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Introduction

In this paper we study the theta contants appeared in [S] those induced the
modular function for the family of Picard curves C(&) given by (1). Our theta
constants Vi (u,v) (k = 0,1,2) , given by (3), are "Neben type” modular
forms of weight 1 defined on the complex 2-dimensional hyperball B, given
by (2), with respect to a index finite subgroup I'y of the Picard modular group
I' = PGL(M, Z[exp(27i/3)]). We define a simultaneous isogeny for the family of
Jacobian varieties of C'(£). Our main result is stated in Theorem (3.1). There we
show the explicit relations between theta constants Jy(u,v) and 95 (v/—3u, 3v)
which are corresponding to isogenous Jacobian varieties. In the theory of elliptic
theta functions we have the relation

930 (27) = 5(90(7) + V5,(7))
’19(2)1(27') = 1900 (T)1901 (T)

This classical formula corresponds to the Gauss AGM process. Our formula

plays an analogous role in the generalized AGM argument. We made an an-

nouncement of the result concerning our new AGM in Theorem 4.2, and the
proof will be published elsewhere.

1 Picard modular revisted

The Picard modular functions are the counterparts of the elliptic A-function for
the family of the Picard curves of genus 3 ([P]):

CA, X)) 2 =z(x —1)(z — M) (z — No).

Same as the case of A(7), we get an expression of A\; and Ay in terms of the
Reiemann theta constants ([S]) that is the inverse of the period map and defined
on the period domain. There are several detailed studies on the Picard modular



forms ([F], [H], [S]).
Here we review the known results which we use in our arguments. We express
the Picard curve with the projective parameters:

C) : v’ = a(x — &) (& — &)z — &), (1)

where

EeZ={:& &L eP?: &&6(& — &) (& — &)(& — &) # 0.

The Jacobian variety Jac(C(€)) of C(§) has a generalized complex multiplica-
tion by v/—3 of type (2,1). The moduli space of Picard curves is given as a
quotient of a complex ball

B={n=[no:m:m) €P*C):'nMny<0}, M= (2)

O = O
O O =
_ o O

by the Picard modular group
I ={g € GL3(Zw]) : 'gMg = M}, w = exp(2mv/—1/3).

Remark 1.1. The period map = — B is defined by

§»—>/ dr /Bldx /Ade

for certain 1-cycles A; and B; on C(§) ([P],

Henceforth we denote g = (gij)1§¢7j§3 whenever we need an elementwise
argument of g € I'. Let Hj be the Siegel upper half space of degree 3. Setting

2 2 2 2
u 1+_:J v w2u wul_:j v n m
Qu,v) = wu —w? u , withu=-—= v=—,
wul—o?v 0 w420y o "o

1—w 1—w

we have a modular embeding
Q:B— H;, (u,v)— Qu,v).

It is compatible with the homomorphism p : I' — Spg(Z) given by

@y —bay  azz —baz  —bao b2y ba3 a1 — boy
az2 — b3z agzz —bzz —b3a | b31 b3z azr — b3
(g) = bao ba3 azx | —az1 —as3 bo1
- —b12 —b13 —ai2 a1 a13 —b11
—b3a —b33 —a3zy | a3 ass —b31
a2 — b1z aiz—biz —bio b11 b13 ain — bn

with g = (g55) € T, gi; = a;j+wb;j. Namely we have p(g)-Q(u,v) = Q(g-(u,v)).

Remark 1.2. The homomorphism p does not coincide with o in [F], because
there the affine coordinates are given by u = n2/m, v =19/N1.



Let us consider the following Riemann theta constants and their Fourier
expansions (see [S]):
0 1/6 O r
O (u,v) =0 {k/?) 1% k:/S] 0,Qu,v)) = > W H (pu)g" " (3)
HEZ[w]

with an index k € Z, where trpp = g+ i, N(u) = pi and

H(u) = exp[%uQ]ﬁ E?g} (u, —w?), q= exp[%v].

Apparently it holds 9y (u,v) = 9x13(u,v), so k runs over {0,1,2} = Z/3Z.
According to [F],[P] and [S] , we have the following:

Fact (i) The map
A:B—P? (u,v)— &= [9o(u,v)?: 91 (u,v)?: Dg(u,v)?]

gives the invese of the period map & — (u,v) and is invariant under the action
of the congruence group

I'v-3)={geTl:g=1I3 mod+v-3}
of level v/=3. It gives a biholomorphic isomorphism B/I"(v/—3) = P2, where X
indicates the Satake compactification of X.
Fact (ii) (Finis’ equalities [F])
H(wu) = H(u), H(0)*H(vV—=3u) = —wH(u)* — w?H(—u)>. 4)

Fact (iii) The projective group I'(v/=3)/{1,w,w?} is generated by

1 0 0 1 0 0 1 0 0
gi=10 1 0], o=|w—w? 1 0], ga=|w—-1 1 w—-1],
0 0 w 0 01 1—w? 0 1
1 w—w? 0 1 w—1 w-1
gp=10 1 0], g5=10 1 0
0 0 1 0 1—-w 1

Fact (iv) The detailed automorphic behavior of ¥ (u,v) is described in Part 1T
section 4 of [S], and we use those exact automorphic factors.

2 Automorphic properties of ¥ (u,v)
Acccording to Fact (i) we have

ﬂk(g ) (u,v))?, _ ﬁk(ua U)
Jolg - (u,0))*  Do(u,v)
so there exist characters yy : ['(v/—3) — {1,w,w?} such that

Dl (o) ()
Doy (wo) - 9 Bsun)

 (gervE),

(9 €T(V-3)).




Set
Ly = {g € T(V=3) : x1(9) = x2(9) = 1}.
Then we have
Proposition 2.1. (i) 'y ={(g;j) € T'(v/=3) : 912 = 913 = g32 =0 mod 3},
P(VB)/Ty = (Z/32)°.
(ii) The map
A:B—P% (u,v)— [Yo(u,v) : 91 (u,v) : Ia(u,v)]
gives a biholomorphic isomorphism m ~ p2.

Proof. All the automorphic factors of ¥y (u,v) for ¢g1,--- , g5 are already calcu-
lated in Part IT Lemma 4.2 in [S], then we obtain

(1,1) (1=1,2,3)
(x1(9i),x2(9:)) = { (w,1) (i =4)
(w,w) (1=05)

So we see that the map (x1,x2) : ['(vV=3) — {1,w,w?}? is surjective, and
that I'(v/=3)/Ty = (Z/3Z)3. Let us define a homomorphism ; : ['(v/=3) —
237 (i=1,2,3) by

wl(g)zj%, w2<g>=j%, bs(g) = B2 mod V3.

Refering the explicit form of g; (j =1,...,5) in Fact (iii) we have

1

0(i=1,23) 0(i=1,23) 0 (i=1,2,3)
Yi(g:)) =41 (i=4) Pa(gi) =0 (i =4) P3(g:) =40 (i =4)
2 (i=5) 2 (i=5) 2 (i=05)

Therefore we get

x1(9) = D (01(9) + 429D, xa(o) = expl main()] = expl (o),

and

x1(9) = x2(9) = 1 & ¥1(9) = ¥2(g) = ¥3(9) =0
& 012 =013 =¢g32 =0 mod 3.

From the commutative diagram

BT, ——— P2

l (cube)l (cube) : [X :Y : Z] — [X?’ Y3 Zg]
m L) ]P2
we obtain the required isomorphism m >~ P2 0



Now let us consider the elements of T’

10 0 1 0 0
hi=10 1 0], ho=|w? 1 -1
00 -1 1 0 1

Note that hy - (u,v) = (—u,v), he - (u,v) = (u+ 1,v — u + w?).

Lemma 2.1. We have

(1) Ik (h1 - (u,v)) = I(—u,v) = I (u,v),

(i) D1 - (1)) = D+ 1,0 — 0+ w2) = Dy (1, 0):
Hence hy and hy generate the permutations of {99, V1, Y2}.

Proof. (1)
D) = 3 WM H ()N = 37w ()N
HEZL[wW] HEZL[w]

=9_g(u,v).

(ii) The equality is shown by tedious calculation, and we omit details. We have

In(u+ 1,0 —u+w?) = Z w%““H(u(u—i—1))exp[2—7r(vfu+w2)]N(“)

HEZw] \/g
2
= > WO (ot 1) expl T (-t AN
HEZL[wW]

and

H(p(u+1)) eXp[Qi(—u + w?)NW

V3
T expl (20— pu+ (oot 220 [yl Gt =),

= exp|

Putting = n — mw?,

0 [1fo] G-t s =2) = (=) explrTm2e — 2 [y ).

We can show the desired equation by use of above equalities and w?("~") =

Wi, O

3 Isogeny of Jacobians and the shift of modular
forms

Let L(u,v) denote the lattice Q(u,v)Z® + Z3 in C3. And let A(u,v) be the
Jacobian variey C3/L(u,v) = Jac(C(€)), &€ = A(u,v).

Proposition 3.1. We have an isogeny ¢ : A(u,v) — A(V/—3u,3v) with the
kernel being isomorphic to (Z/3Z)3.



Proof. Let us define a linear map ¢ : C3 — C? given by

21 3 2(l-w)u 0 21
d) 2= | 22 — |0 vV -3 0 V)
23 0 2¢v—-3u 3 23

Then we have ¢(L(u,v)) C L(v/—3u,v) and ¢ gives an isogeny. The kernel is
generated by

%61, %(962 + e2), %63
where e; is the i-th unit vector. O
Let a denote the ideal (v/—3) of Z[w]. By an easy calculation we have
Lemma 3.1.
peEa <= N(u) €3z <+ truc3Z.

Now we can show our first isogeny formula

Proposition 3.2 (Arithmetic Mean Formula).

Jo(v/—3u, 3v) = %(ﬁo(u, 0) + 01 (1, v) + Vo (u, 0)).

Proof.

2 2 2

S k(o) =30 > W g = 37 (30w ) H (g,
k=0 k=0 peZw) HEZ[w] k=0

Here we note that

2
ZWthr,u =1+ (wtru)2 + (wtrp.)4 _ 0 (tl',u ¢ 3Z)
P 3 (trp € 3Z).

According to the above Lemma we have

[ V)

> Ok(u,v) =Y 3H(uu)gN ) = Y 3H(V=3pu)g" VI

k=0 HEa HEZ[w]

= Z 3H (uv/—3u)g® ) = 304 (v —3u, 3v).

HEZ[w]
O
This Proposition suggests us to define the isogenous modular forms
02 (u,v) = O (V=3u,3v)  (k=0,1,2)

and to express them in terms of the original ¥ (u, v)’s. For this purpose, we are
requested to know the exact automorphic behaviors of 19,; (u,v)’s and Jg(u,v)’s.
Let us define an automorphism of the group

G ={g € GL3(Qw)) : 'gMg = M}



by

1 0 0
g—g=AgA Y, A=[0 3 0
0 0 -3
Then we have
9 (g (u,v)) = 9k(g - (V=3u,3v)). (5)

Lemma 3.2. For any g € I'y, we have g € I'(v/—3).

Proof. Let g = (g;j) be an element of I'y. By the condition ‘gMg = M, we have
91222 + G122z + |g32|” = 0
Because g12 = ¢g32 =0 mod 3 and goo =1 mod /=3, we may put
g12 =31, gn=1+V=3y, gn=3z (x,yz2¢€Z)]).
Then the above equation becomes
x(1 —+/=37) + z(1 + V/=3y) + 3|z|> = 0.

We see that tre =+ 2 =0 mod +/—3, and this implies trx € 3Z. By Lemma
3.1, we see x € a, and therefore that g5 is a multiple of 3v/—3. We can perform
the same procedure for g13. So we see that

g11 912/3 g13/V—=3
g=AgA " = 3921 922 —v/ —3g23
V—=3g31 —g32/vV—3 933

is an element of I'(v/—3). O

Lemma 3.3. Theta functoins ﬁg(u,v), ﬂﬁ(u,v)B and ﬂg(u,v)g belong to the
polynimial ring R = Cl¥g(u, v), 91 (u, v), ¥2(u,v)].

Proof. By Proposition 3.2, ﬂg(u,v) belongs to R. By the above lemma (and
Fact (1)), we see

9h(g (w,0)> G- (V=3u,30)®  Ou(vV=3u,30)® Ui (u,0)?

9(g - (u,0))* oG- (V=3u,30))  Po(v=3u,30)% 9k (u,v)?

for any g € I'y. Proposition 2.1 says B/Ty = ProjR = P2. So we get the
assertion. O

Lemma 3.4. We have
(i) 9 (ha - (u,0)) = 9 (—u,v) = 9 (u,0)
(it) 9 (ha - (u,0)) = 95 (u+ 1,0 — u+ w?) = 9% (u, v).

Proof. (i) is nothing but Lemma 2.1 (i).
(ii) By Lemma 2.1 (ii), we have

2

O (ha - (u,0)) =D On(ha - (u,v)) =D Vpsalu,v) = 9f(u,v).
k=0

k=0



So the equality holds for £ = 0. By (5) we have

9 (hy - (u,v)) = O (ha - (vV—=3u,3v)), (k=0,1,2)

and
1 -1 0]-3 2 0
IR N
hy=1-3-3w 1 14+2w|, plh)=
142w 0 1 00 0f1 0 0
0 0 0] 1 1 =2
0O 0 0] O 0 1

We can apply the transformation formula of theta functions (see [I]), and we

—

can check that the automorphic factor of ¥4 (u,v) with repect to p(hs) does
not depend on k. Hence the equation for k = 1,2 follows from the result for
k=0. O

Theorem 3.1. We have the following identities
1
0% (u,v) = 5 (Po(u,v) + 01 (u, 0) + 92(u, ),

1
19§ (u’ U)S + 19'12(“’7 U)3 = gA(ﬁO(u, U)» 191 (’U,, U)v 192(71/7 U))7
1

ﬁg(u,v)?’ — 19%(11,1})3 = 37\/*73

Ao (u,v), 91 (u,v), V2(u,v))

where

A(:zc7 Y,z) = xgy + ygz + 2%z + xy2 + yz2 + sz,
Az, y,2) = (z = y)(y — 2)(z — ).
Proof. The first identity is obatined in Proposition 3.2.

By Lemma 2.1, hy and hy give a system of generaters of the symmetric
group S3 acting on R = C[dg(u,v), 91 (u,v),¥2u,v)]. Lemma 3.4 means that
9% u,v)3 + 9% u,v)3 is an Ss-invariant and 9% u,v)3 — ¥ u,v)3 is a proper As-

1 2 2 1 prop
invariant, where Aj is the alternating group.

Put

51($,y,2) = ‘rS + y3 + ZS,
So(2,y, 2) = 2%y + %2 + 220 + 2y? + y2® + 222,
03(w,y,2) = wyz.

Because we have the equality of graded rings C[1, 62, 03] = C[z,y, 2|72, it must
hold

04 (u,0)? + 94 (u,v)® = ady (Do, 01, 92) + Ba2(Po, 91, V) + ¥03(90, 91, U2)

for some constants «, 3,7 € C. Putting v = 0 in (3) , we have the Fourier
expansions

90(0,0) = (14 6g+6¢>+---), 91(0,0) = 92(0,v) = c(1 —3q+6¢> +--+)



with ¢ = H(0), and
61(90,91,92) = c*(3 + 162¢* + 216> + - --),
8209, 91,92) = (6 — 54¢> +---),
63(90,91,02) = 3(1 —27¢> + 72¢3 +---).
By the same procedure we have
94(0,0)? + 95(0,0)3 = 32— 18¢3 + - --).

By equating the coefficients we obtain « =~ =0 and 8 = 1/3.
The proper As-invariant of degree 3 is determined uniquely up to a constant
factor, so we may put

0% (u, v)® — 9% (u, 0)? = @y — 91) (P — 92) (P2 — V). (6)

We must show a = 1/(3v/—3). According to Finis’ equality (4), we have Fourier
expansions

Jo(u,v) = H(0) + 3(H(u) + H(-u))g+ -,
91 (u,v) = H(O) + 3(wH (u) + w?H(—u))g + -,
9o (u,v) = H(0) + 3(w?H(u) + wH(—u))q +

Substituting these expansins to the right hand side of (6) it becomes to be
—81V=3a(H (u)® — H(~u)*)g* + -,
By the same way the left hand side of (6) becomes to be
—9V=3H(0)*(H(V=3)u) — H(—vV=3u))g’ +--- .
By using again Finis’ equality (4) we have
H(0)* (H(v/=3u) — H(—v/3u)) = —V/=3(H(w)* — H(—u)?).
This equality means a = 1/(3v/=3). O

4 a three terms AGM derived from the isogeny
formula

Our isogeny formula works as that of Jacobii theta constants stated in the
introduction. So it leads to define a three terms AGM process:

Definition 4.1. Let a, b, ¢ be real positive numbers with the condition a > b > c.
Set

b
W(a,b,) = (a,0,7) = (5 VA VB, 7
where we put
A= %(aQbJr b2c+ c?a + ab?® + bc? + ca?) — %(a —¢)(a—=b)(b—c)

b

B = {(a*b+b2c+ Fa+ ab?® + bc* + ca?) + Y= (a — ¢)(a — b)(b — ).

5



Here we choose the arguments of = /A and v = /B such that
Ogargﬁ<%, 0<fB+~=VA+VB.

And we have the following results.

Theorem 4.1. Let a,b, ¢ be real positive numbers with the condition a > b > c.
Set W™ (a,b,c) = (an,bn,cn). Then there is a common limit

M3(a,b,c) = lim a, = lim b, = lim ¢,.
n—oo n—oo n—oo

Theorem 4.2. We have

1 111

— =0 =F(=, =, =1;1—2%1—19°).
M3(1,I,y) (:va) 1(373737 x-, y)

in a neiborhood of (x,y) = (1,1). Where Fy(a, 3,03, 7;x,y) stands for the Appell
hypergeometric function F.

The proofs will be published elsewhere.
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