SOME SUBSEMIGROUP OF AN EXTENSION SEMIGROUP OF C*-ALGEBRAS

YUTAKA KATABAMI AND MASARU NAGISA

ABSTRACT. In this paper we investigate the structure of the subsemigroup generated by the inner automorphisms in $\mathbf{Ext}(\mathbb{K}, \mathcal{Q})$. As an application, we give a new point of view to the example of J. Plastiras, which are two C*-algebras \mathfrak{A} and \mathfrak{B} satisfying $\mathfrak{A} \not\cong \mathfrak{B}$ and $\mathbb{M}_2 \otimes \mathfrak{A} \cong \mathbb{M}_2 \otimes \mathfrak{B}$.

0. Introduction

J. Plastiras exhibited an example which is a pair of C*-algebras such that $\mathfrak{A} \ncong \mathfrak{B}$ and $\mathbb{M}_2 \otimes \mathfrak{A} \cong \mathbb{M}_2 \otimes \mathfrak{B}$ ([5], [6]). They are constructed as extensions of \mathbb{K} by \mathcal{Q} , where \mathbb{K} is the C*-algebra of compact operators and \mathcal{Q} is the quotient C*-algebra of all the bounded linear operators \mathbb{B} by \mathbb{K} . So they are not nuclear. For a class of nuclear C*-algebras, we can construct such a pair of C*-algebras using the classification result for them by K-theory([2], [3]). In [7], T. Sakamoto construct such a pair of non-nuclear C*-algebras.

In this paper, we consider a family of special extensions of \mathbb{K} by \mathcal{Q} which contains Plastiras' examples. Our aim is to investigate their semigroup structure and to show that the datum for this semigroup is the useful invariant for them as like as K-thoretic datum for some nuclear C*-algebras.

1. Preliminaries and Main result

Here we give fundamental facts of extension theory along [1] and [8]. Let \mathcal{H} be a separable infinite dimensional Hilbert space. We denote by \mathbb{B} (resp. \mathbb{K}) a C*-algebra $\mathbb{B}(\mathcal{H})$ (resp. $\mathbb{K}(\mathcal{H})$) of bounded linear operators (resp. compact operators) on \mathcal{H} . We also denote by \mathcal{Q} a C*-algebra $\mathbb{B}(\mathcal{H})/\mathbb{K}(\mathcal{H})$. Let A, B and C be C*-algebras and α (resp. β) a *-homomorphism from A to B (resp. from B to C). We call a short exact sequence E as below an extension of A by C:

$$E: 0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

that is, α is injective, β is surjective and $\operatorname{Im}\alpha = \operatorname{Ker}\beta$. Then there exists a *-homomorphism σ from B to the multiplier C*-algebra M(A)

of A with $\sigma \circ \alpha = \iota$, i.e.,

$$A \xrightarrow{\alpha} B$$

$$\downarrow \sigma,$$

$$A \xrightarrow{} M(A)$$

where ι is the canonical inclusion map from A to M(A). The Busby invariant for this extension E is defined as the *-homomorphism τ_E from C to M(A)/A given by

$$\tau_E(c) = \pi \circ \sigma(b) ,$$

where b is a lift of c through β and π is the quotient map from M(A) to M(A)/A. It is known that τ_E is characterized by the following commutative diagram:

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \sigma \qquad \qquad \downarrow \tau_E \qquad .$$

$$0 \longrightarrow A \xrightarrow{\iota} M(A) \xrightarrow{\pi} M(A)/A \longrightarrow 0$$

We remark that, if we define the pull-back C*-algebra PB and the map ψ as follows:

$$PB = \{(x, c) \in M(A) \oplus C \mid \pi(x) = \tau_E(c)\}$$

$$\psi : B \ni b \longmapsto (\sigma(b), \beta(b)) \in PB,$$

then B is isomorphic to PB for the isomorphism ψ making the following diagram commutative:

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow^{\psi} \qquad \parallel \qquad \qquad \cdot$$

$$0 \longrightarrow A \longrightarrow PB \longrightarrow C \longrightarrow 0$$

Let

$$E_1: 0 \longrightarrow A \longrightarrow B_1 \longrightarrow C \longrightarrow 0$$

 $E_2: 0 \longrightarrow A \longrightarrow B_2 \longrightarrow C \longrightarrow 0$

be extensions and τ_i the Busby invariant for E_i (i = 1, 2). We call E_1 and E_2 strongly equivalent when there is a unitary $u \in M(A)$ such that $\tau_2(c) = \pi(u)\tau_1(c)\pi(u)^*$ for all $c \in C$, equivalently there are a unitary

 $v \in M(A)$ and a *-isomorphism γ such that the diagram

$$0 \longrightarrow A \longrightarrow B_1 \longrightarrow C \longrightarrow 0$$

$$\downarrow^{Ad(v)} \qquad \downarrow^{\gamma} \qquad \parallel$$

$$0 \longrightarrow A \longrightarrow B_2 \longrightarrow C \longrightarrow 0$$

is commutative. Then we denote $E_1 \approx E_2$ or $\tau_1 \approx \tau_2$. Let $\operatorname{Ext}(A, C)$ be a set of extensions of A by C. We denote by $\operatorname{Ext}(A, C)$ the set $\operatorname{Ext}(A, C)/\approx$ of strongly equivalent classes of $\operatorname{Ext}(A, C)$. When C is stable (i.e., $C \cong \mathbb{M}_2(C)$), $\operatorname{Ext}(A, C)$ becomes an abelian semigroup. The addition of $[E_1]$ and $[E_2] \in \operatorname{Ext}(A, C)$ is defined by the equivalent class of the extension which is corresponding to the Busby invariant

$$\tau_1 \oplus \tau_2 : C \longrightarrow C \oplus C \hookrightarrow C.$$

In this paper, we consider the extension semigroup $\mathbf{Ext}(\mathbb{K}, \mathcal{Q})$. We denote by π the canonical quotient map from \mathbb{B} onto \mathcal{Q} . Let α be an inner *-automorphism of \mathcal{Q} . Then we can see that α is the Busby invariant for an extension $E \in \mathrm{Ext}(\mathbb{K}, \mathcal{Q})$. We denote by \mathcal{G} a subsemigroup of $\mathbf{Ext}(\mathbb{K}, \mathcal{Q})$ generated by extensions corresponding to all the inner *-automorphisms of \mathcal{Q} .

The inner automorphism α has the form $\alpha(\cdot) = u^* \cdot u$ for some unitary $u \in \mathcal{Q}$. Let $V \in \mathbb{B}$ be a lift of u, that is, $\pi(V) = u$. Then V is a Fredholm operator, and we put $n = \text{Index } V \in \mathbb{Z}$. Let $S(\in \mathbb{B})$ be a unilateral shift. We remark Index S = -1. We define a *-automorphism $\tau(n)$ of \mathcal{Q} by

$$\tau(n)(x) = \pi(S)^n x \pi(S^*)^n, \quad x \in \mathcal{Q}.$$

Then there exists a unitary $U \in \mathbb{B}$ such that $VS^n = U|VS^n|$, i.e., $u\pi(S)^n = \pi(U)$. So we have that α is strongly equivalent to $\tau(n)$, that is, $[\alpha] = [\tau(n)]$.

Let G be a restricted direct product of non-negative integers $\mathbb{Z}_{\geq 0}$ except $\mathbf{0}$, i.e.,

$$G = \coprod_{\mathbb{Z}} \mathbb{Z}_{\geq 0} \setminus \{\mathbf{0}\}$$

$$= \{ g = (m(k))_{k \in \mathbb{Z}} \mid m(k) \in \mathbb{Z}_{\geq 0}, \ 0 < \sharp \{ k \in \mathbb{Z} \mid m(k) \neq 0 \} < \infty \},$$

where \sharp denotes the cardinal number of set. By the above fact, we can define the surjective semigroup homomorphism τ from G to \mathcal{G} as follows:

$$\tau(g) = \left[\bigoplus_{k \in \mathbb{Z}} \bigoplus_{m(k)} \tau(k)\right] = \sum_{k \in \mathbb{Z}} m(k) [\tau(k)],$$

where $g = (m(k))_{k \in \mathbb{Z}} \in G$.

We define a map φ from G to \mathbb{N} and a map ψ from G to \mathbb{Z} as follows: for $g = (m(k))_{k \in \mathbb{Z}} \in G$,

$$\varphi(g) = \sum_{k \in \mathbb{Z}} m(k),$$
$$\psi(g) = \sum_{k \in \mathbb{Z}} km(k).$$

We introduce two notations as follows: for $l \in \mathbb{Z}$ and $g = (m(k))_{k \in \mathbb{Z}} \in G$,

$$l \cdot g = (m(lk))_{k \in \mathbb{Z}},$$

$$l + q = (m(l+k))_{k \in \mathbb{Z}}.$$

Then we can easily get

$$\varphi(l \cdot g) = \varphi(g), \ \psi(l \cdot g) = l\psi(g),$$

$$\varphi(l+g) = \varphi(g) \text{ and } \psi(l+g) = \psi(g) + l\varphi(g).$$

For $g = (m(k))_{k \in \mathbb{Z}} \in G$, we define a C*-subalgebra $\mathcal{A}(g)$ of $\mathbb{B}(\bigoplus_{\varphi(g)} \mathcal{H}) \cong \mathbb{M}_{\varphi(g)}(\mathbb{B})$ as follows:

$$\mathcal{A}(g) = \left\{ \bigoplus_{k \in \mathbb{Z}} (S^{k} T S^{*k} \oplus \cdots \oplus S^{k} T S^{*k}) \mid T \in \mathbb{B} \right\} + \mathbb{K}(\bigoplus_{\varphi(g)} \mathcal{H}),$$

where S^k (resp. $(S^*)^k$) means $(S^*)^{-k}$ (resp. S^{-k}) for a negative integer k. Let $\iota(g)$ be a injective *-homomorphism from \mathbb{K} to $\mathcal{A}(g)$ which is obtained by a composition of a natural isomorphism of \mathbb{K} to $\mathbb{K}(\bigoplus_{\varphi(g)}\mathcal{H})$ and the canonical inclusion map of $\mathbb{K}(\bigoplus_{\varphi(g)}\mathcal{H})$ into $\mathcal{A}(g)$. We define a surjective *-homomorphism $\pi(g)$ from $\mathcal{A}(g)$ to \mathcal{Q} as follows:

$$\pi(g)(\bigoplus_{k\in\mathbb{Z}} (S^k T S^{*k} \oplus \cdots \oplus S^k T S^{*k}) + K) = \pi(T),$$

where $K \in \mathbb{K}(\bigoplus_{\varphi(q)} \mathcal{H})$. Then we have the following extension:

$$E(g): 0 \longrightarrow \mathbb{K} \xrightarrow{\iota(g)} \mathcal{A}(g) \xrightarrow{\pi(g)} \mathcal{Q} \longrightarrow 0,$$

and its Busby invariant coincides with

$$\bigoplus_{k\in\mathbb{Z}}\bigoplus_{m(k)}\tau(k).$$

Then we have the following statement and this is our main result:

Theorem 1.1. For $g, h \in G$ and $n \in \mathbb{N}$, we have the following:

(1)
$$\tau(g) = \tau(h) \iff \varphi(g) = \varphi(h) \text{ and } \psi(g) = \psi(h), \text{ that is,}$$

$$\mathcal{G} \ni \tau(g) \longmapsto (\varphi(g), \psi(g)) \in \mathbb{N} \times \mathbb{Z}$$

gives a semigroup isomorphism from \mathcal{G} onto $\mathbb{N} \times \mathbb{Z}$.

- (2) $\mathcal{A}(g) \cong \mathcal{A}(h) \iff \varphi(g) = \varphi(h) \text{ and } \psi(g) \equiv \psi(h) \mod \varphi(g)$.
- (3) $\mathcal{A}(g) \otimes \mathbb{M}_n \cong \mathcal{A}(n \cdot g)$.

We give the proof of theorem in the next section.

Corollary 1.2. For any $n \in \mathbb{N}$ and $n \geq 2$, there exist $g, h \in G$ such that $\mathcal{A}(g) \otimes \mathbb{M}_k$ is not isomorphic to $\mathcal{A}(h) \otimes \mathbb{M}_k$ for any $1 \leq k \leq n-1$ and $\mathcal{A}(g) \otimes \mathbb{M}_n$ is isomorphic to $\mathcal{A}(h) \otimes \mathbb{M}_n$.

Proof. We choose q and h such that

$$\varphi(g) = \varphi(h) = n$$
, $\phi(g) = 0$ and $\psi(h) = 1$.

Then we have $\psi(k \cdot g) = 0 < \psi(k \cdot h) = k < n$ for any $k = 1, 2, \dots, n-1$ and $\varphi(n \cdot g) = \varphi(n \cdot h) = n$, $\psi(n \cdot g) \equiv \psi(n \cdot h) \equiv 0$ mod n. This implies that $\mathcal{A}(g)$ and $\mathcal{A}(h)$ satisfy the required property.

For $g = (m(k))_{k \in \mathbb{Z}}, h = (n(k))_{k \in \mathbb{Z}} \in G$ with

$$m(k) = \begin{cases} 2 & k = 0 \\ 0 & \text{otherwise} \end{cases} \text{ and } n(k) = \begin{cases} 1 & k = 0, 1 \\ 0 & \text{otherwise} \end{cases},$$

we have $\varphi(g) = \varphi(h) = 2$, $\psi(g) = 0$, $\psi(h) = 1$. It follows that $\mathcal{A}(g) \otimes \mathbb{M}_2 \cong \mathcal{A}(h) \otimes \mathbb{M}_2$, but $\mathcal{A}(g)$ is not isomorphic to $\mathcal{A}(h)$. This example is the same one given by J. Plastiras.

2. Proof of Theorem

Lemma 2.1. The K_0 -group $K_0(\mathcal{A}(g))$ for $\mathcal{A}(g)$ is isomorphic to $\mathbb{Z}/\varphi(g)\mathbb{Z}$.

Proof. Let $g = (m(k))_{k \in \mathbb{Z}} \in G$. From the short exact sequence of C*-algebras

$$0 \longrightarrow \mathbb{K} \xrightarrow{\iota(g)} \mathcal{A}(q) \xrightarrow{\pi(g)} \mathcal{Q} \longrightarrow 0,$$

we can get the exact sequence of K-groups of C^* -algebras as follows:

$$K_{0}(\mathbb{K}) \xrightarrow{\iota(g)_{*}} K_{0}(\mathcal{A}(g)) \xrightarrow{\pi(g)_{*}} K_{0}(\mathcal{Q})$$

$$\downarrow \delta_{1} \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K_{1}(\mathcal{Q}) \xleftarrow{\pi(g)_{*}} K_{1}(\mathcal{A}(g)) \xleftarrow{\iota(g)_{*}} K_{1}(\mathbb{K}).$$

Since $K_0(\mathcal{Q}) = \{0\}$, we have

$$K_0(\mathcal{A}(g)) \cong K_0(\mathbb{K})/\delta_1(K_1(\mathcal{Q})).$$

It is known that $K_0(\mathbb{K}) \cong K_1(\mathcal{Q}) \cong \mathbb{Z}$ and the class of P (resp. $\pi(S)$) is a generator of $K_0(\mathbb{K})$ (resp. $K_1(\mathcal{Q})$), where $P \in \mathbb{B}$ is a projection of rank one and $S \in \mathbb{B}$ is a unilateral shift.

rank one and $S \in \mathbb{B}$ is a unilateral shift. We put $P_n = 1 - S^n S^{*n}$ (n = 1, 2, ...) and define a unitary $W(k) \in \mathbb{M}_2(\mathbb{B})$ as follows: for $k \geq 0$,

$$W(k) = \begin{pmatrix} S(1 - P_k) & P_{k+1} \\ -P_k & (1 - P_k)S^* \end{pmatrix}$$
$$= \begin{pmatrix} S & 0 \\ 0 & S \end{pmatrix}^k \begin{pmatrix} S & P_1 \\ 0 & S^* \end{pmatrix} \begin{pmatrix} S^* & 0 \\ 0 & S^* \end{pmatrix}^k + \begin{pmatrix} 0 & P_k \\ -P_k & 0 \end{pmatrix},$$

and for k < 0,

$$W(k) = \begin{pmatrix} S & P_1 \\ 0 & S^* \end{pmatrix} = \begin{pmatrix} S & 0 \\ 0 & S \end{pmatrix}^k \begin{pmatrix} S & P_1 \\ 0 & S^* \end{pmatrix} \begin{pmatrix} S^* & 0 \\ 0 & S^* \end{pmatrix}^k + \begin{pmatrix} 0 & P_1 \\ 0 & 0 \end{pmatrix}.$$

Then we have

$$W = \bigoplus_{k \in \mathbb{Z}} \widetilde{W(k) \oplus \cdots \oplus W(k)}$$

is unitary in $\mathbb{M}_2(\mathcal{A}(g))$ and

$$\pi(g) \otimes \mathrm{id}_2(W) = \begin{pmatrix} \pi(S) & 0 \\ 0 & \pi(S^*) \end{pmatrix}.$$

By definition of δ_1 , we have

$$\delta_1([\pi(S)]) = [W^*(1_{\mathcal{A}(g)} \oplus 0_{\mathcal{A}(g)})W] - [1_{\mathcal{A}(g)} \oplus 0_{\mathcal{A}(g)}].$$

By the calculation

$$\begin{bmatrix}
S(1-P_{k}) & P_{k+1} \\
-P_{k} & (1-P_{k})S^{*}
\end{bmatrix}^{*} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} S(1-P_{k}) & P_{k+1} \\
-P_{k} & (1-P_{k})S^{*} \end{pmatrix}] \\
- \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} \\
- \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} \\
- \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} \begin{pmatrix} 1 - P_k & 0 \\ 0 & P_{k+1} \end{pmatrix} \end{bmatrix} - \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} = [P]$$

and

$$\begin{bmatrix} \begin{pmatrix} S & P_1 \\ 0 & S^* \end{pmatrix}^* \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} S & P_1 \\ 0 & S^* \end{pmatrix} \end{bmatrix} - \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & P_1 \end{pmatrix} \end{bmatrix} - \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} = [P],$$

it follows that

$$\delta_1([\pi(S)]) = \varphi(g)[P].$$

This means that

$$K_0(\mathcal{A}(g)) \cong \mathbb{Z}/\varphi(g)\mathbb{Z}$$
.

For $g = (m(k))_{k \in \mathbb{Z}}$, we can choose integers $k_1 < k_2 < \cdots < k_l$ such that

$$\{k \in \mathbb{Z} \mid m(k) \neq 0\} = \{k_1, k_2, \dots, k_l\}.$$

We remark that, if we put

$$m_1 = \cdots = m_{m(k_1)} = k_1, \ m_{m(k_1)+1} = \cdots = m_{m(k_1)+m(k_2)} = k_2,$$

 $\dots, \ m_{m(k_1)+\cdots+m(k_{l-1})+1} = \cdots = m_{\varphi(g)} = k_l,$

then we have $\psi(g) = \sum_{j=1}^{\varphi(g)} m_j$ and

$$\mathcal{A}(g) = \{ \bigoplus_{k \in \mathbb{Z}} (S^k T S^{*k} \oplus \cdots \oplus S^k T S^{*k}) \mid T \in \mathbb{B} \} + \mathbb{K}(\bigoplus_{\varphi(g)} \mathcal{H})$$
$$= \{ \bigoplus_{i=1}^{\varphi(g)} S^{m_j} T (S^*)^{m_j} \mid T \in \mathbb{B} \} + \mathbb{K}(\bigoplus_{\varphi(g)} \mathcal{H}).$$

Lemma 2.2. For any $n \in \mathbb{Z}$ and $g \in G$, we have

$$\mathcal{A}(g) \cong \mathcal{A}(n+g)$$
.

Proof. It is sufficient to show that $\mathcal{A}(g) \cong \mathcal{A}(1+g)$. Using the above notation and $\varphi(g) = \varphi(1+g)$ and $\psi(1+g) = \psi(g) + \varphi(g)$, we have

$$\mathcal{A}(1+g) = \{ \bigoplus_{j=1}^{\varphi(g)} S^{m_j+1} T(S^*)^{m_j+1} \mid T \in \mathbb{B} \} + \mathbb{K}(\bigoplus_{\varphi(g)} \mathcal{H})$$
$$= \{ \bigoplus_{j=1}^{\varphi(g)} S^{m_j} STS^*(S^*)^{m_j} \mid T \in \mathbb{B} \} + \mathbb{K}(\bigoplus_{\varphi(g)} \mathcal{H}).$$

Clearly $\mathcal{A}(1+g) \subset \mathcal{A}(g)$. Remarking the fact $\mathbb{B} \subset S\mathbb{B}S^* + \mathbb{K}$, we have $\mathcal{A}(1+g) = \mathcal{A}(g)$.

Lemma 2.3. The class of the unit of $\mathcal{A}(g)$ is equal to $\psi(g)[P]$ in $K_0(\mathcal{A}(g))$, where P is a minimal projection of $\mathcal{A}(g)$.

Proof. By the above lemma, we can see

$$\mathcal{A}(g) = \{ \bigoplus_{j=1}^{\varphi(g)} S^{m_j} T(S^*)^{m_j} \mid T \in \mathbb{B} \} + \mathbb{K}(\bigoplus_{\varphi(g)} \mathcal{H})$$
$$= \{ \bigoplus_{j=1}^{\varphi(g)} S^{n+m_j} T(S^*)^{n+m_j} \mid T \in \mathbb{B} \} + \mathbb{K}(\bigoplus_{\varphi(g)} \mathcal{H}),$$

for $n \in \mathbb{N}$ with $n+m_1 > 0$. Since $1 \in \mathbb{B}$ is equivalent to some orthogonal projections $Q_1, Q_2, \ldots, Q_{\varphi(g)}$ such that $1 = Q_1 + Q_2 + \cdots + Q_{\varphi(g)}, S^k S^{*k}$ is equivalent to $S^k Q_i S^{*k}$ for positive integer k. So we have

$$[1_{\mathcal{A}(g)}] \in K_0(\mathcal{A}(g))$$

$$= [\bigoplus_{j=1}^{\varphi(g)} S^{n+m_j} (S^*)^{n+m_j}] + \sum_{j=1}^{\varphi(g)} (n+m_j)[P]$$

$$= \varphi(g) [\bigoplus_{j=1}^{\varphi(g)} S^{n+m_j} (S^*)^{n+m_j}] + (n\varphi(g) + \psi(g))[P]$$

This implies $[1_{\mathcal{A}(g)}] = \psi(g)[P]$ in $K_0(\mathcal{A}(g))$.

Lemma 2.4. The commutant $(Q \otimes 1_n)'$ of $Q \otimes 1_n$ in $Q \otimes \mathbb{M}_n$ coincides with $1_Q \otimes \mathbb{M}_n$. In particular, any unitary element in $(Q \otimes 1_n)'$ has a unitary lift in $\mathbb{B} \otimes \mathbb{M}_n$.

Proof. It is sufficient to show that $Q' \cap Q = \mathbb{C}1_Q$. This fact is well known as the following form:

$$\{T \in \mathbb{B} \mid TX - XT \in \mathbb{K} \text{ for all } X \in \mathbb{B}\} = \mathbb{C}1 + \mathbb{K}.$$

For the convenience of readers, we give its proof.

We denote by $EC(\mathbb{B})$ the essential commutant for \mathbb{B}

$$\{T\in\mathbb{B}\mid TX-XT\in\mathbb{K}\text{ for all }X\in\mathbb{B}\}.$$

It is trivial that $EC(\mathbb{B}) \supset \mathbb{C}1 + \mathbb{K}$. So we have to show that the reverse inclusion holds. Since $EC(\mathbb{B})$ is a closed *-subalgebra of \mathbb{B} , any element in $EC(\mathbb{B})$ is represented by a linear combination of self-adjoint elements. Let T be a self-adjoint element in $EC(\mathbb{B})$ and its spectral decomposition

$$T = \int_{-||T||}^{||T||} \lambda de(\lambda),$$

where $\{e(\lambda)\}\$ is the right continuous spectral family of projections for T.

For -||T|| < a < b < ||T||, we assume that two projections

$$\int_{-||T||}^{a} de(\lambda)$$
 and $\int_{b}^{||T||} de(\lambda)$

are infinitely dimensional. Since \mathcal{H} is separable ($\mathbb{B} = \mathbb{B}(\mathcal{H})$), there exists a partial isometry V such that

$$V^*V = \int_b^{||T||} de(\lambda), \quad VV^* = \int_{-||T||}^a de(\lambda).$$

Then we have

$$\begin{split} (VT - TV)V^* &= V \int_b^{||T||} \lambda de(\lambda)V^* - \int_{-||T||}^a \lambda de(\lambda) \\ &\geq b \int_{-||T||}^a de(\lambda) - \int_{-||T||}^a \lambda de(\lambda) \\ &\geq (b - a) \int_{-||T||}^a de(\lambda) \notin \mathbb{K}. \end{split}$$

This means that $VT - TV \notin \mathbb{K}$, i.e., $T \notin EC(\mathbb{B})$.

This fact implies that $\sigma(T)$ has at most one accumulation point. If an accumulation point c exists, then each $\lambda \in \sigma(T) \setminus \{c\}$ is an eigenvalue for T and its eigenprojection is finite dimensional. So we have

$$T-c1 \in \mathbb{K}$$
.

If an accumulation point does not exist, then $\sigma(T)$ is a finite set of eigenvalues for T and their eigenprojections are finite dimensional except for one point c. Also we have

$$T-c1 \in \mathbb{K}$$
.

Proof of Theorem 1.1. (1) First we assume that $\tau_g = \tau_h$. Then the fact $\mathcal{A}(g) \cong \mathcal{A}(h)$ implies $\varphi(g) = \varphi(h)$ by lemma 2.1. We use the notation $\tau(g) = [\bigoplus_{k \in \mathbb{Z}} \bigoplus_{m(k)} \tau_k]$, $\tau(h) = [\bigoplus_{k \in \mathbb{Z}} \bigoplus_{n(k)} \tau_k]$ and $S_g = \bigoplus_{k \in \mathbb{Z}} \bigoplus_{m(k)} \pi(S)^k$, $S_h = \bigoplus_{k \in \mathbb{Z}} \bigoplus_{n(k)} \pi(S)^k \in \mathcal{Q} \otimes \mathbb{M}_{\varphi(g)}$. Then $\tau(g) = \tau(h)$ means that there exist a unitary U in $\mathbb{B} \otimes \mathbb{M}_{\varphi(g)}$ such that

$$S_g x \otimes 1_{\varphi(g)} S_g^* = \pi \otimes id_{\varphi(g)}(U)^* S_h x \otimes 1_{\varphi(g)} S_h^* \pi \otimes id_{\varphi(g)}(U)$$

for all $x \in \mathcal{Q}$. Using lemma 2.4, we have $S_h^*(\pi \otimes id_{\varphi(g)})(U)S_g \in 1_{\mathcal{Q}} \otimes \mathbb{M}_{\varphi(g)}$. So $S_h^*(\pi \otimes id_{\varphi(g)})(U)S_g$ have a unitary lift in $1_{\mathbb{B}} \otimes \mathbb{M}_{\varphi(g)}$. This means $0 = \operatorname{Index}(\bigoplus_{k \in \mathbb{Z}} \bigoplus_{n(k)} S^k)^* U(\bigoplus_{k \in \mathbb{Z}} \bigoplus_{m(k)} S^k) = -\psi(h) + \psi(g)$, that is, $\psi(g) = \psi(h)$. Conversely we assume that $\varphi(g) = \varphi(h)$ and $\psi(g) = \psi(h)$. Then we have $\operatorname{Index}(\bigoplus_{k \in \mathbb{Z}} \bigoplus_{n(k)} S^k)(\bigoplus_{k \in \mathbb{Z}} \bigoplus_{m(k)} S^k)^* = 0$. So there exists a unitary U in $\mathbb{B} \otimes \mathbb{M}_{\varphi(g)}$ such that $S_h S_g^* = \pi \otimes id_{\varphi(g)}(U)$. This implies that $\tau(g) = \tau(h)$.

- (2) First we assume that $\mathcal{A}_g \cong \mathcal{A}_h$. By lemma 2.1 and lemma 2.3, it is immediately found that $\varphi(g) = \varphi(h)$ and $\psi(g) \equiv \psi(h) \mod \varphi(g)$. Conversely we assume that $\varphi(g) = \varphi(h)$ and $\psi(g) = \psi(h) + n\varphi(g)$ for $n \in \mathbb{Z}$. Then we have $\tau(g) = \tau(n+g)$. This implies $\mathcal{A}(g) \cong \mathcal{A}(n+g) \cong \mathcal{A}(h)$ by lemma 2.2.
 - (3) Suppose that $\mathcal{A}(g)$ is the following form:

$$\mathcal{A}(g) = \left\{ \bigoplus_{k \in \mathbb{Z}} \bigoplus_{m(k)} S^k T S^{*k} \mid T \in \mathbb{B} \right\} + \mathbb{K}(\bigoplus_{\varphi(g)} \mathcal{H}).$$

Therefore we can regard $\mathcal{A}(g) \otimes \mathbb{M}_n$ as the following:

$$\mathcal{A}(g) \otimes \mathbb{M}_n = \Big\{ \bigoplus_{k \in \mathbb{Z}} \bigoplus_{m(k)} (S^k \otimes \mathbf{1}_n) T'(S^{*k} \otimes \mathbf{1}_n) |$$
$$T' \in \mathbb{B}(\bigoplus_n \mathcal{H}) \} + \mathbb{K}(\bigoplus_{n \neq (g)} \mathcal{H}).$$

This means that $\mathcal{A}(g) \otimes \mathbb{M}_n \cong \mathcal{A}(n \cdot g)$.

For $g \in G$, we define the C*-algebra

$$\mathcal{A}(g) = \left\{ \bigoplus_{k \in \mathbb{Z}} \bigoplus_{m(k)} S^k T S^{*k} \mid T \in \mathbb{B}(\mathcal{H}) \right\} + \mathbb{K}(\bigoplus_{\varphi(g)} \mathcal{H}).$$

Then we can see that the essential commutant $EC(\mathcal{A}(g))$ of $\mathcal{A}(g)$ becomes an AF-algebra and $\pi \otimes id_{\varphi(g)}(EC(\mathcal{A}(g)))$ is isomorphic to $\mathbb{M}_{\varphi(g)}(\mathbb{C})$. Since $\mathcal{A}(g)$ and $\mathcal{A}(h)$ contain the algebra of compact operators, the isomorphism from $\mathcal{A}(g)$ to $\mathcal{A}(h)$ deduces the isomorphism from $EC(\mathcal{A}(g))$ to $EC(\mathcal{A}(h))$. It is known that isomorphism classes of AF-algebras are classified up by the K-theoretic datum. In this case, we can see

$$(K_0(\mathrm{EC}(\mathcal{A}(g))), K_0(\mathrm{EC}(\mathcal{A}(g)))_+, [1]_{K_0})$$

= $(\mathbb{Z} \oplus \mathbb{Z}, (\{0\} \oplus \mathbb{Z}_{\geq 0}) \cup (\mathbb{Z}_{\geq 0} \oplus \mathbb{Z}), (\varphi(g), \psi(g))).$

We remark that, for any integer $k \in \mathbb{Z}$, the following groups are order isomorphic (and preserving the order unit):

$$(\mathbb{Z} \oplus \mathbb{Z}, (\{0\} \oplus \mathbb{Z}_{\geq 0}) \cup (\mathbb{Z}_{>0} \oplus \mathbb{Z}), (\varphi(g), \psi(g))),$$

 $(\mathbb{Z} \oplus \mathbb{Z}, (\{0\} \oplus \mathbb{Z}_{\geq 0}) \cup (\mathbb{Z}_{\geq 0} \oplus \mathbb{Z}), (\varphi(g), \psi(g) + k\varphi(g))).$

This means that the K-theoretic datum is complete invariant for a family $\{A(g)|g\in G\}$ of non-nuclear C*-algebras.

Acknowledgement. The authors would like to express their thanks to Professor K. Kodaka for the meaningful discussion using the Space Collaboration System of National Institute of Multimedia Education in Japan.

REFERENCES

- [1] B. Blackadar, K-theory for operator algebras, Second edition, M. S. R. I. Publications 5. Cambridge University Press., (1998).
- [2] J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), pp. 173–185.
- [3] M. Enomoto, M. Fujii and Y. Watatani, K_0 -groups and classifications of Cuntz-Krieger algebras, Math. Japon. 26 (1981), pp. 443–460.
- [4] Y. Katabami *Isomorphisms of C*-algebras after tensoring*, Technical Reports of Mathematical Sciences, Chiba University, vol 17 (2001), No. 2.
- [5] J. Plastiras, C*-algebras isomorphic after tensoring, Proc. Amer. Math. Soc. 66 (1977), pp. 276–278.
- [6] B. V. Rajarama Bhat, G. A. Elliott and P. A. Fillmore, *Lectures on Operator Theory, Fields Institute Monographs* 13, Amer. Math. Soc., (1999).
- [7] T. Sakamoto, Certain reduced free products with amalgamation of C*-algebras, Scientiae Math. 3 (2000), pp. 37–48.
- [8] N. E. Wegge-Olsen, K-theory and C*-algebras, Oxford. (1994).

*Department of Mathematics and Information, Graduate School of Science and Technology Chiba University, 1-33, Yayoi-Cho, Inage-Ku, Chiba 263-8522 Japan

E-mail address: 99um0102@g.math.s.chiba-u.ac.jp
E-mail address: nagisa@math.s.chiba-u.ac.jp