AVHRR データを用いた エアロゾル光学的厚さの導出 - その1:海上エアロゾルへの適用とその検討 -

○大堤 新吾, 朝隈 康司, 美濃村 満生, 久世 宏明, 竹内 延夫
千葉大学 環境リモートセンシング研究センター センサ/大気放射研究部門
千葉県千葉市稲毛区弥生町 1-33 (〒 263-8522)

Retrieval of aerosol optical thickness from AVHRR data – Part I : Application to sea surfaces and its valuation –

Shingo OTSUTSUMI, Koji ASAKUMA, Mitsuo MIMOMURA, Hiroaki KUZE, and Nobuo TAKEUCHI

Center for Environmental Remote Sensing(CEReS), Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522

Tel: 043-297-3852, Fax: 043-290-3857, E-Mail: sotsutsu@ceres.cr.chiba-u.ac.jp

[概要]

可視・近赤外の衛星データの大気補正において大気の影響を除去する際、エアロゾルの光学的厚 さと反射率の値が必要になる。本研究では、地上観測値を援用せずに衛星データのみを用いてこれら の物理量を推定する方法について述べる。NOAA AVHRR データ (チャンネル 1,2) により、反射率が ほぼ一定と考えられる海面上においてエアロゾルの光学的厚さを導出した。衛星が受光する放射輝度 の各成分を放射伝達コード (6S,MODTRAN) により計算し、衛星データから導かれる地表面直接反射 成分と、放射伝達コードから得られる値を比較した。この方法で得られた光学的厚さを、さらに、地 上観測のサンフォトメーターの値と比較した。また、推定した光学的厚さが 6S の場合と MODTRAN を用いた場合とでどの程度相違があるかを検討した。

今回は、関東地方の衛星データに絞って東京湾付近のピクセルについて検討した。利用したデー タは、1998年10月~1999年5月における NOAA-AVHRR ch.1/2 と、同時期に当センターで取得し たサンフォトメーターのデータである。

1. はじめに

衛星データから大気の光学的厚さと地表面反射率を導出する際に、衛星センサが受光する各放射 輝度成分が重要なパラメーターとなる。これまで報告されている衛星データを用いた光学的厚さの推 定方法 [1]-[3] では、大気モデル・エアロゾル分布を詳細に設定し、その条件に相当する放射輝度値の ルックアップテーブルを作成して解析に用いる。本報告では、エアロゾルモデルを予め設定し、放射 伝達コード (6S,MODTRAN)[4][5] を直接使用して放射輝度値を計算することにより、それにより衛 星データから比較的簡便に光学的厚さを導出する方法について述べる。

2. 方 法

2.1. 6S, MODTRAN における放射輝度成分と計算条件

6SとMODTRANでは計算される放射輝度成分の分け方は少々異なるが、基本的には次の4成分に分解できる[6][7]。①地上目標物反射光成分 (L_{tar})、②大気の散乱・吸収を受けない直達反射成分 (L_{gd})、③目標物周辺での反射光が散乱された単散乱成分 (L_{env})、④大気中でのみ散乱された成分 (L_{atm})。よって、センサに入射する全放射量 L_{total} は $L_{total} = L_{tar} + L_{env} + L_{atm}$ で表される。この4成分を利用して各チャンネルの中心波長における海上の光学的厚さを求めるが、今回検討した東京湾上空において、6Sと MODTRAN の計算条件は各コードのデータベースに存在するパラメータを用いた。大気分子パラメータには中緯度夏・冬モデル、エアロゾルパラメータには海洋性モデルを用いた。目標物としては海洋を選択し、その反射率は0.02(ch.1)、0.001(ch.2)とした。シミュレーションでは、波長 550nm での光学的厚さ τ_{550} を変数として反復計算を行った。なお、反射率については後述のようにその妥当性を別に検証した。

2.2. 直達反射成分 (Lgd) を利用する光学的厚さの推定

衛星データから光学的厚さを計算する方法は、以下の手順で行った。まず、衛星が観測する各チャンネルの放射輝度 Lobs は次式より計算される。

$$L_{\rm obs} = (DN \cdot S + I) \frac{F}{100\pi W} \tag{1}$$

ここで、DN:デジタルナンバー、S,I:校正係数、F:太陽光の分光放射照度、W:スペクトル応答関数の幅である。6S,MODTRANではパスラジアンス成分は $L' = L_{total} - L_{gd}$ として計算されるため、衛星の情報を含む直達反射成分 L_{gd}^{SAT} は、

$$L_{\rm gd}^{\rm SAT} = L_{\rm obs} - L' \tag{2}$$

と表される。次に、放射伝達コードで直接計算されるシミュレーション値の直達反射成分 L_{gd}^{RTC} は次 式で計算される。

$$L_{\rm gd}^{\rm RTC} = \frac{1}{\pi} \int \Phi(\lambda) E_{\rm s}(\lambda) \,\mu_s \exp(-\frac{\tau}{\mu_s}) \,\cdot\,\rho\,\exp(-\frac{\tau}{\mu_v}) \,d\lambda \tag{3}$$

ここで、 Φ :応答関数、 E_s :太陽放射照度、 μ_s :太陽天頂角の余弦、 μ_v :衛星天頂角の余弦、 τ :光学的 厚さである。 τ_{550} を変化させ、 L_{gd}^{RTC} と L_{GD}^{SAT} が一致する値 L_{GD} を反復計算により決定する。6S、 MODTRAN の 2 コードにおける ch.1/2 それぞれの L_{gd}^{RTC} と L_{GD}^{SAT} の関係 (反復計算結果)を Fig.1, Fig.2 に示した。傾き 45°の直線と交差する点が L_{GD} である。今回サンプリングした全ピクセルにお いて、このように L_{GD} を決定することが可能であった。以上より求めた L_{GD} を Lambert-Beer の法 則に基づく式、

$$r = \frac{1}{\sec \theta_{\rm s} + \sec \theta_{\rm v}} \ln(\frac{\pi L_{\rm GD}}{E_{\rm s} \rho \cos \theta_{\rm s} \cos \theta_{\rm v}}) \tag{4}$$

に代入することで、各チャンネルの中心波長での光学的厚さ τ が決定できる。ただし、 θ_s :衛星観測 角、 θ_v :太陽天頂角、 ρ :反射率である。

3. 結果と検討

3.1. AVHRR ch.1, ch.2への応用 (6S, MODTRANの比較)

前節の推定法を用いて、東京湾上のピクセルの τ を求めた。1998年10月から半年間のデータを 時系列的にまとめたものを Fig.3(ch.1)、Fig.4(ch.2)に示した。Fig.3は、ch.1のデータについ 6S と MODTRAN をそれぞれ用いて τ を算出したものと、同時期のサンフォトメーターによる計測値(波 長 630nm)とを比較したものである。6S とサンフォトデータを見ると、よい相関があり、相関係数は 夏季 (10月-3月)と冬季 (4月-5月)を区別して考えると 0.8 前後であった。また、冬季に比べ、夏季 のほうが光学的厚さは高い値をとっている。Fig.4 は、ch.2 について、6S と MODTRAN の2 コード による結果を比較したものである。同じ入力条件で計算したにもかかわらず τ の値が異なるのは、各 コードの計算過程で使用する近似式が異なるためと考えられる。今後、この結果を実測値と比較検証 する必要がある。

3.2. 海面反射率の検証

以上の解析では海面反射率 ρ を一定値に仮定したが、解析で得られた光学的厚さとそれに対応す る輝度値から、ρ の仮定の妥当性を評価することが可能である。そのためには、次式で示されるよう な大気補正の1次近似式を用いる。

$$\rho = \rho_0 \frac{L_{\text{obs}} - L'(\tau_{550})}{L_{\text{total}} - L'(\tau_{550})} \tag{5}$$

ここで、 ρ_0 としては放射伝達コードの入力パラメータである反射率の値を代入する。Fig.3,4 で求めた τ は、反射率 (ch.1 に対し 0.02, ch.2 に対し 0.001) を仮定した結果の光学的厚さである。この入力

パラメータである反射率を変化させると、L_{gd}も異なる値をとる (Fig.5)。そこで、最初の解析で求め られた輝度値を (5) 式に代入して反射率を求め、出発点に戻ってその反射率を再び放射伝達コードの 入力パラメータとして計算する、というように2重の反復計算をし、入力する反射率と、近似式から の反射率を比較し、収束した値を真の反射率とする方法が考えられる。

Fig.6 は、Fig.3 で求めた光学的厚さをもとに、さらに2回の反復計算により算出した ch.1 の東京 湾上の反射率である。過半数のピクセルの反射率が4回の反復計算で収束した。収束した値は0.02 前 後をとっていることから、最初に仮定した反射率0.02 は比較的よい値であったことが分かる。

4. おわりに

衛星データから東京湾上の大気の光学的厚さ・海面反射率を求めるために、6S と MODTRAN を 用いてシミュレーションを行った。AVHRR ch.1 から得られた光学的厚さ、サンフォトデータと比較 した結果、良い相関が得られた。今後の課題としては、①解析に用いるエアロゾルモデルの精度の検 討、②反射率を決定するまでのアルゴリズムの自動化、③ラジオゾンデ、ライダーデータ等の他の地 上観測値を利用した比較、④地表面反射率も考慮し、関東地方全域に渡る反射率の季節変動を検討す る、等の事柄が挙げられる

謝辞 サンフォトメータのデータを提供して頂いた大気放射研究分野の高村民雄教授、金田真一氏 に感謝致します。

Figure 1: Relation between grand direct radiation L_{gd}^{SAT} and L_{gd}^{RTC} calculated by 6S. (a) AVHRR ch.1 (April 14, 1999) and (b) ch.2.

Figure 3: Variation of optical thickness. The satellite value (around Chiba on November,1998-May,1999) is compared with the sunphotometer value.(ch.1)

Figure 4: Variation of optical thickness. The value caluculated with 6S (around Chiba on November, 1998-May, 1999) is compared with the value caluculated with MODTRAN. (ch.2)

Figure 5: Relation between L_{gd}^{SAT} and L_{gd}^{RTC} for various sea surface reflectance.

Figure 6: Variation of sea surface refrectance around Chiba on November, 1998-May, 1999. (ch.1)

References

- [1] Nakajima, T. and A.Higurashi: AVHRR remote sensing of aerosol optical properties in the Persian Gulf region, the Summer of 1991, J. Geophys. Res., 102, 16935-16946, 1996.
- [2] Kaufman, Y.J., R.S.Fraser, and R.A.Ferrare: Satellite Measurements of Large-Scale Air Pollution: Methods, J. Geophys. Res., 95, 9895-9909, 1990.
- [3] Michael I. Mishchenko, Igor V. Geogdzhayev, Brian Cairns, William B. Rossow, and Andrew A. Lacis: Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results, Appl. Opt., Vol. 38, No.36, 7325-7341, 1999.
- [4] Eric F.Vermote, Didier Tanre, jean Luc Deuze, Maurice Herman and Jean-Jacques Morcrette : Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An Overview, IEEE Trans. Geosci. Remote Sensing, Vol.35, No.3, 675-686, 1997.
- [5] A. Berk, L. S. Bernstein, D. C. Robertson, MODTRAN: A Moderate Resolution Model for LOWTRAN 7, GL-TR-89-0122, 1989.
- [6] 大堤、朝隈、美濃村、金田、久世、竹内: AVHRR 画像を用いた関東域におけるエアロゾルの光 学的厚さの導出、(社) 計測自動制御学会、第 25 回リモートセンシングシンポジウム講演論文集、 41-44、1999
- [7] 千葉大学環境リモートセンシング研究センターセンサ/大気放射研究部門センサ研究分野:研究報告集題4号衛生データにおける大気補正と大気観測、2000年1月
- [8] Jianfei Ru, Mitsuo Minomura, Hiroaki Kuze and Nobuo Takeuchi: The Effect of Indonesian Forest Fire on Local Tropospheric Aerosol Optical Thickness by Using NOAA AVHRR data, Proc. of the International Symposium on The Atmospheric Correction of Satellite Data and Its Application to Global Environment, CEReS Chiba Univ., 195-200, 1998.