降雨の標高依存特性を導入した TRMM/PRによる 時間・空間平均降雨量の推定

DEVELOPMENT OF A METHOD OF ESTIMATING SPECIO-TEMPORAL AVERAGED RAINFALL WITH TRMM/PR INFORMATION USING A DEPENDENCY OF RAINFALL ON TOPOGRAPHIC ELEVATION

中北 英一1・沖村 俊郎2・鈴木 善晴3・池淵 周一4

Eiichi NAKAKITA, Toshio OKIMURA, Yoshiharu SUZUKI and Shuichi IKEBUCHI

¹工博 京都大学大学院助教授 工学研究科環境地球工学専攻 (〒 606 京都市左京区吉田本町)
 ²京都大学大学院 工学研究科環境地球工学専攻 (〒 606 京都市左京区吉田本町)
 ³工修 京都大学大学院 工学研究科環境地球工学専攻 (〒 606 京都市左京区吉田本町)
 ⁴工博 京都大学教授 防災研究所水資源研究センター (〒 611 宇治市五ヶ庄)

A Method of estimating specio-temporal averaged rainfall with TRMM observations is developed. A point of the method is that a dependency of rainfall distribution on topographic elevation is taken into consideration. Also both analytical and statistical evaluations of accuracy of the estimates are carried out based on stochastic specio-temporal structure of rain field and actual applications of the method into radar-observed rainfall distributions during 43 monthly periods, respectively. As results, the analytical evaluation almost agree with statistical one, and introducing the dependency of topographic elevation improves the accuracy of estimation of monthly rainfall averaged over a circle region with radius of 120km.

Key Words : TRMM, radar, rainfall distribution, orographic effect

1. 序論

(1) 本研究の背景と目的

地球規模の気候変動の原因を知るためには、熱帯域 の降雨を計測することが重要であると言われている.そ こで提唱されたのが降雨レーダを搭載する TRMM で あり、これにより熱帯域の降雨量の気候値を求めるこ とができる.TRMM では上記気候値を抽出するために 緯度5°×経度5°の領域平均降水量の推移が大きな目 的として掲げられ、計画の段階からそのフィージビリ ティーの検討のため、海洋上での推定精度の検討¹⁾や ゴビ砂漠と我が国での推定精度の比較^{2),3)}を行ってい る.また、閾値法を用いた推定とその精度の検討も継 続して実施されている⁴⁾.

これとは別に、山岳域の降雨分布特性に関する研究 も進んでおり、その特性として、ある一定期間以上の 積算降雨量に注目すると、地表面の標高が高くなるに つれてこの積算降雨量が大きくなることがわかってき ており、これを降雨の地形依存特性と呼んでいる^{5),6)}.

さて、ある期間・領域について得られる TRMM によ る観測情報は、TRMM が準回帰傾斜軌道を取っている ために時系列上離散的であり、さらに各観測時刻にお ける観測領域が異なる.本研究では、このようなある 期間・領域内の限られた情報から、対象とする期間・領 域の時間・空間平均降雨量を推定すること、ならびに その精度を確率モデルベースに検証することを目的と している.特に推定過程において降雨の地形依存特性 を考慮することによる効果についても検証する.

Bell¹⁾, 垣見²⁾では, 各観測時刻の空間平均降雨量を時間平均する過程において, 衛星による各観測時刻の 観測面積をその時刻の空間平均降雨量の重み(カバー 率)として考慮し時間平均する方法をとっている.しか し,本研究では,降雨の地形依存特性を考慮すること による空間平均手法に重点をおいているので,各観測 時刻の空間平均降雨量のもつ重みは同等に扱っている.

(2) 降雨の標高依存直線

降雨分布と地形標高の対応関係を見るために、横軸 に地形標高を縦軸にひと月の積算降雨量をとり、例と して1989年10月を対象に領域内の3km×3kmごと の全地点についてプロットすると図-1になる.プロッ ト全体から降雨量が地形標高とともに増加する傾向が 見て取れ、以下、これを標高依存性又は依存性と呼ぶ ことにする、さらに、地形標高を等間隔で区分化した

		夜-1 記写衣	
k,l,h,g	標髙区分番号	$P\left(x_{k},t ight)$	地点 x_k , 時刻 t の降雨強度
n	全標高区分数	$ u_T(x_k)$	地点 xk の T 期間積算降雨量
n_i	i回目に観測された観測区分数	Ii	i回目に観測された標高区分番号の集合
В	対象領域全体	a_T	T 期間積算降雨量に対する標髙依存直線の傾き
V	領域 B の面積	l_k	k 区分の代表標高値
B_k	k 区分の領域全体	d_i	時刻 t _i での標高依存直線の切片
$V(\cdot)$	領域・の面積	σ_P	降雨独度の標準偏差
T	期間全体	σ_{ν_T}	T 期間積算降雨量の標準備差
M	期間 T での TRMM の観測回数	$Cor_P\left(x_k-x_l \right)$	降雨強度の空間相関係数
i,j	TRMM の観測時刻番号	$Cor_{ u_T}\left(x_k - x_l ight)$	T 期間積算降雨量の空間相関係数
t	時刻	$Cor_t (t_i - t_j)$	降雨強度の時間相関係数
ti	i回目の観測時刻	$\widehat{\mu}_{t_i}(\cdot)$	時刻 t _i , 領域 の空間平均降雨量の推定値
O_i	i回目に観測された領域全体	$\widehat{\mu}_{ar{T}}\left(\cdot ight)$	期間 T, 領域・の時間・空間平均降雨量の推定値
$O_{i,h}$	i回目に観測された h区分の領域	$\mu_{ar{T}}\left(\cdot ight)$	期間 T, 領域・の真の時間・空間平均降雨量
7:1-	k 区分に属する地点		

各標高区分内での領域平均降雨量の対数値は地形標高 の1次式で表現でき、この直線を標高依存直線と呼ん でおり、九州南部、近畿で成立することを確認してい る^{5),6)}、本論文は、この成立ならびに特性が既知であ れば、どの程度の推定精度の改善が見込めるかを検討 したものである.しかし、今後グローバルに推定手法 を適用するためには地球上の他の地域における標高依 存直線の成立を検討する必要があり、地上レーダーに よる時間連続的な観測のない地域においても確認する 必要がある.そのために、長期 TRMM 情報を用いて 標高依存直線がどれくらいの確からしさで成立するか を推定する手法の開発にも別途取り組んでいる.

時間・空間平均降雨量の推定式 2.

対象とする領域 B(面積 V)を地形標高により区分 化し、標高の低い区分から数えてk(1,...,n)番目の区 分領域を B_k (面積 $V(B_k)$)とする、また、TRMMは 期間 T に M 回の観測をするとし, i 回目の観測時(時 刻 t_i)の全観測領域を O_i , k区分の観測領域を $O_{i,k}$ と する. また, k 番目の標高区分に属する地点 xk の時刻 tにおける降雨強度を確率変数で $P(x_k, t)$ と表す.

尚、本論文で用いる記号の定義は表-1にまとめる.

(1) 降雨の標高依存性を考慮した推定式

i回目(時刻 t_i)に観測されたh区分領域 $O_{i,h}$ (面積 $V(O_{i,h}))$ の空間平均降雨強度 $\mu_{t_i}(O_{i,h})$ は,

$$\mu_{t_i}(O_{i,h}) = \frac{1}{V(O_{i,h})} \int_{O_{i,h}} P(x_h, t_i) dx_h \qquad (1)$$

となる.

本来はある一定期間以上の積算降雨量に対して地形 依存特性が現れるのであり、TRMM が観測する瞬時の 降雨分布に対してはこの特性が現われるとは限らない. しかし、期待値的には瞬時の降雨分布に対しても標高 依存直線が成り立つものとして、領域 B の空間平均降 雨強度を推定するにあたり標高依存直線を導入する. す なわち、式(1)により計算される各標高区分の空間平 均降雨強度に対して最小二乗法により時刻 ti での標高 依存直線を決定する.この時,直線の傾きはT期間の 積算降雨量に対して決定される傾きの期待値に固定し、 直線の切片を変化させることで時刻 ti での標高依存直 線を推定する(これは、誤差期待値、誤差分散の解析的 な誘導を可能とするまずの推定方法として誘導したも のであり、必ずしも精度上最適なものとは限らない). そして、この直線上の値を各標高区分の空間平均降雨 強度の推定値とする. すなわち, 時刻 ti において推定 されるべき k 区分領域の空間平均降雨強度 μ_{t_i} (B_k) は,

$$\widehat{\mu}_{\star}(B_k) = 10^{E[a_T] \cdot l_k + d_i} \tag{2}$$

である. ここで, E[a_T] は T 期間の積算降雨量の標高 依存直線の傾き ar の期待値, lk は k 区分の代表標高, d_i は時刻 t_i に最小二乗法により推定される直線の切片 である.最後に期間 T,領域 B の時間・空間平均降雨 強度を以下のように推定する.

$$\widehat{\mu}_{\bar{T}}(B) = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{V} \sum_{k=1}^{n} \widehat{\mu}_{t_i}(B_k) V(B_k)$$
(3)

さて,最小二乗法で切片 d_iを同定する際,各標高区 分の観測面積 V (O_{i.h}) を重みとして考慮する方法と考 慮しない方法がある.考慮する場合,最小二乗法

$$J = \sum_{h \in I_i} \left\{ \mu_{t_i} \left(O_{i,h} \right) - \widehat{\mu}_{t_i} \left(B_h \right) \right\}^2 V \left(O_{i,h} \right) \to \min$$

$$\tag{4}$$

- 24 -

標高依存性を考慮する推定式					
重みあり	$\frac{1}{MV} \sum_{i=1}^{M} \sum_{k=1}^{n} 10^{E[a_T] \cdot l_k} \frac{1}{\sum_{h \in I_i} 10^{2E[a_T] \cdot l_h}} \sum_{h \in I_i} \frac{10^{E[a_T] \cdot l_h}}{V(O_{i,h})} \int_{O_{i,h}} P(x_h, t_i) dx_h V(B_k)$	(a)			
重みなし	$\frac{1}{MV} \sum_{i=1}^{M} \sum_{k=1}^{n} 10^{E[a_T] \cdot l_k} \frac{1}{\sum_{h \in I_i} 10^{2E[a_T] \cdot l_h} V(O_{i,h})} \sum_{h \in I_i} 10^{E[a_T] \cdot l_h} \int_{O_{i,h}} P(x_{h,t_i}) dx_h V(B_k)$	(b)			
	標高依存性を考慮しない推定式				
重みあり	$\frac{1}{M}\sum_{i=1}^{M}\frac{1}{V(O_i)}\sum_{h\in I_i}\int_{O_{i,h}}P\left(x_h,t_i\right)dx_h$	(c)			
重みなし	$\frac{1}{M} \sum_{i=1}^{M} \frac{1}{n_i} \sum_{h \in I_i} \frac{1}{V(O_{i,h})} \int_{O_{i,h}} P(x_h, t_i) dx_h$	(d)			

により切片 *d_i* を同定した上で,式(3)により時間・空間平均降雨強度の推定式を導く(表-2の式(a)).

一方,最小二乗法において各標高区分の観測面積を 重みとして考慮しない場合,最小二乗法

$$J = \sum_{h \in I_i} \left\{ \mu_{t_i} \left(O_{i,h} \right) - \widehat{\mu}_{t_i} \left(B_h \right) \right\}^2 \to \min \quad (5)$$

により切片 d_iを同定した上で,同様に式(3)により時間・空間平均降雨強度の推定式を導く(表-2の式(b)).

尚, 誤差分散を解析的に誘導可能とするために,式 (4),(5)で示したように,対数値ではなく実数値を用 いて最小二乗推定を行う.

(2) 降雨の標高依存性を考慮しない推定式

この場合,(1)の標高依存性を考慮する場合の推定過 程で用いた標高依存直線の傾きをゼロにして各観測時 刻での空間平均降雨強度を推定する.さらに,M回の 空間平均降雨強度を時間平均することにより期間T,領 域 Bの時間・空間平均降雨強度を推定する.

この場合も標高依存直線の切片を推定する最小二乗法 が2通り考えられ、まず、各標高区分の観測面積 $V(O_{i,h})$ を重みとして考慮する場合、切片 d_i は式(4)の最小二 乗法により同定され、時間・空間平均降雨強度の推定 式は表-2の式(c)となる.一方で、最小二乗法に重み を考慮しない場合、切片 d_i は式(5)の最小二乗法によ り同定され、推定式は表-2の式(d)となる.

ここで, 推定式 (c) をみると, 最小二乗法で重みを考 慮した推定は, i 回目の観測時における領域 B の空間 平均降雨強度が観測領域 O_i の空間平均降雨強度である と推定することと同等であることがわかる.したがって,TRMMによる観測情報を用いた領域平均降水量の 推定精度を解析した過去の研究^{1),2),3)}ではこの**表-2**の 式 (c)を用いていることになる.

3. 時間・空間平均降雨推定量の精度評価式

前章で提案したそれぞれの推定式による時間・空間 平均降雨推定量の精度を理論的に評価するために,真 の時間・空間平均降雨強度

$$\mu_{\bar{T}}(B) = \frac{1}{TV} \int_{0}^{T} \sum_{k=1}^{n} \int_{B_{k}} P(x_{k}, t) \, dx_{k} \, dt \qquad (6)$$

に対する推定量の誤差期待値及び誤差分散, すなわち $E\left[\hat{\mu}_{\bar{T}}(B) - \mu_{\bar{T}}(B)\right]$ 及び $E\left[\left(\hat{\mu}_{\bar{T}}(B) - \mu_{\bar{T}}(B)\right)^{2}\right]$ を算定 することを考え,まず式の展開を行う.

(1) 誤差期待値

標高依存性を考慮しない推定の場合,最小二乗法で 各標高区分の観測面積を重みとして考慮する時及び考 慮しない時はそれぞれ表-3の式(e)及び式(f)となり, TRMMの各観測時の観測領域内の各標高区分の面積に 依存する形で期待値的な誤差(バイアス)が発生する.

一方,標高依存性を考慮する推定の場合,最小二乗法 での重み有無の考慮によらず理論的にゼロとなり,バ イアスのない推定式となっていることがわかる.

(2) 誤差分散

標高依存性を考慮する場合,最小二乗法で重みを考 慮する時及び考慮しない時はそれぞれ表-4の式 (g)及 び式 (h) となる.一方,標高依存性を考慮しない場合,

$$\begin{split} & \frac{1}{8} - 4 ~ \underset{k=1}{8} \underset{k=1}{8} \underset{k=1}{8} + \frac{1}{2} \left[\left(\widehat{\mu}_{T} \left(B \right) - \mu_{T} \left(B \right) \right)^{2} \right] \right) (\underset{k=i}{8} = k = 1 \\ & \frac{1}{8} + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1}{10^{B[\alpha_{T}] \cdot (l_{k}+l_{l})}}{\sum_{k \in l_{i}} \sum_{g \in l_{j}} \frac{1}{10^{2E[\alpha_{T}] \cdot (l_{k}+l_{g})} V(O_{i,h}) V(O_{j,g})}{\sum_{k \in l_{i}} \sum_{g \in l_{j}} \frac{1}{V(O_{i,h}) V(O_{j,g})} \int_{O_{i,h}} \int_{O_{j,g}} \sigma_{P}^{2} Cor_{P} \left(|x_{h} - x_{g}| \right) Cor_{i} \left(|t_{i} - t_{j}| \right) dx_{g} dx_{h} V \left(O_{i,h} \right) V \left(O_{j,g} V \left(B_{k} \right) V \left(B_{l} \right) \\ & + \frac{1}{V^{2}} \sum_{k=1}^{n} \sum_{l=1}^{n} \int_{B_{k}} \int_{B_{l}} \sigma_{P}^{2} Cor_{V_{T}} \left(|x_{k} - x_{l}| \right) dx_{l} dx_{k} \left(g \right) \\ & - \frac{2}{MTV^{2}} \sum_{i=1}^{M} \int_{0}^{T} \sum_{k=1}^{n} \frac{1}{l=1} 10^{E[\alpha_{T}] \cdot l_{k}} \frac{1}{\sum_{i \in I_{i}} \frac{10^{2E[\alpha_{T}] \cdot l_{h}} V(O_{i,h})}{\sum_{h \in I_{i}} \frac{10^{2E[\alpha_{T}] \cdot l_{h}}}{V(O_{i,h})} \int_{O_{i,h}} \int_{B_{l}} \sigma_{P}^{2} Cor_{P} \left(|x_{h} - x_{l}| \right) Cor_{t} \left(|t_{i} - t| \right) dx_{l} dx_{h} V \left(O_{i,h} \right) V \left(B_{k} \right) dt \\ \hline \\ & \frac{1}{M^{2}V^{2}} \sum_{i=1}^{M} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{1}{l=1} 10^{E[\alpha_{T}] \cdot l_{k}} \frac{1}{\sum_{h \in I_{i}} \frac{10^{2E[\alpha_{T}] \cdot l_{h}} V(O_{i,h})}{\sum_{h \in I_{i}} \frac{10^{2E[\alpha_{T}] \cdot (l_{h} + l_{g})}}{V(O_{i,h})} \int_{O_{i,h}} \int_{B_{i}} \sigma_{P}^{2} Cor_{P} \left(|x_{h} - x_{l}| \right) Cor_{t} \left(|t_{i} - t_{j}| \right) dx_{j} dx_{h} V \left(B_{k} \right) V \left(B_{l} \right) \\ + \frac{1}{V^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{1}{l=1} 1 \sum_{l=1}^{n} 10^{E[\alpha_{T}] \cdot (l_{k} + l_{g})} \frac{1}{\sum_{h \in I_{i}} \frac{1}{2^{2E[\alpha_{T}] \cdot (l_{h} + l_{g})}}}{\sum_{h \in I_{i}} \frac{1}{2^{2E[\alpha_{T}] \cdot (l_{h} + l_{g})}}{\sum_{h \in I_{i}} \frac{1}{g \in I_{i}} \sum_{i=1}^{n} \frac{1}{g \in I_{i}} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{1}{l=1} \sum_{l=1}^{n} \frac{1}{2^{2E[\alpha_{T}] \cdot (l_{h} + l_{g})}} \frac{1}{2^{2E[\alpha_{T}] \cdot (l_{h} + l_{g})}} \\ + \frac{1}{M^{2}V^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} \frac{1}{2^{n}} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{1}{2^{n}} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{1}{2^{n}} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{1}{2^{n}} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{$$

最小二乗法で重みを考慮する時及び考慮しない時はそれぞれ表-5の式 (i) 及び式 (j) となる.

これらの誤差分散の算定式 (g)~(j) に共通して挙げ られることは、これらの式を構成する3つの項のうち、

- 第1項は、ランダム性を通した、特異サンプルの 空間代表性の指標で、小さい程よい
- 第3項は、空間相関の良さによる、一部サンプルの代表性の指標で、大きい程よい

ということである.

4. 推定精度の算定

(1) 精度評価式を用いた推定精度の算定

上記の誤差期待値, 誤差分散を算定するにあたり, 表-3, 4, 5の式に含まれる期間 T, 領域 Bの TRMM 観 測軌道情報と降雨に関する確率パラメータ, すなわち 表-1の σ_P , σ_{ν_T} , $Cor_P(|x_k - x_l|)$, $Cor_{\nu_T}(|x_k - x_l|)$, $Cor_t(|t_i - t_j|)$ と, a_T , $P(x_k, t_i)$ 及び $\nu_T(x_k)$ の期待値 $E[a_T]$, $E[P(x_k, t_i)]$ 及び $E[\nu_T(x_k)]$ が必要となる. こ れらの確率パラメータは深山レーダによる降雨期(1988 ~1994, 1998, 1999年の6~10月(ただし, 1991年8 月, 1998年6月を除く))の43ヶ月の観測情報から 計算した. 尚, グランドクラッタやシャドウ等により レーダー情報に影響があると考えられる領域の除去は文 献^{5),6)}に従った. また,各相関係数は指数関数で近似 しており,それぞれ $Cor_P(|x_k - x_l|) = e^{-0.097|x_k - x_l|}$, $Cor_{\nu_T}(|x_k - x_l|) = e^{-0.067|x_k - x_l|}$, $Cor_t(|t_i - t_j|) =$ $e^{-0.006|t_i-t_j|}$ としている.これらの確率パラメータと 1998年9月のTRMM 軌道情報(表-1の n_i , M, t_i , $V(O_i)$, $V(O_{i,h})$, I_i)を用いて,対象期間Tを1r月 間,対象領域Bを深山レーダ観測領域(半径120kmの 円内領域)として,それぞれの時間・空間平均降雨推定 量の精度を算定した結果が表-6(誤差期待値)と表-7 (誤差標準偏差(誤差分散の平方根))である.

表-6 評価式による誤差期待値の算定結果 (mm/month)

	依存性を考慮した場合	依存性を考慮しない場合
重みあり	0.0	16.6
重みなし	0.0	142.2

表-7 評価式による誤差標準偏差の算定結果 (mm/month)

	依存性を考慮した場合	依存性を考慮しない場合
重みあり	83.9	90.5
重みなし	98.9	185.3

(2) 推定式の実データへの適用による推定精度の算定

次に、2.で誘導した推定式を用いて、実際に時間・空間平均降雨量を推定してみることにより、その誤差を統計的に評価する、期間 T の TRMM 観測軌道情報とTRMM が観測した領域の降雨量情報、また、特に推定過程で標高依存直線を用いる場合はその傾き $E[a_T]$ として 4.(1) に述べた確率パラメータが必要となる.

今回,時間・空間平均降雨量を推定するにあたり,深山レーダ観測領域を対象領域とした.さらに,1998 年

$$\begin{split} \overline{\mathbf{g}}_{-5} ~ \ensuremath{\mathbb{R}} \mathbb{E}\left[\left(\widehat{\mu}_{T}\left(B\right) - \mu_{T}\left(B\right)\right)^{2}\right]\right) & (\ensuremath{\mathbb{R}} \mathbb{R} \ensuremath{\mathbb{R}} \ensuremath{\mathbb{R}} \mathbb{E} \ensuremath{\mathbb{C}} \mathbb{E} \left[\left(\widehat{\mu}_{T}\left(B\right) - \mu_{T}\left(B\right)\right)^{2}\right]\right) & (\ensuremath{\mathbb{R}} \mathbb{R} \ensuremath{\mathbb{R}} \ensuremath{\mathbb{C}} \mathbb{E} \ensuremath{\mathbb{R}} \ensu$$

9月のTRMM 観測軌道を仮想的に 4.(1) に述べた 43ヶ 月に適用し,その各月において TRMM が仮想的に観 測したとする時刻と領域の降雨量情報は深山レーダの 観測情報を用いることで推定を行った.この結果を,実 際の各月降雨量と TRMM が各観測時刻で全対象領域 を観測すると仮想してその観測時刻の空間平均降雨量 のみから計算した月降雨量と合わせて,図-2には最小 二乗法で重みを考慮して標高依存性を考慮した推定値 と標高依存性を考慮しない推定値を,図-3には最小二 乗法で重みを考慮せずに標高依存性を考慮した推定値 と標高依存性を考慮しない推定値をプロットした.

さらに、この43ヶ月についての4通りの推定値と実際の月降雨量から、それぞれの推定値の実際の月降雨 量に対する誤差の標本平均(表-8)及び標本標準偏差 (表-9)を算定した.

表-8 43ヶ月分の推定値の誤差標本平均 (mm/	(month))
----------------------------------	---------	---

	依存性を考慮した場合	依存性を考慮しない場合
重みあり	25.0	36.8
重みなし	40.6	147.9
		I

表9	43ケリ	月分の	唯定値の	D誤差標本標準偏差	(mm	(month)	

	依存性を考慮した場合	依存性を考慮しない場合
重みあり	98.9	104.3
重みなし	161.0	236.5

(3) 考察

まず,理論的な精度評価として,表-6の誤差期待値 の算定結果を見る.3.(1)に述べたように,標高依存性 を考慮した推定量の誤差期待値は,最小二乗法での重 みの考慮によらずゼロである.また,標高依存性を考慮 しない場合の誤差期待値は,最小二乗法で重みを考慮 する場合の方が重みを考慮しない場合に比べて小さい. 次に,表-7の誤差標準偏差を見ると,この値が最も 小さくなるのは標高依存性を考慮し最小二乗法でも重 みを考慮した場合であり,標高依存性の考慮及び最小 二乗法での重みの考慮の効果が見てとれる.

一方,統計的な精度評価としての表-8の誤差の算定 結果をみると,標高依存性を考慮する場合の誤差はゼロにならないものの標高依存性を考慮しない場合より 小さな値になっている.また,表-9の誤差標準偏差も, 標高依存性を考慮した場合の方が小さくなっている.

ここで,表-6,7,8,9の全体を通してみると,標高 依存性を考慮する効果及び最小二乗法で重みを考慮す る効果はともに,精度を向上させる方向にあることが わかり,加えて,最小二乗法での重みの効果の方が大 きいこともわかる.

さて,最小二乗法において,各標高区分の観測面積 を重みとして考慮することにより精度が向上したこと について誤差分散の精度算定式 (g)~(j) に基づいて考 察する. これらの式 (g)~(j) は全て3つの項から構成 される. 重みの導入により影響を受けるのは第1項と 第3項であり、今回の計算では重みの導入により3.(2) で述べた「ランダム性を通した、特異サンプルの空間代 表性の指標」である第1項が小さくなり,「空間相関の 良さによる,一部サンプルの代表性の指標」である第3 項が大きくなり、主に第1項の影響により誤差分散が 格段に小さくなった. このことは指標の意味を考えれ ば納得できる. すなわち, 観測される面積の大きな区 分程(大サンプルの区分程)地形図上を互いに大距離 にある地点の組み合わせが多くなり、互いに相関の小 さな地点の組み合わせが多くなる.このことは観測面 積の大きな区分ほど「ランダム性を通した、特異サン プルの空間代表性の指標」を低くすることを意味する

2-3 推定式を実テータへ適用した月降雨重の推定結果 (mm/month) (重みを考慮しない場合):1: 深山レーダ観測情報から 算定した各月の実際の月降雨量,2: TRMM が各観測時刻で全領域を観測すると仮想してその時刻のみから計算した月 降雨量,3: 標高依存性を考慮した推定値,4: 標高依存性を考慮しない推定値.

ことがわかる.しかも第1項は,表-4の式(g),表-5の (i)式からわかるように,観測面積の2乗として重みが かかり,これが効いてくることによって,格段に小さな 値となった.一方第3項は1乗でしか重みがかからな いのでその寄与が小さく,さらに地形の形態によって は重みの導入によって大きくも小さくもなり得る.以 上が重み導入効果の物理的解釈であり,それに対応し て誤差分散が小さくなることの式形からの説明である.

5. 結論

ある期間・領域の時間・空間平均降雨量をTRMM 観 測情報から推定する手法について、本研究では、特に空 間平均手法の精度向上を目的として降雨の地形依存特 性を推定過程へ考慮し、その推定精度への効果を推定式 がもつ誤差期待値及び誤差分散を算定することにより 検討した.その結果、推定精度を向上させるためには、 TRMM の各観測時刻での瞬時の降雨分布に対して、

- 降雨の標高依存直線を導入する.
- この標高依存直線の切片を、各区分の観測された 面積をその区分の空間平均降雨量の重みとして考 慮し最小二乗法で推定する。

ことが有効であることがわかった.

また,推定式のさらなる精度向上のために,標高依存直線の傾きと切片の両方を変化させての推定,対象 期間内に TRMM が観測した降雨量の積算量を用いて の推定,標高依存直線からの平均値のズレの影響の検 討,Bell¹⁾,垣見²⁾ではされているカバー率を導入した 推定が挙げられ,今後検討する.

参考文献

- Thomas L. Bell: A Space-Time Stochastic Model of Rainfall for Satellite Remote Sensing Studies, Jour. Geophys. Res. Vol.92, pp.9631-9643, 1987.
- 2) 垣見康介:広域降雨場モデルを用いた衛星観測取得情報の 評価精度に関する研究,京都大学大学院修士論文,1993.
- 3) Ikebuchi, S., E. Nakakita, K. kakimi and T. Adachi : Accuracy of Space and Time Average Estimation on Precipitation by Using Satellite Data, Proc. of International Symposium on HEIFE, pp. 216-226, 1993.
- Oki, R., A. Sumi and D. A. Short: TRMM Sampling of Radar-AMeDAS Rainfall Using the Threshold Method, J. Appl. Meteor, Vol.36, No.11, pp.1480-1492, 1997.
- 5) 中北英一・鈴木善晴・池淵周一:降雨分布の地形依存特性 における時間スケール階層構造,水工学論文集,第44巻, pp.91-96,2000.
- 6) 鈴木善晴・中北英一・池淵周一:標高依存直線に基づいた 降雨分布の地形依存特性の解明,水工学論文集,第45巻, pp.301-306,2001.

DEVELOPMENT OF A METHOD OF ESTIMATING SPECIO-TEMPORAL AVERAGED RAINFALL WITH TRMM/PR INFORMATION USING A DEPENDENCY OF RAINFALL ON TOPOGRAPHIC ELEVATION

Eiichi NAKAKITA¹, Toshio OKIMURA², Yoshiharu SUZUKI³, Shuichi IKEBUCHI⁴

¹Dr. Eng., Associate Professor, Graduate School of Engineering, Kyoto University, 606-0011, Japan

²Graduate student, Graduate School of Engineering, Kyoto University, 606-0011, Japan

³Graduate student, Graduate School of Engineering, Kyoto University, 606-0011, Japan

⁴Dr. Eng., Professor, Water Resources Research Center, D.P.R.I., Kyoto University, 611-0011, Japan

1. Abstract

A Method of estimating specio-temporal averaged rainfall with TRMM observations is developed. A point of the method is that a dependency of rainfall distribution on topographic elevation is taken into consideration. Also both analytical and statistical evaluations of accuracy of the estimates are carried out based on stochastic specio-temporal structure of rain field and actual applications of the method into radarobserved rainfall distributions during 43 monthly periods, respectively. As results, the analytical evaluation almost agree with statistical one, and introducing the dependency of topographic elevation improves the accuracy of estimation of monthly rainfall averaged over a circle region with radius of 120km.

2. Methods of estimating speciotemporal averaged rainfall

We study this esitmate process on a domain B (area V), and divide this domain B into some domains B_k (area $V(B_k)$) characterized by k $(1, \dots, n)$, which is a number of the divided domain based on the altitude. Here M is a number of times of TRMM observations for period T. At a certain TRMM observation on time t_i $(i = 1, \dots, M)$, O_i is an whole observed domain and $O_{i,k}$ is a domain of division k as a part of O_i . Also $P(x_k, t)$ is an instantaneous railfall intensity on point x_k in the domain of division k, on time t as a realization of an underlying stochastic process.

(1) Esitmation with elevation dependency

Spatial mean of rainfall intensity over an observed domain $O_{i,h}$ (area $V(O_{i,h})$) of division h on time t_i is

$$\mu_{t_{i}}(O_{i,h}) = \frac{1}{V(O_{i,h})} \int_{O_{i,h}} P(x_{h}, t_{i}) dx_{h}.$$
 (1)

Properly speaking, the dependency of rainfall on topographic elevation is realized for a distribution of cumulated rainfall for more than a certain period, so it is not always realized for a distribution of instantaneous railfall intensity like a TRMM observation. But, the dependency is expected to be realized for instantaneous railfall intensity, so in this paper we apply this dependency to methods of estimating specio-temporal averaged rainfall intensity. Then, to fix the Dependence Line on Topographic Elevations on each TRMM observation time we apply method of least squares to each distribustion consisted from spatial means of rainfall intensity of each divided domain calculated with Eq.(1), where the way of fixing the Dependence Line on Topographic Elevations is that the slope of the Dependence Line on Topographic Elevations is fixed as an expected value of a slope of the Dependence Line on Topographic Elevations for cumulated rainfall for period T and the intercept is identified with the method of least squares. After all, spatial mean of rainfall intensity over domain B_k on time t_i is expressed like this:

$$\widehat{\mu}_{t_i}\left(B_k\right) = 10^{E[a_T] \cdot l_k + d_i} \tag{2}$$

where $E[a_T]$ is the expected value of a slope of the Dependence Line on Topographic Elevations for cumulated rainfall for period T, l_k is a represented altitude of division k and d_i is an intercept identified with

method of least squares on time t_i . Finally speciotemporal averaged rainfall intensity over domain Bfor period T is estimated with the next equation by averaging all the spatial means of rainfall intensity.

$$\bar{\mu}_{\bar{T}}(B) = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{V} \sum_{k=1}^{n} \bar{\mu}_{t_{i}}(B_{k}) V(B_{k})$$
(3)

By the way, there are two ways to identify intercept d_i . One is that the areas $(V(O_{i,h}))$ of observed domains of each division are taken into consideration as weights. And the other is a case that the weights are not taken into consideration. In case weights are taken into consideration, the intercept is identified with the next method of least squares

$$J = \sum_{h \in I_i} \left\{ \mu_{t_i} \left(O_{i,h} \right) - \hat{\mu}_{t_i} \left(B_h \right) \right\}^2 V \left(O_{i,h} \right) \to \min$$
(4)

where $\overline{\mu}_{t_i}(B_h)$ is spatial mean of rainfall intensity to be estimated, and I_i is a sample of numbers of divisions TRMM observed on time t_i . Then, speciotemporal averaged rainfall intensity is esitmated with Eq.(3).

On the other hand, in case weights are not taken into consideration, the intercept is identified with

$$J = \sum_{h \in I_i} \left\{ \mu_{t_i} \left(O_{i,h} \right) - \widehat{\mu}_{t_i} \left(B_h \right) \right\}^2 \to \min \quad (5)$$

and specio-temporal averaged rainfall intensity is esitmated with Eq.(3) in the same way.

(2) Esitmation without elevation dependency

In this case, to estimate spatial mean of rainfall intensity on each TRMM observation time, the expected value of the slope of the Dependence Line on Topographic Elevations written in chapter 2.(1) is replaced with zero. Finally specio-temporal averaged rainfall intensity is estimated by averaging all the spatial means of rainfall intensity.

And there are also two ways to identify intercept d_i according to whether areas of observed domains of each division are taken into consideration as weights or are not. In case the weights are taken into consideration, the intercept is identified with Eq.(4), and in case the weights are not taken into consideration the intercept is identified with Eq.(5). Finally speciotemporal averaged rainfall intensity is estimated with Eq.(3).

3. Evaluations of accuracy

(1) Analytical evaluations

Accuracy of each method of estimating specio-temporal averaged rainfall for a monthly period over Miyama

radar site where is a circle region with radius 120km are evaluated by using TRMM observations concerning the orbit on September in 1998 and Miyama radar observations concerning rainfall for fourty-three months in rainy seasens (June - October in 1988-1994, 1998 and 1999 (except for August in 1991 and June in 1998)). Table1 shows a result of evaluations of expected errors and Table2 shows a result of evaluations of standard deviations about error.

Table1 Analytical expected errors (mm/month)

	With elevation	Without elevation
	dependency	dependency
Weighted	0.0	16.6
Not weighted	0.0	142.2

Table2 Analytical standard deviations about error (mm/month)

	With elevation dependency	Without elevation dependency
Weighted	83.9	90.5
Not weighted	98.9	185.3

(2) Statistical evaluations

Estimations of specio-temporal averaged rainfall are actually evaluated with methods suggested in chapter 2., then the accuracy of each method is also evaluated statistically.

First, to estimate specio-temporal averaged rainfall for a month over Miyama radar site, TRMM orbit on September in 1998 is applied virtually to any orbits of the each month of 43 months during the rainy period written in chapter 3.(1) and Miyama radar observations concerning rainfall are applied to rainfall of the each month over observed domains. As results, Figure1 shows a result of estimations of speciotemporal averaged rainfall in cases that the elevation dependency is taken into consideration and is not with weights in the method of least squares, and Figure2 shows a result of estimations in cases that elevation dependency is taken into consideration and is not without weights in the method of least squares. In addition, in both figures two more kinds of evaluations are described. One is actual monthly rainfall observed by Miyama radar, and the other is monthly rainfall evaluated by averaging spatial means of rainfall observed by Miyama radar when TRMM passes over.

Secondly, sample errors (Table3) and sample standard deviations about error (Table4) as statistical ac-

Figure1 Monthly rainfall estimated by applying the methods of estimating (mm/month) (a case that weights are taken into consideration): 1: actual monthly rainfall observed by Miyama radar, 2: monthly rainfall evaluated by averaging spatial means of rainfall observed by Miyama radar when TRMM passes over, 3: estimations with elevation dependency, 4: estimations without elevation dependency.

Figure2 Monthly rainfall estimated by applying the methods of estimating (mm/month) (a case that weights are not taken into consideration): 1: actual monthly rainfall observed by Miyama radar, 2: monthly rainfall evaluated by averaging spatial means of rainfall observed by Miyama radar when TRMM passes over, 3: estimations with elevation dependency, 4: estimations without elevation dependency.

curacy are evaluated by using samples of estimations with four kinds of methods of estimating specio-temporal averaged rainfall and sample of actual monthly rainfalls.

Table3 S	tatistical errors	(mm/month)
	With elevation	Without elevation
	dependency	dependency
Weighted	25.0	36.8
Not weighted	40.6	147.9

4. Conclusion

In this study, to improve accuracy of, especially, a method of estimating spatial mean of rainfall, a dependency of rainfall on topogfaphic elevation is introduced. As results, the following points are found.

• Introducing the dependency of topographic ele-

Table4 Statistical standard deviations about error (mm/month)

N		
	With elevation	Without elevation
	dependency	dependency
Weighted	98.9	104.3
Not weighted	161.0	236.5

vation improves the accuracy and expected errors of the methods become zoro (Table1) analytically.

• It is effective for improvement of accuracy to take it into consideration that areas of observed domains of each division as weights, when an intercept of the Dependence Line on Topographic Elevations is identified on each TRMM observation time.