SOME SUBSEMIGROUP OF AN EXTENSION
SEMIGROUP OF C*-ALGEBRAS
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ABSTRACT. In this paper we investigate the structure of the sub-
semigroup generated by the inner automorphisms in Ext(K, Q).
As an application, we give a new point of view to the example of
J. Plastiras, which are two C*-algebras 2 and B satisfying 2( 2% B
and Mz@glgMz®%

0. INTRODUCTION

J. Plastiras exhibited an example which is a pair of C*-algebras such
that A 2B and My @ A = My @ B ([5], [6]). They are constructed as
extensions of K by Q, where K is the C*-algebra of compact operators
and @ is the quotient C*-algebra of all the bounded linear operators B
by K. So they are not nuclear. For a class of nuclear C*-algebras, we
can construct such a pair of C*-algebras using the classification result
for them by K-theory([2], [3]). In [7], T. Sakamoto construct such a
pair of non-nuclear C*-algebras.

In this paper, we consider a family of special extensions of K by
Q which contains Plastiras’ examples. Our aim is to investigate their
semigroup structure and to show that the datum for this semigroup
is the useful invariant for them as like as K-thoretic datum for some
nuclear C*-algebras.

1. PRELIMINARIES AND MAIN RESULT

Here we give fundamental facts of extension theory along [1] and [§].
Let ‘H be a separable infinite dimensional Hilbert space. We denote
by B (resp. K) a C*-algebra B(H) (resp. K(#)) of bounded linear
operators (resp. compact operators) on H. We also denote by Q a
C*-algebra B(H)/K(H). Let A, B and C be C*-algebras and « (resp.
B3) a *-homomorphism from A to B (resp. from B to C'). We call a
short exact sequence E as below an extension of A by C

E:0 A—, B2, 0
that is, « is injective, § is surjective and Ima = Ker3. Then there

exists a *-homomorphism o from B to the multiplier C*-algebra M (A)
1
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of Awithcoa =y, ie,
A"+ B

S

A —— M(A)

where ¢ is the canonical inclusion map from A to M(A). The Busby
invariant for this extension E is defined as the *-homomorphism 7

from C' to M(A)/A given by
me(c) =moa(b),

where b is a lift of ¢ through 8 and 7 is the quotient map from M (A)
to M(A)/A. Tt is known that 7 is characterized by the following
commutative diagram:

0 A = B 25 ¢ ——o0
H | =
0 A —"— M(A) —— MA)/A —— 0

We remark that, if we define the pull-back C*-algebra PB and the map
1 as follows:

PB={(z,c) e M(A)a C | n(x) =T1r(c)}
Y :B>br—— (a(b),B(b) € PB,

then B is isomorphic to PB for the isomorphism ¢ making the following
diagram commutative:

0 A—5 B L5 0
I
0 A PB C 0
Let
E -0 A By C 0
Fs:0 A Bs C 0

~—r

be extensions and 7; the Busby invariant for E; (i = 1,2). We call F;
and Fj strongly equivalent when there is a unitary u € M(A) such that
To(c) = w(u)m(c)m(u)* for all ¢ € C, equivalently there are a unitary
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[aN)

v € M(A) and a *-isomorphism ~ such that the diagram

0 A B C 0
Juor ]
0 A B, C 0

is commutative. Then we denote E; ~ F, or 11 ~ 1. Let Ext(A,C)
be a set of extensions of A by C. We denote by Ext(A,C) the set
Ext(A, C)/ &~ of strongly equivalent classes of Ext(A,C) . When C' is
stable (i.e., C' = My(C)), Ext(A, C) becomes an abelian semigroup.
The addition of [E;] and [F2] € Ext(A, C) is defined by the equivalent
class of the extension which is corresponding to the Busby invariant

1O :C—CoC—C.

In this paper, we consider the extension semigroup Ext(K, Q). We
denote by 7 the canonical quotient map from B onto Q. Let a be
an inner *-automorphism of Q. Then we can see that « is the Busby
invariant for an extension E € Ext(K, Q). We denote by G a subsemi-
group of Ext(K, Q) generated by extensions corresponding to all the
inner *-automorphisms of Q.

The inner automorphism « has the form a(-) = «* - u for some
unitary u € Q. Let V € B be a lift of u, that is, 7(V) = u. Then
V' is a Fredholm operator, and we put n = Index V € Z. Let S(€ B)
be a unilateral shift. We remark Index S = —1. We define a *-
automorphism 7(n) of Q by

T(n)(x) = n(S) zn(S*)", x€ Q.

Then there exists a unitary U € B such that V.S™ = U|VS"|, ie.,
un(S)" = 7(U). So we have that « is strongly equivalent to 7(n), that

is, [a] = [7(n)].
Let G be a restricted direct product of non-negative integers Zsq
except 0, i.e.,

G=1]2Z0\ {0}

={g = (m(k))rez | m(k) € Zzo, 0 < i{k € Z | m(k) # 0} < oo},

where f denotes the cardinal number of set. By the above fact, we
can define the surjective semigroup homomorphism 7 from G to G as

follows:
() =[PP r®)] =D mE) k).

k€Z m(k) keZ

where g = (m(k))rez € G.
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We define a map ¢ from GG to N and a map ¢ from G to Z as follows:
for g = (m(k))rez € G,

We introduce two notations as follows: for [ € Z and g = (m(k))gez €
G,

(m(Ik))kez,
(m(l 4 k))kez-

g
[+g
Then we can easily get

e(l-9) =¢(g), ¥ -g) =14(g),
p(l+9) = ¢(g) and Y1+ g) = ¢(g) + lp(g)-
For g = (m(k))kez € G, we define a C*-subalgebra A(g) of B(@,H) =
Mg (B) as follows:

Alg) = PG TS @0 STS™*) | T B § + K(@p)H),

keZ

where S* (resp. (S*)*) means (S*)7* (resp. S7F) for a negative integer
k. Let ¢(g) be a injective *~homomorphism from K to .A(g) which is
obtained by a composition of a natural isomorphism of K to K(®,»H)
and the canonical inclusion map of K(@ ., H) into A(g). We define a
surjective *-homomorphism 7(g) from A(g) to Q as follows:

T @S TS & & STS™) + K) = =(T),

keZ

where K € K(®y(eH). Then we have the following extension:

E(g): 0 K 2 A(g) ™ 0 0,

and its Busby invariant coincides with

keZ m(k)

Then we have the following statement and this is our main result:

Theorem 1.1. For g.h € G and n € N, we have the following:
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(1) 7(g) = 7(h) <= ¢(g) = w(h) and P(g) = P (h), that is,
G 21(g) — (v(9),¢(g9)) e NXZ

gives a semigroup isomorphism from G onto N X Z.
(2) Alg) = A(h) <= ¢(g) = @(h) and Y (g) = ¢ (h) mod p(g).
(3) A(g) @M, = A(n - g).

We give the proof of theorem in the next section.

Corollary 1.2. For any n € N and n > 2, there exist g,h € G such
that A(g) @My, is not isomorphic to A(h) @My for any 1 <k <n-—1
and A(g) @ M, is isomorphic to A(h) @ M,,.

Proof. We choose g and h such that

¢(g9) = p(h) =n, ¢(g) =0 and ¢(h) = 1.

Then we have (k-g) =0 < ¢¥(k-h) =k <nforanyk=1,2,... ,n—1
and p(n-g) = ¢(n-h) =n, Y(n-g) = Y(n-h) = 0 mod n. This implies
that A(g) and A(h) satisfy the required property. ]

For g = (m(k))kez, h = (n(k))rez € G with

m<k_>:{2 k=0 andn<k):{1 k=0,1

0 otherwise 0 otherwise ’

we have ¢(g) = ¢(h) = 2, ¢¥(g) = 0,¢(h) = 1. Tt follows that A(g) @
M, = A(h) @ My, but A(g) is not isomorphic to A(h). This example
is the same one given by J. Plastiras.

2. PROOF OF THEOREM

Lemma 2.1. The Ky-group Ko(A(g)) for A(g) is isomorphic to Z/p(g)Z.

Proof. Let g = (m(k))rez € G. From the short exact sequence of
C*-algebras
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we can get the exact sequence of K-groups of C*-algebras as follows:

Ko(K) 225 Ko(A(g) =25 Ky(Q)

]

Ki(Q) +—— Ki(A(g)) +— Ki(K).

m(g)« g)=

Since Ky(Q) = {0}, we have
Ko(Alg)) = Ko(K)/01(K1(Q)).

It is known that Ky(K) = K1(Q) = Z and the class of P (resp. w(S5))
is a generator of Ky(K) (resp. K1(Q)), where P € B is a projection of
rank one and S € B is a unilateral shift.

We put P, =1— 55" (n=1,2,...) and define a unitary W (k) €
My(B) as follows: for k > 0,

S(1 — P, Py
wi = (S0 )

/5 o\*(s P S*0k+ 0 P
“lo s) \o s)\o s —p. 0)

and for £ < 0,

win=(3 B =GO EHE 0D

Then we have

W=PWko---aWk)

kecZ

is unitary in Ms(A(g)) and

. (S 0
(g) © ida(W) = < (5) W(S*Q |
By definition of 4;, we have

a1 ([m(5)]) = W' (Lagg) ® O0ag)) W] — [Lagy) ® Oay)-
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By the calculation

(U5 @ M) (00) (U™ )

P (1P
~((p o)

(5% -1 o) =

and

it follows that

This means that

Ko(A(g)) 2 Z/p(9)Z.
O

For g = (m(k))kez, we can choose integers ky < ko < --+ < k; such
that

We remark that, if we put
ML= """ = Myp(ky) = K1, Man(k)+1 = * = Myn(ky)4mlks) = Ko,
oy Mok etmb DL = * 0 = Mgy = Ky,

w(g)

then we have ¢(g) = Z m; and
j=1

(k)
Alg) = {P(S*TS™* @ - © S*TS™) | T € BY + K(® e H)

keZ
= {7 S™T(S)™ | T € B} + K(@y(eH)-
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Lemma 2.2. For anyn € Z and g € G, we have
Alg) = Aln +g).
Proof. 1t is sufficient to show that A(g) = A(1 + ¢). Using the above
notation and ¢(g) = p(1 + ¢) and ¥(1+ g) = ¥(g) + ¥(g), we have
A(L + g) = {@795mH1(S )™+ | T € BY + K(@ () H)
= {@719)5™ STS*(S™)™ | T € B} + K(pig)H)-

Clearly A(1+g) C A(g). Remarking the fact B C SBS* + K, we have
Al +g) = Alg). O

Lemma 2.3. The class of the unit of A(g) is equal to ¢¥(g)[P] in
Ko(A(g)), where P is a minimal projection of A(g).

Proof. By the above lemma, we can see
Alg) = {@795™T(S)™ | T € B} + K(@yp)H)
= {®7Y ST (S )™ | T € B} +K(@ypo)H),

for n € N with n4+m > 0. Since 1 € B is equivalent to some orthogonal
projections Q1, Q2,. .. , Qu(g such that 1 = Q1 +Qa+- - +Qu(y), Ghkgrk
is equivalent to S*Q;S** for positive integer k. So we have

(L) € Ko(A(g))
w(g)

[ 99(9)Sn+mj S* n+m] +Z n+m]

=p(g)[@®7) smHm (S >”+mf1 + (n(g) + ¢ (9))[P]
This implies [1 4] = ¥(9)[P] in Ko(A(g)). O

Lemma 2.4. The commutant (Q®1,,) of Q@ 1, in Q@ M, coincides
with 1o @ M,,. In particular, any unitary element in (Q @ 1,,) has a
unitary lift in B @ M,,.

Proof. Tt is sufficient to show that @ N Q = Clg. This fact is well
known as the following form:

{(TeB|TX — XT €K for all X € B} =Cl+K.

For the convenience of readers, we give its proof.
We denote by EC(B) the essential commutant for B

{T'eB|TX —XT cKforall X €B}.
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It is trivial that EC(B) D C1 + K. So we have to show that the
reverse inclusion holds. Since EC(B) is a closed *-subalgebra of B, any
element in EC(B) is represented by a linear combination of self-adjoint
elements. Let T be a self-adjoint element in EC(B) and its spectral

decomposition
il
T = / Me(\),

17

where {e(A)} is the right continuous spectral family of projections for
1.
For —||T']| < a < b < ||T]|, we assume that two projections

/ GT de()\) and /b " de(\)

are infinitely dimensional. Since H is separable (B = B(H)), there
exists a partial isometry V' such that

17| a
V'V :/ de(N\), VV~* :/ de(N).
b —|T]
Then we have

VT —TV)V* =V /b " Ade(\)V* — / GT Ade(N)

- b/T 1 /T e

> (b—a)/a de()) ¢ K.

=117l

This means that VI' =TV ¢ K, i.e., T ¢ EC(B).

This fact implies that ¢(7") has at most one accumulation point. If
an accumulation point ¢ exists, then each A € o(1")\{c} is an eigenvalue
for T" and its eigenprojection is finite dimensional. So we have

T—clek.

If an accumulation point does not exist, then o(7") is a finite set of
eigenvalues for 7" and their eigenprojections are finite dimensional ex-
cept for one point ¢. Also we have

T—clek.
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Proof of Theorem 1.1. (1) First we assume that 7, = 7. Then
the fact A(g) = A(h) implies p(g) = ¢(h) by lemma2.1. We use the
notation 7(9) = [Brez Pm) Tkl, T(R) = [Brez Bnwy T and S, =
Drez Dmk) T(S)E, Sp = Drez Dn(k) (S cQ® Mg (g). Then 7(g) =
7(h) means that there exist a unitary U in B @ M, such that
Sgﬂf [029) 199(9)5'; =T id¢(g)(U>*S}L$ [029) 1¢(9)SZW [029) Z'dcp(g) (U)

for all # ¢ Q. Using lemma2.4, we have Sj (7 @ id,,))(U)S, € 1o ®
M(g)- S0 Sy (7 @ idyg))(U)S, have a unitary lift in 1p @ M. This
means 0 = Index(Srez Eny S™) U (Brez By S*) = —1(h) + ¢¥(g),
that is, ¢(g) = «(h). Conversely we assume that ¢(g) = @(h) and
¢(g) = ¢(h). Then we have Index(Drez Or(r) SEY (Drez D) Skyr = 0.
So there exists a unitary U in B@ M, such that S,,.57 = 7 @id,,) (V).
This implies that 7(g) = 7(h).

(2) First we assume that A4; = A;. By lemma2.1 and lemma2.3, it
is immediately found that ¢(g) = ¢(h) and ¢¥(g) = ¥(h) mod ¢(g).
Conversely we assume that p(g) = ¢(h) and ¥(g) = ¥(h) 4+ ne(g) for
n € Z. Then we have 7(g) = 7(n+g). This implies A(g) = A(n+g) =
A(h) by lemma2.2.

(3) Suppose that A(g) is the following form:

Therefore we can regard A(g) @ M, as the following:

Alg) @M, = {@kez By (S¥ @ 1)T'(SF @ 1,,))]
T e B(@.H)} + K(Snpg)H).
This means that A(g) @ M,, = A(n - g). O

For g € GG, we define the C*-algebra
Alg) = { Drez Dy STS™ | T € B b + K(@ W)

Then we can see that the essential commutant EC(A(g)) of A(g) be-
comes an AF-algebra and m®id, (4 (EC(.A(g)) is isomorphic to M) (C).
Since A(g) and A(h) contain the algebra of compact operators, the iso-
morphism from A(g) to A(h) deduces the isomorphism from EC(A(g))
to EC(A(hR)). It is known that isomorphism classes of AF-algebras are
classified up by the K-theoretic datum. In this case, we can see

(Ko(EC(A(9))), Ko(EC(A(g)))+, [1]x,)
= (232, ({0} @ Z20) U(Zs0 D Z), (£(9),4(9)))-
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We remark that, for any integer k& € Z, the following groups are order
isomorphic (and preserving the order unit):

(ZDZ, ({0} ©Z20) U(Zoo ©Z), (¢(9),¢(9))),
(ZDZ, ({0} @ Zxp) U (Zso D Z), (0(9),¢(g) + ke(g))).

This means that the K-theoretic datum is complete invariant for a
family {.A(g)|g € G} of non-nuclear C*-algebras.
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