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ABSTRACT. In usual probability theory, various characterizations of the Gaussian
law have been obtained. For instance, independence of the sample mean and the
sample variance of independently identically distributed random variables character-
izes the Gaussian law and the property of remaining independent under rotations
characterizes the Gaussian random variables. In this paper, we consider the free
anologue of such a kind of characterizations replacing independence by freeness. We
show that freeness of the certain pair of the linear form and the quadratic form in
freely identically distributed noncommutative random variables, which covers the
case for the sample mean and the sample variance, characterizes the semicircle law.
Moreover we give the alternative proof for Nica’s result that the property of remain-
ing free under rotations characterizes a semicircular system. Our proof is more direct
and straightforward one.

0 Introduction

In [Vol], D. Voiculescu began studying operator algebra free products from the
probabilistic point of view. The idea is to look at free products as an analogue
of tensor products and to develop a corresponding noncommutative probabilitic
framework where freeness is given a treatment similar to independence. The analogy
between freeness and independence is that around freeness, several concepts can be
developed similar to those around independence, free random variables, the central
limit theorem for free random variables, the addition of free random variables,

process with free increments etc..
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Especially the central limit theorem for free random variables holds with limit
distribution equal to a semicircle law. And semicircle laws play in many respects
the role of the Gaussian laws, when independence is replaced by freeness in a
noncommutative probability space, consequently, semicircle laws are in some sense
the free analogue of the Gaussian ones. The explanations for occurrence of the
semicircle law, both in the free central limit theorem and Wigner’s works (see [Wi))
on asymptotics of large random matrices, are found in [Vo3].

In usual probability theory, various characterizations of the Gaussian laws have
been obtained, for instance see [KLR]. Thus it is natural to consider the free ana-
logue of such characterization problems of the semicircle law in noncommutative
case too. In [BV], H. Bercovici and D. Voiculescu, however, showed that the free
analogue of the Cramér theorem on the decomposition of a semicircle law is failure.
Nevertheless, A. Nica showed that the property of remaining free under rotations
characterizes a semicircular system in [Ni], which is the free analogue of the well-
known fact in usual probability theory, that the property of remaining independent
under rotations characterizes the Gaussian random variables, see [Fe|, Section I11.4.

In this paper, we establish some characterizations of the semicircle law by the
freeness of noncommutative random variables replacing independence by freeness.
We have three sections in this paper. Section 1 is devoted to preliminary materials
for noncommutative probability spaces and free random variables.

In section 2, we consider the characterization of the semicircle law by freeness
of the certain pair of the linear from and the quadratic form in freely identically
distributed noncommutative random variables, which covers the free analogue of
the well-known fact in usual probability theory that the independence of the sam-
ple mean and the sample variance of independently identically distributed random
variables characterizes the Gaussian laws [KS]. We show the semicircleness of the
distribution by calculating the higher moments with induction because our distri-
bution has a compact support.

In section 3, we give the alternative proof for the above Nica’s work. He showed
this characterization as an application of the multidimensional R—transform intro-
duced in his paper [Ni], that is the multivariate version of Voiculescu’s R—transform
[Vo2| for a noncommutative random variable, the free analogue of the cumulants
generating series. However, we show it by using the same technique that we use in

section 2 and our poof is rather direct and straightforward one.



1 Noncommutative probability spaces and a semicircular system

This section contains preliminaries concerning with noncommutative probability
spaces and free random variables. Recall that a usual probability space is (€2, 3, ),
where 2 is a base space, Y. is a 0— algebra and p is a probability measure (i.e.
positive and satisfying p(£2) = 1). A random variable is a mesurable function

f:Q — C, and if f is integrable then its expectation E(f) is given by

(1) B = [ rau)

We can consider a noncommutative probability space in a purely algebraic frame

as an analogue of the above usual probability space.

Definition 1.1. A noncommutative probability space is (A, ¢), where A is a
unital algebra and ¢ : A — C is a linear functional with ¢(1) = 1. We say that
(A, ¢) is a C*— probability space when, in addition, A is a C*— algebra and ¢ is
a state, and it is a W*— probability space when A is a von Neumann algebra and

¢ is a normal state.

One can define independence in a noncommutative probability space, general-
izing the usual definition. Note that independence of usual random variables was
actually express in terms of the subalgebra of L*°(€2), so it makes sense to speak

of independence of subalgebras in a noncommutative context.

Definition 1.2. Let (A, ¢) be a noncommutative probability space, and A; C A
be subalgebra (i € I), for the index set I. We say that the family (A;);cr is
independent if

(1) for every 11,09 € I (Zl 7& ig),
T1T9 = xoxy for 1 € Ay and xe € A,

(i1)
(@122 - - ) = P(T1)P(32) - - P(Tn)

whenever x; € A;; and 41,42, , i, are distinct.
Note that if 1 € A; (ii) is equivalent to (ii)’.
(i)
d(x129--25) =0

whenever z; € A;; and 4,12, , 4, are distinct and ¢(x;) = 0 for all j.
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This form of independence is based on the tensor product of algebras. We will
replace this concept by a more noncommutative one which takes instead of the
tensor product the reduced free product. This concept is due to D. Vioculescu and

explained below.

Definition 1.3. Let (A, ¢) be a noncommutative probability space and A; be
subalgebra of A containing the identity element of A, 1 € A; C A, for i € I. We
say that the family (A;)cr is free if

d(zrxe---2,) =0

whenever z; € A;; and iy # 42 # --- # i, and ¢(x;) = 0 for all j.
A family of subsets X; C A (resp. elements z; € A) will be called free if the
family of subalgebras A; generated by {1} U X, (resp. {1,z;}) is free.

Freeness is related to independence only by analogy, since independence is about
mutually commuting noncommutative subalgebras and freeness is highly noncom-
mutative. The definition of freeness allows us to calculate all moments, the ex-
pectation of a product element. This calculation is done according the following

recursive procedure.

Let iy # @2 # -+ # in and z; € A;, be given, where the family of subalgebras
(A;) is free. We put

(1.2) T;=xj— o(z;)1
then z5 € A;; and ¢(z%) = 0. It follows that

A1z xn) = (@] + p(x)1)(23 + d(22)1) -+~ (3, + B(20)1))

(13) =3 0(@n1)b(@n(z) - S )0y To0s) T )
where the sum runs over all partitions of {1,2,--- ,n} into two ordered sets, {7 (1),
w(2), --- ,m(m)} and {o(1),0(2),--- ,0(n —m)} with m > 1. From the definition,

the term for m = 0 vanishes. After combining neighboring elements of the same
algebra, the terms xg(l)xg(Q) - -xg(n_m) can be written as a product y1ys - Y
with y; € A, and Iy # [2 # -+ # I,y . Now we can repeat this procedure and
because of n’ < n, this procedure will be stopped after finitely many steps.

In general, the calculation of a moment becomes much more combinatorially
complicated for longer one. We will, however, have the next useful property of the

calculation procedure which will be sometimes used in this paper.



Lemma 1.4.  Let (Ay)icr be a free family of subalgebras in a noncommutative
probability space (A, ¢). Consider a product xixo -, with x; € A;, for j =
1,2,--- ,n. If there is one algebra which appears only once, i.e. these exists the

number k with iy # i; for all k # j, then we have

(1.4) P(z122 -+ Tp) = P(TR)A(T1 - T 1Tpoy1 -~ Tn)-

This lemma follows from the definition of freeness. Of course, if 1 - - Tp_12541
-- -z, fulfils again the requirements of this lemma, we may repeart this procedure.

We call an expectation of the form ¢(z") the simple moment of x of order n.

Definition 1.5. Let (A, ¢) be a noncommutative probability space. A random
variable is an element x € A. The distribution of x is the linear functional p, on

C[X] (the algebra of complex polynomials in the variable X), defined by

(1.5) pe(P(X)) = ¢(P(x)), forall P e C[X].

Note that the distribution of a random variable z € A is nothing more than a

way of discribing the simple moments.

Remark 1.6. In a C*— probability space (A, ¢), if x is a self-adjoint element of
A then the distribution of x, u,, extends to a compactly supported measure on R,

namely there exists a unique measure, du, on R such that

(16) / P(0)dpa () = S(P(2)).

An important distribution in a noncommutative probability space is the semicir-
cle law, which plays in free probability theory a role analogous to one of Gaussian

law in usual probability theory.

Definition 1.7. The semicircle law centered at m € R and of radius r > 0 is
distribution 7, , : C[X] — C definied by

m—r
(1.7) e (POO) = = [ POV - Pt

Suppose (A, ¢) is a noncommutative probability space, an element z € A will be

called semicircular centered at m € R and of radius r > 0 if its distribution p, is

TYm,r.



It is known that the semicircle law play in many respects the role of the Gaussian
one, when independence is replaced by freeness. And similary to the Gaussian case,

the semicircle law is determined by its moments of orders one and two; v, »(X) = m
2

&

and v, »(X?) = m? + TZ

Remark 1.8. Concerning with the moments of a centered (m = 0) semicircular

element x of radius r, it is easily done via integration by parts and induction that

o) = / e R

-7

(1.8) 0 if k= 2m + 1,
= 2m)! 2\
(2m)!

The number C,,, = is known as the Catalan number, which will appear

m(m + 1)!
in various fields of combinatorics. Moreover, the second moment of the centered
2

.
semicircular element of radius r is given by 7 50 the relations (1.8) can be read as

(1.9) { o =0
d(x*™) = Cppp(x®)™, for m > 0.

As we noted before, the distribution of a self-adjoint element in a C*— probability
space extends to a compactly supported probability measure on R and if it is
absolutely continuous with respect to the Lebesgue measure and has the continuous
probability density function, then it can be completely determined by its moments.
Hence we can assert that, for a self-adjoint element z in a C*— probability space
(A, ¢), x is a centered semicircular element if and only if the moments of x satisfy
the relations (1.9).

Definition 1.9. In a C*— probability space (A, @), a family (z;)i=1.2,. n
of random variables is called freely identically distributed if it is a free family of
the self-adjoint elements and each x; has the same distribution. We call a family
(2i)i=1,2,... n of freely identically distributed random variables semicircular system
it the identical distribution of each z; is given by the centered semicircle law g ;.
for some r > 0.

Speaking in the terms of its moments, they satisty the following relations:

p(a7m ) =0,
(1.10) ¢(33?m> = Cméb(@"?)m for 1 <i<nandm >0,
$(2?) = ¢p(z?) >0  for1<i,j<n,

where C,,, are the Catalan numbers.



2  Freeness of the linear form and the quadratic form

In this section, we will give the characterization of a semicircular system by
the freeness of the linear form and the quadratic form in noncommutative random
variables.

In commutative case, for a given family of independently identically distributed
random variables, the most important linear form and quadratic form are the sam-
ple mean and the sample variance, respectively.

It is known that if the identical distribution is Gaussian then the sample mean
and the sample variance are independent. Conversely, independence of the sample
mean and the sample variance implies the Gaussianity of the identical distribution.
That is, independence of the sample mean and the sample variance characterizes
the Gaussian law [KS].

Having the above fact in mind, we establish the noncommutative version of such
a characterization replacing independence by freeness.

We shall begin with the key result which is found in [VDN], Proposition 5.1.2.

Proposition 2.1.  Let (2;)i=1,2,... n be a semicircular system in a C*— probabil-
ity space (A, @) and let T = (t;;) € O(n) be an n X n real orthogonal matriz. We
put

n
(2.1) yz‘:}:tijﬂﬁj7 (i=1,2,---,n).
j=1

Then the family (y;)i=12,... n is also a semicircular system.

In Proposition 5.1.2 in [VDN], the traciality of the state ¢ was imposed, but in
order to have the above statement, it is no matter to regard the C*— algebra A as
the C*— free product [ =;_,.A; of the algebras A; generated by {1, z;}. Since each
A; is abelian and the state on [] *?:1./42- is determined by its restriction on each
A;, see Proposition 2.5.5 in [VDN], so the traciality of the state is automatically
derived in this case.

We consider the certain pair of a linear form and a quadratic form which covers

the case of the sample mean and the sample variance.

Proposition 2.2.  Let (#;)i=12,.. n be a semicircular system in o C*— prob-
ability space (A, ¢). Let A = (a;5) € Mp(R) be an n x n real matriz and b =

tby,ba, -+ ,by) € R™ a non-zero n— dimensional Teal vector satisfying with

(2.2) Ab=0 and 'BA=0.



Then we have that the linear form ¢ = Y.  byx; and the quadratic form q =

n
Ei,j:l a;;x;x; are free.

—_

2)1/2_

4 =

Proof.  Without loss of generality, we may asuume that ||b|| = (37_, b

Take the orthonormal system of R", {cq,¢2, - ,¢p—1,¢, = b} and denote ¢; =

t(cty,cta, -+ ,ctn). We make the orthogonal matrix S by Sc; = e;, where e; is
i

~—

the i-th canonical unit vector *(0,---, 1,--+,0). By the assumption (2.2), we have
SA'SSb = 0 and 'b!SSA!S = 0, which implies that the matrix SA'S can be

written of the form

n—1
(2.3) sats=| @ =3 ayBEy,
ii=1

0O ... 00

where E;; means the (7, j)—th matrix unit and «,; is a constant. Thus we obtain
that

n—1
(2.4) A=Y aele

2,5=1

and the quadratic form ¢ turns out

n—1
(25) =Y iy,
t,j=1
where y; = > ¢, kT, i = 1,2, ,n. From Proposition 2.1, the elements y1, 92,

oy Yp—1 and £ = bixy + bexo + -+ + byx, are free. Hence we obtain that ¢
is free from the C*— subalgebra generated by {y1,y2,- - ,¥yn—1}, namely £ and
q = 22;211 oYY = ZZj:l a;jr;x; are free. Because we know that, in general,
if ,y,z are free in (A, ¢) then z is free from the algebra C*({y,z}) C A, see
Proposition 2.5.5 in [VDN].

O

Theorem 2.3.  Let xq1,x2, -, 2, be freely identically distributed random vari-

ables with zero expectations, ¢(x;) = 0, in a C*—probability space (A, ¢). Let

A = (a45) € Mp(R) be an n x n non-negative definite real matriz and b =
tby,ba, -+ ,by) € R™ be an n— dimensional non-negative vector satisfying with

the conditions

(2.6) Ab=0 and Zbiaii £ 0.
=1



We put the linear form € =", | b;x; and the quadratic form q = Z:'L,jzl i T4 T 5
Then the forms £ and q are free if and only if the family (x;)i=12,... n s a semicir-

cular system.

Proof. First, we show that ¢(z7™ 1) =0 for m > 0 by induction on m.
For m = 0, it is nothing but our assumption. For m > 1, we consider the
expectation ¢(€q™). Using the freeness of £ and ¢, we have ¢p(£¢™) = ¢(£)p(¢™) = 0.

On the other hand, we have the following expansion:

o(lg™) = ¢ <(i1 biw;) ( i az‘jﬂfz‘fﬂj)m>

4,j=1

n
= bageimt)
i=1

(27) 4+ lln{¢($;ll)¢($;l2) e gb(x;l’k(l) )¢($;21)¢(37;22) e

.. ¢($;2’k(2)) - gb(x”;{b,l )Qb(ﬂ?;”g) . Qb(ﬂ?;n’k(n)) :
n k(j)

DY u=2m+ 1, #{i k() >0} > 2}.

j=11=1

Here the second term of the above expression means that the linear combination of
the products of the simple moments. And this linear combination is homogeneous of
dgree 2m 41 in the sense that 2?21 ngl) ti1 = 2m+1. It all 1;; are even integers
then the summation ) ¢;; should be even. Nevertheless > ¢;; is odd number so we
can find a moment of some odd order among the factors of each summand, and its
order is strictly smaller than 2m 4 1. Thus the induction hypothesis implies that

the term of this linear combination must be 0. Hence we have that
(2.8) $(lg™) =Y biafp(xi™ ) =0
i=1

and then

(29) @ by )i H) =0

since all x;’s have the same distribution. From the assumption, it follows that
S bial? > 0, which implies that ¢(x;™*!) = 0.

Next using induction on m, we shall show that ¢(z7™) can be expressed as
(2.10) P(21™) = amp(ai)™,

9



where «,,, is the constant which depends only on the matrix A and the vector b.
For m = 1, it is clear that vy = 1. For m > 2, we assume that the constants
Q1,Q9, - , Q1 have been determined by the matrix A and the vector b, as the
induction hypothesis. Now we consider the expectation ¢(£2¢™~!) and expand it
in two different ways.

The first way is as follows:

H(gm ) = o () p(¢™ ) by the freeness of ¢ and ¢

(2.11) _ ¢< E’L: bibjxixj>¢<( E’L: az‘jxiwj)m_l>.

ij=1 ij=1
The freeness of (x;) implies that ¢(x;x;) = 0 if 2 # j. Thus we have, on the first
factor of (2.11),

(2.12) ¢<i bz-bj:ci:cj> = ¢<i b3x§> — Zb% <Z b2>

i,5=1 i=1 i=1

because x;'s have the same distribution. The second factor of (2.11) can be ex-
panded into 2(m— 1)-homogeneous linear combination of the products of the simple
moments. And only the summands constituted from the simple moments of even
orders could appear because the moments of odd orders will vanish as we have
shown just above. Using the induction hypothesis and the assumption that z;’s

have the same distribution, the second factor can be written as

n
-1 m—
(2,13) gb((z ajk;xmj)m > :Fl(A,b,@l,&Q,-.. 7am,1)¢(x%) 17
2,7=1
where F is the constant determined by the matrix A, the vector b and the constants
a1, Qa, -, am—1. Combinding the equalities (2.11), (2.12) and (2.13), we have

(2.14) p(2g™ ) <Zb2>F1 (A, b,ar, a2, 1) d(z])™.

=1

The other way for the expansion is as follows:

p(2qm 1) < Z b;b, x,xj Z aklajkxl _1>

2,7=1 k=1

- (Z BRals 1)¢<x%m>
=1

(2.15) + lin{gb( 11 1)¢(xbll 2) . gb(xil,k(l))gb(x;zl)gb(x;z 2) .

.. ¢<x;2,k(2)) . ¢<x;nl>¢<x;n2> . gb(x;nk(n)) :

n k(7)

SOS i=2m, # k() >0} > 2}

j=11=1
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As we used in (2.7), the second term of the above expression means that the linear
combination of the products of the simple moments. Moreover this linear combi-
nation is homogeneous of dgree 2m in the sense that E?’:l ?::(31) tj1 = 2m. Then
only the products of the moments of even orders, which are strictly smaller than
2m, could appear because we know that the moments of odd orders will vanish.
Again use the induction hypothesis and the assumption that z;’s have the same

distribution, this linear combination can be written as
(216> F2<A7b7a17a27"' 7am*1>¢<x§>m7

where F, means the constant determined by the matrix A, the vector b and

a1, 09, ,am_1. Consequently, we obtain that
(217) (2" ") = (Z b?a?zl)¢<w%m> + Fa(A,b,ar, az, - 1) (27)™
i=1

From the equalities (2.14) and (2.17), it follows that

n

n —1
P(zi™) = <Z b?ai?*) {(Zb?)Fl(A,b,al,ag,--- 1)
=1 =1

(2.18)
—F2<A7b7 g, (g, v 7am1)}¢<x%)m7

where the assumption implies that 37, b7a}7 ' > 0. Hence we obtain that ., is
determined by the matix A and the vector b, which ends induction.

By the way, since the matrix A and the vector b satisfy the conditions of Propo-
sition 2.2, if we set (21,22, ,2,) be a semicircular system then ¢ and ¢ become a

free pair. So the constants «;’s are the universal constants determined only by the

(2m)!
(m+ Dlm!
O

freeness of £ and ¢. This implies that «,, is the Catalan number C,,, =

Corollary 2.4.  Let xy1,22, -+ ,x, be freely identically distributed random vari-
ables in a C*— probability space (A, ¢). We put T == 37" | x; (the sample mean)
and v = =37 (z; — T)* (the sample variance) are free if and only if (z;) is the

semicircular system.

Proof.  As similar to the commutative case, v is given by putting the coefficient

matrix A = (a;;) as a;; = %(5@- — %, where §;; is the Kronecker’s delta and Z is
11

PN %) Then the matrix A and the vector b satisfy

given by the vector b = (
the requirements of Theorem 2.3.

O

11



3 Remaining free under rotations and semicircle laws

In this section, we give the alternative proof for Nica’s work [Ni], that the prop-
erty of remaining free under rotations characterizes semicircular elements. This is
the free analogue of the well-known fact in usual probability theory that property
of remaining independent under rotations characterizes Gaussian random varibles,
see for instance Section I11.4 in [Fe].

In [Ni], A. Nica introduced the multidimensional R—transform (free analogue of
the cumulants generating series) and investigated its behavior under linear trans-
formations of the coodinates. Using these results, he proved the above characteriza-
tion. We will, however, apply the same method which we have used in the previous
section, that is a direct calculation of the higher moments of noncommutative ran-
dom variables, in order to give the alternative proof.

We shall begin with the definition of the some property for a matrix which will

be required for an orthogonal transformation of random variables.

Definition 3.1. Let A = (a;;) € M,(R) be an n x n real matrix. For the pair of
integers (i,7) € {1,2,--- ,n} x {1,2,--- ,n}, we consider the set K(; ;y = {k |1 <
k < n,agiar; # 0}. If the set K(;,j) has at least two elements, i.e. #K(; ;) > 2,
then we write i - j or simply write 7 ~ j if no confusion.

Moreover, we write 4 é j if there exist numbers ji,ja, -+, 7; such that i = jq,

jl Nj27 7jl—1 lev jl :.]
A
Definition 3.2. A matrix A is called indecomposable if i ~ j for any i and j.

Proposition 3.3. Let A € M,(R) be an orthogonal matriz. Then A is inde-

composable if and only if C1AC: does not have the form

(3.1) <f(1)1 £2>

for any permutation matrices Cy,Cs, where Ay, Ay are orthogonal matrices and

their dimensions are strictly smaller than n.

Proof The part of “if” is trivial. Now, we assume that A is not indecomposable.

A _ A A A
Then without loss of generality, we may assume that 1 2~ --- ~ k and i % j for
every 1 <i<k,k+1<j<n.

12



Note first that, in general, if row vectors (by,bs, -+ ,b,) and (c1,¢2, - ,¢,) in
R"satisty

(3.2) blcl +b262 + ---+bncn =0
and
(3.3) #{k : brey # 0} <1

then ; # 0 implies ¢; = 0. This means that ay; # 0 implies ag; = 0 if 7 ~ 7.
Exchanging column vectors of A, we may assume that there exist 1 = ig <11 <
-+ <4 < n such that
Ast 7£ 07 Z.8—1 S t S is

(3.4) )
ass = 0, s <t <n

A
for 1< s <k Inthecasel <i <k <j<n,i% j. Sowe have i = j. By the

above note and our assumption, we have
(3.5) asy = 0,

fhk<s<n,1<t<iporl<s<k, ir<t<n. The linear independence of row
(resp. column) vectors of A implies k < i (resp. k > ix). So we get k = ij. That

is, A is decomposed to a direct sum of two orthogonal matrices.
O

Remark 3.4. 'The condition that A is indecomposable coincides with the stronger

condition which can be found in Theorem 5.3" in [Ni].

Theorem 3.5. Let A = (a;;) € O(n) be an n x n - real orthogonal matriz and
indecomposable in the sense of Defnition 3.2. Let x1,x2,--- ,x, be non-scalar self-
adjoint elements of a C*— probability space (A, @) with zero expectation, ¢(x;) =
0. If the family (x1,x2,--- ,2n) is free and the family (y1,y2,- - ,Yn) s still
free, where y; = E?:l a;jx;, then the family of noncommautative random variables

(21,22, ,Zp) s a semicircular system.

Proof. 1t is enough to show the relations (1.10).

First we shall show that gb(a:?erl) = 0 by induction on m. For m = 0,

it is nothing but our assumption. For m > 1, all we have to prove is that

13



o(x Z’”Jrl) = ¢(x 2’”+1) only for a pair (ig,jo) with ig ~ jo, because the matrix
A is indecomposable in the sense of Definition 3.2.

By the definition, given a pair (ig,jo) with iy ~ jg, we can find the integers
ki and ko such that aw i 0r,5, 7 0 and agyi,ar,j, 7 0. Here we consider the n
expectations, gb(y,f,’” Yeye) for £=1,2,--- | n

If ¢ # ko then,using the freeness of 7;’s and applying the Lemma 1.4, it follows
that

(3.6) O yrae) = W) O ye) = 0

since ¢(yk,) = 0. And if ¢ = k, then we have

(3.7) O M yaye) = W N o(WR,)-

Apply the same method as we used in the proof of Thorem 2.3, to the simple

2m—1

>m=1) " That is, we expand d(y,." ") to the (2m — 1) homogeneous

moment ¢(y;;"
linear combination of the products of the simple moments of x;’s and the induction

hypothesis makes each summand vanish, i.e.

(3.8) Gy ™) = 0.
Consequently, we obtain that

(3.9) O yyye) =0 forall£=1,2,-- |n

On the other hand, ¢(yiT_1yk2yg) can be expanded as follows:
1 n n
2m—1 2m—
R k) ( > w7 (O o) (S i)
Z a2m 1ak2]a£3$2m+1)

T 1m{¢< B ) - g

(3.10)
g )play2) - pla )
n k()
S u=2m+1, #{j: k() >0} > 2}
j=11=1

— ZGQm 1ak}2]a1€j¢( 2m+1)
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Of course, the part of the linear combination of the products of the simple moments
will vanish by the induction hypothesis and only the highest simple moments can

survive. Thus we have the linear equations,
(3.11) E:aku Yapad(@m Ty =0 (£=1,2,---,n),

which can be written in the matrix form as

2m—1 ( 2m+1)

akll ak21¢ 0
2m—1 2m+1
a g2 (25" 7) 0
(3.12) Al B -
0%731 1ak2n¢<x721m+1> 0

The invertibility of the matrix A implies that
ai?} . 2J¢< 2m+1) 0 (] = 1727 o 7n>'

Since the integers ki and ks have been chosen such that ag,;,ar,j, 7 0 and

Qi Uksjo 7 0, it follows that ¢(x 2erl) gb(T?gnJrl) = 0.

Next we shall show the sameness of the variances that

(3.13) #(a1) = ¢(a3) = -+ = p(a7).

Because of the indecomposablity of the matrix A, it is enough to show that gb(a;;‘-)o) =
gb(a;?o) only for a pair (ig,jo) of integers with iy ~ jo. From the definition of
io ~ Jo, we can take the integer k; such that ay,,,ax,;, 7 0. Here we consider the
n expectations, ¢(yg,ye), ¢ =1,2,--- n. It is direct consequence of the freeness

of families (z;) and (y;) that

0 if 0 £ Ky
3.14 (ai : :

which can be written in the matrix form that

akllgb(x%) 0
(3.15) A Gk, ¢(33z1) = ¢(?/1%;1) < the kith row.
aklngb(x;zl) 0
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The orthogonality of the matrix A imples that

ak?llgb(w%) g1
ak12¢(x%) k2

(3.16) : = . | o),
aklngb(w%) Akyn

because A™1 is given by Y A. As the integer k; has been chosen such that ag, ;,ak, j, #

0, it is clear that ay, i, # 0 and ay,;, # 0. Hence we obtain that ¢(x7,) = (23 ).

Finally, we shall show with induction that ¢(z3™) can be written in the form

(3.17) pai™) = af) p(a)™
where a( ) is the constant determined by the matrix A.

For m =1, agz) =1(=1,2,---,n) as we have shown just above. For m > 2,
we assume that the constants a( R (i=1,2,---,n, k=1,2,--- ;m — 1) have been

determined by the matrix A. Here take a pair (ig, jo) of integers with ig ~ jo and

find integers kqy and k such that ag, o0k, 5, 7 0 and au,i,ar,j, 7 0. Then consider

the n expectations, gb(yim 2yk2y£)7 ¢=1,2,--- ,n. By freeness of (y;), we have
0 it € # ko
o i D, R
b IR T g N eR,) =k

Then gb(y,%,m %) can be expanded as the (2m — 2) homogeneous linear combination
of products of the simple moments, in which only ones of even orders will survive.

Hence the induction hypothesis implies that

(3.19) @b(yim 2) F(A, agl), agl), R (1) (2) e (") )gb(x%)m*l,

Q1o 7 X1

where F means the constant determined by the matrix A and the constants a( )

VRN CY

, a,” 1. On the second factor of (3.18), we have

yk}g § QAfoi Qo Lq TJ
4,7=1

(> ) — (Z ) o)
=1 =1

by the knowledge that all ¢(z?) are equal. Combining (3.18), (3.19) and (3.20), we
obtain that

(3.21) P 2) = (Z) m

(3.20)
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which means that gb(y,ff” Zy,%, ) can be expressed as the product of the constant

F(A) determined by the matrix A and the power of the variance, ¢(z3)™

On the other hand, the n expectations gb(y,z?%gykz ye) could be expaned as fol-

lows:
2 2
¢(?/1im “Yr i) = <Zal€1JTJ " ZakijJ ZWJTJ >
2m—2 2
:¢(Z%T} akzjaﬁjx;m)
j=1
(3.22)

; 1m{¢< B - g

Bl E) Bl

n k()

S vu=2m, #{j:k<j>>0}z2}.
Jj=11=1

Again we apply the similar argument as we used in the proof of Theorem 2.3. That
is, the part of the linear combination in the above equality is 2m - homogeneous and
only the products of moments of even orders, which are strictly smaller than 2m,
could appear. Now the induction hypothesis implies that this linear combination
can be written as the product of the constant determined by the matrix A and the

power of the variance ¢(x3)™, i.e.
(3.23) O Yrea Ye) Zak R agya0 (23T + Fy(A)p(z)™,

where Fy;(A) means some constant determined by the matrix A.
Having in mind the relations (3.18), (3.21) and (3.23), it turns out that

(324) Zaklj akzja€j¢( ) GK(A)Qb(x%)m for ¢ = 1, 27 ce M,

where we denote Gy(A) the constants determined by the matrix A as

—Fy(A) if 04 ko,

(3.25) Ge(A) = { F(A) (X a},,) — Fi(4) it £ = ko.

In the matrix form, we obtain that

aiﬁ 2ak21¢($%m) G1(A)
a2 a0 (23T Ga(A

(3.26) A i k:.2 (z3™) _ ( ) (2™,
aph gy (™) Gn(A)
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The invertibility of the matrix A (in this case A™! is given by ‘A) implies that
(327) @ Can,ye(aim) = (Z ajz-Gz-(A)> o(z)™  for j=1,2,--- ,n.
i=1

Since we chose the integers ki and ko such that ag,;,ak,j, 7 0 and ap,i, @k, j, 7
0, it follows that ¢(z7™) and ¢(x3™) can be written as ¢(z77) = agﬁo)gb(x%)m

and p(x3™) = a%o)gb(x%)m, where !, o) are the constants determined by the

matrix A. Since the pair (ig, jo) has been taken arbitrary, this ends induction.

By the way, if we set (21,22, ,2,) be a semicircular system then the family
(y1,Y2, -+, Yn) is still free system by Proposition 2.1. The scalar o) must coin-
2m)! ;
cide with the Catalan number C,,, = L, since the constants asfb)’s are the
(m+ 1)Im!

universal constants determined only by the freeness.
O

If z is a centered semicircular element of some radius then the random variable
Az, any scalar multiple of z, is still a centered semicircular element. That is, the
relations (1.9) are invariant under dilations. It should be noted that, in the proof
of Theorem 3.5, we have shown the relations (1.9) directly for the pair of random
variables x;, and x;, with ig ~ jo.

Moreover our assumption that each x; has zero expectation ¢(z;) = 0 is not
essential requirement. Because freeness will be kept in translations. Thus we can

give the following slight extended characterization of the above theorem as corollary.

Corollary 3.6. Let A = (a;;) € O(n) be an n X n - real orthogonal matriz and
we put B = (b;;) as
A1 0 1 0

A
(3.28) B= : A S ,

0 An 0 Hn
where Mo -+~ Ay # 0 and pipo - pn # 0. Let 1,29, , 2, be non-scalar self-
adjoint elements of a C*— probability space (A, ®). We assume that the family
(21,22, , ) is free and the family (y1,y2,- -+ ,yn) is still free, where y; =
E?:l bijri. If i # j and i 2 J then we have that x; and x; are semicircular
elements.

Finally we comment that we can have futhermore characterizations of a semicircle
law which are related to quadratic forms or the free analogue of noncentral chi-

square distributions. They will be discussed in the sequent paper [HKNY].
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