16

海洋観測データから得られたエーロゾルの波長依存性 Spectral Deviation of Aerosol Optical Thickness Discussed from in-situ Data

浅沼市男

海洋科学技術センター、むつ市北関根690、asanumai@jamstec.go.jp 千葉大学環境リモートセンシングセンター、千葉市稲毛区弥生町1-33

概要

衛星搭載可視光センサーの大気補正方法の中でエーロゾルの推定方法は、植物プランクトン濃度の低い 海域からの670nmにおける上向き輝度値を用いて、短波長側のエーロゾルの光学的厚みを推定する方法で ある。ここでは、放射伝達モデルLowtran-7から推定されるエーロゾルの光学的厚みの波長依存性に対して、 実測のエーロゾルの光学的厚みの波長依存性の変動値を正規化し、異なる測点間のエーロゾルの光学的厚 みを評価した。この結果、正規化したエーロゾルの光学的厚みの変動は、波長によって異なる応答を示し、 一部の波長においては水蒸気圧の変動として与えられることが分かった。一部の波長とは、465、490、520、 589nmをさし、これらの波長を利用する生物光学アルゴリズムには誤差を含む可能性が示された。

1 はじめに

ADEOS(Advanced Earth Observation Satellite, Midori)が、97年6月30日に活動を停止し、残念ながら OCTS(Ocean Color Thermal Scanner)の観測が終了した。OCTSは96年11月から8ヶ月間にわたって全球の 海色のデータを取得した。これは実験気象衛星NIMBUS-7搭載のCZCS(Coastal Zone Color Scanner)が86 年に活動を停止して以来、10年ぶりの貴重なデータとなった。一方、97年8月にはOrbView-2が打ち上 げられ、SeaWiFS(Sea Wide Field of View Scanner)が観測を開始した。これらの海色センサーは海色の分 光情報を提供するとともに、植物プランクトン分布データを与える。また、Lewis他(1990)らが基礎的研 究を行い、我々が観測を行っている赤道直下の海域においても重要な観測支援手段となる。

この海色センサーを利用しようとするとき、衛星到達の海面からの分光輝度値には大気中からのパス ラジアンス光が含まれ、これを除去するための大気補正手法が論じられてきた(Gordon,1981)。 Sorensen(1979)、Gordon and Clark (1980, 1981), Gordon and Morel (1983) などは、クロロフィル濃度の低い 海域の670nmの海面からの上向き分光輝度が小さいことを利用し、短波長側の大気効果を推定する手法 を開発した。また、NASAはSeaWiFSのために長波長側の複数の波長の情報と大気モデルから短波長側の 大気効果を推定する手法を開発した(McClain, et al, 1994)。

我々は、赤道上の暖水プールと赤道湧昇帯において海洋観測を継続し、下向き分光照度、上向き分光 輝度、植物プランクトン濃度などのデータを得てきた。これらの観測を通して、光学計測値と、数値モ デルとの比較を試みた。この中で、下向き分光照度から大気特性を論ずる方法はGordon(1991)などによ り論じられてきたが、観測値と大気モデルからエーロゾルの分光特性に関して検討を加えた。

2 大気中におけるエーロゾルの分光依存性

海洋観測において、測点ごとに変動するエーロゾルの光学的厚みの波長依存性を評価するために、船上における全天空光の下向き分光照度を計測した。海面直上において観測される全天空光の下向き分光 照度(*Edo(1)*)は、次式に示される。

 $Edo(\lambda) = Fo(\lambda) \cos(\mu 0) \exp[\{-\tau r(\lambda) - \tau o(\lambda) - \tau H_{20}(\lambda) - \tau a(\lambda)\}/\cos(\mu 0)] \cdots (1)$

ここで、 $Fo(\lambda)$ は大気上面における太陽の分光照度、 $Tr(\lambda)$ は空気分子のレーリ散乱と吸収とによる 光学的厚み、 $To(\lambda)$ はオゾンによる散乱と吸収とによる光学的厚み、 $TH2O(\lambda)$ は水蒸気の散乱と吸収 とによる光学的厚み、 $To(\lambda)$ はエーロゾルの散乱と吸収とによる光学的厚み、 $\mu 0$ は太陽の天頂角を示 す。

ここで、実測の海面直上の全天空光の下向き分光照度を $E_{d0_m}(\lambda)$ とし、ロートラン放射伝達モデル (Kenizys他、1988)により計算される海面直上の全天空光の下向き分光照度を $E_{d0_L}(\lambda)$ とする。また、 空気分子、オゾン、水蒸気による散乱は測点間において余り変化しないと仮定する。そこで、実測値 *Edo_m(1)*と、計算値*Edo_L(1)*との自然対数の差を取ると、次式のようにエーロゾルの光学的厚みの差と して与えられる。

 $ln(Edo_m(\lambda))-ln(Edo_L(\lambda)) = \{ \tau_{a_m}(\lambda) + \tau_{a_L}(\lambda) \}/cos(\mu 0) \cdots (2)$

さらに、ロートラン放射伝達モデルにおいて、エーロゾルの存在しないときの海面直上の全天空光の 下向き分光照度を*Edo_L_withoutA(1*)として求める。同様に、実測値*Edo_m(1*)の自然対数との差を求めると、 次式のように実測値のエーロゾルの光学的厚みが与えられる。

 $ln(Ed0_m(\lambda))-ln(Ed0_L_withoutA(\lambda)) = - \mathcal{T} a_m(\lambda)/cos(\mu 0) \cdot \cdot \cdot (3)$

実測値のエーロゾルの光学的厚みを他の測点における実測値と比較するため、(2)式と(3)式との比をとる。

 $\{ \ln(Ed_{0}m(\lambda)) - \ln(Ed_{0}L(\lambda)) \} / \{ \ln(Ed_{0}m(\lambda)) - \ln(Ed_{0}L_{without}A(\lambda)) \}$ $= \{ -\tau a_{m}(\lambda) + \tau a_{L}(\lambda) \} / \{ -\tau a_{m}(\lambda) \} \cdot \cdot \cdot (4)$

この式によって、モデルのエーロゾルの光学的厚みを基準とし、実測値のエーロゾルの光学的厚みの差の偏差を記述することができる。これを正規化エーロゾル光学的厚み偏差値(NDA:Normalized Deviation of Aerosol Optical Thickness)と呼ぶ。

3 計測値

洋上において、最も障害物の少ないコンパスデッキに、分光照度計を設置し、全天空光の下向き分光 照度を計測した。分光照度計は、米国Biospherical社のMER-1010であり、12チャネルのフィルター式検 出器を持つ。観測前に、実験室において米国工業技術基準(NIST:National Industrial Standard of Technology)の標準光源をもとに校正を行った。

4 モデルによる計算値

放射伝達モデルロートラン-7を利用し、海面直上の全天空光からの下向き分光照度を求めた。モデ ルは全天空光からの下向き分光照度を求めるモードを持たないため、海面上に設置した反射率1.0の白色 板を輝度計により観測したときの上向き分光輝度を求め、の値から全天空光の下向き分光照度を求めた。 海洋観測と同じ時期の赤道上における計算とし、その他の条件を次に示す。

- a. Atmosphere model: tropical model atmosphere,
- b. Mode of compute: radiance mode with the solar scattered radiance included,
- c. Scattering mode: multiple scattering,
- d. Haze type: maritime extinction with the visibility of 23 km,
- e. Phase function: Mie generated data base of the aerosol phase function,
- f. Viewing geometry: looking the surface from 1 m height in nadir, of which reflectance is 1.0 for all spectral range.

g. Zenith angle of Sun: 23.5, the zenith angle at 10:30 in local time on the date corresponding to the date of observation in January of 1997, and h. spectral resolution: 1 nm.

5 結果

海面直上の全天空光下向き分光照度は、97年1月の海洋調査船「かいよう」による観測で、赤道上東 経173度から西経167度の間の測点における計測により得られた。計測は、OCTSの通過時刻である現 地時間の10時30分に合わせて計測した。

表1に観測測点における計測結果を示す。いずれの観測においても、雲量は3以下(3/10)であ

った。

ロートランによる全天空光下向き分光照度の計算は、1nmおきにもとめ、今回使用した分光照度計のフィルターの半値幅に相当する区間の積分値を求めた。エーロゾルを含む場合と除いた場合の計算結 果を表2に示す。

表1 下向き分光照度の計測値

97年1月の赤道直下の観測時の計測値。日付は97年のジュリアンデーである。全測点とも 赤道上の測点であり、その経度を示した。

Stations		Wav (uW/o	Wavelength of Bands (nm) and spectral Irradiance (uW/cm2.nm)											Water Vapor		
Day of Meas	Long.	410	441	465	490	507	520	532	550	565	589	671	765	(hPa)		
13.92 15.90 16.91 17.89 19.93 20.93	-173.89 -167.80 -167.45 -167.93 -176.22 178.69	131 133 132 130 132 130	150 153 152 149 151 151	179 182 181 177 180 180	173 177 176 172 174 175	168 171 170 168 170 170	162 165 164 162 165 165	161 164 164 162 165 165	161 163 162 160 162 160	162 163 157 161 160 160	155 158 152 153 154 156	136 138 136 134 136 138	83 84 82 81 84 84	30.63 28.16 28.33 28.85 29.02 31.37		

表2 放射伝達モデルにより計算した全天空光下向き分光照度。 (1)は通常の計算結果、(2)はエーロゾルを除いたときの計算結果。

Wavelength (nm)	410	441	465	490	507	520	532	550	565	589	671	765
 Lowtran Normal Lowtran without Aerosol 	148	165	184	173	176	166	172	170	165	153	143	80
	156	173	190	179	181	171	177	175	169	157	145	83

図1 全天空光下向き分光照度 (実測値(97年1月)及び計算値)

図1は、実測値と、モデルによる計算値の分光曲線である。400nmから465nmの区間において、実測値 とモデルによる計算値との間で若干の差が認められた。エーロゾルを含まない計算値が、大きめの値を 示した。

これらの値に対して、(4)式を適用し、NDAを求めた。図2-aはNDAの全範囲を示す。これによると、

590nmから765nmの間において、大きな値の偏差が見られ、590nmにおいて-5から+5の偏差、765nmにおいて-4から14の偏差が見られた。また、490nm近辺において若干の偏差が見られた。

図2-bは、図2-aのNDAの短波長側における微少の偏差を見るために拡大表示したものである。 これによると、410、441、507、532、550、671 nmにおいて0.6から0.7の偏差が見られた。これは、実測 値のエーロゾルの光学的厚みは、ロートランによるエーロゾルの光学的厚みより60から70%大きいこと を示す。さらに、490nmにおいては-1.7 から 0.2の偏差を示し、-170%から20%の差、また、520nmにお いては0.1から0.5の偏差を示し、10%から50%の差が示された。

この中で、490nm、520nm、590nm及び765nmにおける偏差は、他の波長と比較して大きな偏差を持つ が、波長依存性及び測点間において大きな差を持つことから、エーロゾルによる光学的厚みのみの偏差 と考えることが困難である。この波長依存性は、水蒸気などの測点によって変化し、また、波長依存性 を持つ他の大気構成成分によるものと考えることができる。

洋上において観測する項目の一つに、大気中の水蒸気分圧がある。大気中の水蒸気分圧は、露点温度

と気圧から計算により求めた。NDAに対する水蒸気分圧を図3に示す。図3において410nm(□)、 520nm(△)、671nm(◇)のNDAは、水蒸気圧の変化に対して一定の値を示した。490nm(▽)は低い 水蒸気圧の範囲では増加傾向を示し、高い水蒸気圧の範囲では一定の値を示した。また、589nm(☆) のNDAは水蒸気圧の上昇に対して減少の傾向を示した。この観測における水蒸気圧は、海面直上におけ る計測であり、大気カラム全体の水蒸気圧とは異なる。しかし、NDAは波長によりことなるが、一部の 波長では水蒸気圧の関数として示された。

6 まとめ

海面直上における全天空光の下向き分光照度の計測値と、放射伝達モデルロートラン7により与えら れた計算値から、NDA(正規化エーロゾル光学的厚み偏差値)を定義した。このNDAは、測点間におい て波長依存性を示した。この波長依存性は、エーロゾルの波長依存性と考えることが困難であり、観測 において得られた水蒸気圧と比較したところ、NDAの変動の大きい波長では、水蒸気圧の変化に対応す ることが示された。CZCSタイプの大気補正においては、670nmから短波長の光学的厚みを推定する方法 が採られるが、この研究から465nm、490nm、520nm、589nmではエーロゾル以外の水蒸気などの大気構 成因子による誤差の導入が示唆された。

7 References

- 1. M.R.Lewis, M.E.Carr., G.C.Felduman, "Influence of penetrating solar radiation on the heat budget of the equatorial pacific ocean", Nature, 347, 6293, 543-545 (1990)
- H.R.Gordon and D.K.Clark, "Clear water radiances for atmospheric correction of coastal zone color scanner imagery", Appl. Optics, 20, 24, 4175-4180 (1981)
- 3. B.M.Sorensen, "Recommendations of the international workshop on atmospheric correction of satellite observation of sea water color", Ispra: Joint Research Center Ispra Establishment, 53pp (1979)
- 4. H.R.Gordon, and D.K.Clark, "Atmospheric effects in the remote sensing of phytoplankton pigments", Boundary-Layer Meteorology 8: 299-314 (1980)
- 5. H.R.Gordon and A.Y.Morel, "Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery (A Review)", Lecture Notes on Coastal and Estuarine Studies, Springer-Verlag, 114pp (1983)
- 6. R.S.Fraser and S.Mattoo, "Atmospheric and Glint Corrections", SeaWiFS Technical Report Series, S.B.Hooker Editor, 19, 4-20 (1994)
- 7. D.Antoine and A.Morel, "Atmospheric correction of the ocean color observation of the Medium Resolution Imaging Spectrometer (MERIS)", Ocean Optics XIII, S.G.Ackleson Editor, 101-106, (1996)
- 8. H.R.Gordon, "Absorption and scattering estimates from irradiance measurements: Monte Carlo simulations", Limnol. Oceanogr., 34, 1389-1409 (1991)
- 9. F.X.Kneizys, G.P.Anderson, E.P.Shettle, W.O.Gallery, L.W.Abreu, J.E.A.Selby, J.H.Chetwynd, and S.A.Clough, Users Guide to LOWTRAN 7, Air Force Geophysics Laboratory, AFGL-TR-88-0177, pp.137, (1988)
- 10. D.Tanre, M.Herman, P.Y.Deschamps, and A.de Leffe, "Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties", Appl.Opt. 18, 21, 3587-3594, (1979)