2 計測への分光データの利用:吸収線パラメータデータベースの精度 Application of the Spectroscopic Data to the Measurements: Accuracy of the Absorption Line Parameters Database

深堀正志(気象研究所)

Masashi Fukabori (Meteorological Research Institute)

1. はじめに

リモートセンシングにより大気や地表面の情報を得 ようとする場合、大気の放射スペクトルや透過スペク トルを測定する必要がある。これらの観測されたスペ クトルから大気や地表面の様々な情報を引き出すため には、大気の透過率や吸収率を正確に計算しなければ ならない。透過率や吸収率を求める際に必要な吸収係 数の計算には、吸収線の中心波数、線強度、半値半幅、 その温度依存性を表す係数及び回転エネルギー準位 などの吸収線パラメータが必要である。これらの吸収 線パラメータは、実験や理論研究の成果を吟味して膨 大な吸収線データベースとして編集され、リモートセ ンシングや分子分光学の分野で広く解析に用いられて いる。

このように編集された各々の吸収線パラメータの精 度は、分子や吸収帯毎に大きく異なり、充分な精度を 持たないものも数多い。赤外域の強度の大きな吸収線 の中心波数や回転エネルギー準位の精度は、近年著し く発展したフーリエ変換型分光光度計などを用いた 高い波数精度の測定により、大幅に改善される傾向に ある。しかし、線強度や半値半幅については未だ数十 %程度の誤差のある吸収線もみられる。倍音帯や結合 帯など強度の弱い吸収帯の現れる近赤外域や可視域の パラメータには、線強度や半値半幅のいずれにも大き な誤差が残されている。吸収線パラメータはリモート センシングにより大気や地表面の情報を得るための最 も基礎的な物理量であるにもかかわらず、その精度に 充分な信頼性を置けないのが現状である。精密化され た放射伝達計算モデルによる解析を進めるためにも、 基礎物理量である吸収線パラメータの精度を向上させ ることは急務である。

気象研究所では、地球大気の微量成分の吸収線パ ラメータを精密に決定し、吸収線データベースの妥 当性を検証する目的で、近赤外領域の高分解吸収実 験をフーリエ変換型分光光度計を用いて実施してき た。現在までに、地球の温暖化に関連する二酸化炭素 (CO₂)、一酸化二窒素(N₂O)、一酸化炭素(CO)及 びメタン(CH₄)の室温下での実験を行い吸収スペク トルから線強度や半値半幅を求め、吸収線データベー スの中のHITRANデータベースの妥当性を検証した。

今後吸収線パラメータの温度依存性などの把握のため、低温下での微量成分の吸収実験を計画中である。

2. 吸収線データベース

地球大気や惑星大気のリモートセンシングに有用 な吸収線データベースの代表として、現在次のような データベースが存在している。

- AFGL/HITRAN database (Air Force Geophysics Laboratory(現在 Phillips Laboratory, Geophysics Directorate)/ High Resolution Transmission molecular absorption database)
- (2) GEISA (Gestion et Etude des Informations Spectrosopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) data bank
- (3) ATMOS (Atmospheric Trace Molecule Spectroscopy) molecular line list
- (4) JPL (Jet Propulsion Laboratory) catalog and atlas of microwave and submillimeter transmission.
- (5) SAO (Smithonian Astrophysical Observatory) line database.

AFGL/HITRANデータベースは、アメリカの AFCRL (Air Force Cambridge Research Laboratories) において 1960 年代後半から編集がなされている データベースで、これまで数年おきに改訂作業が続け られ現在に至っている。改訂作業の内容は報告書や論 文の形態で公表されている (McClatchey et al., 1973; Rothman and McClatchey, 1976; Rothman, 1977; Rothman et al., 1978; Rothman, 1978; Rothman, 1981; Rothman et al., 1981; Rothman et al., 1983a; Rothman et al., 1983b; Rothman et al., 1987; Rothman et al., 1992)。1973年の編集当初、地球大気の研 究用として100-10,000cm-1の波数域で7分子に対し て、約100,000本の吸収線が編集されていた。ところ が最新の1996年版(HITRAN96)では、データベー ス本体に0-23,000cm⁻¹の波数域で35分子、999,363 本の吸収線に大幅に拡張され、さらに補遺として2分 子5,564本が編集されている (Rothman, 1996)。

GEISA データベースは1976年からフランスで作成 されているデータベースで、地球大気のみならず惑星 大気の研究に必要な気体の吸収線パラメータが編集さ れている (Husson et al., 1992)。現時点で最新の 1993 年版は、0-22,656 cm⁻¹の波数域で40分子、731,206本 の吸収線が編集されている (Husson et al., 1994)。ま た GEISA では、CH₄ と CH₃D を区別してそれぞれ独 立した分子として取り扱っている。

ATMOSデータベースは1985年にスペースシャト ルで打ち上げられた ATMOS センサの解析に用いら れたデータベースであり、1-10.000cm⁻¹の範囲で46 分子について合計406.033本の吸収線が主データベ ースと副データベースに編集されていた(Brown et al., 1987)。1992年から1994年にかけて行われた3回 のスペースシャトルからの観測に対する解析用にAT-MOSの改訂作業がなされ、1995年に最新版が完成し た(Brown et al., 1996)。最新のATMOSデータベー スは、1-10,000cm-1の範囲で30分子、694,359本の吸 収線から成る主データベースと725-3,675cm-1の範囲 で20分子、116,016本の吸収線から成る副データベー スとから構成されている。尚、主データベースはHI-TRAN92を基に改訂されている。また、格納された吸 収帯は異なるものの5種類の分子が、主データベース と副データベースの両方に編集されているため、最新 版のATMOSデータベースに保存されている分子の数 は45種類となる。ATMOSでは、H2OとHDOを区別 してそれぞれ独立した分子として取り扱っている。

サブミリ波、ミリ波及びマイクロ波の領域ではJPL により編集されたデータベース(JPLSMM)があり、 0-10,000GHz(30μmより長波長)の範囲で,151の原 子分子について214,994本の吸収線が編集されている (Poynter and Pickett, 1985)。

SOA データベースはスミソニアン天文台の気球搭 載分光計で観測された 80-210 cm⁻¹の遠赤外スペクト ルの解析用に作成され、35分子、154,895本の吸収線 が編集されている (Chance et al., 1994)。

これらのデータベースは、分子や吸収帯によっては 相互に情報を交換し合いながら改訂、編集作業が続 けられている。上記の吸収線データベースの中で、現 在HITRANデータベースが世界中で最も多く使われ ている。尚、HITRAN、GEISA及びATMOSデータ ベースには、クロロフルオロカーボン類(CFCs)の ような分子量の大きな分子に対する吸収係数の値が別 ファイルに格納されている。

3. HITRAN データベースの概要

1973年から今日までに編集された AFGL/HITRAN データベースに対して、格納された分子の数と波数 領域及び吸収線の本数をTable 3.1に示す。主要7気 体(H₂O、CO₂、O₃、N₂O、CO、CH₄及びO₂)につ いてのデータベースとそれ以外の気体成分のデータ ベースとの二つのデータベースが作成されていたが、 HITRANデータベースの1986年版で二つのデータ ベースが統合されている。Table 3.2 と Table 3.3 に、 AFGL/HITRANデータベースに編集されてた気体成 分とAFGL80からHITRAN96までに編集された気体 成分毎の吸収線の本数をそれぞれ示す。主要7気体の 内、格納された O_3 の吸収線本数が著しく増加してい るのが分かる。

Table3.1EvolutionoftheAFGL/HITRANdatabase.

AFCRL	AFGL	AFGL	AFGL	AFGL	HITRAN	HITRAN	HITRAN
1973	1976	1978	1980	1982	1986	1991,1993	1996
7	7	7	7	7	28	31	35
100	0.3	0.8	0.3	0.0	0.0	0.0	0,0
10,000	14,558	17,880	17,880	17,900	17,900	23,000	23,000
~100,000	135,093	~139,000	159,550	180,817	348,043	709,308	999,363
		AFGL	AFGL	AFGL			
		1977	1980	1982			
		4	13	21			
		5	0.0	0.0			
		2,940	10,000	10,000			
		~24,000	33,737	97,162			
	AFCRL 1973 7 100 10,000 ~100,000	XFCRL AFGL 1973 1976 7 7 100 0.3 10,000 14,558 ~100,000 135,093	AFGRL AFGL AFGL 1973 1976 1978 7 7 7 100 0.3 0.3 10,000 14,558 17,880 ~100,000 155,093 ~139,000 AFGL 1977 4 5 2,940 ~24,000	AFGL AFGL <th< td=""><td>AFGL AFGL <th< td=""><td>AFCIL AFGL AFGL AFGL AFGL AFGL HITTAN 1973 1976 1978 1980 1982 1986 7 7 7 7 7 28 100 0.3 0.3 0.3 0.0 0.0 10,000 14,558 17,880 17,880 17,900 17,900 ~100,000 135,093 ~139,000 159,550 180,817 348,043 AFGL AFGL AFGL AFGL 1082 1082 4 13 21 5 0.0 0.0 2,340 10,000 10,000 ~2,940 10,000 10</td><td>AFCL AFCL AFCL AFCL AFCL IIITEAN 1973 1976 1978 1980 1982 1986 1991,1992 7 7 7 7 7 28 31 100 0.3 0.3 0.3 0.0 0.0 0.0 100,000 14,558 17,880 17,960 17,900 23,000 ~100,000 135,093 ~139,000 159,550 180,817 348,043 709,308 AFCL AFCL AFGL AFGL 4 13 21 - 5 0.0 0.0 0.0 - - - - 2,940 10,000 10,000 - - - - - ~24,000 33,737 97,162 - - - -</td></th<></td></th<>	AFGL AFGL <th< td=""><td>AFCIL AFGL AFGL AFGL AFGL AFGL HITTAN 1973 1976 1978 1980 1982 1986 7 7 7 7 7 28 100 0.3 0.3 0.3 0.0 0.0 10,000 14,558 17,880 17,880 17,900 17,900 ~100,000 135,093 ~139,000 159,550 180,817 348,043 AFGL AFGL AFGL AFGL 1082 1082 4 13 21 5 0.0 0.0 2,340 10,000 10,000 ~2,940 10,000 10</td><td>AFCL AFCL AFCL AFCL AFCL IIITEAN 1973 1976 1978 1980 1982 1986 1991,1992 7 7 7 7 7 28 31 100 0.3 0.3 0.3 0.0 0.0 0.0 100,000 14,558 17,880 17,960 17,900 23,000 ~100,000 135,093 ~139,000 159,550 180,817 348,043 709,308 AFCL AFCL AFGL AFGL 4 13 21 - 5 0.0 0.0 0.0 - - - - 2,940 10,000 10,000 - - - - - ~24,000 33,737 97,162 - - - -</td></th<>	AFCIL AFGL AFGL AFGL AFGL AFGL HITTAN 1973 1976 1978 1980 1982 1986 7 7 7 7 7 28 100 0.3 0.3 0.3 0.0 0.0 10,000 14,558 17,880 17,880 17,900 17,900 ~100,000 135,093 ~139,000 159,550 180,817 348,043 AFGL AFGL AFGL AFGL 1082 1082 4 13 21 5 0.0 0.0 2,340 10,000 10,000 ~2,940 10,000 10	AFCL AFCL AFCL AFCL AFCL IIITEAN 1973 1976 1978 1980 1982 1986 1991,1992 7 7 7 7 7 28 31 100 0.3 0.3 0.3 0.0 0.0 0.0 100,000 14,558 17,880 17,960 17,900 23,000 ~100,000 135,093 ~139,000 159,550 180,817 348,043 709,308 AFCL AFCL AFGL AFGL 4 13 21 - 5 0.0 0.0 0.0 - - - - 2,940 10,000 10,000 - - - - - ~24,000 33,737 97,162 - - - -

Table 3.2 Summary of molecular species on AFGL/HITRAN.

Database	AFCRL	AFGL	AFGL	AFGL	AFGL	HITRAN	HITRAN	HTTRAN
	1973	1976	1978	1980	1982	1986	1991,1992	1996
Molecules	H.O	H ₀	H ₁ O	H ₂ O	H-O	HO	HO	H-O
	CO.	CO.	CO.	CO.	CO.	CO.	CO.	CO.
	0.	0.	0	0.	0.	0.	0.	0.
	N-O	N-O	N-0	N.O	N-0	N-0	N-0	N.O
	CO	CO	co	co	CO	co	co	CO
	CH.	CH.	CH.	CH.	CH.	CH.	CH.	CH.
	0,	0.	0.	0,	0.	0.	0.	0.
			-•			NO	NO	NO
Database			AFGL	AFGL	AFGI.	SO.	SO.	SO-
Trace gases			1977	1940	1982	NO.	NO	NO.
						NH.	NH.	NH.
Molecules			NO	NO	NO	HNO.	HNO.	HNO
			50.	SO.	80.	OH	OH .	01
			NO.	NO.	NO	HP	HT	HR
			NH.	NH.	NH.	RCI	HO1	HCI
				HNO.	HNO.	HB.	HBr	HR
				04	08	нт 1	HI	нт
				HP	HF	00	00	00
				HCI	HCI	003	003	005
				HBr	HBr	H-CO	H-CO	H-CO
				HT	HI	HOCI	HOCI	HOCI
				CIO	 	N.	N.	N.
				0.05	003	HCN	HCN	HCN
				8.00	H-CO	CH.CI	CH-CI	CH.CI
					HOCI	H.O.	H.O.	н.о.
					N.	C.H.	C.H.	C.H.
					HCN	C.H.	CHL	C.H.
					CH-CI	PH.	PH.	PH.
					H-O	* • • •	COF	COF.
					C-H-		SP.	SF.
					C _a H _a		н.я	H.S
					PH.			нсоон
								HO.
								0
								CIONO.
								501103

1986年以降、AFGLからHITRANデータベースに なり大きく変化したもののひとつは、吸収線データ ベースの保存形式である。AFGLデータベースの形 式は、1本の吸収線につき、計算機入力用のカードイ メージの80カラムであったものが、HITRANデータ ベースから100カラムと情報量は増加した。その結果、 遷移確率、吸収気体同士の衝突による半値半幅(selfbroadened halfwidth)及び吸収気体と空気の衝突に よる半値半幅(air-broadened halfwidth)の温度依存 性を表す係数などが新たに編集されるようになった。 また振動エネルギー準位の表現の方法も変化し、振動 量子数そのものの表現から各振動準位に付けられた指 標で表す形式となった。さらに格納されている中心波 数、線強度及び半値半幅の精度に関する情報も併せて 編集されている。Table 3.4 にHITRANデータベース に保存されている吸収線パラメータの一覧を示す。

Table 3.3 Summary of numbers of absorption lines on AFGL/HITRAN.

Molecules	AFGL80	AFGL82	HITRAN86	HITRANO1,92	HITRAN96
H10	45574	48742	47202	48523	49444
CO,	57008	56510	59554	60790	60802
0,	27418	43977	50080	168581	275133
N ₁ O	15864	15845	24125	24125	26174
co	574	574	574	3600	4477
CH.	11053	13005	17774	47415	48032
01	2059	2164	2254	2254	6292
NO	1299	7385	7385	7385	15331
SO3	17420	18169	23659	262:25	38853
NO ₂	9456	9456	20067	55468	100680
NH ₃	721	5556	5817	5817	11152
HNO ₃	2183	12777	35988	143021	165426
он	166	8490	8676	8676	8676
HF	62	62	62	107	107
HCI	200	200	200	371	533
HBr	256	256	256	398	576
ні	145	145	145	237	237
C10	306	6020	6020	\$0'20	7230
ocs	362	737	737	737	858
H,CO	1161	2701	2702	2702	2702
HOCI		7723	15565	15565	15565
N ₂		117	117	120	120
HCN		772	772	772	772
CH3CI		5687	6687	6687	9355
H ₂ O ₂		2389	3272	5444	5444
C ₂ H ₂		306	1139	1258	1868
C ₂ H ₆		4328	4328	4749	4749
PH3		2886	2886	2886	2886
COF2				46894	54866
SF6				11520	11520
H ₂ S				661	7151
HCOOH					3388
HO ₂					26963
0					- 2
CIONO					32199
Seven molecules	159550	180817	201563	355588	470354
Trace gases	33737	97162	146480	353720	529009
Total	193287	277979	348043	709308	999363

Table 3.4 List of the absorption line parameters on HITRAN. After Rothman et al.(1992).

	Parameters	Format
Mol	Molecule number	I2
Iso	Isotope number(1=most abundant,	I1
	2=second most abundant, etc.)	
ν_0	Frequency in cm ⁻¹	F12.6
S	Intensity in $cm^{-1}/(molecule-cm^{-2})$	E10.3
	at 296K	
$ \mathbf{R} ^2$	Transition probability-squared	E10.3
	in Debye ²	
Yair	Air-broadened halfwidth(HWHM)	F5.4
	in cm^{-1}/atm at 296K	
Yself	Self-broadened halfwidth(HWHM)	F5.4
	in cm^{-1}/atm at 296K	
E"	Lower state energy in cm^{-1}	F10.4
n	Coefficient of temperature depen-	F4.2
	dence of air-broadened halfwidth	
δ	Air-broadened pressure shift of line	F8.6
	transition in cm^{-1}/atm at 296K	
v',v"	Upper state global quanta index,	2I3
	lower state global quanta index	
Q',Q"	Upper state local quanta, lower	2A9
	state local quanta	
IER	Accuracy indices for frequency,	3I1
	intensity, and air-broadened	
	halfwidth	
IREF	Indices for table of references	3I2
	corresponding to frequency,	
	intensity, and halfwidth	

Table 3.4の第3カラム目は各パラメータが格納さ

れている形式を示す。線強度や半値半幅には、温度 T_{ref}=296K、圧力P_{ref}=latmの値が格納されている。 吸収線強度の温度依存性は、振動と回転の相互作用と 誘導放出の効果を無視すると次のように書ける。

$$S(T) = S(T_{ref}) \left(\frac{T_{ref}}{T}\right)^{j} \times \frac{Q_{v}(T_{ref})}{Q_{v}(T)} \frac{exp(-hcE''/k_{B}T)}{exp(-hcE''/k_{B}T_{ref})}$$
(1)

ここで Q_v は振動の分配関数を表し、c、h及びk_Bはそ れぞれ光速、プランク定数及びボルツマン定数を表す。 またjは、線形分子に対して1.0、非線形分子に対して 1.5の値をとる。

圧力p、温度Tにおける半値半幅γ_{air}(p,T)の値は、 半値半幅の圧力及び温度依存性を考慮すると次式で表 される。

$$\gamma_{air}(p,T) = \left(\frac{T_{ref}}{T}\right)^n \left(\gamma_{air}(p_{ref},T_{ref})\frac{p}{p_{ref}}\right) \quad (2)$$

ここで_{γair}(p_{ref}, T_{ref}) は圧力 p_{ref}、温度 T_{ref} における、 空気と吸収気体の衝突による半値半幅であり、p は全 圧を表す。

尚、吸収線の圧力によるシフト量を表すカラムに は、HITRAN86では、CO₂の618,667 及び721cm⁻¹ 吸収帯のラインミキシングに関連する係数が格納され ていた。

4. 実験

吸収スペクトルの測定にはフーリエ変換型分光光度 計(Bruker IFS-120HR)を使用した。近赤外域測定 のため、光源にはタングステンハロゲンランプを用い、 検知器にはInSbを使用した。実験条件をTable 4.1に 示す。試料気体には高純度な吸収気体を用い、加圧用 気体として窒素(N₂)あるいは酸素(O₂)を使用し た。吸収気体だけのスペクトルと吸収気体とN₂あるい はO₂の混合気体に対するスペクトルを取得した。試 料の圧力範囲は0.01-1.0atmであり、その圧力測定に はMKS Baratron 122A(フルスケール1000torr 及び 10torr)を用いた。圧力測定の測定精度は、フルスケー ルの1%以内である。CO₂の測定に用いた吸収セルは、 鏡間の距離が80.8cmのホワイト型の多重反射セルで ある。

Table 4.1 Experimental conditions.

	CO_2	N ₂ O	CO	CH4
Temperature (K)	297±1	297.5 ± 1	297 ± 1	298±1
Cell length	2598	67.7	8.75	20.0
Window plates	KBr	KBr	ZnSe	KBr
Spectral	0.08	0.008	0.006	0.003
Resolution	0.01		0.01	0.0045
(cm^{-1})	0.015			0.0078
	0.02			

5. 解析

非線形最小二乗法を用いて、実験スペクトルと計算 スペクトルの残差の二乗和が最小になるように、吸 収線強度及び半値半幅を求めた。また実験スペクト ルの一次微分が零になる点を中心波数とした。室温 下でのドップラー幅 γ_D は、分子量の小さなCH₄に対 して6000 cm⁻¹において約0.011cm⁻¹、CO₂に対して 6300 cm⁻¹において約0.007cm⁻¹であり、Lorentz線 形の0.1atmにおける半値半幅 γ_L より大きいか同程度 の大きさである。このため低圧の条件では、吸収線形 として Voigt線形を考慮する必要がある。Voigt線形 の線形因子 f_v は、吸収線の中心波数を ν_0 とすると次式 のように表せる。

$$f_{\mathbf{v}}(\nu - \nu_0) = AK(x, y) \tag{3}$$

$$A = \frac{1}{\gamma_{\rm D}} \sqrt{\frac{ln2}{\pi}}$$
(4)

$$K(x,y) = \frac{y}{\pi} \int_{-\infty}^{+\infty} \frac{exp(-t^2)}{y^2 + (x-t)^2} dt \quad (5)$$

$$y = \frac{\gamma_{\rm L}}{\gamma_{\rm D}} \sqrt{ln2} \tag{6}$$

$$x = \frac{\nu - \nu_0}{\gamma_{\rm D}} \sqrt{\ln 2} \tag{7}$$

Voigt線 形 の 計 算 に はArmstrong(1967)及 び Drayson(1976)のアルゴリズムを用いた。

CH₄のように、極狭い波数域に2本以上の吸収線が 出現するmanifoldの解析では、非線形最小二乗法で 精度良く線強度や半値半幅を求めることは容易ではな い。このため線強度の情報のみに限定し、等価幅を用 いて解析を行った。1本の吸収線の実験スペクトルか ら得られる等価幅(W_{EXP})は、次のように測定され た吸収率 A_{ν} の波数積分量として表される。

$$W_{\rm EXP} = \int_{-\infty}^{+\infty} A_{\nu} d\nu \tag{8}$$

一方、既知の吸収線パラメータを用いて計算される等 価幅(W_{CAL})は以下のように書ける。

$$W_{\text{CAL}} = \int_{-\infty}^{+\infty} \{1 - exp(-Sf_{\mathsf{v}}u)\} d\nu \qquad (9)$$

ここでSは線強度、uは吸収物質量を表す。 W_{EXP} と W_{CAL} を一致させるように線強度を試行錯誤的に調整し線強度を求めた。

6. 結果と考察

6.1 CO₂

これまで1.6µm付近に存在するCO₂の吸収帯{ 高波数側から(30011←00001),(30012←00001), (30013←00001),(30014←00001)帯}内の線強度につ いて、等価幅を用いて既存の吸収線データベース (HITRAN86,92)の値の検証を行ってきた(Fukabori et al., 1995)。その結果、HITRANデータベースの 線強度には改善を要する波数領域が確認された。HI-TRAN92の線強度は、1970年代のフーリエ変換型分 光光度計による実験結果に基づいていた(Suarez and Valero, 1978a; Suarez and Valero, 1978b; Valero and Suarez, 1978)。特に強度の小さな(30011 \leftarrow 00001), (30014 \leftarrow 00001)帯に対するFukabori et al. (1995) の実験値は、HITRAN92の値に比較して約10-20%程 度小さな値であった。HITRANデータベースの半値半 幅に関しては、HITRAN86とHITRAN92では編集値 が大きく異なり、どちらの値が真値に近いかを検証す る必要がある。このため、1.6 μ m帯の4個の吸収帯の 半値半幅と線強度を非線形最小二乗法を用いて求め、 さらに線強度の吸収帯内の分布から振動-回転相互作 用の効果を議論した。

Fig. 6.1に4個の吸収帯に対する本研究で得られ たCO₂同士の衝突による半値半幅の値($o, \Delta, \Box, \Diamond$) と HITRAN92の値(\bullet)を示す。本研究の半値半幅の大き さは、バラツキはあるものの、広い|m|数(m=J+1:R枝, m=-J:P枝, J は遷移に関わる下位準位の回転量子 数)の範囲で、HITRAN92の値と一致した。因みに、 HITRAN92の値は最近行われた高分解実験の結果に 基づくものである(Johns, 1987; Margottin-Maclou et al., 1988; Dana et al., 1989; Dana et al., 1992)。

 $CO_2 \ge N_2$ の衝突による半値半幅については、Fig. 6.2 に示すように、小さい|m|数でわずかに違いが見ら れるものの、4個の吸収帯に対してほぼ同じ値であっ た。これらの値は最近の高分解実験の結果とほぼ一 致していた(Johns, 1987; Margottin-Maclou et al., 1988; Dana et al., 1989; Dana et al., 1992)。このこ とから半値半幅に関して、本研究の値はHITRAN86 よりもHITRAN92の値を支持するものである。尚、 HITRAN96の半値半幅はHITRAN92のそれと同一で あった。

(30011←00001)帯の線強度(o)とAFGL82, HI-TRAN86, HITRAN92の線強度(それぞれ一点鎖線、 破線、点線)をFig. 6.3に示す。本研究の値は、過去 のいずれのデータベースの値よりも小さかった。この 傾向は等価幅の解析で得られたものと同様であった。

Fig. 6.1 Variations of the self-broadened half-width of the 1.6 μ m bands of CO₂, with |m|.

Fig. 6.2 Variations of the N₂-broadened half-width of the 1.6 μ m bands of CO₂, with |m|.

HITRAN96に な り(30011←00001)帯 と(30014 ←00001)帯に対して、線強度が改訂された。本研究 の値とHITRAN96の値をFig. 6.4に示す。両者は極 めて良い一致を示しており、(30011←00001)帯の線強 度に関して、HITRAN96の線強度は著しく改善され ている。ところが(30014←00001)帯に関しては、HI-TRAN96の値には本研究の値より20%近く大きな吸収 線も見られ、HITRAN96の値はさらに検討を要する ことが分かった。(30012←00001)帯と(30013←00001) 帯の線強度に関しては、HITRAN92とHITRAN96の 値には変化が無かったが、それらの値は本研究の値と 数%以内で一致していた。

Fig. 6.3 Comparison of the measured line strengths with the compiled values for the $(30011 \leftarrow 00001)$ band of CO₂.

(30011 \leftarrow 00001)帯のR、P枝の線強度の大きさと その分布から、遷移に関する双極子モーメント {R(Debye)}の大きさ及び振動と回転の相互作用の 効果を表す因子(F-factor)を求めた。F-factorには、 F=1+am+bm²の関係を用いた。得られた双極子モー メントとF-factorの係数をTable 6.1に示す。F-factor の係数bは、Suarez and Valero及びHITRANと逆の 傾向を示し、Toth et al.(1971) と同傾向を示した。Rの 大きさはSuarez and Valeroより約8%小さいが、Toth et al.の値と良い一致を示した。4個の吸収帯について F-factorの係数を求めた結果、係数bの値は吸収帯の 中心波数と線形関係にある傾向を示した。しかし、係 数aの値には、そのような傾向は見られなかった。

- Fig. 6.4 Comparison of the measured line strengths with the compiled values for the $(30011 \leftarrow 00001)$ band of CO₂.
- Table 6.1 The rotationless transition moment and the coefficients of the Herman-Wallis factor for the $(30011 \leftarrow 00001)$ band of CO₂.

Investigators	$ R (10^{-4})$	$a(10^{-3})$	$b(10^{-5})$
Suarez and Valero	1.541	2.3	7.8
Toth et al.	1.45	0.37	-6.2
HITRAN92		2.3	8.13
Present Work	1.42	0.547	-5.97

$6.2 N_2 O$

2~3μm までの近赤外領域に、6個のN2Oによる吸 収帯(2.0, 2.1, 2.3, 2.5, 2.6及び2.9µm帯)が存在する。 HITRANデータベースにおけるこれらの吸収帯内の 吸収線パラメータには、線強度について編集当初から の値がHITRAN92まで改訂されずに格納されており、 その値の妥当性が問題になっている。高圧実験から得 られた吸収帯強度とAFGL80の値には、吸収帯によっ ては50%以上もの相違が確認されている(Fukabori et al., 1986)。また半値半幅については、1982年版まで Toth(1971)の値、1986年版以後Lacome et al.(1984) の値が格納されている。両者の半値半幅の値には10% 以上もの相違があり、また両者の値はいずれも実験に 基づくものであることから、それらの値の妥当性を検 証することが必要である。HITRAN96では2.9μm帯 の一部の吸収帯で線強度の改訂がなされたにすぎず、 多くの吸収帯の線強度の精度には依然として問題が 残っている。

Fig. $6.5 \text{ kc} 2.3 \mu \text{m}$ 帯の実験スペクトルの一例 を示す。 $2.3 \mu \text{m}$ 帯は(0002 \leftarrow 0000)、(0112 \leftarrow 0110)及び (2310 \leftarrow 0000)帯の3個の吸収帯から構成されている。 この中で強度の最大な(0002 \leftarrow 0000)帯について、等価 幅による解析と非線形最小二乗法による解析を行った。 Fig. 6.6 に実験と計算による等価幅の比を示す。R枝(J が正の領域)ではW_{EXP}がW_{CAL}より約5%程度小さい 値を示したが、P枝では両者はぼぼ等しい値を示した。

Fig. 6.5 A sample spectrum of the $2.3\mu m$ band of N₂O.

Fig. 6.6 Comparison between the experimental and calculated equivalent widths for the $(0002 \leftarrow 0000)$ band in the 2.3 µm band of N₂O.

(0002 \leftarrow 0000) 帯のR(16) に対して非線形最小二乗 法により求めた線強度(S) と半値半幅(γ^{0} (N₂O $-N_{2}$)) の値をTable 6.2 に示す。線強度については、本実験 の値はHITRAN データベースより約4%小さく、等価 幅の比較から得られた結果とほぼ一致している。また 半値半幅については、本実験の値はLacome et al.の 値より約3%大きな結果となった。今後種々の条件下 で実験データを蓄積し、線強度や半値半幅の精度を向 上させる必要がある。 Table 6.2 Comparison of the line strengths and halfwidths of the R(16) line in the (0002 \leftarrow 0000) band of N_2O .

	$\frac{\rm S}{(\rm cm^{-1}/(molecule*cm^{-2}))}$	$\gamma^{0}_{N_{2}O-N_{2}}$ (cm ⁻¹)
HITRAN92	1.21E-21	7.88E-2
Present Work	1.16E-21	8.13E-2

また、2.0µm帯において、4860-4950cm⁻¹にHI-TRANデータベースに未編集の吸収帯を確認した。さ らに、2.3µm帯において、4300-4360cm⁻¹でHITRAN データベースにはQ枝を持つ吸収帯が編集されてい るが、実験スペクトルにQ枝を確認出来ず、R及びP 枝の線強度がHITRANの値より小さい吸収帯を確認 した。

6.3 CO

HITRANデータベースの半値半幅には、編集開 始当初の1973年版からHITRAN86まではHunt et al.(1968)によるCO同士の衝突による幅(γ_{CO-CO}^{0}) が格納されていたが、HITRAN92では、Hartmann et al.(1988)による γ_{CO-CO}^{0} の計算値とNakazawa and Tanaka(1982)によるCOと空気の衝突による幅($\gamma_{CO-air}^{0} = 0.79\gamma_{CO-N_{2}}^{0} + 0.21\gamma_{CO-O_{2}}^{0}$)が格納され ている。 γ_{CO-CO}^{0} について、新旧のデータベースの値 はほぼ一致していた。最新版のHITRAN96の半値半 幅は改訂されておらず、HITRAN92とHITRAN96の 半値半幅の値は同じであった。

一方線強度に関してはHITRAN92で見直しがなさ れ、2.3 μ m付近に存在するCOの第一倍音(2 \leftarrow 0)帯に 対して、それ以前の値より約2.3%大きな値が編集さ れていたが、その精度は約10%程度と見積もられてい た。HITRAN96では線強度にさらに変更が加えられ、 HITRAN92より2%大きな値が編集されている。

COは最も簡単な構造の直線2原子分子であり、分 子構造や電気的特性を解明するため、数多くの実験が 過去になされてきたが、その多くは基音 (1 \leftarrow 0)帯に対 するものであった。本研究では、近赤外域に存在する COの (2 \leftarrow 0)帯の吸収特性を明らかにするために実験 を行った。

Fig. 6.7 にCOの純気体、及びCOと N_2 , O_2 との混 合気体の実験で得られた線強度(\circ)とHITRAN92の値 (-),HITRAN96の値(\cdots)を示す。図中の誤差は3個 の実験から得られた線強度の標準偏差である。両者は 実験誤差の範囲内で良く一致しており、HITRAN92 及びHITRAN96の値の妥当性がほぼ確認された。現 在実験データをさらに蓄積するとともに、振動と回転 の相互作用の効果についての解析が進行中である。

Fig. 6.7 Comparison of the line strengths for the $(2\leftarrow 0)$ band of CO.

Fig. 6.8 に実験とHITRAN92による $\gamma^0_{CO-N_2}$ を示 す。本 研 究 の 値(o)は 最近報告されたチューナブルダイオードレーザー分 光法による Anselm et al.(1993)(△) や高分解フーリエ 分光法による Hamdouni et al.(1993)(□)の実験結果と 良く一致した。HITRAN92の γ^{0}_{CO-air} の基礎となって いる Nakazawa and Tanaka(1982) の $\gamma^0_{\rm CO-N_2}$ 値(•) は 5≤|m|≤15付近で本研究の値より約5%大きな傾向に あった。Nakazawa and Tanakaは、 $\gamma^0_{CO-N_2}$ が|m|の 増加に伴い単調に減少せずに|m|=10付近で減少率が 小さくなる傾向を報告している。このようなyoo-No の変化は、Bouanich and Brodbeck(1973)の結果にも 現れているが、本研究や近年の高分解実験の結果とわ ずかに異なっている。 ₂₀₋₀₂の値に関して、 |m| の小 さな領域では本研究の値はNakazawa and Tanakaの 値より約5%大きかったが、|m|≥10では両者の値はほ ぼ一致した。

Fig. 6.8 Comparison of the N₂-broadened halfwidths for the $(2\leftarrow 0)$ band of CO.

6.4 CH₄

CH4の2v3帯の線強度を求める実験はこれまで主に

低分解でなされたものが多く (Margolis, 1973; Sarangi and Varanasi, 1973)、近年 Margolis (1990) により フーリエ変換型分光光度計を用いて初めて高分解測 定がなされた。AFGL82に初めて $2\nu_3$ 帯が格納され、 1986年と1992年に吸収線パラメータの改訂がなされ ている。HITRAN92とHITRAN96のパラメータは同 ーであり、線強度はMargolis (1990)の実験値に基づ いている。 $2\nu_3$ 帯の線強度について、等価幅の解析か ら、おおむねHITRAN92の値は信頼性が高いことが 確認されている (Fukabori et al., 1995)。しかし、 HITRAN92とFukabori et al. (1995)の線強度に、P 枝の一部に実験誤差以上の相違がみられた。

 CH_4 のスペクトルでは、R(0)、R(1)、Q(1)及びP(1)の吸収線は1本の吸収線から成っており、manifoldを形成していない。これらの吸収線に最小二乗法を用いて線強度と半値半幅を求めた。線強度に関しては、等価幅の解析結果とほぼ同様の結果が得られた。Table 6.3 に、得られた半値半幅の値とHITRAN92の値を示す。本研究の CH_4 同士の衝突幅 (Self-broadened half-width)は、HITRAN92の値より大きい傾向を示した。また $CH_4 \ge N_2 \ge$ の衝突幅 (N_2 -broadened half-width)について、本研究の値とHITRAN92の値は $R(0) \ge R(1)$ に対してほぼ同じであった。

Table 6.3 Self- and N₂-broadened half-widths of the R(0),R(1),Q(1) and P(1) lines in the $2\nu_3$ band of CH_4 .

Half-widths (cm^{-1})							
	R(0)	R(1)	Q(1)	P(1)			
Present Work	0.089	0.086	0.082	0.060			
(Self-broaded)							
HITRAN92	0.079	0.079	0.079	0.079			
Present Work	0.067	0.067	0.058				
(N ₂ -broaded)							
HITRAN92	0.066	0.066	0.066	0.066			

7. 結論

近赤外域に存在する CO₂、N₂O、CO 及びCH₄の吸 収帯に対し、高分解吸収実験を行い吸収スペクトルを 測定した。得られたスペクトルから非線形最小二乗法 を用いて線強度と半値半幅を、また等価幅の解析から 線強度を求め、既存の吸収線データベース(HITRAN) の値と比較しその値の妥当性を検証した。その結果全 ての分子に対して、最新の HITRAN96 にも線強度や 半値半幅に検討・改善を要する吸収帯がみられた。ま たN₂Oのように、明らかに未編集の吸収帯や誤って編 集された思われる吸収帯も確認された。今後、これら の吸収帯の吸収線パラメータを精密に決定し、データ ベースの改善を図る必要がある。また吸収線パラメー タの温度依存性を正確に把握するするために、室温以 外での実験を行う必要もある。

近年高分解のフーリエ変換型分光光度計による実験 結果が多数報告されているが、高分解回折格子分光装 置やチューナブルダイオードレーザーなどによるフー リエ変換分光法と異なる原理の分光法を用いて同一の 吸収帯を測定し、吸収線パラメータの精度をさらに検 証することも重要であると思われる。

REFERENCES

- Anselm, N., K.M.T.Yamada, R.Schieder and G.Winnewisser, 1993:Measurements of foreign gas pressure shift and broadening effect in the (1-0) band of CO with N₂ and Ar. J. Mol. Spectrosc., 161, 284-296.
- Armstrong, B.H., 1967:Spectrum line profiles:The Voigt function. J. Quant. Spectrosc. Radiat. Transfer, 7, 61-88.
- Bouanich, J.-P., and C.Brodbeck, 1973:Mesure des largenurs et des déplacements des raies de la bande 0→2 de CO autoperturbé et petrurbé par N₂, O₂, H₂, HCl, NO et CO₂. J. Quant. Spectrosc. Radiat. Transfer, 13, 1-13.
- Brown, L.R., C.B.Farmer, C.P.Rinsland and R.A.Toth, 1987: Molecular line parameters for the atmospheric trace molecule spectroscopy experiment. Appl. Opt., 26, 5454-5182.
- Brown L.R., M.R.Gunson, R.A.Toth, F.W.Irion, C.P.Rinsland and A.Goldman , 1996:1995 atmospheric trace molecule spectroscopy(ATMOS) linelist. Appl. Opt., 35, 2828-2848.
- Chance, K., K.W.Jucks, D.G.Joneson and W.A.Traub, 1994: The Smithonian astrophysical observatory database SAO92. J. Quant. Spectrosc. Radiat. Transfer, 52, 447-457.
- Dana, V., A.Valentin, A.Hamdouni and L.S.Rothman, 1989:Line intensities and broadening parameters of the 11101 ← 10002 band of ¹²C¹⁶O₂. Appl. Opt., 28, 2562-2565.
- Dana, V., J.-Y. Mandin, G. Guelachvili, Q. Kou, M. Morillon-Chapey, R.B. Wattson and L.S. Rothman, 1992:Intensities and self-broadening coefficients of ¹²C¹⁶O₂ lines in the laser band region. J. Mol. Spectrosc., 152, 328–341.
- Drayson, S.R., 1976:Rapid computation of the Voigt profile. J. Quant. Spectrosc. Radiat. Transfer, 16, 611-614.
- Fukabori, M., T.Nakazawa and M.Tanaka, 1986 :Absorption properties of infrared active gases at high pressures -II. N₂O and CO. J. Quant. Spectrosc. Radiat. Transfer, 36, 283-288.
- Fukabori, M., T.Aoki, T.Aoki, M.Suzuki,
 T.Moriyama, H.Ishida and T.Watanabe, 1995:
 Measurements of the line strengths of CH₄ and

CO₂ in the near infrared region. Bunkô Kenkyû, 44, 187-192 (in Japanese).

- Hamdouni, A., A.Barbe, J.-J.Plateaux, V.Langlois,
 V.Dana, J.-Y.Mandin and M.Badaoui, 1933:
 Measurements of N₂-induced shifts and broadening coefficients of lines in CO fundamental from Fourier transform spectra. J. Quant. Spectrosc. Radiat. Transfer, 50, 247–255.
- Hartmann , J.M., L.Rosenmann, M.Y.Perrin and J.Taine, 1988: Accurate calculated tabulations of CO line broadening by H_2O , N_2 , O_2 , and CO_2 in the 200–300-K temperature range. Appl. Opt., 27, 3063–3065.
- Hunt, R.H., R.A.Toth and E.Plyler, 1968:Highresolution determination of the widths of selfbroadened lines of carbon monoxide. J. Chem. Phys., 49, 3909–3912.
- Husson, N., B.Bonnet, N.A.Scott and A.Chedin, 1992: Management and study of spectroscopic information: The GEISA program. J. Quant. Spectrosc. Radiat. Transfer, 48, 509-518.
- Husson, N., B.Bonnet, A.Chedin, N.A.Scott, A.A.Chursin, V.F. Golovko and V_L . G. Tyuterev, 1994: The GEISA data bank in 1993: A PC/AT compatible computers' new version. J. Quant. Spectrosc. Radiat. Transfer, **52**, 425-438.
- Johns, J.W.C., 1987:Absolute intensity and pressure broadening measurements of CO_2 in the 4.3- μ m region. J. Mol. Spectrosc., 125, 442-464.
- Lacome, N., A.Levy and G.Guelachvili, 1984:Fourier transform measurement of self-, N₂, and O₂broadening of N₂O lines: temperature dependence of linewidths. Appl. Opt., 23, 425-435.
- Margolis, J.S., 1973:Line strength measurements of the $2\nu_3$ band of methane. J. Quant. Spectrosc. Radiat. Transfer, 13, 1097-1103.
- Margolis, J.S., 1988:Measured line positions and strengths of methane between 5500 and 6180 cm⁻¹. Appl. Opt., 27, 4038-4051.
- Margottin-Maclou, M., P. Dahoo, A. Henry, A. Valentin and L. Henry, 1988:Self-, N₂, and O₂-broadening parameters in the ν_3 and $\nu_1 + \nu_3$ band of ${}^{12}C^{16}O_2$. J. Mol. Spectrosc., 131, 21–35.
- McClatchey, R.A., W.S.Benedict, S.A.Clough, D.E.Burch, R.F.Calfee, K.Fox, L.S.Rothman and J.S.Garing, 1973:AFCRL atmospheric absorption line parameters compilation. AFCRL-TR-0096, AFCRL, Bedford, MA.
- Nakazawa, T. and M.Tanaka, 1982:Measurements of intensities and self- and foreign-gas-broadened half-widths of spectral lines in the CO fundamen-

tal band. J. Quant. Spectrosc. Radiat. Transfer, 28, 409-416.

- Poynter, R.L. and H.M.Pickett, 1985: Submillimeter, millimeter, and microwave spectral line catalog. Appl. Opt., 24, 2235-2240.
- Rothman, L.S. and R.A.McClachey, 1976 :Updating of the AFCRL atmospheric absorption line parameters compilation. Appl. Opt., 15, 2616– 2617.
- Rothman, L.S., 1977:Atmopsheric optics, OSA technical group meeting, Tucson, 19 October 1976. Appl. Opt., 16, 277–278.
- Rothman, L.S., S.A.Clough, R.A.McClachey, L.G.Young, D.E.Snider and A.Goldman, 1978:AFGL trace gas compilation. Appl. Opt., 17, 507.
- Rothman, L.S., 1978:Update of the AFGL atmospheric absorption line parameters compilation. *Appl. Opt.*, 17, 3517–3518.
- Rothman, L.S., 1981:AFGL atmospheric absorption line parameters compilation: 1980 version. Appl. Opt., 20, 791-795.
- Rothman, L.S., A.Goldman, J.R.Gillis,
 R.H.Tipping, L.S.Brown, J.S.Margolis,
 A.G.Maki and L.D.G.Young, 1981:AFGL trace
 gas compilation: 1980 version. Appl. Opt., 20, 1323-1328.
- Rothman, L.S., R.R. Gamache, A. Barbe, A. Goldman, J.R. Gillis, L.R. Brown, R.A. Toth, J.-M.
 Flaud and C.Camy-Peyret, 1983:AFGL atmospheric absorption line parameters compilation: 1982 edition. Appl. Opt., 22, 2247-2256.
- Rothman, L.S., A.Goldman, J.R.Gillis,
 R.R.Gamache, H.M.Pickett, R.L.Poynter,
 N.Husson and A.Chedin, 1983:AFGL trace gas compilation: 1982 version. Appl. Opt., 22, 1616-1627.
- Rothman, L.S., R.R.Gamache, A.Goldman,
 L.R.Brown, R.A.Toth, H.M.Pickett, R.L. Poynter, J.-M.Flaud, C.Camy-Peyret, A.Barbe,
 N.Husson, C.P. Rinsland and M. A. H. Smith,
 1987:The HITRAN database: 1986 edition. Appl.
 Opt., 26, 4058-4097.
- Rothman, L.S., R.R.Gamache, R.H.Tipping,
 C.P.Rinsland, M.A.H.Smith, D.Chris Benner,
 V. Malathy Devi, J.-M.Flaud, C.Camy-Peyret,
 A.Perrin, A.Goldman, S.T.Massie, L.R.Brown
 and R.A.Toth, 1992:The HITRAN molecular
 database: edition of 1991 and 1992. J. Quant.
 Spectrosc. Radiat. Transfer, 48, 469-507.
- Rothman, L.S., 1996:HITRAN 1996(CD-ROM), private communication.

- Sarangi, S. and P.Varanasi, 1974:Measurement of intensities of multiplets in the $2\nu_3$ -band of methane at low temperatures. J. Quant. Spectrosc. Radiat. Transfer, 14, 365–376.
- Suarez, C.B. and F.P.J.Valero, 1978a: Absolute Intensity Measurements at different Temperatures of the $C^{12}O_2^{16}$ bands $30^01_{I} \leftarrow 00^00$ and $30^01_{IV} \leftarrow 00^00$. J. Quant. Spectrosc. Radiat. Transfer, 19, 569–578.
- Suarez, C.B. and F.P.J.Valero, 1978b:Intensities, self-broadening by Ar and N₂ for the $30^{0}1_{III} \leftarrow 00^{0}0$ band of CO₂ measured at different temperatures J. Mol. Spectrosc., 71, 46-63.
- Toth, R.A., 1971:Line strengths of N₂O in the 2.9 micron region. J. Mol. Spectrosc., 40, 588-604.
- Toth, R.A., R.H.Hunt and E.K.Plyler, 1971:Lines intensities of the CO₂ σ - σ bands in the 1.43–1,65 μ region. J. Mol. Spectrosc., 38, 107–117.
- Valero, F.P.J. and C.B.Suarez, 1978:Measurement at different temperatures of absolute intensities, line half-widths, and broadening by Ar and N₂ for the $30^{\circ}1_{II} \leftarrow 00^{\circ}0$ band of CO₂. J. Quant. Spectrosc. Radiat. Transfer, 19, 579–590.