < q ≤ ℓ}.

Remark 3.41. The assertion on the ring of type (An) also follows from [12, Theorem

4.5]. In fact, the ring R of type (An) has minimal multiplicity 2. Hence, by [12, Theorem

4.3] XR is totally ordered with respect to inclusion, and R : R is the minimal element of

XR.
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4 The structure of Ulrich ideals in
hypersurfaces

4.1 Introduction

The purpose of this chapter is to investigate the structure and ubiquity of Ulrich ideals

in a hypersurface ring.

In a Cohen-Macaulay local ring (R,m), an m-primary ideal I is called an Ulrich ideal

in R if there exists a parameter ideal Q of R such that I ⊋ Q, I2 = QI, and I/I2

is R/I-free. The notion of Ulrich ideal/module dates back to the work [24] in 2014,

where S. Goto, K. Ozeki, R. Takahashi, K.-i. Watanabe, and K.-i. Yoshida introduced

the notion, generalizing that of maximally generated maximal Cohen-Macaulay modules

([3]), and started the basic theory. The maximal ideal of a Cohen-Macaulay local ring

with minimal multiplicity is a typical example of Ulrich ideals, and the higher syzygy

modules of Ulrich ideals are Ulrich modules. In [24, 25], all Ulrich ideals of Gorenstein

local rings of finite CM-representation type with dimension at most 2 are determined by

means of the classification in the representation theory. In [29], S. Goto, R. Takahashi,

and N. Taniguchi studied the structure of the complex RHomR(R/I,R) for Ulrich ideals

I in a Cohen-Macaulay local ring of arbitrary dimension, and proved that in a one-

dimensional non-Gorenstein almost Gorenstein local ring (R,m), the only possible Ulrich

ideal is the maximal ideal m ([29, Theorem 2.14]). On the other hand, in [12], S. Goto,

the author, and S. Kumashiro closely explored the structure of chains of Ulrich ideals in

a one-dimensional Cohen-Macaulay local ring, and studied the structure of the set XR of

Ulrich ideals in R. Recently, S. Goto, the author, and N. Taniguchi explored Ulrich ideals

in a one-dimensional 2-AGL ring, and proved the result corresponding to [29, Theorem

2.14].

Nevertheless, even for the case of hypersurface rings, there seems known only scat-

tered results which give a complete list of Ulrich ideals, except the case of finite CM-

representation type and the case of several numerical semigroup rings. Therefore, in the

current chapter, we focus our attention on a hypersurface ring which is not necessarily

finite CM-representation type.

In what follows, unless otherwise specified, let (S, n) be a Cohen-Macaulay local ring

with dimS = d + 1 (d ≥ 1), and f ∈ n a non-zero divisor on S. We set R = S/(f). In
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Section 4.2, we will summarize a few results and basic properties of Ulrich ideals, which

we shall need later. In Section 4.3, we shall study the structure of Ulrich ideals in R. In

Proposition 4.4, we give a sufficient condition for an ideal I of R to be an Ulrich ideal.

By using the condition, we can construct many Ulrich ideals in R as images of parameter

ideals of S. Furthermore, we have the following, which is one of the main results of this

chapter. For each a ∈ S, let a denote the image of a in R. We denote by XR the set of

Ulrich ideals in R. The converse of Proposition 4.4 is also true if S is a regular local ring

(i.e. R is a hypersurface ring).

Theorem 4.1. (=Theorem 4.5) Suppose that (S, n) is a regular local ring with dimS =

d+ 1 (d ≥ 1) and 0 ̸= f ∈ n. Set R = S/(f). Then we have

XR =

(a1, a2, · · · , ad, b)

∣∣∣∣∣∣∣∣∣
a1, a2, . . . , ad, b ∈ n be a system of parameters of S,
and there exist x1, x2, . . . , xd ∈ (a1, a2, · · · , ad, b) and ε ∈ U(S)

such that b2 +
d∑

i=1

aixi = εf .

 ,

where U(S) denotes the set of unit elements of S.

On the other hand, the structure of minimal free resolutions of Ulrich ideals was closely

explored in [24, 29]. In Section 4.4, we construct a minimal free resolution of R/I more

concretely, for an Ulrich ideal I which is obtained in Section 4.3 (Theorem 4.9). We

also give a matrix factorization of the d-th syzygy module of R/I, which is an Ulrich

module with respect to I (Corollary 4.11). In Section 4.5, we consider the structure of

decomposable Ulrich ideals. We shall give a characterization of decomposable 2-generated

Ulrich ideals in a one-dimensional Cohen-Macaulay local ring. In the last section, we focus

our attention on the case of S = k[[X,Y ]] which is the formal power series ring over a

field k. The purpose of this section is to make a complete list of Ulrich ideals in R which

is not finite CM-representation type. We shall give the list for the case of f = Y k and

f = XkY (Proposition 4.17, Theorem 4.19, Corollary 4.21, Theorem 4.23, Theorem 4.26,

and Theorem 4.30).

Throughout this chapter, let r(R) denote the Cohen-Macaulay type of R, and µR(M)

(resp. ℓR(M)) denote the number of elements in a minimal system of generators of M

(resp. the length of M), for a finitely generated R-module M . We denote by XR the set

of Ulrich ideals in R.
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4.2 Basic facts

In this section, let us recall the definition and basic properties of Ulrich ideals. Let

(R,m) be a Cohen-Macaulay local ring with dimR = d ≥ 0, and I an m-primary ideal of

R. We assume that I contains a parameter ideal Q of R as a reduction.

Definition 4.2. ([24, Definition 1.1]) We say that I is an Ulrich ideal in R, if the following

conditions are satisfied.

(1) I ̸= Q, but I2 = QI.

(2) I/I2 is a free R/I-module.

In Definition 4.2, Condition (1) is equivalent to saying that the associated graded ring

grI(R) = ⊕n≥0I
n/In+1 is a Cohen-Macaulay ring with a(grI(R)) = 1−d, where a(grI(R))

denotes the a-invariant of grI(R) ([27, Remark 3.10], [30, Remark 3.1.6]). Therefore,

Condition (1) is independent of the choice of reductions Q of I. In addition, Condition (2)

is equivalent to saying that I/Q is a free R/I-module, provided Condition (1) is satisfied

([24, Lemma 2.3]). If I = m, then Condition (2) is automatically satisfied. Hence, when

the residue class field R/m of R is infinite, the maximal ideal m is an Ulrich ideal if and

only if R is not a regular local ring, possessing minimal multiplicity ([43]).

For a finitely generated R-module M , we denote by G-dimRM the Gorenstein dimen-

sion (G-dimension for short) of M . With this notation, we then have the following.

Theorem 4.3 ([24, Theorem 7.1, Theorem 7.6], [29, Theorem 2.5, Theorem 2.8]). Let I

be an Ulrich ideal in a Cohen-Macaulay local ring R, and set n = µR(I). Let

· · · → Fi
∂i→ Fi−1 → · · · → F1

∂1→ F0 = R → R/I → 0

be a minimal free resolution of R/I. Then, setting t = n−d, the following assertions hold

true.

(1) t · r(R/I) = r(R).

(2) I(∂i) = I for all i ≥ 1.

(3) For i ≥ 0, βi =


ti−d·(t+ 1)d (i ≥ d),(
d
i

)
+ t·βi−1 (1 ≤ i ≤ d),

1 (i = 0).
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(4) n = d+ 1 if and only if G-dimRR/I <∞.

Here, I(∂i) denotes the ideal of R generated by the entries of the matrix ∂i, and βi =

rankRFi.

Therefore, when R is a Gorenstein ring, every Ulrich ideal I is generated by d + 1

elements, if it exists, and R/I has finite G-dimension but infinite projective dimension.

Moreover, because I/Q is a free R/I-module, we have I = Q :R I, that is I is a good

ideal in the sense of [15]. Similar to good ideals, Ulrich ideals are characteristic ideals,

but behave very well in their nature ([24, 25]).

4.3 Ulrich ideals in hypersurfaces

In this section, we give a characterization of Ulrich ideals in a hypersurface ring.

Firstly, let (S, n) be a Cohen-Macaulay local ring with dimS = d+ 1 (d ≥ 1), and f ∈ n

a non-zero divisor on S. We set R = S/(f) and m = n/(f). For each a ∈ S, let a denote

the image of a in R, and U(S) denote the set of unit elements of S. We then have the

following.

Proposition 4.4. Let a1, a2, . . . , ad, b ∈ n be a system of parameters of S. Suppose that

there exist x1, x2, . . . , xd ∈ (a1, a2, · · · , ad, b) and ε ∈ U(S) such that b2 +
d∑

i=1

aixi = εf .

Then I = (a1, a2, · · · , ad, b) ∈ XR.

Proof. Since a1, . . . , ad, b is a system of parameters of S, I is an m-primary ideal of R.

Let Q = (a1, · · · , ad). Then b
2 ∈ QI, since b2 +

d∑
i=1

aixi = εf , therefore I2 = QI. It

suffices to show that I/Q ∼= R/I (see [24, Lemma 2.3]). Since I/Q is a homomorphic

image of R/I, it is enough to show that ℓR(R/I) = ℓR(I/Q), which is equivalent to

ℓR(R/Q) = 2 · ℓR(R/I). In fact, we have

ℓR(R/Q) = ℓS(S/(a1, · · · , ad, f)) = ℓS(S/(a1, · · · , ad, b2)) = 2 · ℓR(R/I),

where the second equality follows from the relation b2 +
d∑

i=1

aixi = εf , and the third

equality follows from the fact that a1, . . . , ad, b is a system of parameters of S.

The converse of Proposition 4.4 is also true if S is a regular local ring. The following

is the main result of this section.

102



Theorem 4.5. Suppose that (S, n) is a regular local ring. Then we have

XR =

(a1, a2, · · · , ad, b)

∣∣∣∣∣∣∣∣∣
a1, a2, . . . , ad, b ∈ n be a system of parameters of S,
and there exist x1, x2, . . . , xd ∈ (a1, a2, · · · , ad, b) and ε ∈ U(S)

such that b2 +
d∑

i=1

aixi = εf .

 .

In order to prove Theorem 4.5, we need the following. We have learned the following

lemma from Professor K.-i. Yoshida.

Lemma 4.6. Suppose that S is a regular local ring. Assume that a1, a2, . . . , ad, b ∈ n and

(a1, a2, · · · , ad, b) ∈ XR. Then f ∈ (a1, a2, · · · , ad, b)2, and therefore a1, a2, . . . , ad, b is a

system of parameters of S.

Proof. Set I = (a1, a2, · · · , ad, b). We look at the minimal free resolution

F : · · · → Fi
∂i→ Fi−1 → · · · → F1

∂1→ F0 = R
ε→ R/I → 0

of R/I, and set M = Im∂d. Since R = S/(f) is a hypersurface ring, there exist A,B ∈
Mn(S) such that 0 → S⊕n A→ S⊕n ε→ M → 0 is exact as S-modules and AB = BA =

fEn, where n = µR(M). Whence · · · → Rn B→ Rn A→ Rn B→ Rn A→ Rn ε→ M → 0 is a

minimal free resolution of M . Then I(A) = I(B) = I in R by [24, Theorem 7.6], that is

I(A) ⊆ (a1, · · · , ad, b) + (f) and I(B) ⊆ (a1, · · · , ad, b) + (f) in S, where I(∗) denotes the
ideal of R generated by the entries of the matrix ∗. Since AB = fEn, we get

f ∈ I(A) · I(B) ⊆ [(a1, · · · , ad, b) + (f)]2 = (a1, · · · , ad, b)2 + f [(a1, · · · , ad, b) + (f)],

thus f ∈ (a1, · · · , ad, b)2 by Nakayama’s lemma.

We are now ready to prove Theorem 4.5.

Proof of Theorem 4.5. Thanks to Proposition 4.4, we have only to show the inclusion (⊆).

Let I ∈ XR. Since µR(I) = d + 1 by Theorem 4.3 (1), we can choose a1, . . . , ad, b ∈ n so

that I = (a1, · · · , ad, b), and I2 = (a1, · · · , ad)I. Then, by using Lemma 4.6, a1, . . . , ad, b

is a system of parameters of S and f ∈ (a1, a2, · · · , ad, b)2. We write f =
∑d

i=1 aiyi + δb2

with y1, . . . , yd ∈ (a1, · · · , ad, b) and δ ∈ S. Then we get

ℓR(R/Q) = ℓS(S/(a1, · · · , ad, f)) = ℓS(S/(a1, · · · , ad, δb2))

= ℓS(S/(a1, · · · , ad, δ)) + 2 · ℓR(R/I).
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Because I ∈ XR and µR(I) = d+ 1, we have I/Q ∼= R/I, whence ℓR(R/Q) = 2 · ℓR(R/I)
(see the proof of Proposition 4.4). Therefore, we have ℓS(S/(a1, · · · , ad, δ)) = 0, that is

δ ∈ U(S). Setting xi = δ−1yi (∈ (a1, · · · , ad, b)) and ε = δ−1, we get b2 +
d∑

i=1

aixi = εf ,

which completes the proof of Theorem 4.5.

The following is a direct consequence of Theorem 4.5, which gives many examples of

Ulrich ideals.

Corollary 4.7. Suppose that f = b2 for some b ∈ n. Then, for any system of parameters

a1, a2, . . . , ad of S/(b), we have (a1, a2, · · · , ad, b) ∈ XR.

Proof. We can put xi = 0 and ε = 1.

We will use Proposition 4.4, Theorem 4.5, and Corollary 4.7 later in Section 4.6.

4.4 Minimal free resolutions

In this section, we construct a minimal free resolution of an Ulrich ideal which is

obtained in Section 4.3. Although it is well known that this resolution can be constructed

by using Tate’s construction ([46, Theorem 4]), let us give another construction by using

properties of Ulrich ideals. We begin with the following lemma.

Lemma 4.8. Suppose that S is a commutative ring and a1, . . . , ad, x1, . . . , xd ∈ S (d ≥ 1).

We set K = K•(a1, . . . , ad;S) = (K•, ∂
K
• ) and L = K•(x1, . . . , xd;S) = (K•, ∂

L
• ) are

Koszul complexes of S generated by a1, . . . , ad and x1, . . . , xd, and c =
d∑

i=1

aixi. Then

∂Kp · t∂Lp + t∂Lp−1 · ∂Kp−1 = c · idKp−1 for any p ∈ Z,

where t∗ denotes the transpose of the matrix ∗.

Proof. We may assume that 1 ≤ p ≤ d+ 1. If p = 1,

∂K1 =
[
a1 a2 · · · ad

]
, t∂L1 =


x1
x2
...
xd

 , t∂L0 = 0, and ∂K0 = 0,
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hence ∂K1 · t∂L1 + t∂L0 · ∂K0 = ∂K1 · t∂L1 = c. If p = d+ 1,

∂Kd+1 = 0, t∂Ld+1 = 0, t∂Ld =
[
x1 · · · (−1)i+1xi · · · (−1)d+1xd

]
, and ∂Kd =


a1
...

(−1)i+1ai
...

(−1)d+1ad

 ,

hence ∂Kd+1 · t∂Ld+1 +
t∂Ld · ∂Kd = t∂Ld · ∂Kd = c.

We now assume that 2 ≤ p ≤ d. Set K1 =
∑d

i=1RTi, Λ = {1, 2, · · · , d}, and Fi = {I ⊆
Λ | ♯I = i} for 0 ≤ i ≤ d. For I = {j1 < j2 < · · · < jp} ∈ Fp, let TI = Tj1 ∧ Tj2 ∧ · · · ∧ Tjp .
Then Kp = ⊕I∈FpRTI , and the matrix ∂Kp (resp. ∂Lp ) has the following form

[∂Kp ]I,J (resp. [∂Lp ]I,J) =


0 if I ⊈ J,

(−1)α+1ajα (resp. (−1)α+1xjα) if
I ⊆ J, J = {j1 < · · · < jp},
and I = J \ {jα},

for I ∈ Fp−1 and J ∈ Fp. We need the following Claim.

Claim. For I1, I2 ∈ Fp−1, the following assertions hold true.

(1) ♯(I1 ∪ I2) ≥ p+ 1 if and only if ♯(I1 ∩ I2) ≤ p− 3.

(2) ♯(I1 ∪ I2) = p if and only if ♯(I1 ∩ I2) = p− 2.

(3) ♯(I1 ∪ I2) ≤ p− 1 if and only if ♯(I1 ∩ I2) ≥ p− 1. When this is the case, I1 = I2.

Proof of Claim. Focus on the number ♯(I1 \ I2). (1) is the case ♯(I1 \ I2) ≥ 2, (2) is

♯(I1 \ I2) = 1, otherwise (3).

It suffices to show that

[∂Kp · t∂Lp + t∂Lp−1 · ∂Kp−1]I1,I2 =


0 if ♯(I1 ∪ I2) ≥ p+ 1

0 if ♯(I1 ∪ I2) = p

c if ♯(I1 ∪ I2) ≤ p− 1

for any I1, I2 ∈ Fp−1 by Claim. We notice that

[∂Kp · t∂Lp + t∂Lp−1 · ∂Kp−1]I1,I2 = [∂Kp · t∂Lp ]I1,I2 + [t∂Lp−1 · ∂Kp−1]I1,I2

=
∑
J∈Fp

[∂Kp ]I1,J · [∂Lp ]I2,J +
∑

J ′∈Fp−2

[∂Lp−1]J ′,I1 · [∂Kp−1]J ′,I2

=
∑

J∈Fp, I1∪I2⊆J

[∂Kp ]I1,J · [∂Lp ]I2,J +
∑

J ′∈Fp−2, J ′⊆I1∩I2

[∂Lp−1]J ′,I1 · [∂Kp−1]J ′,I2 .
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If ♯(I1∪ I2) ≥ p+1, then {J ∈ Fp | I1∪ I2 ⊆ J} = ∅ and {J ′ ∈ Fp−2 | J ′ ⊆ I1∩ I2} = ∅
by Claim. Therefore [∂Kp · t∂Lp + t∂Lp−1 · ∂Kp−1]I1,I2 = 0.

If ♯(I1 ∪ I2) = p, we set I1 = {j1 < j2 < · · · < jp−1} and I2 = {ℓ1 < ℓ2 < · · · < ℓp−1},
and take jα ∈ I1 \ I2 and ℓβ ∈ I2 \ I1 (1 ≤ α, β ≤ p− 1). Then we have

{J ∈ Fp | I1 ∪ I2 ⊆ J} = {I1 ∪ I2} = {I1 ∪ {ℓβ}} = {I2 ∪ {jα}}, and

{J ′ ∈ Fp−2 | J ′ ⊆ I1 ∩ I2} = {I1 ∩ I2} = {I1 \ {jα}} = {I2 \ {ℓβ}},

hence we get

[∂Kp · t∂Lp ]I1,I2 = [∂Kp ]I1,I1∪{ℓβ} · [∂
L
p ]I2,I2∪{jα}

=

{
(−1)β+1aℓβ · (−1)α+2xjα if jα > ℓβ

(−1)β+2aℓβ · (−1)α+1xjα if jα < ℓβ

= (−1)α+β+1aℓβxjα , and

[t∂Lp−1 · ∂Kp−1]I1,I2 = [∂Lp−1]I1\{jα},I1 · [∂Kp−1]I2\{ℓβ},I2

= (−1)α+1xjα · (−1)β+1aℓβ

= (−1)α+βaℓβxjα .

Therefore [∂Kp · t∂Lp + t∂Lp−1 · ∂Kp−1]I1,I2 = 0.

If ♯(I1 ∪ I2) ≤ p− 1, then I1 = I2, whence

{J ∈ Fp | I1 ∪ I2 ⊆ J} = {I1 ∪ {j} | j ∈ Λ \ I1}, and

{J ′ ∈ Fp−2 | J ′ ⊆ I1 ∩ I2} = {I1 \ {j} | j ∈ I1}.

Hence we get

[∂Kp · t∂Lp ]I1,I2 =
∑

j∈Λ\I1

[∂Kp ]I1,I1∪{j} · [∂Lp ]I1,I1∪{j}

=
∑

j∈Λ\I1

ajxj, and

[t∂Lp−1 · ∂Kp−1]I1,I2 =
∑
j∈I1

[∂Lp−1]I1\{j},I1 · [∂Kp−1]I1\{j},I1

=
∑
j∈I1

ajxj.

We then have [∂Kp · t∂Lp + t∂Lp−1 · ∂Kp−1]I1,I2 =
∑

j∈Λ\I1 ajxj +
∑

j∈I1 ajxj = c.
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In what follows, throughout this section, we assume that (S, n) is a Cohen-Macaulay

local ring with dimS = d+1 (d ≥ 1), and f ∈ n is a non-zero divisor on S. Set R = S/(f).

Let a1, . . . , ad, b ∈ n be a system of parameters of S, so that b2 +
∑d

i=1 aixi = εf with

x1, . . . , xd ∈ (a1, · · · , ad, b) and ε ∈ U(S). Then I = (a1, a2, · · · , ad, b) ∈ XR, with a

reduction Q = (a1, a2, · · · , ad), by Proposition 4.4. We notice that every Ulrich ideal in

R is this form, if S is a regular local ring (Theorem 4.5). We also notice that I/Q ∼= R/I.

By [24, Corollary 7.2], in the exact sequence 0 → Q
ι→ I → R/I → 0, the free resolution

of I induced from minimal free resolutions of Q and R/I is also minimal. We construct

this resolution, by using the relation b2 +
∑d

i=1 aixi = εf . We set

K = K•(a1, . . . , ad;S) = (K•, ∂
K
• ) and L = K•(x1, . . . , xd;S) = (K•, ∂

L
• )

are Koszul complexes of S generated by a1, . . . , ad and x1, . . . , xd. We define G = (G•, ∂•)

by G0 = K0, Gi = Ki ⊕Gi−1 = S⊕
∑i

j=0 (
d
j) for i ≥ 1, and

∂1 =
[
∂K1 b

]
, ∂2 =

[
∂K2 −bEd | t∂L1
O ∂1

]
, and

∂i =

[
∂Ki (−1)i−1bE( d

i−1)
| t∂Li−1 | O

O ∂i−1

]
for i ≥ 3.

We notice that ∂i = ∂d+1 for any i ≥ d+1. Set F = (F•, ∂•) = (G•⊗R, ∂•⊗R). We then

have the following, which is the main result of this section.

Theorem 4.9. F : · · · → Fi
∂i→ Fi−1 → · · · → F1

∂1→ F0 = R
ε→ R/I → 0 is a minimal

free resolution of R/I.

To prove Theorem 4.9, we give the following proposition.

Proposition 4.10. Set g = εf (= b2 +
∑d

i=1 aixi). Then

∂i · ∂i+1 =
[
O gE∑i−1

j=0 (
d
j)

]
for i ≥ 1.

In particular, ∂2d+1 = gE2d.

Proof. We have

∂1 · ∂2 =
[
∂K1 b

]
·
[
∂K2 −bEd | t∂L1
O ∂1

]
=

[
∂K1 b

]
·
[
∂K2 −bEd

t∂L1
O ∂K1 b

]
=

[
O O ∂K1 · t∂L1 + b2

]
=

[
O g

]
,
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∂2 · ∂3 =
[
∂K2 −bEd

t∂L1
O ∂K1 b

]
·

 ∂K3 bE(d2)
t∂L2 O

O ∂K2 −bEd
t∂L1

O O ∂K1 b


=

[
O O ∂K2 · t∂L2 + t∂L1 · ∂K1 + b2Ed O
O O O ∂K1 · t∂L1 + b2

]
=

[
O gEd

]
,

∂3 · ∂4 =

 ∂K3 bE(d2)
t∂L2 O

O ∂K2 −bEd
t∂L1

O O ∂K1 b

 ·


∂K4 −bE(d3)

t∂L3 O O

O ∂K3 bE(d2)
t∂L2 O

O O ∂K2 −bEd
t∂L1

O O O ∂K1 b


=

 O O ∂K3 · t∂L3 + t∂L2 · ∂K2 + b2E(d2)
O O

O O O ∂K2 · t∂L2 + t∂L1 · ∂K1 + b2Ed O
O O O O ∂K1 · t∂L1 + b2


=

[
O gE∑2

j=0 (
d
j)

]
,

by Lemma 4.8. Hence, we may assume that i ≥ 4 and our assertion holds true for i− 1.

Let Aj =
[
(−1)j−1bE( d

j−1)
| t∂Lj−1 | O

]
for j ≥ 1. Then

∂i · ∂i+1 =

[
∂Ki Ai

O ∂i−1

]
·
[
∂Ki+1 Ai+1

O ∂i

]
=

[
O ∂Ki · Ai+1 + Ai · ∂i
O ∂i−1 · ∂i

]
=

[
O ∂Ki · Ai+1 + Ai · ∂i
O O | gE∑i−2

j=0 (
d
j)

]
, and

∂Ki · Ai+1 + Ai · ∂i =
[
(−1)ib∂Ki | ∂Ki · t∂Li | O

]
+
[
(−1)i−1bE( d

i−1)

∣∣∣t∂Li−1

∣∣∣O] ·
 ∂Ki (−1)i−1bE( d

i−1)
t∂Li−1 | O

O ∂Ki−1 (−1)i−2bE( d
i−2)

| O
O O ∂i−2


=

[
(−1)ib∂Ki | ∂Ki · t∂Li | O

]
+
[
(−1)i−1b∂Ki | t∂Li−1 · ∂Ki−1 + b2E( d

i−1)
| O

]
=

[
O
∣∣∣∂Ki · t∂Li + t∂Li−1 · ∂Ki−1 + b2E( d

i−1)

∣∣∣O] = [
O
∣∣∣gE( d

i−1)

∣∣∣O] ,
by Lemma 4.8. Therefore ∂i · ∂i+1 =

[
O
∣∣∣gE∑i−1

j=0 (
d
j)

]
.

We are now ready to prove Theorem 4.9.

Proof of Theorem 4.9. Thanks to Proposition 4.10, ∂i · ∂i+1 = 0 for all i ≥ 1, hence F is

a complex. Let Q = (a1, · · · , ad). Then K = (K•, ∂K• ) = (K• ⊗ R, ∂K• ⊗ R) is a minimal
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free resolution of R/Q, since Q is a parameter ideal of R, and K is a subcomplex of F .

On the other hand, 0 → Q
ι→ I → R/I → 0 is exact and the following diagrams

0 // K0
ι //

��

F1
//

∂1
��

F0
//

ε

��

0

0 // Q ι //

��

I //

��

R/I //

��

0

0 0 0

and

0 // Ki+1
ι //

∂K
i+1

��

Fi+1
//

∂i+1

��

Fi
//

∂i
��

0

0 // Ki
ι //

∂K
i��

Fi
//

∂i
��

Fi−1
//

∂i−1

��

0

0 // Ki−1
ι // Fi−1

// Fi−2
// 0

are commutative, for all i ≥ 2. Therefore, F is exact, whence F is a minimal free resolution

of R/I, since every entry of ∂• is not a unit. This completes the proof of Theorem 4.9.

As a consequence, we get a matrix factorization of d-th syzygy module of R/I, which

is an Ulrich module with respect to I (see [24, Definition 1.2]).

Corollary 4.11. Let M = Im∂d. Then 0 → Gd+1
∂d+1→ Gd

τ→ M → 0 is exact as S-

modules and ∂2d+1 = gE2d, where τ : Gd
ε→ Fd

∂d→ M . Therefore ∂d+1 gives a matrix

factorization of M .

Proof. Set n = 2d. Because ∂2d+1 = gEn (Proposition 4.10) and g is a non-zero divisor on

S, the map Gd+1
∂d+1→ Gd is injective. τ ◦ ∂d+1 = 0 is clear. Suppose that

x1
x2
...
xn

 ∈ Ker τ. Then, since ∂d ·


x1
x2
...
xn

 = 0 in R,


x1
x2
...
xn

 = ∂d + 1 ·


y1
y2
...
yn

 for some yi ∈ S,

by Theorem 4.9. Therefore
x1
x2
...
xn

 = ∂d+1·


y1
y2
...
yn

+g·


z1
z2
...
zn

 = ∂d+1·


y1
y2
...
yn

+∂2d+1·


z1
z2
...
zn

 = ∂d+1·



y1
y2
...
yn

+ ∂d+1 ·


z1
z2
...
zn


 ,
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for some zi ∈ S. Thus 0 → Gd+1
∂d+1→ Gd

τ→M → 0 is exact.

We close this section with Examples.

Example 4.12. (1) If d = 1, then

∂1 =
[
a1 b

]
, and ∂2 =

[
−b x1
a1 b

]
.

(2) If d = 2, then

∂1 =
[
a1 a2 b

]
, ∂2 =

−a2 −b 0 x1
a1 0 −b x2
0 a1 a2 b

 , and ∂3 =


b −x2 x1 0
−a2 −b 0 x1
a1 0 −b x2
0 a1 a2 b

 .
(3) If d = 3, then

∂1 =
[
a1 a2 a3 b

]
, ∂2 =


−a2 −a3 0 −b 0 0 x1
a1 0 −a3 0 −b 0 x2
0 a1 a2 0 0 −b x3
0 0 0 a1 a2 a3 b

 ,

∂3 =



a3 b 0 0 −x2 x1 0 0
−a2 0 b 0 −x3 0 x1 0
a1 0 0 b 0 x3 x2 0
0 −a2 −a3 0 −b 0 0 x1
0 a1 0 −a3 0 −b 0 x2
0 0 a1 a2 0 0 −b x3
0 0 0 0 a1 a2 a3 b


,

and ∂4 =



−b x3 −x2 x1 0 0 0 0
a3 b 0 0 −x2 x1 0 0
−a2 0 b 0 −x3 0 x1 0
a1 0 0 b 0 x3 x2 0
0 −a2 −a3 0 −b 0 0 x1
0 a1 0 −a3 0 −b 0 x2
0 0 a1 a2 0 0 −b x3
0 0 0 0 a1 a2 a3 b


.

4.5 Decomposable Ulrich ideals

In this section, we explore the structure of decomposable Ulrich ideals in a one-

dimensional Cohen-Macaulay local ring R. We begin with the following, which char-

acterizes two-generated decomposable Ulrich ideals.
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Proposition 4.13. Suppose that (R,m) is a Cohen-Macaulay local ring with dimR = 1.

Let I be an m-primary ideal of R, and assume that µR(I) = 2. Then the following

conditions are equivalent.

(1) I ∈ XR and I is decomposable.

(2) There exist a, b ∈ m such that I = (a, b), (a) = (0) :R b, and (b) = (0) :R a.

Proof. (1) ⇒ (2) Choose a, b ∈ m so that I = (a) ⊕ (b) = (a, b). Then ab = 0, and we

have

I/I2 ∼= (a)/(a2)⊕ (b)/(b2) ∼= R/[(a) + (0) :R a]⊕R/[(b) + (0) :R b],

while I/I2 ∼= (R/I)⊕2, since I ∈ XR and µR(I) = 2. Therefore, because I = (a, b) ⊆
(a) + (0) :R a and I ⊆ (b) + (0) :R b, we get I = (a) + (0) :R a = (b) + (0) :R b. On the

other hand, we have

I2 = (a2, b2) = (a+ b)I,

hence a+ b is a non-zero divisor on R, since
√
I = m.

Claim. (0) :R a
2 = (0) :R a and (0) :R b

2 = (0) :R b.

Proof of Claim. (0) :R a ⊆ (0) :R a2 is clear. Let x ∈ (0) :R a2. Since (a + b)ax =

a2x + abx = 0 and a + b is a non-zero divisor on R, we have ax = 0, which shows

(0) :R a
2 = (0) :R a. Similarly, (0) :R b

2 = (0) :R b.

Let x ∈ (0) :R a. Because x ∈ I = (a, b), we write x = ax1 + bx2 (xi ∈ R). Then

0 = ax = a2x1 + abx2 = a2x1,

which shows that x1 ∈ (0) :R a
2 = (0) :R a by Claim. Consequently, we have x = bx2 ∈ (b),

so that (0) :R a = (b). We also get (0) :R b = (a) as well.

(2) ⇒ (1) Because ab = 0, we have I2 = (a+ b)I. Hence a+ b is a non-zero divisor on

R. Let x ∈ (a) ∩ (b). Then (a + b)x = 0, that is x = 0. Therefore I = (a) ⊕ (b) and we

have

I/I2 ∼= (a)/(a2)⊕ (b)/(b2) ∼= R/[(a) + (0) :R a]⊕R/[(b) + (0) :R b] = R/I ⊕R/I,

which shows that I ∈ XR.
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We now assume that (S, n) is a regular local ring with dimS = 2, and let 0 ̸= f ∈ n

and R = S/(f). We then have the following, which characterizes decomposable Ulrich

ideals in a one-dimensional hypersurface ring.

Theorem 4.14. Assume that f = pe11 p
e2
2 · · · peℓℓ (ℓ ≥ 1, ei ≥ 1) where p1, p2, . . . , pℓ are

different prime elements of S. Set Λ = {1, 2, · · · , ℓ}. For ∅ ̸= J ⊊ Λ, we define αJ =∏
j∈J p

ej
j and βJ =

∏
j∈Λ\J p

ej
j . Then

{I ∈ XR | I is decomposable } = {(αJ , βJ) | ∅ ̸= J ⊊ Λ}.

Proof. Suppose that ∅ ̸= J ⊊ Λ, and set a = αJ + βJ , b = βJ . Then a, b is a system of

parameters of S, since αJ , βJ is a system of parameters of S, and we have

a2 · 0 + ab · (−1) + b2 = −αJβJ = −f.

Thus, (a, b) = (αJ , βJ) ∈ XR by Proposition 4.4, and (αJ , βJ) = (αJ)⊕ (βJ).

Conversely, suppose that I ∈ XR and I is decomposable. Then, because R is a

Gorenstein ring, µR(I) = 2 by Theorem 4.3. We can choose a, b ∈ n so that I = (a, b),

(0) :R a = (b), and (0) :R b = (a) by Proposition 4.13. Since ab = 0 in R, we write ab = ρf

with ρ ∈ S. We note that a, b are relatively prime because a, b is a system of parameters

of S by Lemma 4.6. Therefore, it suffices to show that ρ ∈ U(S). Assume that ρ ∈ n.

Then ρ = pρ′ for some prime element p of S and ρ′ ∈ S, hence ab = pρ′f ∈ (p), and we

may assume that a ∈ (p). Thus, writing a = pa′ with a′ ∈ S, we get a′b = ρ′f , which

means a′ ∈ (0) :R b = (a). This is impossible since p /∈ U(S).

The following is a direct consequence of Theorem 4.14.

Corollary 4.15. Suppose that R = k[[X,Y ]]/(XkY ), where k > 0 and k[[X,Y ]] is a

formal power series ring over a field k. Then

{I ∈ XR | I is decomposable } = {(xk, y)}

where x, y denote the images of X,Y in R.

4.6 The case R = k[[X,Y ]]/(f)

In this section, let S = k[[X,Y ]] be a formal power series ring over a field k, and

R = S/(f) with f ∈ n = (X,Y ). By using Theorem 4.5 and Corollary 4.15, we explore

the set XR, when f = Y k or Xk−1Y (k ≥ 2). Let x, y denote the images of X,Y in R.
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Firstly, we assume that f = Y k and k ≥ 2. Let I ∈ XR. Remember that µR(I) = 2,

since R is a Gorenstein ring.

Proposition 4.16. I = (a, b) and I2 = aI for some a = Xn + a1Y and b = b1Y , where

n > 0, a1, b1 ∈ S. Therefore Y k−1 ∈ (a, b).

Proof. Let us write I = (α, β) with I2 = αI (α, β ∈ R). We set

A = I : I = {φ ∈ Q(R) | φI ⊆ I} ⊆ Q(R),

where Q(R) denotes the total ring of fractions of R. Then A = I
α

= R + R β
α
, since

I2 = αI. On the other hand, let D = k[[x]] ⊆ R and K = Q(D). Then, since A is a

module finite birational extension of R and Q(R) = K[Y ]/(Y k), we have

R ⊆ A = R +R
β

α
⊆ R = D +

k−1∑
i=1

Kyi,

where R denotes the integral closure of R in Q(R). Because β
α

∈ D +
∑k−1

i=1 Ky
i, we

write β
α
= d + ρ with d ∈ D and ρ ∈

∑k−1
i=1 Ky

i. Therefore, since β−αd
α

= β
α
− d = ρ

and A = R + Rρ, replacing β with β − αd, from the beginning we may assume that
β
α
∈
∑k−1

i=1 Ky
i. Hence yk−1β = 0, since yk−1 · β

α
= 0 in R. Therefore, we have yk−1 ∈ I,

because (α) :R β = I (remember that I/(α) ∼= R/I). Let a, b ∈ S such that a = α, b = β

in R. Then a, b is a system of parameters of S by Lemma 4.6. Since bY k−1 ∈ (Y k) in

S, we get b ∈ (Y ), and that a /∈ (Y ). Consequently, we have that a = εXn + a1Y and

b = b1Y with n > 0, a1, b1 ∈ S, and ε ∈ U(S), and may assume ε = 1. We also have

Y k−1 ∈ (a, b), since Y k−1 ∈ (a, b) + (Y k).

Proposition 4.17 ([12, Example 4.8]). Suppose that R = k[[X,Y ]]/(Y 2). Then

XR = {(xℓ, y) | ℓ > 0}.

Proof. Thanks to Corollary 4.7, (xℓ, y) ∈ XR for any ℓ > 0. Conversely, suppose that

I ∈ XR. Then I = (a, b) for some a = Xn + a1Y and b = b1Y with n > 0, a1, b1 ∈ S, and

Y ∈ (a, b) by Proposition 4.16. Therefore, (a, b) = (a, b, Y ) = (Xn, Y ).

If k is odd, we have the following family of Ulrich ideals.

Proposition 4.18. Suppose that k = 2m + 1 (m ≥ 1). Let ℓ > 0 and ε ∈ U(S). We

consider the ideal I = (x2ℓ + εy, xℓym) of R. Then the following assertions hold true.
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(1) I ∈ XR.

(2) Let ℓ′ > 0, ε′ ∈ U(S) and suppose that I = (x2ℓ
′
+ ε′y, xℓ

′
ym). Then ℓ = ℓ′ and ε ≡ ε′

mod n.

Proof. (1) Let a = X2ℓ + εY and b = XℓY m. Then a, b is a system of parameter of S,

and setting φ = −ε−1Y 2m−1, ψ = εXℓY m−1, and δ = −1, we have

a2φ+ abψ + b2 = δY 2m+1,

so that I = (a, b) ∈ XR by Proposition 4.4.

(2) Let ℓ, ℓ′ > 0 and ε, ε′ ∈ U(S), and assume that

(x2ℓ + εy, xℓym) = (x2ℓ
′
+ ε′y, xℓ

′
ym).

Then (X2ℓ + εY,XℓY m) = (X2ℓ′ + ε′Y,Xℓ′Y m) by Lemma 4.6, hence we have ℓ = ℓ′,

comparing the colength of the ideals. We write X2ℓ+ εY = (X2ℓ+ ε′Y )ξ+(XℓY m)η with

ξ, η ∈ S. Then X2ℓ(1− ξ) = Y (−ε+ ε′ξ +XℓY m−1η), whence

1− ξ = Y ρ and − ε+ ε′ξ +XℓY m−1η = X2ℓρ

for some ρ ∈ S. Therefore, 1 ≡ ξ and −ε+ ε′ξ ≡ 0 mod n, that is ε ≡ ε′.

As a consequence, we get the following.

Theorem 4.19. Suppose that R = k[[X,Y ]]/(Y 3). Then

XR = {(x2ℓ + εy, xℓy) | ℓ > 0, ε ∈ U(S)}.

Proof. The inclusion (⊇) follows from Proposition 4.18. Suppose that I ∈ XR. By

Proposition 4.16, I = (a, b) for some a = Xn+a1Y and b = b1Y with n > 0, a1, b1 ∈ S. We

notice that ℓR(R/(a)) = 2 ·ℓR(R/I), since I/(a) ∼= R/I, and ℓR(R/(a)) = ℓS(S/(a, Y
3)) =

3n. If b1 /∈ n, then (a, b) = (Xn, Y ), whence ℓR(R/I) = ℓS(S/(a, b)) = n. This implies

that 3n = 2n, which is impossible. Hence b1 ∈ n. If b1 ∈ (Y ), then yb = 0 in R,

thus y ∈ (a) :R b = I. This implies that Y ∈ (a, b) and (a, b) = (Xn, Y ), which is

also impossible. Therefore, since b1 ∈ n \ (Y ), we write b1 = τXℓ + b2Y with ℓ > 0,

τ ∈ U(S), and b2 ∈ S. Because Y 2 ∈ (a, b) by Proposition 4.16, we have (a, b) =

(a, b, Y 2) = (Xn+a1Y,X
ℓY, Y 2), whence (a, b) = (Xn+a1Y,X

ℓY ) or (Xn+a1Y, Y
2), since

(a, b) ⊈ (Y ). We then have (a, b) = (Xn + a1Y,X
ℓY ). Indeed, if (a, b) = (Xn + a1Y, Y

2),

then 2 · ℓR(R/I) = 2 · ℓS(S/(Xn + a1Y, Y
2)) = 4n ̸= 3n, which is absurd. Therefore, we

may assume that b1 = Xℓ. In addition, we have the following.
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Claim. a1 ∈ U(S).

Proof of Claim. Because (a, b) ∈ XR,

a2φ+ abψ + b2 = εY 3

for some φ, ψ ∈ S and ε ∈ U(S) by Theorem 4.5. Since a2φ ∈ (Y ) and a /∈ (Y ), φ = Y φ1

for some φ1 ∈ S. Expanding the equation, we have

a21φ1Y
2 +X2ℓY + 2a1φ1X

2ℓY + a1ψX
ℓY + φ1X

4ℓ + ψX3ℓ = εY 2.

Therefore, Y 2(a21φ1 − ε) ∈ (X), so that a21φ1 − ε ∈ (X), whence a1 ∈ U(S).

It suffices to show that n = 2ℓ. In fact, we have

ℓR(R/I) = ℓS(S/(X
n + a1Y,X

ℓY )) = ℓ+ n,

while ℓR(R/(a)) = 3n. Consequently, 3n = 2(ℓ + n), whence n = 2ℓ. This completes the

proof of Theorem 4.19.

Similarly, if k is even, we have the following.

Proposition 4.20. Suppose that k = 2m (m ≥ 2). Then the following assertions hold

true.

(1) {I ∈ XR | ym ∈ I} = {(xℓ + αy, ym) | ℓ > 0, α ∈ R}.

(2) Let ℓ, ℓ′ > 0, α, α′ ∈ R and suppose that (xℓ + αy, ym) = (xℓ
′
+ α′y, ym). Then ℓ = ℓ′

and α ≡ α′ mod m = n/(Y 2m).

Proof. (1) The inclusion (⊇) follows from Corollary 4.7. Suppose that I ∈ XR. I = (a, b)

for some a = Xn+a1Y and b = b1Y with n > 0, a1, b1 ∈ S. Since ℓR(R/(a)) = 2 ·ℓR(R/I)
and ℓR(R/(a)) = ℓS(S/(X

n + a1Y, Y
2m)) = 2mn, we then have ℓR(R/I) = mn. On the

other hand, because ym ∈ I,

mn = ℓR(R/I) = ℓS(S/(a, b)) = ℓS(S/(a, b, Y
m)) ≤ ℓS(S/(X

n + a1Y, Y
m)) = mn,

hence (a, b) = (Xn + a1Y, Y
m). The Assertion (2) follows from the same technique as in

the proof of Proposition 4.18 (2).
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Corollary 4.21. Suppose that R = k[[X,Y ]]/(Y 4). Then

{I ∈ XR | y2 ∈ I} = {(xℓ + αy, y2) | ℓ > 0, α ∈ R}.

For a moment, suppose that k = 4. Let I ∈ XR and assume that y2 /∈ I. Then

I = (a, b) and I2 = aI for some a = Xn + a1Y and b = b1Y , where n > 0, a1, b1 ∈ S, by

Proposition 4.16. With this notation, we get the following.

Lemma 4.22. b1 = Xp + b2Y with 0 < p < n and b2 ∈ S.

Proof. Because y /∈ I, b1 /∈ U(S). We then have b1 ∈ n \ (Y ). Indeed, if b1 ∈ (Y ), then

y2b = 0 in R, whence y2 ∈ I. This is impossible. Therefore b1 = τXp + b2Y with p > 0,

b2 ∈ S, and τ ∈ U(S), and may assume τ = 1. Assume p ≥ n. Then, because

b = XpY + b2Y
2 ≡

moda
Xp−nY (−a1Y ) + b2Y

2 ∈ (Y 2),

we have y2 ∈ (a) :R b = I, which is absurd. Therefore 0 < p < n.

Theorem 4.23. Suppose that R = k[[X,Y ]]/(Y 4). Let I ∈ XR and assume that y2 /∈ I.

We set I = (a, b) with a, b ∈ S. Then the following assertions hold true.

(1) (a, b) = (Xn + a1Y, Y (Xp + b2Y )) with 0 < p < n, a1 ∈ n, and b2 ∈ U(S).

(2) If a1 ∈ (Y ), then ch k = 2.

(3) If chk ̸= 2, then (a, b) = (Xn + αXrY, Y (Xp + b2Y )) with 0 < r < p < n, n− p ≤ r,

and α, b2 ∈ U(S).

Proof. (1) Thanks to Lemma 4.22, (a, b) = (Xn + a1Y, Y (Xp + b2Y )) with 0 < p < n and

a1, b2 ∈ S. We may assume a = Xn + a1Y and b = Y (Xp + b2Y ). Because ℓR(R/(a)) =

2 · ℓR(R/I) and ℓR(R/(a)) = ℓS(S/(X
n + a1Y, Y

4)) = 4n, we have

2n = ℓR(R/I) = ℓS(S/(X
n + a1Y, Y (Xp + b2Y ))) = n+ ℓS(S/(X

n + a1Y,X
p + b2Y )),

so that ℓS(S/(X
n + a1Y,X

p + b2Y )) = n. If a1 ∈ U(S), then (Xn + a1Y,X
p + b2Y ) =

(Xn + a1Y,X
p(1− a−1

1 b2X
n−p)) = (Xp, Y ), hence n = ℓS(S/(X

n + a1Y,X
p + b2Y )) = p,

which is impossible. Therefore a1 ∈ n. On the other hand, we have

a2φ+ abψ + b2 = εY 4
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for some φ, ψ ∈ S and ε ∈ U(S) by Theorem 4.5. Then φ = Y φ1 for some φ1 ∈ S, since

a2φ ∈ (Y ) and a /∈ (Y ). From the equation, we get

εY 3 = b22Y
3

+ a21φ1Y
2 + a1b2ψY

2 + 2b2X
pY 2

+ 2a1φ1X
nY + b2ψX

nY + a1ψX
pY +X2pY

+ φ1X
2n + ψXn+p.

Hence Xn+p(φ1X
n−p + ψ) ∈ (Y ), so that φ1X

n−p + ψ ∈ (Y ), whence ψ ∈ n. Similarly,

Y 2(−εY + b22Y + a21φ1 + a1b2ψ) ∈ (X), so that −εY + b22Y + a21φ1 + a1b2ψ ≡ 0 mod (X).

Because a1, ψ ∈ n, −εY + b22Y ≡ 0 mod (X,Y 2), whence b2 ∈ U(S).

(2) Assume a1 ∈ (Y ). Then, because 0 < p < n and ψ ∈ n, we have 2b2X
pY 2 ∈

(Xp+1, Y 3), therefore ch k = 2, since b2 ∈ U(S).

(3) Suppose that ch k ̸= 2. Then a1 ∈ n \ (Y ) by Assertions (1), (2). We write

a1 = αXr + a2Y with r > 0, α ∈ U(S), and a2 ∈ S. If r ≥ p, since a = Xn + αXrY ≡
modb

Xn+(−αb−1
2 Xr−pY )Y , replacing αXr with −αb−1

2 Xr−pY , we may assume that a1 ∈ (Y ),

which is absurd. Hence 0 < r < p < n. Because

a = Xn + αXrY + a2Y
2 ≡

modb
Xn + αXrY − a2b

−1
2 XpY = Xn + (α− a2b

−1
2 Xp−r)XrY,

and α − a2b
−1
2 Xp−r ∈ U(S), we may assume that a2 = 0. Since ℓS(S/(X

n + a1Y,X
p +

b2Y )) = n (see the proof of Assertion (1)), if n > r + p,

n = ℓS(S/(X
n + a1Y,X

p + b2Y )) = ℓS(S/(X
n + αXrY,Xp + b2Y ))

= ℓS(S/(X
n − αb−1

2 Xr+p, Xp + b2Y )) = ℓS(S/(X
r+p, Xp + b2Y )) = r + p,

which makes a contradiction. Therefore n ≤ r + p.

We explore a concrete example.

Example 4.24. Suppose that R = k[[X,Y ]]/(Y 4). Let p, n be integers such that 0 < p <

n and 2n ≤ 3p. We set a = Xn+2Xn−pY , b = Y (Xp+Y ). Then the following assertions

hold true.

(1) I = (a, b) ∈ XR, for any characteristic of k.

(2) y2 /∈ I.
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Proof. (1) We set φ = −X3p−2nY , ψ = X2p−n, and ε = 1. Then a, b is a system of

parameters of S, and we have a2φ+abψ+ b2 = εY 4, therefore I ∈ XR by Proposition 4.4.

(2) If y2 ∈ I, then Y 2 ∈ (a, b). We write Y 2 = (Xn + 2Xn−pY )ξ + Y (Xp + Y )η

with ξ, η ∈ S. Hence, since ξ = Y ξ1 for some ξ1 ∈ S, we have Y (1 − 2Xn−pξ1 − η) =

Xp(Xn−pξ1 + η), so that 1 − 2Xn−pξ1 − η = ρXp and Xn−pξ1 + η = ρY for some ρ ∈ S.

Therefore, 1 ≡ η mod n and η ≡ 0 mod n, which is impossible.

In what follows, we assume that f = XkY (k ≥ 1). Thanks to Corollary 4.15, (xk, y)

is the only decomposable Ulrich ideal in R. Let I ∈ XR and I is indecomposable. We

begin with the following.

Proposition 4.25. I = (a, b) and I2 = aI for some a = Xn+ a1Y and b = b1XY , where

n > 0, a1, b1 ∈ S such that a1 /∈ (X). In addition, n < k, if k ≥ 2.

Proof. We identify R ⊆ S/(Xk) × S/(Y ) and let x1, y1 (resp. x2) denote the images of

X,Y (resp. X) in S/(Xk) (resp. S/(Y )). Hence S/(Y ) = k[[x2]] and Q(R) = (K1 +∑k−1
i=1 K1x

i
1)×K2, where K1 = Q(k[[y1]]) and K2 = Q(k[[x2]]). We set A = I : I. Then

R ⊆ A ⊆ R = (k[[y1]] +
k−1∑
i=1

K1x
i
1)× k[[x2]],

since A is a module finite birational extension of R. Let us write I = (α, β) with I2 = αI.

Then A = R+R β
α
. Remember now that A is a local ring, since A ∼= I is indecomposable.

Let J,m, and J(R) denote the maximal ideals of A,R, and the Jacobson radical of R.

Then, since

k = R/m ⊆ A/J ⊆ R/J(R) = k × k,

we have R/m = A/J . Take r ∈ R so that β
α
≡ r mod J . Then, replacing β with β − rα,

we can assume that β
α
∈ J . Since J ⊆ J(R) = (y1k[[y1]] +

∑k−1
i=1 K1x

i
1) × x2k[[x2]], we

get β
α
= r′ + ρ for some r′ ∈ R and ρ ∈ (

∑k−1
i=1 K1x

i
1) × (0). Therefore, replacing β with

β − αr′, from the beginning we may assume that β
α
∈ (

∑k−1
i=1 K1x

i
1) × (0). Let us now

write α = a and β = b with a, b ∈ S. Then, since βk = 0 in R, we have bk ∈ (XkY ),

so that b ∈ (XY ). We write b = b1XY with b1 ∈ S. Notice that a, b is a system of

parameters of S by Lemma 4.6. Consequently, a /∈ (X) ∪ (Y ), so that we may assume

that a = Xn + a1Y with n > 0 and a1 ∈ S such that a1 /∈ (X). If k ≥ 2, we have

Xk−1 ∈ (a, b), since xk−1 ∈ (α) :R β = I. Thus, because Xk−1 ∈ (a, b, Y ) = (Xn, Y ), we

get n < k.
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Theorem 4.26. Suppose that R = k[[X,Y ]]/(XkY ) with 1 ≤ k ≤ 2. Then

XR = {(xk, y)}.

Proof. Suppose that I ∈ XR and I is indecomposable. Assume that k = 1. Then, since

R = S/(X) × S/(Y ) and ℓR(R/R) = 1, A = R where A = I : I, which is impossible

because A is a local ring (see the proof of Proposition 4.25). Assume that k = 2. By

Proposition 4.26, I = (a, b) for some a = X + a1Y and b = b1XY with a1, b1 ∈ S

such that a1 /∈ (X). Since X ∈ (a, b) (see the proof of Proposition 4.25), we can write

X = (X + a1Y )φ + b1XY ψ with φ, ψ ∈ S. Then a1Y φ ∈ (X) and a1 /∈ (X), whence

φ ∈ (X). Therefore, writing φ = Xφ1 with φ1 ∈ S, we get 1 = (X + a1Y )φ1 + b1Y ψ ∈ n,

which is impossible. Consequently, if k ≤ 2, R has no indecomposable Ulrich ideal.

Thanks to Corollary 4.15, this completes the proof of this Theorem.

In what follows, suppose that k ≥ 3. Let I ∈ XR and assume that I is indecomposable.

Then I = (a, b) and I2 = aI for some a = Xn + a1Y and b = b1XY with n > 0 and

a1, b1 ∈ S such that a1 /∈ (X) by Proposition 4.25. With this notation, we have the

following.

Proposition 4.27. The following assertions hold true.

(1) n ≤ k − 2.

(2) If k ≥ 4 and n = k − 2, then xy ∈ I.

Proof. Because (a, b) ∈ XR,

a2φ+ abψ + b2 = εXkY

for some φ, ψ ∈ S and ε ∈ U(S) by Theorem 4.5. Since a2φ ∈ (XY ) and a /∈ (X) ∪ (Y ),

φ = XY φ1 for some φ1 ∈ S. We then have

εXk−1 = a21φ1Y
2

+ 2a1φ1X
nY + a1b1ψY + b21XY · · · (A)

+ φ1X
2n + b1ψX

n.

(1) Assume that n > k − 2. Then n = k − 1 by Proposition 4.25. Hence Xk−1(ε −
b1ψ − φ1X

k−1) ∈ (Y ), so that ε − b1ψ ∈ n, whence b1 ∈ U(S). Therefore, we may

assume that b1 = 1. Since a1 /∈ (X), we write a1 = τY ℓ + a2X with ℓ ≥ 0, a2 ∈ S, and
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τ ∈ U(S). We then have (a, b) = (Xk−1 + τY ℓ+1 + a2XY,XY ) = (Xk−1 + τY ℓ+1, XY ).

Thus, from the beginning we may assume a1 = τY ℓ. From the above equation (A),

we get τψY ℓ+1 + XY ≡ 0 mod (X2, Y 2), hence ℓ = 0. On the other hand, because

ℓR(R/(a)) = 2 · ℓR(R/I), we have

ℓR(R/(a)) = ℓS(S/(X
k−1 + τY,XkY )) = k + k − 1 = 2k − 1, and

ℓR(R/I) = ℓS(S/(X
k−1 + τY,XY )) = 1 + k − 1 = k.

Hence 2k − 1 = 2k, which is impossible. Therefore n ≤ k − 2.

(2) Suppose that k ≥ 4 and n = k − 2. From the equation (A), we have Xk−2(εX −
φ1X

k−2−b1ψ) ∈ (Y ), whence b1ψ ≡ δX mod (Y ), where δ = ε−φ1X
k−3 ∈ U(S). Assume

that b1 ∈ n. Then ψ ∈ U(S) and b1 = ρX + b2Y for some ρ ∈ U(S) and b2 ∈ S. We may

assume that ρ = 1. We also get a1Y (a1φ1Y + b1ψ) ∈ (X) from the equation (A). Since

a1 /∈ (X), we have a1φ1Y + b1ψ ∈ (X), so that a1φ1Y + b2ψY = Y (a1φ1 + b2ψ) ∈ (X).

Whence b2 ∈ (a1, X)(notice that ψ ∈ U(S)). Writing b2 = a1ξ+Xη with ξ, η ∈ S, we get

b = XY (X + a1ξY + ηXY ) ≡
moda

X2Y (1− ξXk−3 + ηXY ),

hence we may assume that b = X2Y (b2 = 0). Let ℓ = ℓS(S/(a1, X)). Then

ℓR(R/(a)) = ℓS(S/(X
k−2 + a1Y,X

kY )) = k(ℓ+ 1) + k − 2 = k · ℓ+ 2k − 2, and

ℓR(R/I) = ℓS(S/(X
k−2 + a1Y,X

2Y )) = 2(ℓ+ 1) + k − 2 = 2ℓ+ k.

Since ℓR(R/(a)) = 2 · ℓR(R/I), we have k · ℓ + 2k − 2 = 2(2ℓ + k), so that (k − 4)ℓ = 2.

Thus, k = 6, ℓ = 1 or k = 5, ℓ = 2.

If k = 6 and ℓ = 1, we can write a1 = τY + a2X with τ ∈ U(S) and a2 ∈ S (notice

that ℓ = ℓS(S/(a1, X))). From the equation (A), we get τψXY 2 ≡ 0 mod (X2, Y 3), which

makes a contradiction.

If k = 5 and ℓ = 2, we can write a1 = τY 2+a2X with τ ∈ U(S) and a2 ∈ S. Similarly,

we get τψXY 3 ≡ 0 mod (X2, Y 4), which is impossible. Consequently, we have b1 ∈ U(S),

therefore xy ∈ I.

We get the following family of Ulrich ideals.

Proposition 4.28. Suppose that k ≥ 3. Then the following assertions hold true.

(1) {I ∈ XR | xy ∈ I} = {(xk−2 + εy, xy) | ε ∈ U(S)}.

120



(2) Let ε, ε′ ∈ U(S) and suppose that (xk−2+ εy, xy) = (xk−2+ ε′y, xy). Then ε ≡ ε′ mod

n.

Proof. (1) Let a = Xk−2 + εY with ε ∈ U(S) and b = XY . Then a, b is a system of

parameters of S. Setting φ = 0, ψ = −ε−1X, and δ = −ε−1, we have a2φ + abψ + b2 =

δXkY , thus (a, b) ∈ XR by Proposition 4.4. Conversely, suppose that I ∈ XR and xy ∈ I.

Then I = (a, b) and I2 = aI for some a = Xn + a1Y and b = b1XY with n > 0

and a1, b1 ∈ S by Proposition 4.25, and XY ∈ (a, b), hence (a, b) = (a,XY ). Let

ℓ = ℓS(S/(a1, X)). Because ℓR(R/(a)) = 2 · ℓR(R/I),

ℓR(R/(a)) = ℓS(S/(X
n + a1Y,X

kY )) = k · (ℓ+ 1) + n, and

ℓR(R/I) = ℓS(S/(X
n + a1Y,XY )) = ℓ+ 1 + n,

we have k ·(ℓ+1)+n = 2(ℓ+1+n), so that (k−2)ℓ = n−(k−2). Since k ≥ 3 and k−2 ≥ n

(Proposition 4.27), we get n = k− 2 and ℓ = 0, therefore (a, b) = (Xk−2 + a1Y,XY ) with

a1 ∈ U(S) as desired. The Assertion (2) follows from the same technique as in the proof

of Proposition 4.18 (2).

Let I ∈ XR and assume that I is indecomposable. We choose a = Xn + a1Y and

b = b1XY as in Proposition 4.25. We then have the following.

Proposition 4.29. The following assertions hold true.

(1) If n = 1, then k is odd, and (a, b) = (X + εY ℓ, XY p) where ε ∈ U(S) and ℓ, p > 0

such that (k − 2)ℓ = 2p− 1.

(2) Suppose that k is odd. Let ℓ, p > 0 such that (k − 2)ℓ = 2p− 1 and ε ∈ U(S). Then

(x+ εyℓ, xyp) ∈ XR.

(3) Let ℓ, p > 0 (resp. ℓ′, p′ > 0) such that (k − 2)ℓ = 2p − 1 (resp. (k − 2)ℓ′ = 2p′ − 1)

and ε, ε′ ∈ U(S). If (x + εyℓ, xyp) = (x + ε′yℓ
′
, xyp

′
), then ℓ = ℓ′, p = p′, and ε ≡ ε′

mod n.

Proof. (1) Suppose that n = 1. Since (a, Y ) = n and S/(a) is a DVR, b1 = ρY p−1 + ab2

for some p > 0, ρ ∈ U(S), and b2 ∈ S (notice that b1 /∈ (a), since b /∈ (a)). Then

(a, b) = (a,XY p). On the other hand, because a1 /∈ (X), we can write a1 = τY ℓ−1 + a2X

for some ℓ > 0 and a2 ∈ S. We then have a = X+a2XY +τY ℓ = (1+a2Y )X+τY ℓ, hence

we may assume a = X+εY ℓ with ℓ > 0 and ε ∈ U(S). Now notice that ℓS(S/(a,X
kY )) =
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ℓS(S/(X + εY ℓ, XkY )) = kℓ + 1 and ℓS(S/(a, b)) = ℓS(S/(X + εY ℓ, XY p)) = ℓ + p, so

that kℓ+ 1 = 2(ℓ+ p), whence (k − 2)ℓ = 2p− 1 and k is odd.

(2) Let a = X + εY ℓ and b = XY p with ε ∈ U(S) and ℓ, p > 0 such that (k − 2)ℓ =

2p− 1. Then a, b is a system of parameters of S. We set

φ =


−ε−1XY if k = 3
k−4∑
i=0

(−1)i+k−4(i+ 1)ε−(k−2)+iXk−2−iY iℓ+1 if k ≥ 5
,

ψ =

{
Y p if k = 3

−(k − 2)ε−1XY p−ℓ if k ≥ 5
, and δ = (−1)k−4ε−(k−2).

Then we have a2φ+abψ+b2 = δXkY , thus (a, b) ∈ XR by Proposition 4.4. The Assertion

(3) follows from the same technique as in the proof of Proposition 4.18 (2).

As a consequence, we get the following.

Theorem 4.30. The following assertions hold true.

(1) Suppose that R = k[[X,Y ]]/(X3Y ). Then

XR = {(x3, y)} ∪ {(x+ εy2p−1, xyp) | p > 0, ε ∈ U(S)}.

(2) Suppose that R = k[[X,Y ]]/(X4Y ). Then

XR = {(x4, y)} ∪ {(x2 + εy, xy) | ε ∈ U(S)}.

Proof. These assertions readily follow from Corollary 4.15, Proposition 4.27, Proposition

4.28, and Proposition 4.29.
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