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Abstract 

It is of great importance to find where transcription factors are bound to, and accurately infer 

transcription factor binding sites (TFBSs). Some of TFBFs are proposed as bipartite motifs known as 

two-block motifs separated by gap sequences with variable lengths. 

While position weight matrix (PWM) is commonly used for not only representation and prediction of 

TFBSs, dinucleotide weight matrix (DWM) enables to express the interdependencies of neighboring 

bases. Incorporating DWM into detection of the bipartite motifs, I have developed a novel tool for ab 

initio motif detection, DIpartite (bipartite motif detection tool based on dinucleotide weight matrix) 

using a Gibbs sampling strategy, and minimization of Shannon’s entropy. DIpartite predicts the bipartite 

motifs by taking into account the interdependencies of neighboring positions, i.e., DWM. I performed 

the comparison of DIpartite by using test datasets, i.e., CRP in E. coli, sigma factors in B. subtilis and 

the promoter sequences in human. 

I have developed DIpartite for detecting TFBSs, in particular the bipartite motifs. DIpartite enables ab 

initio prediction of the conserved motif based on not only PWM, but also DWM. I evaluated the 

performance of DIpartite compared with freely available tools, i.e., MEME, BioProspector, BiPad, and 

AMD. Taken together, DIpartite performs equivalent or better than those in the cases of the bipartite 

motifs with the fixed and variable gaps like promoter sequences in human and variable gaps. DIpartite 

requires users to specify the motif lengths, gap length, and PWM or DWM. DIpartite can be found at 

https://github.com/Mohammad-Vahed/DIpartite.  
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1. Introduction 

Gene expression can be often regulated by transcription factors (TFs). TFs bind to specific DNA-

binding sites and modulate the expression of the genes. Therefore, an accurate inference of 

Transcription Factor Binding Sites (TFBSs) is of fundamental importance for understanding the 

complex transcriptional regulations. High throughput ChIP-seq widely used to study TF-DNA 

interactions provides the sequences of binding regions [1, 2]. TFBSs for a specific TF, the binding 

priority is usually demonstrated as a position weight matrix (PWM). PWM is a common way to pattern 

transcription factor binding sites. When a PWM made, it can be used to scan sequences for considered 

binding sites using the PWM to score how good each sequence segment matches the PWM. To model 

this variation, the PWM has emerged as a likely construct of popular election. The PWM specifies the 

frequency distribution of nucleotides at each position of the binding sites and is considered to be related 

to the energy of binding of the transcription factor to the DNA. TFBSs can be determined as the most 

over-represented motif in a given set of DNA sequences [3, 4]. Discovery of the motifs in the DNA 

sequence is high practical importance in the study of gene regulation. The motif finding problem is to 

find a PWM representing binding sites of an unknown transcription factor, ab initio from sequence data. 

The PWM scores for specific motifs have been discovered to be beneficial as a measure of the motif 

strength, for example, PWMS for specific connect sites has been useful as a proxy of connecting 

performance in prokaryotes and eukaryotes. 

Bipartite motif is defined as an extension of one-block TFBS, that is, two conserved motifs separated 

by variable gaps (Figure 1). A couple of the bipartite motifs have been proposed in both prokaryotes 

and eukaryotes [3, 4]. Shultzaberger et al. [3] have proposed the bipartite model of ribosome binding 

sites composed of Shine-Dalgarno region and the initiation region in Escherichia coli [3]. In Bacillus 

subtilis, principal sigma factor in vegetative growth SigA binds to the bipartite motif separated by the 

variable gaps, TGACA<spacer>TATAAT [5-7]. Baichoo and Helmann [8] have determined the bipartite 

motif, TGATAAT<spacer>ATTATCA, of ferric uptake repressor Fur [8, 9]. It has been reported that 

global regulator AbrB could recognize the bipartite motif [10-12]. As the case of eukaryotes, the 

bipartite motifs of yeast TFs, e.g., ABF1 and GAL4, are accepted [13, 14]. It has been reported that 
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around 30% of the promoter sequences contain the bipartite motifs with the constant gaps in human 

[15]. The conservation score for the motif M4 (ACTAYRNNNCCCR) was much higher than those for 

most known motifs. Similarly, the TFs CAR and RXR bind to the bipartite motifs in human [4]. Thus, 

it is conceivable that TFs work in a cooperative manner and recognize the bipartite motifs to regulate 

the gene expressions [16, 17]. A few tools, e.g., BioProspector [18], BiPad [19, 20] and AMD [21], are 

available for ab initio prediction of the bipartite motif for a set of DNA sequences, while many tools 

have been developed for prediction of the one-block TFBS, e.g., Consensus [22], Gibbs Sampler [23], 

and MEME [24]. BioProspector based on Gibbs sampling [18] and BiPad based on entropy 

minimization method [19, 20] enable to identify the bipartite motifs with the variable gaps. AMD 

identifies the bipartite motifs with the constant gaps by comparing the target sequences with the 

background sequences regardless of whether the motifs are long or short, gapped or contiguous [21]. 

One question, if the independence hypothesis is enough, is nearest-neighbor dinucleotides good for 

TFBSs detect? Probably, the query is made intricate by the result of sequence on DNA structure and 

bendability, which expects that the DNA-protein contact interactions are not the just factor at play. 

Position weight matrix (PWM) is commonly used for finding and representing of TFBSs [25]. PWMs 

are based on the assumption that each nucleotide independently participates in the TF-DNA interaction. 

However, it has long been known that interactions between neighboring DNA bases affect the TF-DNA 

interactions. For example, a single amino acid interacts with multiple bases simultaneously [26]. Zhao 

et al. [27] clearly show the existence of dinucleotide dependency in TFs [27, 28]. Indeed, PWMs 

perform well in modeling TFBS properties but are insufficient for considering position 

interdependencies. The interdependencies exist between neighboring positions of the binding sites of 

CRP and LexA in E. coli [29]. It has been reported that the method based on dinucleotide weight matrix 

(DWM) outperformed that based on PWM for yeast datasets [30]. In fact, Weirauch et al. [28] observed 

the improvement of performance of motif detection by incorporating the dinucleotide interactions [28]. 

Although BioProspector and BiPad predict the bipartite motifs, those are based on the assumption of 

independencies of each bases, i.e., PWM. 
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Figure 1. Bipartite patterns on double DNA motifs. A bipartite module is an independent functional unit on 

the upstream/downstream of a regulated gene and recognized. I assume that the two subunits cooperatively 

bind to the module with constrained spacers. A bipartite pattern can be expressed as lL<D>lR. D is the gap 

range as defined in the text. 

 

Here I present a novel bipartite motif detection tool, DIpartite (bipartite motif detection tool based on 

dinucleotide weight matrix). DIpartite predicts the bipartite motif by taking into account 

interdependencies of neighboring positions, i.e., DWM. I performed the comparison of DIpartite by 

using test datasets of prokaryote and eukaryote, i.e., CRP in E. coli, sigma factors in B. subtilis and the 

promoter motifs in human. 

 

2. Implementation 

2.1 A novel method for predicting bipartite motifs by incorporating base-pair 

dependencies 

DIpartite identifies the bipartite motifs with variable gaps based on PWM or DWM from the input 

sequences (Figure 2). Since it is reported that the bipartite motif represents well by Shannon’s entropy 

[3, 19, 20], I set the objective function to minimize the entropy. Similar to BiPad [19, 20], the algorithm 

of DIpartite is based on Gibbs sampling and the minimization of information content (IC) by a greedy 

algorithm. DIpartite adopts the Gibbs sampling strategy which initializes the motif positions for all 

input sequences at random, and iteratively improves the entropy of PWM or DWM by updating the 

motif position.    

 

Motifs Detection 

Real Motifs Left Motif(l
L
) Right Motif(l

R
) 

Gap(d) 
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Figure 2. Flowchart of DIpartite. DIpartite proposes the bipartite motif based on PWM or DWM. Each 

iteration starts from the randomly generated positions. The convergence of each iteration is judged by the 

differences of the entropy, i.e., 𝜀 . I set 𝜀 = 10−8 . 𝛦𝑖  and 𝛦𝑖−1  correspond to the 𝑖 th and 𝑖 − 1 th entropy, 

respectively. 
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2.2 Objective function 

Input data have N sequences for prediction of the bipartite motifs separated by gaps. Similar to BiPad 

[19, 20], the bipartite motifs are expressed as lL<d>lR, where lL and lR are the widths of left and right 

motifs, respectively, and d is gap length. I set the objective function to minimize Shannon’s entropy for 

PWM or DWM of the concatenated motif of the left and right motifs, in Equation 1: 

�̂�𝐿𝑅 = argmin𝑀𝐿𝑅
(𝐼𝐶𝑀𝐿𝑅

) (1) 

where MLR is the concatenated motif, and 𝐼C𝑀𝐿R
 is the entropy for the motif MLR. So that, 𝐼C𝑀𝐿R

 is given 

by: 

𝐼𝐶𝑀𝐿𝑅
= ∑ ∑ −𝑝𝑖(𝑥) × log {

𝑝𝑖(𝑥)

𝑏(𝑥)
}

𝑥∈𝑋

𝑗

𝑖

, 𝑖 = {
1, PWM
2, DWM

, 𝑋 = {
{A,C,G,T},  PWM
{AA,AC,⋯,TT}, DWM

 (2) 

where 𝑝𝑖(𝑥) and 𝑏(𝑥) are the composition of x in the motif sites and the background sites (not motif 

sites), respectively. 𝑥 is one of the mononucleotides, or dinucleotides for PWM, or DWM, respectively. 

𝑗 is the sum of the lengths of the left and right motifs. 𝑝𝑖(𝑥) and 𝑏(𝑥) are given by: 

𝑝𝑖(𝑥) =
𝑓𝑖(𝑥) + 𝛽 𝑘⁄

𝑁 + 𝛽
, 𝑘 = {

4, PWM
16, DWM

(3)  

𝑏(𝑥) =
𝑔(𝑥) + 𝛽 𝑘⁄

𝑛 + 𝛽
(4) 

where N is a total of input sequences. 𝑓𝑖(𝑥)  is the frequency of x at the position i, i.e., the 

mononucleotide at position 𝑖  for PWM, or the dinucleotide at position 𝑖 − 1 , 𝑖  for DWM. k is the 

number of the patterns, i.e., 𝑘 = 4 for PWM or 𝑘 = 16 for DWM. n is a total of the mononucleotides 

for PWM or the dinucleotides of the background for DWM, which do not locate the motif sites. β is the 

total pseudo-count. 𝑔(𝑥) is the frequency of x in the background sites. I set β=1.  

2.3 Overview of the algorithm 

The algorithm of DIpartite works through an iterative process of calculating entropy. DIpartite was 

implemented in C++. Fasta and text formats are allowed as input files. Users can specify the lengths of 

the left and right motifs, the gap length, and PWM for the mononucleotide or DWM for the dinucleotide. 

The software works for OOPS (one occurrence per sequence) or ZOOPS (Zero or one bipartite 

occurrence per sequence). 
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2.4 Expectation-Maximization expressions for the ZOOPS model 

The EM algorithm is used in the context of motif discovery as follows: The initial values for the motif 

model (that is, the initial PWM parameters) are estimated. In the OOPS and ZOOPS models, this 

estimation is often carried out by choosing a motif start point at random for each input sequence and 

then counting the numbers of each nucleotide at each motif position, creating a consensus model from 

these start points. The ZOOPS model supposes that each input sequence either includes identically one 

appearance of the motif or no appearance of the motif. The ZOOPS model description for this by 

introducing an additional index variable which indicates whether a specific input sequence includes a 

motif appearance or not [36-38] .The EM Q function is the expected value of the complete data (that is, 

{X, Z}) log-likelihood function. The EM algorithm depend on the Q function: the E-step of the 

algorithm requires calculating the parameters of the Q function. The novel index variable Qi is specific 

as Qi =∑ Zi, j𝑀
𝑗=1 . That is, Qi = 1 if sequence i includes a motif appearance and 0 otherwise. The OOPS 

model then becomes a specific instance of the ZOOPS model where all input sequences include a motif 

appearance. If sequence i includes a motif appearance, the conditional probability of i given the hidden 

variables is the same as in the OOPS model: 

 

𝑝(𝑋𝑖|𝑍𝑖,𝑗 = 1, 𝜃) ≜ ∏ ∏ 𝜃0,𝑘

𝐼(𝑋𝑖,𝑙=𝑘)

𝑘∈𝐿𝑙∈∆𝑖,𝑗

   ∏ ∏ 𝜃0,𝑘

𝐼(𝑋𝑖,𝑗+𝑚−1=𝑘)

𝑘∈𝐿

𝑊

𝑚=1

.   (5)  

 

As in the OOPS model, the equation (6) is the outcome of probabilities over the W positions in the motif 

and the remaining background positions. The conditional probability for a sequence which does not 

include a motif, the incidence is as well as specific as the product of probabilities, this time using 

background probabilities for all positions within sequence i: 

 

𝑝(𝑋𝑖|𝑄𝑖 = 0, 𝜃) ≜ ∏ ∏ 𝜃0,𝑘

𝐼(𝑋𝑖,𝑙=𝑘)

𝑘∈𝐿

𝐿𝑖

𝑙=1

 ,    (6) 
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the Li is the length of the input sequence i. As in the OOPS model, the same distribution of beginning 

sites within a sequence is supposed. If the previous probability of a sequence including a motif 

appearance is specific as γ, it follows from the hypothesis of equal input sequence length that the 

previous probability of any location being a motif start point is: 

 

𝜆 ≜ 𝑝(𝑍𝑖,𝑗 = 1|𝜃) =
𝛾

𝑀
 .      (7) 

 

For ease, the model parameters are now collected and define as φ = (θ, γ). It is noted that the model 

parameters now contain the previous probability of a sequence including a motif appearance, also to the 

motif and background models from the OOPS model. The full data common probability can be written 

as: 

𝑝(X, Z|ϕ) ≜ ∏ 𝑝(𝑋𝑖, 𝑍𝑖|ϕ)      (8)

N

𝑖=1

 

𝑝(X, Z|ϕ) ≜ ∏ 𝑝(𝑋𝑖, 𝑍𝑖|ϕ) 𝑝(𝑍𝑖|ϕ)

N

𝑖=1

 

𝑝(X, Z|ϕ) ≜ [(∏ 𝑝(𝑋𝑖 , 𝑍𝑖,𝑗 = 1, 𝜃)
𝑍𝑖,𝑗

M

𝑖=1

) ×  𝑝(𝑋𝑖|𝑄𝑖 = 0, 𝜃)(1−𝑄𝑖)  × 𝜆𝑄𝑖  × (1 − 𝛾)(1−𝑄𝑖)].  (9) 

 

 

As in the OOPS model, (9) takes benefit of the fact that all Zi,j in a sequence will be 0 apart from one. 

The first part in (9) is the expression for a sequence, including a motif appearance (6). The second part 

is the expression for a sequence without a motif appearance (7). Just one of these parts will be applied, 

depending on the amount of Q for sequence i. If Qi = 0, then all Zi, j will be 0, canceling the first part 

and applying the second. If Qi = 1, then Zi, j = 1 for some j and the first part is applied while the second 

part is canceled. This canceling tasks similarly for the previous parts. Note that the previous term for 

locations in a sequence was 1/M before as any sequence had a motif appearance. Now the just γ of 

sequences include a motif, the previous on locations within a sequence is 𝛾/M = λ (and the previous 
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part for a sequence not including a motif is 1−𝛾). The log-likelihood function for all data can be written: 

 

𝑝(X, Z|ϕ) ≜ ∑ (∑ 𝑍𝑖,𝑗 ln 𝑝(𝑋𝑖|𝑍𝑖,𝑗 = 1, 𝜃)

𝑀

𝑗=1

)

𝑁

𝑖=0

 

+ ∑(1 − 𝑄𝑖) ln 𝑝(𝑋𝑖|𝑄𝑖 = 0, 𝜃)

𝑁

𝑖=1

 

+ ∑ 𝑄𝑖 ln 𝜆 + 

𝑁

𝑖=1

∑(1 − 𝑄𝑖) ln ( 1 −  𝛾 )

𝑁

𝑖=1

         (10) 

 

the 𝑍𝑖,𝑗
(𝑡)

 is specific as the predicted probability of a motif beginning point at location j in sequence i: 

𝑍𝑖,𝑗
(𝑡)

 ≜  ΕZ|X,ϕ(𝑡)  [𝑍𝑖,𝑗] 

= 1 . 𝑝( 𝑍𝑖,𝑗 = 1 |𝑋𝑖, ϕ(𝑡) ) + 0 . 𝑝( 𝑍𝑖,𝑗 = 0 |𝑋𝑖, ϕ(𝑡) )  

=  𝑝( 𝑍𝑖,𝑗 = 1 |𝑋𝑖, ϕ(𝑡) ) ,          (11) 

as Qi is related on Zi,j, 𝑄𝑖
(𝑡)

  is specific as the expected probability of sequence i including a motif 

appearance (this decreases to a sum of the appropriate 𝑍𝑖,𝑗
(𝑡)

values) : 

 

𝑄𝑖
(𝑡)

 ≜  𝔼Z|X,ϕ(𝑡)  [𝑄𝑖] 

𝑄𝑖
(𝑡)

=  ∑ 𝔼Z|X,ϕ(𝑡)  

𝑀

𝑗=1

[𝑍𝑖,𝑗] 

𝑄𝑖
(𝑡)

=  ∑ 𝑍𝑖,𝑗
(𝑡)

𝑀

𝑗=1

 .        (12) 

The Q function is the predicted amount of the log-likelihood function (10), concerning the conditional 

distribution of Z given X below the current evaluation of parameters θ (t): 

𝑄 (ϕ |ϕ(𝑡) =  𝔼
Z|X,ϕ

(𝑡)
  
[ln 𝑝 (𝑋, 𝑍 | ϕ)] 



10 

 

=  𝔼
Z|X,ϕ

(𝑡)
  

[∑ (∑ 𝑍𝑖,𝑗 ln 𝑝(𝑋𝑖|𝑍𝑖,𝑗 = 1, 𝜃)

𝑀

𝑗=1

) +  

𝑁

𝑖=0

] 

+ ∑(1 − 𝑄𝑖) ln 𝑝(𝑋𝑖|𝑄𝑖 = 0, 𝜃)

𝑁

𝑖=1

 

+ ∑ 𝑄𝑖 ln 𝜆 + 

𝑁

𝑖=1

∑(1 − 𝑄𝑖) ln ( 1 −  𝛾 )

𝑁

𝑖=1

   

= ∑ (∑ 𝔼
Z|X,ϕ

(𝑡)
  
[𝑍𝑖,𝑗] ln 𝑝(𝑋𝑖|𝑍𝑖,𝑗 = 1, 𝜃)

𝑀

𝑗=1

)

𝑁

𝑖=0

 

+ ∑(1 − 𝔼
Z|X,ϕ

(𝑡)
  
[𝑄𝑖]) ln 𝑝(𝑋𝑖|𝑄𝑖 = 0, 𝜃)

𝑁

𝑖=1

 

+ ∑ 𝔼
Z|X,ϕ

(𝑡)
  
[𝑄𝑖] ln 𝜆

𝑁

𝑖=1

 

+ ∑(1 − 𝔼
Z|X,ϕ

(𝑡)
  
[𝑄𝑖]) ln(1 −  γ)

𝑁

𝑖=1

 

=  ∑ (∑ 𝑍𝑖,𝑗
(𝑡)

ln 𝑝(𝑋𝑖|𝑍𝑖,𝑗 = 1, 𝜃)

𝑀

𝑗=1

)  

𝑁

𝑖=0

 

 

+ ∑(1 − 𝑄𝑖
(𝑡)

) ln 𝑝(𝑋𝑖|𝑄𝑖 = 0, 𝜃)

𝑁

𝑖=1

 

+ ∑ 𝑄𝑖
(𝑡)

 ln 𝜆 + 

𝑁

𝑖=1

 ∑(1 − 𝑄𝑖
(𝑡)

) ln (1 −  γ)           (13)

𝑁

𝑖=1

 

where (11) and (12) have been substituted as necessary. This is equal to the phrase given by Bailey and 

Elkan and by Keles, et al (36-42). 
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2.5 E-step 

As in the OOPS model, the E-step need the assessment of the probability of the hidden data p(Z|X,θ), 

that is, 𝑍𝑖,𝑗
(𝑡)

 for each position. Then, Bayes’ theorem is applied to specify 𝑍𝑖,𝑗
(𝑡)

 in parts of (6) and (7): 

 

𝑍𝑖,𝑗
(𝑡)

=  
𝑝(𝑋𝑖|𝑍𝑖,𝑗 = 1, 𝜃(𝑡)) 𝜆(𝑡)

𝑝(𝑋𝑖|𝑄𝑖 = 0, 𝜃(𝑡)) (1 −  𝛾(𝑡)) + ∑ 𝑝(𝑋𝑖|𝑍𝑖,𝑗 = 1, 𝜃(𝑡)) 𝜆(𝑡)𝑀
𝑗=1  

           (14) 

For all 𝑖 ∈ {1, … , 𝑁} and 𝑗 ∈ {1, … , 𝑀}. 

 

2.6 Generalizing ZOOPS expressions for Expectation-Maximization 

The generalization of the ZOOPS sequence model explanation applied in deterministic EM for motif 

discovery that removes the need that input sequences should be of equal size. In particular, removing 

the limitation of equal input sequence size is basic in successfully implementing the cut heuristic that 

allows detection of multiple appearances of a motif within a single input sequence, a method that fulfills 

a similar task as the TCM model in MEME. Removing the assumption that completely input sequences 

are the identical size increases flexibility at the expense of several increases mathematics; however, 

removing this hypothesis does not fundamentally alter the computation necessary in the E-step for the 

ZOOPS structure. 

The phrase for the conditional probability of a sequence with and without a motif incidence (6 and 7) 

stay similar as in the ZOOPS model. The γ is certain as the previous probability of a sequence including 

a motif appearance. The previous determination for the previous probability of a location being a motif 

start location (λ) becomes problematic in the total setting expand here. In the ungeneralized ZOOPS 

model, λ could be used as a mathematical convenience as a previous for whole sequences; now 

assuming that input sequences need not have equal size means that the previous model on any sequence 

will be different and a single previous is unfit. The easy solution is to replacement Li −W +1 = M,  

so: 

𝜆 =  
𝛾

𝐿𝑖 − 𝑊 + 1
      (15) 
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The dependence of the previous step on the size of the input sequence Li is now clear,  that if Li is 

similar for each input sequence and M is set to Li −W + 1, this is equal to the previous determination. 

The determination of Qi is improved in order to account for the possibility of different sequence 

size: 𝑄𝑖 ≜  ∑ 𝑍𝑖,𝑗
𝐿𝑖−𝑊+1
𝑗=1  . As pervious step, Qi = 1 if sequence i includes a motif appearance and 0 

differently. Following the novel determination of λ, the generalized phase for the all data joint 

possibility becomes: 

 

𝑝(X, Z|ϕ) ≜ ∏ 𝑝(𝑋𝑖, 𝑍𝑖|ϕ)

N

𝑖=1

 

𝑝(X, Z|ϕ) ≜ ∏ 𝑝(𝑋𝑖, 𝑍𝑖|ϕ) 𝑝(𝑍𝑖|ϕ)

N

𝑖=1

 

𝑝(X, Z|ϕ) ≜ [(∏ 𝑝(𝑋𝑖, 𝑍𝑖,𝑗 = 1, 𝜃)
𝑍𝑖,𝑗

M

𝑖=1

)  ×  𝑝(𝑋𝑖|𝑄𝑖 = 0, 𝜃)(1−𝑄𝑖)  ×  ( 
𝛾

𝐿𝑖 − 𝑊 + 1
)𝑄𝑖  

×  (1 − 𝛾)(1−𝑄𝑖)].              (16) 

 

The log-likelihood function for all data is, so: 

𝑙𝑛 𝑝(X, Z|ϕ) ≜ ∑ ( ∑ 𝑍𝑖,𝑗 ln 𝑝(𝑋𝑖|𝑍𝑖,𝑗 = 1, 𝜃)

𝐿𝑖−𝑊+1

𝑗=1

)

𝑁

𝑖=0

 

+ ∑(1 − 𝑄𝑖) ln 𝑝(𝑋𝑖|𝑄𝑖 = 0, 𝜃)

𝑁

𝑖=1

 

+ ∑ 𝑄𝑖 ln( 
𝛾

𝐿𝑖 − 𝑊 + 1
) + 

𝑁

𝑖=1

          

+ ∑(1 − 𝑄𝑖) ln ( 1 −  𝛾 )

𝑁

𝑖=1

       (17) 
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As the determination of 𝑍𝑖,𝑗
(𝑡)

 remains the same as pervious step, the determination of 𝑄𝑖
(𝑡)

 is updated: 

𝑄𝑖
(𝑡)

 ≜  𝔼Z|X,ϕ(𝑡)  [𝑄𝑖] 

𝑄𝑖
(𝑡)

=  ∑ 𝔼Z|X,ϕ(𝑡)  

𝐿𝑖−𝑊+1

𝑗=1

[𝑍𝑖,𝑗] 

𝑄𝑖
(𝑡)

=  ∑ 𝑍𝑖,𝑗
(𝑡)

𝐿𝑖−𝑊+1

𝑗=1

 .        (18) 

Finally, the Q function is generalized, using the updated determination above: 

𝑄 (ϕ |ϕ(𝑡) =  𝔼
Z|X,ϕ

(𝑡)
  
[ln 𝑝 (𝑋, 𝑍 | ϕ)] 

=  𝔼
Z|X,ϕ

(𝑡)
  

[∑ ( ∑ 𝑍𝑖,𝑗 ln 𝑝(𝑋𝑖|𝑍𝑖,𝑗 = 1, 𝜃)

𝐿𝑖−𝑊+1

𝑗=1

) +  

𝑁

𝑖=0

] 

+ ∑(1 − 𝑄𝑖) ln 𝑝(𝑋𝑖|𝑄𝑖 = 0, 𝜃)

𝑁

𝑖=1

 

+ ∑ 𝑄𝑖 ln( 
𝛾

𝐿𝑖 − 𝑊 + 1
) +  

𝑁

𝑖=1

∑(1 − 𝑄𝑖) ln ( 1 −  𝛾 )

𝑁

𝑖=1

   

= ∑ ( ∑ 𝔼
Z|X,ϕ

(𝑡)
  
[𝑍𝑖,𝑗] ln 𝑝(𝑋𝑖|𝑍𝑖,𝑗 = 1, 𝜃)

𝐿𝑖−𝑊+1

𝑗=1

)

𝑁

𝑖=0

 

+ ∑(1 − 𝔼
Z|X,ϕ

(𝑡)
  
[𝑄𝑖]) ln 𝑝(𝑋𝑖|𝑄𝑖 = 0, 𝜃)

𝑁

𝑖=1

 

+ ∑ 𝔼
Z|X,ϕ

(𝑡)
  
[𝑄𝑖] ln( 

𝛾

𝐿𝑖 − 𝑊 + 1
)

𝑁

𝑖=1

 

+ ∑(1 − 𝔼
Z|X,ϕ

(𝑡)
  
[𝑄𝑖]) ln(1 −  γ)

𝑁

𝑖=1

 

=  ∑ ( ∑ 𝑍𝑖,𝑗
(𝑡)

 ln 𝑝(𝑋𝑖|𝑍𝑖,𝑗 = 1, 𝜃)

𝐿𝑖−𝑊+1

𝑗=1

)  

𝑁

𝑖=0
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+ ∑(1 − 𝑄𝑖
(𝑡)

) ln 𝑝(𝑋𝑖|𝑄𝑖 = 0, 𝜃)

𝑁

𝑖=1

 

+ ∑ 𝑄𝑖
(𝑡)

 ln( 
𝛾

𝐿𝑖 − 𝑊 + 1
) + 

𝑁

𝑖=1

 ∑(1 − 𝑄𝑖
(𝑡)

) ln (1 −  γ)           (19)

𝑁

𝑖=1

 

 

 

 

2.7 Generalized E-Step 

The new determination of λ is applied in the generalization of the E-step. The probability of the hidden 

data p (Z|X, θ) is evaluated for any location: 

 

𝑍𝑖,𝑗
(𝑡)

=  
𝑝(𝑋𝑖|𝑍𝑖,𝑗 = 1, 𝜃(𝑡)) ( 

𝛾
𝐿𝑖 − 𝑊 + 1)

𝑝(𝑋𝑖|𝑄𝑖 = 0, 𝜃(𝑡)) (1 −  𝛾(𝑡)) +  ∑ 𝑝(𝑋𝑖|𝑍𝑖,𝑗 = 1, 𝜃(𝑡)) ( 
𝛾

𝐿𝑖 − 𝑊 + 1)𝑀
𝑗=1  

     (20) 
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2.8 Performance evaluation 

The nucleotide-level correlation coefficient (nCC) was used to evaluate the performance of each tools 

for the same input data [31] (Figure 3). nCC is given by: 

𝑛𝐶𝐶 =
𝑛𝑇𝑃 × 𝑛𝑇𝑁 − 𝑛𝐹𝑁 × 𝑛𝐹𝑃

√(𝑛𝑇𝑃 + 𝑛𝐹𝑁)(𝑛𝑇𝑁 + 𝑛𝐹𝑃)(𝑛𝑇𝑃 + 𝑛𝐹𝑃)(𝑛𝑇𝑁 + 𝑛𝐹𝑁)
           (21) 

TP TP

TN TN TN

FN FN

FP FP

TP is the number of nucleotides in a sequence that are correctly predicted by a program as belonging to a 
module
TN is the number of nucleotides correctly identified as background
FN is the number of true module nucleotides incorrectly classified as background
FP is the number of background nucleotides incorrectly classified as belonging to a module.

Predicted by DIpartite

Real module Motif

 

Figure 3. The similarity score of nucleotide-level correction coefficient (nCC) for motifs measurements of 

prediction accuracy. 

 

where nTP is the number of nucleotide positions in both known sites and predicted sites, nFN is the 

number of nucleotide positions in known sites but not in predicted sites, nFP is the number of nucleotide 

positions not in known sites but in predicted sites, and nTN is the number of nucleotide positions in 

neither known sites nor predicted sites. I adopted the combined nCC by adding nTP, nFN, nFP, and 

nTN over the data sets. 
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3. Materials and Methods 

3.1 CRP 

CRP binding sites in E. coli were retrieved from Regulon DB as “TF binding sites” (Release: 9.4 Date: 

05-08-2017) [32]. For example, the motif sequences of two ECK125158203 entries were identical 

although the transcription unit was different, i.e., fumA and fumAC. Out of 374 sequences of CRP 

binding sites, 323 unique sequences ranging from 36 bp to 42bp were filtered and used for the 

performance comparison. The binding site lengths consisted of 16 bp (11 binding sites), 17 bp (one 

binding site), 20 bp (one binding site), 22 bp (308 binding sites), and 23 bp (two binding sites). 

 

3.2 Promoter motifs in human 

Xie et al. [15] proposed the 1,460 motifs in human. I sought the motifs with the gap lengths greater than 

or equal to the lengths of left and right motifs. Among of them, I selected 46 motifs with more than 4-

nt gaps as the test datasets of two-block motifs. The promoter sequences around the positions of each 

motifs (500 bp upstream to 500 bp downstream) were retrieved as the target sets.  

 

3.3 Sigma factor  

As the dataset of bipartite motifs with variable gap lengths, the sigma factor dataset in B. subtilis from 

DBTBS [7] was used. The nine of the bipartite sigma transcription factors in B. subtilis were used. The 

minimum and maximum gap lengths of sigma factors were determined based on all identified binding 

sites: σA (344 sequences ranging from 38 bp to 93 bp, 6<[11,23]>6), σB (64 sequences ranging from 39 

bp to 64 bp, 6<[12,18]>6), σD (30 sequences ranging from 44 bp to 57 bp, 4<[12,18]>8), σE (70 

sequences ranging from 41 bp to 58 bp, 7<[12,18]>8), σF (25 sequences ranging from 41 bp to 71 bp, 

5<[13,19]>10), σG (55 sequences ranging from 40 bp to 76 bp, 5<[15,20]>7), σH (25 sequences ranging 

from 41 bp to 60 bp, 7<[9,18]>5), σK (53 sequences ranging from 38 bp to 85 bp, 4<[9,17]>9), and σW 

(34 sequences ranging from 38 bp to 53 bp, 10<[13,17]>6).  
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3.4 Other programs used for comparison 

Four popular tools, namely MEME (ver. 5.0.3), BioProspector (release 2), AMD, and BiPad (ver. 2), 

were compared with DIpartite. 

For the CRP dataset, MEME was executed with the options “-mod oops”, “-dna”, “-w 22”, “-minw 22”, 

and “-maxw 22”. BioProspector was executed with the options “-n 50”, and “-n 3”. AMD was executed 

with the options “-MI” and “-T 1”. BiPad was executed with the options “-l 22”, “-r 0”, “-a 0”, “-b 0”, 

“-i”, and “-y 500”. AMD was executed with the option “-T 2” for two sigma datasets, i.e., σE and σF. I 

used the background sequences for AMD: the 200 bp upstream regions of 4,314 genes in E. coli K-12 

(NC_000913.3); the promoter sequences of all human genes (hg17: upstream1000.fa.gz); the 200 bp 

upstream regions of 4,448 genes in B. subtilis 168 (NC_000964.3). 

 

 

4. Results 

4.1 Interdependencies of neighboring DNA bases in CRP 

CRP is one of the seven main transcription factors that influences transcriptional networks in E. coli 

[33]. It has been shown that there are interdependencies among neighboring DNA bases in CRP binding 

sites [29]. More than 300 binding sites for CRP have been registered in Regulon DB as “TF binding 

sites” (Release: 9.4) [32]. The CRP binding sites are separated by a 6-nt gap (Figure 4A). I measured 

the interdependency of CRP using the mutual information proposed by Salama and Stekel [29]. Strong 

correlations between neighboring bases were observed, for example, among positions 1, 2, and 6–8, 

and among positions 16–19 (Figure 4B). In addition, I observed the higher mutual information between 

the distant positions in 7, 16 and 8, 17 among the palindromic positions, followed by the position in 6 

and 19. This suggests that the palindromic features of CRP binding sites would be incomplete. 
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Figure 4. Sequence logo and heat map of CRP. Out of 374 CRP motifs, 308 sequences with the 22 bp motif 

were used. (A) Sequence logo for CRP using 308 sequences [33]. (B) Heat map of CRP. 

 

4.2 Performance for CRP dataset 

I evaluated the performance of DIpartite by using the TF binding sites of CRP. Out of 374 sequences of 

CRP binding sites, 323 unique sequences were used as the test dataset. Jensen and Liu (2004) analyzed 

the CRP binding sites as a bipartite motif and proposed the consensus sequence, tGTcA<6,8>CAcattt 

[19, 35]. I conducted motif prediction by using MEME (ver. 5.0.2), BioProspector (release 2), AMD, 
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BiPad (ver. 2), and DIpartite for these 323 sequences of CRP binding sites (Table 1 and Figure 5). 

DIpartite with the “PWM” or “DWM” options is referred to as DIpartite PWM or DIpartite DWM, 

respectively. Although DIpartite PWM performed best among the tested software for the one-block 

model, namely, the 22-bp motif, the performance was comparable among MEME, BioProspector, BiPad, 

and DIpartite. AMD exhibited a combined nCC value of less than 0.9. I assessed the performance of 

DIpartite by randomly sampling 100 datasets with 100 sequences from the CRP binding sites. DIpartite 

DWM slightly outperformed other tested tools for 100 datasets (Table 2 and Figures 6).  

Table 1. Peformance comparison for the 323 sequences of CRP binding sites.  

Colored cells indicates the highest performance among tested software. 

 

 

Figure 5. The performance comparison for 323 CRP sequences. The combined nCC values were plotted. (A) 

Summary of the results for searching the one-block motif, i.e., the 22 bp motif, by MEME, BioProspector, 

AMD, BiPad, DIpartite PWM and DIpartite DWM. (B) Summary of the results for searching the bipartite 

motifs, i.e., 6<[10]>6, 6<[8]>8, and 8<[6]>8, by BioProspector, BiPad, DIpartite PWM and  DWM.  

sites 
Search 
Pattern 

MEME BioProspector 
Dipartite 
(PWM) 

Dipartite 
(DWM) 

BiPad AMD 

323 

22 0.852 0.924 0.936 0.934 0.928 0.883 

6<[10]>6 

  

0.775 0.837 0.839 0.742 

  

6<[8]>8 0.857 0.9 0.899 0.891 

8<[6]>8 0.909 0.932 0.932 0.925 
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Table 2. Peformance comparison for randomly sampling 100 datasets with 100 sequences from the CRP 

binding sites.  

#of 
sites 

Search 
Pattern 

MEME BioProspector 
DIpartite 
(PWM) 

DIpartite 
(DWM) 

BiPad 
 

AMD 

323 

22 0.8153 0.8687 0.8976 0.8993 0.8887 0.8393 

6<[10]>6 

  

0.7782 0.8266 0.8049 0.8048 

  

6<[8]>8 0.8156 0.8724 0.8532 0.8594 

8<[6]>8 0.9061 0.9274 0.9205 0.9205 

Colored cells indicates the highest performance among tested software. 

 

 

 

Figure 6. The performance comparison for 100 CRP datasets. 100 datasets consisting of 100 sequences were 

generated by randomly sampling the CRP datasets. (A) Summary of the results for searching the one-block 

motif, i.e., the 22 bp. (B) Summary of the results for searching the bipartite motifs, i.e., 6<[10]>6, 6<[8]>8, 

and 8<[6]>8.  
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For the bipartite motif, I compared BioProspector, BiPad, DIpartite PWM, and DIpartite DWM. The 

performance of searching the bipartite motifs was lower than that of searching the one-block model, 

i.e., 0.936 by DIpartite PWM. For all three types of the bipartite motifs, DIpartite PWM and DIpartite 

DWM were superior to BioProspector and BiPad. DIpartite DWM was superior to DIpartite PWM in 

the case of 6<[10]>6. I conducted the performance comparison by using 100 datasets with 100 

sequences. DIpartite PWM outperformed other tested tools. Although the implementation of DIpartite 

PWM is similar to that of BiPad, DIpartite PWM slightly outperformed BiPad. This might be because 

DIpartite takes into consideration the background sites (not motif sites) unlike BiPad, that is, 𝑏(𝑥) in 

Equation (2). Taken together, DIpartite successfully detected the binding sites of the one-block or 

bipartite motifs. 

 

 

In addition, I tested the running time by using the CRP dataset. Although BioProspector was the fastest 

software among tested software, DIpartite was comparable with BiPad (Table 3 and Figure7).  

 

Table 3. Running times. The datasets consisting of 20, 50, 100, 200, 500 and 1,000 sequences were generated 

by randomly sampling the CRP sequences. 

 DIpartite 
PWM 

DIpartite 
DWM 

BiPad BioProspector 

20 seq 3.686 9.789 19.022 1.237 

50 seq 14.279 46.307 66.682 2.937 

100 seq 47.752 188.995 175.036 5.474 

200 seq 169.444 607.807 388.853 10.288 

500 seq 928.439 3165.046 1093.804 26.103 

1000 seq 3252.165 10888.849 2502.075 52.446 

Run time is indicated as second. 

 



22 

 

 

Figure 7. Running times. The datasets consisting of 20, 50, 100, 200, 500 and 1,000 sequences were 

generated by randomly sampling the CRP sequences. X-axis and Y-axis correspond to the number of 

sequences, and the running time [s] on a log scale. BioProspector, BiPad, DIpartite PWM (as PWM), and 

DIpartite DWM (as DMW) were tested. 
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4.3 Performance for human dataset 

I selected the human promoter sequences as the bipartite motifs with the constant gaps in eukaryote 

[15]. Of 1,460 motifs, 46 motifs with the more than 4-nt gaps were filtered. The promoter sequences 

around the positions of each motifs (500 bp upstream to 500 bp downstream) were retrieved as the target 

sets. Since AMD did not detect any motifs for six motifs, i.e., RGGANNNNNAKTCC (54 sequences), 

RKCTGNNNNNRMTTA (21 sequences), TTGRNNNNNNTCCAR (21 sequences), 

YMATCNNNNNGCGM (50 sequences), YTGGANNNNNNYCAA (26 sequences), and 

YTTGRNNNNNNGCCNR (50 sequences), these were excluded, and 40 datasets were evaluated for 

the performance of DIpartite. I assessed the performance for 40 motif datasets (Figure 8A). DIpartite 

DWM exhibited the highest performance (50%), followed by DIpartite PWM (48%), BioProspector 

(38%), MEME (20%), BiPad (8%), and AMD (3%) (Table 4 and Figure 9), indicating that DIpartite 

performs equivalently to or better than the other tools for detecting DIpartite motifs. In addition to the 

result of CRP 6<[10]>6, DIpartite DWM outperformed other tested tools, suggesting that DWM might 

improve the bipartite motif detection. Apparently, MEME and BiPad exhibited the larger interquartile 

range (Figure 8B), indicating that MEME and BiPad outperformed for the particular motifs but 

underperformed for the other motifs.  

 

 

 

 

 

 

 

 

 

 

Figure 8. The performance comparison for human promoter datasets. (A) Summary of the results of all 40 

human promoter datasets. (B) Boxplots of the nCC values for each 40 human promoter datasets.  



24 

 

Table 4. The performance comparison for 40 human data (colored cells indicates the highest performance). 

 
#of Site AMD BioProspector MEME 

DIpartite-
PWM 

DIpartite-
DWM 

BiPad 

AATNNNNNNCAGAYR 11 -0.0182 1 -0.015 1 1 -0.015 

AATNNNNNNCAGCNG 19 0.8043 1 0.9465 1 1 0.0277 

AWCTTNNNNNNGGG 56 0.5797 1 0.9456 1 -0.014 -0.014 

CCCNNNNNNAAGWT 71 0.3603 0.8857 0.8714 0.8571 0.6276 -0.014 

CGCNNNNNATTGK 47 0.6814 0.8226 1 1 1 0.0035 

CGCNNNNNNATGAY 35 0.6949 0.942 0.942 0.8737 0.8468 -0.014 

CNGCTGNNNNNNATT 23 0.8043 1 1 1 1 -0.015 

CRTCANNNNNNNGCGMC 44 0.8564 0.9306 0.9537 0.9184 0.9768 0.0591 

GCCNNNNNNNATTRK 45 0.7677 0.9538 -0.0104 0.9538 0.9538 -0.0134 

GCGCNNNNNNATGNM 31 0.676 0.9017 -0.015 -0.015 0.9345 -0.015 

GCGNNNNNTTTRA 57 0.8472 0.9644 0.9644 0.9822 0.9822 -0.0061 

GGAMTNNNNNTCCY 89 0.5891 0.8746 0.7981 0.8974 0.886 -0.014 

GGCNNNNNKCCAR 252 0.8236 0.3259 -0.0095 0.9143 0.9143 0.9183 

GGCNNNNNNATTGK 55 0.839 0.9262 0.8656 -0.004 0.9078 0.0004 

GKCGCNNNNNNNTGAYG 36 0.8148 0.9435 0.9435 0.887 0.9717 0.8604 

GTCNNNNNRNCAAC 47 0.7077 0.9567 1 -0.014 1 -0.014 

GTTGNYNNNNNGAC 57 0.7261 0.9466 0.9644 0 0.0076 0.0393 

GTTNMNNNNNAAC 144 0.6169 0.9648 0.8143 -0.13 0.9226 -0.013 

GTTNNNNNKNAAC 151 0.5716 0.953 0.9597 -0.0047 0.9262 0.004 

KCGCNNNNNGATKR 37 0.7881 0.9725 0.8003 0.0388 1 0.6221 

KNCATNNNNNNGCGC 53 0.5714 0.6999 0.9042 0.9616 0.9425 -0.0035 

KYTGCYNNNNNRACA 33 0.7544 0.9938 0.963 0.9876 0.9938 0.0014 

MCAATNNNNNGCG 64 0.7711 0.8782 -0.013 0.0101 0.0076 0.0101 

MCAATNNNNNNGCC 38 -0.0165 1 0.9733 1 1 -0.014 

MYAATNNNNNNNGGC 77 0.7051 0.3945 0.0174 -0.0009 0.0016 0.0482 

RTCATNNNNNNGCG 49 0.7797 0.9172 0.9172 0.793 0.9379 -0.0021 

RYAAAKNNNNNNTTGW 44 0.9418 1 1 0.9148 1 1 

TAAKYNNNNNCAGMY 14 -0.0169 1 -0.015 0.797 0.9275 -0.015 

TCTGNNNNNTGTMR 35 0.516 0.9006 0.971 1 0.8737 0.8737 

TGGNNNNNNKCCAR 214 0.8969 -0.009 -0.0133 0.9194 0.344 0.9052 

TGTYNNNNNRGCARM 37 -0.0097 0.8628 0.8079 0.9451 0.9451 0.8902 

TTTNNNNNAACW 210 0.7976 -0.011 0.0024 0.8602 0.8602 0.8554 

TYAAANNNNNCGC 44 0.748 -0.007 0.8158 1 1 -0.013 

WCAANNNNNNMTTTRY 18 0.8052 1 1 1 0.9435 -0.016 

WGTTNNNNNAAA 226 0.7805 -0.006 -0.0011 0.8522 0.8522 0.8567 

YKACANNNNNCAGA 60 0.695 0.7078 0.8986 0.802 0.9831 -0.014 

YNGGCNNNNNNYCAAR 41 0.7066 -0.016 -0.016 0.9752 0.9024 -0.0036 

YRTCTGNNNNNNATT 23 0.5433 0.9117 -0.015 0.9558 0.9558 -0.015 

YTGGMNNNNNGCC 275 0.8724 0.0272 -0.013 0.8611 0.9424 0.9277 

YTGGMNNNNNNCCA 192 0.9502 0.9683 -0.14 0.9841 0.3556 0.9788 

Number of the highest performance 1 15 8 19 20 3 

Percentages of motifs with highest nCC 3% 38% 20% 48% 50% 8% 
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Figure 9. The proportion of  performance comparison for 40 human data, AMD, BioProspector, MEME, 

Dipartite PWM, Dipartite DWM, and BiPad. 
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4.4 Performance for sigma factor dataset 

I compared the performance of DIpartite with BioProspector, AMD and BiPad for the bipartite motifs 

with the variable gaps. I adopted the nine of the bipartite sigma transcription factors in B. subtilis, i.e., 

σA (344 sequences), σB (64 sequences), σD (30 sequences), σE (70 sequences), σF (25 sequences), σG (55 

sequences), σH (25 sequences), σK (53 sequences), and σW (34 sequences) from DBTBS [7] as the test 

datasets (Figure 10 and Table 5). DIpartite PWM performed better than BioProspector, BiPad, AMD 

and DIpartite DWM (Figure 10A) for six sigma factors other than σD, σE and σH. While the performance 

of DIpartite PWM was excellent for two sigma factors, i.e., σA and σF, that of DIpartite DWM was 

comparable in four sigma factors, i.e., σB, σG, σK, and σW. AMD exhibited the relatively lower nCC 

values for all nine datasets unlike as the results for the human promoter sequences, suggesting that the 

variable gap lengths could affect the performance of AMD because AMD has been developed for 

detecting the bipartite motifs with the constant gaps. AMD with the option “-T 1” did not detect any 

motifs for two sigma datasets, i.e., σE and σF (Figure 10B). 
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Figure 10. The performance comparison for B. subtilis datasets. (A) Summary of the results of all sigma 

datasets. (B) Summary of the results of each sigma datasets. σA, σB, σD, σE, σF, σG, σH, σK, and σW consist of 

344, 64, 30, 70, 25, 55, 25, 53, and 34 sequences, respectively. The asterisks indicate if DIpartite performed 

better than BioProspector, AMD, and BiPad. 
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Table 5. The performance comparison for B. subtilis datasets. The all sigma datasets parameter and result.  

Sigma 
Factors 

sites 
Search 
Pattern 

BioProspecto
r 

DIpartite 
(PWM) 

DIpartite 
(DWM) 

BiPad AMD 

SigmaA 344 6<[11,23]>6 0.596 0.697 0.537 0.635 0.165 

SigmaB 64 6<[12,18]>6 0.757 0.769 0.776 0.744 0.124 

SigmaD 30 4<[12,18]>8 0.868 0.861 0.722 0.652 0.181 

SigmaE 70 7<[12,18]>8 0.760 0.827 0.803 0.828 0.070 

SigmaF 25 5<[13,19]>10 0.780 0.788 0.746 0.738 -0.050 

SigmaG 55 5<[15,20]>7 0.709 0.785 0.787 0.567 0.175 

SigmaH 25 7<[9,18]>5 0.770 0.757 0.721 0.779 0.028 

SigmaK 53 4<[9,17]>9 0.670 0.688 0.757 0.712 0.098 

SigmaW 34 10<[13,17]>6 0.808 0.808 0.811 0.802 0.278 
Colored cells indicates the highest performance among tested software. 

 

Among four sigma factors with the highest performance coefficients by DIpartite DWM, the nCC value 

for σK was greatly improved by DIpartite DWM, i.e., 0.757, indicating that the base interdependencies 

could exist in the motif of σK (Figure 11). I observed that the left motif of DIpartite DMW was shifted 

and “AC” was more over-represented, indicating that the left motif of σK might be improved. The 

position 7 was ‘T’ in all 53 sequences (Figure 12A), consistent with the known motif in DBTBS. In 

similar, the highest frequency of the dinucleotide, “AT” and “TA”, were observed at the position of 6 

and 7, 7 and 8, respectively (Figure 12B).  
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Figure 11. The frequency graph matrix of sigmaK data by DIpartite-DWM. 
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Figure 12. Sequence logo for σK by DIpartite DWM. (A) Sequence logos generated by DBTBS and DIpartite 

DWM. The border between the left and right motifs, i.e., position 4, 5, is indicated as the vertical line. (B) 

Sequence logo for the probability of each dinucleotides. One base before was depicted in first column. Size 

of each logo was proportional to the probability of the dinucleotides. 

 

The nCC value of σA was greatly improved by DIpartite PWM, i.e., 0.697. While the sequence logo 

generated from the result of BioProspector was similar to that generated from the result of DIpartite 

DWM, those of BiPad and DIpartite PWM was different with those (Figure 13). In particular, DIpartite 

PWM exhibited the conserved base, “T”, in position 1. This result was consistent with the motif, 

TTGACA<>tgnTATAAT, proposed by DBTBS [7]. DIpartite PWM showed the sequences with the 

minimum entropy.  
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Figure 13. Sequence logos for σA by results of (A) BioProspector, (B) BiPad, (C) DIpatrite PWM, and (D) 

DIpartite DWM. 

 

I assessed the performance of DIpartite DWM in terms of the sizes of the input datasets. By randomly 

sampling the sequences of σA in B. subtilis, I generated 100 datasets for each including 10, 20, 50, 100, 

150, 200, and 300 sequences (Figure 14). Upon increasing the size of the datasets, DIpartite PWM and 

DWM exhibited better performance. Notably, DIpartite underperformed for the datasets with 10 and 20 

sequences, suggesting that DIpartite could perform well for data including more than 50 sequences. The 

variances of DIpartite PWM for the datasets with 200 and 300 sequences were relatively smaller than 
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those of DIpartite DWM. One potential reason for this is that DWM consists of the frequencies of 16 

dinucleotides (Equation 3).  

 

 

Figure 14. The performance of DIpartite: (A) PWM; (B) DWM. 100 datasets were generated by sampling of 

the σA dataset. The sizes of the dataset were 10, 20, 50, 100, 150, 200, 300 sequences. 

 

 

 

4.5 Performance for the dataset with noise sequences 

I assessed the performance for the dataset with noise sequences. DIpartite allows the users to search the 

motifs for the dataset with noise sequences, known as ZOOPS. I evaluated the accuracy of detection 

noise sequences by using the datasets with noise sequences. I chose the CRP datasets and human dataset 

as the test datasets of the one- and two-block motifs. I compared the performance of noise detection by 

DIpartite with that by MEME for the CRP dataset (Table 6). DIpartite exhibited the TPRs (true positive 

rate), i.e., 0.835, 0.863, and 0.876 for the datasets with 25%, 50%, and 100% noise sequences, 

respectively. This indicates that DIpartite ZOOPS could be well tolerated with the noise sequences. 

Indeed, MEME exhibited the lower FPRs, but lower TPRs, suggesting that DIpartite ZOOPS would be 

comparable with MEME ZOOPS. 
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Table 6. The performance of noise detection for the one-block motif. 

 MEME DIpartite 

Noise 

Percentage 

25% 50% 100% 25% 50% 100% 

Number of 

TP, TN  

(TP:323, 

TN: 81) 

(TP:323, 

TN: 162) 

(TP:323, 

TN: 323) 

(TP: 323, 

TN: 81) 

(TP:323, 

TN: 162) 

(TP: 323, 

TN: 323) 

FPR 0.061 0.030 0.024 0.172 0.172 0.167 

TPR 0.798 0.777 0.739 0.835 0.863 0.876 

Noise sequences were sampled from the genome sequence of E. coli. 

TPR: True positive rate, FPR: False positive rate. 

 

Finally, I compared the performance of noise detection for the two-block dataset, i.e., 

RYAAAKNNNNNNTTGW consisting of 44 sequences. BioProspector (nCC=1) and BiPad (nCC=1) 

outperformed DIpartite (nCC=0.914). Increasing the noise sequences, BioProspector and BiPad 

exhibited lower nCC values. DIpartite exhibited higher nCC values even adding the noise sequences, 

suggesting that DIpartite could work well for both one- and two-block motifs with noise sequences 

(Table 7).  

 

Table 7. The performance of nCC score after added the noise to dataset and compare PWM with 

BioProspector and Bipad tools, Noise sequences were sampled from the genome sequence of human. 

Noise Percentage 0% 25% 50% 100% 

Number of TP, TN  (TP: 44, TN:0)  (TP: 44, TN:11)  (TP: 44, TN:22)  (TP: 44, TN:44) 

BioProspector 1 0.907 −0.16 −0.16 

BIpad 1 1 1 −0.16 

DIpartite PWM 0.9148 1 1 1 
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5. Conclusions 

I have developed DIpartite for detecting TFBSs, consisting of the bipartite motifs. DIpartite enables ab 

initio prediction of the conserved motif based on not only PWM, but also DWM. I evaluated the 

performance of DIpartite compared with freely available tools, i.e., MEME, BioProspector, AMD and 

BiPad. Both of DIpartite PWM and DWM perform equivalent or better than those in the cases of the 

bipartite motifs with the fixed and variable gaps like promoter sequences in human and sigma factors 

in B. subtilis. The prediction of σK was greatly improved by taking into consideration base 

interdependencies. DIpartite can be found at https://github.com/Mohammad-Vahed/DIpartite. 
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6. Usage of DIpartite  

 

6.1 Getting started 

Download from: https://github.com/Mohammad-Vahed/DIpartite 

$ git clon https://github.com/Mohammad-Vahed/DIpartite 

$ cd DIpartite 

$ make 

 

 

6.2 Make file 

CC = g++ 

CFLAGS = -Wall 

DIpartite: DIpartite.cxx 

 $(CC) $(CFLAGS) -o DIpartite DIpartite.cxx 

 

clean: 

 rm Dipartite 

 

6.3 Example of usage 

<<PWM base prediction>> 

## For one block motif 

./DIpartite -i <fasta> -n 1 -p 2 -m 6 -M 0 -g 0 -G 0 -o <output> 

==> Find the motif of width 6bp one block motif length from the sequence file (FASTA), and search 

both the given and reverse complement strands of DNA.  

 

## For two block motif 

./DIpartite -i <fasta> -n 2 -p 2 -m 6 -M 6 -g 0 -G 0 -o <output> 
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==> Find the motif of width 6bp for left motif and 6bp for right motif length from the sequence file 

(FASTA), and search both the given and reverse complement strands of DNA and method DWM. 

 

6.4 Arguments 

-i input file 

-m left motif width (default 6) 

-M right motif width (default 6) 

-g min gap between two motif blocks (default 0) 

-G max gap between two motif blocks (default 0) 

-t number of times trying to repeat process to find best motif (default 30) 

-o output file (default output.txt) 

-f 1 for fasta file, or 2 for text file (no header) (default 1) 

-p 1 for the given strand, or 2 for both the given and reverse complement strands (default 1) 

-n 1 for PWM, or 2 for DWM (default 1) 

-s 1 for one occurrence motif site per sequence (oops), or 2 for any number of repetitions (anr) or 3 

Zero or One Occurrence per Sequence (zoops) (default 1) 
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7. DIpartite-Learning: 

7.1 Web service 

I implemented a new web service (by ASP.NET, Java, HTML, and CSS), sa called “DIpartite-

Learning”, for discovery the best motif site and size without any set parameters. Machine learning 

includes statistical modeling methods that automatically learn beneficial knowledge from input data 

and derive unknowns based on a set of knowns. Therefore, these data-driven intelligent algorithms 

appear as key software for the accurate recognition of CREs (Cis-regulatory elements) (43-52). 

In the web service, users can use the DIpartite tool as well as the DIpartite-Learning. The most 

significant motifs found by DIpartite-Learning are displayed graphically on the main results page with 

a table containing summary statistics for each motif. Detailed motif information, including the 

sequence logo, PWM and DWM, consensus sequence. 

I added the new option DI-Logo and Mono-Logo, user can input sequences data and select the “Just 

show web logo” option, then show Weblogo (DI or Mono). 

 

7.2 Method 

The DIpartite-Learning approach combines the output of three algorithms, each designed to identify a 

particular class of motifs. DIpartite-Learning methods include Machine learning, Dynamic 

programming, and Gibbs sampling strategy. 

The base of DIpartite-Learning tool is PWM and DWM. Since the users do not have any parameters 

for find motifs, the parameter space becomes very large. Therefore, I adopted the method for data 

analysis to gain the best size and location of motifs. 
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7.3 Algorithm 

• Text mining of input file 

• Find the minimum and maximum of motif and gap lengths 

• Randomly generate the parameters to the process 

• Make the PWM(or DWM) and calculate entropy  for each step as DIpartite 

• Analysis of repeating pattern of DNA sequence and compare with the previous step 

• If improve the score, learn to an algorithm to keep this pattern and test new parameters with 

the same model until finding the better score and come back to  calculate entropy step.  

• Replace previous parameters value with new ones. 

• Learn to the algorithm does not test the pattern with a low score and limit the search range 

• Update score and location of motif 

 
 

Users can be use DIpartite tool on web site that is very user friendly and easy to run and get result, 

user just should input data and set the parameters (Figure 15), then Run. 

In this part, results completely same as old version of DIpartite. However, I made graphical method 

for show the result and text format (Figures 15~20). 
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Figure 15. DIpartite-Learning web service schema. The web base of DIpartite is user-friendly and easy 
access. Users easily can upload input data file and set parameters and finally receive the text or 

graphically formats as the results. 
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Figure 16. DWM result on SigmaB dataset by set the 6bp left motif length, 6bp right motif length, 

12bp~18bp gap range between two block motifs, and set delft other parameters. 
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Figure 17. PWM result on SigmaB dataset by set the 6bp left motif length, 6bp right motif length, 12bp~18bp 

gap range between two block motifs, and set delft other parameters. 
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Figure 18. DIpartite-Learning method, in this format, user does not need set parameter just input dataset 

and select PWM (learning MONO) or DWM (learning DI) structure. DIpartite-Learning set automatically 

best motifs length and gap range.  
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Figure 19. DIpartite-Leaning DI (DWM) method of result on SigmaB dataset without any set parameters. 
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Figure 20. DIpartite-Leaning MONO (PWM) method of result on SigmaB dataset without any set parameters. 
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