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Abstract

The estimation problem in multivariate linear calibration with elliptical errors is considered under
a loss function which can be derived from the Kullback-Leibler distance. First, we discuss the problem
under normal errors and we give unbiased estimate of risk of an alternative estimator by means of
the Stein and Stein-Haff identities for multivariate normal distribution. From the unbiased estimate
of risk, it is shown that a shrinkage estimator improves on the classical estimator under the loss
function. Furthermore, from the extended Stein and Stein-Haff identities for our elliptically contoured
distribution, the above result under normal errors is extended to the estimation problem under
elliptical errors. We show that the shrinkage estimator obtained under normal models is better than
the classical estimator under elliptical errors with the above loss function and hence we establish the
robustness of the above shrinkage estimator.

Key words: Elliptically contoured distribution, Kullback-Leibler distance, multivariate linear model,
shrinkage estimator

1. Introduction

The calibration problem occurs in measurement settings where two measurement methods are avail-
able: One is extremely accurate but expensive (or time-consuming) while the other is less accurate but
easier and fast. The functional relation between the two types of measurements is assessed through a
calibration experiment, where the values of both measurements are known; this relation is then used in
subsequent experiments to predict the value of the more precise measurement based on a sample of the
more approximate measurement.

This setting is of major importance in physical and chemical measurements and we refer the reader
to Rosenblatt and Spiegelman (1981) for a general discussion on the practical issues of calibration. For
a detailed and recent survey of the calibration problem, see Brown (1982, 1993), Osborne (1991), and
Sundberg (1998).

In this paper we consider the multivariate linear calibration model. Let Y and Y 0 be, respectively,
n× p and m× p random matrices of response variables and also let X be an n× q matrix of explanatory
variables with full rank. Consider the calibration experiment and the prediction experiment which can
be represented as, respectively,

Y = 1nαt + XΘ + ε,(1.1)
Y 0 = 1mαt + 1mxt

0Θ + ε0,(1.2)

where 1l is the l × 1 vector consisting of ones, α and Θ are, respectively, p × 1 and q × p unknown
parameters, and x0 is the q × 1 vector to predict. Here, we denote by At the transpose of a matrix A.
Furthermore ε and ε0 are, respectively, n × p and m × p error matrices with mean zero matrices. We
assume that p ≥ q, n + m − q − 2 ≥ p, and Xt1n = 0. Our problem is to predict x0 based on (Y , X)
and Y 0.

We assume two cases of error distributions: (I) The rows of the error matrices, ε and ε0, are inde-
pendently and identically distributed as the p -variate normal distributions with mean zero vector and
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covariance matrix Σ, abbreviated by Np(0, Σ). (II) The error matrices, ε and ε0, are jointly distributed
as the elliptically contoured distribution with its density function

|Σ|−(n+m)/2f
(
tr{Σ−1εtε + Σ−1εt

0ε0}
)
,(1.3)

where f is an unknown, nonnegative function on [0, ∞) and Σ is a p × p scale matrix. In both cases
(I) and (II), we assume that Σ is unknown and positive-definite. Here, we denote by tr(A) and |A| the
trace and the determinant of a squared matrix A.

There has been plenty of literature about the problem of estimating x0 in (1.2) under the errors (I).
Then two estimators are well-known; one is the classical estimator and the other is the inverse regression
estimator. Now, denote the least squares estimators of α and Θ by

α̂ = ȳ, Θ̂ = (XtX)−1XtY ,(1.4)

where ȳ = Y t1n/n. Let

ȳ0 = Y t
01m/m, V 0 = (Y 0 − 1mȳt

0)
t(Y 0 − 1mȳt

0),(1.5)

V = (Y − 1nα̂t −XΘ̂)t(Y − 1nα̂t −XΘ̂), and S = V + V 0.

Brown (1982) derived the classical and the inverse regression estimators which are given by, respectively,

x̂0 = (Θ̂S−1Θ̂
t
)−1Θ̂S−1(ȳ0 − ȳ)(1.6)

and

x̌0 = {(XtX)−1 + Θ̂V −1Θ̂
t}−1Θ̂V −1(ȳ0 − ȳ).(1.7)

The classical estimator (1.6) is the restricted maximum likelihood estimator and for n →∞ and m →∞
it is consistent when Θ 6= 0 but the inverse regression estimator (1.7) is not consistent. For details of
comparison between the classical and the inverse regression estimators see, for example, Brown (1982,
1993).

The main interest of this paper is an improvement on the classical estimator (1.6) from a decision-
theoretic point of view. When q = 1, Σ = σ2Ip and σ2 is unknown in models (1.1) and (1.2), Kubokawa
and Robert (1994) showed, under the squared loss, that the classical estimator is inadmissible and that
the inverse regression estimator is admissible. Srivastava (1995) showed the inadmissibility of the classical
estimator and the admissibility of the inverse regression estimator when q = 1 and Σ is fully unknown.
Furthermore, when q > 1 in (1.1) and (1.2), Tsukuma (2002) discussed the problem of estimating x0

under the quadratic loss function

L0(x̃0; x0) = (1/cn,m)(x̃0 − x0)t(XtX)−1(x̃0 − x0),(1.8)

where x̃0 is an estimator of x0 and cn,m = 1/n+1/m. Tsukuma (2002) proposed an alternative estimator
over the classical estimator and showed that the inverse regression estimator is admissible under the loss
(1.8). On the other hand Branco et al. (2000) treated a Bayesian analysis of the calibration problem
under the multivariate linear model with elliptical errors whose density is different from (1.3) and they
showed that a Bayes estimator for a noninformative prior is the inverse regression estimator.

In this paper we discuss the problem of estimating x0 under the quasi-loss function

L(x̃0; x0) = (1/cn,m)(Θ̂
t
x̃0 −Θtx0)tΣ−1(Θ̂

t
x̃0 −Θtx0).(1.9)

Then the accuracy of an estimator x̃0 is measured by the risk function R(x̃0; x0) = E[L(x̃0; x0)]. The
loss function L can be regarded as a quadratic loss function in the problem of estimating Θtx0 by an
estimator Θ̂

t
x̃0 but L is not a loss function in terms of x0 and x̃0. The usage of L is motivated by

the following reasons: (1) If α, Θ and Σ are known under normal errors, then the maximum likelihood
estimator is x̂ML

0 = (ΘΣ−1Θt)−1ΘΣ−1(ȳ0 −α) and x̂ML
0 ∼ Nq(x0, (ΘΣ−1Θt)−1). Thus it seems that

the behavior of L is similar to that of a natural loss function

L1(x̃0; x0) = (1/cn,m)(x̃0 − x0)tΘΣ−1Θt(x̃0 − x0).(1.10)
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(2) Under normal errors, the loss function L can be derived from the Kullback-Leibler distance

∫ {
log

p(ȳ, Θ̂, S, ȳ0|α̃, Θ̃, Σ̃, x̃0)

p(ȳ, Θ̂, S, ȳ0|α,Θ,Σ, x0)

}
p (ȳ, Θ̂, S, ȳ0|α̃, Θ̃, Σ̃, x̃0) dȳ dΘ̂ dS dȳ0,

where p (ȳ, Θ̂, S, ȳ0|α,Θ,Σ,x0) denotes a joint density function of (ȳ, Θ̂,S, ȳ0). Here (ȳ, Θ̂,V , ȳ0) is
given by (1.4) and (1.5) and (α̃, Θ̃, Σ̃, x̃0) is an estimator of (α,Θ,Σ,x0).

This paper is organized in the following manner: In Section 2, the problem of estimating x0 is
considered under the errors (I), i.e., the rows of the error matrices are mutually and independently
distributed as the multivariate normal distributions. First we derive a canonical form for this setup
and give unbiased estimate of risk of an alternative estimator via the Stein and Stein-Haff identities
for multivariate normal distribution. From this unbiased estimate of risk, it is shown that shrinkage
estimators improve on the classical estimator (1.6) under the loss function L. For example, one of the
shrinkage estimators is the James-Stein type estimator (see James and Stein, 1961)

x̂JS
0 =

(
1− cn,m(q − 2)

(n + m− q − p + 1)(ȳ0 − ȳ)tS−1(ȳ0 − ȳ)

)
x̂0, for q ≥ 3,

which is different from improved estimators given by Kubokawa and Robert (1994) and Tsukuma (2002).
Next, in Section 3 we discuss the problem (II), i.e., the error matrices are jointly and uncorrelatedly
distributed as an elliptically contoured distribution. From the extended Stein and Stein-Haff identities
for our elliptically contoured distribution due to Kubokawa and Srivastava (1999, 2001), the above dom-
ination under normal errors is extended to the estimation problem under elliptical errors. Monte Carlo
simulations in special case of elliptical distribution is carried out to evaluate the risk performance under
the loss function L1 since it is very difficult to prove the improvement under the loss function L1. From
this simulations, we illustrate that a shrinkage estimator is better than the classical estimator even if
the loss function L1 is used. Furthermore, since the problem (II) is not independent sampling, we also
conduct simulation study based on independently and identically sampling model from an elliptically
contoured distributions. Under this setup, we also show that the James-Stein type estimator is numeri-
cally better than the classical estimator under the loss function L1. Finally, in Section 4 we state some
technical lemmas and give proofs of Theorems in Sections 2 and 3.

2. Improving on the classical estimator under normal errors

In this section, we consider an improvement on the classical estimator under normal errors. First, we
give a canonical form of this problem and, next, state main theorems of this section. Proofs of theorems
and corollary are postponed to Section 4.1.

2.1. A canonical form

We first define the following notation. The Kronecker product of matrices A and C is denoted by
“A⊗C”. For any q×p matrix Z = (z1, . . . , zq)t, we write vec(Zt) = (zt

1, . . . , z
t
q)t. ‘Z ∼ Nq×p(M , A⊗

C)’ indicates that vec(Zt) follows multivariate normal distribution with mean vec(M t) and covariance
matrix A ⊗C. Furthermore, ‘Wp(Σ, k)’ stands for the Wishart distribution with degrees of freedom k
and mean kΣ.

The classical estimator for unknown x0 is rewritten as

x̂0 = (Θ̂S−1Θ̂
t
)−1Θ̂S−1(ȳ0 − ȳ),(2.1)

where ȳ, Θ̂, S, and ȳ0 are given in (1.4) and (1.5). We here note that these statistics ȳ, Θ̂, S, and ȳ0

are mutually and independently distributed as

ȳ ∼ Np(α, (1/n)Σ), Θ̂ ∼ Nq×p(Θ, (XtX)−1 ⊗Σ),
S ∼ Wp(Σ, l), and ȳ0 ∼ Np(α + Θtx0, (1/m)Σ)

for l = n + m− q − 2 ≥ p.
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Let cn,m = 1/n + 1/m, z = c
−1/2
n,m (ȳ0 − ȳ), and B = (XtX)1/2Θ̂. Here, we denote by A1/2 a

symmetric matrix such that A = A1/2A1/2. Then the distributions of B, S, and z are mutually and
independently distributed as

B ∼ Nq×p(β, Iq ⊗Σ), S ∼ Wp(Σ, l), and z ∼ Np(βtξ, Σ),(2.2)

where β = (XtX)1/2Θ and ξ = c
−1/2
n,m (XtX)−1/2x0. The loss function (1.9) can be written as

L(ξ̃; ξ) = (Btξ̃ − βtξ)tΣ−1(Btξ̃ − βtξ).(2.3)

To express the classical estimator (2.1) in terms of B, S and z, we put ξ̂ = c
−1/2
n,m (XtX)−1/2x̂0 to have

ξ̂ = (BS−1Bt)−1BS−1z.(2.4)

Similarly, using the statistics B and z, we can write the inverse regression estimator (1.7) as

ξ̌ = (Iq + BV −1Bt)−1BV −1z,(2.5)

where ξ̌ = c
−1/2
n,m (XtX)−1/2x̌0. We here note that V ∼ Wp(Σ, l1) where l1 = n − q − 1 and that the

statistics V , B, and z are mutually independent.
In next section we treat the calibration problem on the model (2.2) and discuss an improvement on

the classical estimator (2.4) under the loss (2.3).

2.2. Improved estimator and unbiased estimate of its risk

Note that the estimation problem on the model (2.2) is invariant under the transformation group given
by

β → QβP , Σ → P tΣP , ξ → Qξ,

B → QBP , S → P tSP , z → P tz

for any q × q orthogonal matrix Q and any p× p nonsingular matrix P .
Now, for estimating ξ in (2.2) under the loss (2.3), we consider a class of estimators

ξ̂(φ, G) = φGBS−1z,(2.6)

where φ is a scalar-valued function of ztS−1z and G is a q × q symmetric matrix whose elements are
functions of F = BS−1Bt. The estimators (2.6) can be interpreted as an extension of the classical
estimator (2.4). Remark that for m = 1 the inverse regression estimator (2.5) belongs to the above class
of estimators since S ≡ V but the estimator (2.5) does not belong to it for m ≥ 2.

From the Stein identity for the multivariate normal distribution and the Stein-Haff identity for the
Wishart distribution, we evaluate the risk of the estimators (2.6):

Theorem 2.1. Let statistics B, S, and z be defined as (2.2) and let F = BS−1Bt. Further, denote by
DF differential operator in terms of F = (Fij) where the (i, j)-element of DF is {DF }ij = (1+δij)∂/∂Fij

with the Kronecker delta δij. Suppose that we wish to estimate ξ in (2.2) by

ξ̂(φ, G) = φGBS−1z,

where φ is a scalar-valued function of t = ztS−1z and G = (Gij) is a q × q symmetric matrix whose
elements are functions of F . Then, under the loss L given in (2.3), the risk of the estimators ξ̂(φ, G)
can be represented as

R(ξ̂(φ, G), ξ) = E
[−p + 4φ′ztS−1BtGBS−1z + 2φtr(FG)(2.7)

+(l − p− 1)tr[S−1(z − φBtGBS−1z)(z − φBtGBS−1z)t]
+4φ′ztS−1BtGBS−1z(ztS−1z − φztS−1BtGBS−1z)
+4φztS−1Bt(Iq − φGF ){(FDF )tG}BS−1z

+2φ[tr(FG)](ztS−1z − φztS−1BtGBS−1z)
+2φ(ztS−1BtGBS−1z − φztS−1BtGFGBS−1z)

]
,
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where the expectation is taken with respect to (2.2) and φ′ = dφ/dt. Here ‘{(FDF )tG}’ indicates that
DF acts only on G and that the (i, j)-element of {(FDF )tG} is given by

{(FDF )tG}ij =
∑

a,b

Fab

[{DF }iaGbj

]
.

Note that the content of expectation in the right-hand side of (2.7) is an unbiased estimate of risk
in terms of the estimators ξ̂(φ, G). In Theorem 2.1, putting φ = 1 and G = F−1, we obtain unbiased
estimate of risk of the classical estimator:

Corollary 2.1. Under the loss L, the risk of the classical estimator (2.4) can be expressed as

R(ξ̂, ξ) = E
[−p + 2q + (l − p− 1 + 2q)(ztS−1z − ztS−1BtF−1BS−1z)

]
.(2.8)

For improving on the classical estimator, we consider shrinkage estimators (see Baranchik, 1970)

ξ̂(ψ) = (1− ψ/t)(BS−1Bt)−1BS−1z,(2.9)

where ψ is a differentiable function of t = ztS−1z. From Theorem 2.1 and Corollary 2.1, we establish
the following dominance result:

Theorem 2.2. Assume that q ≥ 3. If

(i) ψ is nondecreasing, and

(ii) 0 ≤ ψ ≤ 2(q − 2)/(l − p + 3),

then the shrinkage estimators (2.9) improve on the classical estimator (2.4) under the loss L.

For example, one of the shrinkage estimators is the James-Stein type estimator (see James and Stein,
1961)

ξ̂
JS

=
(

1− q − 2
(l − p + 3)ztS−1z

)
ξ̂(2.10)

for q ≥ 3.
Theorem 2.1 indicates that under the loss L the estimators ξ̂(ψ) improve on the classical estimator

by statistics z and S. Since the statistic z has much information on ξ, the result of Theorem 2.2 seems
to be natural. On the other hand, Tsukuma (2002) proposed an improved estimator over the classical
estimator under the loss function (1.8). The improved estimator is constructed by means of statistics B

and S and hence it is different from the estimators ξ̂(ψ). See also Kubokawa and Robert (1994).

Remark 1. In Theorem 2.1, replacing S by V and putting φ = 1 and G = (Iq + BV −1Bt)−1, we can
evaluate risk of the inverse regression estimator (2.5) as

Corollary 2.2.

R(ξ̌, ξ) = E[L(ξ̌, ξ)](2.11)
= E

[−p + 2tr{F 1(Iq + F 1)−1}
+ (l1 − p− 1)tr{V −1(z −Bt(Iq + F 1)−1BV −1z)(z −Bt(Iq + F 1)−1BV −1z)t}
+ 2ztV −1Bt(Iq + F 1)−1A(Iq + F 1)−1BV −1z

+ 2(tr{F 1(Iq + F 1)−1})(ztV −1z − ztV −1Bt(Iq + F 1)−1BV −1z)
+ 2(ztV −1Bt(Iq + F 1)−1BV −1z − ztV −1Bt(Iq + F 1)−1F 1(Iq + F 1)−1BV −1z)

]
,

where the expectation is taken with respect to (B, V , z). Here F 1 = BV −1Bt and A = −(q + 1)Iq +
(Iq + F 1)−1 + (tr(Iq + F 1)−1)Iq.
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Corollary 2.2 suggests that unbiased estimate of risk of the inverse regression estimator is the content of
expectation of the right-hand side of (2.11) and, however, we seem unable to evaluate the risk difference
of the classical and the inverse regression estimators analytically. 2

Remark 2. In Theorem 2.2, we have analytical dominance result on the classical and the shrinkage
estimators when the quasi-loss function L is used. On the other hand we seem very difficult to establish
the dominance result analytically under the loss function L1 given in (1.10). Therefore, we have carried
out Monte Carlo simulations to investigate risk performance under the loss L1 which is rewritten as

L1(ξ̃; ξ) = (ξ̃ − ξ)tβΣ−1βt(ξ̃ − ξ).(2.12)

The estimated risks are given in Tables 3 and 4 and our simulations are based on 10,000 independent
replications which are generated from (2.2). In Tables 3 and 4, ‘CL’, ‘JS’, and ‘IN ’ denote the clas-
sical estimator (2.4), the James-Stein type estimator (2.10), and the inverse regression estimator (2.5),
respectively, and their estimated standard deviations are in parentheses. Furthermore, ‘Ave.’ is aver-
age of improvement in risk of JS against that of CL, i.e., Ave. = 100(1 − R̂∗JS/R̂∗)%, where R̂∗ and
R̂∗JS are, respectively, values of estimated risks for CL and JS by simulation. For simulations, we take
(n,m, p, q) = (30, 20, 7, 5) and suppose that βΣ−1βt is the diagonal matrix with typical elements and
that ξ = (1, 1, 1, 1, 1)t (in Table 3) and ξ = (2, 2, 2, 2, 2)t (in Table 4).

From numerical results in Tables 3 and 4, we observe that Ave.’s are large when the diagonal elements
of βΣ−1βt are small. Hence, our simulations indicate that JS is better than CL under the loss L1 but
it is difficult to prove the domination analytically. 2

Table 1:
Estimated risks (L1) under multivariate normal distributions

with ξ = (1, 1, 1, 1, 1)t

βΣ−1βt CL ST Ave. IN
diag(1, 1, 1, 1, 1) 10.86 8.37 22.93 % 4.77

(0.241) (0.156) (0.006)
diag(10, 10−1, 10−1, 10−1, 10−1) 8.34 7.45 10.71 % 6.09

(0.273) (0.192) (0.021)
diag(10, 10, 1, 10−1, 10−1) 22.05 19.76 10.39 % 12.66

(0.720) (0.616) (0.036)
diag(10, 10, 10, 10, 10) 51.18 47.56 7.07 % 29.55

(2.882) (2.619) (0.074)
diag(1002, 10, 1, 10−1, 10−2) 24.23 23.61 2.57 % 13.11

(0.877) (0.840) (0.064)
diag(102, 102, 10, 10, 1) 44.58 43.80 1.74 % 26.45

(1.714) (1.678) (0.109)
diag(103, 1, 1, 1, 1) 23.91 23.84 0.28 % 7.09

(1.408) (1.399) (0.045)
diag(103, 102, 102, 102, 10) 35.00 34.89 0.32 % 33.66

(0.390) (0.388) (0.162)
diag(104, 103, 102, 10, 1) 43.17 43.15 0.04 % 23.98

(1.061) (1.060) (0.131)
diag(104, 104, 103, 102, 102) 31.90 31.89 0.02 % 34.37

(0.220) (0.220) (0.197)
diag(105, 102, 1, 10−2, 10−5) 26.96 26.96 0.00 % 11.25

(0.796) (0.796) (0.085)
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Table 2:
Estimated risks (L1) under multivariate normal distributions

with ξ = (2, 2, 2, 2, 2)t

βΣ−1βt CL ST Ave. IN
diag(1, 1, 1, 1, 1) 30.76 28.17 8.40 % 18.89

(0.628) (0.502) (0.018)
diag(10, 10−1, 10−1, 10−1, 10−1) 22.17 21.68 2.20 % 23.91

(0.863) (0.755) (0.061)
diag(10, 10, 1, 10−1, 10−1) 65.41 63.50 2.92 % 49.66

(2.052) (1.941) (0.115)
diag(10, 10, 10, 10, 10) 169.99 166.60 1.99 % 116.16

(8.131) (7.923) (0.266)
diag(1002, 10, 1, 10−1, 10−2) 81.25 80.69 0.69 % 49.51

(9.692) (9.576) (0.200)
diag(102, 102, 10, 10, 1) 151.29 150.60 0.46 % 100.13

(6.096) (6.059) (0.371)
diag(103, 1, 1, 1, 1) 71.79 71.74 0.07 % 24.57

(5.679) (5.669) (0.125)
diag(103, 102, 102, 102, 10) 122.54 122.43 0.08 % 124.35

(1.500) (1.498) (0.568)
diag(104, 103, 102, 10, 1) 145.49 145.47 0.01 % 86.36

(3.566) (3.566) (0.446)
diag(104, 104, 103, 102, 102) 111.76 111.75 0.01 % 123.41

(0.776) (0.776) (0.692)
diag(105, 102, 1, 10−2, 10−5) 81.54 81.54 0.00 % 38.66

(2.421) (2.421) (0.268)

3. Extensions to elliptical errors

In this section we consider calibration problem under elliptical errors. Here, suppose that the error
matrices ε and ε0 of (1.1) and (1.2) have a joint density function

|Σ|−(n+m)/2f
(

tr{Σ−1(εtε + εt
0ε0)}

)
,(3.1)

where f is an unknown function on [0, ∞) and Σ is a p× p unknown positive-definite matrix. Note that
the rows of both ε and ε0 are uncorrelatedly distributed but not independently.

We shall state proofs of main theorems of this section in Section 4.2.

3.1. A canonical form

We first derive a canonical form of this setup. Let Υ be an n× n orthogonal matrix such that

Υ1n = (n1/2, 0, . . . , 0)t and ΥX = [0q×1, (XtX)1/2,0q×(n−q−1)]t.

Also let ΥY = [n1/2y, Bt,vt]t. Here the sizes of y, B and v are, respectively, p×1, q×p and (n−q−1)×p.
Similarly, let Υ0 be an m×m orthogonal matrix such that Υ01m = (m1/2, 0, . . . , 0)t and denote Υ0Y 0 =
[m1/2y0,v

t
0]

t, where the sizes of y0 and v0 are, respectively, p×1 and (m−1)×p. Thus, by the orthogonal
transformations Y → ΥY and Y 0 → Υ0Y 0, the density (3.1) can be written as

|Σ|−(n+m)/2f
(

tr
[
Σ−1{n(y −α)(y −α)t + (B − β)t(B − β) + vtv(3.2)

+m(y0 −α− c1/2
n,mβtξ)(y0 −α− c1/2

n,mβtξ)t + vt
0v0}

])
,
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where β = (XtX)1/2Θ, ξ = c
−1/2
n,m (XtX)−1/2x0, and cn,m = 1/n + 1/m. Then our problem is to

estimate ξ based on (y, B, v, v0, y0) with respect to the loss L given in (2.3).

3.2. The classical estimator and its improved estimator

Denote S = vtv +vt
0v0 and z = c

−1/2
n,m (y0−y). If (α, β, Σ) are known and f is decreasing on [0, ∞),

then the maximum likelihood estimator of ξ is given by ξ̂ = c
−1/2
n,m (βΣ−1βt)−1βΣ−1(y0 − α). When

(α, β, Σ) are unknown, we shall replace (α, β, Σ) by their estimators from the data (y, B, S) without
data y0. From (3.2) with a decreasing function f , the maximum likelihood estimator of (α, β, Σ) are
(α̂, β̂, Σ̂) = (y, B, κS) where κ is a certain constant. Hence, we obtain a natural estimator

ξ̂ = c−1/2
n,m (β̂Σ̂

−1
β̂

t
)−1β̂Σ̂

−1
(y0 − α̂)(3.3)

= (BS−1Bt)−1BS−1z.

Throughout this paper, this estimator is called the classical estimator in case of elliptical errors.

Consider an improvement on the classical estimator (3.3) with its extended estimators

ξ̂(ψ) = (1− ψ/t)(BS−1Bt)−1BS−1z,(3.4)

where ψ is a differentiable function of t = ztS−1z. This estimator is extended to the estimators (2.9) for
the case when the rows of errors ε and ε0 follow the multivariate normal distributions.

Next, we shall evaluate risk of the estimators (3.4). Let g be a scalar-valued function of (y,B,v, v0, y0)
and also let

F (t) =
1
2

∫ +∞

t

f(x)dx.

Denote

Ef [g] =
∫

g × |Σ|−(n+m)/2f [x] dy dB dv ds0 dy0,

EF [g] =
∫

g × |Σ|−(n+m)/2F [x] dy dB dv dv0 dy0,(3.5)

where x = tr
[
Σ−1{n(y−α)(y−α)t +(B−β)t(B−β)+vtv+m(y0−α−c

1/2
n,mβtξ)(y0−α−c

1/2
n,mβtξ)t +

vt
0v0}

]
. Using these notation, we give the risk expression of the estimators (3.4) as follows.

Theorem 3.1. Put t = ztS−1z and l = n + m − q − 2. Denote ψ′ = dψ/dt. Then, under the loss L

given in (2.3), the risk of ξ̂(ψ) can be written as

R(ξ̂(ψ), ξ) = Ef [L(ξ̂(ψ), ξ)]
= EF [−p− 4(ψ′/t− ψ/t2)ztS−1BtF−1BS−1z + 2q(1− ψ/t)

+(l − p− 1)(ztS−1z − (1− ψ2/t2)ztS−1BtF−1BS−1z)
−4(ψ′/t− ψ/t2)ztS−1BtF−1BS−1z(ztS−1z − (1− ψ/t)ztS−1BtF−1BS−1z)
+2q(1− ψ/t)(ztS−1z − ztS−1BtF−1BS−1z)],

provided a suitable condition is satisfied.

In Theorem 3.1, the content in EF [·] is not unbiased estimate of risk in case of an elliptical density
except normal density. The ‘suitable condition’ in Theorem 3.1 are the same as those of both Lemmas
4.7 and 4.8 in Section 4.2. From Theorem 3.1, we have an expression for risk of the classical estimator
(3.3):

Corollary 3.1.

R(ξ̂, ξ) = EF [−p + 2q + (l − p− 1 + 2q)(ztS−1z − ztS−1BtF−1BS−1z)],

where l = n + m− q − 2 and F = BS−1Bt.
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Therefore, we get a dominance result under elliptical errors.

Theorem 3.2. Assume that we want to estimate ξ in (3.2) and that q ≥ 3. If

(i) ψ is nondecreasing, and

(ii) 0 ≤ ψ ≤ 2(q − 2)/(l − p + 3),

then the estimators (3.4) improve on the classical estimator (3.3) under the loss L.

Theorem 3.2 is extension of Theorem 2.2 and suggests that for our elliptically contoured distribu-
tion (3.1) we establish the robustness of improvement of the shrinkage estimators (3.4) on the classical
estimator.

Although the risks of the estimators (2.5) and (2.6) can also be expressed by usage of notation (3.5),
we omit these derivations.

3.3. Monte Carlo studies

Finally, using Monte Carlo simulations in special case of the parameters, we shall investigate the risk
behavior of the improved estimators (3.4) under the loss function L1 given in (2.12). We supposed that
the errors are jointly distributed as a multivariate t-distribution whose density function is given by

ct|Σ|−(n+m)/2{1 + (1/k)tr(Σ−1εtε + Σ−1εt
0ε0)}−(k+(n+m)p)/2,(3.6)

where ct = Γ[{k + (n + m)p}/2]/{(πk)(n+m)p/2Γ[k/2]} and k > 0. Here, we denote by Γ(x) the Gamma
function.

Table 3:
Estimated risks (L1) under multivariate t-distributions (joint)

with ξ = (2, 2, 2, 2, 2)t

βΣ−1βt CL ST ave. IN
diag(1, 1, 1, 1, 1) 33.61 30.27 9.96 % 18.92

(2.706) (1.923) (0.019)
diag(10, 10−1, 10−1, 10−1, 10−1) 24.83 24.18 2.64 % 25.48

(0.755) (0.657) (0.088)
diag(10, 10, 1, 10−1, 10−1) 74.08 70.93 4.26 % 52.75

(4.821) (4.421) (0.173)
diag(10, 10, 10, 10, 10) 208.59 201.76 3.28 % 122.68

(12.236) (11.799) (0.412)
diag(1002, 10, 1, 10−1, 10−2) 94.77 93.79 1.04 % 70.39

(3.626) (3.533) (0.546)
diag(102, 102, 10, 10, 1) 215.29 212.71 1.20 % 140.34

(9.534) (9.234) (1.081)
diag(103, 1, 1, 1, 1) 86.44 86.39 0.06 % 37.25

(6.428) (6.400) (0.589)
diag(103, 102, 102, 102, 10) 215.26 214.72 0.25 % 199.35

(5.898) (5.862) (2.054)
diag(104, 103, 102, 10, 1) 243.89 243.80 0.04 % 130.14

(15.338) (15.327) (1.431)
diag(104, 104, 103, 102, 102) 206.49 206.42 0.04 % 202.59

(12.058) (12.034) (2.695)
diag(105, 102, 1, 10−2, 10−5) 161.42 161.42 0.00 % 63.42

(36.580) (36.578) (0.780)
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Table 4:
Estimated risks (L1) under multivariate t-distributions (i.i.d.)

with ξ = (2, 2, 2, 2, 2)t

βΣ−1βt CL ST Ave. IN
diag(1, 1, 1, 1, 1) 32.41 28.78 11.22 % 19.19

(0.874) (0.696) (0.017)
diag(10, 10−1, 10−1, 10−1, 10−1) 26.10 25.33 2.94 % 27.65

(0.797) (0.701) (0.073)
diag(10, 10, 1, 10−1, 10−1) 73.61 70.61 4.07 % 57.06

(2.579) (2.344) (0.136)
diag(10, 10, 10, 10, 10) 231.04 224.48 2.84 % 134.66

(12.614) (12.239) (0.306)
diag(1002, 10, 1, 10−1, 10−2) 106.33 105.22 1.04 % 69.51

(9.048) (8.863) (0.353)
diag(102, 102, 10, 10, 1) 219.90 218.45 0.66 % 143.39

(6.347) (6.284) (0.708)
diag(103, 1, 1, 1, 1) 80.65 80.58 0.09 % 31.97

(2.428) (2.423) (0.247)
diag(103, 102, 102, 102, 10) 219.38 219.11 0.12 % 207.21

(4.593) (4.585) (1.366)
diag(104, 103, 102, 10, 1) 233.01 232.98 0.01 % 136.22

(6.432) (6.431) (1.051)
diag(104, 104, 103, 102, 102) 192.30 192.28 0.01 % 214.54

(2.349) (2.348) (1.875)
diag(105, 102, 1, 10−2, 10−5) 118.04 118.04 0.00 % 61.50

(7.568) (7.568) (0.502)

Our simulations are based on 10,000 independent replications which are generated from the canonical
form (3.2). For this numerical studies we assume that (n,m, p, q) = (30, 20, 7, 5) and that k = 5. We
simulated the risks of the classical estimator (3.3), the James-Stein type shrinkage estimator with ψ =
(q − 2)/(l− p + 3), and the inverse regression estimator ξ̌ = (Iq + BV −1Bt)−1BV −1z where V = vtv.
These estimated risks are given in Table 5.

In Table 5, ‘CL’, ‘JS’, and ‘IN ’ denote the classical, the James-Stein type, and the inverse regression
estimators, respectively, and their estimated standard deviations are in parentheses. Furthermore ‘Ave.’
indicates average of improvement in risk of JS against that of CL. We suppose that the parameter
βΣ−1βt is the diagonal matrix with typical elements and that α = 0 and ξ = (2, 2, 2, 2, 2)t.

Moreover, since the error distribution (3.6) do not denote independent sampling, we also conduct simu-
lation study based on independently and identically sampling model from the multivariate t-distributions.
Here, its density function is given by

cI |Σ|−1/2{1 + (1/k)εt
iΣ

−1εi}−(k+p)/2, i = 1, . . . , n, n + 1, . . . , n + m,

where cI = Γ[(k + p)/2]/{(πk)p/2Γ[k/2]}, ε = [ε1, . . . , εn]t, and ε0 = [εn+1, . . . , εn+m]t. For this sim-
ulations, the assumptions for (n,m, p, q, k) and parameter (ξ, α, βΣ−1βt) were the same as those in
Table 5. This simulation results are given in Table 6.

From Table 5, we can see that JS performs better than CL in all cases and, particularly, Ave.’s are
large when the diagonal elements of βΣ−1βt are small and close together. Thus, we seem that JS is
better than CL even if the loss function L1 is used. On the other hand the risk performance of Table 6
are similar to those in Table 5. Hence, although there are simulations in small cases of parameters, it
is expected that the improvement with the estimator (3.4) remains robust under the loss L1 even if all
the rows of the error matrices ε and ε0 are identically and independently distributed as an elliptically
contoured distribution.
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4. Proofs

4.1. Proofs of Theorems 2.1 and 2.2

First, to prove Theorem 2.1, we shall state definition of differential operators and calculation formulae
with respect to the differential operators.

Let z be a p × 1 vector and also let u and u be, respectively, scalar-valued and p × 1 vector-valued
functions of z. Furthermore let S be a p × p symmetric, positive-definite matrix and let h and H be,
respectively, scalar-valued and p× r matrix-valued functions of S. Denote differential operators in terms
of z = (zi) and S = (Sij) by

∇z; p× 1 = (∂/∂zi) and DS ; p× p =
({DS}ij

)
=

(1 + δij

2
∂

∂Sij

)
,

where δij is Kronecker’s delta. The actions of ∇z on u and on u = (ui) and those of DS on h and on
H = (Hij) are defined as, respectively,

∇zu; p× 1 =

(
∂u

∂zi

)
, ∇zu

t; p× p =

(
∂uj

∂zi

)
, ∇t

zu; 1× 1 =
p∑

i=1

∂ui

∂zi
,

DSh; p× p =

(
1 + δij

2
∂h

∂Sij

)
, and DSH; p× r =

(
p∑

k=1

1 + δik

2
∂Hkj

∂Sik

)
.

Next we give the following lemmas in terms of calculus for operators ∇z and DS .

Lemma 4.1 (Haff, 1979, 1981 and 1982). Let D̃S be a p× p matrix whose elements are linear com-
binations of ∂/∂Sij (i = 1, . . . , p, j = 1, . . . , p). Also, let H1 and H2 be p × p matrices whose elements
are functions of S. Then we have

(i) D̃SH1H2 = (D̃SH1)H2 + (Ht
1D̃

t
S)tH2,

(ii) DSS = {(p + 1)/2}Ip,

(iii) (H1DS)tS = {tr(H1)}Ip/2 + H1/2,

(iv) {DS}ijS
ab = −(SajSib + SaiSjb)/2,

where Sab is the (a, b)-element of S−1.

Lemma 4.2. Let φ be a function of ztS−1z and also let G be a matrix-valued function of F = BS−1Bt,
where B is a q × p matrix. Assume that G is symmetric. Furthermore, let DF be a differential operator
with respect to F , i.e., DF ; q × q = ({(1 + δij)/2}∂/∂Fij). Then we have

(i) tr [∇z(φBtGBS−1z − z)t] = 2φ′ztS−1BtGBS−1z + φtr(FG)− p,

(ii) DSφ = −φ′S−1zztS−1,

(iii) {DSBtGBS−1z}i = −{S−1Bt[(FDF )tG]BS−1z}i

−(1/2){tr(FG)}{S−1z}i − (1/2){S−1BtGBS−1z}i,

where φ′ = dφ(t)/dt and {h}i denotes the i-th element of a vector h.

Proof. (i): Now, it follows that ∇zφ = 2φ′S−1z and ∇zz
t = Ip. Thus we can see that

tr[∇z(φBtGBS−1z − z)t] = tr[(∇zφ)ztS−1BtGB] + φtr[(∇zz
t)S−1BtGB]− tr(∇zz

t)
= 2φ′ tr(S−1zztS−1BtGB) + φtr(S−1BtGB)− tr(Ip).

(ii): The (i, j)-element of DSφ is equal to

{DS}ijφ = φ′{DS}ij(ztS−1z) = φ′
∑

a,b

zazb{DS}ijS
ab.
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Hence, from Lemma 4.1 (iv), we have the equality (ii).
(iii): It follows from Lemma 4.1 (i) that

{DSBtGBS−1z}i = {(DSBtGB)S−1z}i + {(BtGBDS)tS−1z}i.(4.1)

Applying Lemma 4.1 (iv) to the second term of the right-hand side in (4.1), we obtain

{(BtGBDS)tS−1z}i(4.2)

=
∑

a,b,c

{BtGB}ab({DS}iaSbc)zc

= −(1/2)[tr(BS−1BtG)]{S−1z}i − (1/2){S−1BtGBS−1z}i.

Next, we evaluate the first term of the right-hand side in (4.1). We observe that

{(DSBtGB)S−1z}i =
∑

j

[{DSBtG}ij ]{BS−1z}j(4.3)

=
∑

j,a,b

[Bba{DS}iaGbj ]{BS−1z}j .

Here, from chain rule and F = BS−1Bt, we get
∑

a,b

Bba{DS}iaGbj =
∑

a,b

∑

c,d

Bba ·
[1
2
(1 + δcd)

∂Gbj

∂Fcd

]
·
[1
2
(1 + δia)

∂Fcd

∂Sia

]

=
∑

a,b,c,d,e,f

Bba · [{DF }cdGbj ] · [BceBdf{DS}iaSef ]

= −1
2

∑

a,b,c,d,e,f

Bba · [{DF }cdGbj ] ·BceBdf (SeaSif + SeiSaf )

= −{S−1Bt(BS−1BtDF )tG}ij ,

where the third equality is given by Lemma 4.1 (iv). Hence, using the above result and (4.3), we can see
that

{(DSBtGB)S−1z}i = −{S−1Bt{(FDF )tG}BS−1z}i.(4.4)

Finally, combining (4.1), (4.2) and (4.4), we get the equality (iii). 2

Lemma 4.3. Let φ, F , and G be defined as in Lemma 4.2. Denote ξ̂(φ, G) = φGBS−1z. Then we have

tr[DS(Btξ̂(φ, G)− z)(Btξ̂(φ, G)− z)t]
= 2φ′ztS−1BtGBS−1z(ztS−1z − φztS−1BtGBS−1z)

+2φztS−1Bt(Iq − φGF ){(FDF )tG}BS−1z

+φ[tr(FG)](ztS−1z − φztS−1BtGBS−1z)
+φ(ztS−1BtGBS−1z − φztS−1BtGFGBS−1z).

Proof. We observe that

tr[DS(Btξ̂(φ, G)− z)(Btξ̂(φ, G)− z)t](4.5)

= 2
∑

i

{DS(Btξ̂(φ, G)− z)}i{Btξ̂(φ, G)− z}i

= 2
∑

i

{(DSφ)BtGBS−1z + φDSBtGBS−1z}i{φBtGBS−1z − z}i.

Hence, in the first braces of the last right-hand side of (4.5), we apply Lemma 4.2 (ii) to the first term
and Lemma 4.2 (iii) to the second term to obtain the desired results. 2

Next, we state the Stein identity of the multivariate normal distribution and the Stein-Haff identity
of the Wishart distribution for our problem. These identities are used to derive the unbiased estimate of
risk for the estimators ξ̂(φ, G).

12



Lemma 4.4 (Stein, 1973). Let z ∼ Np(βtξ, Σ). Also let u be a p × 1 vector whose elements are
differentiable functions of z. Then we have

E[(z − βtξ)tΣ−1u] = E[tr(∇zu
t)]

provided the expectations exist.

Lemma 4.5 (Haff, 1977). Let S ∼ Wp(Σ, l). Also let H be a p× p matrix whose elements are differ-
entiable functions of S. Then we have

E[tr(Σ−1H)] = E[(l − p− 1)tr(S−1H) + 2tr(DSH)]

provided a suitable condition are satisfied.

Proof of Theorem 2.1. From Lemmas 4.4 and 4.5, the risk of ξ̂(φ, G) under the loss L can be expressed
as

R(ξ̂(φ, G), ξ) = E[L(ξ̂(φ, G), ξ)]

= E[(z − βtξ)tΣ−1(z − βtξ) + 2(z − βtξ)tΣ−1(Btξ̂(φ, G)− z)

+tr{Σ−1(Btξ̂(φ, G)− z)(Btξ̂(φ, G)− z)t}]
= E[p + 2tr{∇z(Btξ̂(φ, G)− z)t}

+(l − p− 1)tr{S−1(Btξ̂(φ, G)− z)(Btξ̂(φ, G)− z)t}
+2tr{DS(Btξ̂(φ, G)− z)(Btξ̂(φ, G)− z)t}].

Thus the desired result can be given by applying Lemma 4.2 (i) and Lemma 4.3, respectively, to the
second and the last terms in the brackets of the last right-hand side of the above equality. 2

Next, to evaluate risks of the classical and the inverse regression estimators, we give the following
lemma.

Lemma 4.6. Let F be a q × q symmetric, positive-definite matrix. Then we have

(i) (FDF )tF−1 = −(q + 1)F−1/2,

(ii) (FDF )t(Iq + F )−1 = −(1/2)(Iq + F )−1{(q + 1)Iq − (Iq + F )−1 − (tr[(Iq + F )−1])Iq}.
Proof. (i): From Lemma 4.1 (i) and (ii), we can see that

0 = DF (FF−1) = (DF F )F−1 + (FDF )tF−1

= (q + 1)F−1/2 + (FDF )tF−1.

Hence we have the equality (i).
(ii): Similarly, we observe that from Lemma 4.1 (i) and (ii)

0 = DF {(Iq + F )(Iq + F )−1}
= (q + 1)(Iq + F )−1/2 + {(Iq + F )DF }t(Iq + F )−1

and from Lemma 4.1 (i) and (iii)

0 = DF {(Iq + F )−1(Iq + F )}
= {DF (Iq + F )−1}(Iq + F ) + (tr[(Iq + F )−1])Iq/2 + (Iq + F )−1/2.

Thus, we can write the above equalities as, respectively,

{(Iq + F )DF }t(Iq + F )−1 = −(q + 1)(Iq + F )−1/2,(4.6)
DF (Iq + F )−1 = −(tr[(Iq + F )−1])(Iq + F )−1/2− (Iq + F )−2/2.(4.7)
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Here it follows that

{(Iq + F )DF }t(Iq + F )−1 = DF (Iq + F )−1 + (FDF )t(Iq + F )−1.(4.8)

Hence, combining (4.6)–(4.8), we obtain the equality (ii). 2

Proof of Corollary 2.1. The proof is given easily from the combination of Theorem 2.1 and Lemma
4.6 (i). 2

Proof of Theorem 2.2. Under the loss L, the risk of the estimators (2.9) can be expressed as

R(ξ̂(ψ), ξ) = E[L(ξ̂(ψ), ξ)]
= E[−p− 4(ψ′/t− ψ/t2)ztS−1BtF−1BS−1z + 2q(1− ψ/t)

+(l − p− 1)(ztS−1z − (1− ψ2/t2)ztS−1BtF−1BS−1z)
−4(ψ′/t− ψ/t2)ztS−1BtF−1BS−1z(ztS−1z − (1− ψ/t)ztS−1BtF−1BS−1z)
+2q(1− ψ/t)(ztS−1z − ztS−1BtF−1BS−1z)],

where t = ztS−1z. Here, put t0 = ztS−1BtF−1BS−1z. Thus, the risk difference between ξ̂ and ξ̂(ψ)
can be written as

R(ξ̂(ψ), ξ)−R(ξ̂, ξ) = E[−4(ψ′/t− ψ/t2)t0 − 2qψ/t + (l − p− 1)ψ2t0/t2(4.9)
−4(ψ′/t− ψ/t2)t0{t− (1− ψ/t)t0} − 2qψ(t− t0)/t].

From the assumptions that ψ ≥ 0 and that ψ is nondecreasing and the fact that t − t0 ≥ 0, the fourth
term in brackets of the right-hand side of (4.9) can be evaluated as

−4(ψ′/t− ψ/t2)t0{t− (1− ψ/t)t0}(4.10)
= −4ψ′t0(t− t0 + ψt0/t)/t + 4ψt0(t− t0)/t2 + 4ψ2t20/t3

≤ 0 + 4ψ(t− t0)/t + 4ψ2t0/t2.

Similarly, we obtain

−4(ψ′/t− ψ/t2)t0 ≤ 4ψt0/t2 and − 2qψ/t ≤ −2qψt0/t2.(4.11)

Thus, combining (4.9)–(4.11), we have

R(ξ̂(ψ), ξ)−R(ξ̂, ξ) ≤ E[4ψt0/t2 − 2qψt0/t2 + (l − p− 1)ψ2t0/t2

4ψ(t− t0)/t + 4ψ2t0/t2 − 2qψ(t− t0)/t]
= E[{(l − p + 3)ψ2 − 2(q − 2)ψ}t0/t2 − 2(q − 2)ψ(t− t0)/t]
≤ E[{(l − p + 3)ψ2 − 2(q − 2)ψ}t0/t2].

Hence, we complete the proof. 2

Proof of Corollary 2.2. Replacing S by V in Theorem 2.1 and using Lemma 4.6 (ii), we can immedi-
ately get the desired result. 2

4.2. Proofs of Theorems 3.1 and 3.2

In this section we give proofs of theorems and corollary in Section 3. The statistic (y, B, v, v0, y0)
is the same defined as Section 3. First, we define the useful notation.

Let u = (u1, . . . , up)t be a p × 1 vector whose elements are functions of y = (y1, . . . , yp)t and y0 =
(y01, . . . , y0p)t. Also let ∇y and ∇y0 be p×1 differential operators with respect to y and y0, respectively.
Define

(∇yut)ij =
∂uj

∂yi
and (∇y0u

t)ij =
∂uj

∂y0i
(4.12)
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for i = 1, . . . , p, j = 1, . . . , p.
Further, let W ≡ W (S) = (Wij) be a q × q matrix such that the (i, j)-element Wij is a function of

S = (Sij). Let

{DSW }ij =
p∑

a=1

diaWaj ,(4.13)

where
dia =

1
2
(1 + δia)

∂

∂Sia

with δia = 1 for i = a and δia = 0 for i 6= a. Put v = (vt
1, . . . , v

t
n−q−1)

t and v0 = (vt
n−q, . . . , v

t
l)

t with
l = n+m−q−2. Also put vi = (vi1, . . . , vip) for i = 1, . . . , l. Hence we have S = vtv+vt

0v0 =
∑l

i=1 vt
ivi.

Now, we adapt the Stein and Stein-Haff identities with respect to the elliptically contoured distribu-
tions due to Kubokawa and Srivastava (1999, 2001) for our problem. Since the proofs are given in much
similar way as in Kubokawa and Srivastava (1999, 2001), we state the following formulae without the
proofs:

Lemma 4.7. Let u be a p × 1 vector whose elements are functions of (y, y0). For i = 1, . . . , p, assume
that the elements of u are differentiable with respect to yi and y0j and that

(i) Ef [|(y −α)tΣ−1u|] and Ef [|(y0 −α− c
1/2
n,mβtξ)tΣ−1u|] are finite;

(ii) limyi→±∞ uytF (y2
i + a2) = 0p×p and limy0i→±∞ uyt

0F (y2
0i + a2) = 0p×p for i = 1, . . . , p.

Then we have

(i) Ef [(y −α)tΣ−1u] = EF [tr{∇yut}/n],

(ii) Ef [(y0 −α− c
1/2
n,mβtξ)tΣ−1u] = EF [tr{∇y0u

t}/m].

Lemma 4.8. Let W be a p × p matrix whose elements are functions of S =
∑l

i=1 vt
ivi. For i =

1, . . . , l, j = 1, . . . , p, assume that the elements of W are differentiable with respect to vij and that

(i) Ef [|trΣ−1W |] is finite;

(ii) limvij→±∞(
∑l

i=1 vt
ivi)−1F (v2

ij + a2) = 0p×p for i = 1, . . . , l, j = 1, . . . , p.

Then we have

Ef [tr(Σ−1W )] = EF [(l − p− 1)tr(S−1W ) + 2tr(DSW )].

Next, using Lemma 4.7, we get the following lemma to evaluate the risk of the estimators (3.4):

Lemma 4.9. Let ξ̂(ψ) be defined as (3.4). Then we have

(i) Ef [(z − βtξ)tΣ−1(z − βtξ)] = EF [p],

(ii) Ef [(z − βtξ)tΣ−1(Btξ̂(ψ)− z)t] = EF [−2(ψ′/t− ψ/t2)ztS−1BtFBS−1z + (1− ψ/t)q − p]

provided the condition of Lemma 4.7 are satisfied.

Proof. (i) From z = c
−1/2
n,m (y0 − y), we observe that

Ef [(z − βtξ)tΣ−1(z − βtξ)] = Ef [c−1
n,m(y0 −α− c1/2

n,mβtξ)tΣ−1(y0 −α− c1/2
n,mβtξ)(4.14)

−2c−1
n,m(y0 −α− c1/2

n,mβtξ)tΣ−1(y −α)

+c−1
n,m(y −α)tΣ−1(y −α)].
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Hence, applying Lemma 4.7 to each term of the right-hand side in (4.14), we can see that

Ef [(z − βtξ)tΣ−1(z − βtξ)] = EF [c−1
n,m tr{∇y0(y0 −α− c1/2

n,mβtξ)t}/m

−2c−1
n,m tr{∇y0(y −α)t}/m + c−1

n,m tr{∇y(y −α)t}/n]
= EF [p].

(ii) First, applying Lemma 4.7, we get

Ef [(z − βtξ)tΣ−1(Btξ̂(ψ)− z)](4.15)

= Ef [c−1
n,m(y0 −α− c1/2

n,mβtξ)tΣ−1{(1− ψ/t)Bt(BS−1Bt)−1BS−1 − Ip}(y0 − y)

−c−1
n,m(y −α)tΣ−1{(1− ψ/t)Bt(BS−1Bt)−1BS−1 − Ip}(y0 − y)]

= EF

[
c−1
n,m(1/m)tr{∇y0 [(1− ψ/t)(y0 − y)tS−1Bt(BS−1Bt)−1B − (y0 − y)t]}
−c−1

n,m(1/n)tr{∇y[(1− ψ/t)(y0 − y)tS−1Bt(BS−1Bt)−1B − (y0 − y)t]}].

Here, the fact that ∇y0(ψ/t) = 2c
−1/2
n,m (ψ′/t − ψ/t2)S−1z and ∇y(ψ/t) = −2c

−1/2
n,m (ψ′/t − ψ/t2)S−1z

yields

∇y0 [(1− ψ/t)(y0 − y)tS−1Bt(BS−1Bt)−1B − (y0 − y)t](4.16)
= −∇y[(1− ψ/t)(y0 − y)tS−1Bt(BS−1Bt)−1B − (y0 − y)t]
≡ −2(ψ′/t− ψ/t2)S−1zztS−1Bt(BS−1Bt)−1B + (1− ψ/t)S−1Bt(BS−1Bt)−1B − Ip.

Hence, substituting the above results (4.16) for the last right-hand side in (4.15), we get the equality (ii).
2

Proof of Theorem 3.1. From Lemmas 4.8 and 4.9, the risk of ξ̂(ψ) under the loss L can be expressed as

R(ξ̂(ψ), ξ)

= Ef [L(ξ̂(ψ), ξ)]

= Ef [(z − βtξ)tΣ−1(z − βtξ) + 2(z − βtξ)tΣ−1(Btξ̂(ψ)− z)

+tr{Σ−1(Btξ̂(ψ)− z)(Btξ̂(ψ)− z)t}]
= EF [−p− 4(ψ′/t− ψ/t2)ztS−1BtFBS−1z + 2(1− ψ/t)q

+(l − p− 1)tr{S−1(Btξ̂(ψ)− z)(Btξ̂(ψ)− z)t}+ 2tr{DS(Btξ̂(ψ)− z)(Btξ̂(ψ)− z)t}].

Thus, applying Lemma 4.3 and Lemma 4.6 (i) to the last term in the brackets of the last right-hand side
of the above equality, we get the risk expression of ξ̂(ψ). 2

Proof of Corollary 3.1. This is similar to proof of Corollary 2.1 and is omitted. 2

Proof of Theorem 3.2. This is similar to proof of Theorem 2.2 and is omitted. 2
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