Hilbert Coefficients and Buchsbaumness of Associated Graded Rings

Shiro Goto and Koji Nishida*

Abstract

Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} and I an \mathfrak{m} -primary ideal. The purpose of this paper is to generalize Northcott's inequality on Hilbert coefficients of I given in [8], without assuming that A is a Cohen-Macaulay ring. We will investigate when our inequality turns into an equality. It is related to the Buchsbaumness of the associated graded ring of I.

AMS classification codes: 13D40, 13H10, 13H15 Keywords: Hilbert coefficients, standard ideal, Buchsbaum ring

1 Introduction

Let A be a d-dimensional Noetherian local ring with the maximal ideal \mathfrak{m} and I an \mathfrak{m} -primary ideal of A. Then there exist integers $e_0(I), e_1(I), \cdots, e_d(I)$ such that

$$\ell_A(A/I^{n+1}) = e_0(I) \binom{n+d}{d} - e_1(I) \binom{n+d-1}{d-1} + \dots + (-1)^d e_d(I)$$

for $n \gg 0$. These integers are called the Hilbert coefficients of I and a lot of results are known on them in the case where A is a Cohen-Macaulay ring. For example, as was proved by Northcott [8], we always have $e_0(I) - \ell_A(A/I) \leq e_1(I)$. Moreover, provided A/\mathfrak{m} is infinite, Huneke and Ooishi [6, 9] proved that $e_0(I) - \ell_A(A/I) = e_1(I)$ if and only if $I^2 = QI$ for some (any) minimal reduction Q of I, and when this is the case, by [11], the associated graded ring $G(I) = \bigoplus_{n \geq 0} I^n/I^{n+1}$ is a Cohen-Macaulay ring. The purpose of this paper is to extend their results without assuming that A is a Cohen-Macaulay ring.

Suppose that I contains a parameter ideal Q as a reduction. Then, from Northcott's inequality, one can easily deduce that $e_0(I) - \ell_A(A/I) \le e_1(I) - e_1(Q)$ (See 3.1). Assuming that Q is a standard ideal in the sense of [10, Definition 19 of Appendix], we will investigate

^{*}The authors are supported by the Grant-in-Aid for Scientific Reserches in Japan (C(2), No. 13640044, No. 11640011).

when the equality $e_0(I) - \ell_A(A/I) = e_1(I) - e_1(Q)$ holds. In order to state our result, let us fix some notation. For an ideal \mathfrak{q} of A which is minimally generated by a_1, \dots, a_s , we set

$$\Sigma(\mathfrak{q}) = \mathfrak{q} + \sum_{i=1}^{s} [(a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_s) :_A a_i].$$

It is easy to see that $\Sigma(\mathfrak{q})$ does not depend on the choice of the minimal system of generators. For a module M over a ring R, we denote by $\mathrm{H}^i_{\mathfrak{a}}(M)$ the i-th local cohomology module of M with respect to \mathfrak{a} . In particular, we set $W = \mathrm{H}^0_{\mathfrak{m}}(A)$. Then we have the following.

Theorem 1.1 Suppose that I contains a standard parameter ideal Q as a reduction. Then $e_0(I) - \ell_A(A/I) = e_1(I) - e_1(Q)$ if and only if $I^2 \subseteq QI + W$ and $\Sigma(Q) \subseteq I$.

If the length of $H_{\mathfrak{m}}^{i}(A)$, which is denoted by $h^{i}(A)$, is finite for any $0 \leq i < d$, we have that

$$-e_1(Q) \le \sum_{i=0}^{d-1} {d-2 \choose i-1} h^i(A)$$

with equality when Q is a standard ideal (See 2.4). Therefore, as a consequence of 1.1 and [3], we get the next result.

Corollary 1.2 If A is a quasi-Buchsbaum ring, then

$$\sup_{\sqrt{I}=\mathfrak{m}} \{ e_0(I) - \ell_A(A/I) - e_1(I) \} = \sum_{i=0}^{d-1} {d-2 \choose i-1} h^i(A).$$

Moreover, assuming that A is a Buchsbaum ring or a slightly different condition, for ideals I which enjoy the property stated in 1.1, we will study the Buchsbaumness of G(I) together with I(G(I)) and a(G(I)), where I(*) and a(*) denote the I-invariant (cf. [10, p. 254]) and a-invariant (cf. [4]) respectively.

Theorem 1.3 Suppose that either (i) A is a Buchsbaum ring or (ii) A is a quasi-Buchsbaum ring and $I \subseteq \mathfrak{m}^2$. If I contains a parameter ideal Q such that $I^2 \subseteq QI + W$ and $\Sigma(Q) \subseteq I$, then G(I) is a Buchsbaum ring with I(G(I)) = I(A) and $a(G(I)) \leq 2 - d$.

Throughout this paper (A, \mathfrak{m}) denotes a commutative Noetherian local ring with $d = \dim A > 0$ and I an \mathfrak{m} -primary ideal of A. The Rees algebra $R(\mathfrak{a})$ of an ideal \mathfrak{a} of a ring R is the subring R[It] of R[t], where t is an indeterminate. The associated graded ring $R(\mathfrak{a})$ is the quotient ring $R(\mathfrak{a})/\mathfrak{a}R(\mathfrak{a})$. For $f \in R(\mathfrak{a})$, we denote it's image in $R(\mathfrak{a})$ by \overline{f} .

2 Preliminaries

We begin with the following result of one dimensional case.

Lemma 2.1 Let d = 1. If I contains a parameter ideal Q as a reduction, then we have that $e_0(I) - \ell_A(A/I) \le e_1(I) + \ell_A(I \cap W)$ with equality if and only if $I^2 \subseteq QI + W$.

Proof. Let B = A/W. Then B is a Cohen-Macaulay ring with dim B = 1 and QB is a parameter ideal of B contained in IB as a reduction. Hence, by Northcott's inequality and the result of Huneke and Ooishi stated in Introduction, we have that $e_0(IB) - \ell_B(B/IB) \le e_1(IB)$ with equality if and only if $I^2B = QIB$. On the other hand, as $\ell_B(B/I^{n+1}B) = \ell_A(A/I^{n+1}) - \ell_A(W)$ for $n \gg 0$, we have $e_0(IB) = e_0(I)$ and $e_1(IB) = e_1(I) + \ell_A(W)$. Moreover, $\ell_B(B/IB) = \ell_A(A/I) - \ell_A(W) + \ell_A(I \cap W)$. Therefore we get the required assertion as $I^2B = QIB$ if and only if $I^2 \subseteq QI + W$.

When we investigate higher dimensional case, we reduce the dimension using a superficial element (cf. [7, Section 22]), and the next result, which may be well known, plays a key role.

Lemma 2.2 Let $d \ge 2$ and a be a superficial element of I. We set B = A/aA. Then $\dim B = d-1$ and

$$e_i(IB) = \begin{cases} e_i(I) & \text{if } 0 \le i < d-1 \\ e_{d-1}(I) + (-1)^{d-1} \ell_A(0:_A a) & \text{if } i = d-1. \end{cases}$$

Proof. Let $n \gg 0$. Then $I^{n+1} \cap aA = aI^n$ and $I^n \cap (0:_A a) = 0$. Hence we have an exact sequence

$$0 \longrightarrow 0 :_A a \longrightarrow A/I^n \stackrel{a}{\longrightarrow} (aA + I^{n+1})/I^{n+1} \longrightarrow 0$$

so that

$$\begin{split} &\ell_B(B/I^{n+1}B) \\ &= \ell_A(A/I^{n+1}) - \ell_A(A/I^n) + \ell_A(0:_A a) \\ &= \sum_{i=0}^d (-1)^i \mathbf{e}_i(I) \binom{n+d-i}{d-i} - \sum_{i=0}^d (-1)^i \mathbf{e}_i(I) \binom{n-1+d-i}{d-i} + \ell_A(0:_A a) \\ &= \sum_{i=0}^{d-2} (-1)^i \mathbf{e}_i(I) \binom{n+d-1-i}{d-1-i} + (-1)^{d-1} \{ \mathbf{e}_{d-1}(I) + (-1)^{d-1} \ell_A(0:_A a) \} \,. \end{split}$$

Thus we get the required assertion.

Lemma 2.3 Suppose that A/\mathfrak{m} is infinite and J is a reduction of I. Then there exists an element $a \in J$ which is superficial for both of I and J. Moreover, for such element $a \in J$, setting B = A/aA, we have $e_1(I) - e_1(J) = e_1(IB) - e_1(JB)$ provided $d \ge 2$.

Proof. By taking a general linear form in $G(J)/\mathfrak{m}G(J)$, we see the existence of $a \in J$ satisfying the required condition. If $d \geq 3$, we get the equality since $e_1(IB) = e_1(I)$ and $e_1(JB) = e_1(J)$. Even if d = 2, we have

$$e_1(IB) - e_1(JB) = \{e_1(I) - \ell_A(0:_A a)\} - \{e_1(J) - \ell_A(0:_A a)\}$$

= $e_1(I) - e_1(J)$.

Lemma 2.4 Let Q be a parameter ideal of A. We have the following statements provided $h^i(A)$ is finite for any $0 \le i < d$.

- (1) Let d = 1. Then $-e_1(Q) = h^0(A)$.
- (2) Let $d \geq 2$. Then we have that

$$-e_1(Q) \le \sum_{i=1}^{d-1} {d-2 \choose i-1} h^i(A)$$

with equality if Q is a standard ideal.

Proof. Let d=1. Then, taking $n \gg 0$ such that W=0:_A Q^n and $\ell_A(A/Q^n)=e_0(Q)\cdot n-e_1(Q)$, we see that $-e_1(Q)=\ell_A(W)$ since $e_0(Q)\cdot n=e_0(Q^n)=\ell_A(A/Q^n)-\ell_A(0:_AQ^n)$. Thus we get the assertion (1).

Next we assume that $d \geq 2$. Moreover, in order to prove the assertion (2), we may assume that A/\mathfrak{m} is infinite. Then we can choose $a \in Q \backslash \mathfrak{m}Q$ which is a superficial element of Q. Let B = A/aA and $0 \leq i < d-1$. Considering the exact sequence

$$0 \longrightarrow 0 :_A a \longrightarrow A \xrightarrow{a} A \longrightarrow B \longrightarrow 0$$

we get the exact sequence

$$(\#)$$
 $\operatorname{H}^{i}_{\mathfrak{m}}(A) \xrightarrow{a} \operatorname{H}^{i}_{\mathfrak{m}}(A) \longrightarrow \operatorname{H}^{i}_{\mathfrak{m}}(B) \longrightarrow \operatorname{H}^{i+1}_{\mathfrak{m}}(A) \xrightarrow{a} \operatorname{H}^{i+1}_{\mathfrak{m}}(A)$.

Hence it follows that $h^i(B) \leq h^i(A) + h^{i+1}(A)$ with equality when Q is a standard ideal. Let d = 2. Then $-e_1(Q) = -\{e_1(QB) + \ell_A(0:_A a)\} = h^0(B) - \ell_A(0:_A a)$. Because the exact sequence (#) implies $h^0(B) \leq \ell_A(0:_W a) + h^1(A)$, we have $-e_1(Q) \leq h^1(A)$. Furthermore, if Q is standard, then $h^0(B) = h^0(A) + h^1(A)$ and $0:_A a = W$, so that $-e_1(Q) = h^1(A)$.

Let $d \geq 3$. Then $e_1(QB) = e_1(Q)$. Hence we can easily verify the assertion (2) by induction on d.

3 General case

As a result in general case, we give the following assertion, which is a generalization of Northcott's inequality.

Theorem 3.1 If I contains a parameter ideal Q as a reduction, then $e_0(I) - \ell_A(A/I) \le e_1(I) - e_1(Q)$.

Proof. We prove by induction on d. If d=1, the assertion follows from 2.1 and 2.4. Suppose that $d \geq 2$. We may assume that A/\mathfrak{m} is infinite, so that there exists $a \in Q \setminus \mathfrak{m}Q$ which is superficial for both of I and Q. Then, setting B = A/aA, we have

$$e_0(I) - \ell_A(A/I) = e_0(IB) - \ell_B(B/IB)$$
 by 2.2
 $\leq e_1(IB) - e_1(QB)$ by the inductive hypothesis
 $= e_1(I) - e_1(Q)$ by 2.3.

Thus we get the required inequality.

The next result gives a sufficient condition under which the inequality of 3.1 turns into an equality in the case where $I = \mathfrak{m}$.

Proposition 3.2 Let Q be a parameter ideal which is a reduction of \mathfrak{m} . If there exists an ideal V of A such that $\dim_A V < d$ and $\mathfrak{m}^2 \subseteq Q\mathfrak{m} + V$, then $e_0(\mathfrak{m}) - 1 = e_1(\mathfrak{m}) - e_1(Q)$.

Proof. We prove by induction on d. If d=1, then $V \subseteq W \subseteq \mathfrak{m}$, so that by 2.1 we have $e_0(\mathfrak{m}) - 1 = e_1(\mathfrak{m}) + \ell_A(W)$, which yields the required equality since $-e_1(Q) = \ell_A(W)$ by 2.4. Suppose that $d \geq 2$. As we may assume that A/\mathfrak{m} is infinite, it is possible to take an element $a \in Q \setminus \mathfrak{m}Q$ such that $\dim_A V/aV < d-1$ and a is a superficial element for both of \mathfrak{m} and Q. Let B = A/aA. Then $\dim_B VB < \dim B$ as VB is a homomorphic image of V/aV, so that by the inductive hypothesis we have $e_0(\mathfrak{m}B) - 1 = e_1(\mathfrak{m}B) - e_1(QB)$, from which the required equality follows since $e_0(\mathfrak{m}B) = e_0(\mathfrak{m})$ and $e_1(\mathfrak{m}B) - e_1(QB) = e_1(\mathfrak{m}) - e_1(Q)$.

Corollary 3.3 Let Q be a parameter ideal which is a reduction of \mathfrak{m} . Then $e_0(\mathfrak{m}) = 1$ if and only if $e_1(\mathfrak{m}) = e_1(Q)$.

Proof. Because $0 \le e_0(\mathfrak{m}) - 1 = e_0(\mathfrak{m}) - \ell_A(A/\mathfrak{m}) \le e_1(\mathfrak{m}) - e_1(Q)$, we get $e_0(\mathfrak{m}) = 1$ if $e_1(\mathfrak{m}) = e_1(Q)$. In order to prove the converse implication, we may assume that A is complete. Now suppose that $e_0(\mathfrak{m}) = 1$. Let $\mathfrak{a}(\mathfrak{p})$ be the \mathfrak{p} -primary component of a primary decomposition of 0. We set $V = \bigcap_{\mathfrak{p} \in \mathrm{Assh} A} \mathfrak{a}(\mathfrak{p})$, where $\mathrm{Assh} A$ denotes the set of associated primes of A whose coheight is d, and B = A/V. Then $\dim_A V < d$ and $e_0(\mathfrak{m}B) = e_0(\mathfrak{m}) = 1$, which implies that B is a regular local ring. Hence we have $\mathfrak{m} = Q + V$, so that $\mathfrak{m}^2 \subseteq Q\mathfrak{m} + V$. Therefore, by 3.2 it follows that $e_1(\mathfrak{m}) = e_1(Q)$.

4 The case where Q is a standard ideal

Lemma 4.1 Let $d \ge 2$ and $Q = (a_1, a_2, \dots, a_d)$ be a standard parameter ideal of A. We set $a = a_1, b = a_d, J = (a_1, a_2, \dots, a_{d-1})$ and $K = (a_2, a_3, \dots, a_d)$. Then we have the following.

- (1) $aJ :_A b^2 = aJ :_A b$.
- (2) $aJ \cap bA \subseteq aJI \text{ provided } \Sigma(Q) \subseteq I.$
- (3) $I^2 \subseteq QI + W$ provided $\Sigma(Q) \subseteq I$, $I^2 \subseteq JI + [bA :_A a]$ and $I^2 \subseteq KI + [aA :_A b]$.
- *Proof.* (1) Let us take any $x \in aJ :_A b^2$ and write $b^2x = ay$, with $y \in J$. Then, as $y \in [b^2A :_A a] \cap (b^2, a_1, \dots, a_{d-1})$, there exists $z \in A$ such that $y = b^2z$. Here we notice that $bz \in J$ since $z \in J :_A b^2 = J :_A b$. On the other hand, as $b^2x = ab^2z$, we have $bx abz \in [0 :_A b] \cap bA = 0$, so that $bx = a \cdot bz \in aJ$. Thus we get $aJ :_A b^2 \subseteq aJ :_A b$ and the converse inclusion is obvious.
- (2) Let us take any $\xi \in aJ \cap bA$ and write $\xi = ay = bz$, with $y \in J$ and $z \in A$. Moreover, we write $y = a_1y_1 + \cdots + a_{d-1}y_{d-1}$, with $y_1, \cdots, y_{d-1} \in A$. It is enough to show $y_i \in I$ for any $1 \le i \le d-1$. However, as $y_1 \in K :_A a^2 = K :_A a \subseteq \Sigma(Q) \subseteq I$, we may consider only the case that $d \ge 3$ and $2 \le i \le d-1$. Because $ay_1 \in K$, we can express $ay_1 = a_2z_2 + \cdots + a_dz_d$, with $z_2, \cdots, z_d \in A$. Then $z_i \in (a_1, \cdots, a_{i-1}, a_{i+1}, \cdots, a_d) :_A a_i \subseteq I$ for any $2 \le i \le d$. On the other hand, as

$$bz = a(a_2z_2 + \dots + a_dz_d) + aa_2y_2 + \dots + aa_{d-1}y_{d-1}$$

= $aa_2(y_2 + z_2) + \dots + aa_{d-1}(y_{d-1} + z_{d-1}) + aa_dz_d$,

it follows that

$$y_i + z_i \in (a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_d) :_A aa_i$$

 $\subseteq (a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_d) :_A a_i \subseteq I$

for $2 \le i \le d-1$, and hence we get $y_i \in I$.

(3) It is enough to show $[aA:_Ab] \cap I^2 \subseteq JI + W$. Let us take any $x \in [aA:_Ab] \cap I^2$. Then, bx = ay for some $y \in A$, and $ax = a\xi + bz$ for some $\xi \in JI$ and $z \in A$. From these equalities we get $a^2y = ab\xi + b^2z$. Hence $z \in aJ:_Ab^2 = aJ:_Ab$, so that $bz = a\eta$ for some $\eta \in JI$. Then it follows that $ax = a\xi + a\eta$, which implies $x - \xi - \eta \in 0:_Aa = W$. Thus we have $x \in JI + W$ and the proof is completed.

Proof of Theorem 1.1. We prove by induction on d. By 2.1 and 2.4 we get the assertion when d=1. Suppose that $d\geq 2$. As we may assume that A/\mathfrak{m} is infinite, it is possible to choose a minimal system of generators a_1, \dots, a_d of Q such that a_1 and a_d are superficial for both of I and Q. We set $a=a_1,b=a_d,B=A/aA,J=(a_1,\dots,a_{d-1}),K=(a_2,\dots,a_d)$ and $Q_i=(a_1,\dots,a_{i-1},a_{i+1},\dots,a_d)$ for $1\leq i\leq d$. Because $e_0(I)=e_0(IB),\ell_A(A/I)=\ell_B(B/IB)$ and $e_1(I)-e_1(Q)=e_1(IB)-e_1(KB)$, by the inductive hypothesis we have $e_0(I)-\ell_A(A/I)=e_1(I)-e_1(Q)$ if and only if $I^2B\subseteq KIB+\mathrm{H}^0_\mathfrak{m}(B)$ and $\Sigma(KB)\subseteq IB$, which holds if $I^2\subseteq QI+W$ and $\Sigma(Q)\subseteq I$ since $WB\subseteq \mathrm{H}^0_\mathfrak{m}(B)$ and $\Sigma(KB)\subseteq \Sigma(Q)B$. Now we assume that $e_0(I)-\ell_A(A/I)=e_1(I)-e_1(Q)$. Then it follows that $I^2\subseteq KI+[aA:_Ab]$ and $Q_i:_Aa_i\subseteq I$ for $1\leq i\leq d$. Moreover, by passing A/bA we get $I^2\subseteq JI+[bA:_Aa]$ and $Q_i:_Aa_i\subseteq I$ for $1\leq i\leq d-1$. Therefore, as $\Sigma(Q)\subseteq I$, we have $I^2\subseteq QI+W$ by 4.1 and the proof is completed.

Proof of Corollary 1.2. We may assume that A/\mathfrak{m} is infinite. Then any ideal of A has a minimal reduction, so that by 2.4 and 3.1 we have

$$e_0(I) - \ell_A(A/I) - e_1(I) \le \sum_{i=1}^{d-2} {d-2 \choose i-1} h^i(A)$$

for any \mathfrak{m} -primary ideal I. Hence it is enough to find an \mathfrak{m} -primary ideal for which the equality holds. Let x_1, \dots, x_d be an sop for A contained in \mathfrak{m}^2 and n_1, \dots, n_d be integers not less than 2. We set $Q = (x_1^{n_1}, \dots, x_d^{n_d})$ and $I = Q :_A \mathfrak{m}$. Then Q is a standard parameter ideal by [10, Proposition 2.1] and $I^2 = QI$ by [3]. Because we obviously have $\Sigma(Q) \subseteq I$, by 1.1 and 2.4 it follows that

$$e_0(I) - \ell_A(A/I) - e_1(I) = \sum_{i=1}^{d-2} {d-2 \choose i-1} h^i(A),$$

and the proof is completed.

Example 4.2 Let R = k[[X, Y, Z, W]] be the formal power series ring with variables X, Y, Z and W over an infinite field k. Let $\mathfrak{a} = (X^2, Y)R, \mathfrak{b} = (Z, W)R$ and $A = R/\mathfrak{a} \cap \mathfrak{b}$. Let x, y, z and w respectively denote the images of X, Y, Z and W in A. We set Q = (x - z, y - w)A and $\mathfrak{m} = (x, y, z, w)A$. Then we have the following assertion.

- (1) dim A = 2, depth A = 1, $h^1(A) = 2$ and A is not a quasi-Buchsbaum ring.
- (2) $\mathfrak{m}^3 = Q\mathfrak{m}^2$, but $\mathfrak{m}^2 \neq Q\mathfrak{m}$.
- (3) If V is an ideal of A with $\dim_A V < 2$, then V = 0, so that $\mathfrak{m}^2 \not\subseteq Q\mathfrak{m} + V$.

(4)
$$e_0(\mathfrak{m}) = 3$$
, $e_1(\mathfrak{m}) = 1$ and $e_1(Q) = -1$, so that $e_0(\mathfrak{m}) - \ell_A(A/\mathfrak{m}) = e_1(\mathfrak{m}) - e_1(Q)$.

Proof. From the exact sequence $0 \longrightarrow A \longrightarrow R/\mathfrak{a} \oplus R/\mathfrak{b} \longrightarrow R/\mathfrak{a} + \mathfrak{b} \longrightarrow 0$, we get the assertion (1). One can directly check the assertion (2). Because dim $A/\mathfrak{p} = 2$ for any $\mathfrak{p} \in \operatorname{Ass} A$, we have the assertion (3). The associated graded ring $G(\mathfrak{m})$ of \mathfrak{m} is isomorphic to

$$k[X,Y,Z,W]/(X^2,Y)\cap(Z,W)$$
,

so that we have the exact sequence

$$0 \longrightarrow G(\mathfrak{m}) \longrightarrow k[X, Z, W]/(X^2) \oplus k[X, Y] \longrightarrow k[X]/(X^2) \longrightarrow 0$$
.

This implies that the Poincaré series $P(G(\mathfrak{m}), \lambda)$ of $G(\mathfrak{m})$ is

$$\frac{1+\lambda}{(1-\lambda)^2} + \frac{1}{(1-\lambda)^2} - (1+\lambda),$$

from which it follows that

$$\ell_A(A/\mathfrak{m}^{n+1}) = \frac{3}{2}n^2 + \frac{7}{2}n$$

for $n \geq 2$. Hence $e_0(\mathfrak{m}) = 3$ and $e_1(\mathfrak{m}) = 1$. Because k is infinite, there exists $\mu \in k$ such that $c = (x - z) + \mu(y - w)$ is a superficial element of Q. Let B = A/cA. Then $e_1(Q) = e_1(QB) = -h^0(B)$ and the exact sequence $0 \longrightarrow A \stackrel{c}{\longrightarrow} A \longrightarrow B \longrightarrow 0$ yields the exact sequence

$$0 \longrightarrow \mathrm{H}^0_{\mathfrak{m}}(B) \longrightarrow \mathrm{H}^1_{\mathfrak{m}}(A) \stackrel{c}{\longrightarrow} \mathrm{H}^1_{\mathfrak{m}}(A) \, .$$

Because $H^1_{\mathfrak{m}}(A) \cong R/\mathfrak{a} + \mathfrak{b} \cong k[[X]]/(X^2)$ and $(X - Z) + \mu(Y - W) \equiv X \mod \mathfrak{a} + \mathfrak{b}$, we have $H^0_{\mathfrak{m}}(B) \cong [(X^2) :_{k[[X]]} X]/(X^2) = (X)/(X^2)$. Thus we get $e_1(Q) = -1$ and the proof is completed.

5 Buchsbaumness of G(I)

Throughout this section we assume that I contains a parameter ideal $Q=(a_1, \dots, a_d)$ as a reduction. We set R=R(I) and G=G(I). The graded maximal ideal of G is denoted by M. Furthermore, we set $f_i=a_it \in R$ for $1 \le i \le d$. For certain elements x_1, \dots, x_n of a ring S and an S-module L, we denote by $e(x_1, \dots, x_n; L)$ the multiplicity symbol of x_1, \dots, x_n with respect to L (cf. [10, p. 24]).

Lemma 5.1
$$e(f_1^{n_1}, \dots, f_d^{n_d}; G_M) = e(a_1^{n_1}, \dots, a_d^{n_d}; A)$$
 for any $n_1, \dots, n_d > 0$.

Proof. Let G_+ be the ideal of G generated by homogeneous elements of positive degree. As $(f_1, \dots, f_d)G$ is a reduction of G_+ , we have $e(f_1, \dots, f_d; G_M) = e_0((G_+)_M)$. On the other hand, as $\ell_{G_M}(G/(G_+)^n) = \ell_A(A/I^n)$ for any n > 0, we have $e_0((G_+)_M) = e_0(I)$. Hence it follows that $e(f_1, \dots, f_d; G_M) = e(a_1, \dots, a_d; A)$. Therefore, for any $n_1, \dots, n_d > 0$

$$e(f_1^{n_1}, \dots, f_d^{n_d}; G_M) = n_1 n_2 \dots n_d \cdot e(f_1, \dots, f_d; G_M)$$

= $n_1 n_2 \dots n_d \cdot e(a_1, \dots, a_d; A) = e(a_1^{n_1}, \dots, a_d^{n_d}; A)$.

Thus we get the required equality.

In the rest of this section, we furthermore assume that Q is a standard ideal such that $I^2 \subseteq QI + W$, $I^3 \subseteq Q$ and $\Sigma(Q) \subseteq I$.

Lemma 5.2 Let n_1, \dots, n_d be positive integers. Then

$$(a_1^{n_1}, \cdots, a_i^{n_i}) \cap I^n = \sum_{j=1}^i a_j^{n_j} I^{n-n_j}$$

for any $n \in \mathbb{Z}$ and $1 \leq i \leq d$. Hence we have

$$G/(f_1^{n_1}, \cdots, f_i^{n_i})G \cong G(IB),$$

where $B = A/(a_1^{n_1}, \cdots, a_i^{n_i})$.

Proof. We may assume that $n > n_j$ for any $1 \le j \le i$. Let $x \in (a_1^{n_1}, \dots, a_i^{n_i}) \cap I^n$. Then, as $x \in Q \cap (Q^{n-1}I + W) = Q^{n-1}I$, we can express

$$x = \sum_{\lambda \in \Lambda} y_{\lambda} a^{\lambda} \quad (y_{\lambda} \in I) \,,$$

where Λ is the set of $\lambda = (\lambda_1, \dots, \lambda_d) \in \mathbb{Z}^d$ such that $\lambda_1 + \dots + \lambda_d = n - 1$ and $a^{\lambda} = a_1^{\lambda_1} a_2^{\lambda_2} \dots a_d^{\lambda_d}$. On the other hand, as

$$x \in (a_1^{n_1}, \dots, a_i^{n_i}) \cap Q^{n-1} = \sum_{j=1}^i a_j^{n_j} Q^{n-1-n_j},$$

we can write

$$x = \sum_{\gamma \in \Gamma} z_{\gamma} a^{\gamma} \quad (z_{\gamma} \in A),$$

where $\Gamma = \{ \gamma \in \Lambda \mid \gamma_j \geq n_j \text{ for some } 1 \leq j \leq i \}$. It is enough to show that $z_{\gamma} \in I$ for any $\gamma \in \Gamma$.

Let $B = A[T_1, \dots, T_d]$ be the polynomial ring with variables T_1, \dots, T_d over A and $\varphi : B \longrightarrow R(Q)$ be the homomorphism of A-algebras such that $\varphi(T_j) = f_j$ for $1 \le j \le d$. Because a_1, \dots, a_d is a d-sequence, $\ker \varphi$ is generated by homogeneous elements of degree one (cf. [5]), so that $\ker \varphi \subseteq IB$ as $\Sigma(Q) \subseteq I$. Now we set

$$f = \sum_{\lambda \in \Lambda \setminus \Gamma} y_{\lambda} T^{\lambda} + \sum_{\gamma \in \Gamma} (y_{\gamma} - z_{\gamma}) T^{\gamma}.$$

Then $f \in \ker \varphi$. Hence we get $z_{\gamma} \in I$ for any $\gamma \in \Gamma$.

Lemma 5.3 We have

- (1) $[0:_G f_1]_n = {\overline{wt^n} \mid w \in W \cap I^n},$
- (2) $0:_G f_1 = [0:_G f_1]_1 \oplus [0:_G f_1]_2$,
- (3) $\ell_{G_M}(0:_G f_1) = \ell_A(W)$, and hence depth G > 0 if depth A > 0.

Proof. (1) Let $x \in I^n$ and $\overline{xt^n} \in 0 :_G f_1$. Then $a_1x \in I^{n+2}$, so that by 5.2 we have $a_1x = a_1y$ for some $y \in I^{n+1}$, which implies $x \in I^{n+1} + W$ since $x - y \in 0 :_A a_1 = W$. Hence $\overline{xt^n} = \overline{wt^n}$ for some $w \in W \cap I^n$. Thus we get $[0 :_G f_1]_n \subseteq \{\overline{wt^n} \mid w \in W \cap I^n\}$, and the converse inclusion is obvious.

- (2) This follow from the assertion (1) as $W \cap I^n \subseteq W \cap Q = 0$ for $n \ge 3$.
- (3) We get this assertion since $[0:_G f_1]_1 \cong W/W \cap I^2$ and $[0:_G f_1]_2 \cong W \cap I^2$.

Lemma 5.4 f_1, \dots, f_d is a standard system of parameters for G_M . In particular, it follows that $H_M^0(G) = 0 :_G f_1$, so that $h^0(G_M) = h^0(A)$. Moreover, we have $I(G_M) = I(A)$.

Proof. By 5.2 we have $G/(f_1, \dots, f_d)G \cong G(I/Q)$, so that

$$\ell_{G_M}(G/(f_1,\cdots,f_d)G)=\ell_A(A/Q)$$
.

Similarly, setting $\mathfrak{a} = (a_1^2, \cdots, a_d^2)$, we have

$$\ell_{G_M}(G/(f_1^2,\cdots,f_d^2)G)=\ell_A(A/\mathfrak{a}).$$

Then, using 5.1 and that a_1, \dots, a_d is a standard system of parameters for A, we get

$$\ell_{G_M}(G/(f_1, \dots, f_d)G) - e(f_1, \dots, f_d; G_M)$$
= $\ell_A(A/Q) - e(a_1, \dots, a_d; A)$
= $\ell_A(A/\mathfrak{a}) - e(a_1^2, \dots, a_d^2; A)$
= $\ell_{G_M}(G/(f_1^2, \dots, f_d^2)G) - e(f_1^2, \dots, f_d^2; G_M)$.

Therefore by [10, Theorem and Definition 17 in Appendix], we have the required assertion.

Lemma 5.5 We have the following.

- (1) If 0 < i < d, then $H_M^i(G)$ is concentrated in degree 1 i.
- (2) $a(G) \le 2 d$.

Proof. We prove by induction on d. Let d = 1. In this case, the assertion (1) insists nothing. In order to prove the assertion (2), let us consider the exact sequence

$$0 \longrightarrow \mathrm{H}_{M}^{0}(G)(-1) \longrightarrow G(-1) \xrightarrow{f_{1}} G \longrightarrow G/f_{1}G \longrightarrow 0$$
.

This sequence yields the exact sequence

$$\mathrm{H}_{M}^{0}(G/f_{1}G) \longrightarrow \mathrm{H}_{M}^{1}(G)(-1) \xrightarrow{f_{1}} \mathrm{H}_{M}^{1}(G) \longrightarrow 0$$

which implies $[\mathrm{H}^1_M(G)]_{n-1} \cong [\mathrm{H}^1_M(G)]_n$ for $n \geq 3$ since $[G/f_1G]_n \cong I^n/QI^{n-1} + I^{n+1} = 0$ for $n \geq 3$. Hence we get $[\mathrm{H}^1_M(G)]_n = 0$ for $n \geq 2$, so that $\mathrm{a}(G) \leq 1$.

Now we assume that $d \geq 2$. Let B = A/W. Then the kernel of the graded homomorphism $G \longrightarrow G(IB)$ of A-algebras induced from the canonical surjection $A \longrightarrow B$ has finite length, so that we have $H^i_M(G) \cong H^i_M(G(IB))$ for i > 0. On the other hand, QB is a standard parameter ideal of B such that $I^2B = QIB$ and $\Sigma(QB) \subseteq IB$. Hence by 5.3 and 5.4 we have that f_1 is G(IB)-regular and $f_1 \cdot H^i_M(G(IB)) = 0$ for any $0 \leq i < d$.

Furthermore, setting $C = B/a_1B$, we have $G(IB)/f_1G(IB) \cong G(IC)$ by 5.2. Therefore we get the exact sequence

$$0 \longrightarrow G(IB)(-1) \xrightarrow{f_1} G(IB) \longrightarrow G(IC) \longrightarrow 0,$$

from which we see that $\mathcal{H}_M^i(\mathcal{G}(IB)) \hookrightarrow \mathcal{H}_M^i(\mathcal{G}(IC))$ for $0 \leq i < d$ and $\mathcal{H}_M^{d-1}(\mathcal{G}(IB))$ is a homomorphic image of $\mathcal{H}_M^{d-2}(\mathcal{G}(IC))(1)$. Because $QC = (a_2, \cdots, a_d)C$ is a standard parameter ideal of C such that $I^2C = QIC$ and $\Sigma(QC) \subseteq IC$, the inductive hypothesis insists that $\mathcal{H}_M^i(\mathcal{G}(IC)) = [\mathcal{H}_M^i(\mathcal{G}(IC))]_{1-i}$ for any $0 \leq i < d-1$ and $\alpha(\mathcal{G}(IC)) \leq 3-d$. Now the assertion (1) can be verified easily. In order to see the assertion (2), let us consider the exact sequence

$$H_M^{d-1}(G(IC)) \longrightarrow H_M^d(G(IB))(-1) \xrightarrow{f_1} H_M^d(G(IB)) \longrightarrow 0.$$

If n > 3 - d, then $[H_M^{d-1}(G(IC))]_n = 0$, so that $[H_M^d(G(IB))]_{n-1} \cong [H_M^d(G(IB))]_n$. Hence we have $[H_M^d(G)]_n \cong [H_M^d(G(IB))]_n = 0$ for any $n \ge 3 - d$. Therefore we get the assertion (2) and the proof is completed.

Lemma 5.6 Suppose that a_1, \dots, a_d form a weak sequence (cf. [10, Definition 1.1]) in any order. We arbitrary take $x_i \in \mathfrak{m}$ for $1 \leq i \leq d$ and set $\xi_i = x_i - a_i t$. Then

$$(\xi_1,\cdots,\xi_d)G\cap \mathrm{H}^0_M(G)=0$$
.

Proof. Let us take any $\varphi \in (\xi_1, \dots, \xi_d)G \cap \mathcal{H}_M^0(G)$. As $\mathcal{H}_M^0(G) = 0 :_G f_1$ by 5.4, we can express $\varphi = \overline{w_1 t + w_2 t^2}$, with $w_j \in W \cap I^j$ for j = 1, 2. We would like to show that $w_j \in I^{j+1}$ for j = 1, 2. For that, we write $\varphi = \sum_{i=1}^d \overline{\xi_i} \cdot \overline{\eta_i}$, with $\eta_i \in R$ for $1 \leq i \leq d$. Taking $N \gg 0$, we can express $\eta_i = \sum_{j=1}^N \eta_{ij} t^j \ (\eta_{ij} \in I^j)$ for $1 \leq i \leq d$. Our assumption implies $\mathfrak{m}W = 0$, so that $\mathfrak{m}I^2 \subseteq \mathfrak{m}QI$. Hence $I^j \subseteq Q$ for $j \geq 3$. Then, by 5.1 we have $\eta_{ij} \in QI^{j-1}$ for $j \geq 3$. Furthermore, we can choose η_{i2} in QI since $\xi_i \in \mathfrak{m}A[t]$, $I^2 \subseteq QI + W$ and $\mathfrak{m}W = 0$. Because

$$w_1 t + w_2 t^2 \equiv \sum_{i=1}^d \xi_i \eta_i \mod IR,$$

we get the following congruence equations:

$$0 \equiv \sum_{i=1}^{d} x_{i}\eta_{i0} \mod I,$$

$$w_{1} \equiv \sum_{i=1}^{d} (x_{i}\eta_{i1} - a_{i}\eta_{i0}) \mod I^{2},$$

$$w_{2} \equiv \sum_{i=1}^{d} (x_{i}\eta_{i2} - a_{i}\eta_{i1}) \mod I^{3},$$

$$0 \equiv \sum_{i=1}^{d} (x_{i}\eta_{ij} - a_{i}\eta_{i,j-1}) \mod I^{j+1} \text{ for } 3 \leq j \leq N \text{ and}$$

$$0 \equiv \sum_{i=1}^{d} a_{i}\eta_{iN} \mod I^{N+2}.$$

The third equation implies $w_2 \in Q$, so that $w_2 = 0$. Hence it is enough to show $w_1 \in I^2$. We need the following.

Claim There exist elements $y_{\alpha\beta}^{(j)} \in I^j$ for any $1 \leq j \leq N$ and $1 \leq \alpha < \beta \leq d$ such that

$$\sum_{i=1}^{d} a_i (\eta_{ij} + \sum_{\alpha < i} x_{\alpha} y_{\alpha i}^{(j)} - \sum_{i < \beta} x_{\beta} y_{i\beta}^{(j)}) \in I^{j+2}.$$

If this is true, setting

$$v_i = \eta_{i1} + \sum_{\alpha \le i} x_{\alpha} y_{\alpha i}^{(1)} - \sum_{i \le \beta} x_{\beta} y_{i\beta}^{(1)},$$

we have $\sum_{i=1}^d a_i v_i \in I^3 = QI^2$. Hence there exist $v_i' \in I^2$ for $1 \leq i \leq d$ such that $\sum_{i=1}^d a_i (v_i - v_i') = 0$. Then, for any $1 \leq i \leq d$ we get

$$v_i - v'_i \in (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_d) :_A a_i$$

= $(a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_d) :_A \mathfrak{m}$,

so that $x_i(v_i - v_i') \in Q$, which implies $x_i v_i \in Q$ as $x_i v_i' \in \mathfrak{m}I^2 \subseteq Q$. On the other hand, we have $\sum_{i=1}^d x_i v_i = \sum_{i=1}^d x_i \eta_{i1}$, so that $q \in Q$, where $q = \sum_{i=1}^d (x_i \eta_{i1} - a_i \eta_{i0})$. Because $w_1 - q \in I^2$, we have $w_1 - q = q' + w'$ for some $q' \in QI$ and $w' \in W$. Then, as $w_1 - w' = q + q' \in Q \cap W = 0$, we get $w_1 \in I^2$.

Proof of Claim. We prove by descending induction on j. First, we set $y_{\alpha\beta}^{(N)}=0$ for any $1 \leq \alpha < \beta \leq d$. Next, we assume that $2 \leq j \leq N$ and we have the required elements $y_{\alpha\beta}^{(j)}$. Of course, $y_{\alpha\beta}^{(j)} \in QI^{j-1}$ if $j \geq 3$. However, even if j=2 we can choose $y_{\alpha\beta}^{(j)}$ in QI^{j-1} since $I^2 \subseteq QI + W$ and $\mathfrak{m}W = 0$. Now we set

$$v_{ij} = \eta_{ij} + \sum_{\alpha < i} x_{\alpha} y_{\alpha i}^{(j)} - \sum_{i < \beta} x_{\beta} y_{i\beta}^{(j)}.$$

Let $K_{\bullet} = K_{\bullet}(f_1, \dots, f_d; G)$ be the Koszul complex with the differential maps $\partial_p : K_p \longrightarrow K_{p-1}$ and let T_1, T_2, \dots, T_d be the free bases of K_1 . We set

$$\sigma = \sum_{i=1}^{d} \overline{v_{ij}t^{j}} \cdot T_{i}.$$

Then $\sigma \in (f_1, \dots, f_d)K_1$ as $v_{ij} \in QI^{j-1}$ for any $1 \le i \le d$. On the other hand,

$$\partial_1(\sigma) = \sum_{i=1}^d f_i \cdot \overline{v_{ij}t^j} = \overline{(\sum_{i=1}^d a_i v_{ij})t^{j+1}} = 0$$

in G, so that $\sigma \in \mathbb{Z}_1(K_{\bullet})$. Because f_1, \dots, f_d is a d-sequence on G, we have

$$(f_1, \dots, f_d)K_1 \cap Z_1(K_{\bullet}) = B_1(K_{\bullet}).$$

As a consequence, it follows that there exist elements $y_{\alpha\beta}^{(j-1)} \in I^{j-1}$ for any $1 \le \alpha < \beta \le d$ such that

$$\partial_2(\sum_{\alpha<\beta}\overline{y_{\alpha\beta}^{(j-1)}t^{j-1}}\cdot T_\alpha\wedge T_\beta)=\sigma$$
.

The left hand side is equal to

$$\sum_{i=1}^{d} \overline{(\sum_{\alpha < i} a_{\alpha} y_{\alpha i}^{(j-1)} - \sum_{i < \beta} a_{\beta} y_{i\beta}^{(j-1)}) t^{j}} \cdot T_{i},$$

so that we have

$$v_{ij} \equiv \sum_{\alpha < i} a_{\alpha} y_{\alpha i}^{(j-1)} - \sum_{i < \beta} a_{\beta} y_{i\beta}^{(j-1)} \mod I^{j+1}$$

for any $1 \le i \le d$. This implies

$$\sum_{i=1}^{d} x_i v_{ij} \equiv \sum_{\alpha < \beta} a_{\alpha} x_{\beta} y_{\alpha\beta}^{(j-1)} - \sum_{\alpha < \beta} x_{\alpha} a_{\beta} y_{\alpha\beta}^{(j-1)} \mod I^{j+1}.$$

On the other hand,

$$\sum_{i=1}^{d} x_i v_{ij} = \sum_{i=1}^{d} x_i \eta_{ij} \equiv \sum_{i=1}^{d} a_i \eta_{i,j-1} \mod I^{j+1}.$$

Therefore we get

$$\sum_{i=1}^{d} a_i (\eta_{i,j-1} + \sum_{\alpha \le i} x_{\alpha} y_{\alpha i}^{(j-1)} - \sum_{i \le \beta} x_{\beta} y_{i\beta}^{(j-1)}) \in I^{j+1}$$

and the proof is completed.

Proof of Theorem 1.3. Only the Buchsbaumness of G is left to show. We prove by induction on d. Because $H_M^0(G) = \{\overline{w_1 t + w_2 t^2} \mid w_1 \in W, w_2 \in W \cap I^2\}$ and $\mathfrak{m}W = 0$, we have $M \cdot H_M^0(G) = 0$. Hence G is a Buchsbaum ring if d = 1.

Suppose that $d \geq 2$. Let B = A/W and $C = B/a_1B$. Then C and IC inherits the assumption on A and I in 1.3 (cf. Proof of 5.5). Therefore the inductive hypothesis implies that G(IC) is a Buchsbaum ring, so that G(IB) is also a Buchsbaum ring since $G(IB)/f_1G(IB) \cong G(IC)$, f_1 is G(IB)-regular and $f_1 \cdot H_M^i(G(IB)) = 0$ for any i < d (cf. [10, Proposition 2.19]). Furthermore, it is easy to see that the kernel of the graded homomorphism $G \longrightarrow G(IB)$ coincides with $H_M^0(G)$. Thus we get that $G/H_M^0(G)$ is a Buchsbaum ring.

Let $V = \mathfrak{m} + It \subseteq R$. Because we may assume that A/\mathfrak{m} is infinite, we can choose a system of generators ξ_1, \dots, ξ_ℓ of V such that $\{\xi_i\}_{i\in\Lambda}$ form an sop for G_M for any subset $\Lambda \subseteq \{1, 2, \dots, \ell\}$ with d-elements. In order to prove the Buchsbaumness of G, it is enough to show that

$$(\{\xi_i\}_{i\in\Lambda})G\cap \mathrm{H}_M^0(G)=0$$

for any Λ stated above (cf. [10, Proposition 2.22]). Let $\Lambda = \{i_1 < i_2 < \dots < i_d\}$ and $\xi_{i_k} = x_k - b_k t \ (x_k \in \mathfrak{m}, b_k \in I)$ for $1 \le k \le d$. Because $(b_1 t, \dots, b_d t)G + \mathfrak{m}G$ coincides with the M-primary ideal $(\xi_{i_1}, \dots, \xi_{i_d})G + \mathfrak{m}G$, we have that $b_1 t, \dots, b_d t$ is an sop for $G/\mathfrak{m}G$. Hence $Q' = (b_1, \dots, b_d)$ is a reduction of I. Then, by our assumption that (i) A is a Buchsbaum ring or (ii) A is a quasi-Buchsbaum ring and $I \subseteq \mathfrak{m}^2$, we have that Q' is a standard parameter ideal of A, and hence by 1.1 we get $I^2 \subseteq Q'I + W$ and $\Sigma(Q') \subseteq I$. Therefore, by 5.6 we have $(\xi_{i_1}, \dots, \xi_{i_d}) \cap H_M^0(G) = 0$ and the proof is completed.

The next example insists that the assumption of 1.3 that $I \subseteq \mathfrak{m}^2$ is necessary when A is a quasi-Buchsbaum ring but not a Buchsbaum ring.

Example 5.7 Let F = k[[X,Y,Z,W]] be the formal power series ring with variables X,Y,Z and W over a field k. Let $\mathfrak{a} = (X,Y)F \cap (Z,W)F \cap (X^2,Y,Z^2,W)F$ and $A = F/\mathfrak{a}$. Let x,y,z and w respectively denote the images of X,Y,Z and W in A. We set $\mathfrak{m} = (x,y,z,w)A, a = x-z, b = y-w$ and Q = (a,b)A. Then we have the following.

- (1) A is a 2-dimensional quasi-Buchsbaum ring but not a Buchsbaum ring.
- (2) Q is a standard parameter ideal of A such that $\mathfrak{m}^2 = Q\mathfrak{m} + W$. We obviously have $\Sigma(Q) \subseteq \mathfrak{m}$.
- (3) $G(\mathfrak{m})$ is not a Buchsbaum ring.

Proof. Let $\mathfrak{n} = (X, Y, Z, W)F$ and $\mathfrak{b} = (X, Y)F \cap (Z, W)F$. Then we have the exact sequence $0 \longrightarrow F/\mathfrak{b} \longrightarrow F/(X, Y)F \oplus F/(Z, W)F \longrightarrow F/\mathfrak{n} \longrightarrow 0$, which implies that F/\mathfrak{b} is a 2-dimensional Buchsbaum ring such that depth $F/\mathfrak{b} = 1$, $H^1_\mathfrak{n}(F/\mathfrak{b}) \cong k$ and $e_0(\mathfrak{n}/\mathfrak{b}) = 2$. Because $\mathfrak{b} = \mathfrak{a} + XZF$ and $XZ\mathfrak{n} \subseteq \mathfrak{a}$, considering the exact sequence $0 \longrightarrow \mathfrak{b}/\mathfrak{a} \longrightarrow A \longrightarrow F/\mathfrak{b} \longrightarrow 0$, we get

$$\begin{split} W &= \mathrm{H}^0_{\mathfrak{m}}(A) = \mathfrak{b}/\mathfrak{a} = xzA \cong k \,, \\ \mathrm{H}^1_{\mathfrak{m}}(A) &\cong \mathrm{H}^1_{\mathfrak{n}}(F/\mathfrak{b}) \cong k \,, \\ \mathrm{e}_0(\mathfrak{m}) &= \mathrm{e}_0(\mathfrak{n}/\mathfrak{b}) = 2 \,. \end{split}$$

Hence A is a 2-dimensional quasi-Buchsbaum ring with $I(A) = h^0(A) + h^1(A) = 2$.

On the other hand, It is easy to see that $A/Q \cong k[[X,Y]]/(X^3,XY,Y^2)$ and Q is a reduction of \mathfrak{m} . Then $\ell_A(A/Q) = 4$ and $e(a,b;A) = e_0(\mathfrak{m}) = 2$, so that $\ell_A(A/Q) - e(a,b;A) = I(A)$, which implies that Q is a standard ideal of A. Because F/\mathfrak{b} is a Buchsbaum ring with $e_0(\mathfrak{n}/\mathfrak{b}) = 2$ and depth $F/\mathfrak{b} > 0$, by [1] and [2] it follows that F/\mathfrak{b} has maximal embedding dimension, so that we have $\mathfrak{n}^2 = (X - Z, Y - W)\mathfrak{n} + \mathfrak{b}$. Hence we get $\mathfrak{m}^2 = Q\mathfrak{m} + W$.

Let a' = x - w and b' = y - z. Then $A/(a',b')A \cong k[[X,Y]]/(X^2,XY,Y^2)$ and (a',b')A is a reduction of \mathfrak{m} . Hence $\ell_A(A/(a',b')A) = 3$ and e(a',b';A) = 2, so that $\ell_A(A/(a',b')A) - e(a',b';A) \neq I(A)$. Therefore a',b' is not a standard sop for A, which implies that A is not a Buchsbaum ring. Then $G(\mathfrak{m})$ is also not a Buchsbaum ring since

$$G(\mathfrak{m}) \cong S/\{(X,Y)S \cap (Z,W)S \cap (X^2,Y,Z^2,W)S\},$$

where S = k[X, Y, Z, W], and the proof is completed.

References

- [1] S. Goto, Buchsbaum rings with multiplicity 2, J. Algebra 74 (1982), 294–508.
- [2] S. Goto, Buchsbaum rings of maximal embedding dimension, J. Algebra **76** (1982), 383–399.
- [3] S. Goto and F. Hayasaka, Is $I^2 = QI$, where Q is a parameter ideal and $I = Q : \mathfrak{m}$? (in preparation).
- [4] S. Goto and K. Watanabe, *On graded rings, I*, J. Math. Soc. Japan **30** (1978), 179–213.
- [5] C. Huneke, On the symmetric and Rees algebra of an ideal generated by a d-sequence,
 J. Algebra 62 (1980), 268–275.
- [6] C. Huneke, *Hilbert functions and symbolic powers*, Michigan Math. J. **34** (1987), 293–318.
- [7] M. Nagata, Local rings, Interscience, 1962.
- [8] D. G. Northcott, A note on the coefficients of the abstract Hilbert function, J. London Math. Soc. **35** (1960), 209–214.
- [9] A. Ooishi, Δ-genera and sectional genera of commutative rings, Hiroshima Math. J.,
 27 (1987), 361–372.
- [10] J. Stückrad and W. Vogel, Buchsbaum rings and applications, Springer, 1986.
- [11] P. Vallabrega and G. Valla, Form rings and regular sequences, Nagoya math. J. **72** (1978), 93 101.
- [12] K. Yamagishi, The associated graded modules of buchsbaum modules with respect to m-primary ideals in the equi-I-invariant case, J. Algebra 225 (2000), 1–27.

DEPARTMENT OF MATHEMATICS SCHOOL OF SCIENCE AND TECHNOLOGY MEIJI UNIVERSITY 214-8571, JAPAN

e-mail: goto@math.meiji.ac.jp

DEPARTMENT OF MATHEMATICS AND INFORMATICS SCHOOL OF SCIENCE AND TECHNOLOGY CHIBA UNIVERSITY 263-8522, JAPAN

e-mail: nishida@math.s.chiba-u.ac.jp