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Abstract 

KRAS is one of the most frequently mutated oncogenes in human non-small cell lung 

cancer (NSCLC). Mutations in KRAS are detected in 30% of NSCLC cases, with most 

of them occurring in codons 12 and 13 and less commonly in others. Despite intense 

efforts to develop drugs targeting mutant KRAS, no effective therapeutic strategies have 

been successfully tested in clinical trials. Here, we investigated molecular targets for 

KRAS-activated lung cancer cells using a drug library. A total of 1,271 small molecules 

were screened in KRAS-mutant and wild-type lung cancer cell lines. The screening 

identified the cytotoxic effects of benzimidazole derivatives on KRAS-mutant lung 

cancer cells. Treatments with two benzimidazole derivatives, methiazole and 

fenbendazole—both of which are structurally specific—yielded significant suppression 

of the RAS-related signaling pathways in KRAS-mutated cells. Moreover, 

combinatorial therapy with methiazole and trametinib, a MEK inhibitor, induced 

synergistic effects in KRAS-mutant lung cancer cells. Our study demonstrates that these 

benzimidazole derivatives play an important role in suppressing KRAS-mutant lung 

cancer cells, thus offering a novel combinatorial therapeutic approach against such 

cancer cells. 
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1. Introduction 

Lung cancer is the leading cause of death worldwide, estimated to account for 

more than one million deaths per year [1]. Non-small cell lung cancer (NSCLC)—the 

main histological type comprising adenocarcinoma, squamous carcinoma, and large cell 

carcinoma—accounts for approximately 85% of all lung cancer cases [2]. Unfortunately, 

the prognosis of lung cancer remains dismal, with a five-year survival rate of 

approximately 15% [3]. Cytotoxic chemotherapy has improved the prognosis of both 

early- and advanced-stage NSCLC, and new advances in the discovery of oncogenic 

drivers as well as specific targeted therapies have yielded significant improvements in 

outcomes and quality of life of NSCLC patients [4]. 

In recent years, many studies have focused on mutations in epidermal growth 

factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) in NSCLC patients [5, 

6]. Specific targeted agents, such as gefitinib and crizotinib, designed to treat NSCLC, 

are known to be effective in patients [7, 8]. Mutations of the RAS family are detected in 

up to ~30% of human cancers, with 20–30% of NSCLC patients carrying KRAS 

mutations [9-11]. The function and importance of KRAS as a GTPase are evidenced 

from its role in connecting upstream signals from cell surface receptors, such as those in 

the FGFR and ERBB families to the MAPK cascade and other cancer-associated 

pathways [12]. Although KRAS signaling is a major oncogenic driver of lung cancers 

and is associated with a poor prognosis and therapy resistance, effective targeted 

therapy for KRAS-mutated lung cancer patients is currently lacking [13]. While indirect 

strategies such as synthetic lethality have emerged [14], novel treatment strategies to 

combat this major oncogenic mutation are urgently needed. 

Most studies in past decades have sought to develop drugs that target the 

downstream effectors of KRAS. Mutant-activated KRAS mediates several key 



 

functions, including those involving intracellular signaling pathways that regulate cell 

proliferation, differentiation, and survival [15, 16]. Activation of KRAS leads to the 

stimulation of signaling pathways, including the PI3K/AKT and RAF/MEK/ERK 

pathways [17]. Several studies have demonstrated that mutations in the kinases of these 

so-called ‘canonical’ RAS signaling pathways are frequently observed in human cancer, 

identifying them as suitable therapeutic targets [18, 19]. With advances in molecular 

biology and high-throughput methodologies, as well as developments in genome 

sequencing, researchers now employ target-based screening for new drug discovery [20]. 

However, the target-based discovery of oncological drugs has been less successful than 

initially predicted. Reviews have shown that an alternative, phenotype-based approach 

with small molecule libraries has played a prominent role in the discovery of new 

chemical probes [21]. Consequently, there is a trend in drug discovery of cancer 

therapeutics toward phenotypic screening to provide greater confidence that the 

molecules discovered will deliver the desired therapeutic efficacy [22]. Small-molecule 

libraries that have a well-annotated pharmacology are suitable for phenotypic screening. 

Here, we used the Prestwick Chemical Library® (PCL)—a library comprising more 

than 1,200 drugs approved by the FDA, EMA, and other agencies. 

Based on our screening results using the chemical library, we identified the 

biological effects of benzimidazole derivatives, such as methiazole, fenbendazole, 

carbendazim, and benzimidazole itself on KRAS-mutant lung cancer cells. Moreover, 

we determined the molecular mechanism of these compounds. Our data provide novel 

insights for targeting KRAS-mutant lung cancer cells, thereby advancing the 

development of future therapeutics. 

  



 

2. Materials and Methods 

2.1. Cell culture 

All the human lung cancer cell lines were purchased from American Type Culture 

Collection (ATCC, Manassas, VA, USA). Detailed information about the cell lines and 

culturing methods is described in Table S1. 

 

2.2. Drug treatment 

The Prestwick Chemical Library® was purchased from Prestwick Chemical 

(Illkirch-Graffenstaden, France). This library contains 1,271 small molecules, 95% of 

which are approved drugs (FDA, EMA, and other agencies). Methiazole was obtained 

from Latoxan (Portes-lès-Valence, France). Fenbendazole, benzimidazole, carbendazim, 

oxibendazole, mebendazole, albendazole, and fluticasone propionate were obtained 

from TCI Chemicals (Tokyo, Japan). Nocodazole was obtained from Wako (Tokyo, 

Japan). Estramustine was obtained from Sigma-Aldrich (St. Louis, MO, USA). 

Vemurafenib, dabrafenib, and trametinib were obtained from Selleck (Houston, TX, 

USA). The drugs were prepared at 10 µM by dissolving in DMSO for each analysis.  

 

2.3. Cell proliferation assay 

Cell proliferation was evaluated using the CellTiter-Glo® 2.0 Assay (Promega, Madison, 

WI, USA) as described in the manufacturer’s instructions. Each cell line was seeded in 

a 96-well white plate at 5.0 × 103 cells/well. Six hours after seeding the cells, the drugs 

were added at a 10-µM concentration. Forty-eight hours after for A-549 and 72 hours 

after for the other cell lines, the cells were measured using the CellTiter-Glo® 2.0 

reagent. Luminescence measurements were taken ten minutes after adding the agent 

using a microplate reader (BioTek, Gen5 Synergy™ H4, Winooski, VT, USA).  



 

 

2.4. Data analysis and visualization 

Beeswarms and boxplots were created using the beeswarm package and PCA maps 

were created using the ggplot2 package in the CRAN repository 

(http://cran.r-project.org/). Heatmaps of the Z-scores were generated using the publicly 

available software Morpheus (https://software.broadinstitute.org/morpheus/) and 

hierarchal clustering with the Euclidean distance and an average linkage method. Curve 

fitting and IC50 determinations were performed using the curve fitting analysis tool in 

Prism 7 (Version 7.0d, GraphPad Software, San Diego, CA, USA). Drug synergism was 

analyzed using CompuSyn (version 1.0) (http://www.combosyn.com/index.html), which 

is based on the combination index (CI) theorem of the Chou-Talalay method [23]. 

 

2.5. Immunofluorescence 

Cells were washed with PBS (-) three times and fixed in 4% paraformaldehyde (Wako) 

for 15 minutes at 25 ℃. The cells were again washed with PBS (-) three times and 

treated with 5% BSA (Sigma-Aldrich) and 0.1% Triton X-100 (Sigma-Aldrich) in PBS 

(-) overnight at 4 ℃. The cells were again washed with PBS (-) three times and treated 

with diluted Anti-Ki-67 antibody (1:250, Abcam, Cambridge, UK) with 5% BSA in 

PBS (-) for 1‒2 hours at 37 ℃. The staining results were imaged using a BZ-X700 

fluorescence microscope (Keyence, Osaka, Japan) using BZ-X analyzer software 

(Keyence). 

 

2.6. Apoptosis assay measurement in vitro 

To evaluate apoptotic activity, a luminescent caspase-3/7 activation assay was 

performed. The cells were seeded in a white 96-well plate; after six hours of incubation, 



 

selected drugs were added at a concentration of 10 µM. After incubation for 48 to 72 

hours, Caspase-Glo® reagent (Caspase-Glo® 3/7 assay; Promega) was added and 

incubated for one hour, then the activity of caspase-3/7 was measured using a 

microplate reader (BioTek, Gen5 Synergy™ H4). 

 

2.7. Western blot analysis 

The cells were gently scraped from the culture plates, resuspended in 1,000 µL of 

M-PER buffer, and shaken for five minutes. The samples were then centrifuged at 

14,000 × g for ten minutes. The supernatants were collected and the protein 

concentration was calculated using a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, 

Waltham, MA, USA). Protein extracts (30 µg per lane) were prepared and run on a 4‒

20% Mini-PROTEAN® TGX ™  gel (Bio-Rad, Hercules, CA, USA) or 7.5% 

Mini-PROTEAN TGX gel (Bio-Rad) then transferred to a 0.45-µm polyvinylidene 

difluoride (PVDF) membrane. The membranes were blocked for one hour at 25 ℃ using 

Blocking One (Nacalai Tesque, Kyoto, Japan) then incubated overnight at 4 ℃ with the 

primary antibodies shown in Table S2. Two secondary antibodies [Anti-Mouse IgG, 

HRP-Linked Whole Ab Sheep (GE Healthcare, Chicago, IL, USA); and Anti-Rabbit 

IgG, HRP-Linked Whole Ab Donkey (GE Healthcare)] were used at a dilution of 

1:5,000 and the membranes were developed using ImmunoStar LD (Wako) and imaged 

using the FUSION SOLO 7S (Vilber-Lourmat, Marne-la-Vallée, France). 

 

2.8. Crystal violet staining 

The cells were seeded in a 6-well plate at 2.0 × 104 cells/well. Six hours after seeding, 

the cells were treated according to the combinatorial administered dose. Forty-eight 

hours after culturing, the cells were washed with PBS (-) three times and fixed in 4% 



 

paraformaldehyde (Wako) for 15 minutes at 25 ℃. The cells were then washed with 

PBS and stained with 0.5% crystal violet solution at 25 ℃ for 30 minutes. After rinsing 

with PBS, the plates were photographed using a digital scanner.  

 

2.9. Animal studies. 

All mouse experiments were approved by the National Cancer Center Research Institute, 

Institute of Laboratory Animal Research (Number: T18-009). Five-week-old female 

BALB/C nude mice were used for animal experiments. A-549 cells (KRAS-mutant) and 

H-1650 cells (wild-type) were injected into the right flank of the mice with 

matrigel/PBS (1.0 × 106 cells, 50% final concentration) of each mouse to establish 

xenograft models. One week after inoculation, each mouse was randomly separated into 

two groups (n = 6/group) of treatments with vehicle alone (olive oil with 3% DMSO) 

and with methiazole (total 720 µg/mouse) by intraperitoneal injection. Mice were 

monitored carefully and the size of their tumors was measured using a Vernier caliper. 

Tumors were harvested 19 days after inoculation of cancer cells and tumor weight was 

measured. 

 

2.10. Statistical analysis 

The data are presented as mean±SD. Statistical significance was determined using 

Student’s t-test. Differences were considered significant with a p value < 0.05. 

  



 

3. Results 

3.1. Screening of small molecules to identify effective compounds for 

KRAS-mutant and wild-type cell lines 

To perform the screening to discover compounds effective for KRAS-mutant lung 

cancer cells, we first used three KRAS-mutant (A-549, H-23, and H-1573) and three 

wild-type (H-1650, H-522, and Calu-3) lung cancer cell lines (Fig. S1A). The screening 

procedure is summarized in Figure 1a. Cells seeded in a 96-well white plate were 

treated with 1,271 small molecules at a final concentration of 10 µM for each well. The 

library was selected because it contained small molecules approved by the FDA, EMA, 

and other agencies. The data were highly reproducible among independent experiments 

(Fig. S1B). All the cell lines were screened using the library, cell proliferation was 

evaluated using an ATP-based assay, and growth inhibition rates were assessed by 

Z-score analysis (Fig. 1b, Fig. S1C-G). The distributions of the number of compounds 

according to Z-score analysis obtained from the primary screening are shown in Figure 

1c and Figure S2A. Most of the compounds (> 80%) from the library that were not 

effective had a Z-score < 1 and the compounds with a Z-score ≥ 1 were considered for 

further experimental validation. The compounds with a Z-score ≥ 1 comprised 32% 

(24/75) oncological compounds and 6% (72/1,196) non-oncological compounds and the 

remainder contained many antitumor compounds, as expected (Fig. 1d). The results of 

the primary screening were visualized as a heatmap and were represented consistently 

with a histogram (Fig. 1e).  

 

3.2. Confirmation of the candidate compounds 

To investigate the inhibitory effect of compounds from the results of the primary 

screening, they were analyzed by principal component analysis (PCA). Figure 2a-c 



 

shows the PCA map using Z-score analysis of the inhibitory effect of the compounds. 

The blue plots in Figure 2a show all the compounds and the difference between 

oncological (orange) and nononcological compounds (light blue) is shown in Figure 2b. 

The loading profile of PC1 at the x-axis suggests the inhibitory effect of the compounds 

for both KRAS-mutant and wild-type cells, and PC2 at the y-axis suggests the 

difference of an inhibitory effect of the compounds between KRAS-mutant and 

wild-type cells. The average Z-scores of all compounds for KRAS-mutant and 

wild-type cells are colored according to their distribution range (Fig. 2c). The 50 

top-ranked compounds of the average Z-score comprised 11 oncological compounds 

(15%, 11/75) and 39 nononcological compounds (3%, 39/1,196) (Fig. 2d). These results 

are similar to previous results (Fig. 1d), including commonly used chemotherapeutic 

agents. Figure 2e shows the effects of the oncological compounds from the top 50 on 

cell proliferation. All the top-ranked oncological compounds showed a significant 

inhibitory effect for both KRAS-mutant and wild-type cells; the results of the 

compounds and positive control (cisplatin) used for screening are shown in Figure S2B.  

 

3.3. KRAS-mutant cells are sensitive to benzimidazole derivatives 

Next, we focused on the difference in the compound effects between KRAS-mutant and 

wild-type cells from the results of the primary screening. An analysis of the Z-scores of 

the inhibitory effect of the compounds between KRAS-mutant and wild-type cells is 

shown in volcano plots (Fig. 3a). We identified eight compounds classified by a 

difference in the Z-score > 0.80 and p-value < 0.05 for subsequent validation assays. 

Figure 3b shows the heatmap representing the difference in the average Z-scores of the 

compounds between KRAS-mutant and wild-type cells. Intriguingly, we found a 

structural similarity among the selected compounds and most of them were 



 

benzimidazole derivatives whose structural formulas are shown in Figure 3c. The eight 

selected compounds from the primary screening were tested by cell viability assays 

using ATP-based experiments; most of them showed a significant difference in their 

inhibitory effect on cell proliferation between KRAS-mutant and wild-type cells (Fig. 

3d, Fig. S3A and B). Taken together, our primary screening and validation assay results 

indicate that benzimidazole derivatives exhibit a significant difference in their 

inhibitory effect on cell proliferation between KRAS-mutant and wild-type cells. The 

more effective chemical compounds, methiazole and fenbendazole, were selected for 

further validation studies using additional cell lines (Fig. S3C).  

 

3.4. Methiazole and fenbendazole inhibit cell proliferation and induce apoptosis in 

KRAS-mutant cells 

Having demonstrated the effect of benzimidazole derivatives, we sought to perform 

further analysis for methiazole and fenbendazole. Among the benzimidazole derivatives 

that show an inhibitory effect on cell proliferation for KRAS-mutant cells, not all of 

them showed a significant difference between KRAS-mutant and wild-type cells. Given 

that the compounds with a simpler structure seem to be more effective, we selected 

methiazole and fenbendazole for subsequent experiments. To validate the effect of 

methiazole and fenbendazole on KRAS-mutant cells, we performed cell proliferation 

assays with additional cell lines (KRAS-mutant: A-427, H-1373, H-1734, H-2444, 

H-2347, A-549, H-23, and H-1573; wild-type: H-1395, H-1435, H-1838, H-2228, 

H-2286, H-1650, H-522, and Calu-3) (Fig. 4a and Fig. S3C). Both methiazole and 

fenbendazole showed a significant difference in their inhibitory effect between 

KRAS-mutant and wild-type cells. To further evaluate the function of benzimidazole 

derivatives, we performed immunofluorescence for Ki-67 of KRAS-mutant cell lines 



 

(A-549 and H-23) and wild-type cell lines (H-1650 and H-2228) after treatment with 

methiazole and fenbendazole. Ki-67-positive cells were reduced significantly in 

KRAS-mutant cells compared to wild-type cells; furthermore, morphological changes 

were observed upon treatment with methiazole and fenbendazole, while no changes 

were observed upon treatment with DMSO (Fig. 4b and Fig. S4A). We next sought to 

determine the cellular effects (cytotoxicity or cytostasis) of methiazole and 

fenbendazole. Apoptosis after treatment with methiazole and fenbendazole was 

analyzed based on nuclear DNA fragmentation (Fig. S4). These experiments in other 

cell lines as well as treatment with fenbendazole also reduced Ki-67-positive cells (Fig. 

S4A and B). To confirm apoptotic cell death after the treatments, we performed a 

caspase 3/7 assay and nuclear DNA fragmentation counting. KRAS-mutant cells 

showed significantly higher caspase 3/7 activity and greater numbers of apoptotic cells 

than wild-type cells (Fig. S4C-E). These results suggest that benzimidazole derivatives 

inhibit cell proliferation and induce apoptosis via caspase 3/7 activity. The above results 

indicate that methiazole and fenbendazole have more inhibitory effects on 

KRAS-mutant cells than on wild-type cells and cause cytotoxicity via apoptosis. 

Regarding methiazole and fenbendazole, the IC50 was determined by inhibition curves 

drawn based on the results of the cell viability assay. We found that KRAS-mutant cells 

were more sensitive to methiazole (A-549: 1.9 µM; H-23: 0.6 µM) and fenbendazole 

(A-549: 1.5 µM; H-23: 0.4 µM), and the IC50 values were much lower than those of 

wild-type cells (methiazole = H-1650: > 40 µM, H-2228: > 40 µM; fenbendazole = 

H-1650: 6.2 µM, H-2228: 7.8 µM) (Fig. 4c and Fig. S5). We also evaluated the in vivo 

therapeutic effects of the benzimidazole derivatives in a subcutaneous xenograft model. 

We treated A-549 (KRAS-mutant) and H-1650 (wild-type)-xenografted mice with 

methiazole according to the protocol shown in Figure S6A. As expected, the tumor size 



 

in A-549-xenografted mice was significantly decreased (Fig. 4d lower panels) while that 

in H-1650-xenografted mice was unchanged. Although the tumor weight tended to 

decrease in A-549-xenografted mice, the change was not statistically significant (Fig. 4d 

upper panels and S6B). 

 

3.5. Structural specificity of the benzimidazole derivatives 

To further understand the structural relationship between the benzimidazole derivatives 

and KRAS-mutant and wild-type cells, the effects of other benzimidazole derivatives 

were also examined. Given that methiazole and fenbendazole have relatively simple 

structures, these compounds were considered. Benzimidazole and carbendazim, two 

benzimidazole derivatives, are also structurally simple, and, were used for the analysis 

(Fig. S7A). To investigate the biological characteristics of benzimidazole and 

carbendazim, the same experiments as those for methiazole and fenbendazole were 

performed. From the results of an ATP-based cell proliferation assay, benzimidazole 

was found not to affect the cell proliferation in both KRAS-mutant and wild-type cells, 

while carbendazim inhibited cell proliferation but showed no difference between 

KRAS-mutant and wild-type cells (Fig. 5a). No effect was observed for Ki-67 

immunofluorescence and apoptotic cells treated with benzimidazole. Similar to the 

ATP-based cell proliferation assay, carbendazim inhibited cell proliferation and induced 

cell apoptosis, but there was no significant difference between KRAS-mutant and 

wild-type cells (Fig. 5b and Fig. S7B). Cell viability and caspase 3/7 activity were also 

consistent with the results described above (Fig. S7C and D). Furthermore, cell 

proliferation assays including compounds with an imidazole structure revealed that not 

all compounds demonstrated cytotoxicity and only certain compounds among the 

benzimidazole derivatives showed inhibitory effects on KRAS-mutant cells (Fig. 5c and 



 

Fig. S7E). Importantly, methiazole exhibited almost no cytotoxic effects on normal 

epithelial cells compared with cisplatin (Fig. S7F), while fenbendazole possessed 

slightly higher cytotoxicity. According to these results, it was suggested that the 

structural components contained in methiazole and fenbendazole may contribute to 

RAS selectivity because no significance was observed in the analysis of benzimidazole 

and carbendazim between KRAS-mutant and wild-type cells. 

 

3.6. Methiazole and fenbendazole affect RAS signaling and exhibit synergy when 

combined with a MEK inhibitor 

To explore the differences in the mechanisms of these compounds between 

KRAS-mutant and wild-type lung cancer cells, we performed western blot analysis after 

treatment with methiazole, fenbendazole, benzimidazole, and carbendazim. We 

examined the status of the PI3K/AKT and RAF/MEK/ERK pathways to assess the 

effect of these compounds (Fig. 6a). Treatment of KRAS-mutant cells (H-23) with 

methiazole and fenbendazole simultaneously suppressed the PI3K/AKT pathway 

(confirmed by low levels of phosphorylated AKT), RAF/MEK/ERK pathway (verified 

by low levels of phosphorylated ERK), and Stat1 levels. SAPK, NFκB, and PI3Ks 

exhibited no specific differences upon treatment with the drugs (Fig. S8A). 

Benzimidazole and carbendazim showed little or no reduction effect in both 

KRAS-mutant and wild-type cells. These results indicate that benzimidazole derivatives, 

especially methiazole and fenbendazole, inhibit the PI3K/AKT and RAF/MEK/ERK 

pathways compared with the normal control (Fig. 6b).  

Given that methiazole and fenbendazole could partly suppress KRAS 

downstream signaling, the data prompted us to test the combinatorial effects of the 

benzimidazole derivatives with RAS signaling-related tyrosine kinase inhibitors such as 



 

vemurafenib, dabrafenib, and trametinib. Upon various combinations of these drugs, 

most exerted synergistic effects at high concentrations (Fig. S8B); however, the 

combination of methiazole with trametinib, a MEK inhibitor, showed a maximum 

synergistic effect even at a low concentration based on the calculations using the 

median-effect principle and combination index-isobologram theorem (Fig. 6c and Fig. 

S9). Thus, the combinatorial treatment of methiazole and fenbendazole with tyrosine 

kinase inhibitors, especially trametinib, may offer a novel therapeutic strategy. 



 

4. Discussion 

Despite years of developmental work on KRAS-mutant lung cancer, the 

effective targeting of the molecular driver of KRAS in lung cancer cells remains 

unsuccessful [24]. Extensive efforts have been directed toward the identification of new 

strategies, such as synthetic lethal target interactions with oncogenic KRAS-expressing 

cells [25, 26]. The identification of small molecules that affect KRAS or KRAS-related 

signaling pathways would be a step in this direction. Through drug library screening, we 

have demonstrated that benzimidazole derivatives serve as selective cytotoxic agents for 

KRAS-mutant lung cancer cells. Benzimidazole derivatives induce apoptotic cell death 

and inhibit KRAS-mutant lung cancer cell proliferation. We identified that methiazole 

and fenbendazole significantly inhibit the expression of the RAS-related signaling 

pathway in KRAS-mutant lung cancer cells. Consistent with the in vitro experiments, 

treatment with methiazole showed significant inhibitory effects in vivo. The 

combinatorial treatment of tyrosine kinase inhibitors, especially trametinib with 

methiazole, showed synergistic effects in KRAS-mutant lung cancer cells. Presently, 

there is no effective direct therapy for KRAS-mutant lung cancer cells though multiple 

strategies have been employed to identify such candidate inhibitors using 

high-throughput screening, fragment-based screening, or in silico screening [27]. Here, 

we showed the effectiveness of a phenotypic approach using a drug library and 

identified an effective combination strategy in KRAS-mutant lung cancer cells.  

As previously reported, benzimidazole derivatives are commonly used as 

anthelmintic therapeutics against roundworms and tapeworms in animals and humans 

[28, 29]. Recently, these compounds have been identified as potent anticancer agents 

and their mechanism of antitumor activity may be through the binding of tubulin [30, 

31], inhibition of poly (ADP-ribose) polymerase-1 (PARP-1) [32], topoisomerase I [33], 



 

and tyrosine kinases [34]. Several studies have shown that benzimidazole derivatives 

may serve as novel agents for anticancer therapy [35]. Most of the clinically approved 

kinase inhibitors include bicyclic nitrogen heterocycles, but the benzimidazole scaffold 

interacts with kinases using multiple binding modes [36]. Regarding the recently 

developed molecular target therapeutic approach, some benzimidazole derivatives have 

been synthesized as kinase inhibitors, protein kinase CK2 (casein kinase 2) inhibitors 

[37], CDK9 (cyclin-dependent kinase 9) inhibitors [38], and multi target kinase 

inhibitors [34, 39]. Given that the benzimidazole derivatives identified in the primary 

screening exhibited antitumor effects and there are relatively few reports on methiazole 

and fenbendazole, we tried to assess their functional mechanisms. It is worth noting that 

methiazole and fenbendazole possess significant inhibitory effects on KRAS-mutant 

lung cancer cells. In the era of molecular target-based strategies in NSCLC, attempts to 

inhibit downstream effector pathways have shown only limited success [40]. However, 

the results of treatment with methiazole and fenbendazole in KRAS-mutant lung cancer 

cells clearly revealed the suppression of the PI3K/AKT and RAF/MEK/ERK pathways, 

both RAS-dependent pathways, indicating the underlying mechanism of the compound 

effects. The analysis of the structurally simpler compounds of benzimidazole 

derivatives, benzimidazole and carbendazim, as well as other compounds having an 

imidazole structure, showed that, among the benzimidazole derivatives, there is a 

structural specificity in the inhibitory effect on cell proliferation that differs between the 

presence and absence of KRAS mutation.  

 Combinatorial experiments with methiazole, fenbendazole, and tyrosine 

kinase inhibitors revealed synergistic effects for KRAS-mutant lung cancer cells (Fig. 

6c and Fig. S8B). Although most of the strategies targeting mutant KRAS had a low 

specificity or less therapeutic efficacy, treatment modalities based on synthetic lethal 



 

interaction have been explored [25, 26, 41]. Given that methiazole and fenbendazole 

suppress the protein expression of AKT and ERK in the RAS-related signaling 

pathways of the RAF/MEK/ERK and PI3K/AKT pathways, we performed 

combinational experiments using several tyrosine kinase inhibitors. Synergistic 

cytotoxic effects on KRAS-mutant lung cancer cells were observed upon combination 

and methiazole or fenbendazole with trametinib, a MEK inhibitor, showed a highly 

synergistic effect at low concentration. As a substitute for a direct target to attack RAS 

proteins themselves, the MAPK pathway components RAF, MEK, and ERK and PI3K 

pathway components were expected to act as alternative targets. However, these 

pathways are much more complicated and various studies have attempted to confirm the 

interaction of these pathways [42-44]. Our data shed light on the ability of the 

combinatorial treatment of benzimidazole derivatives and a MEK inhibitor. Another 

study reported that a synthetic lethal approach targeting MEK and FGFR1 is effective 

for KRAS driven cancer cells [45]; however, further synergistic or synthetic lethal 

analysis for KRAS-related oncogenesis is warranted. 
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Figure Legends 

Figure 1 

 

Screening to identify compounds from a small-molecule library that inhibits the 

proliferation of both KRAS-mutant and wild-type cells. a. Schematic overview of 

the protocol used for screening. b. Graph showing the Z-scores of the inhibitory effect 

of the compounds from the primary screen for A-549. c. Histogram of the Z-scores of 

the compounds for A-549. d. Ratio of the compounds with an average Z-score ≥ 1 in 



 

oncological compounds and non-oncological compounds. e. Heatmap showing the 

effect of compounds in KRAS-mutant and wild-type cell lines.  

 

Figure 2 

 
Highly effective compounds from primary screening. a. PCA analysis of all screened 

compounds. b. PCA analysis of oncological compounds and nononcological compounds. 

c. PCA analysis of effective compounds for KRAS-mutant and wild-type cells. d. Fifty 



 

top ranked compounds that inhibit cell proliferation. e. Inhibitory effect of the selected 

compounds in oncological fields relative to control. 

 

Figure 3 

 
Benzimidazole derivatives are more effective in KRAS-mutant cells. a. Difference 

in the effect of compounds between KRAS-mutant and wild-type cells. b. Clustering 

analysis of the selected compounds. c. Structure of the benzimidazole derivatives. d. 



 

Quantitative effect of the selected compounds on cell proliferation. The values are mean 

± SD (n = 4). *, p < 0.05; **, p < 0.01; ***, p < 0.001; and n.s., not significant. 

 

Figure 4 

 
Methiazole and fenbendazole are more effective in KRAS-mutant cells. a. 

Quantification of the proliferation rate following treatment with methiazole and 

fenbendazole in KRAS-mutant and wild-type cells. The values are mean ± SD (n = 4). 



 

**, p < 0.01; ***, p < 0.001. b. Effects of methiazole and fenbendazole on the 

proliferation of A-549 and H-2228 cells as determined by Ki-67 analyses. The values 

are mean ± SD (n = 3). *, p < 0.05; **, p < 0.01; ***, p < 0.001. c. The cells were 

treated with increasing doses of methiazole. Cell viability was determined using an 

ATP-based assay. The values are mean ± SD (n = 4). d. Quantitative analysis of tumor 

progression starting from the first instance at which a solid tumor mass was identified. 

Data shown are normalized to pretreatment tumor mass on day three from cell 

inoculation. Representative images of dissected tumors are shown in upper panels. The 

values are mean ± SD (n = 6). **, p < 0.01; and n.s., not significant. 

 

Figure 5 



 

 

Analysis of the structural differences in the benzimidazole derivatives. a. 

Quantification of the proliferation rate following treatment with benzimidazole and 

carbendazim in KRAS-mutant and wild-type cells. b. Effects of benzimidazole and 

carbendazim on the proliferation of A-549 and H-2228 cells as determined by Ki-67 

analyses. The values are mean ± SD (n = 3). n.s., not significant. c. Only certain 

compounds of benzimidazole derivatives showed inhibitory effects on both 

KRAS-mutant and wild-type cells. 



 

 

Figure 6 

 

Effects of methiazole and fenbendazole on RAS-related signaling. a. Western blot 

analyses of RAS-related signaling in H-23 and H-1650 cell lines treated with 

benzimidazole derivatives. b. Quantification of the blots of p-AKT, p-ERK, and Stat1. c. 

Image of the combinatorial experiment of methiazole and trametinib in A-549 cells. 

Data of the combinatorial experiment and combination index scores for A-549 cells 



 

treated with methiazole and trametinib at the indicated concentrations.  

  



 

Supplemental Information 

Figure S1 

 
Primary screening data.  

A. Morphological characteristics of KRAS-mutant cells (A-549, H-23, and H-1573) and 

wild-type cells (H-1650, H-522, and Calu-3). B. Linear progression of the luminescence 

of proliferation assays in two different experiments. Reproducibility of R2 values > 0.90. 

C-G. Graphs showing the Z-scores of the inhibitory effect of the compounds from the 



 

primary screen on H-23, H-1573, H-1650, H-522, and Calu-3 cells. 

 

Figure S2 

 
Distribution of the screened compounds. A. Histogram of the Z-scores of the 

compounds for H-23, H-1573, H-1650, H-522, Calu-3 cells. B. Violin plot for the 

results of the Z-scores of the screening compounds and cisplatin.  

 



 

Figure S3 

 
Detailed experimental results of the selected compounds. A, B. Cell viability and 

caspase activity in all cell lines after treatment with selected compounds from primary 

screening. C. Gene mutation status of the cell lines. 

 

Figure S4 



 

 
Effects of methiazole and fenbendazole on KRAS-mutant cell proliferation and 

apoptosis. A. Effects of methiazole and fenbendazole on the proliferation of A-549, 

H-23, H-1650, and H-2228 cells as determined by Ki-67 analyses at a low-power field. 

B. Effects of methiazole and fenbendazole on the apoptosis of A-549, H-23, H-1650, 

and H-2228 cells as determined by Hoechst 33258 staining at a low-power field. C. 

Ratio of caspase activity to the number of viable cells. D. The ratio of apoptotic cells in 

the A-549, H-23, H-1650, and H-2228 cells after treatment with methiazole and 



 

fenbendazole was calculated as the number of apoptotic cells to the total cell number 

counted. The values are mean ± SD (n = 3). ***, p < 0.001. E. Caspase activity in the 

A-549, H-23, H-1650, and H-2228 cells after treatment with methiazole and 

fenbendazole was assessed using the caspase 3/7 assay. The values are mean ± SD (n = 

3). *, p < 0.05. 

 

Figure S5 

 

IC50 of fenbendazole. The cells were treated with increasing doses of fenbendazole. 

Cell viability was determined using an ATP-based assay. The values are mean ± SD (n = 

4).  

 

Figure S6 



 

 
Therapeutic effect of methiazole in a subcutaneous cancer xenograft model. A. 

Schematic protocol of the animal study. Subcutaneous xenograft mouse models were 

established with A-549 (KRAS-mutant) and H-1650 cells (wild-type). Methiazole (180 

mg / 200 µL olive oil) were injected intraperitoneal on day 6, 7, 12, 17 (total 720 mg). 

At the end of the treatment, tumors were harvested on day 19. B. Methiazole inhibited 

tumor growth as measured by tumor weights. The values are mean ± SD (n = 6).  

 

Figure S7 



 

 
Analysis of structurally similar compounds. A. Structure of benzimidazole and 

carbendazim. B. Effects of benzimidazole and carbendazim on the proliferation of 

A-549, H-23, H-1650, and H-2228 cells as determined by Ki-67 analyses at a 

low-power field. C. The ratio of apoptotic cells in the A-549, H-23, H-1650, and 

H-2228 cells after treatment with benzimidazole and carbendazim was calculated as the 

number of apoptotic cells to the total cell number counted. The values are mean ± SD (n 

= 3). n.s., not significant. D. Caspase activity in the A-549, H-23, H-1650, and H-2228 



 

cells after treatment with benzimidazole and carbendazim was assessed using the 

caspase 3/7 assay. The values are mean ± SD (n = 3). n.s., not significant. E. Heatmap 

showing the effect of structurally similar compounds in KRAS-mutant and wild-type 

cell lines. F. The ratio of the caspase activity to the number of viable cells in normal 

epithelial cells treated with benzimidazole derivatives and cisplatin. 

 

Figure S8 

 



 

Biological effects of benzimidazole derivatives and combinatorial effects with 

tyrosine kinase inhibitors. A. Western blot analyses of SAPK, NFκB, and PI3K levels 

in H-23 and H-1650 cell lines treated with benzimidazole derivatives. B. Image of the 

combinatorial experiment of methiazole and fenbendazole with trametinib, dabrafenib, 

vemurafenib in A-549 cells. The data of the combinatorial experiment and combination 

index scores for A-549 treated with fenbendazole and trametinib at the indicated 

concentrations. The values are mean ± SD (n = 3). 

 

Figure S9 

 

Caspase activity in combinatorial therapy. The data of the relative caspase activity of 

combinatorial experiment for A-549 treated with methiazole and fenbendazole with 

trametinib at the indicated concentrations. The values are mean ± SD (n = 3). 
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