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Preface

The notion of commutative rings is important in singularity theory, and it is deeply re-
lated to various algebraic areas, say, algebraic geometry, representation theory, invariant
theory, and combinatorics. At the end of the 19th century, commutative ring theory was
originally established by D. Hilbert throughout the study of invariant algebras. After the
breakthrough of his work, E. Noether played a central role in the development of commu-
tative algebra. In the middle of the 20th century, the notion of the homological method
was innovated into commutative ring theory by many researchers, say, M. Auslander, D.
A. Buchsbaum, D. Rees, D. G. Northcott, J. -P. Serre and others. Since then, and up
to the present day, the study of Cohen-Macaulay rings and modules has been becoming
central subject of commutative ring theory.

The purpose of this dissertation is to stratify Cohen-Macaulay rings. As is well-known,
Cohen-Macaulay rings are stratified

regular ring ⇒ complete intersection ⇒ Gorenstein ring ⇒ Cohen-Macaulay ring

in terms of homological algebra. Among them, the notion of Gorenstein rings is defined
by the local finiteness of the self-injective dimension. Gorenstein rings are known to
have interesting properties such as total reflexivity and vanishing of cohomology. They
appear with beautiful symmetry in not only commutative algebra but also combinatorics,
algebraic geometry, invariant theory and so on. However, on the other hand, there is
a huge gap in whether the self-injective dimension is finite or not, and many Cohen-
Macaulay rings appearing in concrete examples are actually not Gorenstein rings. For
instance, although any normal semigroup rings are Cohen-Macaulay, a normal semigroup
ring is Gorenstein if and only if its interior coincides with itself after some shift (see [11,
Theorem 6.3.5]). Furthermore, if R is a Cohen-Macaulay local ring and M is a maximal
Cohen-Macaulay R-module, the idealization R!M is always Cohen-Macaulay local ring
again. However, R ! M is Gorenstein if and only if M is isomorphic to the canonical
module of R (see, [35, 69]). Therefore, our problem is now stated as follows.

Problem. Give a new theory of rings between Gorenstein and Cohen-Macaulay.

One of the important results of the problem is about almost Gorenstein rings. The
basic papers [7, 36, 46] revealed the properties of the non-Gorenstein almost Gorenstein
rings such as G-Regularity and the Gorensteinness of the Blow-up algebra. On the other
hand, one also comes to feel cramped for almost Gorenstein rings. For instance, the almost
Gorenstein property is not preserved by flat base changes, that is, R → R[X]/(Xn) is no
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longer almost Gorenstein if R is an almost Gorenstein local ring and n > 1. Besides the
almost Gorenstein theory, the study of non-Gorenstein Cohen-Macaulay rings has been
carried out under intense competition. One can also find other stratifications of Cohen-
Macaulay rings in [15, 55]. These theories have not been unified yet. The problem here
is not only inconvenience but also some questions cannot be answered in the individual
frameworks.

In this dissertation, we try to solve these problems by unifying these theories based
on the almost Gorenstein theory. That is, we defined the notion of generalized Gorenstein
rings as a generalization of almost Gorenstein rings, and solved the crippled problems of
the almost Gorenstein theory (Theorems 1.2.3 and 1.1.6). Furthermore, we established
theorems, which cannot be stated in the almost Gorenstein theory (Theorems 1.2.5, 2.1.2,
and 3.5.5). We also clarified the relation between almost Gorensteinness and nearly
Gorensteinness in the sense of [55] (see, Corollary 1.8.12).

The main themes of this dissertation are classified into the following three directions.

A. Formation of the theory of generalized Gorenstein rings

B. Ubiquity of Ulrich ideals and trace ideals

C. Auslander-Reiten conjecture

Direction A is written in Chapters 1 and 2. We further develop the almost Gorenstein
ring theory and give a new structure of rings, that is, generalized Gorenstein rings. Chap-
ter 1 and 2 are reproductions of the work [34] and [31], respectively. The final version of
the papers [34] and [31] will be submitted elsewhere for publication.

Direction B is written in Chapters 3 and 4. Ulrich ideals are a special class of trace
ideals. One can consult [67, 43] for basic properties of trace ideals and Ulrich ideals,
respectively. In these chapters, we study the ubiquity of Ulrich ideals and describe the
structure of rings from the ubiquity of trace ideals (Theorems 3.1.4 and 4.1.3). Chapter
3 and 4 are reproductions of the contents of [29] and [30], respectively. These papers [29]
and [30] were already published on the journals.

Direction C is written in Chapter 5. Based on the results of Directions A and B,
we embark on the Auslander-Reiten conjecture, which is a long-standing problem in the
representation theory. As a result, we obtain a new result on determinantal rings although
it is not a complete answer (Theorem 5.2.9). Chapter 5 is a reproduction of the work
[62]. The final version will be submitted elsewhere for publication. All co-authors have
already given reproduction permission.

February, 2020

Shinya Kumashiro
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Chapter 1

On generalized Gorenstein rings

1.1 Introduction

Almost Gorenstein rings are one of the most interesting objects in the study of non-
Gorenstein Cohen-Macaulay rings. The notion of almost Gorenstein rings was originated
from V. Barucci and R. Fröberg [7] for one-dimensional analytically unramified local rings.
After that, S. Goto, N. Matsuoka, and T. T. Phuong [36] developed the theory of almost
Gorenstein ring of dimension one. Nowadays the notion of almost Gorenstein rings is
defined in arbitrary Cohen-Macaulay local/graded rings by S. Goto, R. Takahashi, and
N. Taniguchi [46], through the notion of Ulrich R-modules. Let us recall their definition
of almost Gorenstein local rings.

Definition 1.1.1. Let (R,m) be a Cohen-Macaulay local ring of dimension d, possessing
the canonical module KR. Then we say that R is an almost Gorenstein local ring, if there
exists an exact sequence

0 → R → KR → C → 0

of R-modules such that either C = (0) or C is an Ulrich R-module with respect to m.

Here, for a finitely generated R-module C and an m-primary ideal a, C is called an
Ulrich R-module with respect to a if the following three conditions are satisfied.

(1) C is a Cohen-Macaulay R-module (i.e. depthR C = dimR C),

(2) e0a(C) = "R(C/aC), and

(3) C/aC is an R/a-free module,

where "R(∗) stands for the length and

e0a(C) = lim
n→∞

(d− 1)!·"R(C/a
n+1C)

nd−1

denotes the multiplicity of C with respect to a.
Almost Gorenstein rings admit many interesting properties. For instance, let R be

a non-Gorenstein almost Gorenstein local ring. Then, for a finitely generated R-module
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M , ExtiR(M,R) = 0 for all i > 0 implies that M is free. In particular, R is G-regular in
the sense of [74], that is, every totally reflexive module is free. In addition, all the known
Cohen-Macaulay local rings of finite representation type are almost Gorenstein local rings.
It is also studied that problems of when Rees algebras of ideals/modules, determinantal
rings, numerical semigroup rings are almost Gorenstein rings. The research on almost
Gorenstein rings is still in progress. On the other hand, one also comes to feel cramped
for almost Gorenstein local rings. For instance, let R be an almost Gorenstein local ring
but not a Gorenstein ring. Then, for any positive integer n > 1, R[x]/(xn) is no longer an
almost Gorenstein local ring, where R[x] is a polynomial ring over R. Therefore it seems
to be natural to ask what rings contain almost Gorenstein local rings naturally.

The purpose of this chapter is to introduce the notion of generalized Gorenstein rings.
almost Gorenstein local rings are generalized Gorenstein rings and we regard theory of
almost Gorenstein local rings as a part of theory of generalized Gorenstein rings. Through
the notion of generalized Gorenstein rings, we not only solve some problems on almost
Gorenstein local rings, but also find many propositions which cannot be obtained without
the notion of generalized Gorenstein rings. Let us fix our notation to state the definition
of generalized Gorenstein rings and our main results precisely. Throughout this section,
let (R,m) be a Cohen-Macaulay local ring possessing the canonical module KR. Then
generalized Gorenstein local rings are defined as follows.

Definition 1.1.2. We say that R is a generalized Gorenstein local ring, if there exist an
m-primary ideal a and an exact sequence

0 → R −→ KR → C → 0

of R-modules such that

(i) C is an Ulrich R-module with respect to a and

(ii) KR/aKR is R/a-free.

If R is a Gorenstein ring, then R is a generalized Gorenstein local ring by taking a
parameter ideal a = (a1, a2, . . . , ad) a and a natural exact sequence

0 → R
a1−→ R → R/(a1) → 0.

We say that R is a generalized Gorenstein ring with respect to a, if R is a non-Gorenstein
generalized Gorenstein local ring possessing an m-primary ideal a which satisfies Definition
1.2.2, see Proposition 1.4.3. With this notation the notion of almost Gorenstein local rings
is the same as the notion of generalized Gorenstein local rings with respect to m if R is
not a Gorenstein ring. Let us explain the utilities of the notion of generalized Gorenstein
local rings. First of all, we have the following statement so-called characterizations of
non-zerodivisor and flat base change.

Theorem 1.1.3 (Theorem 1.4.6 and 1.4.7). The following assertions hold true.

(1) Suppose that R is a generalized Gorenstein local ring with respect to a. Suppose that
dimR ≥ 2 and the residue field is infinite. Then we can choose a non-zerodivisor
f ∈ a of R so that R/(f) is a generalized Gorenstein local ring with respect to a/(f).
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(2) Let f ∈ m be a non-zerodivisor of R and suppose R/(f) is a generalized Gorenstein
local ring with respect to [a+ (f)]/(f). Then R is a generalized Gorenstein local ring
with respect to a+ (f) and f '∈ ma.

(3) Let ψ : R → S be a flat local homomorphism of Noetherian local rings such that S/mS
is a Cohen-Macaulay local ring. Let J ⊆ S be a parameter ideal in S/mS. Consider
the following two conditions.

(i) R is a generalized Gorenstein local ring with respect to a and S/mS is a Goren-
stein ring.

(ii) S is a generalized Gorenstein local ring with respect to aS + J .

Then (i) ⇒ (ii) holds true. (ii) ⇒ (i) also holds true if R/m is infinite.

In particular, if R is a generalized Gorenstein local ring, then so is R[x]/(xn) for every
n > 0. One can find some other constructions of generalized Gorenstein local rings.
For instance, every Cohen-Macaulay local ring whose multiplicity is at most three is a
generalized Gorenstein local ring, if the residue field is infinite (see Proposition 1.5.14).
We will construct generalized Gorenstein local rings from numerical semigroup rings,
idealizations, and determinantal rings, see Section 1.5 and 1.7.

The notion of generalized Gorenstein local rings provides a deeper understanding for
the trace of the canonical module. Here the trace of the canonical module is the image of
the following R-linear map

t : HomR(KR, R)⊗R KR → R,

where t(f ⊗ x) = f(x) for all f ∈ HomR(KR, R) and x ∈ KR. One of the most important
facts of the trace of the canonical module tr(KR) is to describe non-Gorenstein locus of
R. Since many properties of generalized Gorenstein local rings are condensed into the
one-dimensional case by Theorem 1.2.3, for a while, we focus on the case where dimR = 1.
Then, once R is a generalized Gorenstein local ring with respect to a for some ideal a,
we have a = trR(KR). Furthermore, if R has maximal embedding dimension, we have the
following.

Theorem 1.1.4 (Theorem 1.5.18 and 1.8.14). Suppose that dimR = 1 and R has maximal
embedding dimension. Assume that there exist a canonical ideal I " R and its minimal
reduction (a) ⊆ I. Then the following conditions are equivalent.

(1) R is a generalized Gorenstein local ring but not an almost Gorenstein local ring.

(2) B = HomR(m,m) is a generalized Gorenstein local ring but not a Gorenstein ring and
v(B) = e(B) = e(R).

When this is the case, there exists an element α ∈ m such that m2 = αm and we have the
following.

(i) R/m ∼= B/n,
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(ii) "B(B/trB(KB)) = "R(R/trR(KR))− 1, and

(iii) n2 = αn.

Here n denotes the unique maximal ideal of B and v(R) (resp. e(R)) denotes the embedding
dimension of R (resp. the multiplicity of R).

On the other hand, S. Goto, N. Matsuoka, and T. T. Phuong proved thatR is an almost
Gorenstein local ring possessing maximal embedding dimension if and only if HomR(m,m)
is a Gorenstein ring (see [36, Theorem 5.1.]). Combining to these two results, generalized
Gorenstein local rings possessing maximal embedding dimension finally reach Gorenstein
rings by the action taking the endomorphism of the maximal ideal.

We can also find the relation between generalized Gorenstein local rings and Ulrich
ideals. Here the notion of Ulrich ideals is introduced by the S. Goto, K. Ozeki, R.
Takahashi, K. Watanabe, and K. Yoshida [43] and they showed that Ulrich ideals enjoy
very interesting properties. One can consult [43, 47] and Theorem 1.8.1 for the basic
properties of Ulrich ideals. Here let us note the definition of Ulrich ideals.

Definition 1.1.5. [43, Definition 2.1.] Let (R,m) be a Cohen-Macaulay local ring of
dimension d. Let I be an m-primary ideal of R and assume that I contains a parameter
ideal Q of R as a reduction. We say that I is an Ulrich ideal of R, if the following
conditions are satisfied.

(1) I '= Q, but I2 = QI.

(2) I/I2 is a free R/I-module.

Assume that R is a non-Gorenstein generically Gorenstein ring, that is, the total ring
Q(R) of fractions of R is a Gorenstein ring. Then we see that there is no Ulrich ideal
which proper contained in trR(KR) if dimR = 1 (see Theorem 1.5.27). Conversely, every
Ulrich ideal which can not be generated by dimR + 1 elements contain trR(KR) (see
Theorem 1.8.4). These observations provide the question of when trR(KR) is an Ulrich
ideal. We will answer the question by using the notion of generalized Gorenstein local
rings (see Theorem 1.8.7 and Corollary 1.8.10). As a Corollary, we give a generalization
of the theorem of J. Herzog, T. Hibi, and D. I. Stamate [55, Theorem 7.4.]. Furthermore,
we completely determined the set of all Ulrich ideals for one-dimensional generalized
Gorenstein local rings possessing maximal embedding dimension as following.

Theorem 1.1.6 (Theorem 1.8.18). Suppose that R is not a Gorenstein ring and dimR =
1. Set v = v(R) and N = "R(R/trR(KR)) > 0. Then the following conditions are
equivalent.

(1) R is a generalized Gorenstein local ring possessing maximal embedding dimension.

(2) trR(KR) and m are Ulrich ideals.

(3) R is G-regular and a length of a maximal chain of Ulrich ideals is N − 1.
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(4) There exist elements α, x2, x3, . . . , xv ∈ m which satisfy the following two conditions.

(i) m = (α, x2, x3, . . . , xv) and

(ii) XR = {(αi, x2, x3, . . . , xv) | 1 ≤ i ≤ N}.

Here XR denotes the set of all Ulrich ideals.

Let us give one more result of generalized Gorenstein local rings.

Theorem 1.1.7 (Corollary 1.6.5). Let (S, n) be a Gorenstein local ring and (R,m) a one-
dimensional Cohen-Macaulay local ring but not a Gorenstein ring. Let ϕ : S → R be a
surjective ring homomorphism and suppose the projective dimension of R over S is finite.
Let a be an ideal of S such that a ⊇ Kerϕ and set n = µS(a) and a = (x1, x2, . . . , xn).
Then the following conditions are equivalent.

(1) R is a generalized Gorenstein local ring with respect to aR.

(2) There exists a minimal S-free resolution

0 → S⊕r M−→ S⊕q → · · · → S → R → 0

of R such that

tM =





∗∗ ∗
x1 x2 . . . xn

x1 x2 . . . xn 0
... 0

0 x1 x2 . . . xn




,

where all components of ∗∗ and ∗ are in a.

Theorem 1.2.8 has applications for determinantal rings and the Rees algebras of pa-
rameter ideals over Gorenstein local rings (see Theorem 1.7.3 and Corollary 1.7.5).

We now explain how this chapter is organized. In Section 1.3 we give a brief survey
on Ulrich modules with respect to a, which we need throughout this chapter. In Section
1.4 we explore basic properties of generalized Gorenstein local rings which contain non-
zerodivisor characterization and flat base change. In Section 1.5 we focus our attention
on the one-dimensional case. We see that the notion of generalized Gorenstein local
rings is important to study that Ulrich ideals and the endomorphism of the maximal
ideal. Numerous examples of generalized Gorenstein local rings are given via numerical
semigroup rings and idealizations. Furthermore, we will see that many results in the
case of dimension one can be extended for the higher-dimensional case, through Theorem
1.2.3. The purpose of Section 1.6 is to show Theorem 1.2.8. In Section 1.7 we construct
the examples of higher-dimensional generalized Gorenstein local rings by using Theorem
1.2.8. In Section 1.8 we again consider Ulrich ideals by using the trace of the canonical
module.
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Let us fix our notation throughout this chapter. In what follows, unless otherwise
specified, let R denote a Noetherian local ring with maximal ideal m. For each finitely
generated R-module M , let µR(M) (resp. "R(M)) denote the number of elements in a
minimal system of generators of M (resp. the length of M). If M is a Cohen-Macaulay
R-module, rR(M) denotes the Cohen-Macaulay type of M .

Let a be an m-primary ideal of R and set s = dimR M . Then we have the integers
{eia(M)}0≤i≤s such that the equality

"R(M/an+1M) = e0a(M)·
(
n+ s

s

)
− e1a(M)·

(
n+ s− 1

s− 1

)
+ · · ·+ (−1)sesa(M)

holds for all n - 0. eia(M) is called the ith Hilbert coefficient of M with respect to a. Let
e(R) = e0m(R) (resp. v(R)) denote the multiplicity of R (resp. the embedding dimension
of R). r(R) = rR(R) denotes the Cohen-Macaulay type of R if R is a Cohen-Macaulay
local ring.

Let Q(R) be the total ring of fractions of R. For R-submodules X and Y of Q(R), let

X : Y = {a ∈ Q(R) | aY ⊆ X}.

For ideals I, J of R, we set I :R J = {a ∈ R | aJ ⊆ I}, whence I :R J = (I : J) ∩R.

1.2 Introduction

Almost Gorenstein rings are one of the most interesting objects in the study of non-
Gorenstein Cohen-Macaulay rings. The notion of almost Gorenstein rings was originated
from V. Barucci and R. Fröberg [7] for one-dimensional analytically unramified local rings.
After that, the first author, N. Matsuoka, and T. T. Phuong [36] developed the theory of
almost Gorenstein ring of dimension one. Nowadays the notion of almost Gorenstein rings
is defined in arbitrary Cohen-Macaulay local/graded rings by the first author, R. Taka-
hashi, and N. Taniguchi [46], through the notion of Ulrich R-modules. Let us recall their
definition of almost Gorenstein local rings.

Definition 1.2.1. ([46, Definition 1.1]) Let (R,m) be a Cohen-Macaulay local ring of
dimension d, possessing the canonical module KR. Then we say that R is an almost
Gorenstein local ring, if there exists an exact sequence

0 → R → KR → C → 0

of R-modules such that either C = (0) or C is an Ulrich R-module with respect to m.

Here, for a finitely generated R-module C and an m-primary ideal a, C is called an
Ulrich R-module with respect to a if the following three conditions are satisfied (cf. [43,
Definition 1.2]) .

(1) C is a Cohen-Macaulay R-module (i.e. depthR C = dimR C),

(2) e0a(C) = "R(C/aC), and
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(3) C/aC is an R/a-free module,

where "R(∗) stands for the length and

e0a(C) = lim
n→∞

(d− 1)!·"R(C/a
n+1C)

nd−1

denotes the multiplicity of C with respect to a.
Almost Gorenstein rings admit many interesting properties. For instance, let R be a

non-Gorenstein almost Gorenstein local ring. Then, for a finitely generated R-module M ,
ExtiR(M,R) = 0 for all i > 0 implies that M is free ([46, Corollary 4.5], [3, Corollary 4.6]).
In particular, R is G-regular in the sense of [74], that is, every totally reflexive module
is free. In addition, all the known Cohen-Macaulay local rings of finite representation
type are almost Gorenstein local rings ([46]). It is also studied that problems of when
Rees algebras of ideals/modules, determinantal rings, and numerical semigroup rings are
almost Gorenstein rings. On the other hand, one also comes to feel cramped for almost
Gorenstein local rings. For instance, let R be an almost Gorenstein local ring but not a
Gorenstein ring. Then, for any positive integer n > 1, R[x]/(xn) is no longer an almost
Gorenstein local ring, where R[x] is a polynomial ring over R.

Besides the almost Gorenstein theory, the study of non-Gorenstein Cohen-Macaulay
rings has been carried out under intense competition. One can also find other stratifi-
cations of Cohen-Macaulay rings, say, nearly Gorenstein rings and 2-almost Gorenstein
local rings (see [15, 55]). These theories have not been unified yet. The problem here
is not only inconvenience but also some questions cannot be answered in the individual
frameworks.

In this chapter, we try to solve these problems by unifying these theories based on
the almost Gorenstein theory. That is, we introduce the notion of generalized Gorenstein
rings and we regard the theory of almost Gorenstein local rings as a part of the theory
of generalized Gorenstein rings. As a result, we solve the crippled problems of the almost
Gorenstein theory (Theorems 1.4.6 and 1.4.7). Furthermore, we establish propositions,
which cannot be stated in the almost Gorenstein theory (Corollary 1.5.12 and Theorems
1.8.14 and 1.8.18). These results make the relations among almost Gorenstein local rings,
2-almost Gorenstein local rings, and nearly Gorenstein rings easier to understand.

Let us fix our notation to state the definition of generalized Gorenstein rings and our
main results precisely. Throughout this section, let (R,m) be a Cohen-Macaulay local
ring possessing the canonical module KR. Then generalized Gorenstein local rings are
defined as follows.

Definition 1.2.2. We say that R is a generalized Gorenstein local ring, if there exist an
m-primary ideal a and an exact sequence

0 → R −→ KR → C → 0

of R-modules such that

(i) C is an Ulrich R-module with respect to a and
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(ii) KR/aKR is R/a-free.

If R is a Gorenstein ring, then R is a generalized Gorenstein local ring by taking a
parameter ideal a = (a1, a2, . . . , ad) and a natural exact sequence

0 → R
a1−→ R → R/(a1) → 0.

We say that R is a GGL ring with respect to a, if R is a non-Gorenstein generalized
Gorenstein local ring possessing an m-primary ideal a which satisfies Definition 1.2.2, see
Proposition 1.4.3. With this notation, the notion of non-Gorenstein almost Gorenstein
local rings is the same as the notion of generalized Gorenstein local rings with respect to
m. Let us explain the utilities of the notion of generalized Gorenstein local rings. First
of all, we have the following statement so-called characterizations of non-zerodivisor and
flat base change.

Theorem 1.2.3 (Theorem 1.4.6). The following assertions hold true.

(1) Suppose that R is a generalized Gorenstein local ring with respect to a. Suppose that
dimR ≥ 2 and the residue field is infinite. Then we can choose a non-zerodivisor
f ∈ a of R so that R/(f) is a generalized Gorenstein local ring with respect to a/(f).

(2) Let f ∈ m be a non-zerodivisor of R and suppose R/(f) is a generalized Gorenstein
local ring with respect to [a+ (f)]/(f). Then R is a generalized Gorenstein local ring
with respect to a+ (f) and f '∈ ma.

Theorem 1.2.4 (Theorem 1.4.7). Let ψ : R → S be a flat local homomorphism of
Noetherian local rings such that S/mS is a Cohen-Macaulay local ring. Let J ⊆ S be a
parameter ideal in S/mS. Consider the following two conditions.

(1) R is a generalized Gorenstein local ring with respect to a and S/mS is a Gorenstein
ring.

(2) S is a generalized Gorenstein local ring with respect to aS + J .

Then (1) ⇒ (2) holds true. (2) ⇒ (1) also holds true if R/m is infinite.

By Theorem 1.2.4, if R is a generalized Gorenstein local ring, then so is R[x]/(xn) for
every n > 0. One can find some other constructions of generalized Gorenstein local rings.
For instance, every Cohen-Macaulay local ring whose multiplicity is at most three is a
generalized Gorenstein local ring, if the residue field is infinite (see Proposition 1.5.14).
We will construct generalized Gorenstein local rings from numerical semigroup rings,
idealizations, and determinantal rings, see Sections 1.5 and 1.7.

The notion of generalized Gorenstein local rings provides a deeper understanding for
the trace of the canonical module. Here the trace of the canonical module is the image of
the following R-linear map

t : HomR(KR, R)⊗R KR → R,
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where t(f ⊗ x) = f(x) for all f ∈ HomR(KR, R) and x ∈ KR. One of the most important
facts of the trace of the canonical module tr(KR) is to describe non-Gorenstein locus of R,
see for instance [55, Lemma 2.1]. Since many properties of generalized Gorenstein local
rings are condensed into the one-dimensional case by Theorem 1.2.3, for a while, we focus
on the case where dimR = 1. Then, once R is a generalized Gorenstein local ring with
respect to a for some ideal a, we have a = trR(KR) (Theorem 1.5.8 and Remark 1.8.3(2)).
Furthermore, if R has maximal embedding dimension, that is, the embedding dimension
of R is the multiplicity of R, then we have the following. Let v(R) (resp. e(R)) denote
the embedding dimension of R (resp. the multiplicity of R).

Theorem 1.2.5 (Theorem 1.8.14). Suppose that dimR = 1 and R has maximal embedding
dimension. Assume that there exist a canonical ideal I " R and its minimal reduction
(a) ⊆ I. Then the following conditions are equivalent.

(1) R is a generalized Gorenstein local ring but not an almost Gorenstein local ring.

(2) B = HomR(m,m) is a generalized Gorenstein local ring with v(B) = e(B) = e(R),
but not a Gorenstein ring.

In particular, B is a Cohen-Macaulay local ring with the maximal ideal n. When this is
the case, there exists an element α ∈ m such that m2 = αm and we have the following.

(i) R/m ∼= B/n,

(ii) "B(B/trB(KB)) = "R(R/trR(KR))− 1, and

(iii) n2 = αn.

On the other hand, the first author, N. Matsuoka, and T. T. Phuong proved that R is
an almost Gorenstein local ring possessing maximal embedding dimension if and only if
HomR(m,m) is a Gorenstein ring (see [36, Theorem 5.1.]). Combining to these two results,
generalized Gorenstein local rings possessing maximal embedding dimension finally reach
Gorenstein rings by the action taking the endomorphism of the maximal ideal.

We can also find the relation between generalized Gorenstein local rings and Ulrich
ideals. Here the notion of Ulrich ideals is introduced by the first author, K. Ozeki, R.
Takahashi, K. Watanabe, and K. Yoshida [43] and they showed that Ulrich ideals enjoy
very interesting properties. One can consult [43, 47] for the basic properties of Ulrich
ideals. Here let us note the definition of Ulrich ideals.

Definition 1.2.6. ([43, Definition 2.1.]) Let (R,m) be a Cohen-Macaulay local ring of
dimension d. Let I be an m-primary ideal of R and assume that I contains a parameter
ideal Q of R as a reduction. We say that I is an Ulrich ideal of R, if the following
conditions are satisfied.

(1) I '= Q, but I2 = QI.

(2) I/I2 is a free R/I-module.
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Let R be a non-Gorenstein generically Gorenstein ring, that is, Rp is Gorenstein for
all minimal prime p. Then we see that there is no Ulrich ideal which is strictly contained
in trR(KR) if dimR = 1 (see Theorem 1.5.27). Furthermore, every Ulrich ideal which
can not be generated by dimR+ 1 elements contain trR(KR) (see Theorem 1.8.4). These
observations provide the question of when trR(KR) is an Ulrich ideal. We will answer the
question by using the notion of generalized Gorenstein local rings (see Theorem 1.8.7 and
Corollary 1.8.10). As a corollary, we give a generalization of the result of J. Herzog, T.
Hibi, and D. I. Stamate [55, Theorem 7.4.]. Furthermore, we completely determined the
set of all Ulrich ideals for one-dimensional generalized Gorenstein local rings possessing
maximal embedding dimension as follows.

Theorem 1.2.7 (Theorem 1.8.18). Suppose that R is not a Gorenstein ring and dimR =
1. Set v = v(R). Then the following conditions are equivalent.

(1) R is a generalized Gorenstein local ring possessing maximal embedding dimension.

(2) trR(KR) and m are Ulrich ideals.

(3) R is G-regular and a length of a maximal chain of Ulrich ideals is "R(R/trR(KR))−1.

(4) There exist elements α, x2, x3, . . . , xv ∈ m which satisfy the following two conditions.

(i) m = (α, x2, x3, . . . , xv) and

(ii) {(αi, x2, x3, . . . , xv) | 1 ≤ i ≤ "R(R/trR(KR))} is the set of all Ulrich ideals.

Let us give one more result of generalized Gorenstein local rings.

Theorem 1.2.8 (Corollary 1.6.5). Let (S, n) be a Gorenstein local ring and (R,m) a one-
dimensional Cohen-Macaulay local ring but not a Gorenstein ring. Let ϕ : S → R be a
surjective ring homomorphism and suppose the projective dimension of R over S is finite.
Let a be an ideal of S such that a ⊇ Kerϕ and set n = µS(a) and a = (x1, x2, . . . , xn).
Then the following conditions are equivalent.

(1) R is a generalized Gorenstein local ring with respect to aR.

(2) There exists a minimal S-free resolution

0 → S⊕r M−→ S⊕q → · · · → S → R → 0

of R such that

tM =





∗∗ ∗
x1 x2 . . . xn

x1 x2 . . . xn 0
... 0

0 x1 x2 . . . xn




,

where all components of ∗∗ and ∗ are in a.
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Theorem 1.2.8 has applications for determinantal rings and the Rees algebras of pa-
rameter ideals over Gorenstein local rings (see Theorem 1.7.3 and Corollary 1.7.5).

We now explain how this chapter is organized. In Section 1.3 we give a brief survey
on Ulrich modules with respect to a, which we need throughout this chapter. In Section
1.4 we explore basic properties of generalized Gorenstein local rings which contain non-
zerodivisor characterization and flat base change. In Section 1.5 we focus our attention
on the one-dimensional case. We see that the notion of generalized Gorenstein local rings
is important to study that Ulrich ideals and the endomorphism algebra of the maximal
ideal. Numerous examples of generalized Gorenstein local rings are given arising from
numerical semigroup rings and idealizations. Furthermore, we will see that several results
in the case of dimension one can be extended for the higher-dimensional case, through
Theorem 1.2.3. The purpose of Section 1.6 is to show Theorem 1.2.8. In Section 1.7 we
construct the examples of higher-dimensional generalized Gorenstein local rings by using
Theorem 1.2.8. In Section 1.8 we again consider Ulrich ideals by using the trace of the
canonical module.

Let us fix our notation throughout this chapter. In what follows, unless otherwise
specified, let R denote a Noetherian local ring with maximal ideal m. For each finitely
generated R-module M , let µR(M) (resp. "R(M)) denote the number of elements in a
minimal system of generators of M (resp. the length of M). If M is a Cohen-Macaulay
R-module, rR(M) denotes the Cohen-Macaulay type of M .

Let a be an m-primary ideal of R and set s = dimR M . Then we have the integers
{eia(M)}0≤i≤s such that the equality

"R(M/an+1M) = e0a(M)·
(
n+ s

s

)
− e1a(M)·

(
n+ s− 1

s− 1

)
+ · · ·+ (−1)sesa(M)

holds for all n - 0. eia(M) is called the ith Hilbert coefficient of M with respect to a. Let
e(R) = e0m(R) (resp. v(R)) denote the multiplicity of R (resp. the embedding dimension
of R). r(R) = rR(R) denotes the Cohen-Macaulay type of R if R is a Cohen-Macaulay
local ring.

Let Q(R) be the total ring of fractions of R. For R-submodules X and Y of Q(R), let

X : Y = {a ∈ Q(R) | aY ⊆ X}.

For ideals I, J of R, we set I :R J = {a ∈ R | aJ ⊆ I}, whence I :R J = (I : J) ∩R.
For a matrix M and positive integer t, It(M) denotes the ideal of S generated by the

t× t minors of the matrix M.

1.3 Survey on Ulrich modules with respect to a

In this section, we summarize some preliminaries on Ulrich R-modules, which we need
throughout this chapter. Suppose that (R,m) and (S, n) are Noetherian local rings and
M is a nonzero finitely generated R-module. For an ideal I of R and a finitely generated
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R-module X, we denote

grI(R) =
⊕

n≥0

In/In+1 and

grI(X) =
⊕

n≥0

InX/In+1X.

Note that grI(X) is a Z-graded grI(R)-module. Our goal in this section is Proposition
1.3.5. We start with the following lemma.

Lemma 1.3.1. Let ϕ : R → S be a flat local homomorphism such that S/mS is a Cohen-
Macaulay local ring of dimension ". Let g1, g2, . . . , g! ∈ S be a system of parameters
of S/mS and set J = (g1, g2, . . . , g!). Then g1t, g2t, . . . , g!t is a grIS+J(S ⊗R X)-regular
sequence for any ideal I of R.

Proof. First of all, we show that g1, g2, . . . , g! is a grIS(S⊗RX)-regular sequence. Actually,
the exact sequence 0 → S

g1−→ S → S/g1S → 0 of S-modules induces the exact sequence

0 → S ⊗R InX
g1−→ S ⊗R InX → (S/g1S)⊗R InX → 0

as S-modules for all n ≥ 0 since R → S/g1S is a flat local homomorphism. This induces
the exact sequence

0 → grIS(L)
g1−→ grIS(L) → grIS((S/g1S)⊗R X) → 0

as graded grIS(S)-modules, where L = S ⊗R X. Hence g1 is a grIS(L)-regular element.
By induction on ", g1, g2, . . . , g! is a grIS(L)-regular sequence. Hence

JL ∩ (IS + J)k+1L = JL ∩ [Ik+1L+ J(IS + J)kL] = JL ∩ Ik+1L+ J(IS + J)kL

= JIk+1L+ J(IS + J)kL = J(IS + J)kL

for all k ≥ 0. Therefore g1t, g2t, . . . , g!t is a grIS+J(L)-regular sequence by [76].

Definition 1.3.2. (cf. [43, Definition 1.2.]) Let M be a nonzero finitely generated R-
module and a be an m-primary ideal. We say that M is an Ulrich R-module with respect
to a if M satisfies the following three conditions.

(1) M is a Cohen-Macaulay R-module (i.e. depthR M = dimR M),

(2) e0a(M) = "R(M/aM), and

(3) M/aM is an R/a-free module.

Remark 1.3.3. (1) The notion of Ulrich R-modules with respect to a is a natural gener-
alization of the notion of maximally generated maximal Cohen-Macaulay (MGMCM
for short) R-modules (see [10]). In fact, for an R-module M , M is a MGMCM R-
module if and only if M is an Ulrich R-modules with respect to the maximal ideal m
with dimR M = d.
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(2) We can replace the condition (3) of Definition 1.3.2 to the equality

"R(M/aM) = µR(M)·"R(R/a)

since there is a surjection (R/a)⊕µR(M) → M/aM .

We can also rephrase the condition (2) of Definition 1.3.2 as following.

Lemma 1.3.4. Let a be an m-primary ideal. Suppose that R/m is infinite and M is a
Cohen-Macaulay R-module. Set s = dimR M . Then the following conditions are equiva-
lent.

(1) e0a(M) = "R(M/aM).

(2) aM = (f1, f2, . . . , fs)M for some elements f1, f2, . . . , fs ∈ a.

When this is the case, f1, f2, . . . , fs form a system of parameters of M and a part of
minimal system of generator of a.

Proof. Set R = R/[(0) :R M ] and a = aR. For a ∈ R, a denotes the image of a in R.
(1) ⇒ (2) Since R/m is infinite, there exists a parameter ideal q = (f1, f2, . . . , fs) of

R as a reduction of a, where f1, f2, . . . , fs ∈ a. Hence

"R(M/aM) = e0a(M) = e0a(M) = e0q(M) = "R(M/qM) = "R(M/(f1, f2, . . . , fs)M).

We have aM = (f1, f2, . . . , fs)M since (f1, f2, . . . , fs) ⊆ a.
(2) ⇒ (1) Since aM = (f1, f2, . . . , fs)M and M is a faithful R-module, q =

(f1, f2, . . . , fs) is a reduction of a. Hence

e0a(M) = e0a(M) = e0q(M) = "R(M/qM) = "R(M/aM).

When this is the case, f1, f2, . . . , fs form a system of parameters of M since M/aM
has finite length and s = dimR M . Assume that f1, f2, . . . , fs is not a part of minimal
system of generator of a. Then we have (f1, f2, . . . , fs) + am = (f1, f2, . . . , fs−1) + am
after renumbering of f1, f2, . . . , fs. Hence (f1, f2, . . . , fs−1) is a reduction of a. This is a
contradiction for s = dimR.

Now we can prove the basic properties of Ulrich R-module with respect to a.

Proposition 1.3.5. (cf. [46, Proposition 2.2]) Let M be a nonzero finitely generated R-
module and set s = dimR M . Let a be an m-primary ideal. Then the following assertions
hold true.

(1) Suppose s = 0. Then M is an Ulrich R-module with respect to a if and only if aM = 0
and M is R/a-free.

(2) Suppose that s > 0 and M is a Cohen-Macaulay R-module. Assume that f ∈ a is
a superficial element for M with respect to a. Then M is an Ulrich R-module with
respect to a if and only if M/fM is an Ulrich R/(f)-module with respect to a/(f).

18



(3) Let ϕ : R → S be a flat local homomorphism such that S/mS is a Cohen-Macaulay
local ring of dimension ". Let g1, g2, . . . , g! ∈ S be a system of parameters of S/mS.
Then M is an Ulrich R-module with respect to a if and only if S ⊗R M is an Ulrich
S-module with respect to aS + (g1, g2, . . . , g!).

(4) Suppose that f ∈ m is M-regular and M/fM is an Ulrich R/(f)-module with respect
to [a+ (f)]/(f). Then M is an Ulrich R-module with respect to a+ (f) and f '∈ ma.

Proof. (1) This follows from e0a(M) = "R(M).
(2) Set M = M/fM , R = R/fR, and a = aR. Then we have the equalities e0a(M) =

e0a(M), "R(M/aM) = "R(M/aM), µR(M) = µR(M), and "R(R/a) = "R(R/a) since f is
M -regular. Therefore we have the equivalence by Remark 1.3.3 (2).

(3) By Lemma 1.3.1 and (2), S ⊗R M is an Ulrich S-module with respect to aS +
(g1, g2, . . . , g!) if and only if S ⊗R M is an Ulrich S-module with respect to aS, where
S = S/(g1, g2, . . . , g!). Hence, by passing to R → S/(g1, g2, . . . , g!), we may assume " = 0.
Then, since "S(S⊗RM/a(S⊗RM)) = "S(S/mS) · "R(M/aM) and µS(S⊗RM) = µR(M),
M is an Ulrich R-module with respect to a if and only if S ⊗R M is an Ulrich S-module
with respect to aS by Remark 1.3.3 (2).

(4) By passing to R → R[X]mR[X] if necessary, we may assume that R/m is infinite.
To prove that M is an Ulrich R-module with respect to a+(f), we have only to show that
e0a+(f)(M) = "R(M/[a+(f)]M). By Lemma 1.3.4, we have [a+(f)]·M/fM = (f2, . . . , fs)·
M/fM for some elements f2, . . . , fs ∈ [a + (f)], whence [a + (f)]M = (f, f2, . . . , fs)M .
Therefore M is an Ulrich R-module with respect to a+ (f) and f '∈ ma.

1.4 generalized Gorenstein local rings

In this section, we introduce the notion of generalized Gorenstein local rings which is
the main object of this chapter. We also study about basic properties of generalized
Gorenstein local rings. Throughout this section, let (R,m) be a Cohen-Macaulay local
ring of dimension d ≥ 0, possessing the canonical module KR. Let a be an m-primary
ideal. First, we note some remarks which might be known.

Lemma 1.4.1. The following assertions hold true.

(1) R is a generically Gorenstein ring, that is, Rp is a Gorenstein ring for all p ∈ MinR
if and only if there exists a short exact sequence 0 → R → KR → C → 0.

(2) Suppose that there exists a short exact sequence

0 → R
ϕ−→ KR → C → 0.

Then the assertions hold true.

(i) ([46, Lemma 3.1 (3)]) If d = 0, then C = (0). Hence R is a Gorenstein ring.

(ii) ([46, Lemma 3.1 (2)]) C is a Cohen-Macaulay R-module of dimension d − 1 if
C '= (0).

19



(iii) (cf. [46, Corollary 3.10]) Suppose that C is an Ulrich R-module with respect to
a. If ϕ(1) ∈ aKR, then R is a Gorenstein ring and a is a parameter ideal of R.

Proof. (1) Suppose that R is a generically Gorenstein ring. Then, since KR has a rank,
there exists a canonical ideal I, that is, I ∼= KR and I " R. Since I contains a non-
zerodivisor of R, R can be embedded into I. Conversely, suppose that there exists a short
exact sequence

0 → R → KR → C → 0.

Then, Cp = (0) for all p ∈ MinR since "Rp(Rp) = "Rp(KRp). Hence R is a generically
Gorenstein ring.

(2) (i) Since "R(R) = "R(KR), we have C = (0).
(ii) Suppose C '= (0). Then, since Cp = 0 for all p ∈ MinR, dimR C ≤ d− 1. On the

other hand, we have depthC ≥ d− 1 by the depth lemma.
(iii) Thanks to Proposition 1.3.5(3), we may assume that the residue field R/m is

infinite. We know that d > 0 by (i). Assume d = 1 and take a canonical ideal I " R. We
may assume that the given exact sequence has the following form:

0 → R
ϕ−→ I → C → 0.

Set a = ϕ(1) ∈ I. Then C ∼= I/(a). Since C is an Ulrich R-module with respect to a,
aI ⊆ (a) because of Proposition 1.3.5(1), whence aI = (a) by assumption. Hence a and
I are cyclic since R is a local ring. Therefore R is a Gorenstein ring and a is a parameter
ideal of R. Suppose d ≥ 2 and take f ∈ a so that f is R-regular and superficial for C
with respect to a. We get

0 → R/(f)
ϕ−→ KR/(f) → C/fC → 0,

where C/fC is an Ulrich R/(f)-module with respect to a/(f) since Proposition 1.3.5(2).
Therefore we have R/(f) is a Gorenstein ring and µR/(f)(a/(f)) = d − 1, thus this com-
pletes the proof.

We are now in a position to define generalized Gorenstein local rings.

Definition 1.4.2. We say that R is a generalized Gorenstein local ring, if there exist an
m-primary ideal a and an exact sequence

0 → R −→ KR → C → 0

of R-modules such that

(i) C is an Ulrich R-module with respect to a and

(ii) KR/aKR is R/a-free.

By definition, the notion of generalized Gorenstein local rings is a natural generaliza-
tion of the notion of almost Gorenstein local rings, that is, we have the implications:
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Gorenstein ring ⇒ almost Gorenstein local ring ⇒ generalized Gorenstein local ring.

The notion of generalized Gorenstein local rings is rephrased as follows.

Proposition 1.4.3. R is a generalized Gorenstein local ring if and only if one of the
following conditions is satisfied.

(1) R is a Gorenstein ring.

(2) R is not a Gorenstein ring but there exist an exact sequence

0 → R
ϕ−→ KR → C → 0

of R-modules and m-primary ideal a such that

(i) C is an Ulrich R-module with respect to a and

(ii) the induced homomorphism R/a⊗R ϕ : R/a → KR/aKR is injective.

Proof. (if part) If R is a Gorenstein ring, then we regard R as a generalized Gorenstein
local ring by a natural exact sequence

0 → R
a1−→ R → R/(a1) → 0,

where (a1, a2, . . . , ad) is a parameter ideal of R. Suppose that Case (2) occurs. Then we
have

0 → R/a
R/a⊗Rϕ−−−−−→ KR/aKR → C/aC → 0

and C/aC is R/a-free. Hence so is KR/aKR.
(only if part) Let

0 → R
ϕ−→ KR → C → 0

be a defining exact sequence. If ϕ(1) '∈ mKR, then µR(C) = µR(KR)− 1 = r(R)− 1. We
have

0 → Ker(R/a⊗R ϕ) → R/a
R/a⊗Rϕ−−−−−→ KR/aKR → (R/a)⊕(r(R)−1) → 0.

Hence R/a ⊗R ϕ is injective since "R(Ker(R/a ⊗R ϕ)) = 0. Suppose that ϕ(1) ∈ mKR.
Then we have

R/a
R/a⊗Rϕ−−−−−→ KR/aKR → (R/a)⊕r(R) → 0,

whence R/a ⊗R ϕ is the zero map. Thus ϕ(1) ∈ aKR, and R is a Gorenstein ring and a
is a parameter ideal of R by Lemma 1.4.1(2)(iii).

Definition 1.4.4. When Case (2) in Proposition 1.4.3 occurs, we especially say that R
is a GGL ring with respect to a.

Let us give some examples of generalized Gorenstein local rings.

Example 1.4.5. Let k be a field. Then the following assertions hold true.
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1. Let k[[t]] be the formal power series ring over k. Then, R1 = k[[t5, t6, t8]] is a
generalized Gorenstein local ring of dimension one but not an almost Gorenstein
local ring.

2. Let S = k[[X1, X2, X3, Y1, Y2, Y3]] be the formal power series ring over k. Then,
R2 = S/I is a generalized Gorenstein local ring of dimension one, where

I = (Y1, Y2, Y3)
2 + I2

(
X2

1 X2 X3

Y1 Y2 Y3

)
+ I2

(
X2

1 X2 X3

X2 X3 X3
1

)
+ I2

(
X2

1 X2 X3

Y2 Y3 X2
1Y1

)
.

3. Let R3 = k[[X, Y, Z,W ]]/I2
(
X2 Y 2 Z2

Y 2 Z2 X2

)
, where k[[X, Y, Z,W ]] denotes the formal

power series ring over k. Then R3 is a generalized Gorenstein local ring of dimension
two. However, R3 is not an almost Gorenstein local ring.

4. If R/m is infinite and e(R) ≤ 3, then R is a generalized Gorenstein local ring.

5. If R is a generalized Gorenstein local ring, then R[X]/(Xn) is also a generalized
Gorenstein local ring for all n > 1, where R[X] denotes the polynomial ring over R.

Proof. (1) See Corollary 1.5.35.
(2) Let A = k[[t3, t7, t8]] and set I = (t6, t7, t8). A is a generalized Gorenstein local ring

with respect to I by Corollary 1.5.12. Furthermore, by computations, we have R2
∼= A!I.

We will see that A! I is a generalized Gorenstein local ring due to Corollary 1.5.26.
(3) By Corollary 1.7.4, R3 is a generalized Gorenstein local ring. If R3 is an almost

Gorenstein local ring, then so is k[[X, Y, Z]]/I2
(
X2 Y 2 Z2

Y 2 Z2 X2

)
by Theorem 1.4.6. This is a

contradiction for Proposition 1.8.8.
(4) See Proposition 1.5.14.
(5) R → R[X]/(Xn) is a flat local ring homomorphism such that the fiber is isomorphic

to (R/m)[X]/(Xn). Hence R[X]/(Xn) is a generalized Gorenstein local ring by Theorem
1.4.7.

We note that the assertions (4) and (5) of Example 1.4.5 do not hold true for the case
of almost Gorenstein local rings (see [46, Proposition 3.12.]). Thanks to the argument
of Section 1.3, we have the following which called the non-zerodivisor characterization of
generalized Gorenstein local rings.

Theorem 1.4.6. Suppose R is not a Gorenstein ring. Then the following assertions hold
true.

(1) Suppose that R is a generalized Gorenstein local ring with respect to a and d ≥ 2.
Take a defining exact sequence

0 → R
ϕ−→ KR → C → 0

of R-modules. If f ∈ a is a superficial element for C with respect to a and a non-
zerodivisor of R, then R/(f) is a generalized Gorenstein local ring with respect to
a/(f).
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(2) Let f ∈ m be a non-zerodivisor of R and suppose R/(f) is a generalized Gorenstein
local ring with respect to [a+ (f)]/(f). Then R is a generalized Gorenstein local ring
with respect to a+ (f) and f '∈ ma.

Proof. (1) Since f is a non-zerodivisor of R, we have the exact sequence

0 → R
ϕ−→ KR → C/fC → 0

as R-modules, where R = R/(f). Since C/fC is an Ulrich R-module by Proposition
1.3.5, R is a generalized Gorenstein local ring.

(2) Set R = R/(f) and a = aR. Choose an exact sequence 0 → R
ψ−→ KR → D → 0 of

R-modules such that D is an Ulrich R-module with respect to a and 0 → R/[a+ (f)]
ϕ−→

KR/[a+(f)]KR is exact. Take ξ ∈ KR such that ξ = ψ(1), and consider the exact sequence

R
ϕ−→ KR → C → 0

of R-modules, where ϕ(1) = ξ. Note that C/fC ∼= D and dimD = d − 2. Thus ϕ is
injective since AssR Kerϕ ⊆ AssR and Cp = 0 for all p ∈ AssR. Therefore C is an Ulrich
R-module with respect to a and f '∈ ma by Proposition 1.3.5 and Lemma 1.4.1.

Theorem 1.4.7. Let ψ : R → S be a flat local homomorphism of Noetherian local rings
such that S/mS is a Cohen-Macaulay local ring of dimension ". Let J ⊆ S be a parameter
ideal in S/mS. Consider the following two conditions.

(1) R is a generalized Gorenstein local ring with respect to a and S/mS is a Gorenstein
ring.

(2) S is a generalized Gorenstein local ring with respect to aS + J .

Then (1) ⇒ (2) holds true. (2) ⇒ (1) also holds true if R/m is infinite.

Proof. (1) ⇒ (2) Note that R is not a Gorenstein ring and d > 0 by the definition that R
is a generalized Gorenstein local ring with respect to a and Lemma 1.4.1. Take a defining
exact sequence

0 → R
ϕ−→ KR → C → 0

of R-modules. Then, we get the exact sequence

0 → S
S⊗Rϕ−−−→ KS → S ⊗R C → 0

as S-modules. Here, S⊗RC is an Ulrich S-module with respect to aS+J by Proposition
1.3.5. Moreover, since R → S/J is a flat local homomorphism, we have the injection

S/(aS + J)⊗S (S ⊗R ϕ) : S/(aS + J) → KS/(aS + J)KS.

To prove the implication (2) ⇒ (1), we need more preliminaries for the case of dimen-
sion one. We later prove the implication (2) ⇒ (1), see after Proposition 1.5.13.
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1.5 One-dimensional case

In this section we investigate the case of dimension one. By Theorem 1.4.6, some of
the properties hold in arbitrary dimension. On the other hand, as specific arguments
of dimension one, the analysis of the endomorphism algebra of the maximal ideal and
relationship to Ulrich ideals are given. We also study generalized Gorenstein local rings
arising from numerical semigroups and idealizations.

1.5.1 One-dimensional generalized Gorenstein local rings

Let us recall the definition of generalized Gorenstein local rings in dimension one.

Remark 1.5.1. Let (R,m) be a one-dimensional Cohen-Macaulay local ring possessing
the canonical module KR. Then, by Proposition 1.3.5(1), R is a generalized Gorenstein
local ring if and only if there exist an m-primary ideal a and an exact sequence

0 → R −→ KR → C → 0

of R-modules such that C and KR/aKR are an R/a-free module.

Suppose that a is an m-primary ideal and R is a generalized Gorenstein local ring with
respect to a with dimR = 1. Take a defining exact sequence

0 → R
ϕ−→ KR → C → 0

of R-modules. Then, there exists a canonical ideal I " R since Lemma 1.4.1. Replace KR

to I in the short exact sequence and set a = ϕ(1) ∈ I. Since C ∼= I/(a) is an R/a-free
module, we have aI ⊆ (a). On the other hand, since R/a⊗R ϕ : R/a → I/aI is injective
by Proposition 1.4.3, we have aI ∩ (a) = aa. Hence aI = aa. Therefore (a) is a minimal
reduction of I, that is, In+1 = aIn for some n > 0. Set

K =
I

a
=

{x

a
| x ∈ I

}

as an R-submodule of Q(R). Then K is a fractional ideal of R such that R ⊆ K ⊆ R and
K ∼= KR since Kn+1 = Kn, where R denotes the integral closure of R. It follows that the
short exact sequence 0 → R

ϕ−→ I → C → 0 induces the exact sequence 0 → R → K →
C → 0, where R → K is the embedding.

As a conclusion, we have the following.

Lemma 1.5.2. Suppose that R is a generalized Gorenstein local ring with respect to a with
dimR = 1. Then there exists a fractional ideal K which satisfies the following conditions.

(1) R ⊆ K ⊆ R and K ∼= KR.

(2) aK ⊆ R and K/R is an R/a-free module.

In particular, a = R : K.
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From now on, throughout this section, we maintain the following setting unless oth-
erwise noted.

Setting 1.5.3. Suppose (R,m) is a one-dimensional Cohen-Macaulay local ring possessing
the canonical module KR. We assume that there exists a fractional ideal K such that
R ⊆ K ⊆ R and K ∼= KR, where R denotes the integral closure of R.

We denote S = R[K] and c = R : S. Note that S = Kn for all n - 0. Hence we have
c ⊆ R ⊆ K ⊆ S.

Let us note some remarks on Setting 1.5.3.

Remark 1.5.4. (1) Suppose that (R,m) is a Cohen-Macaulay local ring of dimension
one. If R is a generically Gorenstein ring and R/m is infinite, then R satisfies Setting
1.5.3.

(2) Assume that Setting 1.5.3. Then the following assertion hold true.

(i) S = R[K] is independent of the choice of K.

(ii) Let I and J be fractional ideals. If J ⊆ I, then "R(I/J) = "R((K : J)/(K : I)).

Proof. (1) Since there exists a canonical ideal I and we can choose minimal reduction of
I as a parameter ideal (a), we can take K = I

a .
(2)(i) Although this is proven in [15, Theorem 2.5], let us give a brief proof for the sake

of completeness. Take R ⊆ L ⊆ R so that L ∼= KR. There is an element α ∈ Q(R) such
that L = αK. Hence, since R[K] = Kn = Kn+1 for all n - 0, α·R[K] = αK·R[K] =
L·R[K]. Since 1 ∈ L·R[K], there is an element β ∈ R[K] such that αβ = 1, that is, α is
a unit of R[K]. Therefore R[L] = Ln = αn·Kn = αn·R[K] = R[K] for all n - 0.

(ii) Consider the exact sequence 0 → J
i−→ I → I/J → 0, where i is the embedding.

By applying the functor HomR(−, K), we have

0 → K : I
i−→ K : J → Ext1R(I/J,K) → 0

since K : I ∼= HomR(I,K) naturally. Hence (K : J)/(K : I) ∼= Ext1R(I/J,K), whence we
have the conclusion.

With this notation there are characterizations of the Gorenstein property.

Theorem 1.5.5. ([36, Theorem 3.7]) The following conditions are equivalent.

(1) R is a Gorenstein ring. (2) R = K. (3) R = S.

(4) K = S. (5) K = K2. (6) c = R.

(7) e1I(R) = "R(R/c). (8) e1I(R) = 0.

Here, e1I(R) denotes the first Hilbert coefficient of a canonical ideal I.
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Proof. The implications (1) ⇔ (2), (2) ⇒ (3) ⇒ (4) ⇒ (5), and (3) ⇔ (6) are trivial.
(5) ⇒ (2) This follows from K ⊆ K : K = R.
Hence the conditions from (1) to (6) are equivalent. Note that e1I(R) = "R(S/R) and

"R(R/c) = "R(S/K) by [36, Lemma 2.1 and Lemma 3.5(2)]. Hence we have (2) ⇔ (7)
and (3) ⇔ (8).

Hence c " R " K " S if R is not a Gorenstein ring. It seems that the difference
between R and S (or other inclusions) describes the distance of Gorensteinness of R. From
this observation, let us consider such a kind of characterizations of generalized Gorenstein
local rings in dimension one.

Lemma 1.5.6. Suppose that R is not a Gorenstein ring. Then K/R and K/c = K/cK
are independent of the choice of K up to isomorphism.

Proof. Take L such that R ⊆ L ⊆ R and L ∼= KR. There is an element α ∈ Q(R) such
that L = αK since L ∼= K. α is a unit of S because of S = Ln = αnKn = αnS for enough
large n > 0 by Remark 1.5.4(2)(i). Therefore

L/c = αK/c ∼= K/α−1c = K/c

since c = cS. Hence L/R ∼= K/R.

Lemma 1.5.7. Set a = R : K. Then the following conditions are equivalent.

(1) K2 = K3. (2) a = c. (3) aK = a.

Proof. (1) ⇔ (2) Since a = (K : K) : K = K : K2 and c = (K : K) : S = K : S, we have
"R(R/a) = "R(K2/K) and "R(R/c) = "R(S/K) by Remark 1.5.4. Hence, a = c if and only
if K2 = S.

(2) ⇒ (3) Since cS = c, we have aK = a.
(3) ⇒ (2) Since aKn = a for all n > 0, aS = a ⊆ R. Hence a = c.

In Section 1.8 we see that aK is exactly the trace of canonical ideal trR(KR), see
Remark 1.8.3. Now let us give characterizations of generalized Gorenstein local rings.

Theorem 1.5.8. Suppose that R is not a Gorenstein ring. Then the following conditions
are equivalent.

(1) R is a generalized Gorenstein local ring. (2) K/R is an R/c-free module.

(3) K/c = K/cK is an R/c-free module. (4) S/R is an R/c-free module.

(5) S/c = S/cS is an R/c-free module. (6) e1I(R) = "R(R/c)·r(R).

When this is the case, we have the following.

(i) K2 = K3. (ii) R/c is a Gorenstein ring.

(iii) S/K ∼= R/c. (iv) R is a generalized Gorenstein local ring with respect to c.
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Proof. (2) ⇔ (3) and (4) ⇔ (5) follow from the exact sequences

0 → R/c → K/c → K/R → 0 and 0 → R/c → S/c → S/R → 0

since R/c is an Artinian ring.
(1) ⇒ (2), (i), and (iv) Suppose that R is a generalized Gorenstein local ring with

respect to a. By the argument of the proof of Lemma 1.5.2, we may assume that a defining
short exact sequence has the following form

0 → R → K → K/R → 0.

Hence K/R is R/a-free and 0 → R/a → K/aK is exact. The latter condition says that
aK = K since aK ⊆ R, thus a = c and K2 = K3 by Lemma 1.5.7.

(2) ⇒ (1) Since K/R is an R/c-free module and K/c = K/cK,

0 → R → K → K/R → 0

is the exact sequence as desired.
Hence (1), (2), and (3) are equivalent. To prove (2) ⇒ (6), we need to show that (ii)

and (iii).
(ii) Let r = r(R) be the Cohen-Macaulay type of R. Since K/R ∼= (R/c)⊕(r−1), we

have
0 → R → K → (R/c)⊕(r−1) → 0.

By taking K-dual, we have

0 → R → K → Ext1R(R/c, K)⊕(r−1) → 0.

Thus we have R/c ∼= Ext1R(R/c, K) ∼= KR/c, whence R/c is a Gorenstein ring.
(iii) We have

(0) :S/K m = [K :S m]/K ⊆ [K : m]/K ∼= Ext1R(R/m, K)

in general. Hence S/K is a Cohen-Macaulay faithful R/c-module with rR/c(S/K) = 1,
that is, the canonical R/c-module KR/c. Therefore we have S/K ∼= R/c by (ii).

(3) ⇒ (5) Consider the exact sequence 0 → K/c → S/c → S/K → 0. Since K/c and
S/K are R/c-free, S/c is also R/c-free.

(2) ⇒ (6) Thanks to (iii), S/R is R/c-free of rank r. Hence e1I(R) = "R(S/R) =
"R(R/c)·r(R) by [36, Lemma 2.1].

(6) ⇒ (2) Suppose that e1I(R) = "R(S/R) = "R(R/c)·r(R). Then, "R(K/R) =
"R(S/R) − "R(S/K) = (r − 1)·"R(R/c) since S/K ∼= KR/c. Therefore K/R is an R/c-
free module since there is a surjection (R/c)⊕(r−1) → K/R.

(5) ⇒ (3) Note that cSM
∼= KSM for all M ∈ MaxS since c = K : S ∼= HomR(S,KR).

Hence S/c is a Gorenstein ring. Since R/c → S/c is flat, R/c is also a Gorenstein ring.
Thus we have S/K ∼= KR/c

∼= R/c and K/c is an R/c-free module since the exact sequence
0 → K/c → S/c → S/K → 0.
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Remark 1.5.9. The conditions (i), (ii), and (iii) of Theorem 1.5.8 do not imply that
the ring is a generalized Gorenstein local ring. For example, set R = k[[t4, t7, t9, t10]] ⊆
k[[t]], where k[[t]] denotes a formal power series ring over a field k. Then R satisfies the
conditions (i), (ii), (iii), however, R is not a generalized Gorenstein local ring (see [15,
Example 3.5.]). This example also shows that 2-almost Gorenstein local rings need not
be a generalized Gorenstein local ring in the sense of [15, Theorem 1.4], that is, K2 = K3

and "R(K2/K) = 2.

Corollary 1.5.10. Let (R1,m1) be a Cohen-Macaulay local ring of dimension one and let
ϕ : R → R1 be a flat local homomorphism of local rings such that R1/mR1 is a Gorenstein
ring. Then the following conditions are equivalent.

(1) R is a generalized Gorenstein local ring.

(2) R1 is a generalized Gorenstein local ring.

Proof. By [15, Proposition 3.8], for each n ≥ 0 the following assertions hold true.

(1) Kn
1 = Kn+1

1 if and only if Kn = Kn+1 and

(2) "R1(K
n+1
1 /Kn

1 ) = "R1(R1/mR1)·"R(Kn+1/Kn),

where K1 = R1·K ∼= KR1 . Hence, K2 = K3 if and only if K2
1 = K3

1 and K/R is
R/(R : K)-free if and only if K1/R1 is R1/(R1 : K1)-free. Therefore, R is a generalized
Gorenstein local ring if and only if R1 is a generalized Gorenstein local ring by Lemma
1.5.7 and Theorem 1.5.8.

Corollary 1.5.11. Suppose that r(R) = 2. Then, R is a generalized Gorenstein local ring
if and only if K2 = K3.

Proof. Since r(R) = 2, we have K/R ∼= R/(R : K). Hence, R is a generalized Gorenstein
local ring if and only if K2 = K3 by Lemma 1.5.7.

Corollary 1.5.12. If e(R) ≤ 3, then R is a generalized Gorenstein local ring.

Proof. We may assume that R is not a Gorenstein ring and R/m is infinite. Then, since
v(R) = e(R) = 3, we have K2 = K3 and r(R) = 2.

1.5.2 Applications for higher dimension

Thanks to the characterization of generalized Gorenstein local rings in dimension one,
by induction on dimR, we have some properties of generalized Gorenstein local rings in
arbitrary dimension, which includes Theorem 1.4.7 (2) ⇒ (1). For a while, let (R,m) be
a Cohen-Macaulay local ring possessing the canonical module KR. Let a be an m-primary
ideal. Set d = dimR > 0.

Corollary 1.5.13. If R is a generalized Gorenstein local ring with respect to a, then R/a
is a Gorenstein ring. In particular, a is not a parameter ideal.
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Proof. By Theorem 1.4.7 (1) ⇒ (2), we may assume that R/m is infinite. The case where
d = 1 is proven in Theorem 1.5.8. Let d > 1 and assume that our assertion holds true for
d − 1. Then we can choose f ∈ a such that R/(f) is a generalized Gorenstein local ring
with respect to a/(f) by Theorem 1.4.6. Hence R/a is a Gorenstein ring by induction
hypothesis.

Now we reach to prove the rest of Theorem 1.4.7.

Proof of Theorem 1.4.7 (2) ⇒ (1). Note that S is not a Gorenstein ring and dimS > 0.
Set b = aS + J . S/b is a Gorenstein ring by Corollary 1.5.13 and so is S/aS. Hence R/a
and S/mS are also Gorenstein rings since ϕ : R/a → S/aS is a flat local homomorphism.
It remains to show that R is a generalized Gorenstein local ring with respect to a. Assume
that " = dimS/mS > 0. If dimS = 1, then d = 0 and " = 1 since d + " = 1. Thus there
exists p ∈ MinS such that p ⊇ mS. Since p∩R = m, R → Sp is flat local homomorphism.
Since Sp is a Gorenstein ring, so is R. This concludes that S is also a Gorenstein ring.
This is a contradiction. Hence dimS > 1. Choose an exact sequence

0 → S
ψ−→ KS → D → 0

of S-modules such that D is an Ulrich S-module with respect to b and 0 → S/b
ψ−→

KS/bKS is exact. Set A = S/((0) :S D) and B = S/aS. Then, dimA = dimS − 1 =
d + " − 1, dimB = dimR/a + " = ", and bB = JB. Hence we can choose
h1, h2, . . . , h!, ξ1, ξ2, . . . , ξd−1 ∈ b which satisfy the following conditions.

(1) (h1, h2, . . . , h!)B = bB and

(2) (h1, h2, . . . , h!, ξ1, ξ2, . . . , ξd−1)A is a minimal reduction of bA.

Set q = (h1, h2, . . . , h!, ξ1, ξ2, . . . , ξd−1) as an ideal of S. Then bnD = qnD for all n > 0
since

"S(D/qD) = "A(D/qD) = e0qA(D) = e0bA(D) = e0b(D) = "S(D/bD).

Furthermore, h1, h2, . . . , h!, ξ1, ξ2, . . . , ξd−1 is a D-regular sequence and qD ∩ bn+1D =
qbnD for all n > 0, whence h1, h2, . . . , h!, ξ1, ξ2, . . . , ξd−1 is a super regular sequence for D
with respect to b in the sense of [52], that is, h1t, h2t, . . . , h!t, ξ1t, ξ2t, . . . , ξd−1t is a grb(D)-
regular sequence. In particular, h1, h2, . . . , h!, ξ1, ξ2, . . . , ξd−1 is a superficial sequence for
D with respect to b. On the other hand, since (h1, h2, . . . , h!)B = bB, h1, h2, . . . , h!
is a system of parameter of B = S/aS and S/mS. Hence, by passing to R → S →
S/(h1, h2, . . . , h!), without loss of generality, we may assume that " = 0 by Theorem
1.4.6. Choose an exact sequence

0 → S
ψ−→ KS → D → 0

of S-modules such that D is an Ulrich S-module with respect to aS and 0 → S/aS
ψ−→

KS/aKS is exact. If d > 1, then we can take an element f ∈ a such that f is R-regular
and ϕ(f) is superficial for D with respect to aS. Hence, by passing to R/fR → S/fS,
we may assume d = 1. However, the case where dimR = dimS = 1 are already proven
in Corollary 1.5.10. Therefore we have proven Theorem 1.4.7.
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Proposition 1.5.14. Suppose that R/m is infinite. If e(R) ≤ 3, then R is a generalized
Gorenstein local ring.

Proof. We may assume that R is not a Gorenstein ring. The case where d = 1 is proven in
Theorem 1.5.12. Let d > 1 and assume that our assertion holds true for d−1. Take f ∈ m
so that f is superficial for R with respect to m. Then, since e(R/(f)) = e(R) ≤ 3, R/(f)
is a generalized Gorenstein local ring by induction hypothesis. Since f is a non-zerodivisor
of R, R is also a generalized Gorenstein local ring by Theorem 1.4.6.

1.5.3 The endomorphism algebra of the maximal ideal

Let us consider again the case where dimension one. Throughout this sebsection, suppose
Setting 1.5.3. Set B = m : m ∼= HomR(m,m). Let J(B) denote the Jacobson radical of B.
Our next purpose is to explore the generalized Gorenstein local property of the algebra
B in connection with that of R. Let us begin with the following.

Proposition 1.5.15. Suppose that R is a generalized Gorenstein local ring but not an
almost Gorenstein local ring. Then we have the following assertions.

(1) B is a local ring and J(B) = mS ∩B.

(2) R/m ∼= B/J(B).

Proof. Set r = r(R). By Theorem 1.5.8, we can take elements f1, f2, . . . , fr−1 ∈ K, g ∈ S,
and v ∈ m such that K = R + 〈f1, f2, . . . , fr−1〉, S = K + 〈g〉, and c :R m = c + (v). We
show that

B = R + 〈vf1, vf2, . . . , vfr−1〉+ 〈vg〉 .
In fact, since "R([(R : m) ∩K]/R) = rR(K/R) = r − 1 and K/R ∼= (R/c)⊕(r−1), we have

B ∩K = (R : m) ∩K = R + 〈vf1, vf2, . . . , vfr−1〉 .

On the other hand, since R/c ∼= S/K and g is a free basis of S/K, vg '∈ K and
vg ∈ K : m ⊆ B. Hence we have the equality B = R + 〈vf1, vf2, . . . , vfr−1〉 + 〈vg〉
since "R((R : m)/R) = r. Therefore, since 〈vf1, vf2, . . . , vfr−1〉 + 〈vg〉 ⊆ mS, we get
B = R+mS ∩B. We have mS ∩B ∈ MaxB since R/m ∼= B/(mS ∩B). Therefore, since
mS ∩ B ⊆ J(B), B is a local ring and the unique maximal ideal is J(B) = mS ∩B.

Let us note that Proposition 1.5.15 does not hold true without the assumption that
R is not an almost Gorenstein local ring. Let us give an example.

Example 1.5.16. ([15, Example 5.10]) Let V = k[[t]] be the formal power series ring
over an infinite field k. We consider the direct product A = k[[t3, t4, t5]] × k[[t3, t4, t5]] of
rings and set R = k·(1, 1) + J(A) where J(A) denotes the Jacobson radical of A. Then
R is a subring of A and a one-dimensional Cohen-Macaulay complete local ring with
the maximal ideal J(A). We have the ring R is an almost Gorenstein local ring and
v(R) = e(R). However

m : m = V × V

which is not a local ring.
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The following lemma is known. For a convenience to readers, we include the proof.

Lemma 1.5.17. Let A be a Cohen-Macaulay local ring with maximal ideal m. Set d =
dimA ≥ 0 and e(A) > 1. Then r(A) ≤ e(A) − 1 and equality holds true if and only if A
has maximal embedding dimension, that is, v(A) = e(A) + d− 1.

Proof. We may assume A/m is infinite. Then we can take a parameter ideal Q as a
reduction of m. Hence e(A)− 1 = "A(A/Q)− "A(A/m) ≥ "A(Q : m/Q) = r(A). Hence the
equality holds true if and only if m = Q : m. This is equivalent to saying that m2 = Qm
by [16, Theorem 2.2.].

Now we reach the theorem which is a goal of this subsection.

Theorem 1.5.18. Suppose that there is an element α ∈ m such that m2 = αm. Set
n = J(B) and L = BK. Then the following conditions are equivalent.

(1) R is a generalized Gorenstein local ring but not an almost Gorenstein local ring.

(2) B is a generalized Gorenstein local ring with v(B) = e(B) = e(R), but not a Goren-
stein ring.

When this is the case, we have the following.

(i) R/m ∼= B/n.

(ii) "B(B/(B : B[L])) = "R(R/c)− 1.

(iii) n2 = αn.

Proof. Since m2 = αm and R is not a regular local ring, by [15, Proposition 5.1], we have
the following.

(a) B = R : m = m
α .

(b) B ⊆ L ⊆ B and L = K : m ∼= KB as a B-module.

(c) S = B[L].

Furthermore, we have "R(L/K) = 1 since (K : m)/K ∼= R/m by Remark 1.5.4. Set
a = B : B[L] = B : S.

(1) ⇒ (2) We have the natural commutative diagram

0 !! B/R !!

∼=
""

S/R !!

∼=
""

S/B !! 0

0 !! (R/m)⊕r ϕ !! (R/c)⊕r !! S/B !! 0

as R-modules. Since R/c is an Artinian Gorenstein ring, Imϕ = ([c :R m]/c)⊕r. Hence
S/B ∼= (R/[c :R m])⊕r as R-modules. We show that R/[c :R m] ∼= B/a as R-modules.
Note that a ∩R = c :R m since

a ∈ a ⇔ amS ⊆ R ⇔ a ∈ c :R m
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for an element a ∈ R. Therefore we have an exact sequence 0 → R/[c :R m] → B/a. On
the other hand, we have

"R(B/a) = "R(S/L) = "R(S/K)− 1 = "R(R/c)− 1 = "R(R/[c :R m]),

where the first and third equalities follow by the facts KB/a
∼= S/L and KR/c

∼= S/K
(see the proof of Theorem 1.5.8(iii)). Hence S/B ∼= (B/a)⊕r as R-module and so as B-
module since (B/a)⊕r → S/B → 0 is exact as B-modules. Therefore B is a generalized
Gorenstein local ring, "B(B/a) = "R(R/c) − 1, and r(R) = r(B) by Theorem 1.5.8. We
need to show that αn = n2. In fact, since αS is a reduction of mS, we have

B ⊆ mS ∩B

α
⊆ mS

α
⊆ S = B,

where ∗ stands for the integral closure of ∗. Hence αB ⊆ mS ∩B = n is a reduction and
r(B) = r(R) = e(R)− 1 = e(B)− 1, where the last equality follows from

e(R) = e0m(R) = e0m(B) = "R(B/αB) = "B(B/αB) = e(B)

by Proposition 1.5.15. Therefore, by Lemma 1.5.17, we have e(B) = v(B) = e(R), whence
αn = n2.

(2) ⇒ (1) Consider the following exact sequences

0 → L/K → S/K → S/L → 0,

0 → B/R → S/R → S/B → 0, and

0 → K/R → S/R → S/K → 0.

Note that r(R) = e(R)− 1 = e(B)− 1 = r(B), S/K ∼= KR/c, and S/L ∼= KB/a. Hence

!R(K/R) + !R(R/c) = !R(S/R) = !R(B/R) + !R(S/B) = r(R)·(!R(B/a) + 1) = r(R)·!R(R/c),

where the last equality follows from "R(B/a) = "R(S/L) = "R(S/K)− 1 = "R(R/c)− 1.
Therefore K/R is an R/c-free module.

On the other hand, it is known that R is an almost Gorenstein local ring possessing
maximal embedding dimension if and only if HomR(m,m) is a Gorenstein ring (see [36,
Theorem 5.1.]). Therefore, by combining to Theorem 1.5.18 and [36, Theorem 5.1.],
generalized Gorenstein local rings possessing maximal embedding dimension finally reach
Gorenstein rings by the action taking the endomorphism of the maximal ideal.

Corollary 1.5.19. Suppose that R is a generalized Gorenstein local ring but not a Goren-
stein ring and v(R) = e(R). Then S is a Gorenstein ring.

Proof. After enlarging the residue class field of R, we may assume that R/m is infinite.
We prove by induction on N = "R(R/c). If N = 1, then R is an almost Gorenstein local
ring. Therefore S = B is a Gorenstein ring by [36, Theorem 5.1]. Suppose N > 1 and
our assertion holds true for N − 1. Then B is a generalized Gorenstein local ring such
that "B(B/(B : B[BK])) = N − 1 by Theorem 1.5.18. Hence S = B[BK] is a Gorenstein
ring.
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1.5.4 Ulrich ideals and idealizations

Next we study about Ulrich ideals in connection with the generalized Gorenstein local
property. The notion of Ulrich ideals is defined over arbitrary Cohen-Macaulay local rings,
and enjoy many interesting properties (Definition 1.2.6 and [43, 47]). We will summarize
and study more detail in Section 1.8. Here we focus on the one-dimensional case. Let a
be an m-primary ideal. At this moment, we focus on the case where a ⊆ c. We start with
the following.

Lemma 1.5.20. Suppose that a is an Ulrich ideal. Assume that a ⊆ c. Then a = R : T
and K ⊆ T , where T = a : a.

Proof. Take a non-zerodivisor α ∈ a of R so that a2 = αa. Then, T = a
α and a = (α) :R a

since [43, Corollary 2.6.]. Therefore a = R : a
α = R : T . Furthermore, we have the

following equalities:

T =
a

α
=

(α) :R a

α
= R : a ⊇ R : c = (K : K) : c = K : c = S.

Here, the last equality follows from c = K : S. Hence K ⊆ T .

By Lemma 1.5.20, to investigate Ulrich ideals contained in c, we may assume that a
is an m-primary ideal of R satisfying the following conditions:

(1) T is a subring of Q(R) and a finitely generated R-module,

(2) K ⊆ T , and

(3) a = R : T .

In this subsection, let a be an m-primary ideal satisfying the above conditions (1), (2),
and (3).

Lemma 1.5.21. The following assertions hold true.

(1) aTM is isomorphic to the canonical module KTM for all M ∈ MaxT .

(2) The following conditions are equivalent.

(i) T is a Gorenstein ring.

(ii) a = αT for some α ∈ a.

(iii) a2 = αa for some α ∈ a.

Proof. (1) Since a = K : S ∼= HomR(S,KR), aTM
∼= KTM for all M ∈ MaxT .

(2) (i) ⇒ (ii) If T is a Gorenstein ring, then aTM
∼= TM for all M ∈ MaxT by (1).

Hence, since T is a semilocal ring, a ∼= T and a = αT for some α ∈ a.
(ii) ⇒ (iii) This is trivial.
(iii) ⇒ (i) Assume that a2 = αa for some α ∈ a and set L = a

α . Then T ⊆ L ⊆ T
because of L2 = L. Hence TM ⊆ LM ⊆ TM and LM

∼= KTM for allM ∈ MaxT . Therefore,
since L2

M = LM , TM is a Gorenstein ring by Theorem 1.5.5.
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Proposition 1.5.22. Suppose that R is not a Gorenstein ring. Then the following con-
ditions are equivalent.

(1) a is an Ulrich ideal of R.

(2) T is a Gorenstein ring and T/R is R/a-free.

When this is the case, R/a is a Gorenstein ring and µR(a) = µR(T ).

Proof. By Lemma 1.5.21, we have only to show that T/R is R/a-free if and only if so is
a/a2. In fact, since a = αT for some α ∈ a, we have a/a2 ∼= T/a. Therefore we have the
equivalence since the exact sequence 0 → R/a → T/a → T/R → 0.

When this is the case, T/a = T/αT is a Gorenstein ring since α is a non-zerodivisor of
T . Since T/a is R/a-free, we have R/a → T/a is a flat homomorphism. Hence we get R/a
is a Gorenstein ring. The latter equality µR(a) = µR(T ) is now trivial since a ∼= T .

Next we give a characterization of generalized Gorenstein local rings obtained by
idealization. It will relate the notion of Ulrich ideals. First, let us recall basic properties
of idealizations. For a moment let R be an arbitrary commutative ring and M an R-
module. Let A = R ! M be the idealization of M over R, that is, A = R ⊕ M as an
R-module and the multiplication in A is given by

(a, x)(b, y) = (ab, bx+ ay)

where a, b ∈ R and x, y ∈ M . Let K be an R-module and set L = HomR(M,K)⊕K. We
consider L to be an A-module under the following action of A

(a, x) ◦ (f, y) = (af, f(x) + ay),

where (a, x) ∈ A and (f, y) ∈ L. Then it is standard to check that the map

HomR(A,K) → L, α 5→ (α ◦ j,α(1))

is an isomorphism of A-modules, where j : M → A, x 5→ (0, x) and 1 = (1, 0) denotes
the identity of the ring A.

We are now back to our Setting 1.5.3. The problem here is, for an R-module M , when
the idealization R ! M becomes a generalized Gorenstein local ring. It is known that
R !M is Gorenstein if and only if M ∼= KR ([69]). Since a generalized Gorenstein local
ring is generically Gorenstein by Lemma 1.4.1(1), we may assume that, for all p ∈ AssR,
either Mp

∼= Rp or Mp
∼= 0. With this observation, we concentrate the case where M is

an ideal a. Furthermore we assume that a satisfies the conditions (1), (2), and (3) stated
after Lemma 1.5.20.

Remark 1.5.23. The following assertions hold true.

(1) a = K : T .

(2) S ⊆ T and a ⊆ c.
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Proof. (1) R : T = (K : K) : T = K : KT = K : T .
(2) Since K ⊆ T , we have S = R[K] ⊆ T . By taking K-dual, a ⊆ c.

Set A = R ! a and L = T ×K. Then A is a one-dimensional Cohen-Macaulay local
ring and

KA
∼= HomR(A,K) ∼= HomR(a, K)×K ∼= L

as A-modules by Remark 1.5.23. Therefore

A = R! a ⊆ L = T ×K ⊆ R!Q(R),

where R denotes the integral closure of R. Since Q(A) = Q(R)!Q(R) and A = R!Q(R),
our idealization A = R ! a satisfies the same assumption in Setting 1.5.3. We pose the
question of when A is a generalized Gorenstein local ring.

Lemma 1.5.24. The following assertions hold true.

(1) A[L] = L2 = T ! T .

(2) A : A[L] = a× a.

(3) v(A) = v(R) + µR(a) and e(A) = 2·e(R).

Proof. (1) Since Ln = (T ×K)n = T n × T n−1K for n ≥ 2, we have A[L] = L2 = T ! T .
(2) This is straightforward, since A[L] = T ! T .
(3) First equality follows from the facts that m × a is the maximal ideal of A and

(m × a)2 = m2 × ma. Second one follows from the facts that mA is a reduction of m × a
and A = R⊕ a as an R-module.

By Lemma 1.5.24 we have the following.

Proposition 1.5.25. Suppose that R is not a Gorenstein ring. Then the following con-
ditions are equivalent.

(1) A is a generalized Gorenstein local ring.

(2) R is a generalized Gorenstein local ring and S = T .

(3) T/R is R/a-free.

When this is the case, a = c.

Proof. (1) ⇔ (2) follows from

A is a generalized Gorenstein local ring ⇔ L/A is A/(A : A[L])-free by Theorem 1.5.8

⇔ T/R×K/a is R/a-free

⇔ T/R and K/R are R/a-free

⇔ T/R and K/R are R/a-free and a = c

⇔ R is a generalized Gorenstein local ring and S = T .
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Here, the forth equality follows from a = Ann(K/R) = R : K ⊇ c = R : S ⊇ a and
the fifth equality follows from K : T = a = c = K : S.

(1) ⇔ (3) follows from

A is a generalized Gorenstein local ring ⇔ A[L]/A is A/(A : A[L])-free by Theorem 1.5.8

⇔ T/R× T/a is R/a-free

⇔ T/R is R/a-free.

Corollary 1.5.26. Suppose that R is not a Gorenstein ring. Then the following conditions
are equivalent.

(1) R is a generalized Gorenstein local ring.

(2) R! c is a generalized Gorenstein local ring.

Combining Propositions 1.5.22 and 1.5.25, we have the following.

Theorem 1.5.27. Suppose that R is not a Gorenstein ring. Let T be a subring of Q(R)
such that T is a finitely generated R-module. Set a = R : T and assume that a ⊆ c. Then
the following conditions are equivalent.

(1) a is an Ulrich ideal of R.

(2) T is a Gorenstein ring and T/R is R/a-free.

(3) T is a Gorenstein ring and A = R! a is a generalized Gorenstein local ring.

(4) T is a Gorenstein ring, R is a generalized Gorenstein local ring, and S = T .

When this is the case, a = c and µR(c) = µR(S) = r(R) + 1. In particular, there is no
Ulrich ideal which proper contained in c.

Proof. The equality µR(S) = r(R) + 1 follows from the fact that S/cS is an R/c-free
module of rank r(R) + 1 by Theorem 1.5.8.

The followings are the direct consequences of Theorem 1.5.27.

Corollary 1.5.28. Suppose that R is not a Gorenstein ring. Then the following conditions
are equivalent.

(1) c is an Ulrich ideal of R.

(2) S is a Gorenstein ring and R is a generalized Gorenstein local ring.

Corollary 1.5.29. Suppose that v(R) = e(R) ≥ 3. Then R is a generalized Gorenstein
local ring if and only if c is an Ulrich ideal.

Proof. Note that v(R) = e(R) if and only if m2 = αm for some α ∈ m by [67, Corollary
1.10]. Therefore, by Theorem 1.5.27 and Corollary 1.5.19, we come to the conclusion.

This result is related to the result of J. Herzog, T. Hibi, and D. I. Stamate [55, Theorem
7.4.]. Thus, in Section 1.8, we again consider this result, see Theorem 1.8.7 and Corollary
1.8.12.
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1.5.5 Numerical semigroup rings

Next we study about generalized Gorenstein local property of numerical semigroup rings.
If R is a numerical semigroup ring, then the algebra B = m : m is also a numerical
semigroup ring. Hence we have the structure theorem for generalized Gorenstein local
rings having maximal embedding dimension by Theorem 1.5.18. We also have numerous
examples of generalized Gorenstein local rings via numerical semigroup rings. First of all,
we fix some notations of numerical semigroup rings.

Setting 1.5.30. Let 0 < a1, a2, . . . , a! ∈ Z (" > 0) be positive integers such that
GCD (a1, a2, . . . , a!) = 1. We set

H = 〈a1, a2, . . . , a!〉 =
{

!∑

i=1

ciai | 0 ≤ ci ∈ Z for all 1 ≤ i ≤ "

}

and call it the numerical semigroup generated by the numbers {ai}1≤i≤!. Let V = k[[t]]
be the formal power series ring over a field k. We set

R = k[[H]] = k[[ta1 , ta2 , . . . , ta! ]]

in V and call it the semigroup ring of H over k. The ring R is a one-dimensional Cohen-
Macaulay local domain with R = V and m = (ta1 , ta2 , . . . , ta!).

Recall some basic notion on numerical semigroups. Let

c(H) = min{n ∈ Z | m ∈ H for all m ∈ Z such that m ≥ n}

be the conductor of H and set f(H) = c(H) − 1. Hence f(H) = max (Z \ H), which is
called the Frobenius number of H. Let

PF(H) = {n ∈ Z \H | n+ ai ∈ H for all 1 ≤ i ≤ "}

denote the set of pseudo-Frobenius numbers of H. Therefore f(H) equals the a-invariant
of the graded k-algebra k[ta1 , ta2 , . . . , ta! ] and (PF(H) = r(R) ([49, Example (2.1.9), Def-
inition (3.1.4)]). We set f = f(H) and write PF(H) = {c1 < c2 < · · · < cr = f}, where
r = r(R). Set

K =
∑

c∈PF(H)

Rtf−c

in V . Then K is a fractional ideal of R such that R ⊆ K ⊆ R and

K ∼= KR =
∑

c∈PF(H)

Rt−c

as an R-module ([49, Example (2.1.9)]). Hence R satisfies Setting 1.5.3. Note that
m : m = R : m = R +

∑
c∈PF(H) R·tc if R " V .

Proposition 1.5.31. Suppose that R is not a Gorenstein ring. Set r = r(R). Then the
following conditions are equivalent.
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(1) R is a generalized Gorenstein local ring.

(2) R/c is a Gorenstein ring and f + b = ci + cr−i for all 1 ≤ i ≤ r − 1, where tb is the
element in [c :R m] \ c.

Proof. (1) ⇒ (2) By Theorem 1.5.8 R/c is a Gorenstein ring and the R-linear map
(R/c)⊕(r−1) → K/R, where ei 5→ tf−ci is an isomorphism. Here, e1, e2, . . . , er−1 denotes a
free basis of (R/c)⊕(r−1). Hence tf−ci+b '∈ R and m·tf−ci+b ⊆ R, whence f−ci+b ∈ PF(H)
for all 1 ≤ i ≤ r − 1. Thus PF(H) = {f − cr−1 + b, f − cr−2 + b, . . . , f − c1 + b, f}, and
f − cr−i + b = ci for all 1 ≤ i ≤ r − 1.

(2) ⇒ (1) Consider the surjection ϕ : Y = (R/c)⊕(r−1) → K/R, where ei 5→ tf−ci for
all 1 ≤ i ≤ r − 1. Then

R is a generalized Gorenstein local ring ⇔ Soc(Kerϕ) = (0) ⇔ ϕ |SocY is injective.

Let us show that ϕ |SocY is injective. In fact, if the map is not injective, we have tb ·ei 5→ 0
for some 1 ≤ i ≤ r−1 since SocY = ([c :R m]/c)⊕(r−1). This implies that cr−i = f−ci+b ∈
H, a contradiction.

Corollary 1.5.32. Suppose that R is not a Gorenstein ring. Let n1, n2, . . . , n! be integers
and set J = (t(n1+1)a1 , t(n2+1)a2 , . . . , t(n!+1)a!). Suppose that

(1) J ⊆ c and

(2) f + b = ci + cr−i for all 1 ≤ i ≤ r − 1,

where b =
∑!

j=1 njaj. Then R is a generalized Gorenstein local ring, J = c, and c :R m =

c+ (tb).

Proof. Since b + f − ci = cr−i for all 1 ≤ i ≤ r − 1, we have tb '∈ R : tf−ci . On the other
hand, tb ∈ J :R m by the form of J . We show that R/J is a Gorenstein ring. In fact, take
th ∈ [J :R m] \ J and write h = m1a1 +m2a2 + · · · +m!a! for some non negative integer
m1,m2, . . . ,m!. Then mj ≤ nj for all 1 ≤ j ≤ ". Hence tb = th · tb−h and b − h ∈ H.
Since tb, th ∈ [J :R m] \ J , we get h = b, that is, r(R/J) = 1. We also have J = c. In fact,
if J " c, then tb ∈ J :R m ⊆ c. This is a contradiction since tb '∈ R : tf−ci ⊇ R : K ⊇ c.
Hence R is a generalized Gorenstein local ring by Proposition 1.5.31.

Corollary 1.5.33. Assume e ≤ h1 ≤ h2 ≤ . . . ≤ he−1 and let H = 〈e, h1, h2, . . . , he−1〉.
Set R = k[[H]]. Suppose that e = e(R) = v(R) ≥ 3. Then the following conditions are
equivalent.

(1) R is a generalized Gorenstein local ring.

(2) There exists an integer n0 ≥ 0 such that c = (t(n0+1)e, th1 , th2 , . . . , the−1) and
he−1 + (n0 + 1)e = hi + he−1−i for all 1 ≤ i ≤ e− 2.
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Proof. (2) ⇒ (1) By Corollary 1.5.32.
(1) ⇒ (2) Since K/R is R/c-free and K =

∑e−1
i=1 Rtf−ci , we have c = R : tf−ci for

all 1 ≤ i ≤ e − 2. Hence thi = tci+e ∈ c for all 1 ≤ i ≤ e − 2. Furthermore, since
f−c1+he−1 = f− (h1−e)+he−1 = f+e+(he−1−h1) > f , we have the−1 ∈ R : tf−c1 = c.
Hence c = (t(n0+1)e, th1 , th2 , . . . , the−1) for some integer n0 ≥ 0. Therefore we have n0e +
f−ci ∈ PF(H) since c = R : tf−ci for all 1 ≤ i ≤ e−2. Thus he−1+(n0+1)e = hi+he−1−i

for all 1 ≤ i ≤ e− 2.

Let us give more concrete examples. With the notation of Setting 1.5.30 suppose that
" = 3 and set T = k[ta1 , ta2 , ta3 ] in the polynomial ring k[t]. Let P = k[X1, X2, X3] be
the polynomial ring over k. We consider P to be a Z-graded ring such that P0 = k and
degXi = ai for i = 1, 2, 3. Let

ϕ : P = k[X1, X2, X3] → T = k[ta1 , ta2 , ta3 ]

denote the homomorphism of graded k-algebras defined by ϕ(Xi) = tai for each i = 1, 2, 3.
Let us write X = X1, Y = X2, and Z = X3 for short. If T is not a Gorenstein ring, then

by [51] it is known that Kerϕ = I2
(

Xα Y β Zγ

Y β′ Zγ′ Xα′

)
for some integers α, β, γ,α′, β′, γ′ > 0.

We use a result of [36, Section 4]. Let ∆1 = Zγ+γ′ − Xα′
Y β, ∆2 = Xα+α′ − Y β′

Zγ,
and ∆3 = Y β+β′ − XαZγ′ . Then Kerϕ = (∆1,∆2,∆3) and thanks to the theorem of
Hilbert–Burch ([20, Theorem 20.15]), the graded ring T possesses a graded minimal P -
free resolution of the form

0 −→
P (−m)

⊕
P (−n)




Xα Y β′

Y β Zγ′

Zγ Xα′





−→

P (−d1)
⊕

P (−d2)
⊕

P (−d3)

[∆1 −∆2 ∆3]−→ P
ϕ−→ T −→ 0,

where d1 = deg∆1 = a3(γ + γ′), d2 = deg∆2 = a1(α + α′), d3 = deg∆3 = a2(β + β′),
m = a1α+d1 = a2β+d2 = a3γ+d3, and n = a1α′+d3 = a2β′+d1 = a3γ′+d2. Therefore

n−m = a2β
′ − a1α = a3γ

′ − a2β = a1α
′ − a3γ. (1.5.33.1)

Let KP = P (−d) denote the graded canonical module of P where d = a1+a2+a3. Then,
taking the KP–dual of the above resolution, we get the minimal presentation

P (d1 − d)
⊕

P (d2 − d)
⊕

P (d3 − d)

[
Xα Y β Zγ

Y β′ Zγ′ Xα′

]

−→
P (m− d)

⊕
P (n− d)

ε−→ KT −→ 0 (1.5.33.2)

of the graded canonical module KT = Ext2P (T,KP ) of T . Therefore, because KT =∑
c∈PF(H) Tt

−c ([49, Example (2.1.9)]), we have "k([KT ]i) ≤ 1 for all i ∈ Z, whence m '= n.
After the permutation of a2 and a3 if necessary, we may assume without loss of generality
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that n > m. Then the presentation (1.5.33.2) shows that PF(H) = {m − d, n − d} and
f = n− d.

We set a = n − m. Hence a > 0, f = a + (m − d), and K = R + Rta. With this
notation we have the following. Remember that R is the MTM -adic completion of the
local ring TM , where M = (tai | i = 1, 2, 3) denotes the graded maximal ideal of T . Then
we have the following.

Theorem 1.5.34. Suppose that H is 3-generated. Assume that R = k[[H]] is not a
Gorenstein ring and a > 0. Then the following conditions are equivalent.

(1) R is a generalized Gorenstein local ring.

(2) 3a ∈ H.

(3) α ≤ α′, β ≤ β′, and γ ≤ γ′.

When this is the case, c = (tαa1 , tβa2 , tγa3) and "R(R/c) = αβγ.

Proof. (1) ⇒ (3) By (1.5.33.2), we get KT/P ξ ∼= P/(Xα, Y β, Zγ), where ξ = ε ( 1
0 ). By

K/R ∼= R/c since r(R) = 2, we have c = (Xα, Y β, Zγ)R = (tαa1 , tβa2 , tγa3). On the
other hand, by applying the functor −⊗P P/(Xα, Y β, Zγ) to (1.5.33.2), we get the exact
sequence

P/(Xα, Y β , Zγ)(d1 − d)
⊕

P/(Xα, Y β , Zγ)(d2 − d)
⊕

P/(Xα, Y β , Zγ)(d3 − d)

[
Xα Y β Zγ

Y β′ Zγ′ Xα′

]

−→
P/(Xα, Y β , Zγ)(m− d)

⊕
P/(Xα, Y β , Zγ)(n− d)

ε−→ KT /(X
α, Y β , Zγ)KT −→ 0

as P/(Xα, Y β, Zγ)-modules, where ∗ denotes image of ∗ ∈ P in P/(Xα, Y β, Zγ). We get[
Xα Y β Zγ

Y β′ Zγ′ Xα′

]
= 0 since K/cK ∼= (R/c)⊕2, whence (Y β′

, Zγ′ , Xα′
) ⊆ (Xα, Y β, Zγ), that is,

α ≤ α′, β ≤ β′,and γ ≤ γ′.
(3) ⇒ (2) Because 3a = (a2β′ − a1α) + (a3γ′ − a2β) + (a1α′ − a3γ) = a1(α − α′) +

a2(β − β′) + a3(γ − γ′) ∈ H by the equality (1.5.33.1).
(2) ⇒ (1) By Corollary 1.5.11 and K = R +Rta.

When H is 3-generated and e(R) = min{a1, a2, a3} is small, we have the following
structure theorem of H for R to be a generalized Gorenstein local ring.

Corollary 1.5.35. Let " = 3. Then the following assertions are true.

(1) If min{a1, a2, a3} = 3, then R is a generalized Gorenstein local ring.

(2) Suppose that min{a1, a2, a3} = 4. Then the following conditions are equivalent.

(a) R is a generalized Gorenstein local ring, but not an almost Gorenstein local ring.

(b) H = 〈4, 3α + 2α′,α + 2α′〉 for some α′ ≥ α ≥ 3 such that α '≡ 0 mod 2.

(3) Suppose that min{a1, a2, a3} = 5. Then the following conditions are equivalent.
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(a) R is a generalized Gorenstein local ring, but not an almost Gorenstein local ring.

(b) (i) H = 〈5, 2α + α′,α + 3α′〉 for some α′ ≥ α ≥ 2 such that 2α+α′ '≡ 0 mod 5 or
(ii) H = 〈5, 4α + 3α′,α + 2α′〉 for some α′ ≥ α ≥ 2 such that α+2α′ '≡ 0 mod 5.

Proof. (1) This is followed by Corollary 1.5.12.
Suppose that R is a generalized Gorenstein local ring but not an almost Gorenstein

local ring. Then, by [36, Corollary 4.2], after a suitable permutation of a1, a2, a3 we may
assume that α ≥ 2. Note that

a1 = βγ + β′γ′ + β′γ,

since a1 = "R(R/ta1R) = "P (P/[(X) + Kerϕ]) = "k(k[Y, Z]/(Y β′+1, Y β′
Z,Zγ′+1). We

similarly have that

a2 = αγ + αγ′ + α′γ′ ≥ 6, a3 = α′β′ + α′β + αβ ≥ 6

since α′ ≥ α ≥ 2. Therefore e(R) = a1 = βγ + β′γ′ + β′γ and β = γ = 1 if e(R) ≤ 5.
(2) (a) ⇒ (b) Since a1 = β′γ′ + β′ + 1 = 4, we have β′ = 1 and γ′ = 2. Hence

a2 = 3α + 2α′ and a3 = α + 2α′. Note that α '≡ 0 mod 2 since GCD (a1, a2, a3) = 1.
(3) (a) ⇒ (b) Since a1 = β′γ′+β′+1 = 5, we have either the case where β′ = 2, γ′ = 1

or the case where β′ = 1, γ′ = 3. For the former case, we get H = 〈5, 2α + α′,α + 3α′〉
for some α′ ≥ α ≥ 2 such that 2α + α′ '≡ 0 mod 5 since GCD (5, 2α + α′,α + 3α′) = 1.
For the latter case, we get H = 〈5, 4α + 3α′,α + 2α′〉 for some α′ ≥ α ≥ 2 such that
α + 2α′ '≡ 0 mod 5 since GCD (5, 4α + 3α′,α + 2α′) = 1.

(2) (b) ⇒ (a) Since we have a = I2
(
Xα Y Z
Y Z2 Xα′

)
, this is a generalized Gorenstein

local ring by Theorem 1.5.34. However, R is not an almost Gorenstein local ring by [36,
Corollary 4.2].

(3) (b) ⇒ (a) For the case (i) we have a = I2
(
Xα Y Z
Y 2 Z Xα′

)
, and for the case (ii) we have

a = I2
(
Xα Y Z
Y Z3 Xα′

)
. Therefore R is a generalized Gorenstein local ring but not an almost

Gorenstein local ring.

Let 0 < e ∈ H and set αi = min{h ∈ H | h ≡ i mod e} for each 0 ≤ i ≤ e− 1. Then
the set

Ape(H) = {αi | 0 ≤ i ≤ e− 1} = {h ∈ H | h− e '∈ H}

is called the Apery set of H mod e. With the notation, the following result is known.

Theorem 1.5.36. (cf.[15, Theorem 6.9.]) Let H be a numerical semigroup and assume
that H is symmetric, that is, R = k[[H]] is a Gorenstein ring. Take an element 0 < e ∈ H
and consider Ape(H) = {0 < h1 < h2 < · · · < he−1}. Set

Hn = 〈e, h1 + ne, h2 + ne, . . . , he−1 + ne〉 and Rn = k[[Hn]]

for all n > 0. Let Kn denote a fractional canonical ideal of Rn such that Rn ⊆ Kn ⊆ Rn.
Then we have the following.

(1) Rn is a generalized Gorenstein local ring,
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(2) v(Rn) = e(Rn), and

(3) "Rn(Rn/cn) = n,

where cn = Rn : Rn[Kn].

Due to Theorem 1.5.18, we get the following which is the converse of [15, Theorem
6.9.].

Proposition 1.5.37. Let e ≤ h1 ≤ h2 ≤ . . . ≤ he−1 be positive integers such that
GCD (e, h1, h2, . . . , he−1) = 1. Set H = 〈e, h1, h2, . . . , he−1〉 and R = k[[H]]. Assume that
R is a generalized Gorenstein local ring with e = e(R) = v(R) ≥ 3. Set n = "R(R/c) > 0
and H ′ = 〈e, h1 − ne, h2 − ne, . . . , he−1 − ne〉. Then the following assertions hold true.

(1) R′ = k[[H ′]] is a Gorenstein ring.

(2) Ape(H ′) = {0, h1 − ne, h2 − ne, . . . , he−1 − ne}.

Hence R is reconstructed by Ape(H ′) and n > 0.

Proof. Suppose that n > 1, that is, R is not an almost Gorenstein local ring. Set R0 = R
and m0 = (te, th1 , th2 , . . . , the−1). Define that

Rj = mj−1 : mj−1 and mj = mj−1S ∩Rj−1

for 0 < j ≤ n inductively. Note that Rj = k[[Hj]] for all 0 < j ≤ n, where Hj =
〈e, h1 − je, h2 − je, . . . , he−1 − je〉 since Theorem 1.5.18. Furthermore, we have

(i) Rj is a generalized Gorenstein local ring but not a Gorenstein ring,

(ii) "Rj(Rj/cj) = n− j,

(iii) v(Rj) = e(Rj) = e, and

(iv) Ape(Hj) = {0, h1 − je, h2 − je, . . . , he−1 − je}

for all 0 < j < n, where cj = Rj : S. Hence we may assume n = 1. This is the case where
R is an almost Gorenstein local ring but not a Gorenstein ring, whence this is proven in
[36, Theorem 5.1].

1.6 Minimal free resolutions of generalized Goren-
stein local rings

We are now back to the arbitrary dimensional case. Throughout this section, let (R,m)
be a Cohen-Macaulay local ring possessing the canonical module KR. Set d = dimR > 0
and r = r(R). In this section, we consider the following condition.
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Condition. There exists an exact sequence

0 → R → KR →
r⊕

i=2

R/ai → 0

of R-modules, where ai is an ideal of R for all 2 ≤ i ≤ r.

Remark 1.6.1. With the notation of above Condition the following assertions are true.

(1) Suppose that R has an exact sequence of Condition. Then R/ai is a Gorenstein local
ring of dimension d− 1 for all 2 ≤ i ≤ r.

(2) If R is a generically Gorenstein ring with r = 2, then Condition holds true.

(3) If R is a generalized Gorenstein local ring with d = 1, then Condition holds true.

Proof. (1) By Lemma 1.4.1, R/ai is a Cohen-Macaulay local ring of dimension d −
1. By applying the functor HomR(∗,KR), we get the isomorphism

⊕r
i=2 R/ai ∼=⊕r

i=2 Ext
1
R(R/ai,KR). Since Ext1R(R/ai,KR) ∼= KR/ai , we conclude R/ai is a Gorenstein

ring.
(2) By assumption, there exists a canonical ideal generated by two elements.
(3) This follows from Theorem 1.5.8.

We have the following which is a natural generalization of [46, Theorem 7.8].

Theorem 1.6.2. Let (S, n) be a Gorenstein local ring and I, a2, a3, . . . , ar be ideals of S.
Suppose that R ∼= S/I '= 0 and R is a Cohen-Macaulay ring but not a Gorenstein ring.
Assume that the projective dimension of R over S is finite. Then the following conditions
are equivalent.

(1) There exists an exact sequence

0 → R → KR →
r⊕

i=2

S/ai → 0

of S-modules.

(2) There exist a minimal S-free resolution

0 → S⊕r M−→ S⊕q → · · · → S → R → 0

of R and a non-negative integer m, such that

tM =





y21 y22 . . . y2u2 y31 y32 . . . y3u3 . . . yr1 yr2 . . . yrur z1 z2 . . . zm
x21 x22 . . . x2u2

x31 x32 . . . x3u3 0
... 0

0 xr1 xr2 . . . xrur




,

where µS(ai) = ui, ai = (xi1, xi2, . . . , xiui), and dimS/ai = dimR−1 for all 2 ≤ i ≤ r.
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Furthermore, if xi1, xi2, . . . , xiui is an S-regular sequence for all 2 ≤ i ≤ r, then we
have the equality:

I =
r∑

i=2

I2

(
yi1 yi2 . . . yiui

xi1 xi2 . . . xiui

)
+ (z1, z2, . . . , zm). (1.6.2.1)

Proof. This result is essentially proven in the paper [46, Theorem 7.8]. However, we
include a proof for the sake of completeness.

(1) ⇒ (2) Choose the exact sequence

0 → R
ϕ−→ KR →

r⊕

i=2

S/ai → 0

of S-modules and set f1 = ϕ(1). We have KR/f1S ∼=
⊕r

i=2 S/ai. Choose elements
f2, . . . , fr ∈ KR such that fi corresponds to (0, . . . , 0, 1S/ai , 0, . . . , 0), where fi denotes
the image of fi in KR/f1S . Then we have a surjective homomorphism

ψ : S⊕r → KR, ei 5→ fi,

where {ei}1≤i≤r denote the standard basis of S⊕r. Set L = Kerψ and ui = µS(ai).
Take xij ∈ S so that ai = (xi1, xi2, . . . , xiui) for all 2 ≤ i ≤ r and 1 ≤ j ≤ ui. We
explore a minimal basis of L. Since KR/f1S ∼=

⊕r
i=2 S/ai, we have xijfi ∈ f1S, that is,

xijfi+yijf1 = 0 for some yij ∈ S. Therefore we get xijei+yije1 ∈ L. Set aij = xijei+yije1
for all 2 ≤ i ≤ r and 1 ≤ j ≤ ui. Let a ∈ L and write a =

∑r
i=1 biei with bi ∈ S. Then

bi ∈ ai for all 2 ≤ i ≤ r since
∑r

i=2 bi · (0, . . . , 0, 1S/ai , 0, . . . , 0) = 0 in
⊕r

i=2 S/ai. Write
bi =

∑ui

j=1 cijxij with cij ∈ S. Then we have

a = b1e1 +
r∑

i=2

biei = b1e1 +
r∑

i=2

ui∑

j=1

cijxijei

= b1e1 +
r∑

i=2

ui∑

j=1

cij(aij − yijei).

Hence we have a−
∑r

i=2

∑ui

j=1 cijaij ∈ L∩Se1, whence L is generated by {aij}2≤i≤r, 1≤j≤ui∪
{zke1}1≤k≤m for some integer m ≥ 0 and zk ∈ S for 1 ≤ k ≤ m. Thus, with q =∑r

i=2 ui +m, we have an S-free resolution

S⊕q
tM−→ S⊕r ψ−→ KR → 0 (1.6.2.2)

of KR, where the matrix tM has required form. We have to show that we may assume that
(1.6.2.2) is minimal, that is, {aij}2≤i≤r, 1≤j≤ui is a part of minimal system of generators
of L. Since {aij}2≤i≤r, 1≤j≤ui ∪ {zke1}1≤k≤m generates L, we can choose minimal system
of generator of L in them. Assume that aij is not a part of minimal system of generators
of L for some 2 ≤ i ≤ r and 1 ≤ j ≤ ui . Then, we can construct an S-free resolution

S⊕q
tM′
−−→ S⊕r ψ−→ KR → 0
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of KR, where tM′ is a matrix such that the columns corresponding to aij is excepted from
tM. Hence we have

r⊕

i=2

S/ai ∼= KR/f1S ∼= S⊕r/(ImtM′ + Se1)

∼= S/a2 ⊕ · · ·⊕ S/ai−1 ⊕ S/a′ ⊕ S/ai+1 ⊕ · · ·⊕ S/ar,

where a′ = (xi1, xi2, . . . , xi j−1, xi j+1, . . . , xiui). This is a contradiction for ui = µS(ai).
Hence we may assume that (1.6.2.2) is minimal. Then the S-module KR possesses a
minimal free resolution

0 → S → · · · → S⊕q → S⊕r → KR → 0

with q =
∑r

i=2 ui +m. Therefore, by taking S-dual, Assertion (2) holds.
(2) ⇒ (1) By taking S-dual, we have the exact sequence (1.6.2.2). Set fi = ψ(ei) for

all 1 ≤ i ≤ r, where {ei}1≤i≤r denotes the standard basis of S⊕r. We then have

KR/f1S ∼= S⊕r/(ImtM+ Se1) ∼=
r⊕

i=2

S/ai.

Hence we have an exact sequence

R
ϕ−→ KR →

r⊕

i=2

S/ai → 0

of R-modules, where ϕ(1) = f1. Since dimS/ai = dimR − 1 for all 2 ≤ i ≤ r, ϕ is
injective.

Now we prove the equality (1.6.2.1). Suppose that xi1, xi2, . . . , xiui is an S-regular
sequence for all 2 ≤ i ≤ r. Note that for a ∈ S we get the equivalences

a ∈ I ⇔ af1 = 0 ⇔ ae1 ∈ L

⇔ ae1 =
∑

2≤i≤r, 1≤j≤ui

cijaij +
m∑

k=1

dkzke1 for some cij, dk ∈ S

⇔ a =
∑

2≤i≤r, 1≤j≤ui

cijyij +
m∑

k=1

dkzk and 0 =
∑

2≤i≤r, 1≤j≤ui

cijxij,

(1.6.2.3)

where the first equivalence follows from ϕ is an injective map and the second equivalence
follows from L = Kerψ. For the third equivalence, this follows from

L =
∑

2≤i≤r, 1≤j≤ui

Saij +
m∑

k=1

Se1.

The fourth equivalence follows from aij = xijei + yije1.
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(⊇) By (1.6.2.3), we obtain I ⊇ (z1, z2, . . . , zm). For all 3 ≤ i ≤ r and 1 ≤ α < β ≤ ui,
we get

(xiβyiα − xiαyiβ)e1 = xiβ(aiα − xiαei)− xiα(aiβ − xiβei) = xiβaiα − xiαaiβ ∈ L,

whence xiβyiα − xiαyiβ ∈ I by (1.6.2.3).
(⊆) Let a ∈ I. By (1.6.2.3), it is enough to show that, for any 2 ≤ i ≤ r,

∑

1≤j≤ui

cijyij ∈ I2

(
yi1 yi2 . . . yiui

xi1 xi2 . . . xiui

)

if
∑

1≤j≤ui
cijxij = 0. Let

K2(x)
∂2−→ K1(x)

∂1−→ K0(x) and K2(y)
∂′2−→ K1(y)

∂′1−→ K0(y)

be the parts of Koszul complexes of the sequences x = xi1, xi2, . . . , xiui and y =
yi1, yi2, . . . , yiui , respectively. Let T1, . . . , Tui be a basis of K1(x) = K1(y). Then, since
∂1(

∑
1≤j≤ui

cijTj) =
∑

1≤j≤ui
cijxij = 0,

∑
1≤j≤ui

cijyij ∈ ∂′1(Ker ∂1). On the other hand,
since the sequence x = xi1, xi2, . . . , xiui is an S-regular sequence, Im∂2 = Ker ∂1. Hence
∑

1≤j≤ui
cijyij ∈ Im(∂′1◦∂2). It follows that

∑
1≤j≤ui

cijyij ∈ I2

(
yi1 yi2 . . . yiui

xi1 xi2 . . . xiui

)
since

Im(∂′1 ◦ ∂2) is generated by ∂′1 ◦ ∂2(TαTβ) = xiβyiα − xiαyiβ for all 1 ≤ α < β ≤ ui.

Corollary 1.6.3. Let (S, n) be a regular local ring and I, a2, a3, . . . , ar be ideals of S.
Suppose that R ∼= S/I '= 0 and R is a Cohen-Macaulay ring but not a Gorenstein ring.
Assume that there exists an exact sequence

0 → R → KR →
r⊕

i=2

S/ai → 0

of R-modules. If S/ai is a complete intersection, then

I =
r∑

i=2

I2

(
yi1 yi2 . . . yiui

xi1 xi2 . . . xiui

)
+ (z1, z2, . . . , zm),

for some yi1, yi2, . . . , yiui ∈ S and z1, z2, . . . , zm ∈ S, where ai = (xi1, xi2, . . . , xiui) and
µS(ai) = ui.

Proof. ai is generated by an S-regular sequence, see [11, Theorem 2.3.3.].

Corollary 1.6.4. With the notation of Theorem 1.6.2 suppose that Condition (1) holds
true. Set n = dimS − dimR. We then have the following.

(1) If n = 2, then r = 2, q = 3, and m = 0.

(2) Suppose that S is a regular local ring, I ⊆ n2, and R has maximal embedding dimen-
sion. Then r = n, q = n2 − 1, and m = 0.

46



Proof. Note that

q =
r∑

i=2

ui +m ≥ (r − 1)(n+ 1) +m

since n+ 1 = htSai ≤ ui.
(1) Since a minimal S-free resolution of R has the form 0 → S⊕r → S⊕(r+1) → S →

R → 0, we have q = r + 1 ≥ (r− 1)(2 + 1) +m. Since R is not a Gorenstein ring, we get
r = 2, q = 3 and m = 0.

(2) Set e = e(R). By [71, Theorem 1.(iii)], n = e − 1, r = e − 1, and q = (e − 2)e.
Therefore we have q = (e− 2)e ≥ (e− 2)e+m, whence m = 0.

As a corollary, we have a characterization of one-dimensional generalized Gorenstein
local rings in terms of minimal free resolution, which will be used in Section 1.7.

Corollary 1.6.5. Let (S, n) be a Gorenstein local ring and (R,m) a one-dimensional
Cohen-Macaulay local ring but not a Gorenstein ring. Let ϕ : S → R be a surjective ring
homomorphism and suppose the projective dimension of R over S is finite. Let a be an
ideal of S such that a ⊇ Kerϕ and set n = µS(a) and a = (x1, x2, . . . , xn). Then the
following conditions are equivalent.

(1) R is a generalized Gorenstein local ring with respect to aR.

(2) There exists a minimal S-free resolution

0 → S⊕r M−→ S⊕q → · · · → S → R → 0

of R such that

tM =





∗∗ ∗
x1 x2 . . . xn

x1 x2 . . . xn 0
... 0

0 x1 x2 . . . xn




,

where all components of ∗∗ and ∗ are in a.

Proof. (1) ⇒ (2) By definition of generalized Gorenstein local rings with respect to aR,
there exists an exact sequence

0 → R → KR → (S/a)⊕(r−1) → 0.

Hence we can apply Theorem 1.6.2 and get the minimal S-free resolution of R which
stated in Assertion (2). We have only to show that all components of ∗∗ and ∗ are in

a. In fact, by taking S-dual, we have S⊕q
tM−→ S⊕r → KR → 0. Hence, by applying the

functor S/a⊗S −, we get the following exact sequence

(S/a)⊕q tM−→ (S/a)⊕r → KR/aKR → 0.
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Therefore tM is forced to be the zero matrix since (S/a)⊕r ∼= (R/aR)⊕r ∼= KR/aKR.
(2) ⇒ (1) Thanks to Theorem 1.6.2, there exists a exact sequence

0 → R
ϕ−→ KR → (S/a)⊕(r−1) → 0.

Hence ϕ(1) '∈ mKR. Furthermore, similarly to the above proof, we get the exact sequence

(S/a)⊕q tM−→ (S/a)⊕r → KR/aKR → 0.

Since tM is a zero matrix, we have (S/a)⊕r ∼= KR/aKR. Hence R is a generalized Goren-
stein local ring with respect to aR.

1.7 Construction of determinantal generalized Goren-
stein local rings

In this section we study how to construct generalized Gorenstein local rings obtained by
determinantal ideals. Throughout this section, let (S, n) be a Noetherian local ring of
d = dimS > 0. For an ideal I of S and a finitely generated S-module M , grade(I,M)
denotes the grade of M in I in the sense of [11, Definition 1.2.6.], that is, the length of the
maximal M -regular sequence in I. We start at the following lemma which is well-known.

Lemma 1.7.1. Let I be an ideal of S and x ∈ n be a non-zerodivisor of S. Then

grade(I, S) ≤ grade([I + (x)]/(x), S/(x)) ≤ grade(I, S).

Proof. Set g = grade(I, S). By applying the functor HomS(S/I, ∗) to the exact sequence
0 → S

x−→ S → S/(x) → 0, we have ExtiS(S/I, S/(x)) = 0 for all i ≤ g − 2 and

0 → Extg−1
S (S/I, S/(x)) → ExtgS(S/I, S)

x−→ ExtgS(S/I, S) → ExtgS(S/I, S/(x)).

By Nakayama’s lemma, at least either Extg−1
S (S/I, S/(x)) or ExtgS(S/I, S/(x)) does not

vanish. Therefore g − 1 ≤ grade(I, S/(x)) = grade([I + (x)]/(x), S/(x)) ≤ g.

Lemma 1.7.2. For a positive integer n > 0, the following assertions hold true.

(1) Let 0 < α1,α2, . . . ,αn, β1, β2, . . . , βn be positive integers and x1, x2, . . . , xn ∈ n an
S-regular sequence. Set

I = I2

(
xα1
1 xα2

2 . . . xαn−1
n−1 xαn

n

xβ22 xβ33 . . . xβnn xβ11

)
.

Then grade(I, S) = n− 1.

(2) Let x1, x2, . . . , xn, y1, y2, . . . , yn ∈ n be an S-regular sequence. Set

J = I2

(
x1 x2 . . . xn

y1 y2 . . . yn

)
.

Then grade(J, S) = n− 1.

48



Proof. The hight of I and J are at most n− 1 in general, thus we have only to show that
the converse inequality.

(1) Note that I + (x1) = I2

(
0 xα2

2 . . . xαn−1
n−1 xαn

n

xβ22 xβ33 . . . xβnn 0

)
+ (x1).

Set I ′ = I2

(
0 xα2

2 . . . xαn−1
n−1 xαn

n

xβ22 xβ33 . . . xβnn 0

)
. We show that x2, x3, . . . , xn ∈

√
I ′ by in-

duction on 2 ≤ i ≤ n. The cases where i = 2 and i = n are clear. For the case of

2 < i < n, suppose the assertion holds true for i− 1. Then since det

(
xαi−1

i−1 xαi
i

xβii xβi+1

i+1

)
∈ I ′,

we have xαi+βi
i ∈ I ′. Hence n− 1 ≤ grade([I ′ + (x1)]/(x1), S/(x1)) ≤ grade(I, S).

(2) Set y0 = yn and Q = (xi − yi−1 | 1 ≤ i ≤ n) + (x1). Then, we have

[J +Q]/Q = [(x2, x3, . . . , xn)
2 +Q]/Q.

Hence n− 1 ≤ grade([J +Q]/Q, S/Q) ≤ grade(J, S).

Theorem 1.7.3. Let S be a Gorenstein local ring and n be a positive integer with 3 ≤
n ≤ dimS = d. Assume that x1, x2, . . . , xd is a system of parameters of S. Set Q =
(x1, x2, . . . , xn) and take elements y1, y2, . . . , yn ∈ Q. Set

I = I2

(
x1 x2 . . . xn

y1 y2 . . . yn

)
.

If grade(I, S) = n − 1, then R = S/I is a generalized Gorenstein local ring with respect
to (x1, x2, . . . , xd)R.

Proof. We reduced the case where n = d. Assume that n < d. Then S/(xn, xn+1, . . . , xd)
and R/(xn, xn+1, . . . , xd)R satisfy the same assertions of S and R. Hence, thanks to
Theorem 1.4.6, we may assume that n = d. Then, by hypothesis, the Eagon-Northcott
complex [18] gives a minimal S-free resolution of R. Remember that the Eagon-Northcott
complex has the form

0 → S⊕r M−→ S⊕n(n−2) → · · · → S → R → 0

of R such that

tM =





Y

X Y 0
X

. . .

0 X Y
X





,

where X = (x1 − x2 x3 . . . (−1)n−1xn) and Y = (y1 − y2 y3 . . . (−1)n−1yn) are
submatrices of tM. Since yi ∈ Q for all 1 ≤ i ≤ n, by taking fundamental transformation,
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we have

tM ∼





Y ∗
X

X
. . . 0

X

0 X





= N,

where all components in ∗ are in Q. After replacing the basis of S⊕n(n−2), we may assume
that tM = N. Therefore R is a generalized Gorenstein local ring with respect to QR by
Corollary 1.6.5

Corollary 1.7.4. Let S be a Gorenstein local ring and n be a positive integer with 3 ≤
n ≤ dimS = d. Then the following assertions hold true.

(1) Let 0 < α1,α2, . . . ,αn, β1, β2, . . . , βn be positive integers and
x1, x2, . . . , xn, z1, z2, . . . , zd−n ∈ n a system of parameters of S. Set

I = I2

(
xα1
1 xα2

2 . . . xαn−1
n−1 xαn

n

xβ22 xβ33 . . . xβnn xβ11

)
.

Then, R1 = S/I is a generalized Gorenstein local ring with respect to
(xα1

1 , xα2
2 , . . . , xαn

n , z1, z2, . . . , zd−n)R1 if and only if αi ≤ βi for all 1 ≤ i ≤ n.

(2) Let x1, x2, . . . , xn, y1, y2, . . . , yn, z1, z2, . . . , zd−2n ∈ n be a system of parameters of S.
Set

J = I2

(
x1 x2 . . . xn

y1 y2 . . . yn

)
.

Then, R2 = S/J is a generalized Gorenstein local ring with respect to

(x1, x2, . . . , xn, y1, y2, . . . , yn, z1, z2, . . . , zd−2n)R2.

Proof. (1) Thanks to Theorem 1.7.3 and Lemma 1.7.2, we have only to show that the
only if part. By Lemma 1.7.2, the Eagon-Northcott complex induces the exact sequence

S⊕n(n−2)
tM−→ S⊕r → KR → 0, where

tM =





Y

X Y 0
X

. . .

0 X Y
X





.

Here, X and Y denotes the submatrices of tM such that
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X = (xα1
1 − xα2

2 xα3
3 . . . (−1)n−1xαn

n ) and
Y = (xβ22 − xβ33 xβ44 . . . (−1)n−2xβnn (−1)n−1xβ11 ).

Set a = (xα1
1 , xα2

2 , . . . , xαn
n , z1, z2, . . . , zd−n). Take the functor S/a ⊗S −. Then, since

KR/aKR is S/a-free, we get all components in tM are in a. Thus we come to the conclusion.
(2) Set y0 = yn and q = (xi − yi−1 | 1 ≤ i ≤ n). Note that {xi − yi−1 |

1 ≤ i ≤ n} is a regular sequence of S and R2. Hence S/(J + q) is a general-
ized Gorenstein local ring with respect to (x1, x2, . . . , xn, z1, z2, . . . , zd−n)·S/(J + q) by
(1). This implies that R2 is also a generalized Gorenstein local ring with respect to
(x1, x2, . . . , xn, y1, y2, . . . , yn, z1, z2, . . . , zd−2n)R2 by Theorem 1.4.6.

We close this section with an application for Rees algebras which is a generalization
of [46, Theorem 8.3.].

Corollary 1.7.5. (cf. [46, Theorem 8.3.]) Let (S, n) be a Gorenstein local ring and
1 ≤ n ≤ dimS = d. Let a1, a2, . . . , an be a subsystem of parameters of S. Set Q =
(a1, a2, . . . , an). We denote that

R = R(Q) = S[a1t, a2t, . . . , adt] ⊆ S[t]

is the Rees algebra of Q, where S[t] is the polynomial ring over S. Then RM is a gener-
alized Gorenstein local ring, where M = nR+R+ is the unique graded maximal ideal.

Proof. By [6], R ∼= S[T1, T2, . . . , Tn]/I2 ( T1 T2 ... Tn
a1 a2 ... an ). This shows that RM is a generalized

Gorenstein local ring.

1.8 Ulrich ideals and generalized Gorenstein local
rings

As we showed in Corollary 1.5.28, there are relations between the notion of Ulrich ideals
and the notion of generalized Gorenstein local rings. The purpose of this section is to
study about Ulrich ideals again and generalize previous results. Throughout this section,
let (R,m) be a Cohen-Macaulay local ring of dimension d ≥ 0, possessing the canonical
module KR. Let us summarize the some basic properties of Ulrich ideals, as seen in
[43, 47].

Theorem 1.8.1 ([43, 47]). Let I be an Ulrich ideal of R and set n = µR(I). Let

· · · → Fi
∂i→ Fi−1 → · · · → F1

∂1→ F0 = R → R/I → 0

be a minimal free resolution of R/I. Then r(R) = (n − d)·r(R/I) and the following
assertions hold true.

(1) I(∂i) = I for i ≥ 1.
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(2) For i ≥ 0, βi =






(n− d)i−d·(n− d+ 1)d (i ≥ d),(
d
i

)
+ (n− d)·βi−1 (1 ≤ i ≤ d),

1 (i = 0).

(3) For i ∈ Z, ExtiR(R/I,R) ∼=






(0) (i < d),

(R/I)⊕(n−d) (i = d),

(R/I)⊕{(n−d)2−1}·(n−d)i−(d+1)
(i > d).

Here I(∂i) denotes the ideal of R generated by the entries of the matrix ∂i, and βi =
rankRFi.

Next, let us introduce the notion of trace ideals.

Definition 1.8.2. For an R-module M , let

tM : HomR(M,R)⊗R M → R

denote the R-linear map defined by tM(f ⊗ m) = f(m) for all f ∈ HomR(M,R) and
m ∈ M . Then, trR(M) = ImtM is called the trace of M .

In this chapter, we focus on the trace of the canonical module trR(KR). Let us note
some properties of the trace of the canonical module.

Remark 1.8.3. The following assertions are true.

(1) trR(KR) describes non-Gorenstein locus, that is, for p ∈ SpecR, Rp is not a Gorenstein
ring if and only if trR(KR) ⊆ p.

(2) If there exists a canonical ideal L, then trR(KR) = (R : L)L. In particular, if R
is a generalized Gorenstein local ring with respect to a of dimension one, then a =
trR(KR).

Proof. (1) For instance, see [55, Lemma 2.1.].
(2) Since canonical ideal L contains a non-zerodivisor of R, we have a natural isomor-

phism HomR(L,R) ∼= R : L. Therefore trR(KR) = ImtL = (R : L)L. Latter statement
follows from Lemma 1.5.7 and Theorem 1.5.8.

Let us give the relation between Ulrich ideals and the trace of the canonical module.

Theorem 1.8.4. Suppose that (R,m) is a generically Gorenstein local ring but not a
Gorenstein ring. Let I be an Ulrich ideal such that µR(I) > d+ 1. Then trR(KR) ⊆ I.

Proof. Since R is a generically Gorenstein local ring, there exists a canonical ideal L " R.
For any R-regular element f ∈ L, we get an exact sequence

0 → R → L → L/(f) → 0

of R-modules. Thanks to Theorem 1.8.1, by applying the functor HomR(R/I, ∗), we have

ExtiR(R/I, L/(f)) ∼= Exti+1
R (R/I,R) ∼= (R/I)⊕ui
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for i > d, where ui = {(µR(I)− d)2 − 1}(µR(I)− d)i−d−1 > 0. This implies that

∑

f ∈ L R-regular

(f) :R L ⊆ I.

We show that
trR(KR) =

∑

f ∈ L R-regular

(f) :R L.

In fact, by Davis’s lemma, we can take non-zerodivisors f1, f2, . . . , fr of R such that
L = (f1, f2, . . . , fr), where r = r(R). Therefore, since (f) :R L = f(R : L), we have

∑

f ∈ L R-regular

(f) :R L =
∑

f ∈ L R-regular

f(R : L)

=
r∑

i=1

fi(R : L)

= L(R : L) = trR(KR).

Combining [47, Theorem 2.8.] and Theorem 1.8.4 yields the following the result.

Corollary 1.8.5. Suppose that R is G-regular, that is, every totally reflexive module is
free. If I is an Ulrich ideal, then trR(KR) ⊆ I.

Corollary 1.8.5 provides the question when trR(KR) is an Ulrich ideal. Corollary 1.5.28
and Remark 1.8.3 say that trR(KR) is an Ulrich ideal if R is a non-Gorenstein generalized
Gorenstein local ring of dimension one and S is a Gorenstein ring. For a while, we focus
the case where dimR = 1. We assume that Setting 1.5.3 unless otherwise noted. Note
that trR(KR) = aK by Remark 1.8.3.

Lemma 1.8.6. Suppose that trR(KR) is stable, that is, trR(KR)2 = α·trR(KR) for some
non-zerodivisor α ∈ trR(KR) of R. Then trR(KR) = c.

Proof. Since trR(KR) = aK, trR(KR) : trR(KR) = aK : aK = (aK)n : (aK)n for all
n > 0. Since anS = (aK)n for n - 0, we have trR(KR)S ⊆ trR(KR). This shows that
trR(KR) is an ideal of S, whence trR(KR) ⊆ c. The converse inclusion is clear.

The following improves Corollary 1.5.28.

Theorem 1.8.7. Suppose that R is not a Gorenstein ring. Then the following conditions
are equivalent.

(1) trR(KR) is an Ulrich ideal of R.

(2) c is an Ulrich ideal of R.
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(3) R is a generalized Gorenstein local ring and S is a Gorenstein ring.

In particular, if trR(KR) is an Ulrich ideal of R, then R is a generalized Gorenstein
local ring with respect to trR(KR).

Proof. (2) ⇔ (3) is proven in Corollary 1.5.28.
(2)⇒ (1) This follows from the fact of trR(KR) = c by Lemma 1.5.7 and the equivalence

(2) ⇔ (3).
(1) ⇒ (2) This follows from Lemma 1.8.6.

Let us give examples of Theorem 1.8.7.

Proposition 1.8.8. Let (S, n) be a Gorenstein local ring and 3 ≤ n = dimS. Take
x1, x2, . . . , xn ∈ n a system of parameters of S and set

I = I2

(
x1 x2 · · · xn−1 xn

x2 x3 · · · xn x1

)

and R = S/I. Then we have the following.

(1) R is a one-dimensional generalized Gorenstein local ring with respect to
(x1, x2, . . . , xn)R.

(2) trR(KR) = (x1, x2, . . . , xn)R is an Ulrich ideal of R.

Proof. (1) This follows from Corollary 1.7.4.
(2) By (1), we have the equality trR(KR) = (x1, x2, . . . , xn)R since Lemma 1.5.7. Set

J = trR(KR). Then, we have

J2 = x1J + (x2, x3, . . . , xn)
2 = x1J

since xixj = xi−1xj+1 for all 2 ≤ i ≤ j ≤ n, where x denotes the image of x ∈ S in R and
xn+1 = x1. Therefore, by Lemma 1.5.21 and Theorem 1.8.7, we have J is an Ulrich ideal
of R.

Proposition 1.8.9. Let R = k[[ta1 , ta2 , ta3 ]] be a numerical semigroup ring over a field k.
With the notation of Theorem 1.5.34 suppose that a > 0. Then the following conditions
are equivalent.

(1) trR(KR) is an Ulrich ideal.

(2) Two of the three pairs (α,α′), (β, β′), and (γ, γ′) are equal.

When this is the case, after renumbering, we have the equalities:

a1 = 3βγ, a2 = γ(2α + α′), and a3 = β(2α′ + α).
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Proof. (2) ⇒ (1) After suitable permutation of a1, a2, and a3 if necessary, we may assume
that α < α′, β = β′, γ = γ′. Then R is a generalized Gorenstein local ring and trR(KR) =
(tαa1 , tβa2 , tγa3) by Theorem 1.5.34. It is straightforward that trR(KR)2 = ta1·α·trR(KR).
Hence trR(KR) = R : R[K] by Lemma 1.8.6, where K = R + Rta. Hence R[K] is a
Gorenstein ring by Lemma 1.5.21. Therefore trR(KR) is an Ulrich ideal by Theorem
1.8.7.

(1) ⇒ (2) We have the equalities

α ≤ α′, β ≤ β′, γ ≤ γ′, and trR(KR) = (tαa1 , tβa2 , tγa3)

by Theorem 1.5.34. We may assume that (ta1·α) is a reduction of trR(KR) after renum-
bering. Then,

R[K] = K2 =
〈
1, ta, t2a

〉
=

trR(KR)

ta1·α
=

〈
1, ta2·β−a1·α, ta3·γ−a1·α

〉
,

by Theorem 1.5.8. Therefore

{
a2·β − a1·α = 2a

a3·γ − a1·α = a
or

{
a2·β − a1·α = a

a3·γ − a1·α = 2a
.

Assume the former case. Then, since a = n−m = a1α′ − a3γ by (1.5.33.1), we have

2·a3γ = a1(α + α′) = a2β
′ + a3γ,

where the last equality follows from Xα+α′ − Y β′
Zγ ∈ Kerϕ. Therefore a2β′ = a3γ,

whence Y β′ − Zγ ∈ Kerϕ. This is a contradiction for the construction of β and γ
since R is not a Gorenstein ring (see [51]). Hence the latter case holds. Then, since
a2·β − a1·α = a = a2β′ − a1α, β = β′. Similarly, we have γ = γ′ since

a3·γ − a1·α = 2a = (a2β
′ − a1α) + (a3γ

′ − a2β).

Equalities for a1, a2, and a3 follow from the general equalities that

a1 = βγ + β′γ′ + β′γ, a2 = αγ + αγ′ + α′γ′, and a3 = α′β′ + α′β + αβ,

see the proof of Corollary 1.5.35.

Now we are back to the setting that (R,m) is an arbitrary Cohen-Macaulay local ring,
possessing the canonical module KR. Set d = dimR > 0.

Corollary 1.8.10. Suppose that the residue field R/m is infinite. If trR(KR) is an Ul-
rich ideal of R with µR(trR(KR)) > d + 1, then R is a generalized Gorenstein local ring
with respect to trR(KR). When this is the case, R/trR(KR) is a Gorenstein ring and
µR(trR(KR)) = d+ r(R).

Proof. Set J = trR(KR). We prove by induction on d. The case where d = 1 is proven
in Theorem 1.8.7. Let d > 1 and assume that our assertion holds true for d − 1. Since
R/m is infinite, we can choose a parameter ideal Q = (f = f1, f2, . . . , fd) as a minimal
reduction of J . Set ∗ = R/(f)⊗R ∗. Then tKR : HomR(KR, R)⊗R KR → R induces

tKR : HomR(KR, R)⊗R KR → R.
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Hence trR(KR)R = ImtKR ⊆
∑

f∈HomR(KR,R) Imf = trR(KR). On the other hand, JR is

an Ulrich ideal of R since [43, Lemma 3.3.] and µR(JR) > (d− 1)− 1. Hence, thanks to
Theorem 1.8.4, JR = trR(KR). Therefore R is a generalized Gorenstein local ring with
respect to trR(KR), whence R is also a generalized Gorenstein local ring with respect to
trR(KR) by Theorem 1.4.6. Thus R/trR(KR) is a Gorenstein ring by Corollary 1.5.13 and
µR(trR(KR)) = d+ r(R) by Theorem 1.8.1.

Let us give an application for nearly Gorenstein local rings which is defined by J.
Herzog, T. Hibi, and D. I. Stamate.

Definition 1.8.11. ([55, Definition 2.2.]) Let (R,m) be a Cohen-Macaulay local ring
possessing KR. Then R is called a nearly Gorenstein local ring if trR(KR) ⊇ m.

As a direct consequence of Corollary 1.8.10, we have the following which generalizes
the result of J. Herzog, T. Hibi, and D. I. Stamate ([55, Theorem 7.4.]).

Corollary 1.8.12. Suppose that R is a nearly Gorenstein ring and R has maximal em-
bedding dimension. Then R is an almost Gorenstein local ring if the residue field R/m is
infinite.

Proof. We may assume that R is not a Gorenstein ring. Then, trR(KR) = m is an Ulrich
ideal and v(R) = e(R) = d+r(R) > d+1 by Lemma 1.5.17. Therefore R is a generalized
Gorenstein local ring with respect to m, that is, an almost Gorenstein local ring.

We give examples of Corollary 1.8.10.

Example 1.8.13. Let (S, n) be a Gorenstein local ring of dimS = 4 and x1, x2, x3, x4 ∈ n
a system of parameters of S. Set

I = I2

(
x1 x2 x3

x2 x3 x4

)

and R = S/I. Then trR(KR) = (x1, x2, x3, x4)R is an Ulrich ideal of R. Therefore R is a
generalized Gorenstein local ring with respect to trR(KR).

Proof. By [55, Corollary 3.4.] and Hilbert-Burch’s theorem, we have trR(KR) =
(x1, x2, x3, x4)R. Set J = (x1, x2, x3, x4)R and ∗ denotes the image of ∗ ∈ S in R. Then

J2 = (x1, x4)J + (x2, x3)
2 = (x1, x4)J.

Furthermore, we have

e0J(R) ="R(R/(x1, x4)R)

="S(S/I + (x1, x4))

="S(S/[(x2, x3)
2 + (x1, x4)])

="S′(S ′/(x2, x3)
2S ′) where S ′ = S/(x1, x4)

=3·"S′(S ′/(x2, x3)S
′)

=3·"R(R/JR),

where the fifth equality follows from the fact that (x2, x3)S ′ is a parameter ideal of S ′.
Hence I is an Ulrich ideal of R by [43, Lemma 2.3.].
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Next purpose is to determine the set of all Ulrich ideals of generalized Gorenstein local
rings of dimension one. Let us remember Theorem 1.5.18, which rephrased in terms of
the trace of the canonical module.

Theorem 1.8.14 (Theorem 1.5.18). Let (R,m) be a Cohen-Macaulay local ring possessing
the canonical module KR. Assume that dimR = 1 and Setting 1.5.3. Then the following
conditions are equivalent.

(1) R is a generalized Gorenstein local ring but not an almost Gorenstein local ring and
v(R) = e(R).

(2) B = HomR(m,m) is a generalized Gorenstein local ring with v(B) = e(B) = e(R),
but not a Gorenstein ring.

When this is the case, there exists an element such that m2 = αm and we have the
following.

(i) R/m ∼= B/n,

(ii) "B(B/trB(KB)) = "R(R/trR(KR))− 1, and

(iii) n2 = αn.

Here n denotes the unique maximal ideal of B.

Proof. Note that the existence of a minimal reduction (α) of m follows from [67, Corollary
1.10].

We are now back to the case of dimension one. In what follows, we assume Setting
1.5.3. Due to Theorem 1.8.14, we have the following which is the heart of Theorem 1.8.18.

Proposition 1.8.15. Suppose that R is a generalized Gorenstein local ring but not a
Gorenstein ring. Assume that m2 = αm for some element α ∈ m. Set v = v(R) and
N = "R(R/trR(KR)) > 0. Then there exist elements x2, x3, . . . , xv ∈ m which satisfies the
following two conditions.

(1) m = (α, x2, x3, . . . , xv).

(2) trR(KR) = (αN , x2, x3, . . . , xv) and (αN) is a minimal reduction of trR(KR).

Proof. We prove by induction on N > 0. The case where N = 1 is trivial since trR(KR) =
m. Let N > 1 and assume that our assertion holds true for N − 1. Then, B = m : m is
also a generalized Gorenstein local ring but not a Gorenstein ring. Let n be the unique
maximal ideal of B. Then due to Theorem 1.8.14 and induction hypothesis, there exist
elements y2, y3, . . . , yv ∈ n which satisfy the following conditions:

(1) n = Bα +
∑v

i=2 Byi.

(2) trB(KB) = BαN−1 +
∑v

i=2 Byi and BαN−1 is a minimal reduction of trB(KB).
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We need to prove the following.

Claim. The following assertions hold true.

(i) trB(KB) =
1
αtrR(KR).

(ii) m = Rα +
∑v

i=2 Rαyi.

Proof of Claim. (i) Since B is a generalized Gorenstein local ring and due to [15, Propo-
sition 5.1.], we have trB(KB) = B : S = m

α : S = 1
α(m : S). Note that c = R : S = c : S

since c = cS. Therefore trB(KB) =
1
αc =

1
αtrR(KR).

(ii) Since n2 = αn ⊆ αB = m, n/m is a B/n-vector space, whence n/m =
∑v

i=2 B/n·yi.
Due to Theorem 1.8.14, we have a natural isomorphism R/m ∼= B/n, thus n/m =∑v

i=2 R/m·yi. We have n =
∑v

i=2 Ryi + m, and αn =
∑v

i=2 Rαyi + αm. On the other
hand, since m/αn ∼= B/n ∼= R/m and α ∈ m\αn, we have m = αn + αR. Therefore
m =

∑v
i=2 Rαyi + αm+Rα. This concludes the claim by Nakayama’s lemma.

Set J = RαN +
∑v

i=2 Rαyi. By Claim, trR(KR) = BαN +
∑v

i=2 Bαyi ⊇ J and
"R(R/J) ≤ N . Hence we have trR(KR) = J . It remains to show that αNR is a reduction
of trR(KR). In fact, αN−1R ⊆ αN−1B ⊆ trB(KB) =

1
αtrR(KR) ⊆ αN−1B = αN−1R. Hence

αNR ⊆ trR(KR) ⊆ αNR ∩R, this implies that αNR is a reduction of trR(KR).

As a corollary, we have the following.

Corollary 1.8.16. Suppose that R has a maximal embedding dimension. If R is a gen-
eralized Gorenstein local ring with respect to a, then v(R/a) ≤ 1. In particular, R/a is a
complete intersection.

Note that Corollary 1.8.16 not necessarily true without the assumption that R has
maximal embedding dimension. For instance, see Proposition 1.8.8.

Lemma 1.8.17. Let A be a commutative ring. Suppose that Q0, Q, and J are ideals of
A. Set

I0 = Q0 + J and I = Q+ J.

Assume that Q0 ⊆ Q. Then, Im+1
0 = Q0Im0 implies Im+1 = QIm.

Proof. Since Im+1
0 = Q0I0

m + Jm+1 = Q0I0
m, we have Jm+1 ⊆ Q0I0

m ⊆ QIm. Therefore
Im+1 = QIm + Jm+1 = QIm.

We are now reach one of the main results of this chapter, which completely determines
the set of Ulrich ideals via the notion of generalized Gorenstein local rings. Let XR denote
the set of all Ulrich ideals.

Theorem 1.8.18. Suppose that R is not a Gorenstein ring. Set v = v(R) and N =
"R(R/trR(KR)) > 0. Then the following conditions are equivalent.

(1) R is a generalized Gorenstein local ring possessing maximal embedding dimension.

(2) trR(KR) and m are Ulrich ideals.
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(3) R is G-regular and a length of a maximal chain of Ulrich ideals is N − 1.

(4) There exist elements α, x2, x3, . . . , xv ∈ m which satisfy the following two conditions.

(i) m = (α, x2, x3, . . . , xv) and

(ii) XR = {(αi, x2, x3, . . . , xv) | 1 ≤ i ≤ N}.

Proof. (4) ⇒ (3) Set Ii = (αi, x2, x3, . . . , xv) and Ri = R/Ii for 1 ≤ i ≤ N . We need
to show that Ii+1 " Ii for all 1 ≤ i ≤ N − 1. Assume that Ii = Ii+1 for some 1 ≤
i ≤ N − 1. Then, αi = c1αi+1 +

∑v
j=2 cjxj for some c1, c2, . . . , cv ∈ R. This shows that

αi ∈ (x2, x3, . . . , xv) since 1 − c1α is an unit element in R. On the other hand, Ri is a
complete intersection by Corollary 1.8.16. Therefore we have

µR(Ii) = 1 + r(R) = e(R) = v

by Lemma 1.5.17 and Theorem 1.8.1. This is a contradiction. Therefore

IN " IN−1 " · · · " I1 = m

is a chain of Ulrich ideals, and R is G-regular since m ∈ XR by [81, Corollary 2.5.].
(3) ⇒ (2) Take J0, J1, . . . , JN−1 ∈ XR so that R # J0 # J1 # · · · # JN−1. Then

"R(R/JN−1) ≥ N . Remember that JN−1 ⊇ trR(KR) by Corollary 1.8.5, whence we have
JN−1 = trR(KR) and J0 = m.

(1) ⇔ (2) This follows from Corollary 1.5.29 and Theorem 1.8.7.
(1) ⇒ (4) By Proposition 1.8.15, there exist elements x2, x3, . . . , xv ∈ m which satisfy

the following conditions.

(a) m = (α, x2, x3, . . . , xv) and

(b) trR(KR) = (αN , x2, x3, . . . , xv) and (αN) is a minimal reduction of trR(KR).

Therefore, since R has maximal embedding dimension, we have

XR ⊆
{
(αi, x2, x3, . . . , xv) | 1 ≤ i ≤ N

}

by Corollary 1.8.5 and [81, Corollary 2.5.]. Set Ii = (αi, x2, x3, . . . , xv) for 1 ≤ i ≤ N .
Note that Ii+1 " Ii and µR(Ii) = v for all 1 ≤ i ≤ N − 1 since IN = trR(KR) and
µR(trR(KR)) = 1 + r(R) = v by Theorem 1.5.27. By Lemma 1.8.17, I2i = αiIi. To show
that Ii is an Ulrich ideal for all 1 ≤ i ≤ N , we have only to show that Ii/I2i is an R/Ii-free
module for 1 ≤ i ≤ N . This is equivalent to showing that Ii/(αi) is an R/Ii-free module
for 1 ≤ i ≤ N since the following exact sequence

0 → (αi)/I2i → Ii/I
2
i → Ii/(α

i) → 0

and (αi)/I2i = (αi)/αiIi ∼= R/Ii. We show R/Ii-freeness of Ii/(αi) by descending induction
on 1 ≤ i ≤ N . The case where i = N is trivial. Let 1 ≤ i < N and assume that our
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assertion holds true for i+ 1. Then

"R(Ii/(α
i)) ="R(R/(αi+1))− "R(R/Ii)− "R((α

i)/(αi+1))

=["R(R/Ii+1) + "R(Ii+1/(α
i+1))]− "R(R/Ii)− "R(R/(α))

=[(i+ 1) + (i+ 1)(v − 1)]− i− e(R)

=i(v − 1).

Thus Ii/(αi) is an R/Ii-free module since there is a surjection (R/Ii)⊕(v−1) → Ii/(αi).

Corollary 1.8.19. Suppose that e(R) = v(R) = 3 and set v = v(R). Then there exist
elements α, x2, x3, . . . , xv ∈ m which satisfy the following two conditions.

(i) m = (α, x2, x3, . . . , xv) and

(ii) XR = {(αi, x2, x3, . . . , xv) | 1 ≤ i ≤ "R(R/trR(KR))}.

Proof. By Corollary 1.5.12, R is a generalized Gorenstein local ring if e(R) = v(R) =
3.

We close this chapter with the following examples.

Example 1.8.20. Let k be a field and 0 < a1, a2, . . . , a! ∈ Z (" > 0) be positive integers
such that GCD (a1, a2, . . . , a!) = 1. Then R = k[[ta1 , ta2 , . . . , ta! ]] is a Cohen-Macaulay
local ring with dimR = 1, and the following assertions hold true.

(1) Let R1 = k[[t5, t6, t8]]. Then trR1(KR1) = (t10, t6, t8) is an Ulrich ideal of R1. But R1

does not have maximal embedding dimension.

(2) Let R2 = k[[t5, t18, t26, t34, t42]]. Then trR2(KR2) = (t10, t18, t26, t34, t42) is an Ul-
rich ideal of R2. Moreover R2 has maximal embedding dimension. Hence XR2 =
{trR2(KR2),m}.
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Chapter 2

A Characterization of generalized
Gorenstein rings

2.1 Introduction

The notion of generalized Gorenstein local ring is one of the generalizations of Gorenstein
rings. Similarly for the almost Gorenstein local rings, the notion is given in terms of a
certain specific embedding of the rings into their canonical modules (see the article [34]).
However, the research of almost Gorenstein local rings developed by the article [36] of S.
Goto, N. Matsuoka, and T. T. Phuong [36] for arbitrary one-dimensional Cohen-Macaulay
local rings is based on the investigation of the relationship between the two invariants;
the first Hilbert coefficient of canonical ideals and the Cohen-Macaulay type of the rings.
Therefore, it seems natural to ask for a possible characterization of almost Gorenstein
local rings of higher dimension, and also that of generalized Gorenstein local rings, in
terms of their canonical ideals and some related invariants. As for almost Gorenstein
local rings, it has been done by S. Goto, R. Takahashi, and N. Taniguchi. They have
already given a satisfactory result [46, Theorem 5.1]. The present purpose is to perform
the task for generalized Gorenstein local rings of higher dimension.

Originally, the series of researches [15, 25, 36, 39, 40, 41, 42, 45, 46, 47, 48, 74] aim
to find a new class of Cohen-Macaulay local rings, which contains the class of Gorenstein
rings. almost Gorenstein local rings are one of the candidates for such a class. Historically,
the notion of almost Gorenstein ring in our sense has its root in the article [7] of V. Barucci
and R. Fröberg in 1997, where they dealt with one-dimensional analytically unramified
local rings. They explored also numerical semigroup rings, starting a very beautiful theory.
In [36], S. Goto and N. Matsuoka and T. T. Phuong relaxed the notion to arbitrary Cohen-
Macaulay local rings of dimension one, based on a different point of view. Repairing a gap
in the proof of [7, Proposition 25], they opened frontiers in the study of one-dimensional
Cohen-Macaulay local rings. Among various results of [36], the most striking achievement
seems that their arguments have prepared for a possible definition [46, Definition 3.3] of
almost Gorenstein rings of higher dimension. We now have two more notion; 2-almost
Gorenstein local ring ([15]) and generalized Gorenstein local ring ([34]), both of which are
candidates of reasonable generalizations of Gorenstein rings and almost Gorenstein rings
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as well.
As is stated above, the present purpose is to find a characterization of generalized

Gorenstein local rings in terms of canonical ideals and related invariants. To state our
motivation and the results more precisely, let us review on the definition of generalized
Gorenstein local rings. Throughout this article, let (R,m) be a Cohen-Macaulay local
ring with d = dimR > 0, possessing the canonical module KR. For simplicity, let us
always assume that the residue class field R/m of R is infinite. Let a be an m-primary
ideal of R. With this notation the definition of generalized Gorenstein local ring is stated
as follows.

Definition 2.1.1 ([34, Definition 1.2]). We say that R is a generalized Gorenstein local
ring, if one of the following conditions is satisfied.

(1) R is a Gorenstein ring.

(2) R is not a Gorenstein ring but there exists an exact sequence

0 → R
ϕ−→ KR → C → 0

of R-modules such that

(i) C is an Ulrich R-module with respect to a and

(ii) the induced homomorphism R/a⊗R ϕ : R/a → KR/aKR is injective.

When Case (2) occurs, we especially say that R is a generalized Gorenstein local ring
with respect to a.

Let us explain a little about Definition 2.1.1. Let M be a finitely generated R-module
of dimension s ≥ 0. Then we say that M is an Ulrich R-module with respect to a, if the
following three conditions are satisfied.

(i) M is a Cohen-Macaulay R-module,

(ii) e0a(M) = "R(M/aM), and

(iii) M/aM is a free R/a-module,

where "R(∗) stand for the length and

e0a(M) = lim
n→∞

s!·"R(M/an+1M)

ns

denotes the multiplicity of M with respect to a ([43]). The notion of Ulrich R-module
with respect to an m-primary ideal is a generalization of maximally generated maximal
Cohen-Macaulay R-module (that is, maximal Ulrich R-module with respect to m; see
[10]). One can consult [34, 43, 44, 46] for basic properties of Ulrich modules in our sense.
Here, let us note one thing. In the setting of Definition 2.1.1, suppose that there is an
exact sequence

0 → R → KR → C → 0
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of R-modules such that C '= (0). Then C is a Cohen-Macaulay R-module of dimension
d− 1 ([46, Lemma 3.1 (2)]), and C is an Ulrich R-module with respect a if and only if

aC = (f2, f3, . . . , fd)C

for some elements f2, f3, . . . , fd ∈ a ([34, Proof of Proposition 2.4, Claim]). Therefore, if
a = m, Definition 2.1.1 is exactly the same as that of almost Gorenstein local rings given
by [46, Definition 3.3]. In [34], S. Goto and the author investigate generalized Gorenstein
local rings, and one can find a report of basic results on generalized Gorenstein local rings,
which greatly generalizes several results in [46], clarifying what almost Gorenstein local
rings are.

The present purpose is to give a characterization of generalized Gorenstein local rings.
Let r(R) stand for the Cohen-Macaulay type of R. We then have the following, which is
the main result of this article.

Theorem 2.1.2. Let (R,m) be a Cohen-Macaulay local ring with d = dimR > 0 and
infinite residue class field, possessing the canonical module KR. Let I " R be an ideal of
R such that I ∼= KR as an R-module. We choose a parameter ideal Q = (f1, f2, . . . , fd) of
R so that f1 ∈ I and set J = I + Q. Let a be an m-primary ideal of R. Suppose that R
is not a Gorenstein ring. Then the following conditions are equivalent.

(1) R is a generalized Gorenstein local ring with respect to a.

(2) The following three conditions are satisfied.

(i) a = Q :R J .

(ii) aJ = aQ.

(iii) e1J(R) = "R(R/a)·r(R).

When this is the case, R/a is a Gorenstein ring, and the following assertions hold
true.

(a) J3 = QJ2 but J2 '= QJ .

(b) SQ(J) ∼= (T /aT )(−1) as a graded T -module, where SQ(J) (resp. T = R(Q)) denotes
the Sally module of J with respect to Q (see [77]) (resp. the Rees algebra of Q).

(c) f2, f3, . . . , fd forms a super-regular sequence of R with respect to J , and
depth grJ(R) = d − 1, where grJ(R) =

⊕
n≥0 J

n/Jn+1 denotes the associated graded
ring of J .

(d) The Hilbert function of R with respect to J is given by

!R(R/Jn+1) = e0J(R)·
(
n+ d

d

)
−
[
e0J(R)− !R(R/J) + !R(R/a)

]
·
(
n+ d− 1

d− 1

)
+!R(R/a)·

(
n+ d− 2

d− 2

)

for n ≥ 1. Hence, e2J(R) = "R(R/a) if d ≥ 2, and eiJ(R) = 0 for all 3 ≤ i ≤ d if
d ≥ 3.
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The study of generalized Gorenstein local rings is still in progress, and our theorem
2.1.2 now completely generalizes the corresponding assertion [46, Theorem 5.1] of almost
Gorenstein local rings to arbitrary generalized Gorenstein local rings of higher dimension,
certifying not only that the notion of generalized Gorenstein local ring is a reasonable
generalization of almost Gorenstein local rings but also that of generalized Gorenstein
local ring is one of the candidates of broader notion which generalizes Gorenstein rings.

We now briefly explain how this chapter is organized. The proof of Theorem 2.1.2 shall
be given in Sections 3 and 4. In Section 2 we summarize some of the known results given
by [34], which we throughout need to prove Theorem 2.1.2. We will explore in Section 5
an example in order to illustrate Theorem 2.1.2.

2.2 Preliminaries

In this section we summarize some of the results in [34, Section 4] about one-dimensional
generalized Gorenstein local rings, which we need to prove Theorem 2.1.2. Let (R,m) be
a Cohen-Macaulay local ring of dimension one, admitting the canonical module KR. Let
I " R be an ideal of R such that I ∼= KR as an R-module. We assume that I contains a
parameter ideal (a) of R as a reduction. We set

K =
I

a
=

{x

a

∣∣∣ x ∈ I
}

in the total ring Q(R) of fractions of R. Hence K is a fractional ideal of R such that
R ⊆ K ⊆ R and K ∼= KR, where R denotes the integral closure of R in Q(R). We set
S = R[K] in Q(R). Hence S is a module-finite birational extension of R. Note that the
ring S = R[K] is independent of the choice of canonical ideals I and reductions (a) of
I ([15, Theorem 2.5]). We set c = R : S. We then have the following, which shows the
m-primary ideal a which appears in Definition 2.1.1 of a generalized Gorenstein local ring
R is uniquley determined, when dimR = 1.

Proposition 2.2.1. Suppose R is not a Gorenstein ring but R is a generalized Gorenstein
local ring with respect an m-primary ideal a of R. Then a = c.

Proof. We choose an exact sequence

0 → R
ϕ−→ I → C → 0

of R-module such that C is an Ulrich R-module with respect to a and the induced homo-
morphism R/a⊗R ϕ : R/a → I/aI is injective. We set f = ϕ(1) and identify C = I/(f).
Then aI ⊆ (f) since a·(I/(f)) = (0), while (f) ∩ aI = af since the homomorphism
R/a⊗Rϕ is injective. Consequently, aI = af , whence (f) is a reduction of I. We consider
L = I

f and set S = R[L]. Then aL = a since aI = af , so that aS = a since S = Ln for all
n - 0. Therefore, a ⊆ c = R : S, so that a = c, because c ⊆ R : L = (f) :R I = a.

In general we have the following.
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Fact 2.2.2 ([34, Lemma 4.4]). Let a = R : K. Then the following conditions are equiva-
lent.

(1) K2 = K3.

(2) a = c.

(3) aK = a.

The key in the theory of one-dimensional generalized Gorenstein local rings is the
following, which we shall freely use in the present article. See [34, Section 4] for the proof.

Theorem 2.2.3 ([34]). Suppose that R is not a Gorenstein ring. Then the following
conditions are equivalent.

(1) R is a generalized Gorenstein local ring (necessarily with respect to c).

(2) K/R is a free R/c-module.

(3) K/c = K/cK is a free R/c-module.

(4) S/R is a free R/c-module.

(5) S/c = S/cS is a free R/c-module.

(6) e1(I) = "R(R/c)·r(R).

When this is the case, the following assertions hold true.

(i) K2 = K3.

(ii) R/c is a Gorenstein ring.

(iii) S/K ∼= R/c.

2.3 A Characterization of generalized Gorenstein lo-
cal rings

Let (R,m) be a Cohen-Macaulay local ring with d = dimR > 0 and infinite residue class
field, possessing the canonical module KR. Let I " R be an ideal of R such that I ∼= KR

as an R-module. We choose a parameter ideal Q = (f1, f2, . . . , fd) of R so that f1 ∈ I.
We set q = (f2, f3, . . . , fd) and J = I + q. Let a be an m-primary ideal of R. In Sections
3 and 4 we throughout assume that R is not a Gorenstein ring. The purpose is to prove
the equivalence between Conditions (1) and (2) in Theorem 2.1.2.

Let us begin with the following.

Proposition 2.3.1. q ∩ I = qI and J '= Q.
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Proof. We get q ∩ I = qI, since q is a parameter ideal of the Gorenstein ring R/I. If
J = Q, then I = Q ∩ I = (f1) + (q ∩ I), whence I = (f1) by the first equlaity. Therefore,
R is a Gorenstein ring, which is impossible.

Theorem 2.3.2. The following conditions are equivalent.

(1) a = Q :R J , aJ = aQ, and e1J(R) = "R(R/a)·r(R).

(2) aJ = aQ and the R/a-module J/Q is free.

When this is the case, R/q is a generalized Gorenstein local ring with respect to a/q,
whence so is the ring R with respect to a.

Proof. We may assume aJ = aQ. Hence, Q is a reduction of J . Because J/Q '= (0) by
Proposition 2.3.1, we get a = Q :R J , once J/Q is R/a-free. Consequently, we may also
assume that a = Q :R J . First, suppose that d = 1. Hence J = I. We set K = I

f1
in the

total ring of fractions of R. Then, since aK = a, we have a = R : R[K] by Fact 2.2.2.
Consequently, by Theorem 2.2.3, R is a generalized Gorenstein local ring (necessarily with
respect to c; see Proposition 2.2.1) if and only if e1I(R) = "R(R/a)·r(R). By Theorem 2.2.3,
the former condition is also equivalent to saying that I/Q (∼= K/R) is a free R/a-module,
whence the equivalence of Conditions (1) and (2) follows.

Let us consider the case where d ≥ 2. Assume that Condition (2) is satisfied. Let us
check that R = R/q is a generalized Gorenstein local ring. Set

R = R/q, Q = Q/q, J = J/q, and a = a/q.

We then have J = (I + q)/q ∼= I/qI = KR, since I ∼= KR and f2, f3, . . . , fd is a regular
sequence for the R-module I. Consequently, because a·J = a·Q and J/Q is R/a-free,
from the case of d = 1 it follows that R is a generalized Gorenstein local ring (Fact 2.2.2
and Theorem 2.2.3), whence so is R with respect a ([34, Theorem 3.3 (2)]).

We now assume that the implication (2) ⇒ (1) holds true for d − 1. Since Q is a
reduction of J and the field R/m is infinite, there exist elements h1, h2, . . . , hd ∈ Q such
that (i) h1 ∈ I, (ii) Q = (h1, h2, . . . , hd), and (iii) h2 is superficial for R with respect to
J . This time, we consider the ring R = R/(h2) and let ∗ denote the reduction mod (h2).
Then I = [I + (h2)]/(h2) ∼= I/h2I = KR and h1 ∈ I. Condition (2) is clearly satisfied for
the ring R as for the ideals a, Q, and J . Therefore, by the hypothesis of induction on d
we get

e1J(R) = "R
(
R/a

)
·r(R).

Consequently, e1J(R) = "R(R/a)·r(R), because e1J(R) = e1
J
(R) (remember that h2 is su-

perficial for R with respect to J).
The reverse implication (1) ⇒ (2) also follows by induction on d, chasing the above

argument in the opposite direction.

With the same notation as Theorem 2.3.2, suppose that the equivalent conditions of
Theorem 2.3.2 are satisfied. Then we have the following.

Proposition 2.3.3. J ⊆ a. Hence J2 ⊆ Q.
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Proof. Suppose d = 1. We set K = I
f1
, S = R[K], and c = R : S. Then since R is a

generalized Gorenstein local ring with respect a, we get a = c by Proposition 2.2.1 and
c = R : K (see Fact 2.2.2 and Theorem 2.2.3). Therefore, I ⊆ c, because c is an ideal of S
and f1 ∈ c (note that I = f1K ⊆ R). If d > 1, then passing to R/q, we have J/q ⊆ a/q,
whence J ⊆ a. Therefore J2 ⊆ Q, because a = Q :R J .

We are now ready to prove the equivalence of Conditions (1) and (2) in Theorem 2.1.2.

Proof of the main part in Theorem 2.1.2. See Theorem 2.3.2 for the implication (2) ⇒
(1). To see the implication (1) ⇒ (2), we consider the exact sequence

0 → R
ϕ−→ I → C → 0

of R-modules such that C is an Ulrich R-module with respect to a and the induced
homomorphism R/a ⊗R ϕ : R/a → I/aI is injective. Let f1 = ϕ(1) ∈ I. Then f1 is a
non-zerodivisor of R. Choose elements f2, f3, . . . , fd ∈ a so that in the ring R′ = R/(f1)
these elements generate a reduction of a·R′. Then f1, f2, . . . , fd is a system of parameters
of R with f1 ∈ I. Set q = (f2, f3, . . . , fd), Q = (f1) + q, and J = I + q. Then, q is a
parameter ideal of R/I, and because

"R′(C/qC) = e0a·R′(C) = e0a(C) = "R(C/aC),

we get aC = qC. Therefore, since anC = qnC for all n ∈ Z, f2, f3, . . . , fd forms a super-
regular sequence of C with respect to a, whence it is a superficial sequnece of C with
respect to a. Consequently, by [34, Theorem 3.3 (1)] the ring R = R/q is a generalized
Gorenstein local ring with respect to a/q, so that a·J = a·Q and J/Q is R/a-free, where

a = a/q, J = J/q, and Q = Q/q.

Hence J/Q is R/a-free, and aJ ⊆ aQ+ q. Therefore

aJ = (aQ+ q) ∩ aJ = aQ+ [q ∩ aJ ] = aQ+ [q ∩ aI] ⊆ aQ+ [q ∩ I] = aQ+ qI,

where the third equality follows from the fact that aJ = aI+aq. Hence aJ = aQ, as I ⊆ a
by Proposition 2.3.3. Therefore, Theorem 2.3.2 certifies that Condition (2) in Theorem
2.1.2 is satisfied for the ideals a, Q, and J . This completes the proof of the equivalence
of Conditions (1) and (2) in Theorem 2.1.2.

2.4 The Sally modules of J in generalized Gorenstein
local rings

Let us show the last assertions of Theorem 2.1.2. In what follows, assume that our ideals
Q and J satisfy the equivalent conditions in Theorem 2.3.2. Hence R (resp. R/q) is a
generalized Gorenstein local ring with respect to a (resp. a/q), and R/a is a Gorenstein
ring by [34, Corollary 4.9]. To prove the last assertions of Theorem 2.1.2, we need some
preliminaries. Let us maintain the same notation as in the proof of Theorem 2.3.2.

We begin with the following.
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Lemma 2.4.1. q ∩ J2 = qJ .

Proof. Remember that J2 = qJ+I2, since J = I+q. We then have q∩J2 = qJ+(q∩I2),
so that q ∩ J2 = qJ , because q ∩ I2 ⊆ q ∩ I = qI.

Proposition 2.4.2. We set L = Q :R a. Then the following assertions hold true.

(1) L = J :R a and L2 ⊆ Q.

(2) L/J ∼= R/a as an R-module.

(3) J2/QJ ∼= R/a as an R-module.

(4) aL = aQ.

(5) L2 = QL.

(6) J3 = QJ2 but J2 '= QJ .

Proof. (1), (2), (3) First, consider the case where d = 1. Let us maintain the notation
of the proof of Proposition 2.3.3. Then Q :R c = I :R c = f1S. In fact, we have
c = K : S = R : K (see Fact 2.2.2 and Theorem 2.2.3) and hence f1 ∈ c . Let x ∈ R. Then
x·c ⊆ I if and only if x

f1
·c ⊆ K. The latter condition is equivalent to saying that x

f1
∈ S,

since K : c = K : (K : S) = S. Thus I :R c = f1S. Because f1S·c = f1c ⊆ Q = (f1), we
get I :R c = f1S ⊆ Q :R c. Hence Q :R c = I :R c = f1S. Consequently

(Q :R c)2 = f1(f1S) ⊆ Q = (f1),

and [Q :R c]/I = f1S/f1K ∼= S/K ∼= R/c by Theorem 2.2.3, which proves Assertions (1)
and (2), because a = c. Assertion (3) is now clear, since

I2/f1I ∼= K2/K ∼= R/c

by Theorem 2.2.3. Now consider the case where d ≥ 2. To show Assertions (1) and
(2), passing to the ring R/q, we can safely assume that d = 1, and we have already
done with the case. Consider Assertion (3). We set R = R/q and denote by ∗ the

reduction mod q. Let ϕ : J2/QJ → J
2
/f1J be the canonical epimorphism. We then have

Kerϕ = [J2 ∩ (q+ f1J)]/QJ . Hence, because J2 ∩ q = qJ by Lemma 2.4.1, we have

J2 ∩ (q+ f1J) = f1J + (J2 ∩ q) = f1J + qJ = QJ,

whence the required isomorphism J2/QJ ∼= R/a follows.
(4) Suppose d = 1. Then cL = c·f1S = f1·c, whence the assertion follows. Suppose

that d ≥ 2 and that Assertion (3) holds true for d − 1. Note that Q = (f1, f1 + f2) +
(f3, . . . , fd). Then, because R/(f + f2) and R/(f2) are generalized Gorenstein local rings
with respect to a/(f1 + f2) and a/(f2) respectively, thanks to the hypothesis of induction
on d, we get

aL ⊆ [aQ+ (f1 + f2)] ∩ [aQ+ (f2)] = aQ+ {(f1 + f2) ∩ [aQ+ (f2)]} .
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Since aQ+ (f2) ⊆ a·(f1 + f2) + (f2, f3, . . . , fd), we furthermore have that

aL ⊆ aQ+{(f1 + f2) ∩ [a·(f1 + f2) + (f2, f3, . . . , fd)]} = aQ+(f1+f2)·(f2, f3, . . . , fd) = aQ.

Hence aL = aQ.
(5) Let x ∈ L2. Then, x ∈ Q, since L2 ⊆ Q by Assertion (1). We write x =

∑d
i=1 fixi

with xi ∈ R. Let α ∈ a. Then, because

αx =
d∑

i=1

fi(αxi) ∈ aL2 ⊆ Q2

by Assertion (3), we get αxi ∈ Q for all 1 ≤ i ≤ d, whence xi ∈ Q :R a = L. Thus
L2 = QL.

(6) The equality J3 = QJ2 is a direct consequence of [38, Proposition 2.6], since
µR(L/J) = 1 by Assertion (2). Suppose that J2 = QJ and let ∗ denote the reduction

mod q. Then since J ∼= KR and J
2
= Q·J , by [36, Theorem 3.7] R is a Gorenstein ring,

which is impossible. Hence J2 '= QJ .

Proposition 2.4.3. The sequence f2, f3, . . . , fd is a super-regular sequence of R with
respect to J . Hence depth grJ(R) = d− 1.

Proof. To see the first assertion, it suffices to show that q ∩ Jn+1 = aJn for all n ≥ 1.
By Lemma 2.4.1 we may assume that n ≥ 2 and that our assertion holds true for n− 1.
Then, since Jn+1 = QJn = qJn + f1Jn by Proposition 2.4.2 (5), we have

q ∩ Jn+1 = qJn + (q ∩ f1J
n).

Consequently, because q ∩ f1Jn = f1·(q ∩ Jn) (remember that f1, f2, . . . , fd is an R-
regular sequence), by the hypothesis of induction on n we have q ∩ f1Jn ⊆ qJn. Hence
q ∩ Jn+1 = qJn. Consequently, depth grJ(R) ≥ d − 1. Suppose that depth grJ(R) = d.
Then, f1, f2, . . . , fd is a super-regular sequence of R with respect to J , so that Q ∩ J2 =
QJ . Therefore, J2 = QJ , because J2 ⊆ Q by Proposition 2.4.2 (1), which contradicts
Proposition 2.4.2 (6). Hence depth grJ(R) = d− 1.

Let T = R(Q) and R = R(J) be the Rees algebras of Q and J respectively. We now
consider the Sally module SQ(J) = JR/JT of J with respect to Q (see [77]).

Theorem 2.4.4. SQ(J) ∼= (T /aT )(−1) as a graded T -module.

Proof. We set S = SQ(J) and denote, for each n ∈ Z, by [S]n the homogeneous component
of S of degree n. Then [S]1 = J2/QJ ([37, Lemma 2.1]) and S = T ·[S]1. Hence by
Proposition 2.4.2 (3), we get an epimorpism ϕ : (T /aT )(−1) → S of graded T -modules.
Let X = Kerϕ and assume that X '= (0). We choose an element p ∈ AssT X. Then,
since p ∈ AssT T /aT , and T /aT = (R/a)[X1, X2, . . . , Xd] is the polynomial ring over
R/a (remember that T is isomorphic to the symmetric algebra of Q over R), we have
p = mT . Then "Tp((T /aT )p) = "R(R/a), while by [37, Proposition 2.2] we have

"Tp(Sp) = e1J(R)− "R(J/Q).
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Therefore, "Tp(Sp) = "R(R/a), because e1J(R) = "R(R/a)·r(R) by Theorem 2.3.2 and
"R(J/Q) = "R(R/a)·(r(R) − 1) by Theorem 2.2.3. Thus "Tp((T /aT )p) = "Tp(Sp), which
forces Xp = (0). This is absurd. Thus (T /aT )(−1) ∼= S as a graded T -module.

Because

"R(R/Jn+1) = e0J(R)·
(
n+ d

d

)
−
[
e0J(R)− "R(R/J)

]
·
(
n+ d− 1

d− 1

)
− "R([S]n)

for all n ∈ Z (see [37, Proposition 2.2]), by Theorem 2.4.4 we readily get the following.

Corollary 2.4.5. The Hilbert function of R with respect to J is given by

!R(R/Jn+1) = e0J(R)·
(
n+ d

d

)
−
[
e0J(R)− !R(R/J) + !R(R/a)

]
·
(
n+ d− 1

d− 1

)
+ !R(R/a)·

(
n+ d− 2

d− 2

)

for n ≥ 1. Hence, e2J(R) = "R(R/a) if d ≥ 2, and eiJ(R) = 0 for all 3 ≤ i ≤ d if d ≥ 3.

2.5 Example

Let S = k[[X, Y, Z, V ]] be the formal power series ring over an infinite field k and let b =
I2(X2 Y+V Z

Y Z X3 ) denote the ideal of S generated by 2×2 minors of the matrix (X2 Y+V Z
Y Z X3 ).

We set R = S/b. We denote by x, y, z, v the images of X, Y, Z, V in S, respectively. Then
we have the following.

Example 2.5.1. The following assertions hold true.

(1) R is a two-dimensional generalized Gorenstein local ring with respect to a =
(x2, y, z, v).

(2) r(R) = 2 and I = (x2, y) is a canonical ideal of R.

(3) Set Q = (x2, v) and J = I +Q. Then Q is a parameter ideal of R with x2 ∈ I.

(4) We have a = Q :R J , aJ = aQ, and e1J(R) = "R(R/a)·r(R) = 4.

Proof. Since
R/(v) ∼= k[[X, Y, Z]]/I2(X2 Y Z

Y Z X3 ) ∼= k[[t3, t7, t8]]

where t denotes an indeterminate over k, we have dimR/(v) = 1. Hence htS b ≥ 2,
so that R is a Cohen-Macaulay ring with dimR = 2. Because R/vR = k[[t3, t7, t8]] is
a generalized Gorenstein local ring with respect to (t6, t7, t8) and v is a non-zerodivisor
of R, by [34, Theorem 3.3] R is a generalized Gorenstein local ring with respect to a.
To see that I ∼= KR, note that (t6, t7) is a canonical ideal of k[[t3, t7, t8]]. Since R/I =
S/(X2, Y, Z2), the element v acts on R/I as a non-zerodivisor, so that (v)∩I = vI. Hence
J/(v) = [I + (v)]/(v) ∼= I/vI. Because the ideal J/(v) corresponds to (t6, t7) under the
identification

R/(v) = k[[X, Y, Z]]/I2(X2 Y Z
Y Z X3 ) = k[[t3, t7, t8]],
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we see rR(I/vI) = 1, where rR(∗) stands for the Cohen-Macaulay type. Therefore rR(I) =
1, whence I ∼= KR because (0) :R I = (0). Since

R/Q ∼= k[X, Y, Z, V ]/(X2, Y 2, Z2, Y Z, V ),

we get Q :R J = Q :R y = (x2, y, z, v) = a ⊇ J . It is direct to check that aJ = aQ.
The equality e1J(R) = "R(R/a)·r(R) = 4 follows from the fact that "R(R/(x2, y, z, v)) =
r(R) = 2.

71



Chapter 3

The structure of chains of Ulrich
ideals in Cohen-Macaulay local rings
of dimension one

3.1 Introduction

The purpose of this chapter is to investigate the behavior of chains of Ulrich ideals, in a
one-dimensional Cohen-Macaulay local ring, in connection with the structure of birational
finite extensions of the base ring.

The notion of Ulrich ideals is a generalization of stable maximal ideals, which dates
back to 1971, when the monumental paper [67] of J. Lipman was published. The mod-
ern treatment of Ulrich ideals was started by [43, 44] in 2014, and has been explored in
connection with the representation theory of rings. In [43], the basic properties of Ulrich
ideals are summarized, whereas in [44], Ulrich ideals in two-dimensional Gorenstein ra-
tional singularities are closely studied with a concrete classification. However, in contrast
to the existing research on Ulrich ideals, the theory pertaining to the one-dimensional
case does not seem capable of growth. Some part of the theory, including research on the
ubiquity as well as the structure of the chains of Ulrich ideals, seems to have been left
unchallenged. In the current chapter, we focus our attention on the one-dimensional case,
clarifying the relationship between Ulrich ideals and the birational finite extensions of the
base ring. The main objective is to understand the behavior of chains of Ulrich ideals in
one-dimensional Cohen-Macaulay local rings.

To explain our objective as well as our main results, let us begin with the definition
of Ulrich ideals. Although we shall focus our attention on the one-dimensional case, we
would like to state the general definition, in the case of any arbitrary dimension. Let
(R,m) be a Cohen-Macaulay local ring with d = dimR ≥ 0.

Definition 3.1.1 ([43]). Let I be an m-primary ideal of R and assume that I contains a
parameter ideal Q = (a1, a2, . . . , ad) of R as a reduction. We say that I is an Ulrich ideal
of R, if the following conditions are satisfied.

(1) I '= Q,
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(2) I2 = QI, and

(3) I/I2 is a free R/I-module.

We notice that Condition (2) together with Condition (1) are equivalent to saying that
the associated graded ring grI(R) =

⊕
n≥0 I

n/In+1 of I is a Cohen-Macaulay ring and
a(grI(R)) = 1 − d, where a(grI(R)) denotes the a-invariant of grI(R). Therefore, these
two conditions are independent of the choice of reductions Q of I. In addition, assuming
Condition (2) is satisfied, Condition (3) is equivalent to saying that I/Q is a free R/I-
module ([43, Lemma 2.3]). We also notice that Condition (3) is automatically satisfied if
I = m, so that the maximal ideal m is an Ulrich ideal of R if and only if R is not a regular
local ring, possessing minimal multiplicity ([70]). From this perspective, Ulrich ideals are
a kind of generalization of stable maximal ideals, which Lipman [67] started to analyze
in 1971.

Here, let us briefly summarize some basic properties of Ulrich ideals, as seen in [43, 47].
Although we need only a part of them, let us also include some superfluity in order to
show what specific properties Ulrich ideals enjoy. Throughout this chapter, let r(R) denote
the Cohen-Macaulay type of R, and let SyziR(M) denote, for each integer i ≥ 0 and for
each finitely generated R-module M , the i-th syzygy module of M in its minimal free
resolution.

Theorem 3.1.2 ([43, 47]). Let I be an Ulrich ideal of a Cohen-Macaulay local ring R of
dimension d ≥ 0 and set t = n − d (> 0), where n denotes the number of elements in a
minimal system of generators of I. Let

· · · → Fi
∂i→ Fi−1 → · · · → F1

∂1→ F0 = R → R/I → 0

be a minimal free resolution of R/I. Then r(R) = t·r(R/I) and the following assertions
hold true.

(1) I(∂i) = I for i ≥ 1.

(2) For i ≥ 0, βi =






ti−d·(t+ 1)d (i ≥ d),(
d
i

)
+ t·βi−1 (1 ≤ i ≤ d),

1 (i = 0).

(3) Syzi+1
R (R/I) ∼= [SyziR(R/I)]⊕t for i ≥ d.

(4) For i ∈ Z, ExtiR(R/I,R) ∼=






(0) (i < d),

(R/I)⊕t (i = d),

(R/I)⊕(t2−1)·ti−(d+1)
(i > d).

Here I(∂i) denotes the ideal of R generated by the entries of the matrix ∂i, and βi =
rankRFi.
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Because Ulrich ideals are a very special kind of ideals, it seems natural to expect that,
in the behavior of Ulrich ideals, there might be contained ample information on base rings,
once they exist. As stated above, this is the case of two-dimensional Gorenstein rational
singularities, and the present objects of study are rings of dimension one.

In what follows, unless otherwise specified, let (R,m) be a Cohen-Macaulay local ring
with dimR = 1. Our main targets are chains In " In−1 " · · · " I1 (n ≥ 2) of Ulrich
ideals in R. Let I be an Ulrich ideal of R with a reduction Q = (a). We set A = I : I
in the total ring of fractions of R. Hence, A is a birational finite extension of R, and
I = aA. Firstly, we study the close connection between the structure of the ideal I and
the R-algebra A. Secondly, let J be an Ulrich ideal of R and assume that I " J . Then, we
will show that µR(J) = µR(I), where µR(∗) denotes the number of elements in a minimal
system of generators, and that J = (b)+ I for some a, b ∈ m with I = abA. Consequently,
we have the following, which is one of the main results of this chapter.

Theorem 3.1.3. Let (R,m) be a Cohen-Macaulay local ring with dimR = 1. Then the
following assertions hold true.

(1) Let I be an Ulrich ideal of R and A = I : I. Let a1, a2, . . . , an ∈ m (n ≥ 2) and
assume that I = a1a2 · · · anA. For 1 ≤ i ≤ n, let Ii = (a1a2 · · · ai) + I. Then each Ii
is an Ulrich ideal of R and

I = In " In−1 " · · · " I1.

(2) Conversely, let I1, I2, . . . , In (n ≥ 2) be Ulrich ideals of R and suppose that

In " In−1 " · · · " I1.

We set I = In and A = I : I. Then there exist elements a1, a2, . . . , an ∈ m such that
I = a1a2 · · · anA and Ii = (a1a2 · · · ai) + I for all 1 ≤ i ≤ n− 1.

Let I and J be Ulrich ideals of R and assume that I " J . We set B = J : J . Let us
write J = (b) + I for some b ∈ m. We then have that J2 = bJ and that B is a local ring

with the maximal ideal n = m +
I

b
, where

I

b
=

{
i

b
| i ∈ I

}
(= b−1I). We furthermore

have the following.

Theorem 3.1.4.
I

b
is an Ulrich ideal of the Cohen-Macaulay local ring B of dimension

one and there is a one-to-one correspondence a 5→ a

b
between the Ulrich ideals a of R such

that I ⊆ a " J and the Ulrich ideals b of B such that
I

b
⊆ b.

These two theorems convey to us that the behavior of chains of Ulrich ideals in a given
one-dimensional Cohen-Macaulay local ring could be understood via the correspondence,
and the relationship between the structure of Cohen-Macaulay local rings R and B could
be grasped through the correspondence, which we shall closely discuss in this chapter.
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We now explain how this chapter is organized. In Section 2, we will summarize some
preliminaries, which we shall need later to prove the main results. The proof of Theorems
3.1.3 and 3.1.4 will be given in Section 3. In Section 4, we shall study the case where the
base rings R are not regular but possess minimal multiplicity ([70]), and show that the
set of Ulrich ideals of R are totally ordered with respect to inclusion. In Section 5, we
explore the case where R is a generalized Gorenstein local ring ([34]).

In what follows, let (R,m) be a Cohen-Macaulay local ring with dimR = 1. Let
Q(R) (resp. XR) stand for the total ring of fractions of R (resp. the set of all the Ulrich
ideals in R). We denote by R, the integral closure of R in Q(R). For a finitely generated
R-module M , let µR(M) (resp. "R(M)) be the number of elements in a minimal system
of generators (resp. the length) of M . For each m-primary ideal a of R, let

e0a(R) = lim
n→∞

"R(R/an)

n

stand for the multiplicity of R with respect to a. By v(R) (resp. e(R)) we denote the
embedding dimension µR(m) of R (resp. e0m(R)). Let R̂ denote the m-adic completion of
R.

3.2 Preliminaries

Let us summarize preliminary facts on m-primary ideals of R, which we need throughout
this chapter.

In this section, let I be an m-primary ideal of R, for which we will assume Condition
(C) in Definition 3.2.2 to be satisfied. This condition is a partial extraction from Definition
3.1.1 of Ulrich ideals; hence every Ulrich ideal satisfies it (see Remark 3.2.3).

Firstly, we assume that I contains an element a ∈ I with I2 = aI. We set A = I : I
and

I

a
=

{x

a
| x ∈ I

}
= a−1I

in Q(R). Therefore, A is a birational finite extension of R such that R ⊆ A ⊆ R, and

A =
I

a
, because I2 = aI; hence I = aA. We then have the following.

Proposition 3.2.1. If I = (a) :R I, then A = R : I and I = R : A, whence R : (R : I) =
I.

Proof. Notice that I = (a) :R I = (a) : I = a[R : I] and we have A = R : I, because

I = aA. We get R : A = I, since R : A = R :
I

a
= a[R : I] = aA.

Let us now give the following.

Definition 3.2.2. Let I be an m-primary ideal of R and set A = I : I. We say that I
satisfies Condition (C), if

(i) A/R ∼= (R/I)⊕t as an R-module for some t > 0, and
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(ii) A = R : I.

Consequently, I = R : A by Condition (i), when I satisfies Condition (C).

Remark 3.2.3. Let I ∈ XR. Then I satisfies Condition (C). In fact, choose a ∈ I so
that I2 = aI. Then, I/(a) ∼= (R/I)⊕t as an R/I-module, where t = µR(I) − 1 > 0 ([43,
Lemma 2.3]). Therefore, I = (a) :R I, so that I satisfies the hypothesis in Proposition
3.2.1, whence A = R : I. Notice that A/R ∼= I/(a) ∼= (R/I)⊕t, because I = aA.

We assume, throughout this section, that our m-primary ideal I satisfies Condition
(C). We choose elements {fi}1≤i≤t of A so that

A = R +
t∑

i=1

Rfi.

Therefore, the images {fi}1≤i≤t of {fi}1≤i≤t in A/R form a free basis of the R/I-module
A/R. We then have the following.

Lemma 3.2.4. aA ∩R ⊆ (a) + I for all a ∈ R.

Proof. Let x ∈ aA ∩ R and write x = ay with y ∈ A. We write y = c0 +
∑t

i=1 cifi
with ci ∈ R. Then, aci ∈ I for 1 ≤ i ≤ t, since x = ac0 +

∑t
i=1(aci)fi ∈ R. Therefore,

(aci)fi ∈ IA = I for all 1 ≤ i ≤ t, so that x ∈ (a) + I as claimed.

Corollary 3.2.5. Let J be an m-primary ideal of R and assume that J contains an
element b ∈ J such that J2 = bJ and J = (b) :R J . If I ⊆ J , then J = (b) + I.

Proof. We set B = J : J . Then B = R : J and J = bB by Proposition 3.2.1, so that
B = R : J ⊆ A = R : I, since I ⊆ J . Consequently, J = bB ⊆ bA ∩ R ⊆ (b) + I by
Lemma 3.2.4, whence J = (b) + I.

In what follows, let J be an m-primary ideal of R and assume that J contains an
element b ∈ J such that J2 = bJ and J = (b) :R J . We set B = J : J . Then

B = R : J =
J

b
by Proposition 3.2.1. Throughout, suppose that I " J . Therefore, since

J = (b) + I by Corollary 3.2.5, we get

B =
J

b
= R +

I

b
.

Let a =
I

b
. Therefore, a is an ideal of A containing I, so that a is also an ideal of B with

R/(a ∩R) ∼= B/a.

With this setting, we have the following.

Lemma 3.2.6. The following assertions hold true.

(1) A/B ∼= (B/a)⊕t as a B-module.
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(2) a ∩R = I :R J .

(3) "R([I :R J ]/I) = "R(R/J).

(4) I = [b·(I :R J)]A.

Proof. (1) Since A = R+
∑t

i=1 Rfi, we get A/B =
∑t

i=1 Bfi where fi denotes the image

of fi in A/B. Let {bi}1≤i≤t be elements of B =
J

b
and assume that

∑t
i=1 bifi ∈ B. Then,

since
∑t

i=1(bbi)fi ∈ R and bbi ∈ R for all 1 ≤ i ≤ t, we have bbi ∈ I, so that bi ∈
I

b
= a.

Hence A/B ∼= (B/a)⊕t as a B-module.

(2) This is standard, because J = (b) + I and a =
I

b
.

(3) Since J/I = [(b) + I]/I ∼= R/[I :R J ], we get

"R([I :R J ]/I) = "R(R/I)− "R(R/[I :R J ]) = "R(R/I)− "R(J/I) = "R(R/J).

(4) We have [b·(I :R J)]A ⊆ I, since b·(I :R J) ⊆ I and IA = I. To see the reverse
inclusion, let x ∈ I. Then x ∈ J = bB ⊆ bA. We write x = b[c0 +

∑t
i=1 cifi] with ci ∈ R.

Then bci ∈ I for 1 ≤ i ≤ t since x ∈ R, so that (bci)fi ∈ I for all 1 ≤ i ≤ t, because
I is an ideal of A. Therefore, bc0 ∈ I, since x = bc0 +

∑t
i=1(bci)fi ∈ I. Consequently,

ci ∈ I :R b = I :R J for all 0 ≤ i ≤ t, so that x ∈ [b·(I :R J)]A as wanted.

Corollary 3.2.7. J/(b) ∼= ([I :R J ]/I)⊕t as an R-module. Hence "R(J/(b)) = t·"R(R/J).

Proof. We consider the exact sequence

0 → B/R → A/R → A/B → 0

of R-modules. By Lemma 3.2.6 (1), A/B is a free B/a-module of rank t, possessing the
images of {fi}1≤i≤t in A/B as a free basis. Because A/R is a free R/I-module of rank
t, also possessing the images of {fi}1≤i≤t in A/R as a free basis, we naturally get an
isomorphism between the following two canonical exact sequences;

0 !! B/R i !!

+
""

A/R !!

+
""

A/B !!

+
""

0

0 !! ([a ∩R]/I)⊕t i !!

!

(R/I)⊕t !!!!

!

(B/a)⊕t !! 0

Since B/R =
J

b
/R ∼= J/(b) and a ∩R = I :R J by Lemma 3.2.6 (2), we get

J/(b) ∼= ([I :R J ]/I)⊕t.

The second assertion now follows from Lemma 3.2.6 (3).

The following is the heart of this section.
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Proposition 3.2.8. The following conditions are equivalent.

(1) J ∈ XR.

(2) µR([I :R J ]/I) = 1.

(3) [I :R J ]/I ∼= R/J as an R-module.

When this is the case, µR(J) = t+ 1.

Proof. The implication (3) ⇒ (2) is clear, and the reverse implication follows from the
equality "R([I :R J ]/I) = "R(R/J) of Lemma 3.2.6 (3).

(1) ⇒ (3) Suppose that J ∈ XR. Then J/(b) is R/J-free, so that by Corollary 3.2.7,
[I :R J ]/I is a free R/J-module, whence [I :R J ]/I ∼= R/J by Lemma 3.2.6 (3).

(3) ⇒ (1) We have J/(b) ∼= ([I :R J ]/I)⊕t ∼= (R/J)⊕t by Corollary 3.2.7, so that by
Definition 3.1.1, J ∈ XR with µR(J) = t+ 1.

We now come to the main result of this section, which plays a key role in Section 5.

Theorem 3.2.9. The following assertions hold true.

(1) Suppose that J ∈ XR. Then there exists an element c ∈ m such that I = bcA.
Consequently, I ∈ XR and µR(I) = µR(J) = t+ 1.

(2) Suppose that t ≥ 2. Then I ∈ XR if and only if J ∈ XR.

Proof. (1) Since J ∈ XR, by Proposition 3.2.8 we get an element c ∈ m such that I :R
J = (c) + I. Therefore, by Lemma 3.2.6 (4) we have

I = [b·(I :R J)]A = [b·((c) + I)]A = bcA+ bIA = bcA+ bI,

whence I = bcA by Nakayama’s lemma. Let a = bc. Then I2 = (aA)2 = a·aA = aI, so

that (a) is a reduction of I; hence A =
I

a
. Consequently, I/(a) ∼= A/R ∼= (R/I)⊕t, so

that I ∈ XR with µR(I) = t + 1. Therefore, µR(I) = µR(J), because µR(J) = t + 1 by
Proposition 3.2.8.

(2) We have only to show the only if part. Suppose that I ∈ XR and choose a ∈ I so

that I2 = aI; hence A =
I

a
. We then have µR(I) = t + 1, since I/(a) ∼= A/R ∼= (R/I)⊕t.

Consequently, since J = (b) + I, we get

µR(J/(b)) = µR([(b) + I]/(b)) ≤ µR(I) = t+ 1.

On the other hand, we have µR(J/(b)) = t·µR([I :R J ]/I), because J/(b) ∼= ([I :R J ]/I)⊕t

by Corollary 3.2.7. Hence
t·(µR([I :R J ]/I)− 1) ≤ 1,

so that µR([I :R J ]/I) = 1 because t ≥ 2. Thus by Proposition 3.2.8, J ∈ XR as
claimed.
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3.3 Chains of Ulrich ideals

In this section, we study the structure of chains of Ulrich ideals in R. First of all, remember
that all the Ulrich ideals of R satisfy Condition (C) stated in Definition 3.2.2 (see Remark
3.2.3), and summarizing the arguments in Section 2, we readily get the following.

Theorem 3.3.1. Let I, J ∈ XR and suppose that I " J . Choose b ∈ J so that J2 = bJ .
Then the following assertions hold true.

(1) J = (b) + I.

(2) µR(J) = µR(I).

(3) There exists an element c ∈ m such that I = bcA, so that (bc) is a reduction of I,
where A = I : I.

We begin with the following, which shows that Ulrich ideals behave well, if R possesses
minimal multiplicity. We shall discuss this phenomenon more closely in Section 4.

Corollary 3.3.2. Suppose that v(R) = e(R) > 1 and let I ∈ XR. Then µR(I) = v(R)
and R/I is a Gorenstein ring.

Proof. We have m ∈ XR and r(R) = v(R) − 1, because v(R) = e(R) > 1. Hence
by Theorem 3.3.1 (2), µR(I) = µR(m) = v(R). The second assertion follows from the
equality r(R) = [µR(I)− 1]·r(R/I) (see [47, Theorem 2.5]).

For each I ∈ XR, Assertion (3) in Theorem 3.3.1 characterizes those ideals J ∈ XR

such that I " J . Namely, we have the following.

Corollary 3.3.3. Let I ∈ XR. Then

{J ∈ XR | I " J} = {(b) + I | b ∈ m such that (bc) is a reduction of I for some c ∈ m} .

Proof. Let b, c ∈ m and suppose that (bc) is a reduction of I. We set J = (b) + I. We
shall show that J ∈ XR and I " J . Because bc '∈ mI, we have b, c /∈ I, whence I " J .
If J = (b), we then have I = bcA ⊆ J = (b) where A = I : I, so that cA ⊆ R. This is
impossible, because c '∈ R : A = I (see Lemma 3.2.1). Hence, (b) " J . Because I2 = bcI,
we have J2 = bJ + I2 = bJ + bcI = bJ . Let us check that J/(b) is a free R/J-module.
Let {fi}1≤i≤t (t = µR(I)− 1 > 0) be elements of A such that A = R +

∑t
i=1 Rfi, so that

their images {fi}1≤i≤t in A/R form a free basis of the R/I-module A/R (remember that
I satisfies Condition (C) of Definition 3.2.2). We then have

J = (b) + I = (b) + bcA = (b) +
t∑

i=1

R·(bc)fi.

Let {ci}1≤i≤t be elements of R and assume that
∑t

i=1 ci·(bcfi) ∈ (b). Then, since∑t
i=1 cic·fi ∈ R, we have cic ∈ I = bcA, so that ci ∈ bA ∩ R for all 1 ≤ i ≤ t. Therefore,

because bA ∩ R ⊆ (b) + I = J by Lemma 3.2.4, we get ci ∈ J , whence J/(b) ∼= (R/J)⊕t.
Thus, J = (b) + I ∈ XR.
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The equality µR(I) = µR(J) does not hold true in general, if I and J are incomparable,
as we show in the following.

Example 3.3.4. Let S = k[[X1, X2, X3, X4]] be the formal power series ring over a field
k and consider the matrix M =

(
X1 X2 X3
X2 X3 X1

)
. We set R = S/[a + (X2

4 )], where a denotes
the ideal of S generated by the 2 × 2 minors of M. Let xi denote the image of Xi in R
for each i = 1, 2, 3, 4. Then, (x1, x2, x3) and (x1, x4) are Ulrich ideals of R with different
numbers of generators, and they are incomparable with respect to inclusion.

We are now ready to prove Theorem 3.1.3.

Proof of Theorem 3.1.3. (1) This is a direct consequence of Corollary 3.3.3.
(2) By Theorem 3.3.1, we may assume that n > 2 and that our assertion holds true

for n− 1. Therefore, there exist elements a1, a2, . . . , an−1 ∈ m such that (a1a2 · · · an−1) is
a reduction of In−1 and Ii = (a1a2 · · · ai)+ In−1 for all 1 ≤ i ≤ n−2. Now apply Theorem
3.3.1 to the chain In " In−1. We then have In−1 = (a1a2 · · · an−1) + In together with one
more element an ∈ m so that (a1a2 · · · an−1)·anA = In. Hence

Ii = (a1a2 · · · ai) + In−1 = (a1a2 · · · ai) + In

for all 1 ≤ i ≤ n− 1.

In order to prove Theorem 3.1.4, we need more preliminaries. Let us begin with the
following.

Theorem 3.3.5. Suppose that I, J ∈ XR and I " J . Let b ∈ J such that J2 = bJ and
B = J : J . Then the following assertions hold true.

(1) B = R +
I

b
and

I

b
= I : J .

(2) B is a Cohen-Macaulay local ring with dimB = 1 and n = m+
I

b
the maximal ideal.

Hence R/m ∼= B/n.

(3)
I

b
∈ XB and µB(

I

b
) = µR(I).

(4) r(B) = r(R) and e(B) = e(R). Therefore, v(B) = e(B) if and only if v(R) = e(R).

Proof. We set A = I : I. Hence R " B " A by Proposition 3.2.1. Let t = µR(I)− 1.

(1) Because J = (b) + I and B =
J

b
, we get B = R +

I

b
. We have I : J ⊆ I

b
, since

b ∈ J . Therefore,
I

b
= I : J , because

J · I
b
= I · J

b
= IB ⊆ IA = I.
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(2) It suffices to show that B is a local ring with maximal ideal n = m +
I

b
. Let

a =
I

b
. Choose c ∈ m so that I = bcA. We then have a = cA ⊆ mA ⊆ J(A), where J(A)

denotes the Jacobson radical of A. Therefore, n = m+ cA is an ideal of B = R+ cA, and
n ⊆ J(B), because A is a finite extension of B. On the other hand, because R/m ∼= B/n,
n is a maximal ideal of B, so that (B, n) is a local ring.

(3) We have a2 = ca, since a = cA. Notice that a '= cB, since A '= B. Then, because
a/cB ∼= A/B ∼= (B/a)⊕t by Lemma 3.2.6 (1), we get a ∈ XB and µB(a) = t+ 1 = µR(I).

(4) We set L = (c) + I. Then, since bcA = I, L ∈ XR and µR(L) = µR(I) = t + 1 by
Corollary 3.3.3 and Theorem 3.3.1 (2). Therefore, r(R) = t·r(R/L) by [47, Theorem 2.5],
while r(B) = t·r(B/a) for the same reason, because a ∈ XB by Assertion (3). Remember
that the element c is chosen so that I :R J = (c) + I (see the proof of Theorem 3.2.9 (1)).
We then have r(B/a) = r(R/[I :R J ]), because B = R + a and

R/L = R/[a ∩R] ∼= B/a

where the first equality follows from Lemma 3.2.6 (2). Thus

r(B) = t·r(B/a) = t·r(R/L) = r(R),

as is claimed. To see the equality e(B) = e(R), enlarging the residue class field of R, we
may assume that R/m is infinite. Choose an element α ∈ m so that (α) is a reduction of
m. Hence αB is a reduction of mB, while mB is a reduction of n, because

nA = (m+ cA)A = mA = (mB)A.

Therefore, αB is a reduction of n, so that

e(B) = "B(B/αB) = "R(B/αB) = e0αR(B) = e0αR(R) = e(R),

where the second equality follows from the fact that R/m ∼= B/n and the fourth equality
follows from the fact that "R(B/R) < ∞. Hence e(B) = e(R) and r(B) = r(R). Because
v(R) = e(R) > 1 if and only if r(R) = e(R) − 1, the assertion that v(B) = e(B) if and
only if v(R) = e(R) now follows.

We need one more lemma.

Lemma 3.3.6. Suppose that I, J ∈ XR and I " J . Let α ∈ J . Then J = (α) + I if and
only if J2 = αJ.

Proof. It suffices to show the only if part. Suppose J = (α) + I. We set A = I : I,
B = J : J , and choose b ∈ J so that J2 = bJ . Then J = bB and B ⊆ A, whence
JA = bA, while JA = [(α) + I]A = αA + I. We now choose c ∈ m so that I = bcA (see
Theorem 3.3.1 (3)). We then have bA = JA = αA+bcA, whence bA = αA by Nakayama’s
lemma. Therefore, JA = αA, whence (α) is a reduction of J , so that J2 = αJ .

We are now ready to prove Theorem 3.1.4.
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Proof of Theorem 3.1.4. Let I, J ∈ XR such that I " J . We set A = I : I and B = J : J .
Let b ∈ J such that J = (b) + I. Then J2 = bJ by Lemma 3.3.6 and B is a local ring

with n = m+
I

b
the maximal ideal by Theorem 3.3.5.

Let a ∈ XR such that I ⊆ a " J . First of all, let us check the following.

Claim 1.
a

b
∈ XB and

a

b
= a : J .

Proof of Claim 1. Since b ∈ J , a : J ⊆ a

b
. On the other hand, since

B = R : J ⊆ R : a = a : a

by Lemma 3.2.1, we get

J · a
b
= a · J

b
= aB ⊆ a·(a : a) = a,

so that
a

b
is an ideal of B =

J

b
and a : J =

a

b
. Since

I

b
∈ XB by Theorem 3.3.5 (3),

to show that
a

b
∈ XB, we may assume I " a. We then have, by Theorem 3.1.3 (2),

elements a1, a2 ∈ m such that I = ba1a2A and a = (ba1) + I; hence
a

b
= a1R+

I

b
. We get

a

b
= a1B +

I

b
, since

a

b
is an ideal of B. Therefore,

a

b
∈ XB by Corollary 3.3.3, because

a1a2B is a reduction of
I

b
= a1a2A.

We now have the correspondence ϕ defined by a 5→ a

b
, and it is certainly injective.

Suppose that b ∈ XB and
I

b
" b. We take α ∈ b so that b2 = αb. Then, since B is a

Cohen-Macaulay local ring with maximal ideal m+
I

b
, we have b = αB +

I

b
by Theorem

3.3.1. Let us write α = a+ x with a ∈ m and x ∈ I

b
. We then have b = aB +

I

b
, so that

b2 = ab by Lemma 3.3.6. Set L =
I

b
. Then, since A = I : I = L : L, by Theorem 3.3.1 we

have an element β ∈ n = m+L such that L = aβA; hence aβ ∈ L. Let us write β = c+ y
with c ∈ m and y ∈ L. We then have ac = aβ − ay ∈ L and yA ⊆ L, so that because

L = aβA ⊆ acA+ a·yA ⊆ acA+mL,

we get L = acA by Nakayama’s lemma. Therefore, I = abcA. On the other hand, since

aB = aR + a·I
b
, we get b = aB +

I

b
= aR +

I

b
. Hence, because bb = (ab) + I and

I = (ab)cA, we finally have that bb ∈ XR and

I = abcA " bb = (ab) + I " J

by Theorem 3.1.3 (1). Thus, the correspondence ϕ is bijective, which completes the proof
of Theorem 3.1.4.
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3.4 The case where R possesses minimal multiplicity

In this section, we focus our attention on the case where R possesses minimal multiplicity.
Throughout, we assume that v(R) = e(R) > 1. Hence, m ∈ XR and µR(I) = v for all
I ∈ XR by Corollary 3.3.2, where v = v(R). We choose an element α ∈ m so that
m2 = αm.

Let I, J ∈ XR such that I " J and assume that there are no Ulrich ideals contained

strictly between I and J . Let b ∈ J with J2 = bJ and set B = J : J . Hence B =
J

b
, and

J = (b) + I by Theorem 3.3.1. Remember that by Theorem 3.3.5, B is a local ring and
v(B) = e(B) = e(R) > 1. We have n2 = αn by the proof of Theorem 3.3.5 (4), where n
denotes the maximal ideal of B.

We furthermore have the following.

Lemma 3.4.1. The following assertions hold true.

(1) "R(J/I) = 1.

(2) I = bn = Jn. Hence, the ideal I is uniquely determined by J , and I : I = n : n.

(3) (bα) is a reduction of I. If I = (bα) + (x2, x3, . . . , xv), then J = (b, x2, x3, . . . , xv).

Proof. By Theorem 3.1.4, we have the one-to-one correspondence

{a ∈ XR| I ⊆ a " J} ϕ−→ {b ∈ XB|
I

b
⊆ b}, a 5→ a

b
,

where the set of the left hand side is a singleton consisting of I, and the set of the right

hand side contains n. Hence n =
I

b
, that is I = bn = Jn, because J = bB. Therefore,

I2 = b2n2 = bα·bn = bα·I, so that (bα) is a reduction of I. Because

J/I = bB/bn ∼= B/n

and R/m ∼= B/n by Theorem 3.3.5 (2), we get "R(J/I) = 1. Assertion (3) is clear, since
J = (b) + I.

Since "R(R/I) < ∞ for all I ∈ XR, we get the following.

Corollary 3.4.2. Suppose that I, J ∈ XR and I " J . Then there exists a composition
series I = I! " I!−1 " · · · " I1 = J such that Ii ∈ XR for all 1 ≤ i ≤ ", where
" = "R(J/I) + 1.

The following is the heart of this section.

Theorem 3.4.3. The set XR is totally ordered with respect to inclusion.
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Proof. Suppose that there exist I, J ∈ XR such that I $ J and J $ I. Since I " m and
J " m, thanks to Corollary 3.4.2, we get composition series

I = I! " I!−1 " · · · " I1 = m and J = Jn " Jn−1 " · · · " J1 = m

such that Ii, Jj ∈ XR for all 1 ≤ i ≤ " and 1 ≤ j ≤ n. We may assume " ≤ n. Then
Lemma 3.4.1 (2) shows that Ii = Ji for all 1 ≤ i ≤ ", whence J ⊆ J! = I! ⊆ I. This is a
contradiction.

Remark 3.4.4. Theorem 3.4.3 is no longer true, unless R possesses minimal multiplicity.
For example, let k be a field and consider R = k[[t3, t7]] in the formal power series ring
k[[t]]. Then, XR = {(t6 − ct7, t10) | 0 '= c ∈ k}, which is not totally ordered, if (k > 2. See
Example 3.5.7 (3) also.

Let us now summarize the results in the case where R possesses minimal multiplicity.

Theorem 3.4.5. Let I ∈ XR and take a composition series

(E) I = I! " I!−1 " · · · " I1 = m

so that Ii ∈ XR for every 1 ≤ i ≤ " = "R(R/I). We set B0 = R and Bi = Ii : Ii for
1 ≤ i ≤ " and let ni = J(Bi) denote the Jacobson radical of Bi for each 0 ≤ i ≤ ". Then
we obtain a tower

R = B0 " B1 " · · · " B!−1 " B! ⊆ R

of birational finite extensions of R and furthermore have the following.

(1) (αi) is a reduction of Ii for every 1 ≤ i ≤ ".

(2) Bi = ni−1 : ni−1 for every 1 ≤ i ≤ ".

(3) For 0 ≤ i ≤ "−1, (Bi, ni) is a local ring with v(Bi) = e(Bi) = e(R) > 1 and n2i = αni.

(4) Choose x2, x3, . . . , xv ∈ I so that I = (α!, x2, . . . , xv). Then Ii = (αi, x2, x3, . . . , xv)
for every 1 ≤ i ≤ ". In particular, m = (α, x2, x3, . . . , xv), so that the series (E) is a
unique composition series of ideals in R which connects I and m.

(5) Let J be an ideal of R and assume that I ⊆ J ⊆ m. Then J = Ii for some 1 ≤ i ≤ ".

Proof. The uniqueness of composition series in Assertion (4) follows from the fact that
the maximal ideal m/I of R/I is cyclic, and then, Assertion (5) readily follows from the
uniqueness. Assertions (1), (2), (3), and the first part of Assertion (4) follow by standard
induction on ".

Corollary 3.4.6. Suppose that there exists a minimal element I in XR. Then (XR = " <
∞ with " = "R(R/I).

Proof. Since XR is totally ordered by Theorem 3.4.3, I is the smallest element in XR, so
that I ⊆ J for all J ∈ XR. Therefore, by Theorem 3.4.5 (5), J is one of the Ii’s in the
compoosition series I = I! " I!−1 " · · · " I1 = m.
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Corollary 3.4.7. If R̂ is a reduced ring, then XR is a finite set.

Proof. Since by Theorem 3.4.5 "R(R/I) ≤ "R(R/R) < ∞ for every I ∈ XR, the set XR

contains a minimal element, so that XR is a finite set.

Here let us note the following.

Example 3.4.8. Let (S, n) be a two-dimensional regular local ring. Let n = (X, Y ) and
consider the ring A = S/(Y 2). Then v(A) = e(A) = 2 and

XA = {(xn, y) | n ≥ 1}

where x, y denote the images of X, Y in A, respectively. Hence (XA = ∞.

Proof. Let In = (xn, y) for each n ≥ 1. Then (xn) " In and I2n = xnIn. Let J(A) = (x, y)
be the maximal ideal of A. We then have J(A)2 = xJ(A), whence v(A) = e(A) = 2.
Because In = (xn) :A y, we get In/(xn) ∼= A/In. Therefore, In ∈ XA for all n ≥ 1. To
see that XA consists of these ideals In’s, let I ∈ XA and set " = "A(A/I). Then I ⊆ I!
or I ⊇ I!, since XA is totally ordered. In any case, I = I!, because "A(A/I!) = ". Hence
XA = {(xn, y) | n ≥ 1}.

We close this section with the following. Here, the hypothesis about the existence
of a fractional canonical ideal K is equivalent to saying that R contains an m-primary
ideal I such that I ∼= KR as an R-module and such that I possesses a reduction Q = (a)
generated by a single element a of R ([36, Corollary 2.8]). The latter condition is satisfied,
once Q(R̂) is a Gorenstein ring and the field R/m is infinite.

Theorem 3.4.9. Suppose that there exists a fractional ideal K of R such that R ⊆ K ⊆ R
and K ∼= KR as an R-module. Then the following conditions are equivalent.

(1) (XR = ∞.

(2) e(R) = 2 and R̂ is not a reduced ring.

(3) The ring R̂ has the form R̂ ∼= S/(Y 2) for some regular local ring (S, n) of dimension
two with Y ∈ n \ n2.

Proof. (1) ⇒ (2) The ring R̂ is not reduced by Corollary 3.4.7. Suppose R is not a
Gorenstein ring; hence R " K and e(R) > 2. We set a = R : K. Let I ∈ XR. Then, since
µR(I) = v = e(R) > 2 by Corollary 3.3.2, we have a ⊆ I by [47, Corollary 2.12], so that
"R(R/I) ≤ "R(R/a) < ∞. Therefore, the set XR contains a minimal element, which is a
contradiction.

(3) ⇒ (1) See Example 3.4.8 and use the fact that there is a one-to-one correspondence
I 5→ IR̂ between Ulrich ideals of R and R̂, respectively.

(2) ⇒ (3) Since v(R) = e(R) = 2, the completion R̂ has the form R̂ = S/I, where
(S, n) is a two-dimensional regular local ring and I = (f) a principal ideal of S. Notice
that e(S/(f)) = 2 and

√
(f) '= (f). We then have (f) = (Y 2) for some Y ∈ n \ n2,

because f ∈ n2 \ n3.
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Remark 3.4.10. In Theorem 3.4.9, the hypothesis on the existence of fractional canonical
ideals K is not superfluous. In fact, let V denote a discrete valuation ring and consider
the idealization R = V ! F of the free V -module F = V ⊕n (n ≥ 2). Let t be a regular
parameter of V . Then for each n ≥ 1, In = (tn)×F is an Ulrich ideal of R ([43, Example
2.2]). Hence XR is infinite, but v(R) = e(R) = n+ 1 ≥ 3.

Higher dimensional cases are much wilder. Even though (R,m) is a two-dimensional
Cohen-Macaulay local ring possessing minimal multiplicity, the set XR is not necessarily
totally ordered. Before closing this section, let us note examples.

Example 3.4.11. We consider two examples.

(1) Let S = k[[X0, X1, . . . , Xn]] (n ≥ 3) be the formal power series ring over a field k.
Let " ≥ 1 be an integer and consider the 2× n matrix

M =

(
X1 X2 · · · Xn

X!
0 X1 · · · Xn−1

)
.

We set R = S/I2(M), where I2(M) denotes the ideal of S generated by the 2 × 2
minors of the matrix M. Then, R is a Cohen-Macaulay local ring of dimension two,
possessing minimal multiplicity. For this ring, we have

XR = {(xi
0, x1, x2, . . . , xn) | 1 ≤ i ≤ "},

where xi denotes the image of Xi in R for each 0 ≤ i ≤ n. Therefore, the set XR is
totally ordered with respect to inclusion.

(2) Let (S, n) be a regular local ring of dimension three. Let F,G,H, Z ∈ n and assume
that n = (F,G, Z) = (G,H,Z) = (H,F, Z). (For instance, let S = k[[X, Y, Z]] be
the formal power series ring over a field k with ch k '= 2, and choose F = X,G =
X + Y,H = X − Y .) We consider the ring R = S/(Z2 − FGH). Then R is a two-
dimensional Cohen-Macaulay local ring of minimal multiplicity two. Let f, g, h, z de-
note, respectively, the images of F,G,H, Z in R. Then, (f, gh, z), (g, fh, z), (h, fg, z)
are Ulrich ideals of R, but any two of them are incomparable.

3.5 The case where R is a generalized Gorenstein lo-
cal ring

In this section, we study the case where R is a generalized Gorenstein local ring. The
notion of generalized Gorenstein local rings is given by [34]. Let us briefly review the
definition.

Definition 3.5.1 ([34]). Suppose that (R,m) is a Cohen-Macaulay local ring with d =
dimR ≥ 0, possessing the canonical module KR. We say that R is a generalized Gorenstein
local ring, if one of the following conditions is satisfied.
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(1) R is a Gorenstein ring.

(2) R is not a Gorenstein ring, but there exists an exact sequence

0 → R
ϕ−→ KR → C → 0

of R-modules and an m-primary ideal a of R such that

(i) C is an Ulrich R-module with respect to a and

(ii) the induced homomorphism R/a⊗R ϕ : R/a → KR/aKR is injective.

When Case (2) occurs, we especially say that R is a generalized Gorenstein local ring
with respect to a.

Since our attention is focused on the one-dimensional case, here let us summarize a
few results on generalized Gorenstein local rings of dimension one. Suppose that (R,m) is
a Cohen-Macaulay local ring of dimension one, admitting a fractional canonical ideal K.
Hence, K is an R-submodule of R such that K ∼= KR as an R-module and R ⊆ K ⊆ R.
One can consult [36, Sections 2, 3] and [54, Vortrag 2] for basic properties of K. We set
S = R[K] in Q(R). Therefore, S is a birational finite extension of R with S = Kn for all
n - 0, and the ring S = R[K] is independent of the choice of K ([15, Theorem 2.5]). We
set c = R : S. First of all, let us note the following.

Lemma 3.5.2 (cf. [36, Lemma 3.5]). c = K : S and S = c : c = R : c.

Proof. Since R = K : K ([54, Bemerkung 2.5 a)]), we have c = (K : K) : S = K : KS =
K : S, while R : c = (K : K) : c = K : Kc = K : c. Hence R : c = K : c = K : (K : S) =
S ([54, Definition 2.4]). Therefore, c : c = (K : S) : c = K : Sc = K : c = S.

We then have the characterization of generalized Gorenstein local rings.

Theorem 3.5.3 ([34]). Suppose that R is not a Gorenstein ring. Then the following
conditions are equivalent.

(1) R is a generalized Gorenstein local ring with respect to some m-primary ideal a of R.

(2) K/R is a free R/c-module.

(3) S/R is a free R/c-module.

When this is the case, one necessarily has a = c, and the following assertions hold true.

(i) R/c is a Gorenstein ring.

(ii) S/R ∼= (R/c)⊕r(R) as an R-module.

The following result is due to [34, 47]. Let us include a brief proof of Assertion (1) for
the sake of completeness.
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Theorem 3.5.4 ([34, 47]). Suppose that R is not a Gorenstein ring. Let I ∈ XR. Then
the following assertions hold true.

(1) If I ⊆ c, then I = c.

(2) If µR(I) '= 2, then c ⊆ I.

(3) c ∈ XR if and only if R is a generalized Gorenstein local ring and S is a Gorenstein
ring.

Proof. (1) Let I ∈ XR and assume that I ⊆ c. We choose an element a ∈ I so that
I2 = aI. We then have I '= (a) and I/I2 is a free R/I-module. Let A = I : I; hence
I = aA. On the other hand, because c ⊆ I, by Lemmata 3.2.1 and 3.5.2 we have

A = R : I ⊇ R : c = S ⊇ K.

Claim 2. A is a Gorenstein ring and A/K is the canonical module of R/I.

Proof of Claim 2. Taking the K-dual of the canonical exact sequence 0 → I → R →
R/I → 0, we get the exact sequence

0 → K
ι→ K : I → Ext1R(R/I,K) → 0,

where ι : K → K : I denotes the embedding. On the other hand, K : I = A, because

I = R : A = (K : K) : A = K : KA = K : A

(remember that K ⊆ A). Therefore, since I = K : A is a canonical ideal of A ([54,
Korollar 5.14]) and I = aA ∼= A, A is a Gorenstein ring, and A/K ∼= Ext1R(R/I,K).

We consider the exact sequence 0 → (a)/aI → I/aI → I/(a) → 0 of R/I-modules.
Then, because I = aA, we get the canonical isomorphism between the exact sequences

0 !! R/I i !!

+
""

A/I !!

+
""

A/R !!

+
""

0

0 !! (a)/aI i !!

!

I/aI !!!!

!

I/(a) !! 0

of R/I-modules, where A/I is a Gorenstein ring, since A is a Gorenstein ring and I = aA.
Therefore, since A/I (∼= I/aI) is a flat extension of R/I, R/I is a Gorenstein ring, so
that A/K ∼= R/I by Claim 2. Consequently, the exact sequence

0 → K/R → A/R → A/K → 0

of R/I-modules is split, whenceK/R is a non-zero free R/I-module, because so is A/R (∼=
I/(a)). Hence, c = R : S ⊆ R : K = R :R K = I, so that I = c.

Thanks to Theorem 3.5.4, we get the following.

88



Theorem 3.5.5. Let R be a generalized Gorenstein local ring and assume that R is not
a Gorenstein ring. Then the following assertions hold true.

(1) {I ∈ XR| c " I} = {(a) + c | a ∈ m such that c = abS for some b ∈ m}.
In particular, c ∈ XR, once the set {I ∈ XR| c " I} is non-empty.

(2) µR(I) = r(R) + 1 for all I ∈ XR such that c ⊆ I.

(3) {I ∈ XR| c ⊆ I} = {I ∈ XR| µR(I) '= 2}.

Therefore, if R possesses minimal multiplicity, then the set XR is totally ordered, and c
is the smallest element of XR.

Proof. (1) Let us show the first equality. First of all, assume that c ∈ XR. Then since
S = c : c, for each α ∈ c, (α) is a reduction of c if and only if c = αS, so that the required
equality follows from Corollary 3.3.3. Assume that c /∈ XR. Hence, by Theorem 3.5.4 (3),
S is not a Gorenstein ring, because R is a generalized Gorenstein local ring. Therefore,
since c = K : S is a canonical module of S (Lemma 3.5.2 and [54, Korollar 5.14]), we have
c '= αS for any α ∈ c, whence the set {(a) + c | a ∈ m such that abS = c for some b ∈ m}
is empty. On the other hand, since S = c : c = R : c and S/R ∼= (R/c)⊕r(R) (see
Theorem 3.5.3 (ii)), the m-primary ideal c of R satisfies Condition (C) in Definition 3.2.2.
Therefore, if the set {I ∈ XR | c " I} is non-empty, then c ∈ XR by Theorem 3.2.9 (2),
because r(R) ≥ 2. Thus, {I ∈ XR | c " I} = ∅.

(2) By Assertion (1), we may assume c ∈ XR. Then, c = αS for some α ∈ c, and
therefore, µR(c) = r(R) + 1, since c/(α) ∼= S/R ∼= (R/c)⊕r(R). Thus, by Theorem 3.3.1,
µR(I) = µR(c) = r(R) + 1 for every I ∈ XR with c ⊆ I.

(3) The assertion follows from Assertion (2) and Theorem 3.5.4 (3).
The last assertion follows from Assertion (3), since µR(I) = v(R) > 2 for every I ∈ XR

(see Corollary 3.3.2).

Combining Theorems 3.1.3 and 3.5.5, we have the following.

Corollary 3.5.6. Let R be a generalized Gorenstein local ring and assume that R is not
a Gorenstein ring. Then the following assertions hold true.

(1) Let a1, a2, . . . , an, b ∈ m (n ≥ 1) and assume that c = a1a2 · · · anbS. We set Ii =
(a1a2 · · · ai) + c for each 1 ≤ i ≤ n. Then c ∈ XR and Ii ∈ XR for all 1 ≤ i ≤ n,
forming a chain c " In " In−1 " . . . " I1 in XR.

(2) Conversely, let I1, I2, . . . , In ∈ XR (n ≥ 1) and assume that c " In " In−1 " . . . " I1.
Then c ∈ XR and there exist elements a1, a2, . . . , an, b ∈ m such that c = a1a2 · · · anbS
and Ii = (a1a2 · · · ai) + c for all 1 ≤ i ≤ n.

Concluding this chapter, let us note a few examples of generalized Gorenstein local
rings.

Example 3.5.7. Let k[[t]] be the formal power series ring over a field k.
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(1) Let H = 〈5, 7, 9, 13〉 denote the numerical semigroup generated by 5, 7, 9, 13 and R =
k[[t5, t7, t9, t13]] the semigroup ring of H over k. Then, R is a generalized Gorenstein
local ring, possessing S = k[[t3, t5, t7]] and c = (t7, t9, t10, t13). For this ring R, S is
not a Gorenstein ring, and XR = ∅.

(2) Let R = k[[t4, t9, t15]]. Then, R is a generalized Gorenstein local ring, possessing
S = k[[t3, t4]] and c = (t9, t12, t15) = t9S. For this ring R, XR = {c}.

(3) Let R = k[[t6, t13, t28]]. Then, R is a generalized Gorenstein local ring, possessing
S = k[[t2, t13]] and c = (t24, t26, t28) = t24S. For this ring R, the set {I ∈ XR | c " I}
consists of the following families.

(i) {(t6 + at13) + c | a ∈ k},
(ii) {(t12 + at13 + bt19) + c | a, b ∈ k}, and
(iii) {(t18 + at25) + c | a ∈ k}.

For each a ∈ k, we have a maximal chain

c " (t18 + at25) + c " (t12 + at19) + c " (t6 + at13) + c

in XR. On the other hand, for a, b ∈ k such that a '= 0,

c " (t12 + at13 + bt19) + c

is also a maximal chain in XR.

(4) Let H = 〈6, 13, 28〉. Choose integers 0 < α ∈ H and 1 < β ∈ Z so that α '∈
{6, 13, 28} and GCD(α, β) = 1. We consider R = k[[tα, t6β, t13β, t28β]]. Then, R is
a generalized Gorenstein local ring with v(R) = 4 and r(R) = 2. For this ring R,
S = k[[tα, t2β, t13β]], and c = t24βS. For instance, take α = 12 and β = 5n, where
n > 0 and GCD(2, n) = GCD(3, n) = 1. Then, c = t120nS = (t12)10nS, so that the set
{I ∈ XR | c " I} seems rather wild, containing chains of large length.
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Chapter 4

Correspondence between trace ideals
and birational extensions with
application to the analysis of the
Gorenstein property of rings

4.1 Introduction

This chapter aims to explore the structure of (not necessarily Noetherian) commutative
rings in connection with their trace ideals. Let R be a commutative ring. For R-modules
M and X, let

τM,X : HomR(M,X)⊗R M → X

denote the R-linear map defined by τM,X(f ⊗ m) = f(m) for all f ∈ HomR(M,X) and
m ∈ M . We set τX(M) = Im τM,X . Then, τX(M) is an R-submodule of X, and we say
that an R-submodule Y of X is a trace module in X, if Y = τX(M) for some R-module
M . When X = R, we call trace modules in R, simply, trace ideals in R. There is a recent
movement in the theory of trace ideals, raised by H. Lindo and N. Pande [64, 65, 66].
Besides, J. Herzog, T. Hibi, and D. I. Stamate [55] studied the traces of canonical modules,
and gave interesting results. We explain below our motivation for the present researches
and how this chapter is organized, claiming the main results in it.

The present researches are strongly inspired by [64, 65, 66]. In [65] Lindo asked when
every ideal of a given ring R is a trace ideal in it, and noted that this is the case when
R is a self-injective ring. Subsequently, Lindo and Pande [66] proved that the converse is
also true if R is a Noetherian local ring. Our researches have started from the following
complete answer to their prediction, which we shall prove in Section 4.

Theorem 4.1.1 (Theorem 4.4.1). Suppose that R is a Noetherian ring and let X be an
R-module. Then the following conditions are equivalent.

(1) Every R-submodule of X is a trace module in X.

(2) Every cyclic R-submodule of X is a trace module in X.
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(3) There is an embedding

0 → X →
⊕

m∈MaxR

ER(R/m)

of R-modules, where for each m ∈ MaxR, ER(R/m) denotes the injective envelope of
the cyclic R-module R/m.

However, the main activity in the present chapter is focused on the study of the
structure of the set of regular trace ideals in R. Let I be an ideal of a commutative ring
R and suppose that I is regular, that is I contains a non-zerodivisor of R. Then, as is
essentially shown by [65, Lemma 2.3], I is a trace ideal in R if and only if R : I = I : I,
where the colon is considered inside the total ring Q(R) of fractions of R. We denote by
XR the set of regular trace ideals in R, and explore the structure of XR in connection with
the structure of YR, where YR denotes the set of birational extensions A of R such that
aA ⊆ R for some non-zerodivisor a of R. We also consider the set ZR of regular ideals I of
R such that I2 = aI for some a ∈ I. We then have the following natural correspondences

ξ : ZR → YR, ξ(I) = I : I,

η : YR → XR, η(A) = R : A,

ρ : XR → YR, ρ(I) = I : I

among these sets. The basic framework is the following.

Proposition 4.1.2 (Proposition 4.2.9, Lemma 4.2.6 (1)). The correspondence ξ : ZR →
YR is surjective, and the following conditions are equivalent.

(1) ρ : XR → YR is surjective.

(2) η : YR → XR is injective.

(3) A = R : (R : A) for every A ∈ YR.

Our strategy is to make use of these correspondences in order to analyze the structure
of commutative rings R which are not necessarily Noetherian (see, e.g., [28]). This ap-
proach is partially inspired by and originated in [27], where certain specific ideals (called
good ideals) in Gorenstein local rings are closely studied. Similarly, as in [27] and as is
shown later in Sections 2 and 3, the above correspondences behave very well, especially
in the case where R is a Gorenstein ring of dimension one. We actually have η ◦ ρ = 1XR

and ρ ◦ η = 1YR in that case (Lemma 4.2.6). Nevertheless, being different from [27], our
present interest is in the question of when the correspondence ρ : XR → YR is bijective.
As is shown in Section 2 (Example 4.2.10), in general there is no hope for the surjectivity
of ρ in the case where dimR ≥ 2, even if R is a Noetherian integral domain of dimension
two. On the other hand, with very specific, so to speak extremal exceptions (Proposi-
tion 4.5.1), the surjectivity of ρ guarantees the Gorenstein property of R, provided R is
a Cohen-Macaulay local ring of dimension one. In fact, we will prove in Section 5 the
following, in which let us refer to [36] for the notion of almost Gorenstein local ring.
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Theorem 4.1.3 (Theorem 4.5.2). Let (R,m) be a Cohen-Macaulay local ring of dimension
one. Let B = m : m and let J(B) denote the Jacobson radical of B. Then the following
assertions are equivalent.

(1) ρ : XR → YR is bijective.

(2) ρ : XR → YR is surjective.

(3) Either R is a Gorenstein ring, or R satisfies the following two conditions.

(i) B is a DVR and J(B) = m.

(ii) There is no proper intermediate field between R/m and B/J(B).

When this is the case, R is an almost Gorenstein local ring in the sense of [36].

Therefore, ρ is surjective if and only if R is a Gorenstein ring, provided R is the semigroup
ring of a numerical semigroup over a field.

In Section 6, we introduce the notion of anti-stable and strongly anti-stable rings. We
say that a commutative ring R is anti-stable (resp. strongly anti-stable), if HomR(I, R)
is an invertible module over the ring EndRI (resp. HomR(I, R) ∼= EndRI as an EndRI-
module), for every regular ideal I of R. The purpose of Section 6 is to provide some basic
properties of anti-stable rings and strongly anti-stable rings, mainly in dimension one.

Here, let us remind the reader that R is said to be a stable ring, if every ideal I of R
is stable, that is I is projective over EndRI ([73]). The notion of stable ideals and rings
is originated in the famous articles [6] and [67] of H. Bass and J. Lipman, respectively,
and there are known many deep results about them ([73]). Our definition of anti-stable
rings is, of course, different from that of stable rings. It requires the projectivity of the
dual module HomR(I, R) of I, only for regular ideals I of R, claiming nothing about the
projectivity of I itself. Nevertheless, with some additional conditions in dimension one,
R is also a stable ring, once it is anti-stable, as we shall show in the following.

Theorem 4.1.4 (Theorem 4.6.10). Let R be a Cohen-Macaulay ring with dimRM = 1
for every M ∈ MaxR. If R is an anti-stable ring, then R is a stable ring.

The results of Section 6 are obtained as applications of the observations developed in
Sections 2, 3, and 5. One can also find, in the forthcoming paper [28], further developments
of the theory of anti-stable rings of higher dimension.

Similarly as [61], our research is motivated by the works [64, 65, 66] of Lindo and Pande,
so that the topics of Section 6 are similar to those of [61], but these two researches were
done with entire independence of each other. In [66], Lindo and Pande posed a problem
what kind of properties a Noetherian ring R enjoys, if every ideal of R is isomorphic to a
trace ideal in it. In [61], T. Kobayashi and R. Takahashi have given complete answers to
the problem. We were also interested in the problem, and thereafter, came to the notion of
anti-stable ring. If the ideal I considered is regular, the condition (C) that I is isomorphic
to a trace ideal is equivalent to saying that HomR(I, R) ∼= EndRI as an EndRI-module
(Lemma 4.6.2). Therefore, if we restrict our attention, say on integral domains R, the
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condition that every regular ideal satifies condition (C) is equivalent to saying that R
is a strongly anti-stable ring. However, in general, these two conditions are apparently
different (e.g., consider the case where every non-zerodivisor of the ring is invertible in
it, and see [61, Theorem 3.2]). It must be necessary, and might have some significance,
to start a basic theory of anti-stable and strongly anti-stable rings in our context, with a
different viewpoint from [61], which we have performed in Section 6.

In what follows, unless otherwise specified, R denotes a commutative ring. Let Q(R)
be the total ring of fractions of R. For R-submodules X and Y of Q(R), let

X : Y = {a ∈ Q(R) | aY ⊆ X}.

If we consider ideals I, J of R, we set I :R J = {a ∈ R | aJ ⊆ I}; hence

I :R J = (I : J) ∩R.

When (R,m) is a Noetherian local ring of dimension d, for each finitely generated R-
module M , let µR(M) (resp. "R(M)) denote the number of elements in a minimal system
of generators (resp. the length) of M . We denote by

e(M) = lim
n→∞

d!·"R(M/mn+1M)

nd

the multiplicity of M . Let r(R) = "R(Ext
d
R(R/m, R)) stand for the Cohen-Macaulay type

of R, where we assume the local ring R is Cohen-Macaulay.

4.2 Correspondence between trace ideals and bira-
tional extensions of the base ring

Let R be a commutative ring and let M,X be R-modules. We denote by τM,X :
HomR(M,X) ⊗R M → X the R-linear map such that τM,X(f ⊗ m) = f(m) for all
f ∈ HomR(M,X) and m ∈ M . Let τX(M) = Im τM,X . Then, τX(M) is an R-submodule
of X, and we say that an R-submodule Y of X is a trace module in X, if Y = τX(M) for
some R-module M . When X = R, we simply say that Y is a trace ideal in R. With this
notation we have the following.

Proposition 4.2.1 ([65, Lemma 2.3]). For an R-submodule Y of X, the following con-
ditions are equivalent.

(1) Y is a trace module in X.

(2) Y = τX(Y ).

(3) The embedding ι : Y → X induces the isomorphism ι∗ : HomR(Y, Y ) → HomR(Y,X)
of R-modules.

(4) f(Y ) ⊆ Y for all f ∈ HomR(Y,X).
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We denote by W the set of non-zerodivisors of R. Let FR be the set of regular ideals
of R, that is the ideals I of R with I ∩W '= ∅. We then have the following, characterizing
trace ideals.

Corollary 4.2.2. Let I ∈ FR. Then the following conditions are equivalent.

(1) I is a trace ideal in R.

(2) I = (R : I)I.

(3) I : I = R : I.

Proof. Since I ∩W '= ∅, we have natural identifications R : I = HomR(I, R) and I : I =
HomR(I, I), so that the equivalence of conditions (1) and (3) follows from Proposition
4.2.1. Suppose that I = (R : I)I. Then R : I ⊆ I : I, whence R : I = I : I. Conversely,
if I : I = R : I, then (R : I)I = (I : I)I ⊆ I, while I ⊆ (R : I)I, since 1 ∈ R : I. Thus
(R : I)I = I.

We now consider the following sets:

XR = {I ∈ FR | I is a trace ideal in R} ,
YR = {A | R ⊆ A ⊆ Q(R), A is a subring of Q(R) such that aA ⊆ R for some a ∈ W} ,
ZR =

{
I ∈ FR | I2 = aI for some a ∈ I

}
.

If R is a Noetherian ring, then YR is the set of birational finite extensions of R. In what
follows, we shall clarify the relationship among these sets. We begin with the following.

Proposition 4.2.3. The following assertions hold true.

(1) Let X be an R-submodule of Q(R) and set Y = R : X. Then Y = R : (R : Y ).

(2) Let I ∈ ZR and assume that I2 = aI with a ∈ I. Then a ∈ W and I : I = a−1I.

Proof. (1) Since X ⊆ R : Y , Y = R : X ⊇ R : (R : Y ), so that Y = R : (R : Y ).
(2) We have a ∈ W , because I ∈ FR. Since a ∈ I, I : I ⊆ a−1I, while a−1I ⊆ I : I,

because a−1I·I = a−1I2 = a−1(aI) = I. Hence I : I = a−1I.

Lemma 4.2.4. The following assertions hold true.

(1) Let I ∈ XR and a ∈ I ∩W . We set J = (a) :R I. Then, J ⊆ I and J2 = aJ , so that
J ∈ ZR.

(2) Let I ∈ ZR and write I2 = aI with a ∈ I. We set J = (a) :R I. Then, I ⊆ J and
J ∈ XR.

Proof. (1) We set A = I : I. Then, A = R : I by Corollary 4.2.2. Hence, J = (a) :R I =
(a) : I = a(R : I) = aA, where the second equality follows from the fact that a ∈ I ∩W .
Therefore, J2 = aJ and J = a(I : I) ⊆ I.
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(2) Notice that J = (a) : I = a(R : I). Let A = I : I. Then, I = aA, since A = a−1I
by Proposition 4.2.3 (2), so that R : I = R : aA = a−1(R : A). Therefore, J = R : A,
whence

J : J = (R : A) : (R : A) = R : A(R : A) = R : (R : A) = R : J.

Thus, J ∈ XR.

Let I ∈ FR. We say that I is a good ideal of R, if I2 = aI and I = (a) :R I for some
a ∈ I (cf. [27]). Let GR denote the set of good ideals in R. We then have the following,
characterizing good ideals.

Proposition 4.2.5. XR ∩ ZR = GR = {I ∈ XR | (a) :R I ∈ XR for some a ∈ I ∩W}.

Proof. Let I ∈ XR ∩ ZR and set A = I : I. We write I2 = aI with a ∈ I. Then, since
I = aA and A = R : I (see Proposition 4.2.3 and Corollary 4.2.2), (a) :R I = (a) : I =
a(R : I) = aA = I, so that I is a good ideal of R. Conversely, suppose that I is a good
ideal of R and assume that I2 = aI and I = (a) :R I with a ∈ I. Then I ∈ ZR, while
(a) :R I ∈ XR by Lemma 4.2.4 (2). Hence I ∈ XR ∩ ZR.

Assume that I ∈ XR and that (a) :R I ∈ XR for some a ∈ I ∩W . We set J = (a) :R I.
Then, J2 = aJ and J ⊆ I, by Lemma 4.2.4 (1). For the same reason, we get (a) :R J ⊆ J ,
because J ∈ XR and a ∈ J . Therefore, I ⊆ (a) :R J ⊆ J ⊆ I; hence I = J . Thus, I2 = aI
and I = (a) :R I, that is I ∈ GR.

Let us consider three correspondences

ξ : ZR → YR, ξ(I) = I : I,

η : YR → XR, η(A) = R : A,

ρ : XR → YR, ρ(I) = I : I.

Here, we briefly confirm the well-definedness of η. Let A ∈ YR and set I = R : A. Since
I is an ideal of A, we get I : I = (R : A) : I = R : AI = R : I. Therefore, I ∈ XR, which
shows η is well-defined.

With this notation, we have the following, which plays a key role in this chapter.

Lemma 4.2.6. The following assertions hold true.

(1) The correspondence ξ : ZR → YR is surjective. For each I, J ∈ ZR, ξ(I) = ξ(J)
if and only if I ∼= J as an R-module, so that YR = ZR/ ∼=, that is the set of the
isomorphism classes in ZR.

(2) η(ρ(I)) = R : (R : I) for every I ∈ XR.

(3) ρ(η(A)) = R : (R : A) for every A ∈ YR.

Consequently, ρ(XR) = {A ∈ YR | A = R : (R : A)}, η(YR) = {I ∈ XR | I = R : (R : I)},
and we have a bijective correspondence η(YR) → ρ(XR), I 5→ I : I.
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Proof. (1) Let A ∈ YR and choose a ∈ W so that aA ⊆ R. We set I = aA. We then have
I2 = aI and I : I = aA : aA = A : A = A, whence I ∈ ZR, and ξ is surjective, because
ξ(I) = A. Let I, J ∈ ZR and choose a ∈ I, b ∈ J so that I2 = aI and J2 = bJ . Then,
I : I = a−1I and J : J = b−1J . Hence, if ξ(I) = ξ(J), then a−1I = b−1J , so that I ∼= J
as an R-module. Conversely, suppose that I, J ∈ ZR and I ∼= J . Then J = αI for some
invertible element α of Q(R), whence ξ(J) = J : J = αI : αI = I : I = ξ(I).

(2) (3) Notice that η(ρ(I)) = R : (I : I) = R : (R : I) for every I ∈ XR and

ρ(η(A)) = (R : A) : (R : A) = R : A(R : A) = R : (R : A)

for every A ∈ YR.
The last assertions follow from the fact that R : (R : Y ) = Y for every R-submodule

Y of Q(R), once Y = R : X for some R-submodule X of Q(R) (see Proposition 4.2.3
(1)).

Corollary 4.2.7. The correspondence ρ induces a bijection

GR → {A ∈ YR | aA = R : A for some a ∈ W}, I 5→ I : I.

Proof. Let I ∈ GR. We then have, by Proposition 4.2.5, I2 = aI and I = (a) :R I
for some a ∈ I. Since I = (a) : I = R : a−1I, I = R : (R : I) by Proposition 4.2.3
(1). Therefore, setting A = I : I (= a−1I), because A = R : I by Corollary 4.2.2, we
get R : A = R : (R : I) = I = aA. Hence, ρ(I) = A belongs to the set of the right
hand side. By Lemma 4.2.6, the induced correspondence is automatically injective, since
I = R : (R : I) for every I ∈ GR = XR ∩ ZR.

To see the induced correspondence is surjective, let A ∈ YR and assume that aA =
R : A for some a ∈ W . Let I = aA; hence I = η(A) ∈ XR. We then have I2 = aI and
I : I = aA : aA = A, so that I ∈ XR ∩ ZR and ρ(I) = A.

If R is a Gorenstein ring of dimension one, L = R : (R : L) for every finitely generated
R-submodule L of Q(R) such that Q(R)·L = Q(R). Therefore, by Lemma 4.2.6 we readily
get the following.

Corollary 4.2.8. Suppose that R is a Gorenstein ring of dimension one. Then, η ◦ ρ =
1XR and ρ ◦ η = 1YR, so that the correspondence ρ : XR → YR is bijective.

We note the following.

Proposition 4.2.9. The following conditions are equivalent.

(1) ρ : XR → YR is surjective.

(2) η : YR → XR is injective.

(3) A = R : (R : A) for every A ∈ YR.

97



Proof. (1) ⇔ (3) See Lemma 4.2.6.
(2) ⇒ (3) Let A ∈ YR and set L = R : (R : A). Therefore, L = ρ(η(A)) ∈ YR, while

η(A) = R : A = R : L = η(L), where the second equality follows from Proposition 4.2.3
(1). Hence, A = L, because η is injective.

(3) ⇒ (2) We have ρ ◦ η = 1YR by Lemma 4.2.6, so that ρ is surjective.

We explore one example, which shows that when dimR ≥ 2, in general we cannot
expect the bijectivity of the correspondence ρ.

Example 4.2.10. Let S = k[X, Y ] be the polynomial ring over a field k. We
set R = k[X4, X3Y,XY 3, Y 4] and T = k[X4, X3Y,X2Y 2, XY 3, Y 4] in S. Let m =
(X4, X3Y,XY 3, Y 4)R. Then T = R and m = R : T . We have dimR = 2 and
depthRm = 1, whence Rm is not Cohen-Macaulay. With this setting the following as-
sertions hold true.

(1) XR = {I | I is an ideal of R with htR I ≥ 2, and I '⊆ m or IT = I}. Hence, m! ∈
XR for all " > 0.

(2) YR = {T,R}, and the correspondence η : YR → XR is injective.

(3) The isomorphism classes in ZR are [(X4, X6Y 2)] and [R], where for each I ∈ ZR, [I]
denotes the isomorphism class of I in ZR.

Proof. T =
∑

n≥0 S4n is the Veronesean subring of S with order 4, whence T is a
normal ring with dimT = 2. We get m = T+ ∩ R, where T+ is the maximal ideal
(X4, X3Y,X2Y 2, XY 3, Y 4)T of T . Because T = R + kX2Y 2 and m·X2Y 2 ⊆ m, T = R,
the normalization of R, and mT = m. Hence, R : T = m, and dimR = dimRm = 2.
However, because T/R ∼= R/m, depthRm = 1, whence Rm is not Cohen-Macaulay. We
get YR = {T,R}, since "R(T/R) = 1. Therefore, since m = R : T , the correspondence
η : YR → XR is injective, and by Lemma 4.2.6 (1) the isomorphism classes in ZR are
exactly [(X4, X6Y 2)] (notice that (X4, X6Y 2) = X4T ) and [R].

Let us check Assertion (1). Firstly, let I be an ideal of R with htRI ≥ 2 such that
I '⊆ m or IT = I. We will show that I ∈ XR. We may assume I '= R. Suppose that
I '⊆ m and let p ∈ SpecR such that I ⊆ p. Then, Rp = Tp, since p '= m, so that Rp is
a Cohen-Macaulay ring with dimRp = 2. Therefore, gradeRI = 2, and hence I ∈ XR by
Proposition 4.2.1.

Suppose that IT = I and let f ∈ HomR(I, R). Let ι : R → T denote the embedding.

Then, the composite map g : I
f→ R

ι→ T is T -linear, because it is the restriction of the
homothety of some element of Q(R) = Q(T ), while gradeT I = htT I = 2, since htRI = 2.
Consequently, because T : I = T , we have g(I) ⊆ I, so that f(I) ⊆ I. Thus, I ∈ XR by
Proposition 4.2.1.

Conversely, let I ∈ XR. Therefore, I is a non-zero ideal of R with R : I = I : I.
Hence, R : I = R or R : I = T , because YR = {R, T}. If R : I = R, then gradeRI ≥ 2.
Therefore, htRI ≥ 2, and I '⊆ m, because depthRm = 1. Suppose that R : I = T . Then, I
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is an ideal of T . We have to show htRI ≥ 2. Assume the contrary and choose p ∈ SpecR
so that I ⊆ p and htRp = 1. We then have Rp = Tp, and

Rp : IRp = [R : I]p = [I : I]p = Tp = Rp.

This is impossible, because IRp is a proper ideal in the DVRRp = Tp. Therefore, htRI ≥ 2,
which completes the proof of Assertion (1).

4.3 The case where R is a Gorenstein ring of dimen-
sion one

We now concentrate our attention on the case where R is a Gorenstein ring of dimension
one.

Proposition 4.3.1. Assume that R is a Gorenstein ring of dimension one. We then have
the following.

(1) I : I is a Gorenstein ring for every I ∈ GR.

(2) Let A ∈ YR and suppose that A is a Gorenstein ring. Then, A = I : I for some
I ∈ GR, if R is semi-local.

Consequently, when R is semi-local, the correspondence ρ induces the bijection

GR → {A ∈ YR | A is a Gorenstein ring}.

Proof. (1) Let A = I : I. Then, by Corollary 4.2.7, R : A = aA for some a ∈ W , so that
A is a Gorenstein ring (see [54, Satz 5.12]; remember that HomR(A,R) ∼= R : A.)

(2) We have R : A = aA for some a ∈ W , because R : A is a canonical ideal of A and
A is semi-local. Hence, by Corollary 4.2.7, A = I : I for some I ∈ GR.

When (R,m) is a Gorenstein local ring of dimension one, we furthermore have the
following, which characterizes Gorenstein local rings of dimension one, in which every
regular trace ideal is a good ideal. The problem of when A is a Gorenstein ring for
every A ∈ YR is originated in the paper of H. Bass [6], where one can find many deep
observations related to the problem. The equivalence of Assertions (1) and (3) in the
following theorem is essentially due to [6, (7.7) Theorem].

Theorem 4.3.2. Let R be a semi-local Gorenstein ring of dimension one. Then the
following conditions are equivalent.

(1) Every A ∈ YR is a Gorenstein ring.

(2) XR = GR.

When (R,m) is a local ring, one can add the following.

99



(3) e(R) ≤ 2.

Proof. (2) ⇒ (1) We have by Lemma 4.2.6 A = I : I for some I ∈ XR, so that by
Proposition 4.3.1 (1) A is a Gorenstein ring.

(1) ⇒ (2) Every good ideal of R belongs to XR by Proposition 4.2.5. Conversely, let
I ∈ XR and set A = I : I. Then, by Proposition 4.3.1 (2), A = J : J for some J ∈ GR,
since A is a Gorenstein ring. Therefore, I = J , because I, J ∈ XR and the correspondence
ρ is bijective (Corollary 4.2.8).

Suppose that (R,m) is a local ring.
(3) ⇒ (1) See [46, Lemma 12.2].
(2) ⇒ (3) We may assume that R : m = m : m; otherwise, R is a DVR, since xm = R

for some x ∈ R : m. Therefore, m ∈ XR = GR, whence m2 = am for some a ∈ m. Thus,
e(R) = 2, because R is a Gorenstein ring.

We close this section with a few examples. To state Example 4.3.3, we need the notion
of idealization, which we now briefly explain. Let R be a commutative ring and M an
R-module. We set A = R ⊕M as an additive group, and define the multiplication in A
by (a, x)·(b, y) = (ab, ay + bx) for (a, x), (b, y) ∈ A. Then, A forms a commutative ring,
which is denoted by A = R!M , and called the idealization of M over R.

Example 4.3.3. Let V be a DVR with t a regular parameter. Let R = V !V denote the
idealization of V over itself. Then, R is a Gorenstein local ring with dimR = 1, e(R) = 2,
and XR = {tnV × V | n ≥ 0}.

Proof. Because R ∼= V [X]/(X2) where X denotes an indeterminate, R is a Gorenstein
local ring with dimR = 1, e(R) = 2. Let K = Q(V ). Then, Q(R) = K ! K, and
R = V !K. Consequently

YR = {V ! L | L is a finitely generated V -submodule of K such that V ⊆ L}.

Therefore, XR = {tnV × V | n ≥ 0} by Corollary 4.2.8, because R is a Gorenstein local
ring with dimR = 1 and R : [V ! L] = AnnV (L/V ) × V for every finitely generated
V -submodule L of K such that V ⊆ L.

Example 4.3.4. Let k be a field.

(1) Let R = k[[t4, t5, t6]]. Then R is a Gorenstein ring, possessing

XR =
{
(t8, t9, t10, t11), (t6, t8, t9), (t5, t6, t8), (t4, t5, t6), R

}
∪
{
(t4 − at5, t6) | a ∈ k

}
and

YR =
{
k[[t]], k[[t2, t3]], k[[t3, t4, t5]], k[[t4, t5, t6, t7]], R

}
∪
{
k[[t2 + at3, t5]] | a ∈ k

}
,

and the correspondence ρ : XR → YR is bijective.

(2) Let R = k[[t3, t4, t5]]. Then R is not a Gorenstein ring, possessing

XR =
{
(t3, t4, t5), R

}
and YR =

{
k[[t]], k[[t2, t3]], R

}
,

and the correspondence ρ : XR → YR is not surjective.
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Proof. (1) We set V = k[[t]] (the formal power series ring) and S = k[[t4, t5, t6, t7]]. We
will show the set YR consists of the rings in the list. Let m and mS denote the maximal
ideals of R and S, respectively. We begin with the following.

Claim 3. The following assertions hold true.

(1) Set Ba = k[[t2 + at3, t5]] for each a ∈ k. Then S " Ba ⊆ k[[t2, t3]], Ba = S + S·(t2 +
at3), and "S(Ba/S) = 1.

(2) Let a, b ∈ k. Then Ba = Bb if and only if a = b.

Proof. (1) We set T = k[[(t2 + at3)2, t5, (t2 + at3)3, (t2 + at3)·t5]]. Then, T ⊆ Ba, and
T ⊆ S, since S = k + t4V . Because

mTS +m2
S ⊇ (t4, t5, t6, t7)S = mS = t4V,

we get mTS = mS, whence T = S (remember that T/mT = S/mS = k). Consequently,
T = S " k[[t2, t3]], and Ba = S + S·(t2 + at3), because t5 ∈ mS. Therefore, µS(Ba) = 2,
and "S(Ba/S) = 1, since mSBa = mS ⊆ S.

(2) Suppose Ba = Bb. Then, since the k-space Ba/mSBa (resp. Bb/mSBb) is spanned
by the images of 1 and t2 + at3 (resp. 1 and t2 + bt3), we have

t2 + at3 = α + β(t2 + bt3) + γ

for some α, β ∈ k and γ ∈ t4V . Hence, α = 0, β = 1, and a = bβ, so that a = b.

By this claim, we see R, S, k[[t3, t4, t5]], Ba (a ∈ k), k[[t2, t3]], V ∈ YR. The relation of
embedding among these rings is the following. V

k[[t2, t3]]

Ba = k[[t2 + at3, t5]]

!!!!!!!!!!!!!!!!

k[[t3, t4, t5]]

"""""""""""""

S = k[[t4, t5, t6, t7]]

#############

$$$$$$$$$$$$$$$$

R

We have to show that YR consists of these rings. To see it, let A ∈ YR and assume that
R " A " V . Then, because R is a Gorenstein local ring with R : m = R+kt7 and R " A,
we get S = R+ kt7 ⊆ A. Let us assume that S " A and set " = "S(A/S). Then " = 1, 2,
since "S(V/S) = 3. We write mAV = tnV with an integer n > 0. We then have n ≤ 4,
since t4 ∈ mA. Because A = k + mA '⊆ S = k + t4V and A '= V , we furthermore have
n = 2 or 3.
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Suppose that " = 1. If n = 3, then choosing an element f = t3+g with g ∈ t4V = mS,
we see t3 ∈ A, so that k[[t3, t4, t5]] ⊆ A. Therefore, k[[t3, t4, t5]] = A, because "S(A/S) = 1
and S " k[[t3, t4, t5]] ⊆ A. Let n = 2 and choose an element f = t2 + at3 ∈ A with a ∈ k.
Then, Ba ⊆ A, and "S(Ba/S) = 1 by Claim (1), whence A = Ba. Suppose now that
" = 2. Then "A(V/A) = 1, whence mA = A : V = tnV , so that

A = k + tnV = k[[tn, tn+1, . . . , t2n−1]]

with n = 2 or 3. This proves that YR = {R, S, k[[t3, t4, t5]], Ba (a ∈ k), k[[t2, t3]], V }.
Because XR = {R : A | A ∈ YR} by Corollary 4.2.8 it is direct to show that XR

consists of the following ideals R : V = (t8, t9, t10, t11), R : k[[t2, t3]] = (t6, t8, t9), R :
k[[t3, t4, t5]] = (t5, t6, t8), R : S = (t4, t5, t6) = m, R, and R : Ba = (t4 − at5, t6) with a ∈ k.
Let us note a proof for the fact that R : Ba = (t4 − at5, t6). We set I = R : Ba. Firstly,
notice that Ba = R + R·(t2 + at3), since t5, (t2 + at3)2 ∈ m. We then have t6 ∈ I, since
R : V = t8V ⊆ I. Let ϕ ∈ I and write ϕ = αt4 + βt5 + γt6 + δ with α, β, γ ∈ k and
δ ∈ R : V . Then, αt4+βt5 ∈ I, and (αt4+βt5)(t2+at3) ∈ R if and only if (αa+β)t7 ∈ R
if and only if β = −αa, which shows I = (t4 − at5, t6).

(2) The fact YR = {k[[t3, t4, t5], k[[t2, t3]], V } readily follows from Assertion (1). The
assertion on XR is a special case of the following.

Proposition 4.3.5. Let (R,m) be a one-dimensional Cohen-Macaulay local ring and let
V = R denote the integral closure of R in Q(R). Assume that R '= V but mV ⊆ R. Then
XR = {m, R}.

Proof. Because R '= V , we have R : m = m : m, whence m ∈ XR, so that {m, R} ⊆ XR.
Let I ∈ XR and set A = I : I (= R : I). If R = A, then gradeRI ≥ 2, and I = R.
Suppose that R " A. Then, I ⊆ m, whence V ⊆ R : m ⊆ A = R : I = I : I ⊆ V .
Therefore, A = V . Consequently, I is an ideal of V , whence I ∼= V ∼= m as V -modules
(remember that V is a direct product of finitely many principal ideal domains). Therefore,
τR(I) = τR(m) = m, because I ∼= m as an R-module. Hence XR = {m, R}.

We will use Proposition 4.3.5 later in Section 5, in order to prove Proposition 4.5.1.

4.4 Modules in which every submodule is a trace
module

In this section, we are interested in the question of, for a given R-module X, when every
R-submodule of X is a trace module in it. As is shown in [65], this is the case when
X = R and R is a self-injective ring. Our goal is the following, which is known by [66,
Theorem 3.5] in the case where R is a Noetherian local ring and X = R.

Theorem 4.4.1. Suppose that R is a Noetherian ring and let X be an R-module. Then
the following conditions are equivalent.

(1) Every R-submodule of X is a trace module in X.
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(2) Every cyclic R-submodule of X is a trace module in X.

(3) There is an embedding

0 → X →
⊕

m∈MaxR

ER(R/m)

of R-modules, where for each m ∈ MaxR, ER(R/m) denotes the injective envelope of
the cyclic R-module R/m.

To prove Theorem 4.4.1, we need some preliminaries. The following is a direct conse-
quence of Proposition 4.2.1.

Proposition 4.4.2. The following assertions hold true.

(1) Let Y be an R-submodule of X. If every cyclic R-submodule of Y is a trace module
in X, then Y is a trace module in X.

(2) Let Z and Y be R-submodules of X and assume that Z ⊆ Y . If Z is a trace module
in X, then Z is a trace module in Y .

(3) ([65]) If R is a self-injective ring, then every ideal of R is a trace ideal in R.

We begin with the following.

Lemma 4.4.3. Let Y be an R-submodule of X and assume that Y is a finitely presented
R-module. Then the following conditions are equivalent.

(1) Y is a trace module in X.

(2) Ym is a trace module in Xm for all m ∈ MaxR.

(3) Yp is a trace module in Xp for all p ∈ SpecR.

Proof. Let ι : Y → X denote the embedding and let

ι∗ : HomR(Y, Y ) → HomR(Y,X)

be the induced homomorphism. We set C = Coker ι∗. By Proposition 4.2.1, Y is a trace
module in X, if and only if C = (0), that is Cp = (0) for all p ∈ SpecR. On the other
hand, since Y is finitely presented, we have

S−1 [HomR(Y, Z)] = HomS−1R(S
−1Y, S−1Z)

for every R-module Z and for every multiplicatively closed subset S in R. Hence, the
condition that Y is a trace module in X is a local condition.

For each R-module X, let ER(X) stand for the injective envelope of X. We firstly
consider the case where R is a local ring.

Theorem 4.4.4. Let (R,m) be a Noetherian local ring and set E = ER(R/m). Let X be
an R-module. Then the following conditions are equivalent.

103



(1) Every R-submodule of X is a trace module in X.

(2) There is an embedding 0 → X → E of R-modules.

Proof. (1) ⇒ (2) We may assume that X '= (0). Let V = (0) :X m. We want to show
that ER(X) ∼= E, that is, "R(V ) = 1 and V is an essential R-submodule of X. To do
this, it suffices to show that for every non-zero finitely generated R-submodule M of
X, "R(M) < ∞ and "R ((0) :M m) = 1. First of all, we show depthR M = 0. In fact,
suppose that depthR M > 0, and let a ∈ m be a non-zerodivisor on M . We then have
by Proposition 4.2.1 aM = τX(aM) and M = τX(M), since both aM and M are trace
modules in X, while τX(aM) = τX(M), because aM ∼= M . Hence, aM = M , which is
impossible because M '= (0). We now fix one socle element 0 '= x ∈ (0) :M m of M .
Let N be an arbitrary non-zero R-submodule of M . Then, since R/m is a homomorphic
image of N/mN and since R/m ∼= Rx, we get a homomorphism f : N → M such that
f(N) = Rx, which implies x ∈ N , because N is a trace module in X (see Proposition
4.2.1). Therefore, if dimR M > 0, then x ∈ mnM for all n > 0, because mnM '= (0),
so that x ∈

⋂
n>0 m

nM = (0), which is a contradiction. Hence, dimR M = 0, that is
"R(M) < ∞. The above observation also shows that x ∈ Ry for every 0 '= y ∈ (0) :M m,
whence "R ((0) :M m) = 1, and therefore, X is an R-submodule of E.

(2) ⇒ (1) By Proposition 4.4.2 (2), we may assume X = E. Let Y be an R-submodule
of E. It suffices to show that f(Y ) ⊆ Y for all f ∈ HomR(Y,E). We take a homomorphism
g : E → E so that f = g ◦ ι, where ι : Y → E denotes the embedding. Let R̂ denote the
m-adic completion of R, and remember that E is an R̂-module such that

HomR(E,E) = HomR̂(E,E) = R̂.

Choose α ∈ R̂ so that g is the homothety by α. We then have αY ⊆ Y , because every
R-submodule of E is actually an R̂-submodule of E. Therefore

f(Y ) = g(Y ) = αY ⊆ Y,

and hence Y is a trace module in E.

We are now ready to prove Theorem 4.4.1.

Proof of Theorem 4.4.1. (1) ⇔ (2) See Proposition 4.4.2 (1).
(3) ⇒ (1) Let m ∈ MaxR. We then have the embedding 0 → Xm → ERm(Rm/mRm),

since
[
⊕

n∈MaxR

ER(R/n)]m = ERm(Rm/mRm).

Therefore, by Theorem 4.4.4, for every cyclic R-submodule Y of X, Ym is a trace module
in Xm for all m ∈ MaxR, so that Lemma 4.4.3 guarantees that Y is a trace module in X.
Hence, by Proposition 4.4.2 (2), every R-submodule of X is a trace module in X.

(1) ⇒ (3) Let m ∈ MaxR. Since every cyclic Rm-submodule of Xm is a localization of
a cyclic R-submodule of X, by Lemma 4.4.3 every Rm-submodule of Xm is a trace module
in Xm. Therefore, by Theorem 4.4.4, for every m ∈ MaxR we have

AssRm Xm ⊆ {mRm} and "Rm ((0) :Xm mRm) ≤ 1.
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Consequently, AssR X ⊆ MaxR and "R ((0) :X m) ≤ 1 for all m ∈ MaxR, so that

ER(X) ∼=
⊕

m∈MaxR

ER(R/m)⊕µ(m)

with µ(m) ∈ {0, 1} for each m ∈ MaxR.

The following is a direct consequence of Theorem 4.4.1.

Corollary 4.4.5 (cf. [66, Theorem 3.5]). For a Noetherian ring R, the following condi-
tions are equivalent.

(1) Every ideal of R is a trace ideal in R.

(2) R is a self-injective ring.

For the implication (1) ⇒ (2) in Corollary 4.4.5, we cannot remove the assumption
that R is a Noetherian ring. To explain more precisely about this phenomenon, let R be a
commutative ring. We say that R is a Von Neumann regular ring, if for each a ∈ R, there
exists an element b ∈ R such that a = aba (cf. [68]). Here, we need only the definition,
but interested readers can find in [22] a basic characterization of Von Neumann regular
rings.

Lemma 4.4.6. Let R be a Von Neumann regular ring. Then τR(I) = I for every ideal I
of R.

Proof. Let ϕ : I → R be an R-linear map and a ∈ I. Then, a = aba for some b ∈ R, so
that ϕ(a) = aϕ(ba) ∈ I. Thus, ϕ(I) ⊆ I.

We have learned the following example from M. Hashimoto.

Example 4.4.7. Let K be a commutative ring and assume that there exists an integer
p ≥ 2 such that ap = a for every a ∈ K. We consider the direct product S =

∏
i∈Λ Ki of

infinitely many copies {Ki = K}i∈Λ of K, and set R = Z·1 +
⊕

i∈Λ Ki in S. Then, R is a
subring of S, and R is Von Neumann regular, since ap = a for every a ∈ S. We have that
S is an essential extension of R, but R '= S, because Λ is infinite. Therefore, R is not a
self-injective ring.

Let us note one more example. The following fact is known, when chk = 2 and αi = 1
for every i ∈ Λ. Indeed, with the same notation as Example 4.4.8, if chk = 2 and αi = 1
for all i ∈ Λ, then R = k[{Ti}i∈Λ]/(T 2

i − 1 | i ∈ Λ) where Ti = Xi − 1 for each i ∈ Λ, so
that R = k[G], the group algebra of the direct sum G =

⊕
i∈Λ Ci of infinitely many copies

of the cyclic group Ci = Z/(2). Therefore, thanks to [24, Theorem], R is not self-injective.
We have learned this result from K. Kurano, and we are grateful to him, since the method
of proof given in [24] works also in the setting of Example 4.4.8, as we will briefly confirm
below.
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Example 4.4.8. Let Λ = {1, 2, 3, . . .} be the set of positive integers. Let {Xi}i∈Λ be a
family of indeterminates and {αi}i∈Λ a family of positive integers. We set S = k[{Xi}i∈Λ]
over a field k, a = (Xαi+1

i | i ∈ Λ), and consider the ring R = S/a. Then, R is not a
self-injective ring, but τR(I) = I for every ideal I of R.

Proof. Let xi denote, for each i ∈ Λ, the image of Xi in R. For each n ∈ Λ, we set
Rn = k[x1, x2, . . . , xn] in R. Then, R =

⋃
n∈Λ Rn, and

Rn = k[X1, X2, . . . , Xn]/(X
α1+1
1 , Xα2+1

2 , . . . , Xαn+1
n ),

so that Rn is a self-injective ring for every n ∈ Λ. Let a ∈ R and assume that a ∈ Rn.
Then

(0) :R [(0) :R a] ⊆
⋃

!≥n

{(0) :R!
[(0) :R!

a]} ,

whence (0) :R [(0) :R a] = (a), because (0) :R!
[(0) :R!

a] = a·R! for all " ≥ n (here we
use the fact that R! is a self-injective ring). Therefore, τR(I) = I for every ideal I of R,
because τR((a)) = (0) :R [(0) :R a] = (a) for each a ∈ R.

To see that R is not self-injective, we set for each n ∈ Λ

an =

{
1, if n = 1

1 + x1 + x1x2 + x1x2x3 + . . .+ x1x2 · · · xn−1, if n > 1

and set In = (xα1
1 , xα2

2 , . . . , xαn
n ). Then, In ⊆ In+1, and I =

⋃
n∈Λ In, where I = (xαi

i | i ∈
Λ). We then have an+1x = anx for every x ∈ In, which one can show by a simple use
of induction on n, since xαi+1

i = 0 for all i ∈ Λ. Therefore, we may define the R-linear
map ϕ : I → R so that ϕ(x) = anx if x ∈ In. We now assume that R is a self-injective
ring. Then, there must exist an element a ∈ R such that ax = ϕ(x) for every x ∈ I,
namely ax = anx for every x ∈ In. Choose n ∈ Λ so that a ∈ Rn. Then, because
(a− an+2)x

αn+2
n+2 = 0, we get a− an+2 ∈ (0) :R xαn+2

n+2 = (xn+2). Let f ∈ k[X1, X2, . . . , Xn]
such that a is the image of f in R. Then

f = 1 +X1 +X1X2 + . . .+X1X2 · · ·Xn+1 +Xn+2g + h

for some g ∈ S and h ∈ a. Substituting Xi by 0 for all i ≥ n + 2, we may assume that
g = 0 and h ∈ (Xα1+1

1 , Xα2+1
2 , . . . , Xαn+1+1

n+1 )T , where T = k[X1, X2, . . . , Xn+1], that is

f = 1 +X1 +X1X2 + . . .+X1X2 . . . Xn+1 +
n+1∑

i=1

Xαi+1
i hi

with hi ∈ T . This is, however, impossible, because f ∈ k[X1, X2, . . . , Xn] and the mono-
mial X1X2 · · ·Xn+1 is not involved in the polynomial

∑n+1
i=1 Xαi+1

i hi. Thus, R is not a
self-injective ring.

It seems interesting, but hard, to ask for a complete characterization of (not necessarily
Noetherian) commutative rings, in which every ideal is a trace ideal.
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4.5 Surjectivity of the correspondence ρ in dimension
one

In this section, let (R,m) be a Cohen-Macaulay local ring of dimension one. We are
interested in the question of when the correspondence ρ : XR → YR is bijective. The
second example in Example 4.3.4 seems to suggest thatR is a Gorenstein ring, if dimR = 1
and ρ is bijective. Unfortunately, this is still not the case, as we show in the following.
Here, we say that a one-dimensional Cohen-Macaulay local ring (R,m) has maximal
embedding dimension, if m2 = am for some a ∈ m ([67]). We refer to [36, 46] for the
notion of almost Gorenstein local ring.

Proposition 4.5.1 (cf. [60, Example 4.7]). Let K/k be a finite extension of fields. As-
sume that k '= K and there is no intermediate field F such that k " F " K. Let
B = K[[t]] be the formal power series ring over K and set R = k[[Kt]] in B. Set
n = [K : k]. We then have the following.

(1) R is a Noetherian local ring with B = R and m = tB, where m denotes the maximal
ideal of R. Hence B = m : m = R : m.

(2) R is an almost Gorenstein local ring, possessing maximal embedding dimension n ≥ 2.

(3) R is not a Gorenstein ring, if n ≥ 3.

(4) XR = {m, R} and YR = {B,R}, so that ρ : XR → YR is a bijection.

Proof. Let ω1 = 1,ω2, . . . ,ωn be a k-basis of K. Then R = k[[ω1t,ω2t, . . . ,ωnt]], whence
R is a Noetherian complete local ring. Since B/mB ∼= K, B =

∑n
i=1 Rωi, so that

tB = m. Hence, m is also an ideal of B, m = mB = tB, and m2 = tm. Because
B is a module-finite extension of R and ωi = ωit

ω1t
∈ Q(R) for all 1 ≤ i ≤ n, we have

B = R. Therefore, R is an almost Gorenstein ring by [36, Corollary 3.12], possessing
maximal embedding dimension e(R) = n. Consequently, R is not a Gorenstein ring, if
n ≥ 3. We get XR = {m, R} by Proposition 4.3.5, because R '= B but mB ⊆ R. The
assertion that YR = {B,R} is due to [60, Example 4.7]. Let us note a brief proof for the
sake of completeness. Let A ∈ YR and let n denote the maximal ideal of A. We then
have n = m, because n = mB ∩ A = m ∩ A = m. Consequently, we have an extension
k = R/m ⊆ A/m ⊆ K = B/m of fields, so that R/m = A/m, or A/m = B/m by the
choice of the extension K/k. Hence, R = A or A = B, and thus YR = {R,B}. Therefore,
because m : m = tB : tB = B and R : R = R, the correspondence ρ : XR → YR is a
bijection.

In what follows, we intensively explore the question of when the correspondence ρ :
XR → YR is bijective. The goal is the following, which essentially shows that except the
case of Proposition 4.5.1, the surjectivity of ρ implies the Gorenstein property of the ring
R.
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Theorem 4.5.2. Let (R,m) be a Cohen-Macaulay local ring of dimension one. We set
B = m : m and let J(B) denote the Jacobson radical of B. Then the following assertions
are equivalent.

(1) ρ : XR → YR is bijective.

(2) ρ : XR → YR is surjective.

(3) Either R is a Gorenstein ring, or the following two conditions are satisfied.

(i) B is a DVR and J(B) = m.

(ii) There is no proper intermediate field between R/m and B/J(B).

When this is the case, R is an almost Gorenstein local ring.

We set B = m : m. Let J(B) be the Jacobson radical of B. To prove Theorem 4.5.2,
we need some preliminaries. Let us begin with the following.

Lemma 4.5.3. Suppose that R is not a DVR. Then R '= B and "R (B/R) = r(R).

Proof. We have R : m = m : m, since R is not a DVR. The second assertion is clear, since
"R ((R : m)/R) = r(R).

Proposition 4.5.4. Suppose that R '= B and that ρ : XR → YR is surjective. Then there
is no proper intermediate ring between R and B.

Proof. We have m, R ∈ XR and B,R ∈ YR. Let A be an extension of R such that
R " A ⊆ B. We write A = ρ(I) = R : I with I ∈ XR. Then I ⊆ m, since A '= R.
Therefore, A = R : I ⊇ R : m = B, so that A = B.

The following is the heart of our argument.

Theorem 4.5.5. Let (R,m) be a non-Gorenstein Cohen-Macaulay local ring of dimension
one. Assume that R is m-adically complete and there is no proper intermediate ring
between R and B. Then the following assertions hold true.

(1) B = R, and B is a DVR with J(B) = m.

(2) [B/m : R/m] = r(R) + 1 ≥ 3.

(3) There is no proper intermediate field between R/m and B/m.

(4) XR = {m, R} and the correspondence ρ is bijective.

Proof. We have mB = m, and R '= B, since R is not a DVR (Lemma 4.5.3). Let x ∈ B\R.
Then B = R[x] and B/m = k[x], where k = R/m and x denotes the image of x in B/m.
Let n (> 0) be the degree of the minimal polynomial of x over k. We then have

B = R +Rx+Rx2 + · · ·+Rxn−1
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and n = µR(B), so that n− 1 = r(R) by Lemma 4.5.3. Therefore, n ≥ 3 since R is not a
Gorenstein ring, so that x2 '∈ R since the elements 1, x, . . . , xn−1 form a minimal system
of generators of the R-module B. Hence

B = R[x2] = R +Rx2 +Rx4 + · · ·+Rx2(n−1).

Let us write x =
∑n−1

i=0 cix2i with ci ∈ R. We then have x(1 − ax) = c0, where a =∑n−1
i=1 cix2i−2. We will show that x '∈ J(B). If c0 '∈ m, then x is a unit of B, whence

x '∈ J(B). Assume that c0 ∈ m. Then, if x ∈ J(B), 1 − ax is a unit of B, so that x =
(1− ax)−1c0 ∈ mB = m, which is a contradiction. Therefore, x '∈ J(B) for all x ∈ B \R,
which shows J(B) ⊆ R, whence J(B) = m. Therefore, we have B = m : m = J(B) : J(B).
Hence, BM = MBM : MBM for all M ∈ MaxB, which implies the local ring BM is a
DVR (see Lemma 4.5.3). Therefore, because B is integrally closed in Q(B) = Q(R), we
get B = B = R.

Since R is m-adically complete, we have a decomposition

B = B1 × B2 × · · ·× B!

of B into a finite product of DVR’s {Bj}1≤j≤!. We want to show that " = 1. Let
ej = (0, . . . , 0, 1Bj , 0, . . . , 0) in B and set e =

∑!
j=1 ej. Assume now that " ≥ 2. We then

have B = R[e1], since e1 '∈ R and since there is no proper intermediate ring between R
and B. Hence B = Re+Re1, since e21 = e1. This is however impossible, because

µR(B) = "R(B/mB) = 1 + r(R) > 2.

Thus, " = 1, that is B = R is a DVR with the maximal ideal J(B) = m. It remains
the proof of Assertions (3) and (4). Assume that there is contained a field F such that
R/m ⊆ F ⊆ B/m. We consider the natural epimorphism ε : B → B/m of rings. Then,
since ε−1(F ) is an intermediate ring between R and B, either ε−1(F ) = R, or ε−1(F ) = B,
which shows either F = R/m, or F = B/m.

Let I ∈ XR and assume that I '= R. Then, since I ⊆ m, we have

B = m : m = R : m ⊆ R : I = I : I ⊆ R = B,

whence I : I = B, so that I is an ideal of B. Let us write I = aB with 0 '= a ∈ B. We
then have

B = R : I = R : aB = a−1(R : B) = a−1m,

since m = R : B, so that m = aB = I. Thus, XR = {m, R}, which shows the correspon-
dence ρ is bijective. This completes the proof of Theorem 4.5.5.

We are now ready to prove Theorem 4.5.2.

Proof of Theorem 4.5.2. (1) ⇒ (2) This is clear.
(3) ⇒ (1) See Lemma 4.2.6, Proposition 4.5.4, and Theorem 4.5.5 (4).
(2) ⇒ (3) We may assume that R is not a Gorenstein ring. Passing to the m-adic

completion R̂ of R, without loss of generality we may also assume that R is m-adically
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complete. Then by Proposition 4.5.4, there is no proper intermediate ring between R and
B, so that the assertion follows from Theorem 4.5.5.

If ρ is bijective but R is not a Gorenstein ring, we then have B = m : m is a DVR, so
that R is an almost Gorenstein ring by [36, Theorem 5.1].

We note the following, which is a direct consequence of Theorem 4.5.2.

Corollary 4.5.6. Let (R,m) be a Cohen-Macaulay local ring of dimension one. Suppose
that one of the following conditions is satisfied.

(i) The field R/m is algebraically closed.

(ii) R is a local ring, and R/m ∼= R/n, where n denotes the maximal ideal of R.

Then the following assertions are equivalent.

(1) R is a Gorenstein ring.

(2) The correspondence ρ : XR → YR is bijective.

(3) The correspondence ρ : XR → YR is surjective.

When R is a numerical semigroup ring over a field, Condition (ii) of Corollary 4.5.6 is
always satisfied.

4.6 Anti-stable rings

Let R be a commutative ring and let FR denote the set of regular ideals of R. Then,
because (R : I)·(I : I) ⊆ R : I, for every I ∈ FR the R-module R : I has also the
structure of an (I : I)-module. Keeping this fact together with the natural identifications
R : I = HomR(I, R) and I : I = EndRI in our mind, we give the following.

Definition 4.6.1. We say that R is an anti-stable (resp. strongly anti-stable) ring, if R : I
is an invertible I : I-module (resp. R : I ∼= I : I as an (I : I)-module) for every I ∈ FR.

Therefore, every Dedekind domain is anti-stable, and every UFD is a strongly anti-stable
ring. Notice that when R is a Noetherian semi-local ring, R is anti-stable if and only if it
is strongly anti-stable. Indeed, let I ∈ FR, and set A = I : I, M = R : I. Then, A is also
a Noetherian semi-local ring, and therefore, because M has rank one as an A-module, M
must be cyclic and free, once it is an invertible module over A.

Let us recall here that R is said to be a stable ring, if every ideal I of R is stable, that is
projective over its endomorphism ring EndRI ([73]). When R is a Noetherian semi-local
ring and I ∈ FR, I is a stable ideal of R if and only if I ∈ ZR, that is I2 = aI for
some a ∈ I ([67], [73, Proposition 2.2]). Our definition of anti-stable rings is, of course,
different from that of stable rings. However, we shall later show in Corollary 4.6.10 that
the anti-stability of rings implies the stability of rings, under suitable conditions.

First of all, we will show that R is a strongly anti-stable ring if and only if every
I ∈ FR is isomorphic to a trace ideal in R.
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Lemma 4.6.2. Let I ∈ FR and set A = I : I. Then the following conditions are
equivalent.

(1) I ∼= J as an R-module for some J ∈ XR.

(2) I ∼= τR(I) as an R-module.

(3) R : I ∼= A as an R-module.

(4) R : I ∼= A as an A-module.

(5) R : I = aA for some unit a of Q(R).

Proof. (1) ⇔ (2) Since τR(I) ∈ XR, the implication (2) ⇒ (1) is clear. Since J = τR(J)
for every J ∈ XR (Proposition 4.2.1), we have τR(I) = J , if J ∈ XR and I ∼= J as an
R-module, whence the implication (1) ⇒ (2) follows.

(4) ⇒ (3) This is clear.
(3) ⇒ (4) Because the given isomorphsim R : I → A of R-modules is the restriction

of the homothety of some unit a of Q(R), it must be also a homomorphism of A-modules,
whence R : I ∼= A as an A-module.

(4) ⇔ (5) This is now clear.
(1) ⇒ (3) We have I = aJ for some unit a of Q(R), whence R : I = R : aJ =

a−1(R : J), and I : I = aJ : aJ = J : J . Thus, R : I ∼= I : I as an R-module, because
R : J = J : J .

(5) ⇒ (2) We have τR(I) = (R : I)I = aA·I = aI, whence τR(I) ∼= I as an R-
module.

For a Noetherian ring R, we set Ht1(R) = {p ∈ SpecR | htRp = 1}. Let us note the
following example of strongly anti-stable rings. We include a brief proof.

Example 4.6.3 ([61, Corollary 3.10]). For a Noetherian normal domain R, R is a strongly
anti-stable ring if and only if R is a UFD.

Proof. Suppose that R is a strongly anti-stable ring and let p ∈ Ht1(R). Then, since R is
normal, the R-module p is reflexive with p : p = R, while R : p ∼= p : p by Lemma 4.6.2.
Hence, p ∼= R, so that R is a UFD. Conversely, suppose that R is a UFD and let I ∈ XR.
Then, I ∼= J for some ideal J of R with gradeRJ ≥ 2, so that I ∼= τR(I), since J ∈ XR by
Corollary 4.2.2. Thus, R is a strongly anti-stable ring.

We explore one example of anti-stable rings which are not strongly anti-stable.

Example 4.6.4. Let k be a field and S = k[t] the polynomial ring. Let " ≥ 2 be an
integer and set R = k[t2, t2!+1]. We consider the maximal ideal I = (t2 − 1, t2!+1 − 1) in
R. Then, τR(I) = R, and I '∼= J as an R-module for any J ∈ XR. Therefore, R is not a
strongly anti-stable ring, while R is an anti-stable ring, because dimR = 1 and for every
M ∈ MaxR, RM is an anti-stable local ring. See Theorem 4.6.9 for details.
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Proof. Let p ∈ SpecR. If I '⊆ p, then IRp = Rp. If I ⊆ p, then t2 '∈ p = I, whence
Rp = Sp is a DVR, because R : S = (t2, t2!+1)R, so that IRp

∼= Rp. We now notice that
I ⊆ τR(I) ⊆ R. Hence, either I = τR(I) or τR(I) = R. If I = τR(I), then setting p = I,
we get Rp is a DVR and IRp = τRp(IRp) " Rp, while τRp(IRp) = Rp, because IRp

∼= Rp.
This is absurd. Hence τR(I) = R. Consequently, I '∼= J for any J ∈ XR. In fact, if I ∼= J
for some J ∈ XR, then J = τR(J) = τR(I) = R, so that µR(I) = 1. We write I = fR
with some monic polynomial f ∈ R. Let k denote the algebraic closure of k and choose
a ∈ k so that f(a) = 0. Then, since a2 = a2!+1 = 1, we get a = 1, whence f = (t − 1)n

with 0 < n ∈ H, where H = 〈2, 2"+ 1〉 denotes the numerical semigroup generated by
2, 2"+1. Therefore, 2−n, (2"+1)−n ∈ H, because t2− 1, t2!+1− 1 ∈ fR. Hence, n = 2,
and 2"+ 1 ∈ 2 +H, which is impossible. Thus, I is not a principal ideal of R, and I '∼= J
for any J ∈ XR.

The key in our argument is the following, which plays a key role also in [28].

Lemma 4.6.5. Let R be a strongly anti-stable ring. Then the correspondence ρ : XR → YR

is surjective. More precisely, let A ∈ YR and set J = R : A. Then J ∈ GR = XR ∩ ZR.

Proof. Let A ∈ YR and choose b ∈ W so that bA ⊆ R. Then, since bA ∈ FR, by Lemma
4.6.2 bA ∼= J as an R-module for some J ∈ XR. Let us write J = aA with a a unit
of Q(R) (hence a ∈ J ∩ W ). We then have J : J = aA : aA = A : A = A, whence
A = J : J = R : J = R : aA = a−1(R : A), so that R : A = aA = J ∈ XR ∩ ZR.
Therefore, ρ(J) = J : J = A, and the correspondence ρ : XR → YR is surjective.

Let us recall one of the fundamental results on stable rings, which we need to prove
Theorem 4.6.7.

Proposition 4.6.6 ([73, Lemma 3.2, Theorem 3.4]). Let R be a Cohen-Macaulay semi-
local ring and assume that dimRM = 1 for every M ∈ MaxR. If e(RM) ≤ 2 for every
M ∈ MaxR, then R is a stable ring.

We should compare the following theorem with [11, Theorem 3.6].

Theorem 4.6.7. Let R be a Cohen-Macaulay local ring of dimension one. Then, R is
an anti-stable ring, if and only if e(R) ≤ 2.

Proof. Suppose that e(R) ≤ 2. Let I ∈ FR and set A = I : I. Then, by Proposition 4.6.6
R is a stable ring. Hence, I2 = aI for some a ∈ I, whence A = a−1I. Therefore, I ∼= A
as an R-module. We now consider J = (R : I)I. Then, J = τR(I) ∈ XR, whence

J : J = R : J = R : (R : I)I = [R : (R : I)] : I = I : I,

where the last equality follows from the fact that R is a Gorenstein ring. Consequently,
A = J : J ∼= J (since J ∈ FR), so that I ∼= J = τR(J). Thus, R is an anti-stable ring.

Conversely, suppose that R is an anti-stable ring. First of all, we will show that R
is a Gorenstein ring. Assume the contrary. Then, passing to the m-adic completion of
R, by Proposition 4.5.4 and Theorem 4.5.5 we get XR = {m, R}. Consequently, either
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I ∼= m or I ∼= R, for every ideal I ∈ FR. We set n = µR(m) and write m = (x1, x2, . . . , xn)
with non-zerodivisors xi of R. Then, n > 2 since R is not a Gorenstein ring, and setting
I = (x1, x2, . . . , xn−1), we have either I ∼= m or I ∼= R, both of which violates the fact
that n = µR(m) > 2. Thus R is a Gorenstein ring. We want to show e(R) ≤ 2. Assume
that e(R) ≥ 2 and consider B = m : m. Then, B ∈ YR and R '= B, because R is not
a DVR. Consequently, because m = R : B, by Lemma 4.6.5 m2 = am for some a ∈ m,
which implies e(R) = 2, since R is a Gorenstein ring.

We say that a Noetherian ring R satisfies the condition (S1) of Serre, if depthRp ≥
inf{1, dimRp} for every p ∈ SpecR.

Corollary 4.6.8. Let R be a Noetherian ring and suppose that R satisfies (S1). Then,
e(Rp) ≤ 2 for every p ∈ Ht1(R), if R is an anti-stable ring.

Proof. Let p ∈ Ht1(R) and set A = Rp. Hence A is a Cohen-Macaulay local ring of
dimension one. Let I ∈ FA and set J = I ∩ R. We will show that A : I is a cyclic
(I : I)-module. We may assume that I '= A. Hence, J is a p-primary ideal of R, since
I is a pRp-primary ideal of A = Rp. Hence, because J ∈ FR (remember that R satisfies
(S1)), R : J is a projective (J : J)-module. Therefore, A : I = [R : J ]p is a cyclic module
over I : I = [J : J ]p, since it has rank one over the semi-local ring I : I. Thus, e(A) ≤ 2
by Theorem 4.6.7.

We now come to the main results of this section.

Theorem 4.6.9. Let R be a Noetherian ring and suppose that R satisfies (S1). Let us
consider the following four conditions.

(1) R is anti-stable.

(2) R is strongly anti-stable.

(3) Every I ∈ FR is isomorphic to τR(I).

(4) e(Rp) ≤ 2 for every p ∈ Ht1(R).

Then, we have the implications (3) ⇔ (2) ⇒ (1) ⇒ (4). If R is semi-local (resp. dimR =
1), then the implication (1) ⇒ (2) (resp. (4) ⇒ (1)) holds true.

Proof. (3) ⇔ (2) ⇒ (1) ⇒ (4) See Lemma 4.6.2 and Theorem 4.6.8.
If R is semi-local, then every birational module -finite extension of R is also semi-local,

so that the implication (1) ⇒ (2) follows.
Suppose that dimR = 1. Let I ∈ FR and set A = I : I. Then, by Theorem 4.6.7

RM : IRM = [R : I]M is a cyclic AM -module for every M ∈ MaxR, so that R : I is an
invertible A-module. Hence, the implication (4) ⇒ (1) follows.

Theorem 4.6.10. Let R be a Cohen-Macaulay ring with dimRM = 1 for every M ∈
MaxR. If R is an anti-stable ring, then R is a stable ring.

Proof. For every M ∈ MaxR, e(RM) ≤ 2 by Corollary 4.6.8. Let I be an arbitrary ideal
of R and set A = EndRI. Then, because RM is a stable ring by Proposition 4.6.6, for
every M ∈ MaxR IRM is a projective AM -module, so that I is a projective A-module.
Thus, R is a stable ring.
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Chapter 5

The Auslander-Reiten conjecture for
non-Gorenstein Cohen-Maaulay
rings

5.1 Introduction

The purpose of this chapter is to study the vanishing of Ext modules. The vanishing of
homology plays a very important role in the study of rings and modules. The Auslander-
Reiten conjecture and several related conjectures are problems about the vanishing. For
a guide to these conjectures, one can consult [17, Appendix A] and [14, 50, 79, 80]. These
conjectures originate from the representation theory of rings. However, interesting results
also have been developed from the theory of commutative rings; see, for examples, [2, 57,
58, 59]. Let us recall the Auslander-Reiten conjecture over a commutative Noetherian
ring R.

Conjecture 5.1.1. [5] Let M be a finitely generated R-module. If ExtiR(M,M ⊕R) = 0
for all i > 0, then M is a projective R-module.

Although a lot of partial results on the Auslander-Reiten conjecture are known, in
this chapter, we are especially interested in the following one; see [2, Theorem 3.], [4,
Proposition 1.9.], and [57, Theorem 0.1].

Theorem 5.1.2. (Araya, Auslander-Ding-Solberg, Huneke-Leuschke) Suppose that R is a
Gorenstein ring which is a complete intersection in codimension one. Then the Auslander-
Reiten conjecture holds for R. In particular, the Auslander-Reiten conjecture holds for
complete intersections and Gorenstein normal domains.

As is well-known, non-zerodivisors preserve the Auslander-Reiten conjecture (Propo-
sition 5.2.1). Hence, through Theorem 5.1.2, many Gorenstein rings which satisfy the
Auslander-Reiten conjecture are given. Even if a given local ring is not Gorenstein, the
conjecture still holds if the ring is Golod or almost Gorenstein ([59, Proposition 1.4.] and
[46, proof of Corollary 4.5.]). However, Golod rings and almost Gorenstein rings do not
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form the best possible classes of rings that satisfy the Auslander-Reiten conjecture. In
fact, if a local ring (R,m) is a Golod ring (resp. a non-Gorenstein almost Gorenstein
ring) and x ∈ m is a non-zerodivisor of R, then the ring R/(xn) is no longer Golod (resp.
almost Gorenstein), where n > 1 ([46, Theorem 3.7.] and [74, Proposition 4.6.]). Mo-
tivated by these results, in this chapter, we study the Auslander-Reiten conjecture for
non-Gorenstein rings.

In Section 5.2, we study the Auslander-Reiten conjecture for the residue ring R/Q! in
connection with that for R, where Q is an ideal of R generated by a regular sequence on
R and " is a positive integer. As a result, we have the following which is one of the main
results of this chapter.

Theorem 5.1.3. (Theorem 5.2.2) Suppose that R is a Gorenstein local ring. Let Q =
(x1, x2, . . . , xn) be an ideal of R generated by a regular sequence on R. Then the following
conditions are equivalent.

(1) The Auslander-Reiten conjecture holds for R.

(2) There is an integer " > 0 such that the Auslander-Reiten conjecture holds for R/Q!.

(3) For all integers 1 ≤ " ≤ n, the Auslander-Reiten conjecture holds for R/Q!.

As is well-known, unlike localizations and dividing by non-zerodivisors, homological
properties do not necessarily preserve through dividing by the powers of parameter ideals.
In fact, letting R be a Gorenstein ring and Q = (x1, x2, . . . , xn) be an ideal of R generated
by a regular sequence on R, R/Q! is no longer Gorenstein if n ≥ 2 and " ≥ 2. Therefore
Theorem 5.1.3 gives a new class of rings which satisfy the Auslander-Reiten conjecture.

The powers of parameter ideals are related to determinantal rings. Let s, t be positive
integers and A[X] = A[Xij]1≤i≤s,1≤j≤t be a polynomial ring over a commutative ring A.
Assume s ≤ t and let Is(X) denote the ideal of A[X] generated by the maximal minors
of the s× t matrix (Xij). With these assumptions and notations, we have the following.

Theorem 5.1.4. (Theorem 5.2.9) Suppose that 2s ≤ t + 1 and A is a Gorenstein ring
which is a complete intersection in codimension one. Then the Auslander-Reiten conjec-
ture holds for the determinantal ring A[X]/Is(X).

In Section 5.3, we study a new class of rings arising from Theorem 5.1.3, that is, the
class of rings R that there exist a parameter ideal q of R, a complete intersection S, and a
parameter ideal Q of S such that R/q ∼= S/Q2 as rings. We will see that the condition is
characterized by an ideal condition and strongly related to the existence of Ulrich ideals.
Here the notion of Ulrich ideals is given by [43] and a generalization of maximal ideals
of rings possessing maximal embedding dimension. It is known that Ulrich ideals enjoy
many good properties, see [43, 47] and [29, Theorem 1.2]. The ubiquity and existence of
Ulrich ideals are also studied ([29, 44, 47]). In the current chapter, we study the existence
of Ulrich ideals whose residue rings are complete intersections in connection with a new
class of rings. As a goal of this chapter, we have the following.
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Theorem 5.1.5. (Corollary 5.3.8) Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion d. Suppose that there exists an Ulrich ideal of R whose residue ring is a complete
intersection. Let v (resp. r) denotes the embedding dimension of R (resp. the Cohen-
Macaulay type of R). Then the following assertions are true.

(1) The Auslander-Reiten conjecture holds for R.

(2) r + d ≤ v.

(3) There exist a parameter ideal q of R, a local complete intersection S of dimension r,
and a parameter ideal Q of S such that R/q ∼= S/Q2 as rings.

(4) Assume that there are a regular local ring T of dimension v and a surjective ring
homomorphism T → R. Let 0 → Fv−d → · · · → F1 → F0 → R → 0 be a minimal
T -free resolution of R. Then

rankTF0 = 1 and rankTFi =
v−r−d∑

j=0

βi−j·
(
v − r − d

j

)

for 1 ≤ i ≤ v − d, where βk =






1 if k = 0

k·
(
r+1
k+1

)
if 1 ≤ k ≤ r

0 otherwise.

Theorem 5.1.5 (3) claims that an Ulrich ideal determines the structure of the ring.
Furthermore, Theorem 5.1.5 (4) recovers the result of J. Sally [71, Theorem 1.] by taking
the maximal ideal m as an Ulrich ideal.

Let us fix our notations throughout this chapter. In what follows, unless otherwise
specified, let R denote a Cohen-Macaulay local ring with the maximal ideal m. For each
finitely generated R-module M , let µR(M) (resp. "R(M)) denote the number of elements
in a minimal system of generators of M (resp. the length of M). If M is a Cohen-
Macaulay R-module, rR(M) denotes the Cohen-Macaulay type of M . Let v(R) (resp.
r(R)) denote the embedding dimension of R (resp. the Cohen-Macaulay type of R). For
convenience, letting M and N be R-modules, Ext>0

R (M,N) = 0 (resp. TorR>0(M,N) = 0)
denotes ExtiR(M,N) = 0 for all i > 0 (resp. TorRi (M,N) = 0 for all i > 0).

5.2 Powers of parameter ideals and determinantal
rings

The purpose of this section is to prove Theorem 5.1.3. First of all, let us sketch a brief
proof that non-zerodivisors preserve the Auslander-Reiten conjecture since Theorem 5.1.3
is based on the fact.

Proposition 5.2.1. Let (R,m) be a Noetherian local ring and a ∈ m be a non-zerodivisor
of R. Then the Auslander-Reiten conjecture holds for R if and only if it holds for the
residue ring R/(a).
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Proof. (if part) Let M be a finitely generated R-module such that Ext>0
R (M,M ⊕R) = 0.

Take an exact sequence 0 → X → F → M → 0, where F is a free R-module of rank
µR(M). By applying the functors

HomR(−, R), HomR(M,−), and HomR(−, X)

to the above short exact sequence, we have Ext>0
R (X,X⊕R) = 0. Thus Ext>0

R
(X,X⊕R) =

0 since a ∈ m is a non-zerodivisor of X and R, where ∗ denotes R/(a) ⊗R ∗. Therefore
the R-module X is free and so is the R-module X. Hence the R-module HomR(M,R) is
free and so is the R-module M ∼= HomR(HomR(M,R), R).

(only if part) Let N be a finitely generated R-module such that Ext>0
R
(N,N ⊕ R) =

0. Then there exists a finitely generated R-module M such that M/aM ∼= N and
TorR>0(M,R) = 0 by [4, Proposition 1.7.]. Hence, by the exact sequence 0 → M

a−→
M → N → 0, Ext>0

R (M,M ⊕ R) = 0. Therefore the R-module M is free and so is the
R-module N .

Theorem 5.2.2. Let (S, n) be a Gorenstein local ring and x1, x2, . . . , xn be a regular
sequence on S. Set Q = (x1, x2, . . . , xn). Then the following conditions are equivalent.

(1) The Auslander-Reiten conjecture holds for S.

(2) The Auslander-Reiten conjecture holds for S/Q.

(3) There is an integer " > 0 such that the Auslander-Reiten conjecture holds for S/Q!.

(4) For all integers 1 ≤ " ≤ n, the Auslander-Reiten conjecture holds for S/Q!.

Proof. The implications (1) ⇔ (2) follow from Proposition 5.2.1 and the implication
(4) ⇒ (3) is trivial. Hence we have only to show that (1) ⇒ (4) and (3) ⇒ (1). First of
all, we reduce our assertions to the case where Q is a parameter ideal. Set R = S/Q!.
Note that R is a Cohen-Macaulay local ring with dimR = dimS − n since Q! is perfect.
In fact, Q! is generated by "× "-minors of the "× (n+ "− 1) matrix





x1 x2 x3 · · · xn−1 xn

x1 x2 · · · · · · xn−1 xn

. . . . . . . . . . . . . . . . . .
x1 x2 x3 · · · xn−1 xn




,

whence the projective dimension of S/Q! over S is n, see [18] or [13, (2.14) Proposition].
Suppose dimR > 0. Then we can take a ∈ S so that a is a non-zerodivisor of R and S/Q.
By replacing R and S by R/aR and S/aS, we finally may assume that R is an Artinian
local ring, that is, Q is a parameter ideal of S. We may also assume that n ≥ 2 and " ≥ 2
by Proposition 5.2.1.

(1) ⇒ (4) Assume 1 ≤ " ≤ n. Suppose that M is a finitely generated R-module such
that Ext>0

R (M,M ⊕ R) = 0. We will show that Ext>0
S/Q(M/QM,M/QM ⊕ S/Q) = 0 in

several steps. Note that we have an exact sequence

0 → Qi−1/Qi → S/Qi → S/Qi−1 → 0 (∗)
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of R-modules for all 2 ≤ i ≤ " and Qi/Qi+1 is an S/Q-free module of rank
(
i+n−1
n−1

)
for all

i > 0.

Claim 4. Ext>0
R (M,S/Q) = 0.

Proof of Claim 4. By applying the functor HomR(M,−) to the exact sequence (∗), we
have the following exact sequence and isomorphism

ExtjR(M,S/Q)⊕(
i−1+n−1

n−1 ) → ExtjR(M,S/Qi) → ExtjR(M,S/Qi−1) → Extj+1
R (M,S/Q)⊕(

i−1+n−1
n−1 )

ExtjR(M,S/Q!−1) ∼= Extj+1
R (M,S/Q)⊕(

!−1+n−1
n−1 ) (i)

of R-modules for all 2 ≤ i ≤ " − 1 and j > 0. Set Ej = "R(Ext
j
R(M,S/Q)) for j > 0.

Then, by (i),

Ej+1

(
!+ n− 2

n− 1

)
= !R(Ext

j
R(M,S/Q!−1)) ≤ Ej ·

(
!− 2 + n− 1

n− 1

)
+ !R(Ext

j
R(M,S/Q!−2))

≤ Ej

{(
!− 2 + n− 1

n− 1

)
+

(
!− 3 + n− 1

n− 1

)}
+ !R(Ext

j
R(M,S/Q!−3)) ≤ · · ·

≤ Ej ·
!−2∑

i=0

(
i+ n− 1

n− 1

)
= Ej ·

(
!− 2 + n

n

)
,

that is,

Ej+1 ≤
(
!+n−2

n

)
(
!+n−2
n−1

) ·Ej =
"− 1

n
·Ej

for all j > 0. Hence, for enough large integer m ≥ 0,

Em+1 ≤
(
"− 1

n

)m

E1 < 1

since " ≤ n. Hence ExtjR(M,S/Q) = 0 for all j > m. On the other hand, for j > 0,
Extj+1

R (M,S/Q) = 0 implies that ExtjR(M,S/Qi) = 0 for all 1 ≤ i ≤ "−1 by above isomor-
phism and exact sequence (i). Hence, by using descending induction, ExtjR(M,S/Q) = 0
for all j > 0.

Let · · · → F1 → F0 → M → 0 be a minimal R-free resolution of M . Then, by
applying the functor HomR(−, S/Q) to the minimal free resolution, we have the following
commutative diagram;

0 !! HomR(M,S/Q) !!

∼=
""

HomR(F0, S/Q) !!

∼=
""

HomR(F1, S/Q) !!

∼=
""

0 !! HomS/Q(M/QM,S/Q) !! HomS/Q(F0/QF0, S/Q) !! HomS/Q(F1/QF1, S/Q) !!

The upper row is exact by Claim 4 and so is the lower row. Since S/Q is self-injective,
the sequence · · · → F1/QF1 → F0/QF0 → M/QM → 0 is a minimal S/Q-free resolution
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of M/QM . Hence TorR>0(M,S/Q) = 0. Moreover, by applying the functor M ⊗R − to
the sequence (∗),

TorR>0(M,S/Qi) = 0 for all 1 ≤ i ≤ "− 1. (ii)

Apply the functor M ⊗R − to (∗) again. Then we get the exact sequence

0 → (M/QM)⊕(
i−1+n−1

n−1 ) → M/QiM → M/Qi−1M → 0 (∗∗)

of R-modules for all 2 ≤ i ≤ " by (ii). Therefore, by applying the functor HomR(M,−)
to (∗∗), we get the following exact sequence and isomorphism

ExtjR(M,M/QM)⊕(
i−1+n−1

n−1 ) → ExtjR(M,M/QiM) → ExtjR(M,M/Qi−1M)

→Extj+1
R (M,M/QM)⊕(

i−1+n−1
n−1 )

ExtjR(M,M/Q!−1M) ∼= Extj+1
R (M,M/QM)⊕(

!−1+n−1
n−1 )

of R-modules for all 2 ≤ i ≤ "− 1 and j > 0. By setting E ′
j = "R(Ext

j
R(M,M/QM)) for

all j > 0 and calculation as the proof of Claim 4, we have Ext>0
R (M,M/QM) = 0. This

induces that Ext>0
S/Q(M/QM,M/QM) = 0. In fact, we have the commutative diagram

0 !! HomR(M,M !!

∼=
""

HomR(F0,M) !!

∼=
""

HomR(F1,M) !!

∼=
""

· · ·

0 !! HomS/Q(M,M) !! HomS/Q(F0/QF0,M) !! HomS/Q(F1/QF1,M) !! · · · ,

where M = M/QM , and both of rows are exact. Since · · · → F1/QF1 →
F0/QF0 → M/QM → 0 is a minimal S/Q-free resolution of M/QM by (ii),
Ext>0

S/Q(M/QM,M/QM) = 0. Thus we have

Ext>0
S/Q(M/QM,M/QM ⊕ S/Q) = 0

since S/Q is self-injective, whence M/QM is S/Q-free by Proposition 5.2.1. This shows
that M is R-free because TorR1 (M,S/Q) = 0 by (ii).

(3) ⇒ (1) Let N be a finitely generated S-module and suppose that Ext>0
S (N,N⊕S) =

0. Then, by applying the functor HomS(N,−) to the exact sequence 0 → S
x1−→ S →

S/x1S → 0 of S-modules, Ext>0
S (N,S/x1S) = 0. Hence

Ext>0
S (N,S/Q) = 0 (iii)

by induction on n. Similarly, Ext>0
S (N,N/QN) = 0 sinceN is a maximal Cohen-Macaulay

S-module by Ext>0
S (N,S) = 0.

Let · · · → G1 → G0 → N → 0 be a minimal S-free resolution of N . Then, by applying
the functor HomS(−, S/Q) to the minimal free resolution, we see that the sequence · · · →
G1/QG1 → G0/QG0 → N/QN → 0 is a minimal S/Q-free resolution of N/QN since (iii)
and S/Q is self-injective. Hence TorS>0(N,S/Q) = 0. Moreover, by applying the functor
N ⊗S − to the sequence (∗),

TorS>0(N,S/Qi) = 0 for all 1 ≤ i ≤ ". (iv)
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Therefore, for all 1 ≤ i ≤ ", the sequence · · · → G1/QiG1 → G0/QiG0 → N/QiN → 0 is
a minimal S/Qi-free resolution of N/QiN and

0 → (N/QN)⊕(
i−1+n−1

n−1 ) → N/QiN → N/Qi−1N → 0 (v)

is exact as S-modules. Hence, by applying the functor HomS(N,−) to (v),

Ext>0
S (N,N/QiN) = 0 for all 1 ≤ i ≤ "

since Ext>0
S (N,N/QN) = 0. Thus Ext>0

S/Q!(N/Q!N,N/Q!N) = 0. Similarly,

Ext>0
S (N,S/Q!) = 0, whence Ext>0

S/Q!(N/Q!N,S/Q! ⊕ N/Q!N) = 0. Hence N/Q!N

is S/Q!-free, whence N is S-free by (iv).

The following assertions are direct consequences of Theorem 5.2.2.

Corollary 5.2.3. Let S be a Gorenstein local ring and Q be a parameter ideal of S
generated by a regular sequence on S. Then the Auslander-Reiten conjecture holds for S
if and only if it holds for S/Q2.

Corollary 5.2.4. Let S be either a complete intersection or a Gorenstein normal do-
main. Let x1, x2, . . . , xn be regular sequence on S and set Q = (x1, x2, . . . , xn). Then the
Auslander-Reiten conjecture holds for S/Q! for all 1 ≤ " ≤ n.

Corollary 5.2.5. Let R be a Cohen-Macaulay local ring. Suppose that there exist a
parameter ideal q of R, a local complete intersection S, and a parameter ideal Q of S
such that R/q ∼= S/Q2 as rings. Then the Auslander-Reiten conjecture holds for R.

In Section 5.3, we will characterize rings obtained in Corollary 5.2.5 by the existence of
ideals in R. In the remainder of this section, we explore the Auslander-Reiten conjecture
for determinantal rings. We start with the following.

Proposition 5.2.6. Let s, t be positive integers and assume that 2s ≤ t + 1. Suppose
that S is a Gorenstein local ring and {xij}1≤i≤s,1≤j≤t forms a regular sequence on S. Let
I be an ideal of S generated by s × s minors of the s × t matrix (x

αij

ij ), where αij is a
positive integer for all 1 ≤ i ≤ s and 1 ≤ j ≤ t. Set R = S/I. Then the Auslander-Reiten
conjecture holds for S if and only if it holds for R.

Proof. First of all, we show the case where αij = 1 for all 1 ≤ i ≤ s and 1 ≤ j ≤ t. Set

A = {(i, j) ∈ Z⊕ Z | 1 ≤ i ≤ s, 1 ≤ j ≤ t} ,

B =
⋃

1≤i≤s−1

{(i, i+ k) ∈ A | 0 ≤ k ≤ t− s} , and

C = B ∪ {(s, s+ k) ∈ A | 0 ≤ k ≤ t− s} .

Then
{xij − xi+1 j+1 | (i, j) ∈ B} ∪ {xij | (i, j) ∈ A \ C}

forms a regular sequence on S/(x11, x12, . . . , x1 t−s+1) and R, whence our assertion reduces
to the case of Theorem 5.2.2. In fact, letting Q be an ideal of S generated by the above
regular sequence,
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R/QR ∼= S/(I +Q) = S/[(x11, x12, . . . , x1 t−s+1)s +Q] and s ≤ t− s+ 1.

Set D = {(i, j) ∈ A | αij > 1}. We prove our assertion by induction on N = (D.
Assume that N > 0 and our assertion holds for N − 1. Take (i, j) ∈ D. We may assume

that (i, j) = (1, 1). Let J be an ideal of S generated by s×sminors of the s×tmatrix (x
βij
ij ),

where βij = αij for all (i, j) ∈ A\{(1, 1)} and β11 = 1. Noting that x11 is a non-zerodivisor
of R, S/J , and S, we have the conclusion since R/x11R ∼= S/(x11S+I) = S/(x11S+J).

Let H ⊆ Z be a numerical semigroup and k be a field. Then the numerical semigroup
ring k[[H]] often have the form obtained in Proposition 5.2.6; see, for examples, [32, 52].
In particular, the Auslander-Reiten conjecture holds for all three generated numerical
semigroup rings. Let us note another concrete example.

Example 5.2.7. Let n be a positive integer. Let k[[t]] and S = k[[X, Y, Z,W ]] be formal
power series rings over a field k. Set R = k[[t10, t14, t16, t2n+1]] and assume that n ≥ 6.
Then there exists an element f ∈ (X) such that

R ∼= S/[I2(X Y 2 Z
Y Z2 X2 ) + (W 2 − f)],

where I2(M) denote the ideal of S generated by 2×2-minors of the matrixM. In particular,
the Auslander-Reiten conjecture holds for R.

Proof. Let ϕ : S → R be a ring homomorphism such that

X 5→ t10, Y 5→ t14, Z 5→ t16, and W 5→ t2n+1.

Then, by a standard argument, Kerϕ = I2(X Y 2 Z
Y Z2 X2 ) + (W 2 − f), where

f =






Xm·Y m−1·Z if n = 6m

Xm+2·Zm−1 if n = 6m+ 1

Xm+1·Y m if n = 6m+ 2

Xm·Y m−1 if n = 6m+ 3

Xm·Y m−1·Z2 if n = 6m+ 4

Xm+2·Y m−1·Z if n = 6m+ 5

for some positive integer m.

Let us consider determinantal rings, which are not local rings. From now on until
the end of this section, let s, t be positive integers. Let A be a commutative ring and
A[X] = A[Xij]1≤i≤s,1≤j≤t be a polynomial ring over A. Suppose that s ≤ t and Is(X) is
an ideal of A[X] generated by s× s minors of the s× t matrix X = (Xij). The following
lemma is well-known.

Lemma 5.2.8. With the above assumptions and notations, suppose that A is a Gorenstein
ring which is a complete intersection in codimension one. Then A[X] is also a Gorenstein
ring which is a complete intersection in codimension one.

Theorem 5.2.9. Suppose that 2s ≤ t+1 and A is a Gorenstein ring which is a complete
intersection in codimension one. Then the Auslander-Reiten conjecture holds for the
determinantal ring A[X]/Is(X).
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Proof. The case where s = 1 is trivial. Suppose that s > 1. Let N be a maximal ideal of
A[X] such that N ⊇ Is(X). It is sufficient to show that the Auslander-Reiten conjecture
holds for (A[X]/Is(X))N. For integers 1 ≤ p ≤ s and 1 ≤ q ≤ t, let

Mpq = (Xij | 1 ≤ i ≤ p, 1 ≤ j ≤ q)

denote a monomial ideal of A[X]. The case where Mst ⊆ N follows from Proposition 5.2.6
and Lemma 5.2.8. Suppose that Mst '⊆ N and take a variable Xij so that Xij '∈ N. We
may assume that Xij = Xst. Then the matrix X = (Xij) is transformed to





0

Xij − Xit·Xsj

Xst

...
0

0 · · · 0 1





by elementary transformation in A[X]N. By [13, (2.4) Proposition], we have the isomor-
phism ϕ : A[X][X−1

st ] → A[X][X−1
st ] of A-algebras, where

ϕ(Xij) =

{
Xij − Xit·Xsj

Xst
if Xij ∈ Ms−1 t−1

Xij otherwise.

Therefore we have the commutative diagram

A[X]N
ϕN !!

⊆ !

A[X]N

⊆

Is(X)N !! Is−1(Xst)N,

where Xst is the (s − 1) × (t − 1) matrix that results from deleting the s-th row and
the t-th column of X and Is−1(Xst) is an ideal of A[X] generated by (s − 1) × (s − 1)
minors of Xst. Hence (A[X]/Is(X))N ∼= (A[X]/Is−1(Xst))N as rings. If Ms−1 t−1 ⊆ N,
the Auslander-Reiten conjecture holds for (A[X]/Is−1(Xst))N by Proposition 5.2.6 and
Lemma 5.2.8 since 2(s − 1) ≤ (t − 1) + 1. If Ms−1 t−1 '⊆ N, repeat the above argument.
Then, after finite steps, we finally see that the Auslander-Reiten conjecture holds for
(A[X]/Is−1(Xst))N.

5.3 Ulrich ideals whose residue rings are complete
intersections

In this section, we study rings obtained in Corollary 5.2.5 in connection with the existence
of ideals. Throughout this section, let (R,m) be a Cohen-Macaulay local ring of dimension
d.

Lemma 5.3.1. Let I be an m-primary ideal of R and q = (x1, x2, . . . , xd) be a parameter
ideal of R. Set n = µR(I). Suppose the following two conditions.
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(1) q ⊆ I and x1, x2, . . . , xd is a part of minimal generators of I.

(2) I2 ⊆ q and I/q is R/I-free.

Then r(R) = (n− d)·r(R/I). In particular, n = d+ r(R) if R/I is a Gorenstein ring.

Proof. Since I/q ∼= (R/I)⊕(n−d), I = q :R I. Hence I/q = (q :R I)/q ∼= HomR(R/I,R/q).
Therefore

HomR(R/m, (R/I)⊕(n−d)) ∼= HomR(R/m,HomR(R/I,R/q)) ∼= HomR(R/m⊗R R/I,R/q),

whence we have the conclusion by comparing the lengths of them.

For a moment, let (R,m) be an Artinian local ring. Then there are a regular local
ring (S, n) and a surjective local ring homomorphism ϕ : S → R. We can take S so that
the dimension of S is equal to the embedding dimension of R. Set v = v(R) = dimS and
r = r(R). With these assumptions and notations, we have the following.

Proposition 5.3.2. Let (R,m) be an Artinian local ring and S be as above. The following
conditions are equivalent.

(1) r ≤ v and there exists a regular sequence X1, X2, . . . , Xv ∈ n on S such that

R ∼= S/
[
(X1, X2, . . . , Xr)

2 + (Xr+1, Xr+2, . . . , Xv)
]

as rings.

(2) There exists a nonzero ideal I of R such that

(i) I2 = 0 and I is R/I-free.

(ii) R/I is a complete intersection.

Proof. (2) ⇒ (1) Let ϕ : S
ϕ−→ R → R/I be a surjective local ring homomorphism. Set

a = Kerϕ and J = Kerϕ. Since R/I ∼= S/J is a complete intersection, J is generated
by a regular sequence x1, x2, . . . , xv ∈ n on S, see [11, Theorem 2.3.3.(c)]. Hence, after
renumbering of x1, x2, . . . , xv,

I = JR = (x1, x2, . . . , xv) = (x1, x2, . . . , xr)

by Lemma 5.3.1, where x denotes the image of x ∈ S to R. Thus J = (x1, x2, . . . , xr) +
a. For all r + 1 ≤ i ≤ v, take yi ∈ a and cj1 , cj2 , . . . , cjr ∈ R so that xi = yi +∑r

j=1 cjixj. Then J = (x1, x2, . . . , xr) + (yr+1, yr+2, . . . , yv). Set X = (x1, x2, . . . , xr) and
Y = (yr+1, yr+2, . . . , yv), where Y denotes (0) if r = v. We then have inclusions

J2 + Y ⊆ a ⊆ J,

where the first inclusion follows from I2 = 0. On the other hand, setting S ′ = S/Y ,

"S(J/
[
J2 + Y

]
) = "S′(XS ′/X2S ′) = "S′(S ′/XS ′)·r = "R(R/I)·r = "R(I) = "S(J/a),

where the forth equality follows from the fact that I is an R/I-free module. Thus a =
J2 + Y = (x1, x2, . . . , xr)2 + (yr+1, yr+2, . . . , yv).

(1) ⇒ (2) Let X = (X1, X2, . . . , Xr) and Y = (Xr+1, Xr+2, . . . , Xv) be ideals of S. Set
I = XR. Then I2 = 0 and I = [X + Y ] / [X2 + Y ] ∼= [S/(X + Y )]⊕r ∼= (R/I)⊕r.
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We are now back to the Setting that (R,m) is a Cohen-Macaulay local ring. Let us
generalize Proposition 5.3.2 to arbitrary Cohen-Macaulay local rings.

Theorem 5.3.3. Let (R,m) be a Cohen-Macaulay local ring. Then the following condi-
tions are equivalent.

(1) There exist a parameter ideal q of R, a local complete intersection S of positive di-
mension, and a parameter ideal Q of S such that R/q ∼= S/Q2 as rings.

(2) There exist a parameter ideal q of R, a local complete intersection S of dimension
r(R), and a parameter ideal Q of S such that R/q ∼= S/Q2 as rings.

(3) There exist an m-primary ideal I and a parameter ideal q of R such that

(i) I2 ⊆ q " I and I/q is R/I-free.

(ii) R/I is a complete intersection.

Proof. (1)⇒ (3) Set " = dimS and Q = (x1, x2, . . . , x!). Then, since R/q ∼= S/Q2, we can
choose y1, y2, . . . , y! ∈ R so that yi corresponds to xi for all 1 ≤ i ≤ ", where xi denotes
the image of xi in S/Q2 and yi denotes the image of yi in R/q. Set I = (y1, y2, . . . , y!)+q.
Then R/I ∼= S/Q is a complete intersection and I/q ∼= Q/Q2 is R/I-free. Furthermore
I2 = qI + (y1, y2, . . . , y!)2 ⊆ q.

(3) ⇒ (2) Because I/q is an ideal of R/q which satisfies the assumption of Proposition
5.3.2(2).

Theorem 5.3.3 is applicable to Ulrich ideals. Here the definition of Ulrich ideals is
stated as follows.

Definition 5.3.4. ([43, Definition 2.1.]) Let (R,m) be a Cohen-Macaulay local ring and
I be an m-primary ideal of R. Assume that I contains a parameter ideal q of R as a
reduction. We say that I is an Ulrich ideal of R if the following conditions are satisfied.

(1) I '= q, but I2 = qI.

(2) I/I2 is a free R/I-module.

Note that the condition (1) of Definition 5.3.4 is independent of the choice of q; see,
for example, [51, Theorem 2.1.]. The following assertions say that the notion of Ulrich
ideals is closely related to the condition (3)(i) of Theorem 5.3.3.

Proposition 5.3.5. [43, Lemma 2.3. and Proposition 2.3.]

(1) If I is an Ulrich ideal of R, then I2 = qI ⊆ q and I/q is R/I-free for every parameter
ideal q of R such that q is a reduction of I.

(2) Assume that R/m is infinite. If I2 ⊆ q and I/q is R/I-free for all minimal reductions
q of I, then I is an Ulrich ideal of R.
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The following result recovers the result of J. Sally [71] by taking the maximal ideal m
as an Ulrich ideal. For convenience, set d = dimR, r = r(R), and v = v(R).

Theorem 5.3.6. (cf. [71, Theorem 1.]) Suppose that there are a regular local ring (T, n)
of dimension v and a surjective local ring homomorphism ϕ : T → R. If there exists an
Ulrich ideal I of R such that R/I is a complete intersection, then µR(I) = d+ r ≤ v and
there exists a regular sequence x1, x2, . . . , xv on T such that

(1) x1, x2, . . . , xd is a regular sequence on R.

(2) R/(x1, x2, . . . , xd)R ∼= T/ [(x1, . . . , xd) + (xd+1, . . . , xd+r)2 + (xd+r+1, . . . , xv)].

Therefore, letting 0 → Fv−d → · · · → F1 → F0 → R → 0 be a minimal T -free resolution
of R,

rankTF0 = 1 and rankTFi =
v−r−d∑

j=0

βi−j·
(
v − r − d

j

)

for 1 ≤ i ≤ v − d, where βk =






1 if k = 0

k·
(
r+1
k+1

)
if 1 ≤ k ≤ r

0 otherwise.

In particular, rankTFi = i·
(
r+1
i+1

)
for 1 ≤ i ≤ r if µR(I) = v.

Proof. Let ϕ : T
ϕ−→ R → R/I be a surjective local ring homomorphism. Set a = Kerϕ

and J = Kerϕ. Since R/I ∼= T/J is a complete intersection, J is generated by a regular
sequence x1, x2, . . . , xv ∈ n on T . Hence, after renumbering of x1, x2, . . . , xv,

I = JR = (x1, x2, . . . , xv) = (x1, x2, . . . , xd+r)

by Lemma 5.3.1, where x denotes the image of x ∈ T to R. Let (x′
1, x

′
2, . . . , x

′
d) ⊆ I be a

minimal reduction of I. Then, after renumbering of x1, x2, . . . , xd+r,

I = (x′
1, x

′
2, . . . , x

′
d, xd+1, . . . , xd+r).

Thus J = (x′
1, . . . , x

′
d) + (xd+1, . . . , xd+r) + a. Since µT (J) = v, we can choose v elements

in {x′
1, . . . , x

′
d, xd+1, . . . , xd+r} ∪ {a | a ∈ a} as a minimal system of generators. Assume

that x′
i cannot be chosen as a part of minimal system of generators. Then

I = (x′
1, . . . , x

′
i−1, x

′
i+1, · · · , x′

d, xd+1, . . . , xd+r).

This is contradiction for µR(I) = r + d by Lemma 5.3.1. Hence

J = (x′
1, . . . , x

′
d) + (xd+1, . . . , xd+r) + (yd+r+1, . . . , yv)

for some yd+r+1, . . . , yv ∈ a. Set X1 = (x′
1, . . . , x

′
d), X2 = (xd+1, . . . , xd+r), and Y =

(yd+r+1, . . . , yv). Then X1 +X2
2 + Y ⊆ a+X1 ⊆ J , whence a+X1 = X1 +X2

2 + Y since
"T (J/[a+X1]) = "T (J/[X1 +X2

2 + Y ]) = r·"T (T/J).
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Let 0 → Fv−d → · · · → F1 → F0 → R → 0 be a minimal T -free resolution of R. Then

0 → Fv−d/X1Fv−d → · · · → F1/X1F1 → F0/X1F0 → R/X1R → 0

is a minimal T/X1-free resolution of R/X1R and R/X1R ∼= T/[X1 + X2
2 + Y ] since

a+X1 = X1 +X2
2 + Y . On the other hand, the Eagon-Northcott complex [18] gives the

minimal T/X1-free resolution

0 → Gr
∂r−→ Gr−1

∂r−1−−→ · · · ∂2−→ G1
∂1−→ G0

∂0−→ T/[X1 +X2
2 ] → 0

of T/[X1 +X2
2 ], thus rankT/X1Gk = βk for all k ∈ Z. Therefore, as is well-known,

0 → Gr

∂′r+1−−→
Gr−1

⊕
Gr

∂′r−→
Gr−2

⊕
Gr−1

∂′r−1−−→ · · · ∂′2−→
G0

⊕
G1

∂′1−→ G0
∂′0−→ T/[X1 +X2

2 + (yd+r+1)] → 0

becomes a minimal T/X1-free resolution, where ∂′i =
(

∂i−1 0
(−1)i−1·yd+r+1 ∂i

)
. This show induc-

tively rankTFi =
∑v−r−d

j=0 βi−j·
(
v−r−d

j

)
as desired.

Remark 5.3.7. With the assumption of Theorem 5.3.6, the equality µR(I) = v does not
necessarily hold in general; see Example 5.3.11 (1). On the other hand, if R is a one-
dimensional Cohen-Macaulay local ring possessing maximal embedding dimension, every
Ulrich ideal I satisfy that R/I is a complete intersection and µR(I) = v; see [29, Theorem
4.5].

Combining Theorem 5.2.2, 5.3.3, and 5.3.6, we have the following which is a goal of
this chapter.

Corollary 5.3.8. Let (R,m) be a Cohen-Macaulay local ring of dimension d. Suppose
that there exists an Ulrich ideal of R whose residue ring is a complete intersection. Then
the following assertions are true.

(1) The Auslander-Reiten conjecture holds for R.

(2) r + d ≤ v.

(3) There exist a parameter ideal q of R, a local complete intersection S of dimension r,
and a parameter ideal Q of S such that R/q ∼= S/Q2 as rings.

(4) Assume that there are a regular local ring T of dimension v and a surjective ring
homomorphism T → R. Let 0 → Fv−d → · · · → F1 → F0 → R → 0 be a minimal
T -free resolution of R. Then

rankTF0 = 1 and rankTFi =
v−r−d∑

j=0

βi−j·
(
v − r − d

j

)

for 1 ≤ i ≤ v − d, where βk =






1 if k = 0

k·
(
r+1
k+1

)
if 1 ≤ k ≤ r

0 otherwise.
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Proof. (1) This follows from (3) and Corollary 5.2.5.
(2) Passing to the completion of R, we may assume that there exist a regular local

ring T of dimension v and a surjective ring homomorphism T → R. Then the assertion
follows from Theorem 5.3.6.

(3) This follows from Theorem 5.3.3 and Proposition 5.3.5.

Let us note that it is not necessarily unique for a given ring that an Ulrich ideal whose
residue ring is a complete intersection.

Proposition 5.3.9. Let (S, n) be a local complete intersection of dimension three and
f, g, h ∈ n be a regular sequence on S. Set

R = S/(f 2 − gh, g2 − hf, h2 − fg).

Then R is a Cohen-Macaulay local ring of dimension one and I = (f, g, h)R is an Ul-
rich ideal of R such that R/I is a complete intersection. Furthermore, if f = f1·f2 for
f1, f2 ∈ n, then I1 = (f1, g, h)R is also an Ulrich ideal of R such that R/I1 is a complete
intersection.

Proof. By direct calculation,

I2 = fI, "R(R/I) = "S(S/(f, g, h)), and
"R(I/fR) = "S((f, g, h)/[(f) + (g, h)2]) = 2·"S(S/(f, g, h)).

Hence a surjection (R/I)⊕2 → I/fR must be an isomorphism, that is, I is an Ulrich ideal
of R and R/I ∼= S/(f, g, h) is a complete intersection.

Assume that f = f1·f2. Then, similarly to the above,

I21 = f1I1, "R(R/I1) = "S(S/(f1, g, h)), and
"R(I1/f1R) = "S((f1, g, h)/[(f1) + (g, h)2]) = 2·"S(S/(f1, g, h)).

Hence I1 is an Ulrich ideal of R and R/I1 ∼= S/(f1, g, h) is a complete intersection.

Here are some examples arising from Proposition 5.3.9.

Example 5.3.10. With the same notations of Proposition 5.3.9, let S = k[[X, Y, Z]]
be a formal power series ring over a field k. Let ",m, n be positive integers such that
(",m, n) '= (0, 0, 0). Then we have the following examples.

(1) Take (f, g, h) so that (X!, Y m, Zn). Then

(X i, Y m, Zn)R, (X!, Y j, Zn)R, (X!, Y m, Zk)R

are Ulrich ideals for all 0 ≤ i ≤ ", 0 ≤ j ≤ m, 0 ≤ k ≤ n.

(2) Take (f, g, h) so that (X!·Y m·Zn, X2 + Y 2, Y 2 + Z2). Then

(X i·Y j·Zk, X2 + Y 2, Y 2 + Z2)R
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is an Ulrich ideal for all 0 ≤ i ≤ ", 0 ≤ j ≤ m, 0 ≤ k ≤ n. Furthermore
(X!·Y m·Zn, X + Y, Y 2 + Z2)R is also an Ulrich ideal if k is a field of characteris-
tic two or an algebraically closed field.

We close this chapter and the dissertation with several examples.

Example 5.3.11. Let k[[t]] and S = k[[X, Y, Z,W ]] be formal power series rings over a
field k. The following assertions are true.

(1) Let R1 = k[[t6, t11, t16, t26]] and I = (t6, t16, t26) be an ideal of R1. Then (t6) is
a reduction of I, I is an Ulrich ideal of R1, and R1/I is a complete intersection.
Therefore the minimal S-free resolution of R1 has the following form

0 → S⊕2 → S⊕5 → S⊕4 → S → R1 → 0.

On the other hand, R1
∼= S/ (X7 − ZW, Y 2 −XZ,Z2 −XW,W 2 −X6Z) as rings,

thus R1 does not have the form obtained in Proposition 5.2.6.

(2) (cf. [59, Proposition 1.4.]) Set

R2 = S/(X2 − Y Z, Y 2 − ZX,Z2 −XY,W 2).

Then X is a non-zerodivisor of R2 and R2/XR2
∼= k[[Y, Z,W ]]/ [(Y, Z)2 + (W 2)].

Hence the Auslander-Reiten conjecture holds for R2. On the other hand, I =
(X,W )R2 is an Ulrich ideal, whence I is a non-free totally reflexive R2-module ([47,
Theorem 2.8.]). Hence R2 is not G-regular in the sense of [74]. In particular, R2 is
not a Golod ring.
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