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Land cover is one of the key parameters for global change studies. NOAA AVHRR time series data
provide phenological information for larger areas. Authors developed, as the product of the Land
Cover Working Group (Chairman: R.Tateishi) of the Asian Association on Remote Sensing (AARS),
land cover dataset of the whole Asia using 1-km AVHRR NDVI and surface temperature (Ts) data
derived from AVHRR channel 4 and channel 5. The basic information for the classification is
clustering results of monthly ratio Ts/NDVI. The classification was carried out based on the
hierarchical classification system. The classified land cover dataset is mapped to 30 arc second
grid, and it is being distributed widely to researchers. For the improvement of land cover dataset,
the development of Global Land Cover Ground Truth Data Base (GLCGT-DB) is proposed.

1 Land cover mapping of Asia
1.1 Used data

Global NOAA AVHRR 1-km 10-day composite dataset from April, 1992 to March, 1993
(Eidenshink et al, 1994) are the main data used in this study. In addition, digital elevation data
and national/regional level of vegetation and land use maps were also used for the analysis of land

cover classification.

(1) AVHRR Data

Global NOAA AVHRR 1-km 10-day composite NDVI, channel 4 and channel 5 data from April,
1992 to March, 1993 were used in this study for land cover mapping. The NOAA AVHRR 1-km
dataset is based on the Interrupted Goode Homolosine map projection, and it was transformed to
latitude/longitude map projection (Plate Carree Projection) with 30-second degree grid by using
the nearest-neighbors method. In order to prepare the data of the whole Asia, the NDVI, channel 4
and channel 5 data were extracted from 25 degree East to 165 degree West in longitude, and 90
degree North to 15 degree South in latitude.

(2) Digital Elevation Model (DEM) data

Generally, elevation data is used to model ecological governing natural vegetation distribution,
and is important for identifying land cover types and stratifying seasonal regions representing two
or more disparate vegetation types. In this study, a Digital Elevation Model, GLOBE Version 1
(January 1998), which comprises a global 30 arcsecond latitude/longitude array, was used
(Hastings 1998) .

(3) Thematic maps




In this study, maps of ecoregions, vegetation, land use, and land cover were used as reference data
to collect ground truth information and to modify the classification result in post-classification

processing.

(4) Ground Truth data

Ground truth data in this study means geographically specified regions which are identified one of
the classes in the land cover classification system by a class code. Collection of good ground truth
data is a key issue for reliable land cover mapping.

In this study, ground truth data were collected mainly from existing land cover maps and land use
maps of various Asian countries. Also limited parts of ground truth data were collected by field

survey in Central Asia .
1.2 Relationship between T's and NDVI

Authors used multi-temporal NDVI calculated from channel 1 and channel 2, and land surface
temperature T's calculated from channel 4 and channel 5 using the split window algorithm (Price,
1984):

Ts = T4+ 3.33*(T4-T5)

Where T4 and T5 are brightness temperature of AVHRR channel 4 and channel 5 (in degree
kelvin).

Authors applied a maximum value composite (Holben, 1986) to the NDVI and surface temperature
(Ts) data, selecting the maximum value of the 10-day composite NDVI and Ts independently for
every month. Ts responds both to short-term variations in energy balance related to rainfall
events and changes in soil moisture, and to seasonal changes (Lambin and Ehrlich, 1995). The
monthly composite data of Ts artificially removes the short time scale variations in 10-day
composite Ts, leaving only the seasonal trend. It mainly includes lower frequency information,
which is related to land cover types (Lambin and Ehrlich, 1995). Since Ts displays the opposite
trend to NDVI when moving from sparse to dense vegetation landscapes, the use of ratio between
Ts and NDVI increases the capability of discrimination among vegetation classes. The ratio of
Ts/NDVI has been interpreted biophysically as regional surface resistance to evapotranspiration
(Nemani and Running, 1989). This provides theoretical support for using this ratio in land cover
analysis. The ratio of the maximum Ts and maximum NDVI ratio (Ts/NDVI) were then computed

for monthly period in this study.
1.3 Classification

Land cover classification was carried out using mainly the phenological information from the




multi-temporal ratio between monthly land surface temperature Ts and NDVI data. Ground truth

data itself remains in the final classified result.

(1) Land Cover Classification System

A land cover classification system was developed as the activity of Land Cover Working Group
(LCWG) of the Asian Association on Remote Sensing (AARS) (Tateishi and Wen, 1997). One
feature of the classification system in this study is the hierarchical structure. When a pixel is
difficult to classify land cover type A or B, this pixel can be assigned to higher level of land cover

which includes A and B. This is the main advantage of the hierarchical structure.

(2) Unsupervised classification

The initial segmentation of the ratio between Ts and NDVI composites is performed using
minimum distance unsupervised clustering. One hundred clusters were acquired as the result.
Since AVHRR of winter period has poor quality due to high solar zenith angle, monthly data for

seven months from April to October 1992 were used for clustering.

(3) Classification rules

The most important thing in decision tree classification rules based on clustering result is to
provide a general understanding of the characteristics of each cluster based on the ground truth
data. In this study, the following ancillary datasets were used:

(a) Digital Elevation Model (DEM)

(b) Maximum NDVI: the maximum monthly NDVI value in twelve months

(¢) Minimum NDVI: the minimum monthly NDVI value in twelve month
2 Global land cover monitoring

There is a potential in time series globally covered satellite data to monitor land cover, that is to
detect land cover changes. AVHRR data is the only satellite data to cover global area for more
than fifteen years so far. For successful change detection of land cover, preprocessing of time
series satellite data is prerequisite. The study about this by the authors is reported in another
paper in this Archives: “Analysis of the factor which gives influence to AVHRR NDVI data” by
Jong-geol Park & Ryutaro Tateishi.

3 Improvement of land cover mapping and monitoring

In order to improve land cover information of global/continental area, the following three things
are necessary.
a. Development of ground truth database

b. Development of methodology for preprocessing of time-series global/continental satellite data

5




c. Establishment of the methodology to extract land cover information from satellite data

a. Development of ground truth database:
The collection of ground truth of land cover in global/continental area is important as training
samples for classification and as true data for accuracy assessment after classification. However
the collection of ground truth need much time and work. One method is to collect ground truth
data by the visual interpretation of higher resolution satellite images such as Landsat TM. The
advantage of this method is the uniformity in quality of ground truth data. On the other hand,
there are many reliable local/regional land cover information which were prepared by research
institutes, projects, or individual researchers. The proposed idea in this paper is to collect
available reliable land cover information of local/regional area from existing information by the
cooperation with institutes, projects, and individual researchers and to develop the Global land
cover ground truth database(GLCGT-DB). In this proposed method, the following information
will be collected.

- well defined land cover type or vegetation type

- geographic location (identification of the location by the flag on geographical grid data is
recommended)

- source information for individual ground truth data

- legend and its explanation

- any other information about this place including ground photographs

The two features of GLCGT-DB are cooperative data collection and common use. Since the
definition of land cover types vary, we need to harmonize them and to extract common land cover

classes from various inputs.

b. Development of methodology for preprocessing of time-series global/continental satellite data
For the purpose of land cover mapping and monitoring, factors affecting satellite data such as
solar zenith angles, sensor degradation, change of sensors, cloud, atmosphere must be investigated
and this effect must be removed. Part of these effects are described in the paper in this Archives
as the title of “Analysis of the factor which gives influence to  AVHRR NDVI data” by Jong-geol
Park & Ryutaro Tateishi.

c. Kstablishment of the methodology to extract land cover information from satellite data
Main information to extract land cover information from satellite data is as follows.

- Phenology(ex. Seasonal NDVI)

- Physiognomic features (vegetation cover and height)

- Spectral features (reflectance)

- Thermal features

Conventional studies have focused on spectral features, and sometimes uses thermal features. For
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global/continental study, phenology was used by temporal NDVI data. Physiognomic information
such as vegetation area cover percentage and vegetation height can be new information, which can

improve land cover mapping/monitoring. Vegetation height can be obtained by lidar.
4 Conclusions

As shown in Figure 1, a land cover map of the whole Asia (httpi/asiaserv.cr.chiba-u.ac.jp/
cd/index.htm) which is in 30-second grid in latitude/longitude and consists of 37 land cover classes
of classification system was produced by using NOAA AVHRR 1-km dataset. In order to improve
the classification result, reliable ground truth data should be collected more. For this reason,
authors plan to publish the used ground truth data. In order to improve the accuracy of land
cover mapping/monitoring for further research, authors recommend development of the global
land cover ground truth database (GLCGT-DB) by the cooperation of many projects and

researchers.
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Land cover change of global scale from 1982 to 1993 was studied using NOAA Pathfinder AVHRR Land (PAL) data set.
In order to reduce influence of clouds, the Temporal Window Operation (TWO) method was proposed for time series
NDVI data. After the investigation of the relationship NDVI data and solar zenith angle (SZA), the result shows that
NDVI data with SZA of larger than 60 degrees has more atmospheric effect. By analyzing average and standard
deviation of temporal NDVI, areas with unstable NDVI were extracted. The unstable NDVI does not necessary mean

land cover change. Further study is necessary to separate land cover changes and other causes in unstable NDVI.
1 INTROUCTION

Global data sets of land cover have a significant requirement for global biogeochemical and climate models (IGBP,
1994). Remotely sensed satellite data is an increasingly attractive source for deriving these data sets due to the resulting
internal consistency, reproducibility, and coverage in locations where ground knowledge is spares (Townshend, 1992).
Although global, continental, and regional land cover data sets have been derived from satellite data (Tucker et al.,
1985), methods for deriving land cover from satellite data are still being in development. Many studies focused on using
time seriecs NDVI data and land surface “skin” bright temperature (TS) data of one year or more than one year to
produce land cover map. But in some areas, NDVI and TS are easily changeable due to the characteristic of these
regions. The major cause is cloud. Therefore, some methods, like Maximum Value Composite (MVC: Holben 1986),
Maximum Value Interpolation (MVI: Taddei 1997), Temporal Window Operation (TWO: Park 1999), The Best Index
Slope Extraction (BISE: Viovy 1992) have been used to reduce the influence of cloud. But, these methods cannot
remove the influence of long term existing cloud. NDVI and TS also vary with the weather condition, which influences
the change of vegetation. Tucker et al. (1991), ’Expansion and contraction of the Sahara desert’, illustrated the
uncertainty of this issue. Intuitively, it is not the boundaries of the Sahara as a geographical region. The fluctuation
rather affects one of the many biophysical attributes defining a land-cover type, which responds to interannual variation
in rainfall (Hellden 1991). On account of factors mentioned above, there is a great possibility of mis-classification of
such areas.

The purpose of this study is to analyze the factors, which influence NDVI and TS greatly and to extract the areas where

vegetation changes intensely with respect to weather conditions.
2 DATA

We used the NOAA/NASA Pathfinder AVHRR Land (PAL) data (James and Kalluri, 1994) for this study. The PAL data
set includes daily and 10-day composites of 12 data layers at a spatial resolution 8 km. We extract 10-day composites of
the following layers: NDVI, red reflectance (Channel 1: CHI), infrared reflectance (Channel 2: CH2), Channel 4 bright
ness temperature, Channel S brightness temperature and Solar Zenith Angle (SZA). Land surface “skin” brightness
temperature (TS) was derived from the thermal channels of the AVHRR by using the split-window technique (Price,

1984);

19




TS = CH4 + 3.33 * (CH4 — CH5) - 273,
TS is related, through the surface energy balance equation, to surface moisture availability and evapotranspiration, as a
function of latent heat flux (Catlson et al., 1990), ‘

3 AVERAGE AND STANDARD DEVIATION DATA SET FOR 12 YEARS

NDVI b 200

1982 1963 1984 1535 1985 1987 1988 1959 1990 1991 1992 (993 AVCG STD

Figure I. NDVI profile for twelve years

In order to extract vegetation change and land cover change using time series NDVI data set, a standard data set is
necessary to compare with a posterior data set. Here, “a standard data set” means typical seasonal NDVI pattern which
represent the pixel area. The influence by distortion factors such as volcanic ashes, abnormal weather and SZA to the
standard data set needs to be minimized. Thus, instead of using total average of the data of 12 years, for each pixel, the
data of the same period of each year were arranged from low to high order, then the five years' data, i.e. from the second
to sixth year were selected to calculate the average and standard deviation. NDVI has a characteristic of decreasing
tendency with respect to the influence of cloud, volcanic ashes and SZA. Figure 1 a) is the NDVI profile of 12 years in
the Brazilian Tropical Rain Forest area (70 pixels). The NDVI value is high, with a little change of NDVI during a year.
But the observed NDVI value was low comparing to the other years for the influence of Mexico and Indonesian volcano
eruption in 1982 and Philippine volcano eruption in 1991. And also there is the case that the NDVI value becomes
extremely high by influence of abnormal weather. Figure 1 b) shows the desert area of Australian southern part. It is
found that NDVI value was high by the influence of a great quantity of rain from March to May in 1992 (abnormal
weather report’ 94), In this study, as the NDVI data will not be used when SZA is larger than 60, If the NDVI data
cannot be acquired more than 3 times for 12 years, the average data will not be calculated, Thus, the average data from

June to July do not exist in figure 1 b).
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4 STANDARD DEVIATION DATA AND AREA CHARACTERISTIC ON NDVI

From the average data, for each pixel, the period of maximum NDVI was utilized, and the average of the standard
deviation data was calculated using five months' data from the peak of the NDVI (Figure 2). As a result, in desert area,
there is no change of NDVI and the value of average standard deviation is low. High standard deviation value occurs on

the shoreline although it is only 1 pixel.
STD_DVI — 9

Figure 2, Standard deviation Image

The possible reasons include: 1) the cloud is easy to occur near shoreline area, 2) The ratio of the land and the sea
changes in the pixel because the data is made from GAC (Global Area Coverage) with the of 4 km, 3) It is difficult to
acquire the RMS error smaller than 1 pixel in geometric correction. Figure 3a) shows the average NDVI profile and
standard deviation value of Amazon area for 12 years and five years, respectively, where NDVI is stable. The standard
deviation value is small. But in Figure 3b) the change of NDVI is intense, and the standard deviation value is high.
These arcas mainly exist in the South American Cardillera de los Andes, Himalayas, Australian Great Dividing Range,
Atlas Mountains of Morocco, Ethiopia plateau, Indian Deacon, Brazilian ecastern part, Africa southern part, Black sea
peripheral, and south Argentinean beach. All the above-mentioned areas can be divided into three categories: 1) Areas
where appearance frequency of clouds is high according to the topography, 2) Areas influenced by climate, 3) Areas
influenced by other causes. Areas. 1, 2, 6, 8, 10, 11, 12 in Figure 2 show the area where the appearance frequency of
cloud is high according the topography. The NDVI data used in this study is corrected by the TWO (Park 1999) method
in order to remove influence by clouds. But the areas mentioned above are not suited to be processed by the TWO
method. Because these areas have more than two-month cloud period, while the TWO miethod assumes less cloud

period.
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Figure 3. Average NDVI profile and standard deviation value of Amazon area
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Figure 4a. Profiles of NDVI, SZA, CH], CH2, TS

Figure 4b. Bird’s-eye view of area 2

Figure 4a) is the profiles of time series NDVI, Channel 1(Chl), Channel 2 (Ch2) of South American Cordillera de los
Andes (Figure 2: area 2). Since the influence by clouds to Chl and Ch2 data were not corrected, the observed
reflectance has a high value and NDVI is low. Figure 4b) shows the bird's-eye view of elevation data, NDVI and
average standard deviation. NDVI varies easily in the area, which have the appropriate condition of the incline,
elevation and plants, and near the sea. Also NDVI varies easily in the area where a big mountain existed in low
circumference. Figure 2: area 4, 9) shows the area influenced by the climate. In India and Indochina peninsula, the
standard deviation value from June fo August is larger than other periods because of the influence of maonsoon. The area
4 also has a high standard deviation value. The climatic change is high this area, and the vegetation is also different
from the neighboring side. Other areas are represented by area 3, 5, 7). The south coast of Argentinean is a Ryas coast
and has the shoreline characteristic. It is considered that aerosol is the main factor influencing the change of NDVI in
area 3. But there is few reference data, and it is difficult to grasp its relation correctly only from NOAA/AVHRR data.
In the area of the Black sea outskirts, the standard deviation from autumn to spring is larger than in summer. It is
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thought that it is the influence by low frequency change of the atmosphere circulation. The change of each pixel was
examined quantitatively for each year using the average and standard deviation data.
T=P+6
GAP, = Y |(4VG, -NDVI,, )/ STD,|
T=P-8
T=

~

+

I

6
TOT, (AVG, - NDVI,.,)
8

T

~

Where

i: gap of the peak time (i= -2, -1, 0, 1, 2) unit: 10-day

GAP: Total value of season gap, AVG: Average NDVI value, STD: Standard deviation value of NDVI
TOT: Total change quantity, P: Peak time of AVG NDVI profile

For each pixel, matching was performed between the year profile and average profile. Here, as shown formula 1), the
difference of the year data and average data is divided by the standard deviation value, then the absolute value of the
results are summed and can be represented as the total value of seasonal gap (GAP). And the sum of the difference
between the year and average data is expressed as Total change quantity (TOT). So the matching result represents the
TOT value when the GAP value is the smallest. Figure 5a) shows TOT image of the areas abnormal weather distribution
area shown in the synthesis change quantity image for 1983 years and abnormal weather report 1989 of Table 1). As a

result we conclude that distribution of abnormal weather agrees with NDVI change well regionally.

5 CONCLOSIONS

This study was to analyze the factors which influence NDVI and TS largely, and to extract the areas where vegetation
changes intensely with respect to weather conditions. By analyzing average and standard deviation of time series
NDVI, areas where NDVI area not stable were extracted. Part of the cause of unstable NDVI were foune to be abnormal
weathers. Further study to discriminate land cover change from other cause s including abnormal weather is necessary

for global land cover change detection by global time series satellite data.

Table 1. Abnormal weather in 1983

Asia Southeast China heavy rain (1-4)
South China heavy rain (5-7)
Philippines, Indochina peninsula drought (1-7)
Europe France Intense heat / a gentle rain
Northern Europe heavy rain (3-5)
Africa Southern Africa drought
Ethiopia, Sudan drought
South America Argentina, Paraguay, Brazil heavy rain(1-6)
North America Eastern America gentle rain
Central and southern America heavy rain
Oceania Eastern Oceania drought
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NOAA/NASA Pathfinder AVHRR Land Data Set(PAL data set) is the dataset for more than 13 years that has

been widely applied for vegetation monitoring. But the problem when using 13 years time series Normalized

Deference Vegetation Index (NDVI) data, time-independent noise such as cloud and time-dependent effect by

Solar Zenith Angle (SZA). Many researches have been carried out on removing the influence of clouds, but few

studies were conducted on the estimation and correction the influence of SZA.
This study deals with SZA influence of NDVI using the 13 years NOAA 8km AVHRR NDVI data and SZA

data.
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Index Slope Extraction
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A new method is proposed for agricultural area mapping using multitemporal satellite Landsat TM images. This
statistical method is designed for the discrimination of agricultural area and non-agricultural area and crop identification,
based on the fusion of multitemporal multispectral data. In the proposed algorithm, an important role is played by the
transition probabilities, which take into account the temporal dependence of images. The transition probabilities are
estimated directly from the pattern of Landsat TM NDVI. The feasibility of the new method is verified by experimental
results.
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NDVI OB F— o bRdD b5, BFEICEIT D FEE. ERMICFOFMMEREIE S,

1. INTRODUCTION

In many countries, agriculture forms the basis of economy and provides the stable food of the people. It is
essential to make fully and reasonably use of the land resources and environmental capacity. The effective
management decisions may be correctly made only on real-time information about land resources status and its
development. Ability to provide up-to-date agricultural information shows increasing importance and urgency.
Thus, for socio-economic and global environmental aspects, an effective agricultural area mapping and
monitoring program are necessary at local, national and international scale. Accurate crop maps are also required
for a variety of applications ranging from general inventory requirements to ecological studies.

Remote sensing has shown great potential in agricultural mapping due to its advantages over traditional

procedures in terms of cost effectiveness and timeliness in the availability of information over larger areas. The
most commonly used image data have been Landsat Thematic Mapper (TM) digital data, which, due to their
spectral and spatial characteristics, allow the characteristics of the territory to be analyzed with enough accuracy
and may be used for effective management of natural resources'). The single date image may not provide enough
information for reliable classification, usnally temporal variations of spectrum in the images that caused by the
changes of vegetation cover and soil moisture are used to enhance the separability of terrain categories and
provide increased interpretation capabilities. Thus multitemporal images have been used to satisfy the purpose of
developing an accurate agricultural mapping.
Because of the spectrum similarity of agricultural crops, it is still difficult to achieve reliable interpretation result
using conventional classification methods, which usually ignore the time interval between the acquisition of
images. This problem may be overcome by using crop seasonal differences. The combination of temporal
sequences of images with ancillary knowledge on phenology can be effective method for agricultural mapping.
A few studies have been concerned in incorporating temporal dependence of images acquired at different time
P but the unavoidable problem is that how to decide the transition probability, which represents the degree of
consistence between images. Usually the transition probabilities have been roughly estimated by experience, i.e.
from historical observations, from ground sampling, from observation of areas having similar ground cover and
utilization. There should be theoretical and reasonable basis on transition probabilities estimation.

It is well known that vegetation index has a special characteristic due to its distinct annual and seasonal changes,
it is also a sensitive indicator on the study of global and regional environment change caused by climate or human
activities™ 7. Normalized difference vegetation index (NDVI) is nodoubtedly the most widely used vegetation
index for global and regional land cover change study, thus it is reasonable to use NDVI for the detection and
quantitative assessment of land cover/land use change. Transition probabilities represent the change
relationship of land cover between images in a time-varying environment. Thus, we can suppose that there should
be some relations between the change pattern of NDVI and the transition probabilities, we try to establish the
relationship theoretically between the change pattern of NDVI and the transition probabilities, and consequently
achicve an accurate agricultural mapping.

Many studics have been concentrated in agricultural area mapping using multitemporal data, but how to use
temporal dependence of images is still a new challenge, here we included the concepts of time and phenology
changes based on temporal data fusion model to develop a new method of agricultural mapping using
multitemporal Landsat TM images.
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2.METHOD

2.1 Temporal data fusion on a Bayesian formulation

In this section, we will discuss the problem based on a Bayesian formulation. When multitemporal data are used
to the classification, the time interval between the acquisition of the data from different sensors has normally been
ignored in the sense that it is usually assumed that the images are acquired at almost the same time, or that no
changes with respect to the pattern classes have occurred between the acquisition dates. The change of classes and
temporal dependence should not be ignored. Let us consider that two multispectral remote sensing images
acquired at times f, and f, on the same area are examined. Let us think that a pixel of the multispectral image
acquired at time #, and a spatially corresponding pixel of multispectral image acquired at time r,. These pixels
are characterized by the m-variate observation feature vectors X, and X,, respectively. Let o, (i=1,2,...,n)
and v, (k=1, 2, ..., n) be the set of possible land cover classes at time f, and 1, respectively, here we assume
that no other classes occur between the period of time #, and t,. An appropriate set of discrimination functions

for a Bayes optimal classification strategy, i.e., the set of a posteriori probabilities can be used to decide whether
the two classes @, and v,, to which the considered couple of pixels are assigned, are different or not.

Here we only consider pixel-based fusion, contextual information will be disregarded in the spatial domain, i.e., if
we classify each couple of pixels independently of any other on the basis only of its feature vectors X, and X,,

based on the Bayes rule, it requires that the couple of classes (@,, v,) be selected that provides the maximum
likelihood {(@,,v,), given the observed feature vectors X, and X,,

max {(®w,v,)= max{ P(@,v, | X,X,) } (1)
The a posteriori probability in (1) can be represented as the following formula:

PX,X,|w,v)Pv,|®)P@)
P(X,,X,)

Plo,v, | X, X,)= )

where the term  P(X |, X,) canbe neglected, as it is independent of @, and v,.

It is difficult to calculate (2), fortunately we can introduce the following hypothesis to simplify the estimation
of such functions™*.
Let us consider the feature vector X, (i=1, 2) related to time 1, be composed of a signal component S, and of

a noise component N,, moreover, the signal S, depends only on the land cover class at time t,, and the noise
N, also depends only on the land cover class at time 7, and possibly on S,. Under this hypothesis, the

probabilistic dependence between the images at the two times derives only from the dependence of the classes at
the two times, that means the feature vector X, and X, are independent, and can be written as:

PX, X, lo.v)=PX |0)PX,]|v,) 3)

By substituting (3) into (2) and by applying some transformations, the likelihood function that will be used in the
decision rule now takes the following form:

Pv, |w,)

V=P | X)PW, | X,
{(@,.v,)=Plw | X)PW,| )P(Vk)

(4)

According to formula (4), to perform the classification of two multitemporal remote sensing images, we need to
estimate the a priori probabilitics P(v,) of the classes at time /,, the single date, multivariate conditional
probabilities P(@, | X,) and P(v,|X,) at the two times, and the transition probabilities P(v,|@ ), which
represent the probabilities of the change of classes from time 1 to time ¢,. Now the problem is how to decide
the transition probabilitics.

2.2 Determination of transition probabilities

Formerly, the transition probabilities were decided empirically” ™, but these were neither accurate nor
reasonable. Also, it is difficult to detect land cover changes. It should be more reasonable to decide transition
probability using the change pattem of NDVL

4
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We can use the change of NDVI to represent the seasonal change of vegetation and the change of classes. Let us
name the change pattern of NDVI, which are calculated from the training data set and decided by the
predetermined thresholds, based on the analysis of the change of NDVI, as the estimated change pattern (ECP).
The estimated change pattern (ECP) of Landsat TM NDVI are defined as:

If & <ANDVI <&, then ECP=0
If ANDVI > £, , then ECP=1
If ANDVI <&, , then ECP=-1 (%)

ANDVI is the difference of the NDVI value between time f, to time t,. £ and &, are the thresholds to
decide the estimated change pattern (ECP) of NDVI from time 7, to time ¢,.

The change pattern of NDVI, which are calculated directly from the classification processing of images and
derived as the same as formulation (5), are named as the actual change pattern (ACP). By comparing NDVI
estimated change pattern (ECP) to NDVI actual change pattern (ACP) calculated from images, the transition
probabilities P(v, |®@,) are defined as follows:

If @ =v, and ACP=ECP, then the transition probabilities P(v, |®,)=1;
If w =v, bot ACP= ECP, then

Pl@, | X)) P(v, | X,)
P (max) P,(max)

Py, |o)=a

If w#v, and ACP#ECP, then P(v,|@)=0
If  #v, but ACP=ECP, then

Pl |X) Pv, | X,)
P(max) P (max)

Py, |e)=p (6)

where £ (max)and P,(max)are the maximum a posteriori probability among the different classes at time , and
1,, respectively. @ and g are user-specified constants which control the degree of consistency between the
temporal data.

For multitemporal data fusion more than two images, let us consider the m-variate observation feature vectors
X' and the set of possible land cover classes ¢/ (i=l, 2, ..., n) related to time 1 (¢=1, 2, ..., p), based on

Bayesian formulation and Markov property, the a posteriori probability can be easily obtained as follows:
PC',CP L., CM X XL X =

P(C' | X")..PIC" | X" YP(CH | CY..P(CT | C)
P(CHP(C)...P(C")

@)

we can calculate the transition probabilitics P(C" |C"™") respectively, then obtain the maximum of (7).
3. EXPERIMENT

3.1 Study area

The study area is located in the region of Zhangwu county, a typical agricultural area of Liaoning province in
the north-cast part of China. The image size is 1024 x 1024 pixels, corresponding to 25.6 x 25.6 km’, with
geographical coordinates from 42°22°6"N to 42°35’50”N in latitude and from 122°12°56”E to 122°31’50”E in
longitude.

Zhangwu's cconomy is oriented toward agriculture, producing mainly crops such as com and grain, as well as
soybean, wheat, pachyrhizus, peanut, and tobacco. The main crop scason in this arca is from April to October,
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including the driest month July.

The ground survey trip was carried out in July 1999, cooperated with the agricultural extension office of
Zhangwu county and assisted by Institute of Remote Sensing Application of Chinese Academy of Sciences. The
ground truth data of the study area were collected for all land cover types and the site locations were accurately
fixed using the ERSDAC Navigator GPS system developed by DOWA ENGINEERING CO., LTD of Japan. As
there is an time interval between the ground survey and the acquisition of satellite data, the previous records
provided by the local agricultural technology stations were investigated, also the field check was carried out with
consultation with agricultural advisers accompanied and farmers, only the confirmed sites that no land cover
change occurred were selected as ground truth data. The classification of the following land cover classes is
considered: com, paddy, soybean, wheat, meadow, poplar, pine, bare land, urban, water, dried area and deforest
area. The collected ground truth data were used for training samples of supervised classification and accuracy
assessment.

3.2 Data acquisition and preprocessing

The multitemporal Landsat TM images (Path 120, Row 30) collected on 19 May, 1994 and 23 August, 1994
were selected for this study, mainly because these are the best available cloud-free scenés in the crop season. In
temporal study, it is important to compensate for the difference in sun elevation angle throughout one year and the
influence of changes in atmospheric conditions in order to extract only the spectral change of the land object.
Relative radiometric correction was performed on multitemporal images'®: several ground objects were selected
as the reference points, these reference points have either high spectral reflectivity or low reflectivity, the
reflectance characteristics of these points was believed that would not change temporally. The image of May was
selected as the reference image. The digital mumber values of 12 reference points were used in a regression
analysis to calculate the coefficients for transformation, so that both the influences of atmospheric conditions and
sun clevation angle were removed. Multitemporal TM data were co-registered and resampled to 25m pixel size,
then geometrically corrected in UTM projection using the nearest neighbor method. The RMS error less than 1
pixel was yielded. Six channels of TM data were used except the thermal channel 6. Figure 1 shows the false color
composite images of the test site.

For the study of temporal data fusion, the normalized difference vegetation index (NDVI) defined by the
equation (8) was used.

NDVI = (TM4 - TM3) / (TM4 + TM3) 8)

TM3 and TM4 are Landsat TM channel 3 and channel 4, respectively. The NDVI equation produces values in the
range of -1.0 to 1.0, where increasing positive valyes indicate increasing green vegetation and negative values
indicate non-vegetated surface features such as water, barren, ice, and snow or clouds. The NDVI data were scaled
to integer value from 0 to 200, in which the least significant digit represents 1.0 percent of the total possible.
Figure 2 shows the multi-temporal NDVI profile.

3.3 Selection of training and testing data set

How to choose a suitable training and testing data set is one of the most important problems. The characteristics
of the training data for supervised classification have a considerable influence on the quality of the classification
result. However, there is no exact standard for choosing the correct training and testing data. It is essential that the
training data provide a representative description of each class. Investigations of the effect of training data set
characteristics on the performance of classifications have revealed that factors such as training data set size and
composition have a major effect on classification accuracy. For conventional statistical classifiers, it is important
that the size of the training data set for each class be at least 10-30 times the number of discriminating
wavebands”'. Considering about the effect of other variables, the training data set size for each class was selected
all about 100-300 pixels. Figure 3(a) shows the selected training data set.

Classification accuracy is the important quantitative index that expresses the quality of a supervised image

classification. Typically, classification accuracy is assessed by comparing the predicted class of membership
derived from the classification with the actual class of membership on the ground. The nature of the testing data
set should have a significant effect on the resulting accuracy statement. It is essential that the testing data set must
also be representative of the classes. Therefore the testing data set should be strictly picked up from across the
whole site and the sample large enough.
The way in which the classification accuracy be assessed is that similar two data sets were selected independently
from ground truth before classification, then one was selected randomly as the training data set, and the other one
uscd as the testing data set for evaluating of classification accuracy. Here, in order to evaluate the classification
accuracy more preeisely, the testing data set was sclected more than almost three times of the training data set.
Figure 3(b) shows the selected testing data set.
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3.4 Parameter selection

The transition probabilities represent the degree of consistence between images acquired at different time and
have the great influence on classification accuracy. In our temporal fusion model, transition probabilities are
estimated directly from the change pattern of NDVI, thus how to decide the thresholds £ and ¢&, is very

important. It is essential that the specification of £ and &, should make the classes to be more easily separated.

As shown in the multitemporal NDVI change profile, the NDVI change directions and magnitudes of classes are
different. We firstly derived the NDVI values of different classes from the training data set of May and August,
respectively, then we calculated the change values ANDVI between all the same classes and different classes
from May to August, finally, we deliberated the results and selected the most appropriate thresholds. For the
detailed procedure, we tried to separate all ANDVI values into three groups evenly: increasing, decreasing and
constant. The ANDVI values between the same classes were examined, as shown in Table 1, except the value
-5.83 and —11.82, all values of other 10 classes are above 0, moreover, in this study, actually no class has the
value of 0 which means no NDVI change occurred. Thus, the 10 classes which have the value above 0 should be
divided into two groups according to the magnitude of the change of NDVI, one for constant group, another for
increasing group, among the 10 classes, as the thresholds should be integer value, corresponding to the scaled
NDVI digital number, thus the threshold £, was decided as 11 from the middle value between the increasing

group and the constant group. For the decreasing group, only two classes have minus change of —5.83 and —~11.82,
here, we selected the middle value between the constant group and the decreasing group of -2 as the threshold &,.

a-and JB are user-specified parameters which control the degree of consistency between the temporal data,

they were determined experimentally using the overall classification accuracy. Several different values of a and
B were tested to select the best values. The sensitivity of the Temporal Fusion Classification model with respect

to the parameters o and S are shown in Figure 4(a) and (b). The classification performance was observed to

increase as « becomes larger to a certain value and to level off thereafter. The classification result was not so
sensitive to the value a if it was large enough, but was very sensitive to parameter £ . Through an inspection of

these results, the optimal choice (@ =0.6 and f=0.0) was made that the classification performance was best.
Here, £ =0.0 is interesting, but we think this is reasonable because the areas where land use change occurred are

treated as independent classes, i.e., dried area and deforest area, and no land use change occurred in the other
classes. In this research, we have not studied automatic parameter estimation of these parameters. The parameter
values used were determined empirically in a limited experimental study. A small-scale sensitivity analysis with
respect to these parameters indicated that a range of parameter values resulted in comparable classifier
performance. However, an automatic parameter estimation method for the Temporal Fusion Classification model
is desirable, but difficult to establish.

The a priori probabilities P(v,) are all approximated as being equal.

4. RESULTS AND DISCUSSION

The performances of the proposed Temporal Fusion Classification (TFC) technique are assessed in the following
and compared with the conventional Maximum Likelihood Classification (MLC) method and the Cascade
Classifier (CC) developed by Swain”. The Cascade Classifier also uses the transition probabilities P(v, |®,),
which represent the temporal dependence between images, and showed improved accuracy compared to the MLC
method, but the transition probabilities used are defined empirically.

To provide a reference for comparison, the single period images are first analyzed separately, as shown in Table 2
(a) and (b), the performances of the MLC method are 73.3% correct for the May 1994 data and 73.1% correct for
the August 1994 data. The benefits of using multitemporal data are clearly demonstrated in Table 3, the results of
multitemporal classification are substantially better than either of single period performances. The results of the
CC method are derived like this: let the transition probabilities P(v, @) = 1.0, 0.9, 0.8, 0.7, for @, =v,, and
P, |w) =0.0,0.1,0.2,0.3, for @ #v,, respectively, then perform classification using different scheme of the

transition probabilities and select the best  results. The best overall accuracy of the CC method is 87.3% when
Py, |w) = 00, for o #v,and P(v,|w) = 1.0, 0.9, 0.8, for @ =v,. This is truly better than the MLC
method of 85.5% correct performance. However, the best results are demonstrated by the proposed TFC method,
in which the temporal dependence of images is considered and the transition probabilities are estimated directly
from the change pattern of NDVI, and show an overall accuracy of 88.9%, furthermore, the computation time
using the TFC method is less than half of the time used by the MLC method.

For a visual impression of the results derived by the proposed TFC method, as shown in Figure 5(b), almost all
classes are well classified, especially paddy, wheat, meadow, poplar and urban, which arrive an accuracy of more
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than 90%. The areas, like dried area and deforest area, where land use change occurred, are also well detected.
The vegetation and non-vegetation areas and the different crops and forests are clearly distinguished. The
misclassified pixels mainly exist in the classes between corn and soybean, poplar and pine, urban and water, urban
and dried area, also poplar and deforest area. Compared to the results of the MLC method shown in Figure 5(a),
although the classification accuracy of corn is a little lower than that of the MLC method, the results of other
classes are much more better. We can see more clearly and minutely in Figure 6, it shows the subscene of the
classification results using the MLC method and the TFC method, respectively. There are so many misclassified
pixels between corn and soybean, meadow and urban, especially urban and sparse poplar in Figure 6(a), but they
are clearly and correctly classified in Figure 6(b). These prove that the proposed TFC method is very sensitive and
indeed can solve the problem of agricultural area and non-agricultural area discrimination and crop identification.

5. CONCLUSION

We proposed a new method based on the Bayesian formulation and try to solve the problem of how to
discriminate agricultural area and non-agricultural area and different crops using multitemporal Landsat TM data.
This is a statistical method based on multitemporal data fusion, which take into account the temporal dependence
of images. In the proposed algorithm, the class-dependent likelihood of multitemporal data are calculated,
respectively, and the transition probabilities are estimated from the change pattern of NDVI between different
classes of images, then the Bayes optimal classification is performed by maximizing the set of the class-dependent
likelihood and the transition probabilities. This method can also be used as an alternative method for change
detection of land cover and land use.

The temporal fusion model that we presented is thought to successfully incorporate the temporal dependence in
the classification process and reasonably allow the transition probabilities to be estimated directly from the change
pattern of NDVI, resulting in improved classification accuracy, moreover, reduce the dimensionality of the
probability functions used and facilitate the computation over time.
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(a) (b)
Figure 1 Data utilized for experiments; the false color composite images (channel 5, 4, 3 for red,
green and blue) of Landsat TM data acquired (a) in May 1994 and (b) in August 1994.
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1994, (a) Maximum likelihood method and (b) Temporal data fusion method
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Tkm

Figure 6 Subscene of the classification results using multitemporal Landsat TM data. (a) Maximum

likelihood method and (b) Temporal data fusion method.

Table 1 The change values of NDVI of all classes between May 1994 and Angust 1994,

August
: Corn | Paddy | Bean | Wheat | Meadow | Poplar | Pine Bare | Urban | Water | Dried | Deforest

May land ared area

3094 | 3201 | 4061 375 992 23.19 | 2421 | 2042 727 958 | <123 14.84
Lorn

- 31.47 ] 3254 | 4114 928 1045 23.72 | 24.74 | 2095 7.80 906 | 070 | 1537

Paddy

2924 13031 | 3891 7.05 8.22 2149 | 2251 | 18,72 557 | -1126 | -293 | 1314
Soybean .

1636 | 1743 | 26,03 | -5.83 -4.66 8.61 963 584 | -7.31 -24.17 | -15.81 0.26
Wheat

3027 | 31.34 | 39.94 8.08 9.25 2252 | 2354 19.75 6.60 | -10.26 -1.90 14.17
Meadow

1666 | 17.73 | 2633 | -5.53 -4.66 891 | 993 | 614 |-701 [-2387 |-1551 0.56
Poplar

2249 | 2356 | 3216 03 1.47 1474 | 1576 | 1197 | -1.18 | -i8.04 | -9.68 6.39
Pine

2668 | 2775 | 3635 4.49 5.46. 1893 | 1995 ] 16.16 301 |-1385 | -549 | 10.58
Bare Jand

3287 | 3394 | 42.54 | 1068 11.85 2512 | 26.14 [ 2235 9.20 -7.66 0.7 16,77
Urban

4369 | 44.76 | 53.36 | 21.50 22.67 3594 | 3696 | 33.17 | 20.02 366 | 11.52 27.59
Water .
Dried 3805 | 3922 | 4782 | 1596 17.13 3040 | 3142 | 27.63 | 1448 238 ] 598 22,05
area
Deforest 428 535 | 1395 | -17.91 | -16.74 =347 | 245 | 624 | -1939 | -3625 | -27.89 | -11.82
area




Table 2 Maximum likelihood classification results using single period TM data acquired in (a)
May 1994 and (b) August 1994.

(a) Overall accuracy = 73.3%

Classificati Ground truth classes
on results Corn Paddy Bean  Wheat Meadow  Poplar Pine Bare Urban Water Dried Deforest
land area area
Corn 768 17 594 0 9 0 0 59 21 4 0 0
Paddy 29 688 0 0 4 0 74 0 28 83 4 0
Soybean 121 2 482 0 0 1 0 105 0 0 0 0
Wheat 10 0 0 527 4 98 0 6 0 1 0 0
Meadow 10 7 0 26 888 9 0 1 6 3 0 0
Poplar 36 65 0 48 39 751 22 69 3 17 4 113
Pine 0 63 0 0 0 1 608 5 0 6 0 0
Bare land 20 39 5 41 3 114 150 326 0 25 0 2
Urban 24 193 0 13 88 19 3 1 754 0 2 0
Water 0 4 0 0 0 0 0 0 0 601 39 0
Dried area 0 6 0 0 0 0 0 0 4 219 967 0
Deforest 0 0 0 0 0 15 0 0 0 0 0 660
Total 1018 1084 1081 655 1035 1008 857 572 816 1030 1016 775
Accuracy
% 754  63.5 44.6 80.5 85.8 74.5 70.9 57.0 924 583 95.2 85.2
(b) Overall accuracy = 73.1%
Classificati Ground truth classes
on results Corn  Paddy Bean Wheat Meadow  Poplar Pine  Bare Urban Water Dried  Deforest
land area area
Corn 552 35 114 1 0 167 22 0 10 0 0 0
Paddy 0 986 1 0 0 5 17 0 7 0 0 0
Soybean 341 0 893 0 0 38 1 10 0 0 0 0
Wheat 0 0 0 561 481 23 0 0 6 0 0 0
Meadow 1 0 0 38 427 24 0 0 86 4 56 0
Poplar 65 4 47 1 33 568 187 115 0 0 0 81
Pine 41 38 0 4 1 0 483 0 0 0 0 19
Bare land 5 0 21 0 0 1 0 438 25 0 62 0
Urban 12 21 5 47 89 158 16 9 675 105 76 0
Water 0 0 0 0 1 0 0 0 6 921 0 0
Dried area 0 0 0 3 3 0 0 0 1 0 822 0
Deforest 1 0 0 0 0 24 131 0 0 0 0 675
Total 1018 1084 1081 655 1035 1008 857 572 816 1030 1016 775
Accuracy
Y% 542 91.0 82.6 85.6 41.3 56.3 564 76.6 82.7 894 80.9 87.1
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Table 3 Classification results using multitemporal TM data acquired in May and August 1994,
(a) Maximum likelihood method, (b) Cascade classifier, (¢) Temporal data fusion method.

(a) Overall accuracy = 85.5%

Classificati Ground truth classes
on results Corn Paddy Bean Wheat Meadow  Poplar Pine Bare Urban  Water Dried  Deforest
land area area
Corn 869 37 237 0 0 0 0 6 0 1 0 0
Paddy 0 943 0 0 0 0 i 0 0 2 0 0
Soybean 121 0 833 0 0 0 0 25 0 0 0 1
Wheat 0 0 0 552 7 28 0 0 0 0 0 1
Meadow 0 0 0 48 955 0 0 0 3 8 0 0
Poplar 19 1 9 1 2 867 93 92 0 2 0 95
Pine 0 2 0 0 0 2 648 0 0 0 0 0
Bare land 0 0 2 0 0 1 0 447 1 0 0 0
Urban 9 1 0 54 71 102 115 2 811 122 150 0
Water 0 0 0 0 0 0 0 0 0 895 1 0
Dried area 0 0 0 0 0 0 0 0 1 0 865 0
Deforest 0 0 0 0 0 8 0 0 0 0 0 678
Total 1018 1084 1081 655 1035 1008 857 572 816 1030 1016 775
Accuracy
% 854 87.0 77.1 84.3 92.3 86.0 75.6 78.1 994  86.9 85.1 87.5
(b) Overall accuracy = 87.3%
Classificati Ground truth classes
on results Corn  Paddy Bean  Wheat Meadow  Poplar Pine Bare Urban Water Dried  Deforest
land area area
Corn 820 3 209 0 0 0 0 5 0 0 0 0
Paddy 1 936 0 0 0 0 0 0 0 4 0 0
Saybean 140 0 851 0 0 0 0 24 0 0 0 0
Wheat 0 0 0 605 16 17 0 0 0 0 0 0
Meadow 0 0 0 22 949 1 0 0 9 6 0 0
Poplar 50 47 5 8 15 952 128 97 0 2 0 78
Pine 0 11 [i} 0 0 1 683 0 0 0 0 0
Bare land 4 0 16 0 0 3 0 446 3 0 0 1
Urban 3 87 0 20 55° 32 45 0 803 121 101 0
Water 0 0 0 0 0 0 0 0 0 897 1 0
Dried area 0 0 0 0 0 0 0 0 1 0 914 0
Deforest 0 0 0 0 0 2 1 0 0 0 0 696
Total 1018 1084 1081 655 1035 1008 857 572 816 1030 1016 775
Accuracy
% 80.6 86.3 78.7 92.4 91.7 944 79.7 78.0 984 87.1 90.0 89.8
(c) Overall accuracy = 88.9%
Classificati Ground truth classes
on results Corn Paddy Bean Wheat Meadow Poplar Pine Bare Urban Water Dried  Deforest
land area area
Corn 854 22 210 0 0 0 0 5 0 2 0 0
Paddy 2 1006 0 0 0 0 0 0 1 4 0 0
Soybean 147 0 851 0 0 1 1 26 0 0 0 0
Wheat 0 0 0 593 6 16 0 0 0 0 0 0
Meadow 0 0 0 30 959 1 0 0 9 6 0 0
Poplar 10 16 3 4 15 946 97 59 0 2 0 8y
Pine 0 13 0 0 0 1 745 0 0 0 0 0
Bare land 4 0 17 0 0 8 8 482 1 0 0 0
Urban 1 27 0 28 55 33 6 0 804 119 101 0
Water 0 0 0 0 0 0 0 0 0 897 1 0
Dried area 0 0 0 0 0 0 0 0 1 0 914 0
Deforest 0 0 0 0 0 2 0 0 0 0 0 686
Total 1018 1084 1081 655 1035 1008 857 572 816 1030 1016 775
Accuracy
% 839 92.8 78.7 90.5 92.7 93.8 86.9 84.3 98.5 87.1 90.0 88.5
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The objective of this study is to produce land cover classification dataset for the whole Asia using
NOAA AVHRR 1-km dataset. Ground truth data were mainly collected from existing thematic
maps which were obtained from members of Land Cover Working Group (LCWG) of the Asian
Association on Remote Sensing (AARS). Classification was mainly based on cluster analysis of
the monthly ratio of surface temperature and Normalized Difference Vegetation Index (NDVI) for
seven months from April to October 1992. Additional variables, such as DEM, the maximum
monthly composite NDVI in a year, and the minimum monthly composite NDVI in a year were
also used in the classification processing. The CD-ROMM including the land cover classification

dataset has been published,

Introduction

NOAA Advanced Very High Resolution Radiometer (AVHRR) has been serving an important
role in global/continental land use management and planning, as well as analysis of land cover
change. Most of land cover mapping applications at broad spatial scales have been based on
multi-temporal Normalized Difference Vegetation Index ( NDVI ) data (Tucker et al, 1985:
Loveland et al, 1991). In order to extract phenological information contained in AVHRR data
more effectively, the thermal data can be used for land cover mapping. Kerber and Schutt (1986)
have used AVHRR channel 3 data, which is sensitive to reflected and emitted radiation, to locate
the boundary between forest and non-forest. More recently, Lambin and Ehrlich (1995) have used
multi-temporal NDVI, land surface temperature (Ts) and the ratio between these two variables to
map land cover based on AVHRR Global Area Coverage (GAC) data set over African continent,
and concluded that the ratio between Ts and NDVI shows the greater potential to yield a reliable
land cover classification in continental/global scale than a single variable of either Ts or NDVI
does.

In this study, the authors developed land cover map of the whole Asia using the NOAA AVHRR
I'km dataset. Classification was done by the following steps: (1) Ground truth collection, (2)
Clustering of multi-temporal ratio of land surface temperature (Ts) and NDVI, (3) classification
rules determination, (4) classification by decision tree method, and (5) post-classification

processing.

Source Data

Global NOAA AVHRR 1-km 10-day composite dataset from April, 1992 to March, 1993
(Eidenshink et al, 1994) are the main data used in this study. In addition, digital elevation data
and national/regional level of vegetation and land use maps were also used for the analysis of

land cover classification.
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6)) AVHRR Data

Global NOAA AVHRR 1-km 10-day composite NDVI, channel 4 and channel 5 data from April,
1992 to March, 1993 were used in this study for land cover mapping. Table 1 shows ten bands
included in the 10-day composite AVHRR dataset. The NOAA AVHRR 1-km dataset is based on
the Interrupted Goode Homolosine map projection, and it was transformed to latitude/longitude
map projection (Plate Carree Projection) with 30-second grid by using the nearest-neighbor
method. In order to prepare data of the whole Asia, the NDVI, channel 4 and channel 5 data were
extracted from 25 degree East to 165 degree West in longitude, and 90 degree North to 15 degree
South in latitude. Geometric accuracy was less than 0.5 pixel RMS error at all land areas of the
whole Asia after re-sampling for geometric registration, compared with seashore lines of the
Digital Chart of the World (DCW). The pixel size of the extracted Asian region is 20,400 pixel row
by 12,600 pixel line.

Table 1. Band description of composite images

Band Description Band Description
1 AVHRR channel 1 6 NDVI
2 AVHRR channel 2 7 Satellite zenith
3 AVHRR channel 3 8 Solar zenith
4 AVHRR channel 4 9 Relative azimuth
5 AVHRR channel 5 10 Date Index

(2) Digital Elevation Model (DEM) data

Generally, elevation data is used to model ecological governing natural vegetation distribution,
and is important for identifying land cover types and stratifying seasonal regions representing
two or more disparate vegetation types. In this study, Digital Elevation Model, GLOBE Version 1
(January 1998), which comprises a global 30 arc-second latitude/longitude array, was used

(Hastings) .

(3) Thematic maps

In this study, maps of ecoregions, vegetation, land use, and land cover were used as reference
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data to collect ground truth information and to modify the classification result in

post-classification processing.

(4) Ground Truth Collection

Ground truth data in this study means geographically specified regions which are identified
one of classes in the land cover classification system by class code. Collection of good ground truth
data is a key issue for reliable land cover mapping.

In this study, ground truth data were collected mainly from existing land cover maps and land
use maps of various Asian countries. Also limited parts of ground truth data were collected by
field survey in Central Asia , where vegetation cover decreases gradually when moving from
north regions to south regions. The period and routes of field surveys are as follows:

(a) From August 23, 1996 to September 2, 1996 from Almaty to Akmola of Kazakhstan
(b) From July 5, 1997 to July 23, 1997 from Akmola to Kustanaj of Kazakhstan
(¢) From April 26,1998 to May 8, 1998 from Almaty of Kazakhstan, through Uzbekistan, to
Ashkhabad of Turkmenistan.

The ground truth data for most of main vegetation covers in Asia region was collected in this
study. Dark areas in Figure 1 shows the collected ground truth areas. Figure 1 is examples of

photographs obtained from field surveys.

Ratio of land surface temperature and NDVI
Authors used multi-temporal NDVI calculated from channel 1 and channel 2, and land surface

temperature Ts calculated from channel 4 and channel 5 using split window algorithm (Price,
1984):

Ts =T4 + 3.33(T4 — T5) --------- (in degree kelvin)

Where T4 and T5 are brightness temperature of AVHRR channel 4 and channel 5 (in degree
kelvin).

Authors applied maximum value compositing (Holben, 1986) to NDVI and surface temperature
(Ts) data, selecting the maximum value of 10-day composite NDVI and Ts independently for

every month.
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Figure 1. Examples of photographs obtained from field surveys
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Figure 2. Relationship between Ts and NDVI

Ts responds both to short-term variations in energy balance related to rainfall events and

changes in soil moisture, and to seasonal changes (Lambin and Ehrlich, 1995). The monthly

composite data of Ts artificially removes the short time scale variations in 10-day compositing Ts,
850



leaving only the seasonal trend. It mainly includes lower frequency information, which is related
to land cover types (Lambin and Ehrlich, 1995). Since Ts displays the opposite trend to NDVI as
shown in Figure 2 when moving from sparse to dense vegetation landscapes, the use of ratio
between Ts and NDVT increases the capability of discrimination among vegetation classes. The
ratio of Ts/NDVI has been interpreted biophysically as regional surface resistance to
evapotranspiration (Nemani and Running, 1989). This provides theoretical support for using this
ratio in land cover analysis. The ratio of the maximum Ts and maximum NDVI ratio (Ts/NDVI)

were then computed for monthly period in this study.

Classification
Land cover classification was carried out using mainly the phenologic’al information from the
multi-temporal ratio between monthly land surface temperature Ts and NDVI data. Figure 3

shows the flow chart of this study. Ground truth data itself remains in the final classified result.

NOAA AVHRR 1-km Dataset Land Cover Classification System

il J\L

Data Pre-processing ‘ Map Data
1. Monthly Composite
2 Transormation of Projection
DCW 1'km Data | | & Refa Amondment Ground Truth Collection | [T
T - "—| Filed Survey
Clustering
Maximum NDVI Data
Minimum NDVI Data R 4L ll

Classification Rules || Classification

DEMData [——>

Figure 3. Flow chart of this study

(1)Land Cover Classification System

Land cover classification system was developed as the activity of Land Cover Working Group

Table 2 Land cover classification system

Land cover class Class code
Vegetation 10
Forest or shrubland 12
lvergreen 1
Forest 16
Broadleaf 18




Natural 20

Tree crops 22
Oil palm 23
Coconut 24
Others 33
Needleleaf 36
Shrubland 42
Natural 44
Shrub crops 46
Tea 47
Others 57
Forest and shrubland 60
Deciduous 70
Forest 72
Broadleaf 74
Natural 76
Tree crops 78
Rubber 79
Others 87
Needleleaf 90
Shrubland 92
Natural 94
Shrub crops 96
Cotton 97
Others 107
Forest and shrubland 110
Mixed forest or shrubland 120
Grassland 130
Natural grassland / pasture 132
Grass crops 140
Paddy 141
Wheat 142
Sugarcane 143
Corn 144
Wheat and rice 1.16
Others 157
Mixed vegetation 160
Wetland 170
Mangrove 172
Swamp 174
Little vegetation 180
Tundra 182
Others ‘ 184
Non vegetation 190
Bare ground 191
Rock 192
Stones or gravel 193
Sand 194
Clay 195
Perennial snow or ice 200
Built-up area 210
Water 220
Inland water 222
Water with seasonal change 221
Tidal flat 226

(LCWG) of the Asian Association on Remote Sensing (AARS) (Tateishi and Wen, 1997 a, b). Table
2 shows this land cover classification system which was used in this study. One feature of this
classification is the hierarchical structure. When a pixel 1s difficult to classify land cover type A
or B, this pixel can be assigned to higher level of land cover which includes A and B. This is the

main advantage of the hierarchical structure.

(2) Unsupervised classification
The initial segmentation of ratio between Ts and NDVI composites is performed using

minimum distance unsupervised clustering. One hundred clusters were acquired as the result.




Since AVHRR of winter period has poor quality due to high solar zenith angle, monthly data for

seven months from April to October 1992 were used for clustering.

3 Classification rules

The most important thing in decision tree classification rules based on clustering result is to
provide a general understanding of the characteristics of each cluster based on the ground truth
data, and to determine which clusters have two or more disparate land cover classes represented
within their spatial distribution.

The first step consists of inspecting the spatial patterns and spectral or multi-temporal
statistics of each cluster, and comparing each cluster to ground truth data and extracting
relationship between clusters and land cover types. In this step, 46% of the total clusters were
directly assigned to specific land cover types.

The second step is the classification for remaining clusters, each of which corresponds two or
more disparate land cover types. In this study, about 54% of the clusters include multiple land
cover types. Most of these types are the result of spectral similarities between evergreen and
deciduous forest, and between natural and agricultural grassland. These problems can be usually
solved by developing criteria bases on the relationship between the confused clusters and selected
ancillary datasets. In this study, the following ancillary datasets were used:

(a) Digital Elevation Model (DEM)
(b) Maximum NDVI: the maximum monthly NDVI value in twelve months
(b) Minimum NDVI: the minimum monthly NDVI value in twelve months

There are two tasks involved in the second step. The first task is to determine the ancillary
variables and preliminary decision rules, and the second task is to implement and refine the
decision rules (Brown et al, 1997). In this phase, the initial criteria are interactively trained,
refined, and finally used to classify the clusters. Figure 4 shows the example of classification

rules.

If cluster No = 24

.

If Mint NDVI > 130 L———H Land cover class code = 16

v

Land cover class code = 160

Figure 4. the example of classification rules




(4) Post-classification processing

Based on the classification rules, a land cover classification map of Asia was created. About
15% of the total area were classified as “vegetation” (the class code is 10), which is the most
coarse class in the land cover classification system. Also, there are some incorrectly classified
areas. In the step of post-classification processing, the authors used existing land use/land cover
maps and knowledge of members of LCWG/AARS. As the result of post-classification processing,
the class “vegetation”, was reduced to less than 10%, and most of incorrectly classified areas were
modified.

Discussion

(1) An Asia region database which include source data (12-monthly AVHRR NDVI composites
data, 7-monthly surface temperature composites data (Ts), 7-monthly ratio composites data
between Ts and NDVI, ground truth data, GLOBE digital elevation model, DCW digital chart of
world data), land cover classification, documentation describing source data, and land cover
classification results (Figure 5) were produced. This database is considered to be reliable land
cover information required for the management of natural resources, environmental projection
and international development projects in Asia region. Table 3 and Table 4 show the area

percentage of land cover classification result.

(2)Many regional and national organizations and researchers provided a lot of materials,
information and comments on this study. It should be said that this research can not be
processed smoothly without their cooperations. Through this study, the capacities of participating
Asia regional and national organizations for monitoring of land cover changes, and initiating land

cover mapping projects at broad range areas has being strengthened.

Table 7.1 Area percentage of the classified land covers

(Numbers in parenthesis is class code)

Vegetation (10 — 184) 84.17
Non-vegetation (190 — 210) 13.91
Water (220 — 226) 1.92
Total 100.00




Table 7.2 Area percentage of the classified land covers
(Numbers in parenthesis is class code)

Vegetation (10) 84.17
Forest or shrubland (12 - 120) 28.25
Grassland (130 - 157) 32.09
Mixed vegetation (160) 0.84
Wetland (170 - 174) 1.00
Little vegetation (180 - 184) 11.99

Non vegetation (190) 13.91
Bare ground (191 - 195) 13.51
Perennial snow or ice (200) 0.40

Water (220) 1.92
Inland water (222) 0.00
Water with seasonal change (224) 0.00
Tidal flat (226) | 0.00

Total 100.00

(3) In this study, the analysis of multi-temporal series of the ratio between AVHRR surface
temperature data and normalized difference vegetation index data reveals the greater potential
to yield a realistic land cover classification. It also provides the proper knowledge and mechanism

of land cover seasonal changes on continental and global scale.

(4) A land cover classification system, which includes almost all land cover types which can
reflect the features of land cover seasonal changes on continental and global scale, was developed.
This system meets the scientific needs and social needs, and it also can be applied as an standard

land cover classification system for different applications.

Conclusion and future study

The accomplishment by this study is to develop land cover dataset of Asia by cooperation with
Asian scientists. In order to improve the classification result, reliable ground truth data should
be collected more. For this reason, authors plan to publish the used ground truth data.

The developed land cover dataset is not the final product, it is the first product which should be
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improved continuously by accumulating ground truth data.

In the future, the validation assessment will be the most important processing. Formal
validation involves the accuracy of the broad range areal land cover product and allowing the
estimation of the error variance in areal totals of classes within regions. Secondly, a validation
programme is based on confidence sites (Gregory et al., 1999). In this procedure, an exhaustive
effort is to find available, and affordable, sources of high resolution data ( for example, Landsat
and SPOT image data) or detailed land cover information which is already exists ( for example,

land cover and land use maps, or credible ground truth data).
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K1) DL, BT —F & AVGNDVI 7—# L OEIZRET ¥ TRl (REE) OfE
DRERGMERGAP)E LTRT, £/, FM7—4# & AVG_NDVI 7—% L DEO (REELE
TOT) k5. 5EETo7TRT 74 Av v F v I OBRENOBREGRERN—BD 2 VENOREE L
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T=P+6

GAP, = Y|(4VG,—-NDVI,,,)/ STD,|
T=pP-8
T=P+6

TOT, = Y (4VG,-NDVI,,;) X1)
I'=P-8

ENFEHThEEBEE Ly F U IRRTH D,
Where
i gap of the peak time (i=-2, -1, 0, 1, 2) unit: 10-day
GAP: Total value of scason gap, AVG: Average NDVI value, STD: Standard deviation value of NDV]
TOT: Total change quantity, P: Peak time of AVG NDV!I profile

4 124F@I0 NDVI & TS 02 LA

WERFNT — & Ao/ —r L R A (M O 72 D121, RERRIC L BHRE O A2%
ERKINRIZ L DRE—a YLV OREELRY R MLERDHD, 2072, HOMREIT7 4 ) Y
DEF by AKUOFEELZTY BR< 729HI2 1991 & 1992 EDF —FZ & AV T E RS, UL,
R IITRLIZX DI 1982 )b 1993 £ T, MBI KUKRSEASh - L Bhbh s EEAN 12 |,
EABREMENLOEEE 304U ELH D, TODH, KUKOEBERY R =510 1991 & &
1992 EDOTF—F OB EBNRWVZ LIZZETIEARY, T2, KUK OBEER IR IR 7= DIk LmE Ak
DR E TRV RO 2 2 REDIIKERETH 5,

£1 AFEOEREK

T £ F | k|| Kkl £ B | EkmE
TZAFFar (Axoa) 1982. 3 25km V¥ N (T52h) 1989. 12 15km
Hw o (A4 KR T7) | 1982, 4 33km ErhodB (740 EY) 1991. 6 30km

<3y (740FY) 1984. 9 15km NKEY Y (F9) 1991.8 18km
A —H2RF 4 (F52H) | 1986.3 21km 28— (T FAH) 1992. 6 18km
NTaz (TZA0) 1986.4 | 15km || FRAH— (FVY) 1993. 4 25km
RUFTFE (£ Fx27) | 1988.5 16km > = ~VF (WLFx v H) | 19934 20km

£ 2T, ARFRETIH 12 EMOBREELE (TOT) 2HWVTNDVI & TS O/ 2 BIEIC LD 1 HOF
LLIRRO Rl & RO T, ZDL & 12 DT —F 22 TIEAWTIZ, [ 20 L 5 IERHR 6 FEE
MRKEWVITZ 3 DM 9ESOT —F Rz, TOFEE, K 3a)0 NDVI 0546, dokd 15°
hE (2 B9l B AFva, 779 %) OHUBTIE 1981 & 1991 EOF — ), FRERHE (7

Z YA Wk, T 7)) ORI 1982 FEE 1992 EDF — 2 N FEICIRY B Ts T L b
D #IELZ Lo TRINEK O RN A 2 IFUAIT, 2 O N B R AL 23 2 0 Gl T P71 2
~3H A BT ERIE 8~ ) 77y Ay T OO M N R A B 6 Thh 5.,
LarLy B3O TSI NDVE & ER 72 o T 1988 4 & 1093 421F IS ITU M2 E 72 1989 4E & 1990 4

Lol
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FELEBWVENSBROIZEWSHE TR BRPNEI EBbh B, 2OREELTEXSh2DEN -
NEODITNT SZA BRELBRREIDPSTH B, XUEKOHEIZ L b F—& HELD o h =gt e
A CERWVTS 2 NDVI & b KIUROHEZZIFRWREE LT 1. BRI EAIZ TR E /R4
HOBRRRIDRVBERTH 2720 XUROEEN DR\ 2. TElHE Y — L ERAE Y —Ic R
SREERITT D, FEEZTIBAMUROEEIKE <HN D,

5 NDVI - TS 4)fi 22

FEFEICN L TKRDZ NDVI & TS O 1 JGE RO AE % NDVI- TS ARZEEICRT LR 14 0L S
1278 %, X#hidk NDVI @ 12 FEEAETHLDS+AFICEEN 21E & NDVI OEIMER. —5HICE A
H1FE NDVI O IMERZBET 5. Y IO X #i & BT TS Oigme ML 2Bk T 2, Kiho 7L
Digital Number(DN) T E T 2728, 2h2hd DN1 OfEid, X #iid NDVI OfE T 0.008, Y i
X TS DIET 05CTH b, £z FERL 2 ROBBIZRLTHLE0FEAPLORIPABICL -
TRHEOIT 2 ENERICR S, BIZIE, XEHEWEE TS £ b NDVI OZE{Lhsis Wi c 2, &
72 Y BHIEWIEE NDVI LD TS OISR HBE T H 2 . AE 90 B FIZ i 55 1§51 Tld NDVI
& TS A& B ITEMEAR. AED 90~180 BLIAILEE 2 $HI T NDVI »E/DER T TS iZER. A
73 180~270 FELAPNZEE 3 #IH T NDVI & TS M /MER. AR HS 270~360 LAPTIL S 4 4838¢ NDVI
DB T TS IZW/MER TH 5. HHBEE LI X 5 BFMRAIROIELOFES ¥ LTl NDVI b3
DU TS MY BEETH D, NDVI - TS AEZEMOE 2 BIHTH 5. T, HHROBMRE L LT
& NDVI gL, TS A3 2385 T NDVI - TS AEZERH DS 4 5B TH 5. FIZIEE 1) 5 C
BT B3NS NDVIASEML TS A4 28 D T E OFAICKEET 2, #0BRLKTCHSLB
DEMEIZBET B39 —2TH 5. 4D NDVI - TS AEZEEEL X M5 L0582 2 NDVI I
SR IBIER 2 R OIS D B Ve FEEIZE W NDVI ® TS OB £ o Mifid igEEIc %0,
Zhid NDVI & TS & E L WD —2CH 2. [ 5) ik Zh2h NDVI - Ts AERZEHEOE 1,2,3,4
R ZRUEEETH 2. BEOL I AIFMEE EREIEFOD SIEEHN 2 L TOMIBTH 3. @I
DEFIZ L > TERTNTH 25 TH 2, REIX NDVI & b TS OFELERA RV, SEid TS
&£ b NDVI O &1 bR Disg g, $k sl NDVI & TS WA DE(ERMNR S AR TH 2, X5 D
AREA4 DoARidh#E & T 2 & g | g OB OB OH L TR 2 b %,
F /= AVG_NDVI 7 —4 6 A NDVI B Z 0z 5 » ARFEH L. K 5 D AREA4 L i+ 2 L,
FIZ NDVI DfED 0.2~0.35 DRICHEET B MDD 5, FIZiE. AT 724 L ObE il k848
I E BHORKH L L CUIBKEDPEEORRICEETH 2D, ZhE VIR INENL - L b EE
THHEEDLNTWS (WY T7 X5 DOFEIRIETIX 3~4 BOBRREBICL > THEDRENRT S
618 1996 FAYF 7 XY L HIMEBMIC L 2BETHS). 5D AREA2 I3 NDVI OiR/D A
FITHRMIFIC AL TV B T ENH 0 FE T 52 &1 NDVI MBERE LW Elg (STD_NDVI HEfg)
(N 2 HEAEIEEBONRADELL ) BEHELPEERRICLD2EEDIE > TV B HEEEEDE W, I
ZIEE Bb) TOT7 S VI DORBIIFH DT NI L A2HEEDOEIE L WIS TH 27=8. NDVI - TS
HIBCZEM D AREA2 IZA M 2EED L WD HRMEIRCWELIC L 2BRTHILIEEL R,

6
ANFZEIL 75 NOAA/AVHRR NDVI & TS # AW C i R LI 2 DWW TiT o 7. Bl & L
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TNDVI F—4IC8 25X 2BRNEHAN=. ZO/R. FHO NDVI 707 7 £ )VBERET 5 Huls
EAREIRIIEZ I U7z ERINDVI 707 7 A VAR E LRWHBEOER & Uil oe iz &
STENTEZVI, [IBREICL > THENTRERMIE, £/-70v X VORBICL>TEHR
SEVEI D BNHISR EDH B LD oz, £z, 12EHO NDVI & TS F—4 DFEHTF—¥ %
BOWTEEIIN L TEH IThEZERLEZTO 77NV F UV ETok. ZORR, BESEORE
PXIEXDFEIZL D NDVI OF(LCEHRARHOEIZL D TS NOEELFEARZIENTE =, 12
FEROPTEERR. KUEX GHBEOTNCLZHET —F OFLEZB O RO TEIRMT 21TV,
ZOREZME Uz, ZAEEZ NDVI - TS S ZZM THEIT 217D J & T, FWRIRPIEbHIE & 7
MOEMERRIHEIME T 2 N TE

SHOFRE

AMERHET —50707 74 VDHEANIFETH 5728, NDVI % TS OELIERORE % ik
LT E2DBRERHETCH B, ZIT, HEDHEBIIBWTEBRERTHILE. BHE, BERVYE8
F—I DEMDHITFARDILEND %,
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