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INTRODUCTION

Let &(X) denote the set of (based) homotopy classes of self-homotopy equivalences of a (based) space
X. &(X) is'a group with group operation given by composition of homotopy classes.

For a finite CW-complex X there are two natural subgroups &£.(X), the subgroup of homotopy classes
which induce the identity on the homology groups of X and £f™(X), or simply denoted by £,(X), the
subgroup of homotopy classes which induce the identity on homotopy groups of X in dimensions < dim X.
These subgroups are known to be nilpotent [DZ]. In this paper, mainly we will study another subgroup &} .(X)
which consists of elements inducing the identity on 7,(X)/7, for i<n where v is the subgroup of torsion

elements of 7,(X). If all 7,(X) are finite groups, each &, (X) coincides with £(X). Thus &%,(X) fails to
be nilpotent in general. For example, 8§/I(V5M(Zz, 3))’=“8(V5M(Zz,3)) are not nilpotent groups, where

\/5 M(Z, 3) is the 5-fold wedge sum of Z, -Moore spaces. On the other hand, &;,(X) are nilpotent groups
in many cases (Theorem 2.5). A remarkable point is that &£},.(X) satisfies a certain stable property (the
Mittag-Leffler condition) (Theorem 1.2).

Let us denote by X, the localization of X at P.

§1&5,.(X) AND &3(Xy)

Theorem 1.1 Let X be a finite nilpotent complex, then d descending normal series £3(X,) , n = 1,... is
Mittag-Leffler, namely &7 (X,) =&5(X,) for some N.

Proof. There exists the following action induced by composition of maps.
E(Xy) X m(X,) = m(X,)

Let x, = {z,...,z,} be generators for 7;(X)/zC ni(Xo), i < n. Note that 7;(X,) are Q-vector spaces for

1> 2 and for i = 1 we can choose generators so that elements of 7;(X,) are expressed in the form of

n )
Tes plk
i Ziys

ks where 7, are rational numbers [Ha, §6] .Let é’(XO),(M be the intersection of the isotropy subgroups

at the elements z; € x,.

8Z(Xo) = 8(X0)x"
and

E(Xy) = [1EX,,

&(X,) is isomorphic to an algedraic group [Sul], and each £(X),, is isomorphic to its algebraic subgroup .

[Ma 3 ]. Therefore, by a fundamental property of algebraic sets we obtain that
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NeX,, = EXods,
for some N . Hence the result follows.

Although it is not known that the subgroup &; (X) satisfies the M-L condition as above except for special

cases such as X is a product of spheres (see [AM]), we obtain

Theorem 1.2. Let X be a finite nilpotent complex, then a descending normal series &y, .(X), n = 1,... is Mittag-
Leffler, namely &5.(X) = E4.(X) for some N .

Proof. Now we recall some results from [Ma3 ]. Let

£: E(X) = &E(X,)

be the homomorphism induced by rationalization. Let
|

i
f
l E(X) X (X)) = m(X)

be the natural action, x = {z,...,z,...} be generators for 7;(X),7 > 1. Then @&(X), is defined to be the

subgroup of £(X) which consists of elements satisfying (fz,), = Zx Then obviously,
RE(X), = &4 (XD

since X is a finite nilpotent complex. By [ Proposition 2.4 (and its proof), [Ma31], ¢ (Q&(X),) is an
arithmetic subgroup of &(Xy),, where x, = {(z)), ..., (z)p...}. As in the proof of Theorem 1.1, the group
E(Xy)y, s isomorphic to &y (X,). Therefore, £ (&,(X)) is commensurable with &;°(X,), But the latter is
isomorphic to &4(X,),, for some M by Theorem 1.1. Now ¢ (&4.(X)) is commensurable to &;'(X,), by
the same reason, and hence the two groups &.(X) and 8%,(X) are commensurable, namely the first group
has finite index in the second group (ker £ is a finite subgroup). It follws that &}.(X) and &;.(X) are

isomorphic for some N.

Corollary 1.3 Let X be a finite nilpotent complex. £3.(X) is finite if and only if &; (Xy) = {1}. In this
case £ (X) is finite for some N.

Proof. &..(X) is finite & &},(X) is finite for some N & &)(X) is finite © &4(X,) is trivial [ Mal ],
[Mo] & &7(X,) is trivial. The second equivalence follows from the fact that £3(X) has the finite index
in &,.(X0.

Remark. &3.(X) or £3(X) are not finite groups in general ([ AM ], Corollary 6.2].
§2 MoRe oN &, (X)
We define K(X) to be the kernel of the homomorphism £ : &(X) — &(X,).

Theorem 2.1. Let X be a finite nilpotent complex. If &4, (X) is finite and n > dimX or n = o, then &,
(X) = K(X). '
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Proof. Since K(X) is a subgroup of &;,,(X) there exists the following exact seauence
0= K(X) - &4(X) = &i(X,)

The group £4(X,) is uniquely divisible and hence we obtain the result.

By the same argument we obtain

Proposition 2.2. Let X be a finite nilpotent complex. Then &4,.(X)/K(X) is a nilpotent group for n > dim
X. )

A group .G is said to be a finite-by-nilpotent group if it has a finite normal subgroup N such that G/N
is nilpotent. By [HMR ], K(X) is a finite group and we obtain ‘

Corollary 2.3. Let X be a finite nilpotent complex. Then &4,.(X) is a finite—by—nilpoteﬁt group for n = dim

X orn= .
Next we consider the case where the homology groups of X have no torsion.

Lemma 2.4. Let X be a finite nilpotent complex whose homology groups have no torsion. Then K(X) is a
finite subgroup of &.(X). ‘
Proof. K(X) is finite by [HMR ]. By our assumptions, the result is clear.

Theorem 2.5. Let X be a finite nilpotent complex whose homology groups have no torsion. Then (X)) is
a nilpotent.group forn = dimX. v o
Proof. By Lemma 2.4, all the elements of K(X) induces the identity on.homology.

Let us consider. three actions w,:&%,.(X) X H(X) — H(X), w,: &4 (X)/K(X) X H(X) - H(X) and w;:

Ee(Xy) X H(X,) — H(X,), where w, is induced from w, The following diagram is commutative.

E4(X) X H(X) —_— H(X)
I
EL(X)/K(X) X H(X) ——> H(X)
y
SHX) X H(X) — ——> H(Xy)

We obtain three lower central series defined in [HMR](section 4) correspondeing to theser actions. Let us
denote them by {Tw,(HD}, {IVw,(H)} and {IVw,(H,)} respectively. By the above commutative diagram,
I‘(il(Hi) = IVw,(H,) and they are subgroups of I‘j,a(H,-o) since homology has no torsion elements. If 7 > dim
X, the action w; is a nilpotent action in the sense of [HMR ], that is, 1";3(H,-0) = 0 for some j (This ¢an
be achieved by induction using the postnikov system) and hence FLI(HJ = 0 with this j. Now we obtain that

the action w, is a nilpotent action, and hence our result follows from Theorem D in [DZ].

Lemma 2.6. Let X be a simply connected finite complex whose homology groups have no torsion. Then K(X)
N

—3—
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is a finite nilpotent group and K(Xp) = K(X)p.
Proof. By Lemma 2.4, K(X) is a subgroup of &£.(X). The latter group is nilpotent [DZ ], and so is K(X) .

On the other hand, we have an exact sequence
4
0= K(X)—&.(X)—=e.(Xy)
By [Ma2] &.(X,) = &.(X)p. Moreover, as localization commutes with pullbacks (Theorem 2.10 [HMR ] ),

(ker2)p = ker{p. Hence the result follows.

By Theorem 2.1 and Lemma 2.6 wwe obtain

Theorem 2.7. Let X be a simply connected finite complex whose homology groups have no torsion. Assume

that &4 (X) is finite and n = dimX or n = oo, then &4, (Xp) = &4, (Xp.
Combining with Corollary 1.3 we obtain

Corollary 2.8. Let X be a simply connected finite complex whose homology groups have no torsion. If &y
(Xy) ={1}, then £g.(Xp) = E4.(X)5.

§3 LOCALIZATION OF &y (X)

In general we have
Proposition 3.1. &£;(X,) is P local for a finite nilpotent complex X and an arbitrary set of prime numbers P.
Lemma 3.2. Let {f..,:G;., —> G;} be an inverse system such each G;is P-local. Them lim G; is also P-local.

Proof. Let g be an integer which is prime to the all the elemenets of P. Let.¢ be the g-th power map. The

map -4 :lim G; — lim G;is induced from the maps -4 : G, = G;. The following diagram is commutative.

Jinr fi
— Gy — G — G, —
|.q le e
—f;'+l f;
G — G — G, —

Each .9 : G; — G; is injective since G; is p-local, and thus.q : lim G — ljgl G; is also injective. Let (g,)
be an element of lim G;. For g; € G;, there exists the unique element g; such that -9 (g)) = g;. -¢ (f,,(g/x))) =
fi+1(Giv1) = g:50, fi11(g{x1) = gi. This shows that (g)) € lim G,. Therefore ¢ : lim G;. — lim G, is

surjective.

Proof of proposition 3.1. By [Mal ] [Mo ] it holds that &4(X,) = &,(X)p, thus &4(Xp) is P- local. As the

group &y (Xp) is isomorphic to lim &i(Xp). Our result is clerar from Lemma 3.2
Remark. Therefore &y (X,) is finite if and only if &;(X,) = {1} for finite nilpotent complexes.

For a more special case we obtain
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Theorem 3.3. Let X be a finite nilpotent complex. If E4.(X) is finite or equivalently £7(X,) = {1}, then
Er(Xp) = &7 (XD, '

Proof. Under our condition, by Corollary 1.3, &y (X) is finite and isomorphic to &y (X) for some N. Now
the result follows from [Mall, [Mo].

REFERENCES

[AM] M. Arkowitz and K. Maruyama, Self-homotopy equivalences which induce the ideniity on homology,
cohomology or homotopy groups, Topology Appl, 87 (1998), 133-154.

[DZ] = E. Dror and A. Zabrodsky,' Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979),
187-197. | |

[Ha) P. Hall, Nilpotent groups (Lectures given at the Canadian Mathematical Congress, Summer Seminbr,
University of ‘Alberta, 1957), Queen Mary College Math. Notes, 1969.

[HMR ] P. Hllton 'G. Mislin and J. Rmtberg, Localization of Nllpotent Groups and Spaces, Mathematics
Studies, vol. 15, North-Holland, 1975. ' ' ‘

[Mall K. Maruyama, Localization of a certain subgroup‘of self-homotopy equivalences, Pacific J. of Math.
136 (1989), 293-301. | |

MaZ] K. Maruyama, Localization of self-homotopy equivalences inducing the identity on homology, Math.
Proc. Cambridge Philos. Soc. 108 (1990), 291-297.

(Ma3] K. Maruyama, Finitely presented subgroups of the self-homotopy equivalences group, Math Z. 221
(1996), 537-548.

[Mo] - J. Moller, Self-homotopy equivalences of H.(—;Z/p) -local spaces, Kodai Math.J 12 (1989), 270-281.

Mi]l . C. Wilkerson, Applications of minimal simplicial groups, Topology 15 (1976), 115-130.

DEPARTMENT OF MATHEMATICS FACULTY OF EDUCATION CHIBA UNIVERSITY YAYOICHO
CHIBA JAPAN

E-mail address : maruyama@cue.e.chiba-u.ac.jp



