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0 Introduction

After the discovery of arithmetic geometric mean of Gauss in 1796, there has been proposed several its
variants and generalizations. There are some interesting studies among them, like the cubic-AGM of
Borweins in two terms case [B-B]. Also it has been aimed to find a new three terms AGM, for example
the trial of Richelot ([R], also [B-M]). But up to present time there was no nicely settled theory for it.
In this article we show a new AGM of three terms that has an expression by the Appell hypergeometric
function. Our AGM is related to the Picard modular form appeared in [S], this story will be published
elsewhere.

1 Definition

Definition 1.1 Let a,b, ¢ be real positive numbers satisfying a > b > c. Set
b
W(a,b,) = (0, 6,7) = (5 VA VB), (L)

with
A = 1(a?b+b*c + Ca+ ab® + bc? + ca?) + %(a —c)(a—"b)(b—c¢)
B

= 1(a®h+ bPe+ Pa + ab? + be? + ca®) — L (a— ) (a—b)(b—c).

Here we choose the arequments of = /A and v = /B such that
0 <arg VA< %, 0<B+7.

Remark 1.1 If we make a permutation of a,b,c, it causes only the difference of the choice of complex
conjugates.

Lemma 1.1 For a triple (o, 5,7) = ¥(a, b, c), we find uniquely determined real triple (z,y, z) = T(a, 5,7)
such that

2

1 1 1
(,3,7) = (z,9,2) | 1 &* w |, (w=exp(2ni/3))
1 w w

and
x> [yl x> |z



proof].
We obtain the assertion by an easy direct calculation.
For a general triple (a, b, ¢) of complex numbers and (z,y, z) = T(a, b, ¢), we have

c=a, ® —yd =33, 23— 28 =B

with («, 8,7) = ¥(a,b,c), and we don’t mind the branches of 3, .
By using the above notations, we have

Proposition 1.1 For a real triple (a,b,c) with a > b > ¢ we can determine

U(U(a,b,c)) = (a,b,c) = (x, Va3 — 43, /a3 — 23). (1.2)
Especially the twice composite of ¥ induces a real positive triple again.

Lemma 1.2 We have

8% =7 > 18 = 1%,
8% = a®| = |8 — of
proof].

Put 8 = s+ it. Then
162+ By +7°| > 8-> = 5* > £?/3.

Because of our choice of the argument the first inequality holds.
We have
o = Bllo” =% = 27(2® + ay + ) (® + w2 + 2°) (1 +yz + 2%)
and
o = BP e =P = 27(y* + yz + 2°)°.

It holds
(> +ay+y°) — (P +yz+2%) = (@ - 2)(a+y+z)=alr—2)>0
(@2 +2242%) - (WP +yz+2) = —y)(z+y+2)=alx—2) >0.

So we obtain the second inequality.
q.e.d.

Proposition 1.2 We have
18— a*2 = ta((a— )2+ (b— ) + (a— )"

8% = 7% = S(a— )b — )(a—b)

and )
B—7] << W(a—c),
a—Bl<ta—c) la—rl < La—o).
proof].
We have

1 1
13% — a? (a®> —ab+b —ac—bc+02)3 = @((a—b)2—|—(b—c)2—|—(a—c)2)3.

T30

So we get the equalities. By using the equalities and the above Lemma together with the inequalities

(a=b)2*+(b-c)?<(a—c)? (b—c)a—0b) < ~(a—c)?

=

we obtain the required inequalities.
q.e.d.



Proposition 1.3 We have

V) — ] <0.1982(a —¢), |a' — V| < 0.2255(a — ¢), |a’ — | < 0.2255(a — c).

[proof].
Acoording to the above Proposition we have:

1
BB < b3 — 3] = B — 23| — — o — B2
WP < =10 = = 5B =lla =
1 1 1
< sATIAe 959

So it holds

ly' — 2| < 209343 (g — ¢) < 0.1982(a — ¢), |y — 2| < 209343 (4 — ¢) < 0.1982(a — ).

1
Valy—w?s| = |a - 5] < 30— o).
Hence

1 1
b —d P < % = =yl < (—=(ly — 2l + |z —wy))’ < [

Sl
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So we have
la" —b'| < 0.2255(a — ¢).

By changing the roles of § and v we have

la" — /| < 0.2255(a — ¢).

By Proposition 1.2 and Proposition 1.3 we have the following.

(1.3)

3{2(—2/9)3(—4/3) + 3323 (0 — ¢)®.

q.e.d.

Theorem 1.1 Let a,b,c be real positive numbers satisfying the condition a > b > c¢. Set V™ (a,b,c) =

(any b, cn)(=¥(an—1,bn-1,¢n-1)). Then there is a common limit

M3(a,b,c) = lim a, = lim b, = lim ¢,.
n—oo n—oo n—oo

2 Functional equation and Appell’s HGDE

2.1 Functional equation

Let z,y be real positive numbers. By the limit process of

1+x+y 1424y 30 3y
(1 =(———, (1 1 = 1
( ?'r7y) ( 3 7/6( 7x7y)7/y( )x7y)) 3 ( ’1—|—1’+y,1—|—x—|—y
we have
1 3 3
M3(1ay) = S g, 20
3 l+z+y 14+24+y
Set
H(.’E )—;
Y MB(1,ay)
Proposition 2.1 We have
3 30 3y
H(z,y) = H( : )-
1+z+y "14+z+y l4+z+y



2.2 Appell’s Hypergeometric function F}

According to Appell [App] we define the hypergeometric function Fy with parameters a, b, V', ¢ (see also
[Y]):

Definition 2.1

(a,m +n)(b,m) (', n)

My 2.2
(c,m + n)m!n! vy (2:2)

)

Fl(a,b,b/,c;:c,y) = Z

m,n>0

,where we use the conventional notation

(A k) = {0, 1()k: 0)
f=Fi(a,b,V,c;x,y) satisfies the following linear partial differential equation
(1 =) foo + (L= 2)yfoy + (¢ — (a+ b+ 1)z) fo —byfy —abf =0
Y1 =) fyy+ A=y xfoy + (c—(a+ bV +1)y)fy —Vafy —ab f=0 (2.3)

(v — y)f:w =0 fo + bfy =0.

It has a three-dimensional space of solutions at a regular point, and it has unique holomorphic solution
up to constant at the origin. The third equation is derived from the first and the second.

3 Differential equation

Proposition 3.1 We have

3 1+ wz + w? 3 14+ w2z 4w 3
R1/3,1/31/3,11 = 2% 1 =) = oy <1/3,1/3,1/3,1;( Hﬁyy) ( HHy‘”

We use the abreviation
Fi(z,y) = F1(1/3,1/3,1/3,1; 2,y),

and set
2(z,y) = F1(1/3,1/3,1/3,1;1 — 2°,1 — ¢°).

We describe the differental equation for z(z,y) and deform it to an equivalent system under a change of
variables. At first we obtain the system

01 = %(1 — 23)0py + %(1 — y3)0py — 320, + %(1 —y3)o, —1
2= (1= y*)0yy + 25 (1 = 2%)0yy — 3ydy + 1z (1 —2°)0, — 1 (3.1)
63 = (2% — ¥*)Opy — Y20, + 220,

for z(x,y), where we use the convention 9, = % etc. Put

_ ldwztw?y
X = 1+z+y

_ 1+w2z+wy
Y = 14z+y

Q=1+w’X+wY

{P:1+X+Y
R=1+wX +w?Y



and
Dx = (w — X)(?X + (w2 — Y)ay
Dy = (w2 — X)@X + (w — Y)ay

Then we have
(I+z+y)1+X+Y)=3

and Lxay
Oy = %DX

_ I+ X4V
9, = HXE D,

We can rewrite the system (3.1) in terms of X,Y, Dx, Dy

3} = 55 (P° = @*)(DxDx — Dy) + g8 (P® = R®)(Dx Dy — Dy) — QDx + 57 (P? = R*)Dy — 1

5 = g (P* = R*)(Dy Dy — Dx) + 562 (P® = @*)(Dy Dx — Dx) — RDy + 545 (P® = Q*)Dx — 1

Namely, we have

where z = z(z,y) = Z(X,Y) = Z. We obtain the system

68 = o5 (P® — Q*)(DxDx — 3Dx +2) + 3% (P* — R*)(Dx Dy — Dx — 2Dy +2)

~Q(Dx ~ 1)+ gha (P* — B)(Dy — 1)~ 1

5% = QQLR(PLS — RS)(DyDY — 3Dy + 2) + %(P3 — Q3)(DyDX — Dy —2Dx + 2)

(PP - Q%) (Dx —1) -1,

for Z = ﬁ(: 24 (2, y)). Then we have

SZ(X,Y)=8Z(X,Y) =0 6" Z(X,Y) = 65Z(X,Y) = 0.

On the other hand, we can rewrite the system (2.3) for the function Fy(X?,Y?3) that is coming from the
right hand side. Namely we get

8 =%(1—X*0xx + 31— X3)0xy + w2 (1 —3X%)dx — YOy — 1
8 =1(1-Y0yy + 251 - Y30xy + 3= (1 — 3Y3)0y — X0x — 1
(53 = 7X21Y2 (Y3 — X?’)axy + %8)( — %8}/.

By direct calculation we get the following equality of the differential operators:

QR(RSY 4+ Q%) = X (14 2X)(X — Y2)8 + Y (1 +2Y)(Y — X2)8 + XY (Y — X)(XY — 1)}

QR (RS — Q03) = ~X(X — Y2)5, + V(Y — X2)8 + XY (X +Y)(XY — 1),

So the function Fy (X 3.Y3) in the right hand side satisfies the same hypergeometric differential equation
for Z(X,Y). Because Fy(1 — 3,1 — y?’)‘w:y:l = F1(0,0) = 1, we obtain the required equality.
q.e.d.

4 Main theorem

Theorem 4.1 We have

1

. ¥ | =F(1/3,1/3,1/3,1:1 — 23,1 — ¢%).
MS(I,.Z‘,y) (il?,y) 1(/a /7 /7 ) x, y)

in a neiborhood of (x,y) = (1,1).



proof].
Set

@(x,y) = H(xvy)/Fl(l - '7;3’ 1- y3)7\1’(1’x5y) = (a,ﬁ,’y).

According to the functional equation, we have

p(z,y) = p(B/a,y/a).
By the iteration of this argument we obtain

e(z,y) = ¢(1,1) = 1.

q.e.d.

5 M3(1,z,y) as a period integral
According to Appell we have integral representations for Fy(a,b, b, c;z,y) as follows:

Theorem 5.1 (Appell [App])
(1) If we have R(a) > 0,R(c — a) > 0, it holds

Fi(a,bV,c;x,y) = F(a)i‘%?a)/o w1 = )1 = 2u) (1 — yu) Y du
_ I'(c) OO WY — D — ) — ) dud T
- v | ( — 1) =)l — ), (] < 1yl < ).

(2) If we have R(b) > 0, R(b') > 0,R(c—b—V") > 0,|x| < 1, |y| < 1, it holds

I'(c) // b—1, b —1 —b—b'—1 -
T 1—u—v)° 1 —a2u —yv)” *dudv.
OGN CETE N ) A (o )

So our M 3(1,z,y) has expressions as period integrals for a family of Picard curves and at the same time
for a family of certain elliptic K3 surfaces (see [9]).

Fl(avba b’,c;a:,y) =

Theorem 5.2 We have

1 B 1 /°° du _ 1 // dudv
M3(11‘T7y) F(%)F(%) 1 v (F(%))S u,v,l—u—v>0 w ’

vP=u(u—1)(u—1+2%)(u—1+y%),
w® = uv(l —u—v)(1 —u(l —2%) —v(l —y?))
for |23 —1] < 1,|y* — 1] < 1.

Where, we choose the real positive branches of v and w for real x,y.

Remark 5.1 If we put x =y, our M3 councides with the ”cubic AGM” discovered by Borweins [B-B].
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