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Abstract

We consider the problem of estimating the common regression matrix of two
GMANOVA models with different unknown covariance matrices under a certain
type of loss functions which include a weighted quadratic loss function as a spe-
cial case. Under the normality assumption, we extensively use the techniques of
Haff, Stein, and Loh to derive an unbiased estimate of risk function for a subclass
of equivariant estimators, from which we give alternative combined estimators to
the Graybill-Deal type estimator. We also show that some of the results obtained
under the normality assumption remain robust when the error matrices follow the
elliptically contoured distributions. Finally, we conduct the Monte-Carlo simulation
to show that our proposed estimators perform better than the Graybill-Deal type
estimator.
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1 Introduction

There has been a lot of literature on estimating the common mean of nor-
mal distributions, which includes Graybill and Deal (1959), Brown and Co-
hen (1974), Khatri and Shah (1974), and Loh (1991). Of these, Graybill and
Deal (1959) first showed that the Graybill and Deal estimator, a combined
estimator for the common mean of two univariate normal distributions, has
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smaller variance than either of each sample mean when the sample size is at
least eleven.

The paper is mainly concerned with estimating the common regression ma-
trix of two GMANOVA models with different covariance matrices. Sugiura and
Kubokawa (1988) first considered this problem and proposed the Graybill-Deal
type estimator of the common regression matrix of two GMANOVA models.
Our purpose of the present paper is to propose an alternative estimator which
performs better than the estimator of Sugiura and Kubokawa in a decision-
theoretic point of view. The precise formulation of this problem is as follows.

Let Y i, i = 1, 2, be Ni × pi matrices of response variables and consider the
two GMANOVA models

Y 1 = A11ΞA12 + ε1 and Y 2 = A21ΞA22 + ε2, (1)

where Ai1 and Ai2 are, respectively, Ni × m and q × pi known full-rank ma-
trices with Ni > m and pi ≥ q, Ξ is an m× q matrix of unknown parameters,
and εi are Ni × pi error matrices with mean zero matrices. We assume two
cases of error distributions: (i) The error matrices ε1 and ε2 are independently
distributed as the multivariate normal distributions with the covariance ma-
trices IN1 ⊗Ω1 and IN2 ⊗Ω2, respectively, i.e., the rows of the matrix εi are
independently and identically distributed as the multivariate normal distribu-
tions with the mean zero and the covariance matrix Ωi. (ii) The error matrices
ε1 and ε2 are jointly distributed as the elliptically contoured distribution with
the density function

|Ω1|−N1/2|Ω2|−N2/2g( tr (Ω−1
1 ε′1ε1) + tr (Ω−1

2 ε′2ε2)), (2)

where g is a nonnegative unknown function and Ωi, i = 1, 2, are pi × pi scale
matrices. In both cases (i) and (ii), we assume that Ωi are unknown positive
definite pi×pi matrices. Here we denote by B′, |B|, and tr (B) the transpose,
determinant, and trace of a squared matrix B. We consider the problem of
estimating Ξ under the loss function

L̃((Ξ, Ω1, Ω2), Ξ̂) = tr {A11(Ξ̂− Ξ)A12Ω
−1
1 A′

12(Ξ̂− Ξ)′A′
11}

+ tr {C̃(Ξ̂ − Ξ)A22Ω
−1
2 A′

22(Ξ̂ − Ξ)′C̃
′}, (3)

where Ξ̂ is an estimator of Ξ and C̃ is an N2 × m known matrix of full
rank. When C̃ = A21, the above loss function is a natural extension of an
invariant loss function of the regression matrix of the GMANOVA model,
which was used by Kariya, et al. (1996, 1999). This loss function includes a
quadratic loss which was used by Loh (1991) in estimating the common mean
of the multivariate normal distributions. Then the inaccuracy of an estimator
Ξ̂ is measured by the risk function E[L̃((Ξ, Ω1, Ω2), Ξ̂)]. On the other hand,
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Kubokawa (1989) considered the problem of estimating the common regression
matrix of several GMANOVA models and employed the quadratic loss function
tr {(Ξ̂− Ξ)Q(Ξ̂ −Ξ)′} for a q × q known positive definite matrix Q.

In Section 2, we consider the estimation problem of the common regres-
sion matrix of the model (1) where the distributions of two error matrices
ε1 and ε2 are distributed independently as the multivariate normal distribu-
tions. First we derive a canonical form of two sample problem of estimating
the common regression matrix of the GMANOVA models. Next we derive a
family of fully equivariant estimators for this problem. Using the methods of
Stein-Haff-Loh, we obtain an unbiased estimate of the risk for a subclass of
equivariant estimators. In the view of the unbiased estimate of the risk, we
give an alternative estimator to the Graybill-Deal type estimator. In Section
3, we consider the estimation problem of the common regression matrix of
the model (1) where the distributions of two error matrices ε1 and ε2 are dis-
tributed jointly and uncorrelatedly as the elliptically contoured distribution
with the density function (2). We also derive a canonical form of the problems
when the error distributions are elliptically contoured. Using the extended
Haff-Stein identity due to Kubokawa and Srivastava (1999, 2001), we derive
the risk representation for the subclass of equivariant estimators, which is
an extension of the results obtained under the normal assumption to the re-
sults under the elliptically contoured model. Since complex nature of the risk
representation under elliptically contoured distributions, we restrict ourselves
to the problem of estimating the common mean of the elliptically contoured
distributions, i.e., the case when N1 = N2, p1 = p2 in (1) and derive an alter-
native estimator from the our risk representation. In Section 4, we first carry
out Monte-Carlo simulation to show that our proposed estimators reduce the
risk substantially over the Graybill-Deal type estimator when we observe the
data (Y 1, Y 2) from the model (1). Next we carry out simulation related to
the results in Section 3. Since the model (2) is not i.i.d. sampling set-up of
two sample problems, we carry out Monte-Carlo simulation to show that our
proposed estimators reduce the risk under the i.i.d. sampling from two inde-
pendent multivariate elliptically contoured distributions instead of sampling
from the model (2) in order to justify our derivation of alternative estimators
under the model (2). In Section 5, we give technical lemmas and the proofs of
the main results.

3



2 Under normal errors

2.1 A canonical form

Assume that the errors ε1 and ε2 are independently and identically dis-
tributed as matrix-variate normal distributions. Hence we observe random
matrices Y 1 and Y 2 which are independently distributed as

Y i ∼ NNi×pi
(Ai1ΞAi2, INi

⊗ Ωi), i = 1, 2. (4)

To derive a canonical form of (4), let Γi be Ni ×Ni orthogonal matrices such
that ΓiAi1 = [(A′

i1Ai1)
1/2, 0m×(Ni−m)]

′ and also let Υi be pi × pi orthogonal

matrices such that Ai2Υi = [(Ai2A
′
i2)

1/2, 0q×(pi−q)]. Here we denote by B1/2

a non-negative definite square root of a squared matrix B. Furthermore we
write

Θ= (A′
11A11)

1/2Ξ(A12A
′
12)

1/2, (5a)

A = (A′
21A21)

1/2(A′
11A11)

−1/2, (5b)

Λ=

 (A22A
′
22)

−1/2(A12A
′
12)

1/2 0q×(p2−q)

0(p2−q)×q Ip2−q

 , (5c)

Σ1 =Υ′
1Ω1Υ1 =

Σ
(1)
11 Σ

(1)
12

Σ
(1)
21 Σ

(1)
22

 , (5d)

Σ2 =Λ′Υ′
2Ω2Υ2Λ =

Σ
(2)
11 Σ

(2)
12

Σ
(2)
21 Σ

(2)
22

 , (5e)

where Σ
(i)
11 , i = 1, 2, are q × q positive definite matrices. Then the transfor-

mations of both Y 1 → Γ1Y 1Υ1 and Y 2 → Γ2Y 2Υ2Λ yield the following
form: We observe that each Y i, i = 1, 2, yields a set of random matrices
(X i, Zi, Si, γ̂i, W i), where

X1| Z1 ∼ Nm×q(Θ + Z1γ1, Im ⊗ Σ
(1)
11·2), (6a)

X2| Z2 ∼ Nm×q(AΘ + Z2γ2, Im ⊗ Σ
(2)
11·2) (6b)

and, for i = 1, 2,
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Zi ∼ Nm×(pi−q)(0, Im ⊗ Σ
(i)
22 ), (7a)

Si ∼ Wq(Σ
(i)
11·2, ni), ni = Ni − m − pi + q, (7b)

γ̂i| W i ∼ N(pi−q)×q(γi, W−1
i ⊗ Σ

(i)
11·2), (7c)

W i ∼ Wpi−q(Σ
(i)
22 , ni + pi − q), (7d)

where Σ
(i)
11·2 = Σ

(i)
11 − Σ

(i)
12 (Σ

(i)
22 )−1Σ

(i)
21 and γi = (Σ

(i)
22 )−1Σ

(i)
21 . Here, note that

(X i, Zi), (W i, γ̂i) and Si are independent and that A is an m × m known
nonsingular matrix. Furthermore, the loss function (3) turns into

L((Θ, Σ1, Σ2), Θ̂) = tr [(Θ̂ −Θ)(Σ
(1)
11·2)

−1(Θ̂ − Θ)′]

+ tr [C ′C(Θ̂ −Θ)(Σ
(2)
11·2)

−1(Θ̂ −Θ)′], (8)

where Θ̂ is an estimator of Θ and C is an N2 ×m known matrix of full rank.
Under this canonical form, the problem of estimating Ξ in (1) changes into
that of estimating Θ based on (X�, Zi, Si, γ̂i, W i| i = 1, 2) under the loss
function (8). Then the risk function is defined by

R((Θ, Σ1, Σ2), Θ̂) = E[L((Θ, Σ1, Σ2), Θ̂)], (9)

where the expectation is taken with respect to (X i, Zi, Si, γ̂ i, W i| i = 1, 2).

2.2 An equivariant estimator of Θ

Next, we derive a class of estimators of Θ. To this end, let G be a group
of transformations on the sample space. Each element of G consists of triples
(D, P 1, P 2), where D is m × q matrix and

P i =

 P 11 P i·12

0(pi−q)×q P i·22

 , i = 1, 2.

Here P 11 and P i·22 are q × q and (pi − q) × (pi − q) nonsingular matrices,
respectively, and P i·12 are q × (pi − q) matrices. Here note that the left-upper
blocks of P 1 and P 2 are identical so as to capture the structure of estimating
the common regression matrix in two GMANOVA models. The group compo-
sition is given by (D, P 1, P 2)(D̃, P̃ 1, P̃ 2) = (D + D̃, P 1P̃ 2, P 2P̃ 2) where
(D, P 1, P 2) and (D̃, P̃ 1, P̃ 2) are elements of G. The action of (D, P 1, P 2)
on (X i, Zi, Si, γ̂i, W i| i = 1, 2) is define as
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[X1, Z1] → [X1, Z1]P
′
1 + [D, 0m×(p1−q)],

[X2, Z2] → [X2, Z2]P
′
2 + [AD, 0m×(p2−q)],Si + γ̂ ′

iW iγ̂i γ̂ ′
iW i

W iγ̂i W i

→ P i

Si + γ̂ ′
iW iγ̂i γ̂ ′

iW i

W iγ̂i W i

P ′
i,

and we denote by g ◦ (X i, Zi, Si, γ̂ i, W i| i = 1, 2) the action of g on this
sample where g is an element of G, i.e., g = (D, P 1, P 2). Furthermore, the
action of g on the parameter is defined as Θ → ΘP ′

11 + D, and Σ(i) →
P iΣ

(i)P ′
i, i = 1, 2. Then the model is easily shown to be invariant under the

group of transformations. Furthermore, let

Θ̂i = X i − Ziγ̂ i, i = 1, 2. (10)

Note that Θ̂1 and Θ̂2 are the maximum likelihood estimators of Θ and AΘ
for one-sample problem, respectively. Then the action of g on sample and
parameters is rewritten as

Θ → ΘP ′
11 + D

(Σ
(i)
11·2, Σ

(i)
22 , (Σ

(i)
22 )−1Σ

(i)
21 )

→ (P 11Σ
(i)
11·2P

′
11, P i·22Σ

(i)
22P ′

i·22, (P ′
i·22)

−1(Σ
(i)
22 )−1Σ

(i)
21P ′

11 + (P ′
i·22)

−1P ′
i·12),

(Θ̂1, Z1, Θ̂2, Z2)

→ (Θ̂1P
′
11 + D, Z1P

′
1·22, Θ̂2P

′
11 + AD, Z2P

′
2·22),

(Si, W i, γ̂i)

→ (P 11SiP
′
11, P i·22W iP

′
i·22, (P ′

i·22)
−1γ̂iP

′
11 + (P ′

i·22)
−1P ′

i·12),

for i = 1, 2. It is reasonable to require that an equivariant estimator Θ̂
EQI

should satisfy

Θ̂
EQI

(g ◦ (X i, Zi, Si, γ̂i, W i)) = Θ̂
EQI

(X i, Zi, Si, W i, γ̂ i)P
′
11 + D,

so that Θ̂
EQI

(g◦(Xi, Zi, Si, γ̂i)) estimates the parameter ΘP ′
11+D as does

Θ̂
EQI

(X i, Zi, Si, W i, γ̂i)P
′
11 +D. The next theorem characterizes the form

of equivariant estimators.

Theorem 1. Let B be a q× q nonsingular matrix such that B(S1 +S2)B
′ =

Iq, and let F = diag(f1, . . . , fq) be a q×q diagonal matrix such that BS2B
′ =

F and f1 ≥ · · · ≥ fq ≥ 0. Then under the group of transformations, an
equivariant estimator of ΘEQI is given by

Θ̂
EQI

= Θ̂1B
′Φ̃(B′)−1 + A−1Θ̂2B

′(Iq − Φ̃)(B′)−1, (11)
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where Φ̃ ≡ Φ̃((Θ̂1 − A−1Θ̂2)B
′, F , Z1W

−1/2
1 , Z2W

−1/2
2 ) is a q × q matrix

and Θ̂i, i = 1, 2, are given by (10).

Since the class of the equivariant estimators (11) is too large to evaluate their
risk systematically, we restrict ourselves to an equivariant estimator (11) where
Φ̃ is a diagonal matrix and depends only on F , i.e.,

Θ̂
EQ

= Θ̂1B
′Φ(B ′)−1 + A−1Θ̂2B

′(Iq − Φ)(B′)−1, (12)

where Θ̂i, i = 1, 2, is given by (10) and Φ = Φ(F ) is a q × q diagonal matrix
with diagonal elements φi(F ), i = 1, 2, . . . , p. Here we assume that φi(F )
depends only on F = diag(f1, f2, . . . , fq) with f1 ≥ f2 ≥ · · · ≥ fq, the
eigenvalues of S2(S1 + S2)

−1.

2.3 Graybill-Deal type estimator

In this subsection, we look over the connection between our proposed class
of estimators and the Graybill-Deal type estimator given by Sugiura and
Kubokawa (1988). Furthermore, we state our scenario to obtain an alternative
estimator. Using the transformation (5a)− (5e), we can see that the estimator
of Sugiura and Kubokawa is rewritten as

vec(Θ̂
SK

)= {Im ⊗ (S1/n1)
−1 + (A′A) ⊗ (S2/n2)

−1}−1

×{Im ⊗ (S1/n1)
−1vec(Θ̂1) + (A′A) ⊗ (S2/n2)

−1vec(A−1Θ̂2)}, (13)

where we denote by vec(U) an mq × 1 vector consisting of (u1, u2, . . . , um)′

for U = (u′
1, u′

2, . . . , u′
m)′ and G ⊗ H stands for the Kronecker product of

matrices G and H defined by (gijH) for G = (gij). On the other hand, we
can rewritten the estimator (12) as

vec (Θ̂
EQ

)= {Im ⊗ (B′diag(βj)B) + Im ⊗ (B′diag(αj)B)}−1

×{Im ⊗ (B′diag(βj)B) vec (Θ̂1)

+Im ⊗ (B′diag(αj)B)vec(A−1Θ̂2)}, (14)

if we put φj = βj/(αj + βj), j = 1, 2, . . . , q, where αj and βj are real-valued
functions of F . Here we denote by diag(βj) a q × q diagonal matrix whose
j-th diagonal elements are given by βj . Furthermore, putting αj = n2/fj and
βj = n1/(1 − fj), we can see that the equivariant estimator of the form (12)
reduces to
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vec(Θ̂
EQ1

) = {Im ⊗ (S1/n1)
−1 + Im ⊗ (S2/n2)

−1}−1

×{Im ⊗ (S1/n1)
−1vec(Θ̂1) + Im ⊗ (S2/n2)

−1vec(A−1Θ̂2)}, (15)

equivalently

Θ̂
EQ1

= {Θ̂1(S1/n1)
−1 + A−1Θ̂2(S2/n2)

−1}{
2∑

i=1

(Si/ni)
−1}−1.

The estimator (15) can be regarded as a counterpart of the Graybill-Deal type
estimator (13) inside the class of equivariant estimators of the form (12). It is
well known that the eigenvalues of S2(S1 + S2)

−1 are more spread than the
eigenvalues of expected value of S2(S1 +S2)

−1. Hence we look for alternative
estimators for Θ by correcting the eigenvalues of S2(S1 + S2)

−1. Through
these consideration, we use the following scenario to obtain an alternative
estimator to (13). First we look into the class of equivariant estimators of
the form (12) and obtain better estimator which has the form (12). Then we
change the term Im ⊗ (B ′diag(αj)B) in (14) into (A′A)⊗ (B ′diag(αj)B) to
get an alternative estimator so as to (13).

2.4 A subclass of the equivariant estimator and its risk

To obtain alternative estimator of the form (12), we evaluate its risk in
terms of unbiased risk method due to Stein-Haff-Loh. The risk of the above
estimator can be written as

R((Θ, Σ1, Σ2), Θ̂)

= E

[
tr {(Θ̂1 − Θ)(Σ

(1)
11·2)

−1(Θ̂1 − Θ)′}

+2 tr {(Θ̂1 −Θ)(Σ
(1)
11·2)

−1B−1(Iq −Φ)B(A−1Θ̂2 − Θ̂1)
′}

+ tr {(Σ(1)
11·2)

−1B−1(Iq − Φ)H1(Iq − Φ)(B′)−1}
+ tr {(CA−1)′(CA−1)(Θ̂2 − AΘ)(Σ

(2)
11·2)

−1(Θ̂2 − AΘ)′}
+2 tr {(CA−1)′(CA−1)(Θ̂2 − AΘ)(Σ

(2)
11·2)

−1B−1ΦB(AΘ̂1 − Θ̂2)
′}

+ tr {(Σ(2)
11·2)

−1B−1ΦH2Φ(B′)−1}
]
, (16)

where

H1 = B(Θ̂1 − A−1Θ̂2)
′(Θ̂1 − A−1Θ̂2)B

′, (17a)

H2 = B(Θ̂1 − A−1Θ̂2)
′(C ′C)(Θ̂1 − A−1Θ̂2)B

′. (17b)
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Now we use the Haff-Stein identity for Wishart distribution and calculation on
eigenstructure technique due to Stein (1975, 1977), Haff (1991), and Loh (1988)
to evaluate the third and sixth terms in right-hand side of (16) while we use
formula for the second moments of the maximum likelihood estimator of the
GMANOVA model to evaluate the other terms in right-hand side of (16).
Then we obtain an unbiased estimate of risk for the equivariant estimators
(12). The proof of the theorem is given in Section 5.

Theorem 2. The risk of Θ̂
EQ

is given by

R((Θ, Σ1, Σ2), Θ̂
EQ

)

= E

[
q(r2 − r1) +

q∑
j=1

{
2(r1 − r2)φj + (n1 − q − 1)

(1 − φj)
2

1 − fj

{H1}jj

+4{H1}jj(1 − φj)fj
∂φj

∂fj

+ 2
∑
k �=j

{H1}jj(1 − φj)(φj − φk)
fk

fj − fk

+(n2 − q − 1)
φ2

j

fj

{H2}jj + 4{H2}jjφj(1 − fj)
∂φj

∂fj

+2
∑
k �=j

{H2}jjφj(φj − φk)
1 − fk

fj − fk

}]
, (18)

where r1 = m(n1 + p1 − q − 1)/(n1 − 1), r2 = {(n2 + p2 − q − 1)/(n2 −
1)} tr {(CA−1)′(CA−1)}, and {H1}jj and {H2}jj are j-th diagonal elements
of the matrices given by (17a) and (17b), respectively.

2.5 Choice of Φ

From Theorem 2, we obtain the unbiased estimate of the risk of the sub-
class of equivariant estimators given by (12). We denote by R̂ the unbiased
estimate of the risk, i.e., the terms inside large bracket in the right-hand side
of (18). Although we obtain the unbiased estimate of risk for the class of esti-
mators given by (12), it is still difficult to deal with it to derive an alternative
estimator. We adapt the argument given by Loh (1991) for obtaining more
feasible estimate of the risk from the unbiased estimate of the risk. First we
replace H1 and H2 in (18) by their approximation. To this end, we observe
that
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E[(Θ̂1 − A−1Θ̂2)
′(Θ̂1 − A−1Θ̂2)]

= mr̃1Σ
(1)
11·2 + r̃2 tr {(A′)−1A−1}Σ(2)

11·2,

E[(AΘ̂1 − Θ̂2)
′(CA−1)′(CA−1)(AΘ̂1 − Θ̂2)]

= r̃1 tr (C ′C)Σ
(1)
11·2 + r̃2 tr {(CA−1)′(CA−1)}Σ(2)

11·2,

where r̃i = (ni + pi − q − 1)/(ni − 1). Replacing Σ
(i)
11·2 in right-hand side of the

above equations with their maximum likelihood estimators Si/ni, i = 1, 2, we
approximate {H1}jj and {H2}jj, j = 1, 2, . . . , q, by

{H1}jj ≈{B(mr̃1S1/n1 + r̃2 tr {(A′)−1A−1}S2/n2)B
′}jj,

= mr̃1(1 − fj)/n1 + r̃2 tr {(A′)−1A−1}fj/n2

≡h1j ,

{H2}jj ≈{B(r̃1 tr (C ′C)S1/n1 + r̃2 tr {(CA−1)′(CA−1)}S2/n2)B
′}jj

= r̃1 tr (C ′C)(1 − fj)/n1 + r̃2 tr {(CA−1)′(CA−1)}fj/n2

≡h2j .

We extensively use notation {A}jj, j = 1, 2, . . . , q, to denote the j-th diag-
onal element of a q × q squared matrix A. Furthermore, using the fact that

∂φj

∂fj
= fj

∂

∂fj

(
φj

fj

)
+

φj

fj
= (1 − fj)

∂

∂(1 − fj)

(
1 − φj

1 − fj

)
+

1 − φj

1 − fj
, (19)

we can see that the unbiased estimate for risk of Θ̂
EQ

given by (18) is approx-
imated by

R̂≈ q(r2 − r1) +
q∑

j=1

{
2(r1 − r2)φj + (n1 − q − 1)

(1 − φj)
2

1 − fj

h1j

+4h1j(1 − φj)fj

[
(1 − fj)

∂

∂(1 − fj)

(
1 − φj

1 − fj

)
+

1 − φj

1 − fj

]

+2
∑
k �=j

h1j(1 − φj)(φj − φk)
fk

fj − fk

+(n2 − q − 1)
φ2

j

fj
h2j + 4h2jφj(1 − fj)

[
fj

∂

∂fj

(
φj

fj

)
+

φj

fj

]

+2
∑
k �=j

h2jφj(φj − φk)
1 − fk

fj − fk

}
.

Ignoring the derivative terms, we get
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R̂≈ q(r2 − r1) +
q∑

j=1

{
2(r1 − r2)φj

+(n1 − q − 1)
(1 − φj)

2

1 − fj

h1j + 4h1j(1 − φj)
2 fj

1 − fj

+2
∑
k �=j

h1j(1 − φj)(φj − φk)
fk

fj − fk

+(n2 − q − 1)
φ2

j

fj

h2j + 4h2jφ
2
j

1 − fj

fj

+ 2
∑
k �=j

h2jφj(φj − φk)
1 − fk

fj − fk

}

= q(r2 − r1) +
q∑

j=1

{
2(r1 − r2)φj

+(n1 − q − 1)
(1 − φj)

2

1 − fj
h1j + 4h1j(1 − φj)

2 fj

1 − fj

−2
∑
k �=j

h1j(1 − φj)
2 fk

fj − fk
+ 2

∑
k �=j

h1j(1 − φj)(1 − φk)
fk

fj − fk

+(n2 − q − 1)
φ2

j

fj
h2j + 4h2jφ

2
j

1 − fj

fj
+ 2

∑
k �=j

h2jφj(φj − φk)
1 − fk

fj − fk

}

= R̃, say.

Although the estimate of the risk R̃ is no longer unbiased, it is feasible to
obtain alternative estimators of Θ. Then we minimize R̃ with respect to
φj (j = 1, . . . , q), which gives

0 =
∂R̃

∂φj
= r1 − r2 − (n1 − q − 1)

1 − φj

1 − fj
h1j − 4h1j(1 − φj)

fj

1 − fj

+2
∑
k �=j

h1j(1 − φj)
fk

fj − fk
−∑

k �=j

h1j(1 − φk)
fk

fj − fk

+(n2 − q − 1)
φj

fj
h2j + 4h2j

1 − fj

fj
φj

+2h2jφj

∑
k �=j

1 − fk

fj − fk
− h2j

∑
k �=j

φk
1 − fk

fj − fk
.

Hence, solving for φj with ignoring the sixth and the tenth terms in the last
right-hand side above, we finally get

φST
j =

β̂ST
j /(1 − fj)

β̂ST
j /(1 − fj) + α̂ST

j /fj

, (20)

where
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α̂ST
j = (n2 − q − 1)h2j + (r1 − r2)fj + 4h2j(1 − fj) + 2h2j

∑
k �=j

fj(1 − fk)

fj − fk
,

β̂ST
j = (n1 − q − 1)h1j + (r2 − r1)(1 − fj) + 4h1jfj − 2h1j

∑
k �=j

(1 − fj)fk

fj − fk
,

h1j = mr̃1(1 − fj)/n1 + r̃2( tr (A′)−1A−1)fj/n2,

h2j = r̃1( trC ′C)(1 − fj)/n1 + r̃2( tr (CA−1)′(CA−1))fj/n2,

r̃i =
ni + pi − q − 1

ni − 1
=

Ni − m − 1

Ni − m − pi + q − 1
(i = 1, 2),

r1 = mr̃1,

r2 = r̃2 tr (CA−1)′(CA−1).

Consequently we propose an estimator of the form (14) with (20). Because
of complex nature of the estimation problem, we can not carry out analytic
comparison between Graybill-Deal type estimator (13) and our proposed es-
timator. However, we justify our proposed estimator via simulation study in
Section 4.

Remark 1. For the special case, the estimator (20) reduces a simple form.
When C ′C = A′A, N1 = N2 and p1 = p2, we have r1 = r2. This case
generalizes the results obtained by Loh (1991). When C ′C = Im, we have
h1j = h2j , j = 1, . . . , q.

3 Under elliptical errors

Consider the GMANOVA model (1) and suppose that the error (ε1, ε2)
is distributed as an elliptically contoured distribution and has the density
function (2).

3.1 A canonical form

To construct a canonical form of (1), let Γi be Ni × Ni orthogonal ma-
trices such that ΓiAi1 = [(A′

i1Ai1)
1/2, 0m×(Ni−m)]

′ and also let Υi be pi × pi

orthogonal matrices such that Ai2Υi = [(Ai2A
′
i2)

1/2, 0q×(pi−q)] for i = 1, 2.
Recall that Θ, A, Λ, Σ1, and Σ2 are given by (5b)-(5e), respectively. Also

recall that Σ
(i)
11·2 = Σ

(i)
11 − Σ

(i)
12Σ

(i)
22

−1
Σ

(i)
21 and that γ i = Σ

(i)
22

−1
Σ

(i)
21 . Then the

transformations with Γi and Υi yield the following lemma:

Lemma 1 The density function of the model (1) with (2) is written as
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|Σ1|−N1/2|Σ2|−N2/2g

{
tr
[
(Σ

(1)
11·2)

−1(X1 − Z1γ1 −Θ)′(X1 − Z1γ1 − Θ)

+s′
1s1 + (u1 − (w′

1w1)
1/2γ1)

′(u1 − (w′
1w1)

1/2γ1)
]

+ tr
[
(Σ

(1)
22 )−1{Z ′

1Z1 + w′
1w1}

]
+ tr

[
(Σ

(2)
11·2)

−1(X2 − Z2γ2 − AΘ)′

×(X2 − Z2γ2 − AΘ) + s′
2s2 + (u2 − (w′

2w2)
1/2γ2)

′

×(u2 − (w′
2w2)

1/2γ2)
]
+ tr

[
(Σ

(2)
22 )−1{Z ′

2Z2 + w′
2w2}

]}
, (21)

where X i are m× q matrices, Zi are m× (pi − q) matrices, si are (Ni −m−
pi +q)×q matrices, ui are (pi−q)×q matrices, and wi are (Ni−m)×(pi−q)
matrices for i = 1, 2.

Proof. Let

Γ1Y 1Υ1 =

X1 Z1

y1 w1

 and Γ2Y 2Υ2Λ =

X2 Z2

y2 w2

 .

Then the Jacobian of the above transformations is given by

J [(Y i; i = 1, 2) → (X i, Zi, yi, wi; i = 1, 2)] = |Λ|−N2.

Note that

Σ−1
i =

 Iq 0q×(pi−q)

−γi Ipi−q


 (Σ

(i)
11·2)

−1 0q×(pi−q)

0(pi−q)×q (Σ
(i)
22 )−1


 Iq −γ ′

i

0(pi−q)×q Ipi−q

 .

Thus we can write the density (2) as

|Σ1|−N1/2|Σ2|−N2/2g

{
tr
[
(Σ

(1)
11·2)

−1(X1 − Z1γ1 −Θ)′(X1 − Z1γ1 − Θ)

+(y1 − w1γ1)
′(y1 − w1γ1)

]
+ tr

[
(Σ

(1)
22 )−1{Z ′

1Z1 + w′
1w1}

]
+ tr

[
(Σ

(2)
11·2)

−1(X2 − Z2γ2 − AΘ)′(X2 − Z2γ2 − AΘ)

+(y2 − w2γ2)
′(y2 − w2γ2)

]
+ tr

[
(Σ

(2)
22 )−1{Z ′

2Z2 + w′
2w2}

]}
.

Furthermore, let Γi be (Ni − m) × (Ni − m) orthogonal matrices such that
Γiwi = [(w′

iwi)
1/2, 0(pi−q)×(Ni−m−pi+q)]

′ and let Γiyi = (u′
i, s

′
i)
′. Hence, from

this orthogonal transformations yi → Γiyi, we complete the proof. �

For i = 1, 2, put Si = s′
isi, W i = w′

iwi, γ̂ i = W
−1/2
i ui, Θ̂i = X i −Ziγ̂i,

and ni = Ni − m − pi + q. Now we consider the problem of estimating Θ
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based on (Θ̂i, Si), i = 1, 2, under the loss function (8). Its risk function is
R((Θ, Σ1, Σ2), Θ̂) = E[L((Θ, Σ1, Σ2), Θ̂)], where the expectation is taken
with respect to the density function given by (21). We consider a class of
combined estimators of the form

Θ̂
EQ

= Θ̂1B
′Φ(B ′)−1 + A−1Θ̂2B

′(Iq − Φ)(B′)−1, (22)

where B is a q×q nonsingular matrix such that B(S1+S2)B
′ = Iq, BS2B

′ =
F , F = diag(f1, . . . , fq) with f1 ≥ · · · ≥ fq and Φ is a diagonal matrix whose
i-th elements φi(i = 1, 2, . . . , q) are functions of F .

To evaluate the risk of the estimators (22), we need the following notation
which is used for the extended Wishart identity for the elliptically contoured
distribution due to Kubokawa and Srivastava (1999). Let U be an integrable
function of (X i, Zi, si, ui, wi| i = 1, 2) and define

EG[U ] =
∫

U × |Σ1|−N1/2|Σ2|−N2/2G(d)
2∏

i=1

dX idZ idsiduidwi, (23)

where G(x) = 1
2

∫+∞
x g(t)dt and d is given by the terms inside large curly

bracket of (21).

Theorem 3 The risk of the estimator (22) is written as

R((Θ, Σ1, Σ2), Θ̂
EQ

)

= EG

[
q(r̂2 − r̂1) +

q∑
j=1

{
2(r̂1 − r̂2)φj + (n1 − q − 1)

(1 − φj)
2

1 − fj

{H1}jj

+4{H1}jj(1 − φj)fj
∂φj

∂fj
+ 2

∑
k �=j

{H1}jj(1 − φj)(φj − φk)
fk

fj − fk

+(n2 − q − 1)
φ2

j

fj

{H2}jj + 4{H2}jjφj(1 − fj)
∂φj

∂fj

+2
∑
k �=j

{H2}jjφj(φj − φk)
1 − fk

fj − fk

}]
, (24)

where {H1}jj and {H2}jj are j-th diagonal elements of the matrices given by
(17a) and (17b), respectively, and

r̂1 = tr (Im + Z1W
−1
1 Z ′

1), (25a)

r̂2 = tr {(Im + Z2W
−1
2 Z ′

2)(CA−1)′(CA−1)}. (25b)

Proof. The proof of the theorem is put into Section 6. �
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3.2 Choice of Φ

Unlike the unbiased estimate of the risk for the multivariate normal error, it
seems difficult to obtain to approximate {H1}jj and {H2}jj in (24) since the
formula (24) involves in integration defined by (23). So we assume that N1 =
N1, p1 = p2 and C ′C = A′A = Im, which is the same case where Loh (1991)
treated the problem of estimating the common mean of the multivariate nor-
mal distribution. From this additional assumption and using symmetry of the
distributions, we can see that EG[ tr (Z1W

−1
1 Z ′

1)] = EG[ tr (Z2W
−1
2 Z ′

2)] and
that EG[φj tr (Z1W

−1
1 Z ′

1)] = EG[φj tr (Z2W
−1
2 Z ′

2)] for j = 1, 2, . . . , q. These
imply that EG[r̂1 − r̂2] = 0 and EG[(r̂1 − r̂2)φj ] = 0 for j = 1, 2, . . . , q. Also
note that H1 = H2. Thus the risk can be written as

R((Θ, Σ1, Σ2), Θ̂
EQ

)

= EG

[ q∑
j=1

{H1}jj

{
(n0 − q − 1)

(1 − φj)
2

1 − fj
+ 4(1 − φj)fj

∂φj

∂fj

+2
∑
k �=j

(1 − φj)(φj − φk)
fk

fj − fk
+ (n0 − q − 1)

φ2
j

fj
+ 4φj(1 − fj)

∂φj

∂fj

+2
∑
k �=j

φj(φj − φk)
1 − fk

fj − fk

}]
≡ EG[R̃0], (26)

where n0 = N − m − p + q (N = N1 = N2, p = p1 = p2).

Now we use the relation (19) and ignore the derivative terms, then we
derivate R̃0 with respect to φj separately, to get

0 =
∂R̃0

∂φj
= {H1}jj ×

{
−(n0 − q − 1)

1 − φj

1 − fj
− 4(1 − φj)

fj

1 − fj

+2
∑
k �=j

(1 − φj)
fk

fj − fk

−∑
k �=j

(1 − φk)
fk

fj − fk

+(n0 − q − 1)
φj

fj
+ 4

1 − fj

fj
φj

+2φj

∑
k �=j

1 − fk

fj − fk
−∑

k �=j

φk
1 − fk

fj − fk

}
.

Hence, solving for φj with ignoring the fourth and the eighth terms in the
large curly bracket of the last right-hand side above, we get

φ̂ST
j =

β̂ST
j /(1 − fj)

β̂ST
j /(1 − fj) + α̂ST

j /fj

, (27)
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where

α̂ST
j = n0 − q − 1 + 4(1 − fj) + 2

∑
k �=j

fj(1 − fk)

fj − fk
,

β̂ST
j = n0 − q − 1 + 4fj − 2

∑
k �=j

(1 − fj)fk

fj − fk
.

Finally, we reach to an alternative estimator of the form (22) with (27).

4 Numerical studies

4.1 Numerical study for GMANOVA under normal errors

Since the risk of the Stein type estimator is complicated, we have not been
able to compare risks of the Stein type and the Graybill-Deal type estimators
analytically. Therefore we investigate the risk performance of these estimators
via a Monte-Carlo simulation.

Our simulation is based on 10,000 independent replications and these repli-
cations are generated from the canonical form (6a)–(7d) with special cases for
(N1, N2, p1, p2, m, q). These results are given in Table 1.

For example, in case of N1 = N2 = 12, we assume that A′A = diag (1, 1)
and A′A = diag (3, 1/3) are chosen in consideration of, respectively,

A11 = A21 =

16 06

06 16


and

A11 =

13 03

09 19

 and A21 =

19 09

03 13

 .

For (Σ
(1)
11·2, Σ

(2)
11·2), we assume that the eigenvalues of Σ

(2)
11·2(Σ

(1)
11·2)−1 are close

together and that these eigenvalues are widely spread out. Furthermore, we
put Θ = 0, Σ

(1)
22 = Σ

(2)
22 = I2, and Σ

(1)
12 = Σ

(2)
12 = 0.

Recall that, when (Σ1, Σ2) is known, the maximum likelihood estimator of
Θ in (6a) and (6b) is given by
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vec(Θ̃
ML

) = [Im ⊗ (Σ
(1)
11·2)

−1 + A′A ⊗ (Σ
(2)
11·2)

−1]−1

×[{Im ⊗ (Σ
(1)
11·2)

−1}vec(Θ̃1) + {A′A ⊗ (Σ
(2)
11·2)

−1}vec(A−1Θ̃2)], (28)

where Θ̃i = X i − γiZi (i = 1, 2). Here the risk of vec(Θ̃
ML

) is evaluated as
follows:

Lemma 2

R((Θ, Σ1, Σ2), Θ̃
ML

)

= tr {[Im ⊗ (Σ
(1)
11·2)

−1 + (C ′C) ⊗ (Σ
(2)
11·2)

−1]

×[Im ⊗ (Σ
(1)
11·2)

−1 + (A′A) ⊗ (Σ
(2)
11·2)

−1]−1}.

Furthermore, if A′A = C ′C, then R((Θ, Σ1, Σ2), Θ̃
ML

) = mq.

In Table 1, “ML” indicates the maximum likelihood estimator (28) and
its risk value was calculated by Lemma 2. Moreover, “SK” and “ST” denote
the Graybill-Deal type estimator (13) by Sugiura and Kubokawa (1988) and
the Stein type estimator, respectively, and estimated standard errors are in
parentheses. Here, the Stein type estimator is of the form

vec(Θ̂
ST

) = [Im ⊗ (B′ diag (β̄j)B) + (A′A) ⊗ (B′ diag (ᾱj)B)]−1

× [{Im ⊗ (B′ diag (β̄j)B)}vec(Θ̂1)

+ {(A′A) ⊗ (B′ diag (ᾱj)B)}vec(A−1Θ̂2)],

where {ᾱST
j }q

j=1 and {β̄ST
j }q

j=1 are made from Stein’s isotonic regressions on

{α̂ST
j /fj}q

j=1 and on {β̂ST
j /(1 − fj)}q

j=1, respectively, and (α̂ST
j and β̂ST

j ) are
given by

α̂ST
j = (n2 − q − 1)h2j + 4h2j(1 − fj) + 2h2j

∑
k �=j

fj(1 − fk)

fj − fk

,

β̂ST
j = (n1 − q − 1)h1j + 4h1jfj − 2h1j

∑
k �=j

(1 − fj)fk

fj − fk

.

Note that we modify α̂j and β̂j in (20) as above by ignoring the second terms

(r1 − r2)fj in α̂j and (r2 − r1)(1 − fj) in β̂j. For a detailed description of
Stein’s isotonic regression, see Lin and Perlman (1985). Furthermore, “AV”
in Table indicates the average of improvement in risk of ST against SK, i.e.,
AV = 100(1 − R̂∗ST/R̂∗SK) %, where R̂∗SK and R̂∗ST are, respectively, values
of estimated risks for the Graybill-Deal type and the Stein type estimators by
our simulations.

These simulation results are summarized as follows:
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Table 1: Estimated risks in GMANOVA models with normal errors
(Estimated standard errors are in parentheses)

Eigenvalues of Σ(2)
11·2(Σ

(1)
11·2)

−1 ML SK ST AV
A′A = C ′C = diag (1, 1)

N1 = N2 = 12, p1 = p2 = 7, m = 2, q = 5
(1, 1, 1, 1, 1) 10 19.39 16.61 14.4 %

(0.106) (0.090)
(10, 0.1, 0.1, 0.1, 0.1) 10 20.62 18.60 9.8 %

(0.132) (0.116)
(1010, 10−10, 10−10, 10−10, 10−10) 10 18.00 18.00 0.0 %

(0.156) (0.156)
(108, 104, 1, 10−4, 10−8) 10 20.27 20.44 −0.8 %

(0.128) (0.129)
N1 = N2 = 20, p1 = p2 = 12, m = 2, q = 10

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 20 33.67 26.06 22.6 %
(0.120) (0.090)

(10,0.1,0.1,0.1,0.1, 20 36.07 28.75 20.3 %
0.1,0.1,0.1,0.1,0.1) (0.157) (0.108)
(1010, 10−10, 10−10, 10−10, 10−10, 20 27.52 27.52 0.0 %
10−10, 10−10, 10−10, 10−10, 10−10) (0.106) (0.106)
(105, 104, 103, 102, 10, 20 33.97 34.01 −0.1 %
1, 10−1, 10−2, 10−3, 10−4) (0.128) (0.128)

A′A = diag (3, 1/3), C ′C = diag (1, 1)
N1 = N2 = 12, p1 = p2 = 7, m = 2, q = 5

(1, 1, 1, 1, 1) 10.00 20.39 16.87 17.3 %
(0.132) (0.106)

(10, 0.1, 0.1, 0.1, 0.1) 13.48 27.31 24.50 10.3 %
(0.189) (0.165)

(1010, 10−10, 10−10, 10−10, 10−10) 15.33 25.94 25.94 0.0 %
(0.203) (0.203)

(108, 104, 1, 10−4, 10−8) 12.67 26.18 26.31 −0.5 %
(0.203) (0.203)

N1 = N2 = 20, p1 = p2 = 12, m = 2, q = 10
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 20.00 35.45 26.19 26.1 %

(0.150) (0.103)
(10,0.1,0.1,0.1,0.1, 27.95 48.96 39.43 19.5 %
0.1,0.1,0.1,0.1,0.1) (0.232) (0.171)
(1010, 10−10, 10−10, 10−10, 10−10, 32.00 42.11 42.11 0.0 %
10−10, 10−10, 10−10, 10−10, 10−10) (0.183) (0.183)
(105, 104, 103, 102, 10, 24.73 42.97 43.03 −0.1 %
1, 10−1, 10−2, 10−3, 10−4) (0.200) (0.201)
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1. In Table 1, when the eigenvalues of Σ
(2)
11·2(Σ

(1)
11·2)

−1 are close together, the
AVs are large. Specially, in cases when A′A = diag (3, 1/3), C ′C =
diag (1, 1), N1 = N2 = 20, p1 = p2 = 12, m = 2, q = 10, and these
eigenvalues are equal to 1, the AV is 26.1%.

2. On the contrary, when the eigenvalues of Σ
(2)
11·2(Σ

(1)
11·2)

−1 are widely spread
out, the AVs are negative. Furthermore, if one of these eigenvalues is
extremely different from the others, it seems that the AV is equal to zero.

3. The AVs increase with increasing dimension p and fixed sample-size N .

Remark 2. Under another assumptions for Σ
(2)
11·2(Σ

(1)
11·2)

−1 as examined by
Loh (1991), we simulated the risk values of GD and ST and obtained the
results that ST performs better than GD.

4.2 Numerical study for estimating the common mean under elliptical errors

First we illustrate the model (1) with the density (2) and estimators when
N1 = N2 = N , m = 1, p1 = p2 = q1 = q2 = p, A11 = A21 = 1N and
A12 = A22 = Ip. From an orthogonal transformation in the similar way as in
Section 3, we obtain a canonical form of density (2) as

|Σ1|−N/2|Σ2|−N/2g
( 2∑

i=1

[ tr {Σ−1
i (X i − θ)(X i − θ)′ + Σ−1

i Si}]
)
, (29)

where θ =
√

Nξ, Ωi = Σi, X i = Y ′
i1N/

√
N , and Si = Y ′

i(IN −1N1′
N/N)Y i

for i = 1, 2. Therefore, the problem of estimating ξ in (2) turns into that of
estimating the common mean vector θ in (29). Then, if g is decreasing and
(Σ1, Σ2) is known, we can see that the maximum likelihood estimator is of
the form

θ̂
ML

= (Σ−1
1 + Σ−1

2 )−1(Σ−1
1 X1 + Σ−1

2 X2).

Furthermore, the Graybill-Deal type estimator can be written as

θ̂
GD

= (S−1
1 + S−1

2 )−1(S−1
1 X1 + S−1

2 X2) (30)

and also the Stein type estimator as

θ̂ = B−1ΦSTBX1 + B−1(Ip − ΦST )BX2, (31)

where B(S1 +S2)B
′ = Ip, BS2B

′ = F = diag(f1, . . . , fp) with f1 ≥ · · · ≥ fp

and
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ΦST = diag (φ̂ST
1 , · · · , φ̂ST

p ),

φ̂ST
j =

β̂ST
j /(1 − fj)

β̂ST
j /(1 − fj) + α̂ST

j /fj

,

α̂ST
j = (N − 1) − p − 1 + 4(1 − fj) + 2

∑
k �=j

fj(1 − fk)

fj − fk
,

β̂ST
j = (N − 1) − p − 1 + 4fj − 2

∑
k �=j

(1 − fj)fk

fj − fk
.

Since the model (29) is not i.i.d. sampling set-up of two sample problems, we
carry out Monte-Carlo simulation to show that our proposed estimator (31)
reduces the risk over the Graybill-Deal estimator (30) under the i.i.d. sampling
from two independent multivariate elliptically contoured distributions instead
of sampling from the model (29). Hence, we carry out Monte-Carlo simulation
when we sample (Y 1, Y 2) which can be represented as

Y 1 = 1Nξ′ + ε1 and Y 2 = 1Nξ′ + ε2, (32)

where Y 1, Y 2, ε1, and ε2 are N×p random matrices and ξ is a p×1 unknown
vector. Here, the rows of εi have densities

|Σi|−N/2h(e′
ijΣ

−1
i eij), i = 1, 2, j = 1, . . . , N, (33)

where εi = (ei1, ei2, . . . , eiN )′ and h is an unknown, positive-valued func-
tion on [0, ∞). That is, it means that the rows of each error matrix εi are
independently and identically distributed (i.i.d.) as an elliptically contoured
distribution. As it is difficult to derive an improved estimator under the den-
sity function (33), we consider an improvement under density (29). However,
our simulation results justify our derivation of alternative estimator under the
model (29).

For Monte Carlo simulations, we suppose that eij , i = 1, 2, j = 1, 2, . . . , N,
follow the multivariate t-distribution whose density function is given by

κ1 |Σi|−1/2(1 + e′
ijΣ

−1
i eij/v)−(v+p)/2,

where v > 0 and κ1 = Γ[(v + p)/2]/{(πv)p/2Γ[v/2]}, and we also suppose that
eij , i = 1, 2, j = 1, 2, . . . , N , follow the vector-valued Kotz-type distribution
whose density function is given by

κ2|Σi|−1/2{e′
ijΣ

−1
i eij}u−1 exp[−r{e′

ijΣ
−1
i eij}s],

where r > 0, s > 0, 2u + p > 2, and

κ2 =
sΓ[p/2]r{u+p/2−1}/s

πp/2Γ[{u + p/2 − 1}/s] .
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For generating a random number of the Kotz-type distribution above, see
Fang, Kotz, and Ng (1990) for example.

In our simulations, we assume that ξ = 0 and that Σ2Σ
−1
1 is a diagonal ma-

trix with typical elements. We also take (N, p) = (8, 5) and (13, 10) and put
v = 3 for t-distribution and (u, r, s) = (5, 0.5, 2) for Kotz-type distributions.
For the Stein type estimator, we modified ΦST by means of the Stein isotonic
regression. These simulation results are given in Tables 2 and 3, respectively.

In tables, “ML”, “GD”, and “ST” denote θ̂
ML

, θ̂
GD

, and θ̂
ST

, respectively,
and “AV” is the average of improvement in risk of ST against GD.

Table 2: Estimated risks under t-distributions with v = 3
(Estimated standard errors are in parentheses)

Eigenvalues of Σ2Σ−1
1 ML GD ST AV

N = 8, p = 5
(1, 1, 1, 1, 1) 14.186 26.927 24.271 9.86 %

(0.504) (1.272) (1.423)
(10, 0.1, 0.1, 0.1, 0.1) 14.250 32.441 28.716 11.48 %

(0.551) (2.726) (2.292)
(1010, 10−10, 10−10, 10−10, 10−10) 15.651 29.349 29.349 0.00 %

(1.094) (2.148) (2.148)
(108, 104, 1, 10−4, 10−8) 14.912 29.434 29.784 −1.19 %

(0.542) (0.992) (1.017)
N = 13, p = 10

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 30.478 62.767 50.855 18.98 %
(0.992) (2.137) (1.713)

(10,0.1,0.1,0.1,0.1, 27.553 84.003 60.471 28.01 %
0.1,0.1,0.1,0.1,0.1) (0.970) (2.670) (1.803)
(1010, 10−10, 10−10, 10−10, 10−10, 28.401 47.988 47.988 0.00 %
10−10, 10−10, 10−10, 10−10, 10−10) (0.863) (1.340) (1.340)
(105, 104, 103, 102, 10, 28.307 63.451 63.348 0.16 %
1, 10−1, 10−2, 10−3, 10−4) (0.907) (2.292) (2.267)

We summarize these results as follows:

1. In almost cases, the AVs are positive. These are large when the eigenval-
ues of Σ2Σ

−1
1 are close together, and particularly, when only one of these

eigenvalues is 10 with (N, p) = (13, 10), the AVs are more than 27%.
2. On the contrary, when the eigenvalues of Σ2Σ

−1
1 are spread out, the AVs

are small.
3. Furthermore, the AVs are negative when these eigenvalues are extremely

spread out. However, since the negative AVs are about −1% and Σ2Σ
−1
1

are extreme, the use of ST is more effective than that of GD in a sense.
4. From Tables 2–3, so long as the eigenvalues of Σ2Σ

−1
1 are the same, it

is expected that the AVs increase with increasing dimension p and small
sample-size N .
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Table 3: Estimated risks under Kotz-type distributions with
(u, r, s) = (5, 0.5,2)

(Estimated standard errors are in parentheses)
Eigenvalues of Σ2Σ−1

1 ML GD ST AV
N = 8, p = 5

(1, 1, 1, 1, 1) 2.465 3.755 3.143 16.32 %
(0.012) (0.021) (0.017)

(10, 0.1, 0.1, 0.1, 0.1) 2.420 3.970 3.572 10.01 %
(0.010) (0.027) (0.023)

(1010, 10−10, 10−10, 10−10, 10−10) 2.452 3.509 3.509 0.00 %
(0.010) (0.029) (0.029)

(108, 104, 1, 10−4, 10−8) 2.435 3.846 3.878 −0.83 %
(0.011) (0.024) (0.024)

N = 13, p = 10
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 2.922 5.027 3.749 25.43 %

(0.010) (0.022) (0.015)
(10,0.1,0.1,0.1,0.1, 2.927 6.151 4.484 27.11 %
0.1,0.1,0.1,0.1,0.1) (0.009) (0.038) (0.024)
(1010, 10−10, 10−10, 10−10, 10−10, 2.928 4.460 4.460 0.00 %
10−10, 10−10, 10−10, 10−10, 10−10) (0.008) (0.064) (0.064)
(105, 104, 103, 102, 10, 2.900 5.107 5.107 0.00 %
1, 10−1, 10−2, 10−3, 10−4) (0.010) (0.024) (0.024)

5. Tables 2 and 3 indicate that the AVs are substantial under independently
and identically sampling set-up from non-normal distribution, although
we cannot derive ST under this situation. Hence, these results suggest
that the improvement under density (29) remains robust even if the rows
of errors are i.i.d.

5 Proof of Theorem 2

In this section, we state lemmas which are useful in proving the main theo-
rems. These include some computational lemmas on moments of the maximum
likelihood estimators, integration-by-parts formulae, and calculus lemmas on
eigenstructures. Once we introduce the lemmas, it is straightforward to give
the proof of Theorem 2.

Lemma 3 Let r1 = mr̃1, r2 = r̃2 tr {(CA−1)′(CA−1)}, r̃i = (ni + pi − q −
1)/(ni − 1), i = 1, 2. Then we have
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E[ tr {(Θ̂1 − Θ)(Σ
(1)
11·2)

−1(Θ̂1 −Θ)′}] = qr1, (34a)

E[ tr {(Θ̂2 − AΘ)(Σ
(2)
11·2)

−1(Θ̂2 − AΘ)′(CA−1)′(CA−1)}] = qr2, (34b)

E[ tr {(Θ̂1 − Θ)(Σ
(1)
11·2)

−1B−1(Iq − Φ)B(A−1Θ̂2 − Θ̂1)
′}]

= −E

[(
q −

q∑
i=1

φi

)
r1

]
, (34c)

E[ tr {(Θ̂2 − AΘ)(Σ
(2)
11·2)

−1B−1ΦB(AΘ̂1 − Θ̂2)
′(CA−1)′(CA−1)}]

= −E

[( q∑
i=1

φi

)
r2

]
. (34d)

Proof. Note that

Θ̂1 |Z1, W 1 ∼Nm×q(Θ, (Im + Z1W
−1
1 Z ′

1) ⊗ Σ
(1)
11·2),

Θ̂2 |Z2, W 2 ∼Nm×q(AΘ, (Im + Z2W
−1
2 Z ′

2) ⊗ Σ
(2)
11·2),

and that Θ̂1 and Θ̂2 are independent. Use the fact that E[XQX ′] = tr (Q′Σ)Ψ+
MQM ′ when X ∼ Nm×n(M, Ψ ⊗ Σ) to get

E[ tr {(Θ̂1 −Θ)(Σ
(1)
11·2)

−1(Θ̂1 − Θ)′}] = E[q tr (Im + Z1W
−1
1 Z ′

1)],

E[ tr {(Θ̂2 − AΘ)(Σ
(2)
11·2)

−1(Θ̂2 − AΘ)′(CA−1)′(CA−1)}]
= E[q tr {(Im + Z2W

−1
2 Z ′

2)(CA−1)′(CA−1)}],
E[ tr {(Θ̂1 −Θ)(Σ

(1)
11·2)

−1B−1(Iq −Φ)B(A−1Θ̂2 − Θ̂1)
′}]

= −E[ tr {(Θ̂1 − Θ)(Σ
(1)
11·2)

−1B−1(Iq − Φ)B(Θ̂1 − Θ)′}]
= −E[ tr {B−1(Iq − Φ)B} × tr (Im + Z1W

−1
1 Z ′

1)],

E[ tr {(Θ̂2 − AΘ)(Σ
(2)
11·2)

−1B−1ΦB(AΘ̂1 − Θ̂2)
′(CA−1)′(CA−1)}]

= −E[ tr {(Θ̂2 − AΘ)(Σ
(2)
11·2)

−1B−1ΦB(Θ̂2 − AΘ)′(CA−1)′(CA−1)}]
= −E[ tr {B−1ΦB} × tr {(Im + Z2W

−1
2 Z ′

2)(CA−1)′(CA−1)}].

Finally, from (7a) and (7d), we get (34a)–(34d). �

Lemma 4 (Stein-Haff identity) Assume that a q × q positive definite ma-
trix S follows the Wishart distribution Wq(Σ, a). Also let

D =

(
1

2
(1 + δij)

∂

∂sij

)
, (35)

where sij are the (i, j)-th elements of S and δij is the Kronecker delta. For a
suitable q × q matrix V we have

E[ tr (V Σ−1)] = E[2 tr (DV ) + (a − q − 1) tr (S−1V )].
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Lemma 5 (Loh, 1988 and 1991) For i = 1, 2, let Di be q × q differential
operators which are define by (35) with replacing S by Si. Also let x be a q×1
vector which is independent of S1 and S2. Then

tr {D1[B
−1(Iq −Φ)Bxx′B′(Iq − Φ)(B′)−1]}

=
q∑

j=1

[
{Bx}2

j(1 − φj)
2
∑
k �=j

fk

fk − fj
+ 2{Bx}2

j(1 − φj)fj
∂φj

∂fj

−∑
k �=j

{Bx}2
k(1 − φj)(1 − φk)

fj

fj − fk

]
,

tr {D2[B
−1ΦBxx′B′Φ(B′)−1]}

=
q∑

j=1

[
{Bx}2

jφ
2
j

∑
k �=j

1 − fk

fj − fk
+ 2{Bx}2

jφj(1 − fj)
∂φj

∂fj

−∑
k �=j

{Bx}2
kφjφk

1 − fj

fk − fj

]
,

where {Bx}j denote the j-th elements of Bx.

Note here that {Bx}2
j = {Bx}j{x′B′}j = {Bxx′B′}jj, where {Bxx′B′}jj

denote the (j, j)-elements of Bxx′B′. Hence we have

Lemma 6

tr {D1[B
−1(Iq −Φ)H1(Iq −Φ)(B′)−1]}

=
q∑

j=1

[
{H1}jj(1 − φj)

2
∑
k �=j

fk

fk − fj
+ 2{H1}jj(1 − φj)fj

∂φj

∂fj

−∑
k �=j

{H1}kk(1 − φj)(1 − φk)
fj

fj − fk

]
,

tr {D2[B
−1ΦH2Φ(B ′)−1]}

=
q∑

j=1

[
{H2}jjφ

2
j

∑
k �=j

1 − fk

fj − fk
+ 2{H2}jjφj(1 − fj)

∂φj

∂fj

−∑
k �=j

{H2}kkφjφk
1 − fj

fk − fj

]
,

where H1 and H2 are given by (17a) and (17b), respectively.

Proof. If we put A−1Θ̂2 − Θ̂1 = (x1, . . . , xm)′, we can see that

H1 = B(A−1Θ̂2 − Θ̂1)
′(A−1Θ̂2 − Θ̂1)B

′ =
m∑

l=1

Bxlx
′
lB

′.

Hence, from this equation and Lemma 5, we get the first expression. The
second expression can be obtained from the similar argument. �
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Proof of Theorem 2. First apply Lemma 4 to the third and sixth terms in
right-hand side of (16) and then use Lemma 3 to the other terms in right-hand

side of (16) to get that the risk R((Θ, Σ1, Σ2), Θ̂
EQ

) is rewritten as

q(r2 − r1) + E

[
2(r1 − r2)

q∑
j=1

φj + tr

{
(n1 − q − 1)S−1

1 B−1(Iq −Φ)H1

×(Iq −Φ)(B′)−1 + 2D1[B
−1(Iq − Φ)H1(Iq − Φ)(B′)−1]

+(n2 − q − 1)S−1
2 B−1ΦH2Φ(B ′)−1 + 2D2[B

−1ΦH2Φ(B′)−1]

}]
.

Finally apply Lemma 6 to the third and fourth terms inside the expectation
of the above equation to complete the theorem. �

6 Proof of Theorem 3

In this section, we state lemmas which are useful in proving Theorem 3.
These lemmas are counterparts of the lemmas given in the previous section,
which is extended under the elliptically contoured distributions. Then we give
the proof of Theorem 3. For i = 1, 2, let Qi ≡ Qi(X i) be q×m matrix-valued
functions of X i = (xi·jk) and let Ki ≡ K i(ui) be q × (pi − q) matrix-valued
functions of ui = (ui·jk).

Denote differential operators in terms of X i and ui by

∇Xi
=

(
∂

∂xi·jk

)
and ∇ui

=

(
∂

∂ui·jk

)
.

Here, the actions of ∇Xi
on Qi and of ∇ui

on Qi and Ki are defined as

∇Xi
Qi =

 q∑
a=1

∂Qi·ak

∂xi·ja

, ∇ui
Ki =

 q∑
a=1

∂K i·ak

∂ui·ja

.

Lemma 7 Let Ψ and C be, respectively, q × q and m × m matrices. Then

tr (∇Xi
ΨX ′

iC) = ( trΨ)( trC).

Lemma 8 (Kubokawa and Srivastava, 2001) For i = 1, 2, j = 1, . . . , q,
k = 1, . . . , m, suppose that each element of Qi ≡ Qi(X i) is differentiable with
respect to xi·jk and also, for i = 1, 2, j = 1, . . . , pi − q, k = 1, . . . , m, that
elements of Ki ≡ Ki(ui) are differentiable with respect to ui·jk. Furthermore,
assume that
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(i) there exists finite expectation of the absolute value of each element of the
following matrices:

(X1 − Z1γ1 − Θ)(Σ
(1)
11·2)

−1Q1,

(X2 − Z2γ1 − AΘ)(Σ
(2)
11·2)

−1Q2,

(ui − W
1/2
i γi)(Σ

(i)
11·2)

−1K i;

(ii) limxi·jk→±∞ Qi(X i)G(x2
i·jk +a2) = 0 for i = 1, 2, j = 1, . . . , q, k = 1, . . . , m;

(iii) limui·jk→±∞ K i(ui)G(u2
i·jk + a2) = 0 for i = 1, 2, j = 1, . . . , pi − q, k =

1, . . . , m.

Then, for i = 1, 2, we have

E[ tr {(X1 − Z1γ1 − Θ)(Σ
(1)
11·2)

−1Q1}] = EG[ tr (∇X1Q1)], (36a)

E[ tr {(X2 − Z2γ1 − AΘ)(Σ
(2)
11·2)

−1Q2}] = EG[ tr (∇X2Q2)], (36b)

E[ tr {(ui − W
1/2
i γi)(Σ

(i)
11·2)

−1K i}] = EG[ tr (∇ui
K i)]. (36c)

From Lemmas 7 and 8, we immediately have the followings:

Lemma 9

E[ tr {(Θ̂1 −Θ)(Σ
(1)
11·2)

−1(Θ̂1 −Θ)′}] = EG[q tr (Im + Z1W
−1
1 Z ′

1)], (37a)

E[ tr {(Θ̂2 − AΘ)(Σ
(2)
11·2)

−1(Θ̂2 − AΘ)′(CA−1)′(CA−1)}]
= EG[q tr {(Im + Z2W

−1
2 Z ′

2)(CA−1)′(CA−1)}], (37b)

E[ tr {(Θ̂1 −Θ)(Σ
(1)
11·2)

−1B−1(Iq − Φ)B(A−1Θ̂2 − Θ̂1)
′}]

= EG

[
−
( q∑

j=1

(1 − φj)

)
tr (Im + Z1W

−1
1 Z ′

1)

]
, (37c)

E[ tr {(Θ̂2 − AΘ)(Σ
(2)
11·2)

−1B−1ΦB(AΘ̂1 − Θ̂2)
′(CA−1)′(CA−1)}]

= EG

[
−
( q∑

j=1

φj

)
tr {(Im + Z2W

−1
2 Z ′

2)(CA−1)′(CA−1)}
]
. (37d)

Proof. Note that the density function (21) is symmetric at X1−Z1γ1−Θ = 0,

X2 − Z2γ2 − AΘ = 0, and ui − W
1/2
i γi = 0 (i = 1, 2).

For (37a), we observe that
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E[ tr {(Θ̂1 − Θ)(Σ
(1)
11·2)

−1(Θ̂1 −Θ)′}]
= E[ tr {(X1 − Z1γ1 − Θ)(Σ

(1)
11·2)

−1(X1 − Z1γ1 − Θ)′}]
−2E[ tr {Z1(γ̂1 − γ1)(Σ

(1)
11·2)

−1(X1 − Z1γ1 − Θ)′}]
+E[ tr {Z1(γ̂1 − γ1)(Σ

(1)
11·2)

−1(γ̂1 − γ1)
′Z ′

1}].
Here the second term of the right-hand side in the above equation is zero.
Hence, from the fact that γ̂1 = W

−1/2
1 u1 and Lemma 8, we get the right-hand

side of (37a).

By the similar way, we have (37b). For (37c), we can see from symmetry of
density function that

E[ tr {(Θ̂1 − Θ)(Σ
(1)
11·2)

−1B−1(Iq − Φ)B(A−1Θ̂2 − Θ̂1)
′}]

= −E[ tr {(Θ̂1 − Θ)(Σ
(1)
11·2)

−1B−1(Iq −Φ)B(Θ̂1 − Θ)′}].
= −E[ tr {(X1 − Z1γ1 −Θ)(Σ

(1)
11·2)

−1B−1(Iq − Φ)B

×(X1 − Z1γ1 − Θ)′}]
−E[ tr {(u1 − W

1/2
1 γ1)(Σ

(1)
11·2)

−1B−1(Iq −Φ)B(u1 − W
1/2
1 γ1)

′

×W
−1/2
1 Z ′

1Z1W
−1/2
1 }].

Thus, from Lemmas 7 and 8, we get the right-hand side of (37c). The derivation
of (37d) is similar to that of (37c). �

For i = 1, 2, let V i ≡ V i(S1, S2) = (vi·jk) be q × q matrices such that the
(j, k)-elements vi·jk are functions of S1 = (s1·jk) and S2 = (s2·jk). For i = 1, 2,
let

{DiV i}jk =
p∑

a=1

di·javi·ak, i = 1, 2, (38)

where

di·ja =
1

2
(1 + δja)

∂

∂si·ja
with δja = 1 for j = a and δja = 0 for j �= a. Also put Si = (s′

i1, . . . , s
′
ini

)′

and sij = (si·j1, . . . , si·jp) for i = 1, 2 and j = 1, 2, . . . , ni. Hence we have
Si = s′

isi =
∑ni

j=1 s′
ijsij for i = 1, 2.

Lemma 10 (Kubokawa and Srivastava, 1999) Let

V i ≡ V i

(
n1∑

j1=1

s′
1j1

s1j1,
n2∑

j2=1

s′
2j2

s2j2

)
, i = 1, 2,

be p × p matrices whose elements are differentiable with respect to si·jk (j =
1, 2, . . . , ni, k = 1, 2, . . . , p). Furthermore, assume that
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(a) E

[∣∣∣tr(V i{Σ(i)
11·2}−1)

∣∣∣] (i = 1, 2) is finite;

(b) lim
si·jk→±∞ |si·jk|V i ·

(
ni∑

ji=1

s′
1ji

s1ji

)−1

G(s2
i·jk + a) = 0 for any real a.

Then we have

E

[
2∑

i=1

tr ({Σ(i)
11·2}−1V i)

]

= EG

[
2∑

i=1

{
(ni − q − 1) tr (S−1

i V i) + 2 tr (DiV i)
}]

,

where ni = Ni − m − pi + q.

Proof of Theorem 3. The proof proceeds much the same way as in that
of Theorem 2. Recall that the risk of the estimators of the form (22) can be
written as (16) where the expectation is taken with respect to the density (21).
Now first apply Lemmas 9 and 10 to the risk (16) and next use Lemma 6 to
get the desired result. �
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