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Abstract

Let A be a Noetherian local ring with the maximal ideal m and I an m-primary
ideal. The purpose of this paper is to generalize Northcott’s inequality on Hilbert
coefficients of I given in [8], without assuming that A is a Cohen-Macaulay ring.
We will investigate when our inequality turns into an equality. It is related to the
Buchsbaumness of the associated graded ring of 1.
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1 Introduction

Let A be a d-dimensional Noetherian local ring with the maximal ideal m and I an

m-primary ideal of A. Then there exist integers eq(I),e1(I), - - ,eq4(I) such that

Ca(A/ T = eo(T) <” ; d) — (D) <” ;f; 1) oot (1) eg()

for n > 0. These integers are called the Hilbert coefficients of I and a lot of results
are known on them in the case where A is a Cohen-Macaulay ring. For example, as was
proved by Northcott [8], we always have eg(I) — £4(A/I) < e;(I). Moreover, provided
A/m is infinite, Huneke and Ooishi [6, 9] proved that eq(I) — £4(A/I) = ey (I) if and only
if I? = QI for some (any) minimal reduction @ of I, and when this is the case, by [11], the
associated graded ring G(I) = @, I"/I"*" is a Cohen-Macaulay ring. The purpose of
this paper is to extend their results without assuming that A is a Cohen-Macaulay ring.

Suppose that I contains a parameter ideal () as a reduction. Then, from Northcott’s
inequality, one can easily deduce that eg(I)—C4(A/T) < e1(I)—e1(Q) (See 3.1). Assuming

that ) is a standard ideal in the sense of [10, Definition 19 of Appendix], we will investigate

*The authors are supported by the Grant-in-Aid for Scientific Reserches in Japan (C(2), No. 13640044,
No. 11640011).



when the equality eg(1) — C4(A/I) = e1(I) — e1(Q) holds. In order to state our result, let
us fix some notation. For an ideal q of A which is minimally generated by ay,--- ,a,, we

set
X(q) =q+ Z[(“la Qi1 Qig1,ttt ,As) A Q)
=1

It is easy to see that 3(qg) does not depend on the choice of the minimal system of
generators. For a module M over a ring R, we denote by H; (M) the i-th local cohomology
module of M with respect to a. In particular, we set W = HY(A). Then we have the

following.

Theorem 1.1 Suppose that I contains a standard parameter ideal Q) as a reduction. Then
eo(I) — CA(A/T) = e (I) — e (Q) if and only if I’ CT QI+ W and X(Q) C I.

If the length of HY (A), which is denoted by h*(A), is finite for any 0 < i < d, we have
that

=¥

@< (67w

3=l

with equality when () is a standard ideal

—~ <

See 2.4). Therefore, as a consequence of 1.1

and [3], we get the next result.

Corollary 1.2 If A is a quasi-Buchsbaum ring, then

swp {eolD) — £a(4/1 e = 3 (17 )iy

I=m i=0

Moreover, assuming that A is a Buchsbaum ring or a slightly different condition, for

ideals I which enjoy the property stated in 1.1, we will study the Buchsbaumness of G([I)

together with I(G(7)) and a(G(I)), where I(x) and a(x) denote the I-invariant (cf. [10, p.
254]) and a-invariant (cf. [4]) respectively.

Theorem 1.3 Suppose that either (i) A is a Buchsbaum ring or (i) A is a quasi-
Buchsbaum ring and I Cm>. If I contains a parameter ideal QQ such that I* C QI + W
and 3(Q) C I, then G(I) is a Buchsbaum ring with I(G(I)) = I(A) and a(G(I)) < 2—d.

Throughout this paper (A, m) denotes a commutative Noetherian local ring with d =
dim A > 0 and [ an m-primary ideal of A. The Rees algebra R(a) of an ideal a of a ring
R is the subring R[It] of R[t], where ¢ is an indeterminate. The associated graded ring

G(a) is the quotient ring R(a)/aR(a). For f € R(a), we denote it’s image in G(a) by f.
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2 Preliminaries

We begin with the following result of one dimensional case.

Lemma 2.1 Let d = 1. If I contains a parameter ideal () as a reduction, then we have

that eg(I) — La(A/T) < e (I)+ La(I NW) with equality if and only if I* C QI + W.

Proof. Let B = A/W. Then B is a Cohen-Macaulay ring with dim B = 1 and QB is a
parameter ideal of B contained in I B as a reduction. Hence, by Northcott’s inequality and
the result of Huneke and Ooishi stated in Introduction, we have that eq(IB)—(p(B/IB) <
e1(IB) with equality if and only if 2B = QIB. On the other hand, as {g(B/I""'B) =
CA(A)T) — L4 (W) for n > 0, we have eg(IB) = eg(I) and e (IB) = e (1) + La(W).
Moreover, {g(B/IB) = (4(A/I) — (o(W) + £4(I N W). Therefore we get the required
assertion as I°B = QI B if and only if I? C QI + W.

When we investigate higher dimensional case, we reduce the dimension using a super-
ficial element (cf. [7, Section 22]), and the next result, which may be well known, plays a

key role.

Lemma 2.2 Let d > 2 and a be a superficial element of I. We set B = A/aA. Then
dmB =d—1 and

e(l) if0<i<d—1
ed,1<l> + (_1)03—1&4(0 ‘A a) ifi=d—1.

Proof. Let n>> 0. Then I"" ' NaA = al™ and I"N (0 :4 a) = 0. Hence we have an exact
sequence
0—0:qa— A/I" 5 (aA+ ")/ — 0,
so that
(p(B/I""'B)
= LA(A/T") — L4(AJT™) +£4(0: 4 a)
= i(—w‘ei(n <” ;fz_ Z) _ i(—wei(f) <” - Cli ! j - Z) +04(0 54 a)

=0 1=0

= Y (Ve (” 1 ) (D s () + (~1 (0 14 )}

; d—1—1
=0

Thus we get the required assertion.



Lemma 2.3 Suppose that A/m is infinite and J is a reduction of I. Then there exists
an element a € J which is superficial for both of I and J. Moreover, for such element

a € J, setting B= A/aA, we have e;(I) —e1(J) = e, (IB) — e1(JB) provided d > 2.

Proof. By taking a general linear form in G(.J)/mG(.J), we see the existence of a € J
satisfying the required condition. If d > 3, we get the equality since e;(IB) = e;([) and
e1(JB) =e1(J). Even if d = 2, we have

e1(IB) —e(JB) = {e1(I)—(4(0:4a)} —{e1(J) —€4(0:4 a)}
= 61<I>—61<J>.

Lemma 2.4 Let QQ be a parameter ideal of A. We have the following statements provided
hi(A) is finite for any 0 <i < d.

(1) Let d=1. Then —e;(Q) = h’(A).

(2) Let d > 2. Then we have that

d

@<y (dj f) bi(A)

i1

©

with equality if Q is a standard ideal.

Proof. Letd = 1. Then, takingn > Osuch that W =0:4 Q™ and £4(A/Q") = ey(Q) -n—
e1(Q), we see that —e;(Q) = (4 (W) since ep(Q) - n = ep(Q™) = L4(A/Q") — £4(0:4 Q™).
Thus we get the assertion (1).

Next we assume that d > 2. Moreover, in order to prove the assertion (2), we may
assume that A/mis infinite. Then we can choose a € Q\m@ which is a superficial element

of Q. Let B= A/aA and 0 <i < d — 1. Considering the exact sequence
0—0:4a— A A—B—0,
we get the exact sequence
(#) HL(A) — H,(4) — H(B) — Hy ' (4) — H(4).

Hence it follows that h’(B) < h’(A) + h"**(A) with equality when @ is a standard ideal.
Let d = 2. Then —e1(Q) = —{e1(QB) + £4(0 :4 a)} = h%(B) — £4(0 :4 a). Because
the exact sequence (#) implies h®(B) < £4(0 :w a) + h*(A), we have —e;(Q) < hi(A).

4



Furthermore, if Q is standard, then h®(B) = h°(A) + h'(A) and 0 :4 @ = W, so that
—ey(Q) = h'(A).
Let d > 3. Then e;(QB) = e1(Q). Hence we can easily verify the assertion (2) by

induction on d.

3 General case

As a result in general case, we give the following assertion, which is a generalization of

Northcott’s inequality.

Theorem 3.1 If I contains a parameter ideal Q) as a reduction, then eg(I) —(4(A/I) <
ei(l) — e (Q).

Proof. We prove by induction on d. If d = 1, the assertion follows from 2.1 and 2.4.
Suppose that d > 2. We may assume that A/m is infinite, so that there exists a € @\ mQ
which is superficial for both of I and ). Then, setting B = A/a A, we have

eo(I)—C4(A/I) = ey(IB)—(p(B/IB) by?22
< e1(IB) —e(@B) by the inductive hypothesis
= e(l)—e(Q) by23.

Thus we get the required inequality.

The next result gives a sufficient condition under which the inequality of 3.1 turns into

an equality in the case where I = m.

Proposition 3.2 Let () be a parameter ideal which is a reduction of m. If there exists an

ideal V' of A such that dimaV < d and m? C Qm+V, then eg(m) — 1 = e;(m) — e,(Q).

Proof. 'We prove by induction on d. If d = 1, then V C W C m, so that by 2.1 we have
eo(m) — 1 = ey (m) + £4(W), which yields the required equality since —e1(Q) = £4(11) by
2.4. Suppose that d > 2. As we may assume that A/m is infinite, it is possible to take an
element a € @ \ m@Q such that dimy V/aV < d —1 and «a is a superficial element for both
of mand Q. Let B = A/aA. Then dimp VB < dim B as VB is a homomorphic image
of V/aV, so that by the inductive hypothesis we have eg(mB) — 1 = e;(mB) — e1(QB),

from which the required equality follows since ep(mB) = eg(m) and e;(mB) — e, (@B) =

er(m) — e1(Q).



Corollary 3.3 Let QQ be a parameter ideal which is a reduction of m. Then eg(m) =1 if
and only if e1(m) = e1(Q).

Proof. Because 0 < eg(m) — 1 = eg(m) — {4(A/m) < e;(m) — e1(Q), we get eg(m) =1
if e;(m) = e;(Q). In order to prove the converse implication, we may assume that A
is complete. Now suppose that eg(m) = 1. Let a(p) be the p-primary component of
a primary decomposition of 0. We set V' = [,y 4 @(p), where Assh A denotes the
set of associated primes of A whose coheight is d, and B = A/V. Then dimy V < d
and eg(mB) = ep(m) = 1, which implies that B is a regular local ring. Hence we have

m =@+ V, so that m*> C Qm + V. Therefore, by 3.2 it follows that e;(m) = e;(Q).

4 The case where () is a standard ideal

Lemma 4.1 Let d > 2 and Q = (ay, as,- - ,a4) be a standard parameter ideal of A. We
set a = a,b = aq,J = (a1,a9, -+ ,a4-1) and K = (as, a3, -+ ,aq). Then we have the

following.
(1) aJ :ab* =aJ :4b.
(2) aJ NbA C aJl provided ¥(Q) C I.
(3) I’ C QI+ W provided X(Q) CI, > C JI+[bA:sa] and I? C KT +[aA :4 )]

Proof. (1) Let us take any = € aJ :4 b? and write b*x = ay, with y € J. Then, as
y € [0?A:q aln (b a1, -+ ,a4 1), there exists 2 € A such that y = V*z. Here we notice
that bz € J since z € J 14 b*> = J :4 b. On the other hand, as b’z = ab’z, we have
b —abz € [0:4 b]NDA =0, so that bx = a-bz € aJ. Thus we get aJ :4 b* C aJ :4 b and
the converse inclusion is obvious.

(2) Let us take any & € aJ NbA and write £ = ay = bz, with y € J and 2z € A.
Moreover, we write y = ajy; + -+ -+ ag—1Yqg—1, wWith y1,--- ,yq_1 € A. It is enough to show
y; € I forany 1 <i < d— 1. However, as y, € K :4 a®> = K 14 a C X(Q) C I, we may
consider only the case that d > 3 and 2 <i < d— 1. Because ay; € K, we can express
ayy = ao2zo+- - Fayzq, with zo, -+, zg € A. Then z; € (a1, -+ ,a;-1, 041, ,aq) ta a; 1

for any 2 < i < d. On the other hand, as

bz = alagze + -+ + agzq) + aqoys + -+ - + aty_1yq_1

= aas(yo+20) + -+ aaq_1(Yg_1 + z4_1) + aaqzq,
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it follows that
Ui 2 € (ag, Qi 1, Q1,00 ,Q4) 4 QQ;
C(ag, - ,Qi-1,Qi41, " ,0q) 14 a; 1
for 2 <i <d—1, and hence we get y; € I.

(3) It is enough to show [aA :4 ] N I? C JI + W. Let us take any x € [aA :4 b] N I
Then, bx = ay for some y € A, and ax = a& + bz for some £ € JI and 2z € A. From these
equalities we get a’y = abf + b’z. Hence z € aJ :4 b* = aJ :4 b, so that bz = an for some
n € JI. Then it follows that ax = a& + an, which implies x —& —n € 0:4 a = W. Thus
we have x € JI + W and the proof is completed.

Proof of Theorem 1.1. We prove by induction on d. By 2.1 and 2.4 we get the assertion
when d = 1. Suppose that d > 2. As we may assume that A/m is infinite, it is possible
to choose a minimal system of generators aq, --- ,aq of Q) such that a; and a4 are superfi-
cial for both of I and . We set a = a1,b = a4, B = AJaA,J = (a1,--- ,a4-1), K =
(ag, -+ ,aq) and Q; = (a1, - ,a;-1, 041, ,aq) for 1 < i < d. Because ey(l) =
eo(IB),la(A/I) = (g(B/IB) and e;(I) — e1(Q) = e1(IB) — e1(K B), by the inductive
hypothesis we have ey(I) — £4(A/I) = e1(I) — e1(Q) if and only if 1°B C KIB + HY,(B)
and Y(K B) C IB, which holds if 12 C QI + W and %(Q) C I since WB C H%(B) and
Y(KB) C ¥(Q)B. Now we assume that eg(1) — (4(A/I) = e;(I) —e1(Q). Then it follows
that I C KT 4 [aA 4 b] and Q; :4 a; C I for 2 < ¢ < d. Moreover, by passing A/bA we
get I C JI+[bA:qaland Q; 4 a; C 1 for 1 <i < d— 1. Therefore, as 3(Q) C I, we
have I? C QI + W by 4.1 and the proof is completed.

Proof of Corollary 1.2. We may assume that A/m is infinite. Then any ideal of A has a

minimal reduction, so that by 2.4 and 3.1 we have

D)~ ta(a/n) — ety < 3 (177 it

for any m-primary ideal I. Hence it is enough to find an m-primary ideal for which the
equality holds. Let z1,--- , 24 be an sop for A contained in m? and n,, - - - , ng be integers
not less than 2. We set @ = (™, -+ ,24™) and [ = @ :4 m. Then @ is a standard
parameter ideal by [10, Proposition 2.1] and I? = QI by [3]. Because we obviously have
3(Q) €1, by 1.1 and 2.4 it follows that

=9

(]

eolI) — La(A/T) — ey(I) = <d - 2) hi(A),

, 1 —1
=1

-



and the proof is completed.

Example 4.2 Let R = Ek[[X,Y,Z, W]] be the formal power series ring with variables
X.,Y,Z and W over an infinite field k. Let a = (X%, Y)R,b = (Z,W)R and A= R/anb.
Let x,y,z and w respectively denote the images of X,Y,Z and W in A. We set ) =

(x —z,y —w)A and m = (z,y, z,w)A. Then we have the following assertion.
(1) dim A = 2,depth A = 1,ht(A) = 2 and A is not a quasi-Buchsbaum ring.
(2) m3 = Qm?, but m? # Qm.
(3) If V is an ideal of A with dimyV <2, then V =0, so that m* € Qm + V.
(4) ep(m) =3,e1(m) =1 and e1(Q) = —1, so that eg(m) — L4(A/m) = e;(m) — e1(Q).

Proof.  From the exact sequence 0 — A — R/a® R/b — R/a+b — 0, we get
the assertion (1). One can directly check the assertion (2). Because dim A/p = 2 for any
p € Ass A, we have the assertion (3). The associated graded ring G(m) of m is isomorphic

to
KXY, ZW/(X2Y)N(Z, W),
so that we have the exact sequence
0 — G(m) — k[X,Z,W]/(X?) @ k[X,Y] — k[X]/(X?) — 0.

This implies that the Poincaré series P(G(m), A) of G(m) is
L+ A L
(T=A2  (1-=X

s — (1+ M),

from which it follows that

(a(A/m™ ) = gnQ + ;n

for n > 2. Hence eg(m) = 3 and e;(m) = 1. Because k is infinite, there exists p € k
such that ¢ = (x — z) + pu(y — w) is a superficial element of ). Let B = A/cA. Then
e1(Q) = e1(QB) = —h%(B) and the exact sequence 0 — A —5 A — B — 0 yields

the exact sequence
0 — H2(B) — HL(A) -5 HL(A).

Because HL(A) = R/a+b = k[[X]]/(X?) and (X — Z) + pu(Y — W) = X mod a + b, we
have H) (B) 22 [(X?) uqxy X]/(X?) = (X)/(X?). Thus we get ;(Q) = —1 and the proof

is completed.



5 Buchsbaumness of G(I)

Throughout this section we assume that I contains a parameter ideal @ = (ay, - - ,ay) as
a reduction. We set R = R(I) and G = G(I). The graded maximal ideal of G is denoted
by M. Furthermore, we set f; = a;t € R for 1 < i < d. For certain elements x1,--- ,x,
of a ring S and an S-module L, we denote by e(xy,--- ,x,; L) the multiplicity symbol of
x1,- -, &, with respect to L (cf. [10, p. 24]).

Lemma 5.1 e(fi™,--- | f," Gy) = e(ar™, -+ ,aq"; A) for any ny,--- ,ng > 0.

Proof. Let G4 be the ideal of G generated by homogeneous elements of positive degree.
As (f1,---, fa)G is a reduction of G, we have e(f1, -, f4; Gn) = eo((G) ). On the
other hand, as (g, (G/(G1)") = (4(A/I™) for any n > 0, we have eg((G4+)m) = eo(I).
Hence it follows that e(f1, - -, f4; Gar) = e(aq, - -+ ,aq; A). Therefore, for any ny, -+ ,ng >
0

e(fi", - f" G Gy) = nang - ng - e(f1, -, fas Gar)

=ning - -ng-elay, - ,aq A) =ela™, - a4" A).
Thus we get the required equality.

In the rest of this section, we furthermore assume that () is a standard ideal such that

PCQI+W,PCQand S(Q)C I

Lemma 5.2 Let ny,--- ,ng be positive integers. Then

7
(07 ) NI =S

J=1

foranyn € Z and 1 <¢ <d. Hence we have
G/(fH™, - )G = G(UB),
where B = A/(ay™, -+, a;™).

Proof. We may assume that n > n; for any 1 < j <i. Let z € (a1™,--- ,a,") N I™
Then, as x € QN (Q™ I + W) = Q™ I, we can express

r=Y ypa* (el

AEA



where A is the set of A = (\,++-,\g) € Z% such that \; +---+ Xy = n — 1 and

a* = a1Mas™ -+ - ag™. On the other hand, as

I€<aln17' Qn 1 Za]n]Qn 1— n]7
we can write
LL':ZZ,Y(L’Y (24 € A),

yell

where I' = {y € A | 75 > n; for some 1 < j <+i}. It is enough to show that z, € I for any
vyel.

Let B = A[Ty,--- ,Ty] be the polynomial ring with variables T3,--- Ty over A and
¢ 1 B — R(Q) be the homomorphism of A-algebras such that o(7;) = f; for 1 < j <d.
Because ay, -+ ,aq4 is a d-sequence, ker ¢ is generated by homogeneous elements of degree

one (cf. [5]), so that ker ¢ C IB as 3(Q) C I. Now we set

f= Z I+ Z(?M — 2,17

AEANT ~el

Then f € ker . Hence we get 2z, € I for any v c I
Lemma 5.3 We have
(1) [0:¢ filn = {wl™ | w e WNI},
(2) 0:¢ f1=1[0:¢ fi1 ®[0:¢ fil2,
(3) lay, (0:q f1) = La(W), and hence depth G > 0 if depth A > 0.

Proof. (1) Let x € I™ and @™ € 0 :¢ fi. Then a;z € I, so that by 5.2 we have
a1x = ayy for some y € I, which implies # € I + W since v —y € 0 :4 a; = W.
Hence zt™ = wit™ for some w € W N I™. Thus we get [0 :¢ fi]. C {wt” | w € W NI},
and the converse inclusion is obvious.

(2) This follow from the assertion (1) as WNI"CWNQ =0 for n > 3.

(3) We get this assertion since [0 :¢ fi]; @ W/WNI? and [0:¢ filo =W N T2

Lemma 5.4 f,---, f; is a standard system of parameters for Gy, In particular, it
follows that HY,(G) = 0 :¢ f1, so that h®(Gyr) = hO(A). Moreover, we have I(Gy) = I(A).
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Proof. By 5.2 we have G/(f1,---, fa)G = G(I/Q), so that

L (G (f1,- -+, Ja)G) = La(A/Q).

Similarly, setting a = (a1?,--- ,a4°), we have

lan (G/ (12, f£5)G) = La(Afa).

Then, using 5.1 and that ay,--- ,a4 is a standard system of parameters for A, we get

lay (G/(f1,--- . fa)G) —e(fr, -+ fas Gur)
= £A<A/Q> - e<a17 T, A, A)
= l4(A/a) —e(ar?, -+ ,aq4’; A)
= gGM<G/<f127 o 7fd2)G> - e<f127 o 7fd2; G]W) .
Therefore by [10, Theorem and Definition 17 in Appendix|, we have the required assertion.
Lemma 5.5 We have the following.
(1) If 0 < i < d, then H;(G) is concentrated in degree 1 — i.
(2) a(G) <2—d.

Proof.  We prove by induction on d. Let d = 1. In this case, the assertion (1) insists

nothing. In order to prove the assertion (2), let us consider the exact sequence
0 — H,(G)(~1) — G(-1) 1% ¢ — G/ /G — 0.
This sequence yields the exact sequence
HY,(G/ £,G) — Hi,(G)(—1) 5 Hi,(G) — 0,

which implies [H},(G)], 1 = [H}(G)], for n > 3 since [G/f1G], = 1"/QI™ 1 + " =0
for n > 3. Hence we get [Hi,(G)],, = 0 for n > 2, so that a(G) < 1.

Now we assume that d > 2. Let B = A/W. Then the kernel of the graded homomor-
phism G — G(IB) of A-algebras induced from the canonical surjection A — B has
finite length, so that we have H},(G) = H4,(G(IB)) for ¢ > 0. On the other hand, QB
is a standard parameter ideal of B such that I°B = QIB and X(QB) C IB. Hence by
5.3 and 5.4 we have that f; is G(IB)-regular and f; - Hy;(G(IB)) =0 for any 0 <17 < d.

11



Furthermore, setting C' = B/a1 B, we have G(IB)/f1G(IB) = G(IC) by 5.2. Therefore

we get the exact sequence
0 — G(IB)(-1) 1% G(IB) — G(IC) — 0,

from which we see that Hi,(G(IB)) — Hj,(G(IC)) for 0 < i < d and H} Y (G(IB)) is
a homomorphic image of H%?(G(IC))(1). Because QC = (ay, -+ ,a,)C is a standard
parameter ideal of C' such that I°C' = QIC and X(QC) C IC, the inductive hypothesis
insists that Hy,;(G(IC)) = [Hy,(G(IC))];; for any 0 < i < d — 1 and a(G(IC)) < 3 —d.
Now the assertion (1) can be verified easily. In order to see the assertion (2), let us

consider the exact sequence
H{H(GUIC)) — HY (GIB))(-1) L5 H{(GUB)) — 0.

If n > 3 —d, then [H4H(G(IC))], = 0, so that [HY,(G(IB)],_1 = [H%,(G(IB))],. Hence
we have [H4,(G)], = [H4,(G(IB))], = 0 for any n > 3—d. Therefore we get the assertion

(2) and the proof is completed.

Lemma 5.6 Suppose that ayi,--- a4 form a weak sequence (cf. [10, Definition 1.1]) in
any order. We arbitrary take x; € m for 1 <i <d and set & = x; — a;t. Then

(&, -+, &)GNHY(G) =0.

Proof. Let us take any ¢ € (&, -+ ,&)G NHY,(G). As HY,(G) = 0 :¢ f1 by 5.4, we
can express ¢ = wit + wot?, with w; € WN I for j =1,2. We would like to show that
w; € It for j = 1,2. For that, we write ¢ = Elea-ﬁ, with n; € R for 1 <1¢ < d.
Taking N > 0, we can express 7; = Ejvzl nit? (n;; € IP) for 1 <4 < d. Our assumption
implies mW = 0, so that m/> C mQI. Hence I’ C  for j > 3. Then, by 5.1 we
have n;; € Q7! for j > 3. Furthermore, we can choose 7, in QI since & € mAlt],
I’ C QI + W and mW = 0. Because

d
wit + wqt? = Zfﬂ% mod IR,

=1
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we get the following congruence equations:

d
0 = meio mod I,

=1
d
wr = Z(wmu — aini) mod 17,
=1
d
wp = Z(ﬂfmia — a;n;1) mod I°,
i=1
d
0 = Z(Imij —a;m;j-1) mod I'*t for 3 < j < N and
=1
d
0 = Zamw mod V12,
i=1

The third equation implies ws € @, so that wy = 0. Hence it is enough to show w; € I?.

We need the following.

Claim There exist elements ygﬁ) cl/ foranyl1<j <N andl<a < <d such that

d
Zaz‘(%’ + Z%y{(fi) - Za:gyl%)) c 2,
=1

a<i <0

If this is true, setting
1 1
U = 11+ Zﬂ?ay((n) - Zﬂfﬁyfg) )
o<t i<
we have E?:l av; € I3 = QI?. Hence there exist v/ ¢ I? for 1 < i < d such that
E?:l a;(v; —v!) = 0. Then, for any 1 <i < d we get
v — v € (a1, @1, Qig1,0 ,0g) 1A G
= (@, ,ai1,041, ,04) 1AM,
so that x;(v; — v}) € Q, which implies z;v; € Q as z) € mI? C Q. On the other
hand, we have Ej:l T = E?:l x;n;1, so that ¢ € ), where q = Ejzl(a:mil — a;Nio)-

Because w; — q € I?, we have w; — q¢ = ¢’ +w' for some ¢’ € QI and w' € W. Then, as

w—w =q+¢ cQNW =0, we get w; € I

13



Proof of Claim. We prove by descending induction on j. First, we set ?/((15) = 0 for any

1 <a < @ <d. Next, we assume that 2 < 57 < N and we have the required elements y(] )

(

Of course, y, ) e QI if j > 3. However, even if j = 2 we can choose y(] ) in QI since

I’ C QI+ W and mW = 0. Now we set

Vij = i + Z Ia?/gz) Z l“ﬁ?/,(])
a<li <3
Let Ko = Ko(f1,-- -, f4; G) be the Koszul complex with the differential maps 9, : K, —
K, 1 and let 11,75, - - , Ty be the free bases of K. We set

d
g = Z%’tj -T.
i=1
Then o € (f1,---, fa)K1 as v;; € QI~! for any 1 <i < d. On the other hand,
d d
B ST S
i=1 i=1

in G, so that o € Z,(K,). Because f1,---, fs is a d-sequence on GG, we have

(f1, -, fa)KiNZ1(K,) = Bi(K,).

As a consequence, it follows that there exist elements yg[;l) cllforanyl <a<B<d

such that

82(2 y((j[;l)tjfl . Ta N Tg) =0.

a<f

The left hand side is equal to

d
> awy = agyy - T,

=1 oa<i i<f

so that we have
v = Zaaym Za y% Y mod [t
a<i <3
for any 1 < i < d. This implies

TZUU = Zaamyaﬁ ZT agy(]ﬁ Y mod [+1,

a<f a<f

Mg
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On the other hand,

d d d
s = M = d [t
TV = TNy = a;1; j—1 MO .

i=1 i=1 i=1

Therefore we get

d
Yoalmg i+ Y wayl V= way V) e P
=1

a<i i<f

and the proof is completed.

Proof of Theoremn 1.3.  Only the Buchsbaumness of G is left to show. We prove by
induction on d. Because HY,(G) = {wyt + wt? | wy € W,wy € W N 1%} and mW = 0, we
have M - H},(G) = 0. Hence G is a Buchsbaum ring if d = 1.

Suppose that d > 2. Let B = A/W and C' = B/a;B. Then C and IC inherits the
assumption on A and I in 1.3 (cf. Proof of 5.5). Therefore the inductive hypothesis
implies that G(/C) is a Buchsbaum ring, so that G(IB) is also a Buchsbaum ring since
G(IB)/f1G(IB) = G(IC), f1 is G(IB)-regular and f, - H{;(G(IB)) = 0 for any i < d
(cf. [10, Proposition 2.19]). Furthermore, it is easy to see that the kernel of the graded
homomorphism G — G(IB) coincides with HY,(G). Thus we get that G/HS$,;(G) is a
Buchsbaum ring.

Let V =m+ It C R. Because we may assume that A/m is infinite, we can choose a
system of generators &, --- ,& of V such that {&}ica form an sop for G for any subset
A C{1,2,--- ¢} with d-elements. In order to prove the Buchsbaumness of G, it is enough

to show that

({&Vien) GNHY,(G) =0

for any A stated above (cf. [10, Proposition 2.22]). Let A = {i; < iy < --- < i4} and
&, = T — bt (2, € mb, € I) for 1 < k < d. Because (bit,--- ,b4t)G + mG coincides
with the M-primary ideal (&;,,--- ,&,)G + mG, we have that bit,--- , b4t is an sop for
G/mG. Hence Q' = (by,--- ,by) is a reduction of I. Then, by our assumption that (i) A
is a Buchsbaum ring or (ii) A is a quasi-Buchsbaum ring and I C m?, we have that Q' is
a standard parameter ideal of A, and hence by 1.1 we get I C Q'] + W and %(Q') C I.
Therefore, by 5.6 we have (&;,,---,&,) N HY,(G) =0 and the proof is completed.

The next example insists that the assumption of 1.3 that I C m? is necessary when A

is a quasi-Buchsbaum ring but not a Buchsbaum ring.
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Example 5.7 Let F = k|| X,Y,Z, W]|| be the formal power series ring with variables
XY, Z and W over a field k. Let a = (X, Y)FN(Z,W)FN(X2Y,Z> W)F and A =
F/a. Let z,y,z and w respectively denote the images of XY, Z and W in A. We set
m=(z,y,z,w)A,a=x—zb=y—w and Q = (a,b)A. Then we have the following.

(1) A is a 2-dimensional quasi-Buchsbaum ring but not a Buchsbaum ring.

(2) Q is a standard parameter ideal of A such that m* = Qm + W. We obviously have
(@) Cm.

(3) G(m) is not a Buchsbaum ring.

Proof. Letn = (X,Y,Z,W)F and b = (X,Y)F N (Z,W)F. Then we have the exact
sequence 0 — F/b — F/(X,Y)F & F/(Z,W)F — F/n — 0, which implies that
F/b is a 2-dimensional Buchsbaum ring such that depth /b = 1,H!(F/b) = k and
eo(n/b) = 2. Because b = a + XZF and XZn C a, considering the exact sequence

0—b/a— A— F/b— 0, we get

W=H\(A)=b/a=xzA=Ek,
HL(A) = HX(F/b) =2k,
eo(m) = eo(n/b) =2.

Hence A is a 2-dimensional quasi-Buchsbaum ring with 1(4) = h°(A4) + h'(A) = 2.

On the other hand, It is easy to see that A/Q = k[[X,Y]]/(X3, XY,Y?) and Q is
a reduction of m. Then (4(A/Q) = 4 and e(a,b; A) = ep(m) = 2, so that (4(A/Q) —
e(a,b; A) = I(A), which implies that @) is a standard ideal of A. Because F/b is a
Buchsbaum ring with ey(n/b) = 2 and depth F'//b > 0, by [1] and [2] it follows that F/b
has maximal embedding dimension, so that we have n*> = (X — Z,Y — W)n + b. Hence
we get m? = Qm + W.

Let @/ = 2 —w and b = y — 2. Then A/(a/,0)A = k[[X,Y]]/(X? XY,Y?) and
(a',0)A is a reduction of m. Hence (4(A/(a’,0/)A) = 3 and e(d/,b'; A) = 2, so that
CA(A)(d B)A) —e(d, U A) # I(A). Therefore o', is not a standard sop for A, which

implies that A is not a Buchsbaum ring. Then G(m) is also not a Buchsbaum ring since
G(m) = S/{(X,Y)SN (Z,W)SN(X*Y,Z?,W)S},
where S = k[X,Y, Z, W], and the proof is completed.
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