# COMMUTATIVITY OF OPERATORS 

MASARU NAGISA, MAKOTO UEDA, AND SHUHEI WADA


#### Abstract

For two bounded positive linear operators $a, b$ on a Hilbert space, we give conditions which imply the commutativity of $a, b$. Some of them are related to well-known formulas for indefinite elements, e.g., $(a+b)^{n}=\sum_{k}\binom{n}{k} a^{n-k} b^{k}$ etc. and others are related to the property of operator monotone functions. We also give a condition which implies the commutativity of a $\mathrm{C}^{*}$-algebra.


## 1. Introduction

Ji and Tomiyama ([3]) give a characterization of commutativity of $\mathrm{C}^{*}$-algebra, where they also give a condition that two positive operators commute. For bounded linear operators on a Hilbert space $\mathcal{H}$, we slightly generalize their result as follows:

Theorem 1. Let $a$ and $b$ be self-adjoint operators on $\mathcal{H}$. Then the following are equivalent.
(1) $a b=b a$.
(2) $\exp (a+b)=\exp (a) \exp (b)$.
(3) There exist a positive integer $n \geq 2$ and distinct non-zero real numbers $t_{1}, t_{2}, \ldots, t_{n-1}$ such that

$$
\left(a+t_{i} b\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} t_{i}^{k} a^{n-k} b^{k}
$$

for $i=1,2, \ldots, n-1$.
(4) There exist a positive integer $n \geq 2$ and distinct non-zero real numbers $t_{1}, t_{2}, \ldots, t_{n-1}$ such that

$$
a^{n}-\left(t_{i} b\right)^{n}=\left(a-t_{i} b\right) \sum_{k=0}^{n-1} a^{n-k-1}\left(t_{i} b\right)^{k}
$$

for $i=1,2, \ldots, n-1$.

DePrima and $\operatorname{Richard}([2])$, and $\operatorname{Uchiyama}([9],[10])$ independently prove that, for any positive operators $a$ and $b$, the following conditions are equivalent:
(1) $a b=b a$.
(2) $a b^{n}+b^{n} a$ is positive for all $n \in \mathbb{N}$.

We give a little weakend condition for two operators commuting.
Ji and Tomiyama, and $\mathrm{Wu}([12])$ use a commutativity condition of two operators and a gap of monotonicity and operator monotonicity of functions to characterize commutativity of $\mathrm{C}^{*}$-algebras. With a similar point of view, we can get the following result:

Theorem 2. Let $A$ be a unital $C^{*}$-algebras. Then the following are equivalent.
(1) $A$ is commutative.
(2) There exists a continuous, increasing functions $f$ on $[0, \infty)$ such that $f$ is not concave and operator monotone for $A$.
(3) Whenever positive operators $a$ and $b$ satisfy $a b+b a \geq 0, a b^{2}+$ $b^{2} a \geq 0$.

## 2. Proof of Theorem 1

Lemma 3. Let $a$ and $b$ be self-adjoint operators on $\mathcal{H}$, and $f$ a continuous function on the spectrum $S p(a)$ of $a$. Then $a b=b a$ implies that $f(a) b=b f(a)$.

Proof. We can choose a sequence $\left\{p_{n}\right\}$ of polynomials which converges to $f$ uniformly on $\operatorname{Sp}(a)$. So we have

$$
f(a) b=\lim _{n \rightarrow \infty} p_{n}(a) b=\lim _{n \rightarrow \infty} b p_{n}(a)=b f(a) .
$$

Lemma 4. Let $a, b$ be self-adjoint operators on $\mathcal{H}$ and $k$ a positive integer. If $a^{k} b a=a^{k+1} b$, then $a b=b a$.

Proof. We put $p$ the orthogonal projection of $\mathcal{H}$ onto $\operatorname{Ker}(a)$. We remark that

$$
\text { Ker } a=\operatorname{Ker} a^{2}=\cdots=\operatorname{Ker} a^{k+1}, \quad p a=a p=0 .
$$

Since

$$
0=a^{k} b a p=a_{2}^{k+1} b p=a^{k+1}(1-p) b p,
$$

we have $(1-p) b p=0$. The self-adjointness of $b$ implies

$$
b=p b p+(1-p) b(1-p) .
$$

So we have

$$
\begin{aligned}
a b-b a & =(p+(1-p))(a b-b a)=(1-p)(a b-b a)-p b a \\
& =(1-p)(a b-b a)-p b p a=(1-p)(a b-b a) .
\end{aligned}
$$

Since $a^{k}(a b-b a)=0$, we can get $a b=b a$.

Proo of Theorem 1. $(1) \Rightarrow(2),(1) \Rightarrow(3)$ and $(1) \Rightarrow(4)$ are trivial.
$(2) \Rightarrow(1)$ The element $\exp (a+b)$ is self-adjoint, so we have

$$
\exp (a) \exp (b)=\exp (b) \exp (a)
$$

We apply Lemma 3 for the function $f(x)=\log x$ on $\operatorname{Sp}(a)$. Since $\log (\exp (a))=a$, we have

$$
a \exp (b)=\exp (b) a .
$$

Repeated the same argument, we can show $a b=b a$.
$(3) \Rightarrow(1)$ Since $\left(a+t_{i} b\right)^{n}$ is self-adjoint, we have

$$
\sum_{k=0}^{n}\binom{n}{k} t_{i}^{k} a^{n-k} b^{k}=\sum_{k=0}^{n}\binom{n}{k} t_{i}^{k} b^{k} a^{n-k}, \quad(i=1,2, \ldots, n-1)
$$

This means that

$$
\left(\begin{array}{cccc}
1 & t_{1} & \cdots & t_{1}^{n-2} \\
1 & t_{2} & \cdots & t_{2}^{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & t_{n-1} & \cdots & t_{n-1}^{n-2}
\end{array}\right)\left(\begin{array}{c}
\binom{n}{1}\left(a^{n-1} b-b a^{n-1}\right) \\
\binom{n}{2}\left(a^{n-2} b^{2}-b^{2} a^{n-2}\right) \\
\vdots \\
\binom{n}{n-1}\left(a b^{n-1}-b^{n-1} a\right)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) .
$$

So we have $a^{n-1} b=b a^{n-1}$. When $n$ is even, we have $a b=b a$, by using Lemma 3 and the fact $a=\left(a^{n-1}\right)^{1 / n-1}$.

We assume that $n$ is odd. Then we have

$$
a^{2} b=\left(a^{n-1}\right)^{2 / n-1} b=b\left(a^{n-1}\right)^{2 / n-1}=b a^{2} .
$$

If we apply the same argument for the relation

$$
\begin{aligned}
& \left(a+t_{i} b\right)^{n} \\
= & a^{n}+t_{i}\left(a^{n-1} b+a^{n-2} b a+\cdots+b a^{n-1}\right)+t_{i}^{2}(\cdots)=\sum_{k=0}^{n}\binom{n}{k} t_{i}^{k} a^{n-k} b^{k}
\end{aligned}
$$

then we can get

$$
a^{n-1} b+a^{n-2} b a+\underset{3}{\cdots}+b a^{n-1}=n a^{n-1} b .
$$

Using the commutativity of $a^{2}$ and $b$, we have

$$
a^{n-1} b=a^{n-2} b a .
$$

By Lemma 4, it follows that $a b=b a$.
$(4) \Rightarrow(1)$ By using the same argument as $(3) \Rightarrow(1)$, we can get that a coefficient of $t_{i}^{n-1}$ vanishes, that is,

$$
a b^{n-1}-b a b^{n-2}=0 .
$$

By Lemma 4, we can get $a b=b a$.

Remark 5. On the implication $(2) \Rightarrow(1)$, the following srtonger result is known for self-adjoint matrices (see [7] and [8]). If self-adjoint matrices $a, b$ satisfy the condition

$$
\operatorname{Trace}(\exp (a+b))=\operatorname{Trace}(\exp (a) \exp (b)),
$$

then $a b=b a$.

## 3. Operator monotone functions

Let $f$ be a continuous function on $[0, \infty)$. We call $f$ a matrix monotone (resp. matrix concave) function of order $n$ if it satisfies the following condition:

$$
\begin{aligned}
& a, b \in M_{n}(\mathbb{C}), 0 \leq a \leq b \Rightarrow f(a) \leq f(b) \\
& \text { (resp. } a, b \in M_{n}(\mathbb{C}), 0 \leq a \leq b, 0 \leq t \leq 1 \\
& \Rightarrow f(t a+(1-t) b)\leq t f(a)+(1-t) f(b)) .
\end{aligned}
$$

When $f$ is matrix monotone of order $n$ for any $n, f$ is called operator monotone. We call a function $f$ operator monotone for a $\mathrm{C}^{*}$-algebra $A$ if, for $a, b \in A, 0 \leq a \leq b$ implies $0 \leq f(a) \leq f(b)$. The following fact is well-known $([5]:$ Theorem 2.1). Here we give a different proof of this.

Lemma 6. If $f:[0, \infty) \longrightarrow[0, \infty)$ is continuous and matrix monotone of order $2 n$, then $f$ is matrix concave of order $n$.

Proof. For $a, b \in M_{n}(\mathbb{C})^{+}$and $0 \leq t \leq 1$, we put

$$
X=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), Y=\left(\begin{array}{cc}
\sqrt{t} & -\sqrt{1-t} \\
\sqrt{1-t} & \sqrt{t}
\end{array}\right) \in M_{2 n}(\mathbb{C}) .
$$

Then we have

$$
\begin{aligned}
Y^{*} X Y & =\left(\begin{array}{cc}
t a+(1-t) b & \sqrt{t(1-t)}(b-a) \\
\sqrt{t(1-t)}(b-a) & (1-t) a+t b
\end{array}\right) \\
& \leq\left(\begin{array}{cc}
t a+(1-t) b+\epsilon & 0 \\
0 & (1-t) a+t b+\frac{t(1-t)}{\epsilon}(a-b)^{2}
\end{array}\right)
\end{aligned}
$$

for any positive number $\epsilon$. By the assumtion for $f$, we can get

$$
\begin{aligned}
& Y^{*} f(X) Y=f\left(Y^{*} X Y\right) \\
\leq & \left(\begin{array}{cc}
f(t a+(1-t) b+\epsilon) & 0 \\
0 & f\left((1-t) a+t b+\frac{t(1-t)}{\epsilon}(a-b)^{2}\right)
\end{array}\right) .
\end{aligned}
$$

Since $\epsilon$ is arbitrary, we have

$$
t f(a)+(1-t) f(b) \geq f(t a+(1-t) b)
$$

As an application of this lemma, we can see that the exponential function $\exp (\cdot)$ is increasing and convex but not matrix monotone of order 2. By Theorem 2, we can get another proof of Wu's result [12].

Let $f$ be an operator monotone function on $(0, \infty)$, that is, $f$ is a matrix monotone function on $(0, \infty)$ of order $n$ for any $n \in \mathbb{N}$. Then $f$ has the analytic continuation on the upper half plane $H_{+}=\{z \in$ $\mathbb{C} \mid \operatorname{Im} z>0\}$ and also has the analytic continuation on the lower half plane $H_{-}$by the reflection across $(0, \infty)$. By Pick function theory, it is known that $f$ is represented as follows:

$$
f(z)=f(0)+\beta z+\int_{0}^{\infty} \frac{\lambda z}{\lambda+z} d w(\lambda),
$$

where $\beta \geq 0$ and $w$ is a positive measure with

$$
\int_{0}^{\infty} \frac{\lambda}{1+\lambda} d w(\lambda)<+\infty
$$

(see [1]:page 144). We denote by $P_{+}$the closed right half plane $\{z \in \mathbb{C} \mid$ $\operatorname{Re} z \geq 0\}$ and by $\bar{C}(S)$ the closed convex hull of a subset $S$ of $\mathbb{C}$. We consider the case that $f(0) \geq 0$. Then we can easily check $f\left(P_{+}\right) \subset P_{+}$. For $a \in B(\mathcal{H})$, we denote by $W(a)$ its numerical range

$$
\overline{\{(a \xi, \xi) \mid\|\xi\|=1\}} \subset \mathbb{C} .
$$

By Kato's theorem ([4]:Theorem 7), if $\mathrm{W}(\mathrm{a})$ is contained in $P_{+}$, then we have

$$
W(f(A)) \subset{ }_{5} \bar{C}\left(f\left(P_{+}\right)\right) .
$$

Proposition 7. Let $a, b \in B(\mathcal{H})$ be positive and $f, f_{n}$ be operator monotone functions from $[0, \infty)$ to $[0, \infty)$.
(1) If $a b+b a \geq 0$, then $a f(b)+f(b) a \geq 0$.
(2) If $\operatorname{Sp}(b) \subset f_{n}([0, \infty))$, $a f_{n}^{-1}(b)+f_{n}^{-1}(b) a \geq 0$ for all $n$ and $\bigcap_{n} \bar{C}\left(f_{n}\left(P_{+}\right)\right) \subset \mathbb{R}$, then $a b=b a$.

Proof. (1) We may assume that $a$ is invertible, replacing $a$ by $a+\epsilon$ $(\epsilon>0)$. Then we can define the new inner product on $\mathcal{H}$ by

$$
\langle\xi, \eta\rangle=(a \xi, \eta), \quad \xi, \eta \in \mathcal{H} .
$$

It suffices to show that the positivity of $\operatorname{Re} b$ with respect to $\langle\cdot, \cdot\rangle$ implies the positivity of $\operatorname{Re} f(b)$ with respect to $\langle\cdot, \cdot\rangle$. Since $\operatorname{Re} b \geq 0$ is equivalent to

$$
W(b)=\overline{\{\langle b \xi, \xi\rangle \mid\langle\xi, \xi\rangle=1\}} \subset P_{+}
$$

and $W(f(b)) \subset \bar{C}\left(f\left(P_{+}\right)\right) \subset P_{+}$, we have $\operatorname{Re} f(b) \geq 0$.
(2) In the same setting in (1), if we get $W(b) \subset \mathbb{R}$, this implies $a b=b a$. By the argument of (1) and the assumption, we have

$$
W\left(f_{n}^{-1}(b)\right) \subset P_{+} \text {and } W(b)=W\left(f_{n}\left(f_{n}^{-1}(b)\right) \subset \bar{C}\left(f_{n}\left(P_{+}\right)\right)\right.
$$

for any $n$. So we have $W(b) \subset \bigcap_{n} \bar{C}\left(f_{n}\left(P_{+}\right)\right) \subset \mathbb{R}$.

In [11], Uchiyama defines the function $u(t)$ on $\left[-a_{1}, \infty\right)$ as follows:

$$
u(t)=\left(t+a_{1}\right)^{\gamma_{1}}\left(t+a_{2}\right)^{\gamma_{2}} \cdots\left(t+a_{k}\right)^{\gamma_{k}},
$$

where $a_{1}<a_{2}<\ldots<a_{k}, \gamma_{j}>0$, and he shows that the inverse function $f(x)=u^{-1}(x)$ becomes operator monotone on $[0, \infty)$ if $\gamma_{1} \geq 1$. We assume that $f(0) \geq 0$ (i.e., $a_{1} \leq 0$ ) and

$$
\gamma=\sum_{j: a_{j} \leq 0} \gamma_{j}>1 .
$$

Then $f(z)$ is a holomorphic function from $D$ into $D$, where $D=\mathbb{C} \backslash$ $(-\infty, 0]=\{z \in \mathbb{C} \backslash\{0\} \mid-\pi<\arg z<\pi\}$. For $z=r e^{i \theta}(0<\theta<\pi / 2)$, we set $z+a_{j}=r_{j} e^{i \theta_{j}}(j=1,2, \ldots, k)$. Then we have

$$
0<\theta_{k}<\cdots<\theta_{1}<\pi \text { and } \arg u(z)=\sum_{j=1}^{k} \gamma_{j} \theta_{j} \geq \gamma \theta
$$

This means that $|\arg f(z)|<\frac{1}{\gamma}|\arg z|$ if $0<|\arg z|<\pi / 2$. Since

$$
\begin{gathered}
\bar{C}\left(f\left(P_{+}\right)\right) \subset \bar{C}\left(\{ z \in D | | \operatorname { a r g } z | < \frac { \pi } { 2 \gamma } \} ) \subset \left\{z \in D\left||\arg z| \leq \frac{\pi}{2 \gamma}\right\}\right.\right. \\
\bar{C}\left(f^{2}\left(P_{+}\right)\right) \subset \bar{C}\left(f ( \{ z \in D | | \operatorname { a r g } z | \leq \frac { \pi } { 2 \gamma } \} ) ) \subset \left\{z \in D\left||\arg z| \leq \frac{\pi}{2 \gamma^{2}}\right\}\right.\right. \\
\ldots \\
\bar{C}\left(f^{n}\left(P_{+}\right)\right) \subset \bar{C}\left(f ( \overline { C } ( f ^ { n - 1 } ( P _ { + } ) ) ) \subset \left\{z \in D\left||\arg z| \leq \frac{\pi}{2 \gamma^{n}}\right\},\right.\right.
\end{gathered}
$$

we can get

$$
\bigcap_{n=1}^{\infty} \bar{C}\left(f^{n}\left(P_{+}\right)\right) \subset \mathbb{R}
$$

Corollary 8. Let $a, b \in B(\mathcal{H})$ be positive and the function $u$ have the following form:

$$
u(t)=\left(t+a_{1}\right)^{\gamma_{1}}\left(t+a_{2}\right)^{\gamma_{2}} \cdots\left(t+a_{k}\right)^{\gamma_{k}}
$$

where $a_{1}<a_{2}<\ldots<a_{k}, \gamma_{j}>0, a_{1} \leq 0, \gamma_{1} \geq 1$ and $\sum_{j: a_{j} \leq 0} \gamma_{j}>1$. If $a u^{n}(b)+u^{n}(b) a \geq 0$ for all $n \in \mathbb{N}$, then we have $a b=b a$.

Proof of Theorem 2. $(1) \Rightarrow(2)$ and $(1) \Rightarrow(3)$ are trivial.
$(2) \Rightarrow(1)$ If $A$ is not commutative, then there exists a irreducible representation $\pi$ of $A$ on a Hilbert space $\mathcal{H}$ with $\operatorname{dim} \mathcal{H}>1$. Let $\mathcal{K}$ be a 2-dimensional subspace of $\mathcal{H}$. By Kadison's transitivity theorem(see [6]), for any positive operator $T \in B(\mathcal{K})\left(\cong M_{2}(\mathbb{C})\right)$, we can choose a positive element $a \in A$ such that $\left.\pi(a)\right|_{\mathcal{K}}=T$. By the assumption and Lemma $5, f$ is not matrix monotone of order 2 . This means that we can choose $S, T \in B(\mathcal{K})$ such that

$$
0 \leq S \leq T \text { and } f(S) \not \equiv f(T)
$$

So there exist $a, b \in A$ such that

$$
0 \leq a \leq b \text { and } \pi(a)=S, \pi(b)=T
$$

Since $f(S)=f(\pi(a))=\pi(f(a))$ and $f(T)=f(\pi(b))=\pi(f(b))$, this contradicts to the operator monotonicity of $f$ for $A$.
$(3) \Rightarrow(1)$ Let $a, b$ be positive in $A$. For a sufficiently large positive number $t,(a+t) b+b(a+t)$ becomes positive. By the assumption, we have

$$
(a+t)^{2^{n}} b+b(a+t)^{2^{n}} \geq 0 \quad \text { for all } n \in \mathbb{N} .
$$

By Corollary 7, we have $(a+t) b=b(a+t)$, i.e., $a b=b a$. Therefore $A$ is commutative.

Using the same method as the proof of $(3) \Rightarrow(1)$, we can see the following condition (4) also becomes an equivalent condition in Theorem 2 :
(4) Whenever positive operators $a$ and $b$ satisfy $a u(b)+u(b) a \geq 0$ for a function $u$ as in Corollary 7, $a u^{2}(b)+u^{2}(b) a \geq 0$.

Acknowledgement. The authors express their thanks to Professors M. Uchiyama, J. Tomiyama and F. Hiai for giving many useful comments.

## References

[1] R. Bhatia, Matrix Analysis, Graduate Texts in Math. 169, Springer-Verlag, 1996.
[2] C. R. DePrima and B. K. Richard, A characterization of the positive cone of $B(H)$, Indiana Univ. Math. J., 23(1973/1974), 163-172.
[3] G. Ji and J. Tomiyama, On characterization of commutativity of $C^{*}$-algebras, Proc. Amer. Math. Soc., 131(2003), 3845-3849.
[4] T. Kato, Some mapping theorem for the numerical range, Proc. Japan Acad., 41(1965), 652-655.
[5] R. Mathias, Concavity of monotone matrix functions of finite order, Linear and Multilinear Algebra 27(1990), 129-138.
[6] G. Murphy, $C^{*}$-algebras and operator theory, Academic Press, 1990.
[7] D. Petz, A variational expression for the relative entropy, Comm. Math. Phys. 114(1988), 345-349.
[8] W. So, Equality cases in matrix exponential inequalities, SIAM J. Matrix Anal. Appl. 13(1992), 1154-1158.
[9] M. Uchiyama, Commutativity of selfadjoint operators, Pacific J. Math., 161(1993), 385-392.
[10] M. Uchiyama, Powers and commutativity of selfadjoint operators, Math. Ann., 300(1994), 643-647.
[11] M. Uchiyama, Operator monotone functions which are defined implicitly and operator inequalities, J. Funct. Anal., 175(2000), 330-347.
[12] W. Wu, An order characterization of commutativity for $C^{*}$-algebras, Proc. Amer. Math. Soc., 129(2001), 983-987.

Department of Mathematics and Informatics, Faculty of Science, Chiba University, Chiba, 263-8522, Japan

E-mail address: nagisa@math.s.chiba-u.ac.jp
Division of Mathematical Sciences, Graduate School of Science and Technology, Chiba University, Chiba, 263-8522, Japan

E-mail address: u-makoto@nyc.odn.ne.jp
Kisarazu National College of Technology, Kisarazu City, Chiba, 292-0041, Japan

E-mail address: wada@j.kisarazu.ac.jp

