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Introduction

For two positive numbers a, b, set ψg(a, b) = (a+b
2 ,

√
ab), and set inductively ψn

g (a, b) = ψg(ψn−1
g (a, b)) =

(an, bn) (n = 1, 2, . . .). Then we have a common limit

Mg(a, b) = lim
n→∞

an = lim
n→∞

bn.

This is called the Gauss Arithmetic Geometric Mean (we use the abbreviation Gauss AGM). Concerning
this Gauss AGM we have two classical identities both we can find in the literature of Gauss himself.

Theorem 1 (Gauss [GaT] 1799) For x ∈ (0, 1) we have

1
AGM(1, x)

=
1
π

∫ ∞

1

dz√
z(z − 1)(z − λ)

= F (
1
2
,
1
2
, 1;λ), (λ = 1 − x2). (0.1)

The right hand side F means the Gauss hypergeometric function.

Setting the Jacobi theta function and theta constant for p, q ∈ {0, 1}2

ϑ

[
p
q

]
(z, τ) =

∑
n∈Z

exp[πi(n +
p

2
)2τ + 2πi(n +

p

2
)(z +

q

2
)],

ϑ

[
p
q

]
(τ) =

∑
n∈Z

exp[πi(n +
p

2
)2τ + πi(n +

p

2
)q],

we have

Theorem 2 (Gauss [GaH] 1818, Nachlass, the equality 13 and the equality 21)
ϑ

[
0
0

]2

(2τ) = 1
2

(
ϑ

[
0
0

]2

(τ) + ϑ

[
0
1

]2

(τ)

)

ϑ

[
0
1

]2

(2τ) = ϑ

[
0
0

]
(τ)ϑ

[
0
1

]
(τ).

(0.2)

The latter theorem shows the relation of the (coefficients of the realized) elliptic curves corresponding to
two isogenous torus C/Z + τZ and C/Z + 2τZ. So in general this theorem is referred as the isogeny
formula for the Jacobi theta constants.

Any way these two theorems are telling us a very interesting story concerned with AGM, periods of
algebraic varieties, hypergeometric functions and modular forms at a same time. But till now there has
been no sufficiently nice generalization.
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In this article we show an extended story of Gauss AGM to two variables case by using Picard
modular forms for Q(

√
−1) studied by Matsumoto [Mat1] which is coming from one of the Terada and

Deligne-Mostow list. Our results are staed as two Main Theorems in Section 1 and Section 2.
Observing this result together with our previous work ([Ko-Shi]) for the case Q(−1+

√
−3

2 ) the authors
imagine that there will be more general structure of AGM connected with hypergeometric systems and
CM-isogenies.

1 Extended Gauss AGM and the Appell F1

1.1 Extended AGM system

At first let us consider a trivially extended Gauss AGM system

(a, b,
√

ab) 7→

(
a + b

2
,
√

ab,

√
a + b

2

√
ab

)
.

We generalize it to the system of three terms. Let a, b and c be positive real numbers. Set

ψ(a, b, c) =

(
a + b

2
, c,

4

√
1
4
(c2 + ab)(c2 +

a2 + b2

2
)

)
, (1.1)

and set inductively
(an, bn, cn) = ψ(an−1, bn−1, cn−1).

Theorem 3 Suppose 0 < a, b, c, then the sequences {an}, {bn} and {cn} have a common limit.

Definition 1.1 Let us denote the above limit by M(a, b, c), and call it Extended Gauss AGM.

Lemma 1.1 We have

min{a, b, c} ≤ min{a1, b1, c1} ≤ Max{a1, b1, c1} ≤ Max{a, b, c}.

[proof].
Set min = min{a, b, c}, Max = Max{a, b, c}.
Obviously we have a1, b1 ∈ [min,Max].
Set

c♭
1 =

√
c2 + ab

2
, c♯

1 =

√
1
2

(
c2 +

a2 + b2

2

)
.

We see easily c♭
1, c

♯
1 ∈ [min, Max]. Because c2 + ab ≤ c2 + a2+b2

2 , we have

c♭
1 ≤ c1 ≤ c♯

1.

So we have c1 ∈ [min, Max]
q.e.d.

Remark 1.1 It happens that

min{a, b, c} = min{a1, b1, c1} < Max{a1, b1, c1} = Max{a, b, c}.

For example (a, b, c) = (1, 1, 2).

The following Proposition assures Theorem 3.

Proposition 1.1 Suppose 0 < µ ≤ a, b, c ≤ ν for fixed positive numbers µ, ν. Then

Max{a2, b2, c2} − min{a2, b2, c2} ≤ ρ(Max − min)

for some positive number ρ(µ, ν) < 1.
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[proof].
Assume a ≤ b ≤ c. Then

a2 =
a1 + b1

2
=

(a + b)/2 + c

2
≥ a + c

2
,

and

c2 ≥ c♭
2 =

√
c2
1 + a1b1

2
≥

√
(c♭

1)2 + a1b1

2
=

1
2

√
(c + a)(c + b) ≥ a + c

2
.

We have

b2 = c1 ≥ c♭
1 =

√
c2 + ab

2
≥

√
c2 + a2

2
≥

√
ac.

By cosidering obvious inequality a2, b2, c2 ≤ c, we have

Max{a2, b2, c2} − min{a2, b2, c2}
c − a

≤ c −
√

ac

c − a
=

√
c√

c +
√

a
≤

√
ν

√
µ +

√
ν

< 1.

Assume a ≤ c ≤ b, then we have

a2 =
a1 + b1

2
=

(a + b)/2 + c

2
≥

√
a + b

2
a,

and

c2 ≥ c♭
2 =

√
c2
1 + a1b1

2
≥

√
(c♭

1)2 + a1b1

2
=

1
2

√
(c + a)(c + b) ≥

√
a + b

2
a.

We have

b2 = c1 ≥ c♭
1 =

√
c2 + ab

2
≥

√
a + b

2
a.

So we have

Max{a2, b2, c2} − min{a2, b2, c2}
b − a

≤
b −

√
a+b
2 a

b − a
.

By putting b/a = t, we have

Max{a2, b2, c2} − min{a2, b2, c2}
b − a

≤
t −

√
(1 + t)/2

t − 1
.

We have
d

dt

(
t −

√
(1 + t)/2

t − 1

)
=

2(t − 1)2

3
√

2 +
√

2 t + 4
√

1 + t
> 0

for t > 1. So

Maxt∈(1,ν/µ]

t −
√

(1 + t)/2
t − 1

=
ν −

√
µ(µ + ν)/2
ν − µ

< 1.

This argument works for the case c ≤ a ≤ b also.
So we obtain the required inequality.

q.e.d.

1.2 Functional equations

Set

x♯y♯ =
2(x + y)

(1 +
√

xy)2
x♯ + y♯

2
=

(
√

x +
√

y)
√

(1 + x)(1 + y)
(1 +

√
xy)2
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for real numbers 0 < x, y < 1, namely

x♯ =
(
√

x +
√

y)
√

(1 + x)(1 + y) + i(
√

x −√
y)

√
(1 − x)(1 − y)

(1 +
√

xy)2

y♯ =
(
√

x +
√

y)
√

(1 + x)(1 + y) − i(
√

x −√
y)

√
(1 − x)(1 − y)

(1 +
√

xy)2
,

here we choose real positive square roots.
We have

Proposition 1.2

M

(
1,

√
xy,

√
x + y

2

)
=

1 +
√

xy

2
M

(
1,

√
x♯y♯,

√
x♯ + y♯

2

)
.

[proof]. It holds

M

(
1,

√
xy,

√
x + y

2

)
= M

(
1 +

√
xy

2
,

√
x + y

2
,

4

√
1
4
(
x + y

2
+
√

xy)(
x + y

2
+

1 + xy

2
)

)

= M

(
1 +

√
xy

2
,

√
x + y

2
,

1
2

4

√
(
√

x +
√

y)2(1 + x)(1 + y)

)

=
1 +

√
xy

2
M

(
1,

√
2(x + y)

(1 +
√

xy)2
, 4

√
(
√

x +
√

y)2(1 + x)(1 + y)
(1 +

√
xy)4

)

=
1 +

√
xy

2
M

1,

√
2(x + y)

(1 +
√

xy)2
,

√
(
√

x +
√

y)
√

(1 + x)(1 + y)
(1 +

√
xy)2


=

1 +
√

xy

2
M

(
1,

√
x♯y♯,

√
x♯ + y♯

2

)
.

q.e.d.
Let F1(a, b, b′, c;x, y) be the Appell hypergeometric function

F1(a, b, b′, c;x, y) =
∑

m,n≥0

(a,m + n)(b,m)(b′, n)
(c, m + n)m!n!

xmyn, (|x|, |y| < 1)

of complex variables x, y with the Pochmammer notation

(a, k) =
{

a(a + 1) · · · (a + k − 1), (k ≥ 1)
0, (k = 0).

This is a solution of the differential equation

E1(a, b, b′, c) :


λ(1 − x)fxx + (1 − x)yfxy + (c − (a + b + 1)x)fx − byfy − abf = 0,

y(1 − y)fyy + (1 − y)xfxy + (c − (a + b′ + 1)y)fy − b′xfx − ab′f = 0,

(x − y)fxy − b′fx + bfy = 0,

and it is characterized as the solution f(x, y) which is holomorphic at (x, y) = (0, 0) and f(0, 0) = 1.

Theorem 4 We have

F1(
1
2
,
1
4
,
1
4
, 1, 1 − x2, 1 − y2) =

2
1 +

√
xy

F1(
1
2
,
1
4
,
1
4
, 1, 1 − (x♯)2, 1 − (y♯)2)

for real variables 0 < x, y < 1.
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[proof]. First let us note the system E1

(
1
2 , 1

4 , 1
4 , 1

)
:

P1 = P1(x, y, ∂x, ∂y) = x(1 − x)∂2
x + y(1 − x)∂x∂y + (1 − 7

4x)∂x − 1
4y∂y − 1

8

P2 = P2(x, y, ∂x, ∂y) = y(1 − y)∂2
y + x(1 − y)∂x∂y + (1 − 7

4y)∂y − 1
4x∂x − 1

8

P3 = (1 − x)∂xP2 − (1 − y)∂yP1 + 1
4 (P1 − P2) = 1

2 (x − y)∂x∂y − 1
8 (∂x − ∂y)

(1.2)

gives the differential equation for F1( 1
2 , 1

4 , 1
4 , 1, x, y).

From the definition of x♯ and y♯ we have

1 − (x♯)2 =
(
√

(1 − x2)(1 − y2) − i(x − y))2

(1 +
√

xy)4

1 − (y♯)2 =
(
√

(1 − x2)(1 − y2) + i(x − y))2

(1 +
√

xy)4
.

Putting x = X2, y = Y 2 we are requested to show

1 + XY

2
F1(1 − X4, 1 − Y 4) = F1(Φ1(X,Y ), Φ2(X,Y )) (1.3)

with

Φ1(X,Y ) =

(√
(1 − X4)(1 − Y 4) − i(X2 − Y 2)

(1 + XY )2

)2

, Φ2(X,Y ) =

(√
(1 − X4)(1 − Y 4) + i(X2 − Y 2)

(1 + XY )2

)2

.

Now we are going to describe the differential operators which annihilate F1(1 − X4, 1 − Y 4) and
F1(Φ1(X,Y ), Φ2(X,Y )), respectively.

Lemma 1.2 The system
Q1 = 1−X4

16X2 ∂2
X + X(1−Y 4)

16Y 3 ∂X∂Y − 1
4X∂X + 1−Y 4

8Y 3 ∂Y − 1
8

Q2 = 1−Y 4

16Y 2 ∂2
Y + Y (1−X4)

16X3 ∂X∂Y − 1
4Y ∂Y + 1−X4

16X3 ∂X − 1
8

Q3 = − X4−Y 4

32X3Y 3 ∂X∂Y + 1
32X3 ∂X − 1

32Y 3 ∂Y

(1.4)

annihilates F1(1 − X4, 1 − Y 4).

[proof]. We get the above system by just putting

x = 1 − X4, y = 1 − Y 4, ∂x = − 1
4X3

∂X , ∂y = − 1
4Y 3

∂Y

in the system (1.2).

Lemma 1.3 Putting Ri = (1 + XY ) · Qi · (1 + XY )−1 the system
R1 = 1−X4

16X2 ∂2
X + X(1−Y 4)

16Y 3 ∂X∂Y − X4+2Y 4+4X3Y 3+X4Y 4

16X2Y 3(1+XY ) ∂X + (1−Y 4)
16Y 3(1+XY )∂Y − Y 3(X2−Y 2)−X3(1−Y 4)

8X2Y 3(1+XY )2

R2 = 1−Y 4

16Y 2 ∂2
Y + Y (1−X4)

16X3 ∂X∂Y − Y 4+2X4+4Y 3X3+Y 4X4

16Y 2X3(1+Y X) ∂Y + (1−X4)
16X3(1+Y X)∂X − X3(Y 2−X2)−Y 3(1−X4)

8Y 2X3(1+Y X)2

R3 = − 1
32X3Y 3

(
(X4 − Y 4)∂X∂Y − X5+Y 3

1+XY ∂X + X2+Y 5

1+XY ∂Y − 2(X4−Y 4)
(1+XY )2

)
annihilates

1 + XY

2
F1(1 − X4, 1 − Y 4).
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Let S1(S2) be the operator obtained from P1(P2), respectively, by substituting[
x
y

]
=

[
Φ1(X,Y )
Φ2(X,Y )

]
,

[
∂x

∂y

]
=

[
∂Φ1/∂X ∂Φ2/∂X
∂Φ1/∂Y ∂Φ2/∂Y

]−1 [
∂X

∂Y

]
.

They take some complicated shapes, but

T1 = 8(X2 + Y 2)(1 − XY )3(S1 + S2), T2 =
8(X2 − Y 2)(1 − XY )3

i
√

(1 − X4)(1 − Y 4)
(S1 − S2)

can be represented in an explicit way:

Lemma 1.4

T1 = Y (1 − X4)2(X − Y 3)∂2
X + (1 − X4)(1 − Y 4)(X2 + Y 2)(1 − XY )∂X∂Y

+X(1 − Y 4)2(Y − X3)∂2
Y − (1 − X4)(X3 − Y + 2X4Y + 4XY 2 − 4X2Y 3 − X3Y 4 − Y 5)∂X

−(1 − Y 4)(Y 3 − X + 2Y 4X + 4Y X2 − 4Y 2X3 − Y 3X4 − X5)∂Y − 2(X2 + Y 2)(1 − XY )3

T2 = Y (1 − X4)(Y − X3)∂2
X − (X4 − Y 4)(1 − XY )∂X∂Y − X(1 − Y 4)(X − Y 3)∂2

Y

+(X5 − X2Y + 2X6Y − X3Y 2 − Y 3)∂X − (Y 5 − Y 2X + 2Y 6X − Y 3X2 − X3)∂Y .

By comparing the results in Lemma 1.3 and Lemma 1.4 we obtain:

Lemma 1.5

1
16XY

T1 = X(1 − X4)(X − Y 3)R1

+Y (1 − Y 4)(Y − X3)R2 + 2(1 − X4)(1 − Y 4)(X2 − Y 2)R3

1
16XY

T2 = X(Y − X3)R1 − Y (X − Y 3)R2

+2(XY + X2Y 2 − X3Y 3 + X4Y 4 − X4 − Y 4)R3.

So T1 and T2 annihilate 1+XY
2 F1(1−X4, 1−Y 4) . Hence S1 and S2 annihilate 1+XY

2 F1(1−X4, 1−Y 4)
also. Namely 1+XY

2 F1(1 − X4, 1 − Y 4) satisfies the same differential equation S1 + S2 with three
dimensional solution space as F1(Φ1(X,Y ), Φ2(X,Y )).

This system has unique holomorphic solution at (X,Y ) = (1, 1) up to a constant factor. So we obtain
the required equality.

q.e.d.

1.3 First Main theorem

Now we have an extension of Theorem 1:

First Main Theorem. Assume 0 < x, y < 1 and set λ = 1− x2, µ = 1− y2. Then we have the
following trinity theorem for Extended Gauss AGM:

1
M(1,

√
xy,

√
(x + y)/2)

=
1
π

∫ ∞

1

du
4
√

u2(u − 1)2(u − λ)(u − µ)
= F1(

1
2
,
1
4
,
1
4
, 1;λ, µ). (1.5)

[proof]. According to Proposition 1.2 and Theorem 4 , we know that
1

M(1,
√

xy,
√

(x + y)/2)
and

F1( 1
2 , 1

4 , 1
4 , 1;λ, µ) satisfy the same functional equation. Set

g(x, y) = F1(
1
2
,
1
4
,
1
4
, 1;λ, µ)M(1,

√
xy,

√
(x + y)/2).

Then we have
g(x, y) = g(x♯, y♯).

6



Note that we have
lim

n→∞

bn

cn
= 1

for the Extended AGM system (an, bn, cn). By the iteration of the procedure (x, y) 7→ (x♯, y♯) , we have
g(x, y) = 1. It means that the left hand side and the roght hand side of (1.5) coincide. The second equality
in the statement of the Theorem is nothing but the integral representation of the Appell hypergeometric
function. Namely we obtained the required equality.

q.e.d.

Remark 1.2 By putting x = y the above theorem reduces to Theorem 1 of Gauss.

2 Modular interpretation and isogeny formula

2.1 Matsumoto hyperelliptic modular function for C(x, y) (sum up with cor-
rections)

Here we review the result of K. Matsumoto [Mat1] with some modifications and small corrections. Let
us start from the family of algebraic curves

C(x, y) : w4 = z2(z − 1)2(z − x)(z − y) ((x, y) ∈ C2 − {xy(x − 1)(y − 1)(x − y) = 0}).(2.1)

C(x, y) has a model of compact nonsinguler hyperelliptic curve of genus 3. We denote it by the same
notation. The differentials

dz/w, z(z − 1)dz/w3, z2(z − 1)dz/w3

form a basis of holomorphic 1-forms on C(x, y).
For the moment suppose x and y are real and satisfy 1 < x < y. Let α be the automorphism

(z, w) 7→ (z,
√
−1w) of C(x, y).

Let us make three 1-cycles. Choose branches w(0), w(1), w(2), w(3) of w over {Im z ≥ 0} − {0, 1, x, y}
so as to be α(z, w(k)) = (z, w(k+1)) with w(4) = w(0). For real numbers z1, z2 let [z1, z2 > be an oriented
line segment connecting z1 and z2 in this order. Let [z1, z2 >(k) be an arc on C(x, y) over [z1, z2 >(k)

with the branch w(k). Set

A1 = [0,−∞ >(0) +[−∞, 0 >(2), B1 = [1, 0 >(0) +[0, 1 >(2), A3 = [y, x >(0) +[x, y >(1) .

They are considered as 1-cycles on C(x, y). By making their analytic continuations we can define multi-
valued analytic functions

a1(x, y) =
∫

A1

dz

w
, a2(x, y) =

∫
B1

dz

w
, a5(x, y) =

∫
A3

dz

w

on C2 − {xy(x − 1)(y − 1)(x − y) = 0}. These setting and notation are the same in [Mat1].
[Fact 1] a1(x, y), a2(x, y), a5(x, y) satisfy the differential equation E1( 1

2 , 1
4 , 1

4 ) of the Appell hyperge-
ometric function F1(1

2 , 1
4 , 1

4 ; x, y) and they form a basis of the space of solutions.
We define the Schwarz map for E1( 1

2 , 1
4 , 1

4 ) by

Φ : (x, y) 7→ (u, v) = (a5/a1, a2/a1) ∈ C2.

[Fact 2] The image of Φ is contained in the hyperball

B2 = {(u, v) ∈ C2 : 2 Im v − |u|2 > 0}

and it is open dense in B2. The map Φ has a continuation on P 1 ×P 1 − {(0, 0), (1, 1), (∞,∞)} and the
image is equal to B2.

[Fact 3] The fundamental group π1(C2 − {xy(x − 1)(y − 1)(x − y) = 0}, ∗) induces the monodromy
group G of Φ acting on B2. The following five transformations give a generator system of G:

g1 =

 1 0 0
1 + i 1 1 − i
−1 − i 0 i

 ,
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g2 =

 2 + i −1 − i −1 − i
1 + i −i −1 − i
1 − i −1 + i i

 ,

g3 =

 1 0 0
0 1 0
0 0 −1

 ,

g4 =

 i 1 − i 1 − i
0 i 0
0 −1 − i −1

 ,

g5 =

 2 + i −1 − i 1 − i
1 + i −i 1 − i
−1 − i 1 + i i

 ,

where gi (i = 1, 2, 3, 4, 5) acts on t(1, v, u) from left. Their orders are 4, 4, 2, 4, 4 and eigen values are

{1, 1, i}, {1, 1, i}, {1, 1,−1}, {−1, i, i}, {1, 1, i},

respectively (the original article contains a printing error for g5).
The Schawarz map Φ induces a biholomorphic correspondence

P 1 × P 1 ∼= B2/G,

and three points (0, 0), (1, 1), (∞,∞) correspond to the boundaries B2/G − B2/G.
[Fact 5] We can realize B2 in the form

D = {ξ = [ξ0, ξ1, ξ2] ∈ P 2 : ξHtξ < 0},

H =

 0 −i 0
i 0 0
0 0 1

 .

The map

Ω(u, v) =

 v + iu2/2 −u2/2 −iu
−u2/2 v − iu2/2 u
−iu u i


gives an modular embedding of B2 into the Siegel upper half space of degree 3. Set

G0 = U(2, 1, Z[
√
−1]) = {g ∈ GL(3, Z[

√
−1]) : gHtg = H}.

G0 becomes a restriction of Sp(6, Z) on Ω(B2). Note that the projective group G0 = G0/〈i〉 is isomorphic
to

SU(2, 1,Z[
√
−1]) = {g ∈ SL(3, Z[

√
−1]) : gHtg = H}.

[Fact 6] Set

g6 =

 1 0 0
0 1 0
0 0 i

 .

Then the group generated by G and g6 together with
√
−1 becomes the congruent subgroup

G(1 +
√
−1) = {g ∈ G0 : g ≡ id (mod (1 +

√
−1)}.

Fact 7] For p = (p1, p2, p3), q = (q1, q2, q3) ∈ Z3, let

Θ
[

p1 p2 p3

q1 q2 q3

]
(u, v) := ϑ

[
p1 p2 p3

q1 q2 q3

]
(Ω(u, v))

=
∑

n=(n1,n2,n3)∈Z3

exp[πi(n +
p

2
)Ω(u, v)t(n +

p

2
) + πi(n +

p

2
)tq]

be the Riemann theta constant with half integral characteristics defined on B2 via the embedding Ω.
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Theorem 5 (Matsumoto hyperelliptic theta map theorem)

(x, y) =

Θ4

[
1 0 0
0 0 1

]
(u, v)

Θ4

[
1 0 0
0 1 0

]
(u, v)

,

Θ4

[
0 1 0
0 0 1

]
(u, v)

Θ4

[
0 1 0
1 0 1

]
(u, v)

 .

Remark 2.1 The denominators and the numerators on the right hand side have common zeros on some
divisors of B2. But according to the argument on the period map, we have extensions x = x(u, v), y =
y(u, v) as holomorphic maps on the whole domain B2.

[Fact 8]

Lemma 2.1 (Fourier expansion)

Θ
[

p1 p2 p3

q1 q1 q3

]
(u, v)

=
∑

n1,n2

exp[−π

2
{(n1 +

p1

2
) + i(n2 +

p2

2
)}2u2] exp[πi{(n1 +

p1

2
)q1 + (n2 +

p2

2
)q2}]

×ϑ

[
p3

q3

] ((
(n2 +

p2

2
) − i(n1 +

p1

2
)
)

u, i
)

exp[πi{(n1 +
p1

2
)2 + (n2 +

p2

2
)2}v]

Lemma 2.2 (Matsumoto exchange formula （The multiplication factor is misplaced in the original pa-
per)) We have

exp[πip1q1 +
πi

2
p3q3] · Θ

[
p2 p1 q3

q2 q1 p3

]
(u, v) = Θ

[
p1 p2 p3

q1 q2 q3

]
(u, v).

2.2 9 theta constants with monodromy invariant characteristics

Recall the transformation formula for theta constants:

Proposition 2.1 (Transformation formula (see for example [I])) Let g ∈ G0 and Ng =
(

Ag Bg

Cg Dg

)
be

its symplectic representation. Then we have

Θ
[
Ng ◦

[
a
b

]]
(g ◦ (u, v)) = ε(g, a, b) (det (CgΩ(u, v) + Dg))

1/2 Θ
[

a
b

]
(u, v).

Where

Ng ◦
[

a
b

]
=

[
Dga − Cgb + (1/2)dv(Cg

tDg)
−Bga + Agb + (1/2)dv(Ag

tBg)

]
,

( ”dv” indicates the diagonal vector) and ε(g, a, b) is a certain 8-th root of unity.

By use of the transformation formula we obtain the following two propositions. Because the calculation
is straight forward we omit the detail.

Proposition 2.2 (1) There are 36 even theta constants ϑ

[
a
b

]
(Ω) with atb ≡ 0 (mod 2). Among them

we have 20 different Θ
[

a
b

]
(u, v):
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number name characteristic {a, b}
n.1 Θh1 {{0, 0, 0}, {0, 0, 0}}
n.2 {{1, 0, 0}, {0, 0, 0}}
n.3 {{0, 0, 0}, {1, 0, 0}}
n.4 {{0, 0, 1}, {0, 0, 0}}
n.5 Θh2 {{1, 1, 0}, {0, 0, 0}}
n.6 ΘyN {{1, 0, 1}, {0, 0, 0}}
n.7 {{1, 0, 0}, {0, 1, 0}}
n.8 ΘxN {{1, 0, 0}, {0, 0, 1}}
n.9 Θh3 {{0, 0, 0}, {1, 1, 0}}
n.10 ΘxZ {{0, 0, 1}, {1, 0, 0}}
n.11 ΘyZ {{0, 0, 1}, {0, 1, 0}}
n.12 {{1, 1, 1}, {0, 0, 0}}
n.13 ΘyD {{1, 0, 1}, {0, 1, 0}}
n.14 ΘxD {{1, 0, 0}, {0, 1, 1}}
n.15 {{0, 0, 1}, {1, 1, 0}}
n.16 {{1, 0, 1}, {1, 0, 1}}
n.17 {{1, 1, 1}, {1, 1, 0}}
n.18 {{1, 1, 1}, {1, 0, 1}}
n.19 {{1, 0, 1}, {1, 1, 1}}
n.20 {{1, 1, 0}, {1, 1, 0}}

Table 3.1

(2) We have 9 even theta’s with Ng ◦
[

a
b

]
≡

[
a
b

]
(mod 2) for g ∈ G, those are indicated in Table 3.1

with proper names.

Let us call these nine thetas G-invariant theta constants.

We note here that the rational representation of the transformation a1 a2 a3

b1 b2 b3

c1 c2 c3

 ∈ G0

is given by 
Re b2 −Im b2 −Im b3 Re b1 −Im b1 Re b3

Im b2 Re b2 Re b3 Im b1 Re b1 Im b3

Im c2 Re c2 Re c3 Im c1 Re c1 Im c3

Re a2 −Im a2 −Im a3 Re a1 −Im a1 Re a3

Im a2 Re a2 Re a3 Im a1 Re a1 Im a3

Re c2 −Im c2 −Im c3 Re c1 −Im c1 Re c3

 .

and that we have

det g · det (CgΩ(u, v) + Dg)) = (a1 + a2v + a3u)2,

∂(g(u, v))
∂(u, v)

=
det g

(a1 + a2v + a3u)3
for g =

 a1 a2 a3

· · ·
· · ·

 ∈ G0.

2.3 Generator systems of the structure ring

A holomorphic function f(u, v) on B2 is said to be a modular form of weight d with respect to G0

provided

f(g(u, v)) = ((a1 + a2v + a3u))df(u, v), g =

 a1 a2 a3

· · ·
· · ·

 ∈ G.
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We define the modular form for other discrete groups in the same way. We use the following notation:
Md(G) : the vector space of modular forms of weight d with respect to G,
Md(G(1 + i)) : the vector space of modular forms of weight d with respect to G(1 + i),
M(G)(M(G(1 + i))) : the graded ring of modular forms with respect to G(G(1 + i)), respectively.

Remark 2.2 If we define the ”projective modular form” by the condition

f(g(u, v)) = ((det g)(a1 + a2v + a3u))df(u, v), g =

 a1 a2 a3

· · ·
· · ·

 ∈ G,

it is equivalent to consider the modular form with respect to SU(2, 1;Z[
√
−1]). The structure of the ring

of these modular forms are studied by Resnikoff-Tai ([Re-Ta]). Our modular form does make sense only
for d divisable by 4.

Proposition 2.3 Every fourth power of the G-invariant theta constant is a modular form of weight 4
with respect to G, namely it satisfies

Θ4

[
a
b

]
(g ◦ (u, v)) = (a1 + a2v + a3u)4Θ4

[
a
b

]
(u, v), g =

 a1 a2 a3

· · ·
· · ·

 ∈ G.

Note that we have G(1 + i) = 〈g1, . . . , g5, g6,
√
−1〉 and

[G(1 + i), G] = 2,

where G(1 + i) and G indicate the correponding projective group. And that g6 induces the involution
ι : (x, y) 7→ (y, x). So we obtain the diagram with the Segre embedding map (u, v) 7→ [X0, X1, X2, X3] ∈
P 3:

P 2 = (P 1 × P 1)/ι B2/G(1 + i) ≡ P 2-

??

π π

B2/G
(u, v)

∼= {X0X3 = X1X2} ⊂ P 3P 1 × P 1

(x, y)
-

Φ

Ψ

Diagram 1: Period diagram

Proposition 2.4 1) We have
dimM4(G) = 4 dimM8(G) = 9.

2) M4(G) is generated by Θ4
xN , Θ4

xD, Θ4
yD, Θ4

h2.

[proof]. Note that B2 is the uniformization of the orbifold P 1 × P 1 with the arrangement of weighted
divisors:

name divisor weight
D0x {(x, y) : x = 0} 4
D0y {(x, y) : y = 0} 4
D1x {(x, y) : x = 1} 4
D1y {(x, y) : y = 0} 4
D∞x {(x, y) : x = ∞} 4
D∞y {(x, y) : y = ∞} 4
Dxy {(x, y) : x = y} 2

.
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So the divisor of du ∧ dv corresponds to

−3
4
D0x − 3

4
D0y − 3

4
D1x − 3

4
D1y − 1

2
Dxy − 3

4
D∞x − 3

4
D∞y

via the period map Φ. Suppose f(u, v) belongs to M4(G). Then the divisor (f(u, v)(du ∧ dv)4/3) should
satisfy

(f(u, v)(du ∧ dv)4/3) ≥ −D0x − D0y − D1x − D1y − 2
3
Dxy − D∞x − D∞y.

That is equivalent to give an element of H0(P 1 × P 1,O( 11
3 D0x + 11

3 D0y + 4
3K)). Where K denotes the

canonical divisor. Because we have K = −2D0x − 2D0y, we know the isomorphism

M4(G) ∼= H0(P 1 × P 1, O(D0x + D0y)).

The vector space H0(P 1 × P 1, O(D0x + D0y) is generated by the system {1, x, y, xy}, and it is four
dimensional.

By the same way we have

M8(G) ∼= H0(P 1 × P 1,O(2D0x + 2D0y).

So we obtain dimM8(G) = 9. q.e.d.

Observing the definition of Ω(u, v) we know that

Θ
[

p1 p2 p3

q1 q2 q3

]
(0, v) = ϑ

[
p1

q1

]
(v) · ϑ

[
p2

q2

]
(v) · ϑ

[
p3

q3

]
(
√
−1).

So our modular forms Θ4
xN , Θ4

xD, Θ4
yD, Θ4

h2 are linearly independent, and they give a basis of M4(G).
q.e.d.

Proposition 2.5 The space M4(G) is generated by fourth powers of G-invariant thetas, and all algebraic
relations are induced from

Θ4
xN − Θ4

xD = Θ4
yN − Θ4

yD

Θ4
h2 = 2(Θ4

xN − Θ4
xD)

Θ4
h1 − Θ4

h3 = 2(Θ4
xD + Θ4

yN )

Θ4
xZ − Θ4

yZ = Θ4
xN − Θ4

yN

Θ4
h1 = 2(Θ4

xZ + Θ4
yZ)

Θ4
xDΘ4

yN = Θ4
xZ(Θ4

xN − (Θ4
xD)

Θ4
xNΘ4

yD = Θ4
yZ(Θ4

yN − Θ4
yD).

[proof]. Let us consider the truncation of the Fourier expansions of the fourth powers of our G invariant
Theta constants up to some fixed hight ℓ. Set Vℓ be the vector space generated by these polynomials.
There is the canonical surjectivehomomorphism ω : M4(G) → Vℓ. We can easily find that Vℓ is four
dimensional. So ω should be an isomorphism. Then we can obtain the above relations by explicit
calculations of their coefficients. The situation is the same for the quadratic relations.

q.e.d.

Remark 2.3 By observing the last identity in the above Proposition we have a system of generators X0 =
Θ4

xN , X1 = Θ4
yZ , X2 = Θ4

yN − Θ4
yD, X3 = Θ4

yD of the structure ring C[X0, X1, X2, X3]/(X0X3 − X1X2)
of B2/G ∼= P 1 × P 1 .
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2.4 CM-isogeny on Jac(C(x, y))

Let us consider an isogeny map of B2:

σ(u, v) = ((1 + i)u, 2v).

It is induced from the Q-symplectic transformation:

Nσ =
(

A O
O tA−1

)
, A =

 1 1 0
−1 1 0
0 0 1


and we have

Nσ ◦ τ = Aτ tA, τ ∈ H3.

Set

A0 =
(

1 1
−1 1

)
,

Λ = {(n1 + n2, n1 − n2) ∈ Z2 : n1, n2 ∈ Z}

ϑΛ
a′,b′(τ

′) :=
∑
m∈Λ

exp[πi(m +
a′

2
)τ ′t(m +

a′

2
) + 2πi(m +

a′

2
)

tb′

2
], τ ′ ∈ H2, a

′, b′ ∈ Z2

ϑ♯
a,b(τ) := ϑa,b(Aτ tA), τ ∈ H3, a, b ∈ Z3

ϑ♯
a′,b′(τ

′) := ϑa′,b′(A0τ
′ tA0), τ ′ ∈ H2, a

′, b′ ∈ Z2,

where Hg denotes the Siegel upper half space of degree g. We emphasize here that ϑ♯
a,b(τ) will play an

important role in the following argument.
By elementary caluculations we have

Lemma 2.3

ϑ♯
a′,b′(τ

′) = ϑΛ
a′A0,b′tA−1

0
(τ ′).

According to Matsumoto, Minowa and Nishimura [Mat-Min-Nish] we have

Theorem 6 ( Λ-theta formula)(
ϑΛ

a,b(τ)
ϑΛ

a+{2,0},b(τ)

)
=

1
2

(
1 exp[−πi

2 (a1 + a2)]
1 − exp[−πi

2 (a1 + a2)]

)(
ϑa,b(τ)

ϑa,b+{1,1}(τ)

)
By virtue of Theirem 6 together with Lemma 2.3 we obtain:

Proposition 2.6

ϑ♯

[
1 0 0
0 0 1

]
(τ) =

1
2
ϑ

[
1 1 0
0 0 1

]
(τ) − 1

2
ϑ

[
1 1 0
1 1 1

]
(τ)

ϑ♯

[
0 1 0
0 0 1

]
(τ) =

1
2
ϑ

[
1 1 0
0 0 1

]
(τ) +

1
2
ϑ

[
1 1 0
1 1 1

]
(τ)

ϑ♯

[
0 0 0
1 1 0

]
(τ) = ϑ

[
0 0 0
0 1 0

]
(τ)

ϑ♯

[
1 0 1
1 1 1

]
(τ) =

1 + i

2
ϑ

[
1 1 1
1 0 1

]
(τ)

ϑ♯

[
0 0 0
0 0 0

]
(τ) =

1
2
ϑ

[
0 0 0
0 0 0

]
(τ) +

1
2
ϑ

[
0 0 0
1 1 0

]
(τ)

ϑ♯

[
1 1 0
0 0 0

]
(τ) =

1
2
ϑ

[
0 0 0
0 0 0

]
(τ) − 1

2
ϑ

[
0 0 0
1 1 0

]
(τ).

An algebraically closed system under the isogeny action
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2.5 Second Main Theorem, modular interpretation of the extended Gauss
AGM

Set

H1(u, v) = Θh1(u, v) = ϑ

[
0 0 0
0 0 0

]
(Ω(u, v)),

H3(u, v) = Θh3(u, v) = ϑ

[
0 0 0
1 1 0

]
(Ω(u, v)),

Z(u, v) = ΘZ(u, v) = ϑ

[
0 0 0
1 0 0

]
(Ω(u, v)).

Now we have

Second Main Theorem (CM-isogeny formula) . It holds

H1((1 + i)u, 2v)) =
1
2

(H1(u, v) + H3(u, v))

H3((1 + i)u, 2v)) = Z(u, v)

Z((1 + i)u, 2v)) = 4

√
1
4

(
Z2 + H1H3)(Z2 +

H2
1 + H2

3

2

)
.

[proof]. The first two equalities are direct consequence of Proposition 2.6. So we are only concerned

with the last equality. We can show that Θ
[

0 0 0
1 0 0

]
and Θ

[
1 1 1
0 1 1

]
make at most their exchange

under the action of the monodromy group G. So by using Proposition 2.1 we can calculate the auto-

morphic factors of Θ
[

0 0 0
1 0 0

]4

+ Θ
[

1 1 1
0 1 1

]4

and Θ
[

0 0 0
1 0 0

]2

Θ
[

1 1 1
0 1 1

]2

. And we know that

they belong to M4(G). According to Proposition 2.5 by looking for the linear relations of truncated forms
of thetas we obtain

Θ
[

0 0 0
1 0 0

]4

+ Θ
[

1 1 1
0 1 1

]4

=
1
2
Θ4

h1 −
1
2
Θ4

h2 +
1
2
Θ4

h3

Θ
[

0 0 0
1 0 0

]2

Θ
[

1 1 1
0 1 1

]2

=
1
2
Θ4

xN − 1
2
Θ4

yN .

By Proposition 2.6 we can shift these equalities to the ones for

Θ♯

[
0 0 0
1 0 0

]4

+ Θ♯

[
1 1 1
0 1 1

]4

and Θ♯

[
0 0 0
1 0 0

]2

Θ♯

[
1 1 1
0 1 1

]2

. By cancellation of Θ♯

[
1 1 1
0 1 1

]
we obtain

Z((1 + i)u, 2v)4 =
1
4
{Z(u, v)2 + H1(u, v)H3(u, v)}{(Z(u, v)2 +

1
2
(H1(u, v)2 + H3(u, v)2)}.

q.e.d.
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