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Introduction

Let ¢ be a proper lower semicontinuous convex function on a (real) Hilbert space with
the inner product (+ , *) and norm ||*]||, X be a closed convex subset of # and denote by T
the projection from H onto X. Then we consider the property

(T) ¢ (u+T(v-u))+¢(v-T(v-u)) < (u)+ ¢(v) forany u, v EH,
and the following property of the subdifferential 9¢ :
(i) (u*-v* u-v-T(u-v)) 20 forany [u,u*], [v,v*] €G(0¢),

where G(0¢) denotes the graph of 0¢ .

The aim of the present paper is to show that (T) and (i) are equivalent. In fact, the
assertion (T) — (i) follows directly from the definition of d¢, but the converse will be proved
via some properties which are equivalent to (i); for instance,

(i)  WIu=Sw=T (Ixu=Jrv) || £lu=v-T (u-v)|| for any A\ >0 and u, v EH;
(iii) (O@y (u+Tv)-0¢y (u), v-Tv) 20 for any A >0 and u, v EH;

where J) = (I+\0¢)~! and ¢, is the regularization of ¢. Simultaneously we shall give further
properties equivalent to (T) by means of ¢,, 0¢) and the contraction semigroup generated

by -0¢.

Especially in the space L? (§2), we are interested in the case
@ Xx={vel?Q)v kae onQ}

or
) Xx={vel? Q) 0Sv<kae. on Q},

where k is a positive constant. The property (T) corresponding to the case (a) is written in
the form ‘

(©)  (un(v+k))+d(vV (u-k))S $(u) +¢(v) forany u, v EL?(Q).
This property was studied by Brézis [ 2; Chap. II] in which he showed that (c) implies
(d) (u*v¥* (u-v-k)* ) 20 for any [u, u*], [v, v¥] € G (3¢).

However the proof of (d) = (c) is not given there. The property (T) corresponding to the case
(b) was investigated by Kenmochi-Mizuta [7, 8] in connection with (i), (ii) and (iii) in a special
case of ¢.
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Finally we shall study convex functions satisfying (T) with the effective domains in the
Sobolev space Wl.P(Q) or wl/p,p(I') so as to apply our results to nonlinear elliptic
boundary value problems and parabolic initial boundary value problems, where §2 is a domain

in the Euclidean space with sufficiently smooth boundaryI', p 22 and I/p + 1/p’ = 1.

For other papers dealing with related topics, see Calvert [3, 4, 5]Konishi [9], Picard
{10] and Sato [11].

§ 1. Preliminaries

In this paper we shall use some elementary facts in the nonlinear monotone operator
theory without proof. For the definitions of maximal monotone operators, their resolvents
and nonlinear contraction semigroups, etc., we refer to the textbook of Brézis [1].

In what follows, let H be a (real) Hilbert space with the inner product (*,*) and norm
lI*]l. Let ¢ be a lower semicontinuous convex function on H and assume that ¢ is proper on
H, ie., ¢(v)E (oo, +oo] for every v € H and ¢+ on H. The set D(¢p) = {vE H; ¢(v) <+oo}
is called the effective domain of ¢. The subdifferential d¢ of ¢ is the (multivalued) operator
in H defined by the following: d¢(»)=0 if v&D(¢) and

¢ (v) ={wE H; (w, z-v) S ¢(z) - ¢(v). for any zE€ H}

if v ED(¢). We define D(d¢ ) ={vE H; a¢ (v) % 0} and G(3¢) ={/v, v¥*]y HeH;vE,D(ati)),
v*E€ 0¢ (v)}. According to, for example, [1; Proposition 2.111], D(d¢ )CD(¢) and D(09) =
D(¢). Also, we define the operator (3¢ )° in H by

(9¢)°(v) ={v*€3¢(v); Iv*I|=inf |Iw*|l; w*Edp(v)}

with D((3¢)°) = {vEH; vED(d¢), (9¢)°(v) E$}. As is well-known (cf. [1; Proposition
2.71), (3¢ )° is singlevalued and D((3¢)°)=D(3¢).
Now, consider the following type of regularization ¢, of ¢ for each A > 0:

oav) =inf {llw-v|/(2\) + ¢ (w); wE H}, vE H.

Then we have

Lemma 1.1. (1) For each A>0, ¢, is a convex function on H with D (¢, )= H which is
everywhere differentiable on H in the sense of Giteaux, and the Giteaux-derivative of ¢,
coincides with the subdifferential 9¢, . Hence D (9¢,) = H and 3¢, is singlevalued.

(2)  0¢p,=(I-J))/\ for any A > 0, where Jy = (I+\d¢)~!
with the identity 7 on H.

(3) 8 (v)~> (0¢)°(v) in H as \{ 0 if v ED(3¢p).
(4 or(»1td(v)as A0 forany vEH.
(5) Foreach A\>0 and u, vEH,

‘]
On(v) - dn(u) = fo (3¢ n(u+t(v-u)), v-u) dt.
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For a proof of Lemma 1.1, for example, see [1; Propositions 2.6 and 2.11].
Next, let X be a closed convex subset of H and denote by T the projection from H
onto X. Indeed, T is-defined by

Hv=Tvil = inf {|lv-wll; wEX}, vEH.

We see that T is contractive on H, and have the folloWing lemmas:
Lemma 1.2, The function yy on H given by

Vo) = llv=Tv]f?

is convex, everywhere differentiable on H in the sense of Gateaux and 8y (v) =v-Tv for each
vEH.,
Lemma 1.3. Letv be any element in H. Then

(Tv-w, v-Tv) 20 for any wE X.

Since the proofs of these lemmas are elementary, we omit them.

Lemma 1.4. Let z be an absolutely continuous function from [0, »/ into H. Then t ~>
Tz (t) is also an absolutely continuous function from [0, r/ into H and

dTz(t)
(=

Proof. Since T is contractive on H, t - Tz(t) is absolutely continuous on [0, r/ and
hence differentiable a.e. on [0, r/. Now, assume that it is differentiable at € (0, r). Then
we observe from Lemma 1.3 that

(1.1) , z(t)—Tz(t)] =0 for ae. tE [0, /.

limi (Tz(t)-Tz(t-h), z(t)-Tz(t)) 2 0
nyo 7
and

lim—{— (Tz(t+h)-Tz(t), z(t)-Tz(t)) £ 0.
ho h

Hence (1.1) holds.

§2. Property (T) and its characterization

Let ¢ be a proper lower semicontinuous convex function on H, X be a closed convex
subset of H and denote by T the projection from H onto X. Then we say that T operates
on H with respect to ¢, if the following is satisfied:

(T) b (u+T(v-u)) + ¢(v=T(v-u)) S ¢(u)+ @(v) forany u, v EH.
We observe that if T operates on H with respect to ¢, then D(¢) has the property:
(D7) u+T(v-u) €ED(¢), v-T(v-u) ED(¢) for any u, vED(q).

The following theorem gives a characterization of (T) by means of the subdifferential
0¢, the resolvent J, = (I+\0¢ )'1, the regularization ¢, of ¢, its subdifferential d¢) and
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the contraction semigroup {S(t); ¢ >0 } on D(¢) generated by -3¢.
Theorem 2.1. The following statements are equivalent to each other:
(al) T operates on H with respect to ¢ .
(a2) T operates on H with respect to ¢, for every A > 0.
(a3) (u*-v* u-v-T(u-v)) 20 forany [u, u*], [v, v¥] € G(d¢).
(a4) (00 (u)- 0dr(v), u-v-T(u-v)) >0 forany A>0 and u, vEH.
(a5) (00, (u+Tv)-09ru), v-Tv) 20 forany A >0 and u, vEH. .
(a6) || Jau-Jxv-T(Hhu-Jw)ll < ||lu-v-T(u-v)|| forany A > 0 and u, vEH.
(a7) Condition (D) is satisfied and
IS (t)u=S (tjp-T(S (tJu=S (t)v) || < lu=v-T(u=v)|| for any >0 and u, vED(P)

Remark 2.1. The assertions (a3) < (a4) < (a6) are already known (cf. Brézis [1; Proposi-
tion 4.7] or Picard [10; Chap. II]). Also, as will be seen, the assertion (a6) <> (a7) is essentially
included in [1; Proposition 4.7]. However, the assertions (al) < (a2) « (a3) < (a5) are new.

Remark 2.2. The inequality (a5) was investigated by Calvert [4] for some special kinds
of T and for nonlinear monotone operators from Sobolev spaces into their dual spaces.

Proof of (al) > (a3): Let [u, u*] and [v, v*] be in G( d¢). Then by the definition of 3¢ we
have

(u*, w-u) <¢p(w)-¢(u) forany weH

and
(v* z-v) S¢(z)~ ¢(v) fof any z€ H.

Taking w = v + T(u-v) and z = u-T(u-v), and adding the above two inequalities, we obtain
(*=v*, u-v=T(u=v)) 2 (u)- ¢ (v+T(u=v)) +(v)- b (u=T(u-v)) 20.

Proof of (a3) — (a6): Let Y be as in Lemma 1.2, A\> 0 and u, v €H. Choose [w, w*]
and [z, z*] €EG(3¢) so that u = w + Aw* and v = z + \z* Then, noting that w = Jyu and
z =J, v, we have by (a3) and Lemma 1.2

Y(u-v) - (hu-Jyv)= ¥ (w-z + N (w*-z*)) -y (w-z)
2 N(w*-z* 0Y(w-z)) 20. :

Hence (a6) holds.

Proof of (a6) = (a5): LetA >0 and u, vE H. By (a6) we see that J; (u+Tv) - Iu€ X?
since (u+7Tv) ~ u = Tv € X. Hence it follows from Lemma 1.3 and (2) of Lemma 1.1 that

L
A
Proof of (a5) = (a2): Let A >0 and u, v&€ H. Then, using (5) of Lemma 1.1 and (a5), we

see that .

(O¢» (u+Tv) - Odp(u), v-Tv) = (Tv-[Jx (u+Tv) - Jauj, v-Tv) 2 0. |
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O\V) - ¢y (u+T(v-u))
= fol (00 (u+T(v-u) +t[v-u-T(v-u)] ), v=u-T(v-u))dt

zfl (3¢ (u+t[v-u=T(v-u)] ), v-u-T(v-u))dt
0
=@ (v-T(v-u))-pr(u).

The proof of (a2) = (al) immediately follows from (4) of Lemma 1.1. Thus we have
obtained the assertions (al) < (a2) < (a3) © (a5) © (a6). The assertion (a2) < (a4) is nothing
but the assertion (al) < (a3) with ¢ replaced by ¢, . v

Next, in order to apply a result of Brézis [1; Proposition 4.7] we consider the indicator
function K of D(@), i.e.,

K{v}={0 if ve D(¢),
+o  otherwise.

Clearly, K is a proper lower semicontinuous convex function on H with D(K)=D(0K) =
D (¢). For any \ >0, the resolvent (I +)\8K)—] of 0K coincides with the projection P from
H onto D (@) (cf. [1; Example 2.8.2]).

Lemma 2.1. Condition (D) holds if and only if

|Pu-Pv-T(Pu-Pv)|| S |lu-v-T(u-v)|| for any u, v €H.
Proof. It is clear that (Dr) is equivalent to the following:
Ku+T(v-u))+ K(v-T(v-u)) SK(u) + K(v) for any u, v €E H,

so that we have the lemma by applying (al) < (a6) to the function K.

On account of [1; Proposition 4.7] and Lemma 2.1, (a7) is equivalent to (a6) and
hence the proof of Theorem 2.1 is complete.

Remark 2.3. In (a7) of Theorem 2.1, condition (D) can not be dropped; in fact we
have the following example.

Example 2.1. Let us take L°(RY) as H {vEL2(R1); 0Sv <1 ae. on R1} as X and
the indicator function of the unit ball U={ve L2(R1); |v||<1} as ¢. Then it is easy to see
that S(z)v =v for every t > 0 and v E U, and hence fort 20 and u, ve U

WS (t)u~S(t)v-T(S(t)u-S(t)v)|l £|lu-v-T(u-v)l|

holds with the projection T from L2(R!) onto X. But, as is easily checked, (D) is not
satisfied.

§3. Further properties equivalent to (T)

1. In addition to the properties in §2 equivalent to (T) we investigate some other
properties which are apparently weaker than, but really equivalent to them.

Proposition 3.1. Each of the following is equivalent to any one of the statements listed
in Theorem 2.1: '

(a8)  (Dy) issatisfied and
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(3.1) (0@ (u) - 3¢y (v), u-v-T(u-v))2 0 forany X\ >0 and u, v €D(p).
(@a9) = (Dr) issatisfied and
(3.2) ((9¢)° (u)-(00)°(v), u=v-T(u-v)) 20 for any u, v €D (3¢).

(al10) (D7) is satisfied and
W u=Tpv-T(Ixu=F %) || <llu-v-T(u-v)|| for any A >0 and u, vE D(9).

(all) (D7) is satisfied and
(00 (u+Tv) - 0py(u), v-Tv) 20 forany A>0,u€D(¢) and vEH
with u+Tve D(¢).

(@l2)  ¢n(u + T(v-u)) + da(v-T(v-u)) < p(u) + $p(v) forany X >0

and u, veﬁ(—q)—).

Proof. Since (D) follows from (a4), the assertion (a4) — (a8) is true. Using (3) of
Lemma 1.1 and letting A { 0 in (3.1), we have (3.2), so that (a8) implies (a9). Again, according
to [1; Proposition 4.7], (a9) is equivalent to (a6) and hence (a9) implies (al0). Also, we
obtain (al0) — (all) and (al2) = (al) just as (a6) — (a5) and (a2) — (al), respectively.
Taking into account the fact that u+t [v-u-T(v-u)] € D(¢) and u + T(v-u) + t[v-u-T(v-u)]
€ D(¢) for every tc [0, 1] and u, vE D(¢) if (D) is satisfied, we have (all) — (al2) in
the same way as the proof of (aS) — (a2).

Proposition 3.2. Each of the statements (al) ~ (al2) is equivalent to any one of the
following:

(@al3) Jyv-Jnu€ X forany A\ >0 and u, vEH with v-u €X.

(al4) (D7) is satisfied and
Jav-JhLu€ X forany A>0 and u, vED(¢) with v-u€X.

(als) (D) is satisfied and
S(t)v-S(t)u€ X forany t=0 and u, vE D(¢) with v-u€ X.

Proof. In fact, we have (al3) < (a6), (al4) © (al10) and (al5) < (a7). We give only a proof
of (al5) © (a7), since the others are similarly proved.

The direction (a7) — (al5) is trivial. Now, assume (alS5) and let u, vE W Then,
S(t)(v+T(u-v))-8(t)v € X, since [v+T(u-v)]-v=T(u-v) € X. Hence

[1S(t)u=-S(t)v-T(S(t)u-S(t)v)ll
=inf{|1S(t)u-S(t)v-zll;z€E X }
SS(t)u~S(t)v + Tu-v))ll
S Hu=-v=T(u-v)ll.

2. Next, let us consider the evolution equation on [0, r]:
du(t
® L g 3,

where ¢? is a proper lower semicontinuous convex function on H for each t€/[0, r] and
rer! (0, r; H). By a strong solution u of (E) we mean an H-valued absolutely continuous
function on [0, r] such that u(t)€D( d¢?) for a.e. t€ [0, r] and there is a function u* er!
(0, r; H) satisfying u*(t) € '8¢*(u(t)) and (d/dt)u(t) + u*(t) = f(t) for ae. tE[0, r]. By
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a weak solution u of (E) we mean the limit of a sequence { up } of strong solutions of (E)
which converges to # in H uniformly on [0, 7] asn - +o°.

Proposition 3.3. Let X be a closed convex subset of H and T be the projection from
H onto X. Assume that T operates on H with respect to ¢’ for each ¢t €/0, r/. If u; and u,
are weak solutions of (E), then

(3.3) Wuy(t)-uy(t)=T(u (t)-uys(t))1| S \luy(s)-uy(s)-T (uy(s)-u(s)) |l
holds for every s, t€/0, r] with s <t

Proof. It suffices to show (3.3) in case u; and u, are strong solutions of (E). In this case,
there are 1u*€ L1(0, r; H), i = 1, 2, such that u}* (1) €3¢" (u;(r)) and (d/dT)u,(T) +ul(t) =
f(t) forae. T€ [0, r]. By Theorem 2.1 and Lemma 1.4 we have

_é_ ?1d7 e 37 )-u2(7)-T (g (1)-uz(t))|?
=[ dt;:.(T} _ dl;i(‘r) _ %_T(ul(f)—uz('r}}, ul‘(T)—UQ(T)‘T(u](T)-uZ(T)) ]

=-(uf(t)-u3 (1), u; (T)-uy(1) -T(uy(1)-1uy(7))) S0

for a.e. 7€ [0, r] . Integrating the both sides over [s, tJC [0, r], we have (3.3).

Remark 3.1. In case H = L2(Q), ¢' = ¢ and X = {vEL2(Q); vSk ae. on Q } with a
positive constant k, the above result is included in Brézis [2; Proposition II-7].

§4. Order theoretic properties in L?-spaces

Let  be a locally compact Hausdorff space, £ be a positive measure on § and denote
by L2 = L2(;§) the Hilbert space of all (real-valued) square &-integraole functions on £
with the inner product

(v, w)= fn ywd§

and the norm ||v|| = / (v, v). For measurable functions v, w on  we define v vw = max
{v, w}, vAw = min {v, w}, v =vVv 0 and v— = -(vA 0). Let ¢ be a proper lower semi-
continuous convex function on L? and g be a non-negative measurable function on £2.

1. Consider the set

Xg={v€L2;v§g a.e.on Q}.

Then, clearly, X, is closed and convex in L? and the projection T, from L? onto X g is given
by Tgv = v Ag. In this case, a part of Theorem 2.1 and Proposition 3.2 can be rewritten in
the following:

Theorem 4.1. The following statements are equivalent to each other:
(b1) T, operates on L? with respect to ¢ .

(b2) (u*-v* (u-v-g)*) 20 for any [u, u*], [v, v*] € G(0¢).
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(b3).

(b4)
(b5)
(b6)
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(00 (u+v A g)- 0 (u), (v-g)*)2 0 forany \>0 and u, vE L2,

(R u-Iv-g)* || S|l(u-v=g)*|| forany A>0 and u, vE L.

hulJ,v+g ae. on{)forany A\>0 and u, vE€ L2 with u'Sv+g a.e. on 2.
Condition

(Dg) uA(v+g)ED($), vV (u-g)E D(¢) forany u, vED(¢)
is satisfied and

1(S(t)u-S(t)v-g)* || = || (u=v-g)*|| forany ¢ 20 and u, vE.D(p).

In fact, noting that v - Tgv =(v-g)%, u.A(vtg) =v + Ty (u-v) and vv (u-g) = u-Tg(u-v),
we see that (bl) ~ (b6) are (al), (a3), (a5), (a6) (al3) and (a7) with T replaced by T,
respectively.

2. Next, consider the set

X;={VEL2,‘0§v§g a.e.on}.

Then this is closed and convex in L? and the projection Ty from L? onto Xg is given by
7;'1’ = y*+ Ag. In this case we have the following theorem as direct consequence of Theorem

2.1 and Proposition 3.2.
Theorem 4.2. The following are equivalent:

(c1)
(c2)
(c3)
(c4)
(c5)

(c6)

T, operates on L2 with respect to ¢ .

(u*~v*, u-v-(u~v)* Ag) 20 forany [u, u*], [v, v*]E G(d¢).

(0P (utv A g) - 0Pp(u), v-v* A g) 20 forany A>0 and u, yeEL?

|| u=Syv-(Hou-J\v)* A g1l = lu-v-(u-v)* A gl forany A >0 and u, vel?.
HhushHhvsShutg ae. on  forany A>0 and u, vEL? with u<vSu+g
a.e. on §2.

_Condition ‘
(D;) ut(v-u)* A gE€D(), v-(v-u)* AgE D(¢) forany u, vED(¢)

is satisfied and

[1S(t)u-S(t)v-(S(t)u=S(t)v)* A g|| £ |lu-v~(u-v)* A g|| forany #=0 and

u, veD(¢).

3. Let X* ={ve L?:v20 ae.on § } with the projection T* from L? onto X*. Clearly,
T*v = v* for each vEL?.

Proposition 4.1. Assume that T operates on L? with respect to ¢. Then Tg+ operates
on L? with respect to @ if and only if T, operates on L2 with respect to ¢.

Proof. Let A>0. Then, by Proposition 3.2 with 7= T*,

(4.1)

JywSJyz a.e.on S forany w, zE L2 with w<z ae. on .

First assume that T;’ operates on L° with respect tog. Let u, vEL? with u<v+g ae.
on 2. Then, noting that yS u v vSy +g a.e. on £, we have by Theorem 4.2

AhvSEIfuvyv)SJyv+g ae. on S2.
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Since Jau SJy (uVv v) a.e. on § by (4.1), it follows that'J}\ug.I}\v +g a.e. on £2. Thus (b5)
holds and hence T, operates on L? with respect to ¢.
The converse is similarly proved by using Theorem 4.1.

§5. Examples

In this section, let £2 be a bounded domain in the m-dimensional Euclidean space R™
(m >2) with sufficiently smooth boundaryI’ , 2<p<+oo, I/p + I/p’ = I and denote by
\feil;, , and [I° ”1 /p",p the norms in wl:P (Q) and W!/P’P (T'), respectively.

Let ¢ be a proper lower semicontinuous convex function on L2(§) such that D(¢) C
wlP () and

(5.1 ¢(V/ZC()||V||1’I, -¢; forany vED(¢),

where ¢y and c; are positive constants. Now, define a function ¢ on L? (T'), associated with
¢, by the following:

inf{0(v); vIp=h, vED()} if hE WL/P’P (T),
otherwise,

bmy={ ™

where v| means the boundary values (the trace) of wl.p (). Then we have

Lemma §.1. é is a proper lower semicontinuous convex function on L2(1"} such that
D($)c wi/p'p(T') and

(5.2)  ¢(n) zeall hllyy,, ,mc3 forany hED(F),

where ¢, and c3 are positive constants.

Proof. We note that v—>v|r is a linear continuous mapping from WI»P (Q2) onto wi/p’p (T),
so that there is a positive constant L such that “v|l"”1/p p = S Ll p for ally ewlr(Q).
By the definition of ¢ and (5.1) we see that ¢ #+ 0on L (I‘) D(¢) C wi/P, P(T") and

B(h) 2 co inf {Wvlly, pi v EWLP (Q), v Ip=h} -¢; 2 (co/L)lIkly s, —¢;

for any h € wl/P’-P(T"). Hence ¢ is proper on L2(T") and (5.2) holds.

We now show the convexity of (5 Let hj, hoe D(gﬁ) and 0 <t =1. Then, for anye > 0
there are functions #; and uj in D (¢) such that Upip = hp uz =ha, (13(h1} 2¢(u;)-€ and
$lhy) 2 pluy) - €.

Therefore

tOhy )+(1-1) (hy) 216 (ug) + (I-t)$ (uz) - €
@ (tuy + (1-t)uy) - €
$ (thy+ (1-t)hy) - €

v v i

since [tuy+(1~tju]ip = thy+ (1-1)h,. This implies that G(thy+(1-t)hy) S td(hy)+(1~t) b(hy).
Thus ¢ is convex.

Finally we show the lower semicontinuity of ¢. Let { hn}C D($) be a sequence such that
h,—~>h in L2(T') as n > +°° and liminfn_,+,,d;(hn)<+°9 Then, given € > 0, we find a subsequ-
ence { hp; } of {hy}, a sequence {vx}C D(¢) and v€ W1-P(Q) such that vg|r =hnp qS(hnk}
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> ¢(vk) —€, vk = v weakly in wlp (Q) and liminf,,_,_,,oo(ﬁ(h,,)=limk_-,+mq3(hnk). Since »|r
=h and liminf,_, _ . ¢(vr) 2 @(v) by the lower semicontinuity of ¢, we get

liminf @ (hy,) 2 ¢ (v) - €2 d(h) - €.

n—s+ o0

Thus 43 is lower semicontinuous on L2(T").

Theorem 5.1. Let g be a non-negative function in w1,P(Q)) and denote g r by 2 If T+
(resp T,) operates on L2 (€2) with respect to ¢, then T (resp. Tg} operates on L2 (T") with
respect to .

Proof. Let 4y, h2A€D(¢) leen € >0, choose u; and uy in D(¢) so that u; | = hy,
Uz r= h2, B(hy) 2¢ (u1) - e and ¢(h,) 2 d(us) - €. Then, noting that [u1+Tg (uz-ug )] |p
=h; + T ¢ (hy=h; ) and [u,- T (u, uI)]|r. =h, - Té (ho-hj), we have

G(hy)+¢(hy) 2 ¢ (ug)+ ¢ (ug)-2e
2@ (u+ T (up=ug)) + ¢ (up= Ty (ug-ug)) - 2€
2 ¢ (hy+ T (hy=hy))+ & (hy- T (ha-hy)) - 2e.

Hence Tg operates on L2 (T) with respect to ¢ The assertion for Ty can be quite similarly
proved.

Example 5.1 (cf. [7; §6). Let a; (i = 0, 1,..., m) be bounded measurable functions on
Q such that a; > ¢ a.e. on £ for some positive constant ¢ and consider the function ¢ on L2(Q)

given by
] m
L3
P is1lo!

+o0 otherwise.

ov |P

dx +if aolvlpdx if vewhp(Q),
ax,- PN

(5.3) ov)=

It is easy to see that ¢ is a proper lower semicontinuous convex function on L2 () satisfying
(5.1), D(¢) = whP(Q) and for every non-negative constant function g on £, T; and Ty
operate on L2 () with respect to ¢. In this case, the function ¢ on L2(T) associated with
¢ is given by the following:

] m
__zf
pllﬂ

o0 otherwise,

oul
ax,-

Pax+ L[ aplutipax it nEWlPP(T),
p g

érn) =

where u” is a unique function in W%P () such that uh|r. =h and

E . [ ax, ax,- ]+a0|u | uh =0 onf2.
Besides, 0¢ is singlevalued and
m | Quh [p-2 ouh
(5.4) 3¢ (h) = 2“1 o ox; y; onI'
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for every h€D(3$) CWI/P'P(T), where (v (x), V5(x),..., Y (x)) is the unit outward normal
to I’ at x €T and the right hand side of (5.4) is taken in the sense of [6; §1]. Therefore,
for fEL2(T') and h € D(d¢), there is u € WP (Q) such that

m d | ou |lp-2 ou p-2 _
- Zaalalm | ) aoluP?us0 o g,
uII“'h:
- ou |P-2 du
i=21 a"—iﬁ ox; i=f on T

if and only if f =8¢ (h). By Theorem 5.1, for every non-negative constant function £on I, 7§
and Ty operate on L2 (T') with respect to §.

Example 4.2 (cf. [10; Chap. 2]). Let a;(t, x) (i = 0, I,..., m) be bounded measurable
functions on [0, ] x S such that a; 2¢ a.e. on [0, r] x {2 for some positive constant c. Given
ho€wl/P’p (T'), consider the problem to find a function u = u(t, x) on [0, r] x § such that
u€LP(0,r; WP (Q)), urEC ([0, 7]; L?(T)), u (0, *);p =ho and

noo ou |P-2 Ju
- { p'2 =
i=21 ox; [a, 0x; ox; ]*aolul u=0 on (0,r)x
is satisfied with
ou m ou |p-2 ou _
37 +i=21 “ia_x,-' ﬁi—v,--o on (0,7)xT

in a certain weak sense. Denoting by ¢? the function on L? () given by (5.3) with a; = a;(t,
x), and by ¢! the function on L2 (T) associated with ¢ for each t €/0, r/, the above problem
can be transformed into the Cauchy problem to find hE€ LP (0, T; wl/p’.p (T))NC ([0, r];
L2 (T')) that is a strong or weak solution of ‘

%7@ + 3¢ (h (1)) =0

with h(0) = h ). Proposition 3.3 can be applied to this problem.
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