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§ 1. Introduction

Let £ be a category of local ringed spaces and C be a category of
complex spaces. Although they are not abelian, we can prove that some funda-
mental propositions in abelian categories are also valid in .[ or C. In §2, we
shall introduce the category .£ and its some full subcategories C, C,.i etc.
In §3, some important categorical objects are defined in an arbitrary category
. Let v: X—>S and w: Y— S be any morphisms in 4, then the following
properties are equivalent (Proposition 3);

(a) Zis a fiber pfoduct of X and Y over S.

(b) Z is a pullback for v and w.

(c) Zis a pullback for 4 and vXxw.

In §4, we show the existences of products and pullbacks in C (Theorem 1, 2).
Difference cokernels and pushouts exist always in £ for any given morphisms
in C. But, in general, they are not objects of €. In §5, some sufficient con-
ditions are given for their existences in C.

§2. Categories of complex spaces

In this section, we shall introduce some categories of complex spaces [1].

Definition 1. A local ringed space is a pair X=(|X|, 4x), where |X] is a
topological space and 4(x is a sheaf of local C-algebras. For each point xe | X],
Ix.. is a commutative local C-algebra with a unit 1,. Furthermore x,./mx
is assumed to be isomorphic to C, here m, is the maximal ideal of H ,, i. e.
Hx,,=CPhm,.

Let g,: 4 x .~ C be the natural projection. For any section fel'(U, 4x)
over an open set Uc|X|, we define the value f(x) of fat a point x€U as
q.(f.), where f, is the germ of f at x. »

Definition 2. A morphism ¢: (| X|, Hx)—> (Y|, Hy) of one local ringed
space into another is a pair ¢=(g ¢1), where ¢,: |X|—|Y]| is a continuous
map, and ¢; is a continuous map | X|@yHy :={x0)|x€|X|,0€Hy,,, y=0¢o(x)}
—— dx. Let ¢,, be the restriction of ¢, at (x, Hy 4o)). We assume that ¢,, is
always a unitary homomorphism of (x, Ky, into . y=¢ix). ¢ is an
isomorphism if ¢, and ¢, are both topological maps and ¢,, is an isomorphism
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for each x| X]. _

In the following, we sometimes identify the pair (x, %y, with a local
C-algebra 4y ,. Since ¢,, is a unitary homomorphism of local C-algebra, ¢,
maps the maximal ideal m jo¢.y of Iy 4oc») into the maximal ideal m, of Ky, A
consequence of this is that a morphism (¢, ¢;): X—> Y preserves the value of
the sections, in symbols ¢(f)(x)=f(go(x))---(*), if x€|X| and f is a section of 4y
over an open set containing ¢¢(x). Thus ¢, and ¢, are related, but the next
example shows that ¢; is not in general determined by g,. "

Example 1. Let X be the local ringed space ({0},C{x}/.y), and let Y=C»
regarded as a local ringed space with the sheaf O.” of germs of holomorphic
functions on C". Let (4o, ¢;) be a morphism of X into Y with ¢,(0)=0. Then ¢,
is a homomorphism ¢;: C{y,---- y Ya}—>C{x}/c,», here C{y,,---- , Yo} denotes
the ring of all converging power series in the variables y,------ y Yoo C{x}/(ery is .
the ring of dual numbers representable as a+be, where @, 5= C, and €2=0), ¢ being
the class of x. Let us express ¢:(f) as a(f)+eb(f). Since the maximal ideal of
C{x}/.»y is (), the value of ¢i(f) is a(f). From (*) it follows that a(f)=
$1(f)(0)=f(#o(0)). Thus ¢, determines only the zero order term of ¢,(f) at 0<C.
It follows from the multiplication rule e=( that b(fg)=r(0)b(g)+g(0)b(f), hence
b is a tangent vector at 0C». Therefor the general form of ¢, is of the type

¢1(f)=f(0)+(éfi(%);o)f for some 4,&C.

For any local ringed spaces X=(|X|, %), Y=(|YI|, Xy), Z=(|Z|, ¥ ;) and
morphisms ¢=(o,$;) : X——Y, ¢=(¢o,¢1) : Y—>Z, a morphism y=(xo,11) : X—>Z
is defined as follows; yo: =¢o°Po, X1x:= P1.°P1400x). Pod: =7 is the composition of
¢ and ¢. The identity map idy : X—> X with idy=(id x i), i,:idyx,, xe|X]| is
a morphism. Hence we have a category .L of local ringed spaces. We denote
by Ob.L the set of objects of £ and by Hom_(X, Y) or simply by
Hom (X, Y) the set of all morphisms of X into Y. Let R be a subcategory of L
with the following properties: for any X=(|X|,%x)=O0bR, 4y is a subsheaf
of germs of complex valued continuous functions; for any morphism (g, ¢;)E
Homg (X; Y), ¢, is the set of algebra homomorphisms ¢, : (¥, 9 vrgo(d)) > H x,
defined by lifting f— fogy for any fEHy 40»»- In this case, ¢, is determined
by ¢. Therefor, we shall sometimes write ¢, simply instead of (¢, ¢).
R is a full subcategory of £, namely, Homg(X, Y)=Hom,(X, Y) for any
X, YeOb®R. There is a natural covariant functor Red : £L—> ® which is identity
functor on R. The functor Red is called a reduction fuhctor, and is defined as
follows. For any X=(| X|,% x)€ Ob L, any open set UC | X| and any fel'(U, %),
redg;f is a continuous function on U defined by (redif) (x)=q. (f.), x€U. As a

consequence of this, red(f,) is defined for each f,e 4% ,. Let & be the sheaf of
germs of complex valued continuous functions on | X|. As red* :J[X,,,—-—Sg,, is

an algebra homomorphism, red*:= {red*|x=|X|} induces a sheaf homomorphis,m

— 84 —



Some categorical properties of complex spaces

Red: 9 ——>F. We have thus Red (X) :={|X|,Red(.%)}=O0b R. On the other-
hand, red:=(idy, red*): Red(X)— X is a .L-morphism.
Remark 1. For any L-morphism ¢=(gy¢)EHom(X, V), the next diagram

is commutative (i. e. Red is a covariant functor);

X ¢ Y

red red

Red ($) : =¢,

Red X Red Y

Definition 3. A closed subspace of a local ringed space X=(|X|, %) is a
local ringed space A=(|A|, d(,), where | A|=supp (HKx/J) and H,=Hx/I||A|
for some coherent sheaf 4 of ideals of 4. An open subspace of X is just a
restriction (U, x| U), here U is an open set in | X|. For any point z&|X], a
closed subspace x=({x}, Hx ./m,) is called a single poini. '

For any closed subspace A of XeOb.l, there is a natural imbedding
i: A—> X, here i,:|A|—>|X|is an inclusion map and iy, : K x> H 4,0 :=H x,4/
Jd,as|Al, is a natural projection map.

| Example 2. A full subcategory @ of R. Its object is a pair D=(|D|, O)
where |D| is a domain in some complex number space C%, and O is the sheaf
of germs of holomorphic functions on |DJ. '

Example 3. A full subcategory C of L. Its object A=(|A|, H,)is a closed
subspace of some object -DeObQ.

For any A=(|A|, H,)€O0bC, with |A|=supp(O/I), H.=0/I||Al, let &
be the sheaf of ideals of all holomorphic functions vanishing on |A|. As is
well known, 4 is a coherent sheaf.

Remark 2. Red A is a closed subspace of A. Red A = (|Al,(0/4)]1Al]).

Considering the property (*), we see that for any morphism (go¢:) €
Home (X, Y), ¢:(Hy docry) CHx.. for each point x€|X|. Given two objects A4,
BeObC with I ,=0(G)/I||Al, Hs=0(G,)/I,||B|. Let ¢ be a holomorphic map
of G, into G, such that ¢(|A|)c|B|. Then ¢ generates a sheaf homomorphism
gﬁ: GP, 95— 0(Gy). If </§ maps the sheaf G;®,J, into J,, then <ﬁ induces a sheaf
homomorphism ¢, : A@,H ;—> 9+ Thus we have a morphism (¢||Al.¢)E
Hom, (A, B). We say that this morphism is induced by ¢. Grauert [2] proved
the following

Proposition 1. Given any morphism ¢=(g,, ¢;)€Hom, (4, B), then for any
point x&|A|, there exist an open neighborhood U(x)cG, and a holomorphic
map ¢: U—> G, such that the morphism ¢ is induced by ¢.

Example 4. A full subcategory C,., of C. For any object X=(]|X]|, H) of
C,.s, its structure sheaf 4y is characterized by the reduced structure, namely,
I(x.. has no nilpotents for each x|X|. It is clear that C,.,=CNR. For instance,
the space X=({0},C{x}/(x*))=ObC but X&ObC,... .

Example 5. A full subcategory C.prma Of C,.s. For any X=(|X|, Hx) of
ObC,.s, X belongs to ObC,.me if and only if the ring Xy, , is integrally closed
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in its complete ring of quotient for each point xe|X].

Let X be any full subcategory of .L. We can extend X to a full subcategory
K of .£ in the following way. X=(|X|, 4x)€0b.L belongs to ObKX if and
only if every point x&|X]| has an open neighborhood U such that the restriction
of X to U is .L-isomorphic to some object of K. & is called a completion of X.

Example 6. 9 : category of complex manifolds.

Example 7. C,,,: category of complex spaces in the sense of Serre. An
object of C,,; is called a reduced complex space.

Example 8. C: category of complex spaces in the sense of Grauert. We call
this category, the category of complex spaces. An object of ¢ is called simply
a complex space.

Example 9. Let (C% 0)€0b9 and p:C>——C be the projection (x;,%,)— %..
For any open set UcC? let Iy : ='(U,H): ={fel'(U,0O), f(p~1(p(x)) N U)=const.,
x€U}. Let 4 be the sheaf generated by the presheaf %,. Then the space
X:=(C%4() is an object of £ but not of C.

If (|X], 9%x)Obl is such that, |X|={x}, and K =C, then x=({x}, C) may
be regarded as a single point. In &, a closed subspace is called a complex subspace.
More generally, a morphism #:.4——> X (or by abuse of language, A) is called
a complex g-subspace, if there are complex subspace A of X and isomorphism
j:A—n‘f such that #=ioj, where i: A——> X is a natural imbedding. Let
(1X], 4x)cObC and 7 be the sheaf of nilpotent elements of Hx, Hyea: =Hx/l.
Then we have (| X|, %,.s)€0b C,... The functor Red in the Remark 1 is a covari-
ant functor of C into C,.,. From its definition, it is clear that, for any (| X|, % )
e0bl(oreObl,,.), Hx,. 1s a noetherian local ring for each point x| X|. In
the category C, a morphism is called a holomorphic map and a section is
called a holomorphic function. It is well known that every XeObl,,, has a
normalization Y&Obl,.ma [7]; there is a surjective, discrete, proper holo-
morphic map z:Y—— X such that the following conditions are satisfied. If S
is the set of singular points of |X]|, and A==,"Y(S), then |Y|—A is dense in
|Y| and =||Y|—A is an isomorphism onto |X]|-—S.

§ 3. Categorical notations

Let us recall briefly some categorical notations [6]. Throughout this section,

let 4 be any fixed category.
Definition 4. Given a pair of object X, and X, we say that an object
Z (or more precisely a pair (Z,z,x,)) is a product of
1 >4 p X, and X, if there exist morphisms #,: Z—> X, and
/ [J\ my: Z—> X, such that for every pair of morphisms
X, = Z X, fi:X— X and f,: X— X, there is a unique morph-

51 Ty

ism f:X—— Zsuch that the left diagram commutes.
We denote this Z by X;x X, and the morphism f by (£,f,). =, and r, are called
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the projection morphisms from the product. A coproduct of X, and X is dually
defined to the product. Thus a coproduct is a pair of morphisms #,: X—>Z,
u,: X;—>Z called injections, such that for any morphisms f;: X— X,
f,: X—> X, we have a unique morphism f: Z—> X with fofi=u,, fof;=u,. We
denote this Z by X,UX, and f by (f.f.). Especially, when X;=X,=X, we have
the diagonal morphism 4: X—> Xx X defined by mjed=n,0d=idy, and dually
the codiagonal morphism p: X\ X— X defined by pouy=pou,=idy. It is clear '
that 4 is necessarily a monomorphism and g is an epimorphism.

Definition 5. Given two morphisms f,: X;——Y and f,: X,—Y with a
common codomain, a commutative diagram (1) is called a pullback for f, and

L & X, L ___gz_.. X. A L

gll lfz g’ll £f2 é:y l ZY%

Xy— ] —=4X,
% f Y % h 1 &1 L 82 ?
(1) (2) (3)

f, if for every pair of morphisms g’,: L'— X) and g’,: L—> X, such that the
diagram (2) commutes, there exists a unique morphism /:L——L such that
the diagram (3) commutes. L is also called a pullback for f; and f,. The dual
of a pullback is called a pushout. Thus a pushout diagram (or a pushout for
£ and f;) is obtained by reversing the direction of all arrows in the diagram (1).

Definition 6. Given two morphisms f;: X—>Y and f,: X—> Y, a morphism
f: Z—> X is called a difference kernel (or simply kernel) for f, and f; if fiof=/foof
and if for every morphism f’:Z'—> X such that fiof’=fyof’, there exists a
unique morphism % :Z'— Z such that f=f"oh (cf. diagram (4)). The dual of a

/
72— o x Ly x==v—L .,
fz fz \ f'
NV *
7’ z
(4) (5)
difference kernel is called a difference cokernel (or simply cokernel) for f, and f,

(diagram (5)). In these cases, the sequences

» /i J
z L x2y and x25v- Lz
f2 f2
are called exact.
T
Proposition 2. A difference kernel for double arrows XX XIEIX is a
Ty

diagonal morphism 4: X— Xx X.

Proof. Let #: Z—> Xx X be a morphism with mox=mon. Put h:=mor.
Then we have m,odoh=n0domon=tdyomon=non=n,0r=my0doh. By the universal
property of XxX, we have m=4Joh. On the otherhand, let #»':Z—> X be a
morphism such that z=4oh=4dohk’. Since 4 is a monomorphism, 2=A'. Therefor
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4 Ty
we have an exact sequence X——XxX—73X.
Ty

u
Dually a difference cokernel for double arrows X:’l.:;X UX is a codiagonal
Uy
morphism XU X——V—>X.
Definition 7. Given two morphisms f,:X;——Y and f,: X,—— Y and a
Jiomy
Szom,
is called a jiber product of X, and X; over Y, and is denoted by X;xyX,, here
=, and =, are projections. Dually a fiber coproduct of Y, and Y, under X (denoted
by Y,U xY5) is defined for any two given morphisms f; :X— Y, and f,: X—— Y.
#10f;

uz0f

—
-

product of X; and X,, a difference kernel for double arrows XxX

Thus Y,UxY, is a difference cokernel for double arrows X 3Y,07,

where #, and #, are injections.
Remark 3. All these objects (products, coproducts, etc.) are not always
exist, but if they exist, they are determined uniquely up to isomorphism.
Given two morphisms v: X—> S and w: Y——S. By the definition of SxS,
there exists a morohism (vom;,wom,) : XX X——> SX S such that p,o(ver;,wor,)=vor,
and p,o(vomy,wom,) =wom, here my,z,p, and p, are projections. We denote this
morphism (ver,,wor,) by vXw. Let 4 be any category, in which products exist.
Proposition 3. The following properties are equivalent in the category .
(a) Zis a fiber product of X and Y over S.
(b) Z is a pullback for » and w.
(c) Zis a pullback for 4 and vXxw,

vorw
Proof. (a)<=>(b). Let Z—a—+X X Y =S be an exact sequence. Let f=r0a
_ wor,
and g=m;0f, then vof=vorjca=womoa=wog. --+---rere: (1) g

A

The right diagram commutes. Let f/: Z—— X and
g : Z/— Y are morphisms such that vof’=wog’. There fl v 17”
exists a morphism (f’, g’): Z——> XX Y such that f/=mr0 X S
(f',&') and g'=m,o(f', g’). But since vof'=wog’, s0 vom o(f’, g’)=wom,o(f, g'). Since
Z is a difference kernel, there exists a unique morphism g: Z—Z such that
(f', g )=acf. Then, we have fof=mocaof=mo(f, g')=f", and gof=g’. .-+ (2)
Given another morphism g :Z'—Z such that f'=fof’ and g'=gof’, then
fl=mpoaof and g'=meacl’. By the universal property of XxY, we have
aop=(f",g’). Therefor acf/=(f,g’)=a-f. But since a is a monomorphism, we
RAVE B/ o8/ e veeereee ettt et (3).

From the properties (1), (2) and (3), Z is a pullback for » and w. By the

Remark 3, (a) and (b) are equivalent.

4 b
(a)<=>(c). Since pjo(vomywon,) ca=p,o(v X w)oa and S——>Sx S:1::S is an exact
: 2
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’ sequence by Proposition 2, there exists a

”I/IX b S morphism f: Z——S such that
Z—9  xxy P osxs Bof = (DXUW)OQ ++ervrvrrreemnmrmmamrmnsinsrininies ().
d \S/z{l p\ Given two morphisms f’:Z’—S and
a« : 77— XX Y sueh that dof'=(vXw)oa’.
Then vom o’ =p,0(v X w)oa =pyodof=idsof’ =f =wommea’. Since Zis a difference

kernel, there exists a morphism B:Z'——Z such that a/=aof..-+-worevveeeeeenes (5).
Furthermore, 4dofof=(vXw)oaof=(vXw)oa’=4dof’. But since a is a mono-
TOTPRISINL, fom f/. ++r vt eerests et it et (6).
Let p/: Z—>Z be another morphism such that aef'=a’, fof/=f. Then
aof/ =a'=aof. Since a is a MONOMOrpPhisSm, Bm. -woeoereoriimmiminiiee. (7).

By (4)~(7), Z is a pullback for 4 and vxw. By the Remark 3, (a) and (c) are
equivalent.

The above morphism f: Z—S is sometimes written as vXsw. From the
fact that dof=(vXw)oa, p,cd=ids, we see that vX sgw=vomca=woroa. Dually we
can prove the following property for any category .4’ in which coproducts exist.

~ Proposition 4. Given two morphisms »:S—X and w :S —>Y, the following
properties are equivalent in A/, '
(a’) Z is a fiber coproduct of X and Y under S.
(b’) Z is a pushout for v and w.
(¢’) Z is a pushout for p and (u#;°v, uyow).
In other words,

' Uy
(a’) means that S—3XU Y———»Z is an exact sequence,
Uz

(b’) means that the diagram (6) is a pushout,
(c/) means that the diagram (7) is a pushout.
In the same way we have :
Corollary 1. For any two morphisms v: X—Y and w: X———>Y1n A, the

v
sequence Z—a—-> —=Y is exact if and only if the diagonal (8) is a pullback.
w

Corollary 2. For any two morphisms v: X Yand w: X Yin J’, the
v

sequence X—=Y—Z is exact if and only if the diagram (9) is a pushout.
sy sost gy z—%ox  xox-02 v
vl l‘“”z Vl la vea 1 l(v, w) 117 la
X aou, Z S aowmon Z Y—5—XXY X P zZ
(6) (7) (8) (9)

We must remark here, that the above Proposition 3 (or 4) itself does not
guarantee the existence of pullbacks (or pushouts).
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§ 4. Examples in the category ¢

Theorem 1. For any X, YeOb(, there exists a product in &.

Proof. Given two complex spaces X;=(|X;|, %) and X,=(|X;|, %,). The
problem being local, we may assume that X,(v=1,2) is an analytic set in some
domain G,. Let 4,=0(G,)/d,. Let J; be an ideal generated by ge=J,, and
g€ Y,z for z=(2,2,)€G: =G, XG,. Then J={J,} is a coherent ideal sheaf with
a supp H=|X|X|X,|, £:=0(G)/I. Thus we have X;XX,:=(|Xi| X |X,], )
€0bC. Put 7y*(2,,2,) : =2, and #,,%(g,) :=g,om,* for g,€,,,. Since #(J,)Cd,
7,¢ defines a unique homomorphism z;,®:(z,4,,,)— %, Hence we have a
product (X;XX,, m;,m,) with z,=(m®, n,®)). By virtue of Proposition 1, the
universal property of the product of X;x X, is obvious from its construction.

= I RIH, is so called an analytic temsor probuct of 9, and 9, A
coproduct X;UX, of X; and X, in C is clearly equal to their disjoint summ.
By the definition, any complex space X is a complex g-subspace of Xx X

Example 10. Given two holomorphic maps ¢:X—Y and i: A—-Y in O,
where A=(| A|,4,) is a complex subspace of Y=(|Y|,4y) with Hu=9y/s|]|A|,
and 7 is a natural imbedding. A pullback B for i and ¢ is constructed as follows.
For |B|:=¢,"'(]A|)c|X|, introduce the relative topology. Then the inclusion
map jo: |B|——|X| and restriction map ¢,: =¢,|B|— | A| are both continuous.
Difine the sheaf 4z on |B| by Hp,: =Hx../I, x<|B|, where J,: =Hx,:° P1x
(Jg0t0). Since ¢1.(Ig00) Y., the map Pz Hyrgoy—>Hx,.. induces an algebra
homomorphism ¢y, : H 40— K. Let ji,: Hx ,——H B,z be a natural quo-
tient map. Put ¢, :={¢,,, x| B|} and j,={j,,, ¥ | B]}. Then we have holomorphic
maps ¢=(¢,, ¢1) : B—A and j={(j, j,) : B— X such that io¢£¢oj. Given any
holomorphic maps ¢’: B'——A and j': B'—X with io¢/ =¢oj’, a holomorphic
map f': B'— B is defined as follows. f/o(0’):=j"y(0’) for b’<|B’| and B1s(s)
=j'1(t) for any te K x, ji,» With Jiigan(t)=s. Then ¢op’=¢’ and jof'=j’. Such a
holomorphic map p’ exists uniquely. Thus B is certainly a pullback for i and
é in C.

B is a complex subspace of X, and j is a natural imbedding. We say that
B is an inverse image of A by ¢ and denoted by ¢! (A). By Proposition 3,
¢~ (A)= AXyX. Especially when A is a single point, a=({a},C), ¢~Y(a) is called
the ¢-fiber over a. For any complex space S,

a holomorphic map 4: S—-SxS is a complex X st XxY
g-subspace. Given two holomorphic maps v: ¥Xg%] lvxw
X—S and w: Y—>S, the right diagram is S ———— SxS
a pullback by Proposition 3 and Example 10. (10)

Thus we have
Theorem 2. There exist a fiber product and a pullback in & for any given
holomorphic maps v: X—S and w: X—S.
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Similarly, considering the Example 10 and Corollary 1 we have

Corollary 3. A difference kernel exists for any given holomorphic maps
v: X—Y and w: X—Y.

In order to give the difference kernel concretely, it is sufficient to consider
it in the category C. Let | X|=suppO(G,)/J,. and | Y|=supp®(G,)/J,. Suppose
that v and w are the holomorphic maps induced by holomorphic maps 7 : G;—G,
and @ : G;—G, respectively (cf. Proposition 1). Then the difference kernel is
fefined by (supp4(, ) with H=0O(G,)/I, here J is an ideal generated by J,
and the components of holomorphic maps 7—w.

Note that for any X,YeObl, XxsX=XxY if Sis a single point. As an
application, we can prove the following Theorem [3].

Theorem 3. Let X=(| X|,.% x)=O0bCl, and R be a proper equivalence relation
in |X|. Let |X| be a Hausdorff space. Then, for any complex structure
HCHxle on | X|/p with ¥V:=(]|X|/pHK)€ObC, I/ is a coherent H-sheaf.

Here a proper equivalence relation means that R is an equivalence relation
such that R-saturated subset of any compact set Kc|X| is also compact. Let
Po: | X|—>| X|/z be a quotient map, then | X|/g is a locally compact Hausdorff
space and p, is a proper map. For any open set UcC|Xl|/z let I'(USHx/g):
={fel(p, U),Ix)|f: P (y)—C const. yeU}. Let /g be the sheaf gener-
ated by I'(U, % x/z). Then, we have X/p:=(1X|/r, K x/r)E0bL. Let p1, (H x/r) pocsy
— 4 x . be a natural homomorphism, and p,: {1, 12| X|}, p:=(po, p1). Then
peHom (X, X/g).

Proof of Theorem. Let 5, be the restriction of p, to 4, and po :=po, D :=(Do.Dy).
Then, pcHome(X, Y). Consider the following diagram (cf. diagram 10),

n

X = XxvrX g - XxX
b, ",.—"'
3 e Pxrp Bxp
Y ll A et (Dy ‘9[0) : g YX Y

Here, (D, % p) is the image of the diagonal map 4: Y—Yx Yandiisa narural
imbedding. We have Jp=H&®I/s|D, I=Kerd with d=(4o,4y). (pxp)o™(D) is
equal to the graph Rc|X|x|X| of R Let 4 be the sheaf of ideal generated
by (5 xj;)l(J). Let 9z: =(j[x®3[x)/g|R, then the space (R, g) can be identified
with Xx X, which is a complex space by Theorem 2. Let pr; (i=1,2) be the
restriction to (R, 4 z) of the holomorphic projection from XXX to X. Since
g =41 PXP)= ﬁopri and p are both proper holomorphic maps, the direct ima-
ges p?,‘sl[ % and g% r are both coherent sheaves of 4 -modules. The preceeding
diagrams define two homomorphisms «;: Dod x—> 8o x of I -sheaves. we have
I CKer(uy,—u,) CIH /TP x. On the otherhand, H/r is equal to (u;—u)~*(J0),
here 77 is a sheaf of nilpotent elements of g4z Since JI is a direct image
of a sheaf of nilpotent elements of Hp, T and I/p=(u,—u,)"*(J1) are both
coherent sheaves of 4 -modules on Y. This compltes the proof.
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Remark 4. Let X=(|X|,% x)eObl, and S be a category of coherent sheaves
of Jx-modules on |X|. Since S is abelian, there exist all objects of Definition
(4)~(7). For instances, a product ¥, X%, of ¥, and &, is epual to the direct
product as 4 y-modules. A fiber product F,xsF, for any given sheaf
homomorphisms v: ¥—F and w: F,——F is defined by the following
presheaf ; | X| DU—{(f, g)"(U,F X F,)|vy(f)=wy(g)}, for any open set
Uc|X].

§ 5. Pushouts

Let g be category of topological spaces and continuous maps between

them. Given two maps », weHomg(X, Y), a difference cokernel Y—a—» Z is
defined as follows. Let R be a relation on Y defined by y,Ry,<=y,=v(%),
y.=w(x). Let R be an equivalence relation generated by R. Let Z=Y/3 and

a:Y——Z be a quotient map. Then we have an exact sequence X—3Y——Z.
w

A consequence of this and Proposition 4 is that, there exists a pushout
for any given maps v:S——X and w:S— Y in &.
Given two holomorphic maps v, weHom, (X, Y), there exists a difference

cokernel Y——Z, in the category & and is defined as follows. Let | ¥|—%|Z]
be a difference cokernel for v, wocHomg(| X|,| Y]). The structure sheaf 4 P
on [Z| is defined by the following presheaf; I'(U, I(,) :={fe(ay"(U), Iy)|
nf=w fel (v, toay™(U)H %)}, for any open set Uc|Z|. Let a,:9(;— Iy be

a natural sheaf homomorphism, then Y—CE»Z is a difference cokernel with
a=(ap,a;). We have Z:=(|Z|, 9 ,)=0b.L, but in general Z=C.

Given two holomorphic maps »:S——X and w: S—Yin &, there exists a
pushout for v and w in £ and is defined as follows. - Let |Z] be a pushout for
v:|S|—| X] and Wy: | S|—|Y|. The structure sheaf 4, on |Z| is defined
by the following presheaf (cf. diagram (6));

I(UdtLz): ={(f @ fel (U oy ™ (U), Hx), 8ET (t™ oty (U), ), v:1 f=w,g}.
Then we have a pushout Z: =(|Z|,4 ;) for v and w. ZeOb.L but in general
Zs0bl. ’

Example 11. Let X=(|X|,4): =(C%0)=0b9, 4, (resp. ¢) be a holomorphic
map : C>——C? defined by (%,%)— (2} 2%, x5) (resp. %+, 2%, x3). Let A,;=¢,(C?)
and A,=¢,(C?). We may regard A,,A,€0bC,... Put A;=(| A;|, 9 4)(i=1,2). Induce
the complex structure 4, (resp. 4(,) on X by ¢ (resp. ¢). Then, we have
X;:=(|X|,4,;)€0bl,,, and a pushout

X|, Ix) (| X|, K
diagram in L. (- i {4 2 .
By a simple calculus, we see that there
is no neighborhood U of the point ! |
(1X], H1) —(| X1 H1NIy).

(0,0) | X|, which is holomorphic sepa-
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rable (as in the case of Example 9) [4].

Kaup [5] gave the following sufficient condition.

Theorem. Let (|X]), 4 x),(| X1, 90,1 X|,%,)€0bC with Iy, H,CHx. Put
N;: ={xe| X|; (). (I, for i#je{1,2}}. If NNN, is a discrete set in | X|,
then (| X|,H NHKH Z)EObf’. He also proved the following Theorem [5].

Theorem. Let i: X—> Y be a complex g-subspace, #: X—>Z be a proper,
finite holomorphic map, and | X|,| Y| be Hausdorff spaces. Then there exists a
pushout YU yZeObl. Z is a complex g-subspace of YU xZ.

As a consequence of this, we have

Corollary 4. Let Xe Obl, R be a proper, finite equivalence relation on |X],
and | X| be a Hausdorff space. If (Red X)/ReObC.

then X/ReObC. Red x— T2+ X
This follows immediately from the following b
pushout diagram. Here, R is called finite if Po:l Xl (Red X)/R X/R

—— | X|/R is a finite map.
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