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Another proof of a theorem of J.A.Green
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J.A.Green proved a theorem which is the converse to a theorem of R.Brauer
(Proc.Camb.Philos.Soc.51(1955),237-239).The present author gived another proof
of the theorem by making an application of the characteristic class functions of a
finite group. In this article we give another proof of the theorem which is easier
than the two previous proofs of the theorem, by using Mackey decomposition the-

orem.

1. Introduction

Throughout this article, @, Z and C denote a finite group, the ring of rational
integers and the field of complex numbers respectively. Let {x1 = 1g(the principal
character), ..., x»} be the full set of nonisomorphic irreducible complex characters

of G. Let char(G) be the character ring of G.
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That is, char(G) = {0 aixi | @ €Z (i=1,..,h)}. Then char(G)isa
subring of the ring ¢f(G) of all complex- valued class functions on G.

From now on.for any subring R of C we denote by charg(() the set of R—linear
combinations of the complex characters of G for simplicity. For § € c¢f(() and a
subgroup H of G,we denote the restriction of 6 to H by 0|y or Res% ().

Let A be any subring of C consisting of algebraic integers such that Z C A and
let H be a family of subgroups of G.Then we consider the following four statements
with respect to 3.

(i)  If for any 0 € cf(G), 0|y € char(H) for all H € H,then 0 € char(G).

(ii)  If for any 0 € cf(G),0|u € charo(H) for all H € H,then 0 € char4(G).

(i) S yegclchar(H)}E = char(G) where {char(H)}C is the set of all gen-
eralized characters of G of the form ¢* (the generalized character of G induced by
$) with ¢ € char(H).

(iv) Each elementary subgroup of G is contained in some cojugate of some
subgroup belonging to 3(.

These statements are equivalent(See the Introduction in [7]). Proofs of (i)
&> (iii) and (ii)<=>(iii) are obtained by Brauer’s proof of Theorem 3 in [1] and
by using two formulas (i) of (38.5) Theorem in [2] and lg = 3 apA} where
ag € Z, g € char(H) and H € 3. In [4] J.A.Green gives a proof of (iii) = (iv)
by using Frobenius’s formula for induced characters, in order to prove (i)=(iv)
(that is, the converse to a theorem of R.Brauer). In [7] the present author gives
a proof of (ii)==(iv) in case ¢ € A where ¢ is a primitive |G|th root of unity, by
making an application of the characteristic class functions of G. We want to get
a direct proof of (i)== (iv) but it seems to be difficult to get its proof.

In this article we intend to give a proof of (iii)==(iv) by using Mackey decom-

position theorem ( (44.2)Theorem in [2]).



2. Proof of (iii)=(iv)

Let € be a |G|th root of unity and A = Z[e] be the subring of C' generated by ¢

over Z. Then we have

Lemma 2.1  Let E =<y > xP be a p—elementary subgroup of G where P 1is
a p—group and < y > is a p'—group and E; be a proper subgroup of E. Let 0 be

any generalized character of E,. Then we have
IndE,(0)(y) = 0"(y) € pA

where IndZ. (0) denotes the generalized character of E induced by 0.

Proof. If y ¢ E,then by the definition of an induced character, we can
casily show that 6*(y) = 0 € pA. Hence we may assume y € Eo,. Then we can
write E, =<y > x P, where P, = PN E, and P, is a proper subgroup of P. Let
P =J~, t;P, be a decomposition of P into disjoint left cosets with respect to F.
Then E = |J_, t:;E, is a decomposition of E into disjoint left cosets with respect

to E,. Hence we have

0*(y) = S0, 0(t7 yti) = nb(y)

Since n = [P : P,] and p|n, we have 0*(y) € pA. Thus the proof is complete. &

Remark. The above lemma may be similar to the lemmas which are stated
in [3] and [6] (See (15.29) Lemma in [3] and Lemma 11 at page 85 in [6]).But it
is essentially different from those lemmas because in Lemma 2.1 we only consider

a generalized character of a proper subgroup of an elementary subgroup of G,
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instead of a generalized character of a subgroup H of G where H does not contain
any conjugate of a given elementary subgroup of G.1t seems that a proof of Lemma

2.1 is easier than the proofs of the two previous stated lemmas.

Proof of (iil)=>(iv) Let 3 be a family of subgroups of a finite group G
which satisfies (iii) and let E =< y > x P be a p—elementary subgroup of G for a

p'—element y and a p— group P. By assumption (iii) we have

lg = ZHefI{ Z,\ GH A ["d?}(A)

where agy € Z and A € char(H).
Assume by way of contradiction that £ is contained in no conjugate of a sub-
group belonging to H. By Mackey decomposition theorem ((44.2) Theorem in [2])

we can write

Resg(lg) =1l = ZHefH Yoy GHN Resg(lnd%(x\))
= EHef}( E/\ ag\ EteT I”dfltnE (MmenE)

where T' is a full set of the representatives of all (H, E') double cosets in G.
Since E is contained in no conjugate of a subgroup belonging to H, H'N E is a

proper subgroup of E. Therefore by Lemma 2.1 we have

Indfg (Mange)(y) € pA.

Hence 1g(y) € pA. This is contrary to 1g(y) = 1. Hence the result follows. [ |
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This article is a continuation of my article “On isomorphisms of a Brauer character
ring onto another ”,(Tsukuba J.Math.20(1996),207-212).In this article we state
a necessary and sufficient condition under which an isomorphism X of a Brauer
character ring onto another preserves an inner product. We also state the relations

between A and blocks of group algebras of finite groups.

1. Introduction

Throughout this article G,Z and @ denote a finite group,the ring of rational
integers and the rational field respectively. Moreover we write Z to denote the
ring of all algebraic integers in the complex numbers and @ to denote the algebraic
closure of @) in the field of complex numbers. For a finite set .S, we denote by |S5|

the number of elements in S.
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Let Irr(G) = {x1, ..., xn} be the complete set of absolutely irreducible complex
characters of G. Then we write ZR(G) to denote the Z—algebra spanned by
X1, Xn-That is, ZR(G) = {0 aixi | ai € Z,(i =1,...,h)}.

For two finite groups G and H, let A be a Z—algebra isomorphism of ZR(G)

onto ZR(H). Then we can write

Axi) = Z;'l:l az’jX;‘, (t=1,..,h)

where a;; € Z and Irr(H) = {x},...,X,}. In this case we write A to denote the
h x h matrix with (i, 7)— entry equal to a;; and say that A is afforded by A with
respect to Irr(G) and Irr(H).

As is well known , concerning the isomorphism A the following statements hold.
These results seem to be most important.

(1) |Ca(ci)| = |Culcy)l, (i =1,..,h) where {c1,...,cx} and {c'l,,...,c;l,}
are complete sets of represehtatives of the cojugate classes in G and H respectively
and ¢; > c:_, , (i=1,...,h). ( The definition of ¢; EN c;., will be stated in the case
of modular representations of finite groups in section 2.)

(ii) A is unitary where A is the matriz afforded by A with respect to Irr(G)
and Irr(H).

By using this result Weidman and Saksonov proved independently that if ZR(G)
is isomorphic to Z R(H) for two finite groups G and H, then the character tables
of G and H are the same.

(iii)  With respect to an inner product, (xi,x;)a = (Axi), A(x;))# for xi,x; €
Irr(G).

(iv) Concerning the blocks of modular representation theory, if x; and x;
are in the same block of G, then x;, and X;-/ are in the same block of H where
he 2 x;, , (1=1,...,h). (The definition of x; A X;/ will be stated and this result

will be proved in section 2.)



In general, concerning an isomorphism A of a Brauer character ring onto another,
the above statements not always hold.

In this article our main objective is to give a necessary and sufficient condition
under which some of the above statements hold and a sufficient condition under
which the above statements (ii) and (iv) hold, concerning an isomorphism X of a
Brauer character ring onto another.

From now on, when we consider homomorphisms from an algebra to another,

unless otherwise specified, we shall only deal with algebra homomorphisms.

2. Preliminaries

We fix a rational prime p and use the following notation with respect to a finite
group G.

Go: the set of all p—regul;ar elements of GG

Cl(G,) = {¢€, = {1},...,€, }:the complete set of p—regular conjugate classes in
. ‘

{e1,-, ¢} a complete set of representatives of €, ...,&, respectively

IBr(G) ={p1 =1,...,¢0.}: the complete set of irreducible Brauer characters of
G which can be viewed as functions from G, into the complex numbers.

For any subring R of the field of complex numbers such that 1 € R, we write
RBR(G) to denote the ring of linear combinations of ¢y, ...,¢, over R.That is ,
RBR(G)={)"I_jaipi | i€ R,(i=1,...,7)}. In particular we use the notation
BR(G) instead of ZBR(G) and say that BR(G) is the Brauer character ring of
G.

We are given two finite groups G and H. For G and H we assume that there
exists an isomorphism X of ZBR((¥) onto ZBR(H). Then it follows that the rank
of BR(G)= the rank of BR(H) and |CI(G,)| = |CI(H,)|.

8



We also can extend A to an isomorphism \ of @BR(G) onto @BR(H) by lin-
earity.

Here we use the following additional notation.

Cl(H,) = {¢; ={1},...€.}

{e; =1,...,c.}: a complete set of representatives of €, ...,&, respectively.

[Br(H) = {¢,, ..., 01}

{f1,.-, f+}: the complete set of characteristic class functions on G, where f;
corresponds to &; , (i = 1,...,r) (see Definition 2.1 in [4]). |

{fi,.- fi}: the complete set of characteristic class functions on H, where f;
corresponds to €; , (i =1,...,7).

By Lemma 2.2 and Lemma 2.3 in [4], it follows that f; € QBR(G) and A(S) is
a characteristic class function on H, , (i = 1,...,7).

Now we define a bijection from CI(G,) to CI(H,) through the isomorphism \ as
follows. For a p—regular conjugate class €; of G, €; corresponds to a characteristic
class function f; on G, and :\( fi) is also a characteristic class function fi', on H,

which corresponds to a p—regular cojugate class C:., of H. Here we assign Q:;,

to &;,(i = 1,...,,7). Thus we get one-to-one correspondence between Cl(G,) and
Cl(H,):
¢ €6 — fi — Mfi) = fi —€, 3¢,
whered —s i’ | (i=1,.., r) is a permutation. In this case we write ¢; - c, (1=
L.,r).
Keeping the above notation we give the following lemma concerning the Brauer
character table of G. This lemma plays a fundamental role in proofs of Theorems

2.2 and 3.2. But a proof of this lemma is not given in [4] and [5] and so we give a

proof.



Lemma 2.1.  (¢i(¢)) = (A(goi)(c;,)) (r X r matrices) where c; EN c;., (7=
L.r).

Proof. Since we can write f; = Z;zl bijoi,bi; € Q,( =
fo= Af) = > i=1 bijA(p;). Hence we have

1,...,7), we have

fr Pr f" ’\(90")

where B = (b;;) (an r X r matrix).Since ; 2 c;., (4 =1,...,r),we have fi(c;) =

8;; and f;,(c;.,) = ;. Hence

(o)

fie:) Foley)
: = : = | 1| is the vector with only 7~th entry equal to 1

firle) Fllen)

\0/

and others equal to 0.

cy)

Therefore B . Since B is regular, we get ¢1(c¢;) =

(cx)
)\(gol)( )y (i) )\ a), (1 —1 .,7). That s, (@;(c;)) = (A(goi)(c;.,)).Thus

the proof is complete. B

Now we return to an isomorphism X of ZR(G) onto ZR(H). Then |G| = |H|
and by Saksonov’s theorem we have A(x;) = c,-X;,,(z' = 1,...,h) where Irr(G) =
{Xts-Xxn}, Irr(H) = {x}, ., X»} and the ¢; are roots of unity. In this case we

write y; A X:., ,(1=1,..,h). Then we have
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Theorem 2.2. If xi and x; are in the same block of G for x;,x; € Irr(G),
then X;/ and X;/ are in the same block of H where x, A x;, (t=1,..,h).

Proof. If we set §(x;) = X:., ,(t = 1,...,h), then 0 is also an isomorphism
of ZR(G) onto ZR(H), because X(x;) = eix:., ,(1 = 1,...,h) (see the proof of
Theorem 1.2 (ii) in [5]).

Let CI(G) = {¢ = {1},...,€,} and CI(H) = {¢,...,€,} be complete sets of
conjugate classes in G and H respectively. Then by the lemma which corresponds
to Lemma 2.1 in ordinary representations of finite groups, we have x;(c;) = X ()
where ¢, €€, ¢ €€, and ¢ 4 ¢y (k = 1,..,h). Since xi(1) = xi(a1) =
X;,(cll,,) < x:,(l) and X:.,(l) = xi(c;) £ xi(1) where €] 31 N ¢y €€y, we have
xi(1) = X;,(l). Therefore

ICelxiler) 1€ lxin(cn)

= : , (k=1,...,h
() om0 )
In a similar way we have
y €IN "I ,H
Selxslen) _ NGbolen) oy

x;(1) Xjr(1) ’

Since x; and x; are in the same block of G, by (85.12) Corollary in [1]

€elxi(er) _ 1 €lx;(er)
xi(1) ()

where (7) is a maximal ideal of a complete discrete valuation ring in a p—

(mod(w)) , (k=1,..,h)

modular system of G. Therefore we have

i) _ b (6)
xa() T x()
By (85.12) Corollary in [1], X:., and X;-/ are in the same block of H. Thus the

(mod(m)) , (k=1,..,4).

result follows. H
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3. Main theorems

We keep the notation in section 2. Let G and H be two finite groups and let \ be
an isomorphism of ZBR(G) onto ZBR(H) such that €; 3 ¢; 2 c:., GQ;, , (1=
1,.,7).

We write m, to denote the vector with i—th entry equal to |Cg(c;)|, (the
p'—part of |Cg(c;)|) and m;, to denote the vector with 7—th entry equal to IC’H(c:.,)|p,

(t=1,...,r). Then we prove
Theorem 3.1. In the above situation we have my = m;,,.

Proof. Let f; be the characteristic class function on G, which corresponds
to &;, (That is, fi(c;) = &;;). Then f; is written as a Q—linear combination of
Ny --> My Where ny,...,n, are the principal indecompoable characters of G which

corresponds to ¢y, ..., ¢, respectively. That is,

1 . .
fi= m ijl eilcn; , (=1,.,7).

By Theorem 61.4(2) in [2] we can see that p®|Ca(c;)|A(f.) is a linear combination
of 1y, ...,n. with coeficients of algebraic integers where 7;,...,n. are the principal
indecomposable characters of H which corresponds to ¢, ..., o respectively and
p® is the order of a Sylow p—subgroup of H.

On the other hand, since ¢; > ch, it follows that A(f;) is the characteristic class

function f:, on H, which corresponds to (‘:;.,. Hence we have

p*|Cq(c:)

pICae) = Tel 5 S,

P*|Cq(ci)l
Cr(c)
integer. Hence we have |Cy(ci)|y | |Ca(ci)ly. By considering A=t : ZBR(H) —

The coefficient of n; in the above formula is equal to and is an algebraic

12



ZBR(@) (the inverse of ), in a similar way we can obtain 1Cale)ly | |Crlci)|p-

Hence we have |Cg(c;)|, = ICH(C;/)IPI. This completes the proof. &

Let G and H be two finite groups with Cartan matrices C and C’ respectively.
Let A be an isomorphism of ZBR(G) onto ZBR(H) and A = (a;;) be the matrix
afforded by A with respect to IBr(G) = {1, ...,0.} and IBr(H) = {y,...,.}.
Let m1,...,n- be the principal indecomposable characters of G which correspond to

@1, -, @y respectively and let n;,...,n, be the principal indecomposable characters
of H which correspond to ¢y, ..., ¢, respectively.

We set Cl(G,) = {€,, ...,¢, } and CI(H,) = {€},...,€.} and assume that ¢; > c
where ¢; €¢; ,c:., 6(’::./ (1 = 1,..,7). We write m to denote the vector with
1—th entry equal to |Cg(c;)| and m’ to denote the vector with i—th entry equal to
ICr(c:)] , (i =1,...,r).

We use the common notation X* for the conjugate transpose of a matrix X.

For @)—valued class functions f and g on G or G,, we define an inner product

(f,9)e as follows

' 1 N
(f,9)6 = I_GTI Ez‘eGo f(z)g(z).

Then we have the following two Theorems 3.2 and 3.4.

Theorem 3.2, With the above notation the following conditions are equivalent:
(i) m=m'
(ily A*CA=C"

(l”) (‘Pz‘»%‘)é} = (/\(QO,‘),)\((PJ‘))}{ ) (27] = 1,...,7‘).
Proof. A proof of (i)<=> (ii) is given in [4].

13



A proof of (i) = (iii). Since m = m’, we have |G| = |H| and |&;| = ]@;,l

(1=1,...,7). By Lemma 2.1 ¢;(¢;) = )\(c,oi)(c;c,) ,(k =1,...,7).Therefore we have

(#22)= 157 Then [Soilcir(en)
= |71ﬂ Yoret 1€ M) ()M (2)(€) = (Mei) M)

A proof of (iii)==(ii).  Since C’ is the Cartan matrix of H, we have

Here we set C' = (c¢;;) and (C’)™! = (c;;). By assumption (s, ;) = M), M)y

we have

(i i) = (i 2o ciepr)a = (M), oy i (n))g =
(ij aij"P;'a Ek,l Cjkaklsoz)}r = (Ej' aij'ﬂo;'a Zk,l Cikari(do,, c;;nnw’n))’H =

2051 kotm @i Cik TR (Prs T ) (3.1)
Since (i, n;)g = 6;; and (go;,,n:n)}, = 0,1, by the formula (3.1) we have
((Ioia nz)lG = Zk,l,m cikmcz;naim =1
(P615)6 = Dot gm CikTRIClp i =0, (i % 7).

Therefore we have CA(C")™'(*A) = I (an identity r x r matrix).Hence CA =
(*fA)7'C" . *ACA = C'. That is, A*CA = C". This completes the proof. H

We don’t know any necessary condition under which A is unitary. It seems to
be difficult to find its condition because there is an isomorphisms of Z BR(G') onto
ZBR(H) even if |G| # |H| ( see Remark in the end of this section). But we can
give a sufficient condition under which A is unitary. For example if CA = AC",

then by Theorem 3.2 in [4] it follows that m = m’ and A is unitary.
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We can easily prove the following corollary.

Corollary 3.3.  Ifm = m’, then the following conditions are equivalent:
(i) CA=AC

(i) A is unitary.

Theorem 3.4.  IfCA = AC', then we have

i) M) = eicp:., where the €; are roots of unity and i — ;' (1=1,..,7)is
a permutation. ( In this case we write ¢; 2 Yoy (E=1,..,7))
| (ii)  The Brauer character tables of G and H are the same.

(ii)  With a suitable arrangement of rows and columns, C = C'.

(iv)  A(mp) = em:., where the €; are roots of unity and i —s ¢’ (t=1,..,7)is
the permutation in (i). (In this case we write 7 KN 77;,, (i=1,..,r).)

(v)  Ifmi and n; are in the same block of G, then 77;, and 77;., are in the same
block of H where n, 2 77;,, (t=1,..,r).

(vi) If i and @, are in the same block of G , then (,0:., and c,o;., are in the

same block of H where ¢, N c,o;,, (t=1,..,7).

Proof.  Proofs of (i) and (ii) are stated in [4].

Proofs of (iii) and (iv). By (i) of this theorem we have

!

M) = ey, (i=1,..,7).

Since p®A(n;) is a linear combination of Mys M, With coefficients of algebraic inte-
gers where p® is the order of a Sylow p—subgroup of H, by renumbering 77'1, . 7);

we may write
PUAM) = apmy 4 -+ am.,  ap €2 J(r=1,..,7)
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where 1 — ¢/, (i =1,...,r) is the above permutation. Then we have

P* = (2, p"m)a = (Mei), p° A1)y = e
0 = (@, *m)g = (M;), P M)y = @, (i # §)

Hence we have a; = Z;‘Tp“, aj =0 (i # j).Therefore we can see that A(7;) = égn;,
where ¢; = QTl is a root of unity (¢ = 1,...,r).
Next we prove that C = C’ with a suitable arrangement of rows and columns.

If we set C' = (c;;) and C" = (c;;), then

’

¢is = (0im5)a = (M), Am3)) = (i, €051 ) 51 = €i€5¢05.

If ¢ij # 0, then ¢;; and c;,j, are positive integers and e;Z;' is a root of unity. Therefore
Cij = c;,j,. If ¢;; = 0,then c;,j, = 0.

We set C' = (c;-,j,) where C' has an entry c;,j, at position (¢,7). Then C = '
and C’ is the Cartan matrix of H.

Proof of (v).  Since C = C' by (iii) of this theorem and n; and 7, are in the
same block of G by assumption, we can see by Theorem 46.2 in [2] that 7, and 77;.,
are in the same block of H where 7, 2 ny (t=1,..,r7).

Proof of (vi).  Since n; and ¢; are in the same block of G and n; and ¢; are in
the same block of G, n; and 7n; are in the same block of G because ; and ¢; are
in the same block of G. By (v) of this theorem 7; and 77;-, are in the same block
of H where n, EN M (t =1,...,7). Therefore ¢, and c,o;, are in the same block

of H. Thus the proof is complete. B

Remark. If CA # AC', (v) and (vi) of Theorem 3.4 do not hold. We can
give a counterexample. We consider the case p = 2. Let G = S, be a symmetric
group on 4 symbols and H = Dg be a dihedral group of order 12. Dg is generated

by two elements a, b such that «® = 1,b7'ab = a"!,62 = 1. Then
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Cl(G,) ={€; = {1},&; = 3 — cycles}
Cl(Ho) = {€, = {1},&, = {a,a"}}
and we have the following Brauer character tables of G and H/(see the examples

of §91A and §91B in [1]).

(o ¢ |
er| 141 e 11
P2 | 2| -1 pa | 2| -1

where I Br(G) = {y1,¢;} and IBr(H) = {¢},04}.

We set A(¢;) = ¢; (i = 1,2). Then A is an isomorphism of ZBR(G) onto

— 10
ZBR(H)and A = (the matrix afforded by A).Then C A # AC’ because

01
C and C' are different.

There is only one block B with respect to Sy and there are exactly two blocks
B, B, with respect to Dg.Therefre we can see that ©1,92 € B but ¢, € By, p, €

B, and 1,1, € B but n, € By, ny € B,.
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On the Extensions of Group Representations

over Arbitrary Fields II

Kenichi Yamauchi

1. Introduction

Let G be a finite group with N <G, and let L be any field. An L-representation
X of N is said to be invariant in G, if for every g € G, the representation ¢
defined by X9(n) = X(gng~!) is similar to X.

I.M.Isaacs proved the following theorem which is a generalization of Gallagher’s
theorem. (See Theorem A of [4]).

Let N QG be a Hall subgroup and L be an arbitrary field. Then every invariant
irreducile L-representation of N is extendible to an L-representation of G.

And further, in the case that char(L)=0, I.M.Isaacs proved the following theorem

which is the strengthen version of the above theorem. (See Corollary 6.4 of [4]).

Theorem 1.1.(L.M.Isaacs) Let N <G and let X' be an invariant irreducible L-
representation of N, where L is an arbitrary subfield of an algebraically closed field
E of characteristic zero. Let o be an irreducible E-constituent of X and assume
that (|G : N|,a(1)o(a)) = 1,where o) is the determinantal order of a. Then
X extends to an L-representation of G which has v as an E-constituent,where

v = (&)° and & is the canonical extension of a to the inertia group Ie(a).

If we don’t assume that (|G : N|,o(a)) = 1,then we wonder how Isaacs’s theorem

19



changes. In this paper we intend to consider the extensions of invariant irreducible
L-representations of normal subgroups,when (|G : N|,a(1)) = 1 and L is an
arbitrary field.

In section 2,we will consider the following problem.That is, let N < G and X
be an invariant irreducible L-representation of N.Suppose that X extends to an
L-representation A’ of G.Let a be an irreducible E-constituent of X and 3 be an
irreducible E-constituent of A’|7 ( the restriction of &’ to T),where E D L is an
algebraically closed field and T = Ig(e) is the inertia group of @ in G. Then we
will study the relation between o and 8. (See Theorem 2.3.)
| In [5], we gave the necessary and sufficient condition on which an invariant
irreducible L-representation X’ of N extends to to an L-representation of G , 1N
the case that the Schur index of an irreducible E-constituent of X’ is equal to 1.

In section 3, we will consider the the removal of the assumption that the Schur
index of an irreducible E-constituent of X' is equal to 1.(See Theorem 3.1.)

Throughout this paper G denotes always a finite group with N G,Z the ring
of rational integers, E an algebraically closed field with E D L being an arbitrary
field. Finally we note that the definitions and the notations in this paper are the

same as those in Isaacs’s paper [4].

2. Semi-standard extensions and crossed representations

Let E be an algebraically closed field. We write Irrg(G) to denote the set of
irreducible E-characters of G.Suppose L C E is an arbitrary field. Then G(E/L)

permutes /rrg(G) into finite orbits.

Now we define an L-semi-invariance.
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Definition 2.1. Let N < G and a € Irrg(N). Then we say that « is L-semi-

invariant in G if its Galois orbit over L is G-invariant.

Definition 2.2. Let N <G and let a € Irrg(N) be L-semi-invariant in G,where
E is an algebraically closed field and L C E is an arbitrary field.Let T = Ig(a)
be the inertia group of a in G.Then we say that 8 € Irrg(T) is a semi-standard
extension of « provided that

(i) B is an extension of «

(ii) B is L-semi-invariant in G.

In particular we say that a semi-standard extension 3 € I rrE(T) of a is a
standard extension provided that L(a) = L(8), where L(a) and L(B) are the
fields generated over L by the values of @ on N and by the values of BonT

respectively.

Let N <t G and assume that o € Irrg(N) is L-semi-invariant in G and (1G -
N|,mp(a)) = 1 where E is algebraically closed ,L C E,and myr(a) is the Schur
index of a over L. Let T' = I5(a) and let X be an irreducible L-representationof N
having o as an E-constituent so that /X is invariant in G.Suppose that X extends
to an L-representation X’ of G.Let B € Irrg(T) be an E-constituent of X’|7 (the
restriction of X' to T') such that 8|y has « as a constituent.

Then we have the following theorem.

Theorem 2.3. In the above situation we have

(1) If char(L)=0,then B is a semi-standard extension of o and we have
mr(e)|L(a) : L| = my(B)IL(B) : L|.

In particular B is a standard extension of o if and only if mp(a) =mp(f).
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(i1) If char(L)=0 and L contains a primitive m-th root of unity where m
is the exponent of (T/N)/D(T/N) and D(T/N) is the commutator subgroup of
T[N ,then (3 is a standard extension of a.

(iti)  If char(L)# O,then B is a standard extension of .

Proof. (i) We write trX and trX’|r to denote the characters of X' and
X'|r respectively. Since X and X’|r are irreducible L-representations of N and T
respectively, trX and trX’|r decompose as follows

tr& =m(ar+ -+ e),m =mg(a),eq = a,r = |L(a) : L] - (20)

tr&llr =n(Br+ -+ Bs),n =mp(B),6 = B,s = |L(B) : L| - (2.2)

where o; € Irrg(N)(i = 1,--- ,7) and B; € Irrg(T)(j = 1,--- ,$) are distinct
and constitute orbits under G(L(a)/L) and G(L(B)/L) respectively. (See Lemma
2.1 of [4].)

Since T' = Ig(a) is the inertia group of & in G, |y can be written as follows

BIn =ex,e>1,e€ Z - (2.3)

Here we will show that e = 1. By the formulas (2.1) and (2.2) we get

ensa(l) = mra(l) and so ens = mr e (2.4)

By Corollary 11.29 of [3] we get e | [T : N|.

On the other hand,by the formula (2.3),the assumption that char(L)=0,yields

that L(a) C L(B) and so we have
s =|L(B): Ll = |L(B) : L()||L() : L] = |L(B) : L(a)|r

Hence r divides s. Therefore by the formula (2.4), we can see that e divides m =
mp(e). The fact that e | |T : N| and the assumption that (|G : N|,mp(a)) =1
imply that e = 1 as claimed.By the formula (2.4) we get mp(a)|L{a) : L| =
m(B)L(B) : L.
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Since X'|r is the restriction of X' to T, it follows that 8 is L-semi-invariant in
(G. Hence (3 is a semi-standard extension of a.

In particular if we assume that 3 is a standard extension of a, then L(a) = L(3)
and so we have r = 5. By the formula (2.4) and e = 1, we have mz () = mz(8).

Conversely if we assume that mp(a) = mg(f3), then we have s = r by the
formula (2.4) and e = 1. Hence we obtain L(a) = L(8) because L(a) C L(B)
holds. Therefore [ is a standard extension of a.

(ii) Keeping the notations in (i), we will show that |L(8) : L(a)l divides mp(«).
By the formula (2.4) and e = 1, we have ns = mr. In the proof of (i) we also
showed that s = |L(8) : L(a)|r and so we have n|L(B) : L(a)| = m. Hence
|L(B) : L()| divides m = my(a) as claimed.

On the other hand we will show that |L(8) : L(«)| divides |T' : N|. For any
o € G(L(B)/L(a)), B° is an extension of a and so by Corollary of [2](p 225),there
is a unique linear character p, of T/N such that 8° = pu,B. Here we set H =

{tolo € G(L(B)/L(a))}-

Then H forms a subgroup of the group ﬁz\v consisting of all linear characters

of T/N. In fact for 0,7 € G(L(B)/L(c)), we get

BT = (/‘UB)T = pyf7 = )ua(/-"Tﬁ) = po P

because L contains a primitive m-th root of unity. Hence we have p,p, = o, € H
and so H is a subgroup of m Therefore we can see that |L(3) : L(e)| = |H]|
divides |T': N| as required.By the assumption that (|G : N|,mp(e)) = 1,it follows
that|L(8) : L(a)| = 1. Consequently f is a standard extension of c.

(iii) Since char(L)#0,we get mz(e) = mp(8) = 1 by Theorem 9.21 (b) of [3],and

so trX and trX’|r decompose as follows
trX¥ =0y + -+ op,0q =a,r = |L(a) : L]
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tT(Y/IT =ﬁ1 + +ﬂ37,81 =:8a3 = 'L(IB) : Ll

Since By =ea,e> 1,e € Z and X'|y = X, we get
1= the multiplicity of o in X > e.

Hence ¢ = 1 and so we have r = s. Therefore L(a) = L(B) holds because
Bln = a. Consequently § is a standard extension of .

This completes the proof of Theorem 2.3. . Q.E.D.

 Remark. Let N < G and let @ € Irrg(N) be L-semi-invariant in G.Assume
that o has a standard extension 8 € Irrg(T) where T = Ig(a). Then we note
that mr(a) = my(B) holds. In fact by setting T = G in Lemma 2.3 of [4],we can
see that my(8) divides my(a). Hence my(8) < mz(a). On the other hand, since
L(a) = L(B) and B|n = a, we obtain my(a) < mr(8). Therefore mp(c) = my(B)
holds.

Let N <4 G and assume that o € Irrg(N) is L-semi-invariant in G where E
is algebraically closed and L C E. Let T = I5(a) and let X be an irreducible
L-representation of G having o as an E-constituent. Then we have the following

theorem.

Theorem 2.4. In the above situation, if o has a semi-standard extension
B € Irrp(T) such that my(a)|L(a) : L] = my(B)|L(B) : L], then X extends to an

L-representation of T having 5 as an E-constituent.

Proof. Let X' be an irreducible L-representation of T having 3 as an FE-

constituent.Then ¢rX can be written as follows
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tT'/? = mL(,B)(,Bl + e +/Bs)3131 = ﬁas = IL(/B) : L|

where the §8; € Irrg(T) (1 =1,...,s) are distinct and constitute an orbit under

G(L(B)/L). Hence we have

tr)é'lN = mL(ﬂ)(ﬂﬂN +-- ﬁslN)‘

For any o € G(L(B)/L(a)), 51’ |n = (B1|N)’ = o’ =  and so it follows that the
multiplicity of a in Xy is equal to ,

my(B)IL(B) : L(a)| = mp(B)L(B) : LI/|L(e) : L] = me(a)|L(a) : L|/|L() :
L| = mp(a).

Hence we have tr&X = tr./\?|N and so X is similar to A?'|N

The proof is complete. Q.E.D.

Remark. Hereafter we will treat the case that (|G : N|,a(1)) = 1. Since mp(c)
divides «(1) by Corollary 10.2 (h) of [3],we note that the condition that (|G :
N|,mr(a)) = 1 is automatically satisfied and so we can always apply Theorem 2.3

to our extendibility problems.

Now we define an F-crossed representation of G where F is a field, which is an

important technique for extending representations.

Definition 2.5. Let F' be an arbitrary field and let G act on F via field auto-
morphisms. This action induces an action of G on GL(r, F') for positive integer r.
Then we say that a map Z : G — GL(r, F') is an F-crossed representation of G,

provided that

Z(gh) = Z(g)*Z(h) for all g,h € G.
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For o € Irrg(N) we write oy to denote the determinant of c.

Let N <1 @ and let X be an irreducible L-representation of N which is invariant
in G where E is algebraically closed and L C E. Suppose a € Irrg(N) is an
irreducible E-constituent of X. Then o is L-semi-invariant in G and thus G
acts on L(a). Let XX denote the representation X when viewed as an L(a)-
representation of N and let Y be an irreducible constituent of X L@} which has o
as an F-constituent. Let X, be an irreducible L-representation of N having oy as

an E-constituent. Then'we have the following theorem.

Theorem 2.6.  In the above situation we assume further that the Schur index
mi(a) =1 so that « is afforded by an L(c)-representation Y. Suppose that (|G :
N|,a(1)) = 1. Then we have

(I)  The following conditions are equivalent.

(i) X extends to an L-representation of G.

(i)  The L(«)-representation oy of N extends to an L(a)-crossed representa-
tion of G with respect to the given action of G on L(a).

(I1) If X, extends to an L-representation of G, then X extends to an L-

representation of G.

Proof. (I) It is obvious by Theorem 2.3 of [5].

(IT) Since X, extends to an L-representation of (, we may apply Theorem
3.1 of [4] and conclude that oy extends to an L(ag)-crossed representation wg of
G. Since a is afforded by an L(«)-representation Y, we see that L{cy) C L(a).
Because (a9)y = (cq)? (See the proof of Theorem 3.2 (i) and (a®)q = (aq)” for
o € G(L(a)/L), it is clear that the action of G' on L(ag)with respect to which w,

is a crossed representation, is just the restriction of the original action on L(e)
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to L(cg). Therefore oy extends to an L(a)-crossed representation of G and so we
may apply (I) and conclude that X extends to an L-representation of G. The proof
is complete. Q.E.D.
If char(L)> 0, the Schur index mp(a) = 1 holds by Theorem 9.21 (b) of [3] and
so we can always apply Theorem 2.6 to the field L of prime characteristic. As an

application of Theorem 2.6 we will prove the following theorem. (See Theorem of

1)

Theorem 2.7.(B.Fein) Let N be a normal Hall subgroup of G and let L be an ar-
bitrary field with char(L)> 0. Let X be an invariant irreducible L-representation of
N.Suppose that (|G : N|,degX) = 1. Then X is extendible to an L-representation
of G.

Proof. (See the proof of Lemma 6.2 of [4]) Let a € Irrg(N) be an E-
constituent of X where E D L is algebraically closed. Since char(L)> 0, mp(a) =1
holds and so we have (|G : N|,a(1)) = 1 by the assumption that (|G : N|, degX’) =
1. Let X, be an irreducible L-representation of N having oy as an E-constituent.
Then we will show that X, extends to an L-representation of . Hence we may
apply Theorem 2.6 (II) and conclude that X’ extends to an L-representation of G.
In order to prove that &, is extendible to an L—representétion of G, by Theorem
2.4 of [4] it suffices to prove that ay has a standard extension because mz(a) = 1.
Since ay is L-semi-invariant in G, X, is invariant in G and so it follows that the
kernel of X, is a normal subgroup of G. Hence we may assume that X, is faithful.
Since all of the E-constituent of X, are Galois conjugate, they all have the same
kernel and it follows that «g is faithful and so N is cyclic of order equal to o(aa).

Let T' = Iz(ay) be the inertia group of a4 in G. Then N is central in T' because
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ag is faithful. Since N is a normal Hall subgroup of G, there is a subgroup K of
G such that T'= N x K (a direct product). We set 8 = oy X 1x € Irrg(T). Then

B is the canonical extension of ay to T'. This completes the proof of Theorem 2.7.

Q.E.D.

3. Characteristic zero

In Theorem 2.6 we assumed that the Schur index mp(a) = 1. To remove this

assumption we will state some variation of Theorem 6.3 of [4].

We fix an algebraically closed field E of characteristic zero and all other fields
considered in this section will be subfields of E. Let T be a normal subgroup of
G and assume that 8 € Irrg(T) is L-semi-invariant in G where L is a subfield of
E. Suppose that (|G : T|,8(1)) = 1 and IG‘(ﬁ) (the inertia group of B in G) is
equal to T. Let ¢ be a primitive n-th root of unity in E where n is the exponent of
G. Then there is a unique minimal field K, L C K C L(¢) such that |L(e) : K|
involves no prime dividing the Schur index my(8) because G(L(e)/L) is abelian
and mg () divides |L(e€) : L|. We fix K as above and set v = 3. Let X be an
irreducible L-representation of T having # as an E-constituent and let ) be an
irreducible K-representation of T having 8 as an E-constituent. Then we have the

following theorem.

Theorem 3.1.  In the above situation we have
(I) (i) The schur index mg(B) = 1.

(ii) B is K-semi-invariant in G.
(IT)  The following conditions are equivalent

(1) X eatends to an L-representation of G.
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(ii) mL(ﬁ) = mL(’Y)-
(i) Y extends to a K-representation of G.

(iv) (mg(B) =)mr(y) =1

Proof. (See the proofs of Theorem 6.3 of [4] and Theorem 4.1 of [5])
(I) (i) Suppose that p is a prime divisor of mg(3). Then p divides mz(B) by
Corollary 10.2 (f) of [3] and hence p { |K(€) : K|(= |L(e) : K

) by the choice of
a field K. Thus the Sylow p-subgroup of G(K(€)/K(8)) is trivial and Theorem
10.12 of [3] yields that p t mg(B). This contradiction implies that mg(8) =1 as
(claimed.

(i1) Since B is L-semi-invariant in G, by Lemma 2.1 of [4] G(L(8)/L) contains
a subgroup H which is isomorphic to G/T'. Since mp(8) divides (1) and (|G :
T, B(1)) = 1, we have that (|G : T|,mr(8)) = 1. Since G(K(B)/K) is isomorphic
to G(L(B)/L(B) N K), it follows that |K(8) : K| = |L(B) : L(B) N K|. Let M
be a fixed field of H. Then we have |L(8) : M| = |G : T|. If a prime p divides
|L(B) N K : L|, then plmy(B) and if a prime p divides |L(3) : L(B) N K|, then
p1mp(B). These facts yields that M is a subfield of L(83) which contains L(8)N K
as a subfield. Therefore G(K(3)/ K) contains a subgroup whose restriction to L(£3)
is equal to H. This implies that 3 is K-semi-invariant in G.

(I1) (i)==(ii) Let 4’ be the irreducible E-character of G whose restriction to
T has (3 as a constituent. Then we get

1< (8,7 Ir)r = (6%7)e = (1,7)e - (3.1)

Since v = B¢ € Irrg(G), we have v = 4’ by the formula (3.1). Therefore ~y is the
only irreducible E-character of G whose restriction to T has 3 as a constituent. If
X extends to an L-representation X’ of G, then it follows that v is an E-constituent

of X' and trX and trX’ decompose as follows

29



trX =mp(B)(B+---), tr&'=mp(y)(y+---)

Since (3,v|r)r = 1, the above equations yield that my(F) is equal to my(y).

(ii)=>(i) Assume that mp(8) = mg(y). Since T is equal to I5(83), we can
consider 3 as a standard extension and so by Theorem 2.4 of [4], it is obvious that
X extends to an L-representation of G.

(iii)<=>(iv) The proof is quite similar to that of (i)<=(ii).

(ii)==>(iv) Assume that mr(8) = mr(y). Then we claim that mg(y) = 1,
for suppose that p is a prime divisor of mg(v). Hence p divides mp(y) = mp(f)
by Corollary 10.2 (f) of [3] and so p 1 |K(€) : K|. Thus the Sylow p-subgroup
of G(K(€)/K(v)) is trivial and Theorem 10.12 of [3] yields that p { mg (7). This
contradiction implies that mg(y) = 1 as claimed.

(iv)=>(ii) The proof that m(B) divides mg() is similar to the beginning of
the proof of Theorem 6.3 of [4] and so we omit its proof.

Conversely we will show that mp(y) divides mp(8). Since mg(y) = 1, mp(y)
divides |K : L| by Corollary 10.2 (g) of [3]. By the choice of K it follows that all
prime divisors of |K : L| are divisors of mp () and thus divide 5(1). These primes
do not divide |G : T'] by the assumption that (|G : T|,5(1)) = 1 and so mp(y)
divides m(8) by Lemma 2.3 of [4] and the fact that § is a standard extension.

Therefore we have mr(3) = mp(y). This completes the proof of Theorem 3.1.
Q.E.D.

As an application of Theorem 3.1 we will prove Theorem 1.1 (I.M.Isaacs).

Proof of Theorem 1.1. To begin with we note that o has a standard ex-
tension & such that o(a) = o(&). (See the note below Definition 2.2 of [4]). By

Theorem 2.4 it follows that X extendsto an L-representation X of T = Ig(«)
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having & as an E-constituent. To prove that X extends to an L-representation
of G, by Theorem 3.1 (II) (iii) it is no loss to assume that the Schur index
mr(é&) = 1. Let X, be an irreducible L-representation of T having &, as an
E-constituent. Then by Lemma 6.2 of [4] it follows that X, extends to an L-
representation of G because (|G : N|,0(«)) = 1 and o(a) = o(&). By Theorem

2.6 we see that X extends to an L-representation of G. The proof is complete.

Q.E.D.

Let N <« G and let X be an invariant irreducible L-representation of N where
L C E is an arbitrary field. Suppose that X' extends to an L-representation of G.
Let o € Irrg(N) be an E-constituent of X'. Then by Theorem 3.1 of [4] we can
see that T extends to an L(a)-crossed representation of G with respect to the
given action of G on L(a) where m = mp() is the Schur index of @ over L. (See
also the proof of Theorem 2.3 of [5])

Conversely we will consider the following situation. Let o € Irrg(N) be L-
semi-invariant in G where L C E so that G acts on L(«) and assume that (|G :
N|,a(1)) = 1. Suppose that oy extends to an L(c)-crossed representation w, of
G with respect to the given action of G on L(a). We set T = Ig(a) . Since
each element of T acts trivially on L(a), for any z,y € T an equation ws(zy) =
wa(z)wa(y) holds. That is, wy|r (the restriction of w, to T') is an extension of ay.

Then we have the following theorem.

Theorem 3.2.  In the above situation we have
(i) There is a unique character 8 € Irrg(T) such that By = a and By = walr.
(In this case we say that § is determined by o and w,.) In addition B is L-semi-

invariant in(G.
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(i) Let X be an irreducible L-representation of T having 8 as an E-constituent
where B is determined by o and w,. Then X extends to an L-representation of G.
(ili) Let B € Irrg(T) be the character which is determined by o and w,, such that
my(@)|L(e) : L| = mg(B)|L(B) : L| and let X be an irreducible L-representation

of N having o as an E-constituent. Then X extends to an L-representation of G.

Proof. By Theorem 5 of [2], it is obvious that there is a unique character
B € Irrg(T) such that 8|y = a and B4 = wa|r. Next we Will prove that 3 is
L-semi-invariant in G. Since e is L-semi-invariant in G, for ¢ € G' we can write
of = o’ for some o € G(L(«)/L). And there is an automorphism & € G(L(8)/L)

such that 6|y = 0. It follows that
Al = (BIn)" = o’ = a® and (8)s = (B4)° = (walr)® = (B2)°

because wy(z) € L(a) for every z € G.

On the other hand we get

Py = (BIn)? = o = o and (8%)4 = (B2)? = (walr)? = (walr)” = (Ba)°

because for every z € T

(B9)a(z) = detX9(z) = detX(gzg™') = Ba(gzg™") = (B4)*(z) and so we have
(B9)a = (Ba4)? where X is an E-representation of T' which affords 3.

By Theorem 5 of [2] we have 8% = 9. Consequently /3 is L-semi-invariant in G.

(ii) Since B is L-semi-invariant in (7 and I(3) is equal to T, for 8 we can take a
field K, L C K C L(e€) which we determined in Theorem 3.1 where ¢ is a primitive
n-th root of unity in £ and n is the exponent of G. Since Walr = By and wy is an
L{a)-crossed representation of @, 8, extends to an L(a)-crossed representation of

(. Consequently it follows that 8, extends to an K (3)-crossed representation of
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G because L(a) C L(B) C K(B) and B is K-semi-invariant in G' by Theorem 3.1
(I) (ii). Since the Schur index mg(8) = 1 by Theorem 3.1 (I) (i), we can see by
Theorem 2.6 and Theorem 3.1 (II) (iii) that X extends to an L-representation of
G.
| (i) Let X be an irreducible L-representation of T having 3 as an E-constituent.
Then we showed in (ii) that X extends to an L-representation of G. By the assump-
tion that my(a)|L(a) : L| = my(B)|L(B) : L|, we can see that X |y is similar to X
(See the proof of Theorem 2.4) Hence X’ extends to an L-representation of G. This

completes the proof of Theorem 3.2. Q.E.D.
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J.A.Green O EF D BI|FERA
AN E— TIERE HE L

GEAMIEL L, GORBUTTSTHERAC LTE2B - Lot 5, ¢ DRE
FHERDEIRE X1, X2, X0 £ T B0 Z ITHEBKSEDORTRT, AD 2) 2R
BHBEDP LMD C DEBOWBARE TS, EHLIIROEBELTEHRT S,

char(G) = G DIEER, chara(G) = {Th, aixila; € A,i = 1,2, ..., h},
cf(G) :=BREMEL IS G LOEBEELEDES, H:=GCORIWHBOES

ZOLEFRIZERRDEFHIZ LIS HONTHEHDTH B,

BE 1 RO (i),(i),(iil),(iv) EFEETH 5,

(i) ERD O € cf(G) Zxt L, 6|g(H ~DHIBR)E char(H) for all H € H 72 51,
b € char(G) TH 3,

(i) BB D 8 € cf(G) iZxt L. 0lg € chary(H) for all H € H 725, 6 €
chara(G) TH B,

(iii) X gen{char(H)}C = char(G)

(iv) G OFEFTOBEIIH BT IR MOBOBRICES NS,

LDTERT (i) <= (iii) R (ii) <= (iii) DFEHIL Braver DFEH 3 in[1] DA%
RABZIEH% D, Green I (i)==(iv) (i.e. Brauer ® Induction theorem D) & FE
2D, FHERIZEICBIY 2 Frobeniuus DARE VT (iii)=>(iv) DB % &
ZTWV3, &ﬁiitAad ZIT € 13 1 DFUR |G| FIR) DFAIZ, G DRt
BEACT, ()= (iv) DREAZ 52 7o, AU (1)=>(iv) OEBEOIEREAE L
DTER, ZHTHEECELWEBbhEd,

Hox DB ARIT Mackey decomposition theorem % FIV T (iii)==(iv) ® (Green ®
AEA L II R D) AFERAE 525 2 L TH B,

INDLIX AT ORI |G R#BEELLD LT 5,

Lemma 2 E=<y>xPiXGDp— EAMHSHET E, 13 EDEDORHPET
HdLTH, TDLEIE E, O— IR LT

Indg (6)(y) € pA

MN720 =0
(iii) = (iv) DEHADEXR

(iii) DIRTE & b
lo = Zaen Ta amy Indg(X)
Makey decomposition theorem & ¥
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Resg(lg) =1 =Y Henon GHA Resg(lnd}},(x\))
= 2HeH 20N CHN 2teT Indfan ()‘t|thE)

p— EARBERNHIIBTAWMOBDO LOXBIZ L EEFNVALIT HINEILE
DEDEIHETH D, Lo TLemma 2 £V

IndGg(M|genr)(y) € pA

EoT lg(y) e pA&RBD, ZHT 1p(y) =1 12T 3,
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