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Chapter 1

Hilbert-Samuel Function and
Grothendieck Group

1.1 Introduction

The purpose of this paper is to establish the theory of Hilbert-Samuel function taking
values in a Grothendieck group and to introduce a generalized notion of multiplicity for
arbitrary ideals in local rings. This attempt was originated by M. Fraser [4] following
the treatment of M. Auslander and D. Buchsbaum [1] by the methods of homological
algebra, which is an approach first suggested by J. P. Serre. However the modern theory
of multiplicity was produced driginally by P. Samuel and M. Nagata applying the theory
of Hilbert functions to local rings, and so it should be required to look at the subject
" from their point of view. In this paper we try to follow Nagata’s trail [11, CHAPTER
ITT) making the theory applicable to arbitrary ideals in local rings.

Let A be a Noetherian local ring with the maximal ideal m such that A/m is infinite
and let I be a proper ideal. We denote by A mod the category of finitely generated
A-modules. Let Ko(A/I) the Grothendieck group of A/I mod . For L € A mod with
I C y/annyL, we can consider the class [L] € Ko(A/T) by setting [L] = ), o[I'L/ " L],
where [I°L/I""'L] denotes the class of A/I-module I‘L/I'* L in Ko(A/I). Thus we
derive, for M € A mod , the Hilbert-Samuel function x¥ : Z — Ko(A/I) with x¥(n) =
[M/I™*1M] for n € Z. The main result Theorem 4.1 of this paper insists that there exist
uniquely determined elements eq(I, M),e;(I, M), - ,ee(I, M) in Ko(A/I), where £ is the
analytic spread of I (cf. [12]), such that

® W= ("o

=0
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for n > 0. Let us verify that the equality above corresponds to the well-known result
on the coefficients of Hilbert polynomial in the case where I is m-primary. In fact, if 1
is m-primary, there exists an isomorphism o : Ko(A/I) = Z of groups sending [L] to
length,L for any L € A mod with I C vannyL. Let €4 ; = (—1)% o (e;(I, M ) for
0 < i < d, where d = dim A (notice that £ = d as I is m-primary). Then, mapping the
both sides of (§) by o, we get
length ,M/I""' M = (n ; d) eo— (n Zf—l— 1) g1+ + (—1)de'd

for n > 0. Thus we may say that the elements e;(I, M) for 0 < i < £ given above
suitably generalize the notion of the coefficients of Hilbert polynomial for m-primary
ideals. In particular we notice that the element e,(I, M) in the "top term”, which is
denoted by er(M), is mapped to the ordinary multiplicity. Furthermore we shall show
that in general e,(I, M) enjoy the same properties as the ordinary multiplicity of M with
respect to an m-primary ideal. For example, if J is a reduction of I, then the group
homomorphism Ko(A/I) — Ko(A/J) induced from the canonical surjection A/J — A/I
is isomorphic, and through this isomorphism we have e;(M) = e;(M). Moreover if
J = (a1,as,-++ ,ay)A is a minimal reduction of I, then e;(M) is equal to the Euler-
Poincaré characteristic xa(ay,- -+ ,ag; M) of the Koszul complex K.(ay, - , az; M );Which
is essentially due to Fraser [4, 2.6]. This fact immediately implies that if a short exact
sequence 0 -+ L -+ M — N — 0 in A mod is given, then er(M) = ey(L) + er(N).
Consequently, we see that there exists a group homomorphism Ko(A) — Ko(A4/I) sending
[M] to e;(M) for M € A mod .

Let us here recall Fraser’s notion of general multiplicity map Ko(A) — Ko(A/I), which
is defined to be the homomorphism sending [M] to x4(a1,+ -+ ,as; M) for M € A mod ,
where a3, - - - , a5 is a system of generators for I. Of course it is equal to the homomorphism
we saw above when s = £. However, if s > £, we see by the equality (f) that Fraser’s
multiplicity map is a zero map since alag, a5 M) = A*xM(n) forn > 0 asis proved
in [4, 2.6] (see also 1.4.7 and 1.4.9 of this paper), where A® denotes the difference of s-th
order (see Section :2). For this reason, for M € A mod , we would like to employ the
elieni\ent&'él(M ) as the multiplicity of M with respect to I and then we can develop a
satisfactory theory for any ideals in A with no assumptions on the number of generators.

Let us explain how to organize this paper. In Section 2 we shall collect some basic facts

on Grothendieck group, Euler-Poincaré characteristic of Koszul complexes and functions
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from Z to an additive group. Section 3 is also devoted to a preparation. We recall the
theories of superficial element and analytic spread, slightly generalizing them. Although
the results in Section 2 and Section 3 may be well-known, we give the proofs for them
for the completeness of this paper. In Section 4 we state the main theorem on Hilbert-
Samuel functions. In Section 5 we introduce an extended notion of multiplicity. A lot of
propei’ties of ordinary multiplicity for m-primary ideals shall be generalized here. As an
easy application of the theory, we consider when the multiplicity e;(A) coincide with the
class [A/I] in Ko(A/I). Finally we give an example of non-equimultiple ideal I such that
er(A) # 0, showing that, for a certain class of ideals I, the vanishing of e;(A) characterize
the Gorensteinness of A/I.

Throughout this paper A is a Noetherian local ring with the maximal ideal m such
that A/m is infinite. The category of finitely generated A-modules is denoted by A
mod. For M € A mod, pua(M) is the number of elements in a minimal system of
generators for M and Miny M is the set of minimal elements in Supp, M. We further
set Asshy M = {Q € Ming M | dim A/Q = dim4 M}. For an ideal I in A, we denote by
V(I) the set of all prime ideals in A containing I.

1.2 Preliminaries

In this section we first recall some basic facts on Grothendieck groups and next develop
the theory on functions mapping Z to an additive group. We further review the theory
of Euler-Poincaré characteristic of Koszul complexes.

Let M be the isomorphism class of M € A mod and let F(A) = @ Z - M be the
free Abelian group determined by the isomorphism classes of A mod . The Grothendieck
group Ky (A) is the factor group of F(A) by the subgroup generated by the elements of the
form M — L — N, where L, M and N € A mod for which there exists an exact sequence
0— L—+ M — N — 0. The class of M in K¢(A) for M € A mod is denoted by [M].
Because any M € A mod has a filtration M = My 2 M, 2 --- 2 M, = (0) such that,
for all 0 < i <7, M;/M;y;1 = A/Q; for some Q; € Spec A, we see that Kq(A) is generated
by {[4/Q] | Q € Spec A}. If A is Artinian, the group homomorphism ¢ : Z — Kg(A)
with (1) = [A/m] is isomorphic. In fact, when A is Artinian, there exists "the length
function” Ko(A) — Z sending [M] to length,M for M € A mod , which is the inverse

homomorphism of ¢. Let A-— B be a flat homomorphism of rings. Then there exists

3



a group homomorphism Ky(A) — Ky(B) sending [M] to [M ®4 B] for M € A mod .
Let Q € SpecA. For £ € Ko(A), we denote by £ the image of { by the surjective
homomorphism Kg(A) — Ko(Ag) induced from the canonical homomorphism A — Ap.

Now we notice that the surjective group homomorphism

Ko(4) — @QeMinAKO(AQ)
£ (¢a)a

always splits since Ko(Ag) & Z for any @ € Min A. Thus we see, letting m be the

number of minimal primes of A,

A —

Ko(A) 2 Z®- - & ZoKo(A),

m times

where m is the subgroup of Ko(A) generated by {{4/Q] | Q € Spec A\Min A}. When

we write

(M= ) mq-[4/Q] (mqe Z)
QeSpec A

for M € A mod , we have mq = length,, Mg for Q € Min A. If A is a normal domain,
we have a natural homomorphism Kq(A4) — Z @ Cl(A) sending [M] to (rank 4 M, cl(M))
for M € A mod ,where CI(A) denotes the divisor class group of A and cl(M) is the
divisor class attached to M (cf. [2, Chapter VII § 4.7]). Moreover this is an isomorphism
if A is a 2-dimensional normal domain such that [A/m] = 0 in Kq(A) (cf. [16, (13.3)]).

Now we look at Ko(A/I) for an ideal I in A, which is the main tool in our investigation.
Let L € A mod such that I C +/annL. Because I"L/I“‘lL is an A/I-module, we may
consider it’s class [I*L/I*"1L] € Ko(A/I). We set

[L] =) IFL/IF L] € Ko(A/T).

i>0

Notice "thatr, for @ € V(I), IAq C /anny,Lq and [L]g = [Lg] by definition.

Lemma 1.2.1 Let L € A mod such that I C «JannuL. If L=Lyg 2 L1 D -+ 2D L, =
(0) is a filtration such that IL; C Ljyq for all0 < j < s, then [L] = Z;;(l)[Lj /Ljt1] in
Ko(A/I).



Proof. Weput N; = I'L. We have N,. = (0) for some r > 0 as I C /annsL. For integers
0<i<rand0<j<s, weput Ny = (N Lj) + Niy1 and L;; = (N;(\L;) + Ljsa.
Then we have the filtrations

Ni=Ny 2D Njy 22 Ny =N; s
and

LjZL()J‘QLle"'QLrj:Lj+1a

which imply

[M/M+1]=z—:[Nij/Ni,j+1] and [Lj/L,-H]:i[LU/LiH,,-]

in Ko(A/I). On the other hand, we have

(Ni N Lj) + Niga
Nij/Nijp1 =
J/ J+l (N.,, N Lj+1) + Ni+1
NinL;

IR

(N: N L) N {(N;i N Ljp1) + Niga }

and

(N; N L;) 0 {(N; N Lj41) + Niga}
= (NiN Ljp1) +{(N: N L;) N Nyya}
= (NiN Ljp) + (Nig1 N L)

= {(NiNL;j) N Ljp1} + (Nigz N L;)
= (N;NLj)N{Ljz1+ (Niy1 N L)},

so we get

NiNL;
(Ni 0 Lj) N {Lj1 + (Nia N Ly)}
(NiNLj)+ Ly
(Nig1 N Ly) + Ljia
Lij/Lit, -

Ni;/Niji

IR
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Therefore we get

r—1

[L] = Z[M/ M+1]

=0

= > [Ny/Nij]

0<i<r—1,0<5<s-1

= > [Li/Lipy]
0<i<r—1,0<j<s—1
s—1

= Y [Lj/Ljnl,

=0

and the proof is completed.

Let L be as in 1.2.1. If I is m-primary, then the length function Ko(A/I) = Z sends
[L] to length 4 L. Thus we may regard the class [ - | defined above for finitely generated A-
modules annihilated by some power of I as a notion generalizing ”length”. Unfortunately,
unless I is m-primary, L is not necessarily (0) even if [L] = 0 in Ko(A/I). However we

have the following.

Lemma 1.2.2 Let 0 - L - M — N — 0 be an ezact sequence in A mod such that
I C+/annyg M. Then [M] = [L] + [N] in Ko(A/I).

Proof. 'There exists r > 0 such that I"N = (0). Let M; = I'N (M for 0 <i < r. Then
L= M, and M;/M;y; = I'N/I**'N for all . Hence, in Ko(A/I), we have

M] = i[Mi/MiH]-I-Z[IjM,./IHer]
= TYE[[*’N/P‘“N} + Y [PL/PH]
= ]+, _

which is the required equality.

Let A — B be a homomorphism of commutative rings such that B is module-finite
over A. Regarding B-module as A-module via A — B we have a group homomorphism

Ko(B) = Ko(A). The next result plays an important role in Section 5.

Lemma 1.2.3 Let J be an ideal contained in I such that /J = /I. Then the homo-
morphism Ko(A/I) — Ko(A/J) induced from the canonical surjection A/J — A/I is an

isomorphism.



Proof. Let M be an A/J-module. Then as /T = +/J C v/annsM, we may consider
the class [M] € Ko(A/I), and so we get a homomorphism F(A/J) — K¢(A/I). By
1.2.2 we see that it induces a homomorphism Ko(A/J) — K¢(A/I), which is the inverse
homomorphism of Ko(A/I) — KO(A/ J) stated in the assertion.

We shall mainly use 1.2.3 in the case where J is a reduction of 1.

Now we proceed to the next topic in this section. Let G be an additive group. For
a function f : Z — G, we define it’s difference Af : Z — G, by setting Af(n) =
f(n) — f(n—1) for n € Z. The i times iterated A-operator will be denoted by A* and
we further set A°f = f. For functions f,g: Z — G, f + g and —f are functions defined
by setting (f + g)(n) = f(n) + g(n) and (—f)(n) = —f(n) for n € Z. We write f = g if
f(n) = g(n) for all n > 0. Notice that AF(f + g) = AFf + AFg and A*(—f) = —AFf
for all £ > 0. Now we define the degree of f as follows:

sup{k | AFf£0} if f#0
deg f =
~1 if f=0,

here we denote by 0 the function sending all n € Z to 0 € G. Obviously we have deg A f =
deg f — 1if f # 0, deg(—f) = deg f and deg(f1 + - + f) < sup{deg fy,--- ,deg f-}.

Lemma 1.2.4 The following conditions are equivalent for an integer d > 0 and a function

F:Z — G with f £0.

(1) deg f =d.
(2) There are elements &,&1,- - €4 € G such that & # 0 and
i /n +1
f(n)=§( Z. )e;- |
forn>0. |

When this is the case, the elements &y, &1, -+ , &4 are uniquely determined by f.

Proof. (1) = (2) We prove by induction on d. Suppose d = 0. Then Af = 0 and so
there exists m € Z such that Af(n) = 0 for all n > m, which means f(n) = f(m) for all
n > m. Because f # 0, we can choose m so that f(m) # 0. Hence, setting & = f(m), we
see that the condition (2) is satisfied in this case. Let d > 0. Then, as degAf =d — 1,

7



by the hypothesis of induction there are elements &;,--+ ,&; € G and an integer m > 0
such that &; # 0 and

a1 = (" e

1=0

for n > m. Because

f)=fm)= 3 Af(k),

k=m+1
we have
n d-1 k—l—@
o) =300 (" e + o
k=0 =0

for n > m, where

o = f(m) - i{dz—i (k j i)§i+1} :

k=0 i=0

So, for n > m, we get

o = SO (k ;-H)}fiﬂ—*-fo

i=0 k=0

d—1 )
n-+i+1
= E,( i1 >§i+1+fo

=0
_ i (n + z) ‘.
=0 v

(2) = (1) We prove by induction on d. If d = 0, then & # 0 and f(n) = & for
n > 0. Hence f # 0 and Af = 0, which means deg f = 0. Let d > 0. Because we have

sy = S ("Te-3 (T e

=0 =0

S+

= Z i §i+1

i=0 _

for n>> 0, deg Af = d — 1 by the hypothesis of induction. Hence deg f = d.

The uniqueness of &,&1,- -+ , &4 is a direct consequence of the next lemma.

8



Lemma 1.2.5 ([4, 2.3]) Let &,&, -, & €G. If

i(n:—z’)ézo

=0

foralln >0, then& =& =--- =& =0.

Proof. We prove by induction on d. Because it is obvious when d = 0, we consider the

case where d > 0. Then, setting

f(n)=i(”ji)&,

=0
we have
d-1 :
n+1t
0= 210 =} ( Z. )sm
for n > 0, so the hypothesis of induction implies &; = - - - = £; = 0. Further, substituting
¢ = -+ = &; = 0 into the equality

zd:(n;l—i)&:o

=

for n > 0, we see & = 0 too.

For a function f : Z — G with 0 < deg f = d < 0o, we denote by ¢;(f) (¢ =0,1,--- ,d)
the element &; stated in 1.2.4. We further set ¢;(f) = 0 for ¢ > d. In the case where f = 0,
we set ¢;(f) = 0for all 0 < ¢ € Z. It is easily seen from the proof of 1.2.4 that
Ci(Af) = ciy1(f) for all 2 > 0. Therefore we have the following

Lemma 1.2.6 For a function f : Z — G with deg f = d, we have cy(f) = A%f(n) for
n > 0.

Let f : Z — G be a function and « an integer. We define a function fla] : Z = G
by setting f[a](n) = f(n + ) for n € Z. We can easily show that A?(f[a]) = (A'f)[a]
for all # > 0. Hence we get deg fla] = degf. Moreover we have deg(f — fla]) <
deg Af. In fact, if @ < 0, we have g := f — fla] = Af + Af[-1]+ -+ + Afla+ 1]
and so degg < sup{deg Af[A] | @ < B < 0}, from which we get degg < deg Af since
deg Af[B] = deg Af for all 8. If & > 0, then setting h = f[a], we have deg(f — fla]) =
deg(h — h[—a]) < deg Ah = deg Af. If a = 0, the required inequality is obvious.
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Lemma 1.2.7 Let f : Z — G be a function with 0 < degf = d < co. Let a be an
integer. Then ca(fla]) = Cd(f ).

Proof. Let X be an indeterminate. We set
P(X) = <X+fx+i) _ (X+a+z')(X+a—|—.i— 1) (X +a+1)

il
for 0 < i < d. Then P(X) is a numerical polynomial of degree i (cf. [11, Section 20]).

1

Hence by [11, (20.8)] there are integers a;o, a;1, - - ,a; such that
i
X+j
PO =S as(* 7).
=0 J
Notice that we may choose aqg, aq1, - - - ,a4q S0 that azg = 1 since

Py(X) - (X;d)

is a numerical polynomial of degree d — 1. Therefore, for n > 0, we have

flod(n) = Y Pi(n)-ca(f)

=0
d-1 .
= (" N+ ("H)e
=0

where & = 3% ;05¢i(f)- This implies ca(f[a]) = cq(f), which is the required equality.

The rest of this section is devoted to reviewing the theory of Euler-Poincaré char-
acteristic of Koszul complexes due to Auslander-Buchsbaum [1] and Fraser [4]. Let
a1,Gg,+++ ,a¢ (£ > 1) be elements in A. We set I = (ay,as, -+ ,a¢)A. We denote by
Hi(ai,--- ,ag M) the i-th homology module of the Koszul complex K.(ay,--- ,as M).
Because I - Hy(aq,: -+ ,ag; M) = (0), the class [H;(a1,--- ,as; M)] € Ko(A/I) can be con-
sidered for any i. We set

xa(a1, -+ 05 M) = (=1)'[Hy(a1, - , a5 M)] € Ko(A/I)
i>0

and call it the Euler-Poincaré characteristic.

Proposition 1.2.8 ([1, 3.2]) Let 0 - L - M — N — 0 be an ezact sequence in A

mod . Then we have
xalay, -+ a5 M) =xa(a1, - ,a5 L) + xa(as, - ag N).
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Proof. The long exact sequence
— Hi(ay, - ,a5L) — Hi(ay, - ,a5M) —
Hi(al,"' 7af;N) - Hi—l(a'la"' 1a'£;L) —

derived from the short exact sequence 0 - L — M — N — 0 implies the required

equality.

By 1.2.8 we see that there exists a group homomorphism x4(a1,- - ,ae) : Ko(A4) —
Ko(A/I) sending [M] to xa(a1,:-- ,ae; M) for M € A mod .

Proposition 1.2.9 ([1, 3.2], [4, 1.2]) Let M € A mod . If a;"M = (0) for some
n >0, then xa(ai, - ,a5; M) =0.

Proof. If £ = 1, we may consider the class [M] € Ko(A/I), so the exact sequence
0= (0):py a1 — M3 M- M/a;M — 0 implies x4(a;; M) = [M/a;M] — [(0) :pr a1] =
[M] — [M] = 0. Suppose £ > 2. Because a;"M = (0) and I" = a;"A + (ay,- - ,a0) ™"},
we have, for all 4 > 0, I" - H;(as, -+ ,ag; M) = (0), and so we may consider the class
[Hi(ag,- - a0, M)] € Ko(A/I). We set & = Zizg(—l)i[Hi(GZ,"' yag; M)] € Ko(A/I).

Now considering the long exact sequence
= Hiplar,- a5 M) — Hi(as, - a5 M) 3
H;(as, - ,ap; M) — Hi(as, - - ,a5M) —
we get xa(ag, -+, a5 M) =& — & =0 and the proof is completed.
Proposition 1.2.10 ([1, 3.3], [4, 1.7]) Let M € A mod . If£ > 2, we have
xa(ay, -+, a5 M) = xz(@z, -+ ,a2)(xalas; M)),
where A = A/a; A and @; denotes the class of a; in A.
Proof. We put L = (0) :p; a; and M = M/a; M. Let us consider the exact sequence
0—L—K(;M)—K(a;M) = M—0
of complexes. Applying - @, K.(az,: -+ ,as; A) to it, we get the sequence
0 —» K(a,-,a5L) — K.(lLag - ,aM) —
K.(a1,a9, ;a5 M) — K.(az,---,@a;M) — 0
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of complexes, which is also exact as K.(ag,- - ,as; A) is a free complex. We divide this

sequence into two short exact sequences
(1) 0—K.(az,: - ,a5 L) > K.(Las, - ,ap; M) > X. = 0
and
i) 0— X. = K.(ay,a9, a5 M) = K.(az,--- ,aM) = 0.

Because H;(1,az,: - ,a0; M) = (0) for all ¢, by () we get Hi(X.) =2 H;_1(az,--- ,az; L)
for all 4, and so Y_,(—1){[Hi(X.)] = —xz(@z, - - - ,az; L) in Ko(A/I). Furthermore the long
exact sequence derived from (#ff) implies xa(a1, a9, -+ ,ap M) = x7(az, -+ , a7 M) +
> (—1)"[H;(X.)]. Therefore

XA(G:]_,GQ,"' 7a£;M) = XZ(G_%' 7@1-M)—XZ(E§7“ 75'2;-[’)
= XZ(—G—'E;' 7EZ;XA(G‘1,M))

as xa(a1, M) = [M] - [I] in Ko(A/a; A). Thus we have completed the proof.

Proposition 1.2.11 ([4, 1.7]) Let 0 < k < £. Then the following diagram

KO (A) XA (‘.‘i_)va'k) K() (’:4‘)
“ \L X'K(m"" 16'7)

Ko(A) 45 Ko(A/I)

is commutative, where A= A/(a1,--+ ,ax)A and @ denotes the class of a; in A.

Proof. 'We prove by induction on k. If k = 1, we immediately get the assertion by 1.2.10.
Let 2 < k < {. Weset A= A/(as,-- ,ar-1)A and denote by a;’ the image of a; in A’
Then by the hypothesis of induction

xa(ar, - ,a0) = xalar,ap41’s - ,ad) o xalar, -, ak-1)
= XK(ak+1: e ,527) © XA'(akl) ° XA(Ch, Tty a'k—l)
= XZ(a.‘H—h“' 7617)OXA(a’17"' )a'k:)-)

which is the required assertion.
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1.3 Superficial element and analytic spread

In this section we recall the notions of superficial element (cf. [11]) and analytic spread
(cf. [12]), generalizing them slightly. Let G be the associated graded ring G(I) =
B, I"/I"". Let M € A mod and let X be the associated graded G-module G(I, M) =
@n;o I"M/I"** M. For an element a € I, we set a* = amod I% € G;.

Lemma 1.3.1 Let a € I. Then the following conditions are equivalent.
(1) There ezists ¢ > 0 such that (I"™*M :pr ) (Y I°M = I"M for alln > c.

(2) There ezists ¢ > 0 such that a* is a non-zero-divisor on X|s. := @, I"M/I"" M.

n>c

(3) f Gy Z Q € Assg X, then a* ¢ Q.

Proof. (1) & (2) is obvious.

(2) = (3) Suppose G4 € Q € Assg X. Then (G4)q = Gg and QGq € Assg, Xq-
On the other hand, we have (X|s.)g = Xg as X|>c = G1°- X. Hence QGq €
Assa, (X|3c)q@ and so Q € Assg X|>., which means a* ¢ @ since a* is a non-zero-divisor
on X|>. by the assumption.

(3)=(2) LetAss¢ X ={Q1, - ,Qn}and ()., Z; = (0) be a primary decomposition
of (0) in X such that Assg X/Z; = {®:;}. We may assume that, for some integer m with
0<m<n Gy C@ifl <i<mand Gy € @Q; if m+1 < i < n. Because
Q; = /Z; :4 X, there exists ¢ > 0 such that G,°- X = X|s. C Z; for 1 < i < m. Suppose
f € X|3c and a*f = 0. Then, for m+1 < i < n, we have f € Z; since o* ¢ @; and
Assg X/Z; = { Q. }. Consequently, wesee f € (X|>¢) (N Zmt1 )1 Zn C Niey Zi = (0),

so f = 0. Therefore a* is a non-zero-divisor on X|>, and the proof is completed.

We say that a € I is a superficial element of I with respect to M if one of the conditions
of 1.3.1 is satisfied. Because we assume that A/m is infinite, the existence of a superficial

element is always guaranteed by the condition (3) of 1.3.1.

Lemma 1.3.2 Let a be a superficial element of I with respect to M. Then, for n > 0,

we have
(1) aMNI"M = al™ M,
(2) "M Ma= ((0) M a) +I"M,
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3) ((0) :m @) I"M = (0) and
4) I"((0) :m @) = (0)-
Proof. Let ¢ > 0 be an integer such that (I"*'M :3 a) ﬂIcM = I"M for any n > c.
(1) By Artin-Rees lemma, there exists a positive integer r such that I"M NaM =
I (I"'M (N aM) C aIl®"M for alln > r. If n > r + ¢, then I""M C I°M, and so
I"M (N aM C I"M N al°M = o((I"M :pr a)(I°M) = aI™ ' M. _
(2) Let z € I""'M :py a for n > 0. Then az € I"M' M (aM = aI™M by (1). Hence
az = ay for some y € I"M, which implies  —y € (0) :pr @ and so z € ((0) :pr @) + I"M.
Thus we get "M :3r a = ((0) :ar @) + I™M since the right hand side is obviously
contained in the left hand side.
(3) For any integer n > ¢, we have ((0) :x a)‘ﬂIcM C (I™M :ppa)(\I°M = I"M.
Hence ((0) :ar @) N I°M C ()5 I"M = (0).
(4) We have I°((0) :pr @) € ((0) :ar @) () I°M = (0) by (3).

Lemma 1.3.3 Let a be a superficial element of I with respect to M. Then the sequence
0—(0):ya— M/T"M = M/T" - M/I"'M — 0
is ezact for n > 0, where M = M/aM.
Proof. Let us consider the exact sequence
0— I"M :pp a/I"M — M/T"M = M/I""*'M — M/I""™ M — 0.
By 1.3.2, for n > 0, we have

SYVE m _ ((0) :pr @) + I"M
"M Ma/ M InM

~ (0) M a
(0 :ipra)ynInM
(0) M a.

14

Hence we get the required exact sequence.

We denote by £(I, M) the Krull dimension of the G-module X/mX. In particular we
write £(I) = £(I, A), which is called the analytic spread of I (cf. [12]). In general, we
have 0 < 4(I, M) < £(I). Because we are assuming that A/m is infinite, (1) = pa(J)
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for any minimal reduction J of I. The inequalities ht4 I < 4(I) < min{dim A, p4(I)}
are valid for any ideal I in A. Hence if I is m-primary, £(I) = dim A. We note for future
use that if I = (ay,--- ,a0)A and £(I) = £, then £((a1, -+ ,ax)A) =k for 0 < k< { In
fact, setting K = (ay,--- ,ax)A and L = (41, , a¢)A, we have £(I) < (K)+4(L) (cf.
[12, §8 LEMMA 1)), {(K) < k and ¢(L) < £ — k, which imply ¢(K) = k. In particular,
if a1, -+ ,ax is a subsystem of parameters (ssop) for A, then £((a1, - ,ax)A) = k. We
further notice that if I = (a1, - ,a,)A and ay, - - ,ay is a d-sequence on A (cf. [7]), then
£(I) = £ because by [8, 3.1] G/mG is isomorphic to a polynomial ring over A/m with ¢

variables.
Lemma 1.3.4 If (I, M) =0, then I C v/anns M.

* Proof. Because (I, M) = 0, we have y/mX :g X = mG+G,. Hence G."-X C mX for
some n > 0. Then, looking at the n-th homogeneous components, we get I"M = mI®"M

and so I"M = (0) by Nakayama’s lemma.

Lemma 1.3.5 Suppose £(I, M) > 0. Then there ezists an element a € I satisfying the

following conditions:
(1) a is a part of a minimal system of generators for I.
(2) a is a superficial element of I with respect to M.
(3) £(I,M)=¢(I,M)—1, where M = M/aM.

Proof. Let ¢ : I — G be the A-linear map such that ¢(a) = a* for a € I. Let
F={Q € Assg X | G+ € Q}. For Q € F, we set V(Q) = ¢ 1(Q) + mI/mI, which is
an A/m-subspace of I/ml. We notice V(Q) # I/ml. In fact, if V(Q) = I/ml, we have
I = ¢p7Y(Q) and so G, C Q as the image of ¢ is G;. But this contradicts to Q € F.
Next, for P € Asshg X/mX, we set W(P) = ¢~(P) + mI/ml. Suppose W(P) = I/ml.
Then I = ¢~!(P) and so P = mG + G, which is the graded maximal ideal of G. Hence
dim G/P = 0. But this contradicts to the assumption that ¢(I, M) > 0. Consequently
W(P) # I/ml. Because we are assuming that A/m is infinite, we can choose an element

a € I so that
(i) @ &€ V(Q) for any Q € F and
(ii) @ ¢ W(P) for any P € Asshg X/mX,
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where @ is the class of a in I/mI. Then, as @ # 0, a is a part of a minimal system of
generators for 1. Moreover we have a* ¢ @ for any Q € F by (i), 50 a is a superficial
element of I with respect to M. By (ii) we see a* € P for any P € Asshg X/mX, so
¢* is a ssop for X/mX. Hence, in order to see £(I, M) = £(I, M) — 1, it is enough to
show dimg X/mX + a*X = dimg G(I, M)/mG(I,M). In fact, as [X/mX + a*X], =
I°M/mI*M + al*~*M and [G(I, M)/mG(I, M)}, = I"M + aM/mI*M + aM for any
n € Z, there exists the canonical epimorphism p : X/mX + a*X — G(I, M)/mG(I, M)
of graded G-modules.. Then we have

I"M N (mI®M + aM)

mI*M + al»1M
mI™M + I*"M N aM

mI*M + al*-1M
Hence, for n > 0, we have [Ker p], = (0) since I"M (aM = al* M by 1.3.2. There-

fore lengthy Ker p < oo, and so we get the required equality of Krull dimensions. This

nJ

[Ker pl, =

completes the proof of 1.3.5.

1.4 Hilbert-Samuel function

For M € A mod , we define the function x¥ : Z — Ky(A/I) by setting x¥(n) =
[M/I™M] and call it the Hilbert-Samuel function of M with respect to I. We simply
denote x# by X1

Theorem 1.4.1 Let M € A mod . Then
max{dima, Mg | Q € Ming A4/I} < deg x¥ < £(I, M).
In particular we have
hta I < degxr < £(1).
Here we notice that dimy M = —o0 if M = (0).
Lemma 1.4.2 Ifdegx¥ <0, then dim4, Mg < deg x}' for any Q € Mingy A/I.'

Proof. Let us first consider the case where degx¥ = —1. This means x¥ = 0, so
[M/IT"M] = 0 in Ko(A/I) for n > 0. Hence if Q@ € Minyg A/I, we have, for n >
0, Mg = I"Mg as [Mg/I"Mg] = 0 in Ko(Ag/IAg) and as Ag/IAg is Artinian, so
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Mg = (0) by Nakayama’s lemma. Suppose next degx} = 0. Then as Ax¥ = 0,
[M/I™"M] = [M/I*M] in Ko(A/I) for n > 0. Hence if Q € Ming A/I and n > 0, we
have I"*' Mg = I"Mg and so I"Mg = (0), which means dim,, Mg < 0. Thus we have

proved the required assertion.

Proof of 1.4.1. We prove by induction on (I, M). Let ¢(I, M) = 0. Then I"M = (0)
for n > 0 by 1.3.4, so x¥(n) = [M] for n > 0, which implies degx¥ < 0. Hence we
get the required inequalities by 1.4.2. Let now £(I, M) > 0. Again by 1.4.2 it is enough
to consider the case where degx? > 1. By 1.3.5 we can choose an element a € I so
that a is a superficial element of I with respect to M and £(I, M) = £(I, M) — 1, where
M = M/aM. Then, by 1.3.3, we have an exact sequence

0—(0):ya— M/I"M = M/I"'M — M/I""'M — 0

for n > 0. Notice that the class [(0) :47 a] can be defined in Kq(A/I) by (4) of 1.3.2. Thus
x¥(n) = AxM(n)+[(0) :ar a] for n>> 0, and so xM = AxM + f, where f : Z — Kq(A/I)
is the constant function such that f(n) = [(0) :as a] for any n € Z. Because degx¥ > 1
and deg f < 0, we see

- degx¥ —1 if degx¥ >2
degx;” =

—lor0 if degx¥ =1.

Let @ € Ming A/I. Then, by the hypothesis of induction, we have dim Ag MQ < deg X;MT,

and so
dimAQ MQ S dimAQ —MQ +1

< degx¥+1

< degx.
Moreover, when deg x¥ > 2, we get

degx} = degx} +1
< LI,M)+1
= {(I,M).

Because we are assuming (I, M) > 0, the inequality degx? < 4(I, M) holds obviously
if deg x¥ = 1. Thus we have completed the proof.
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Definition 1.4.3 Let M € A mod . We set e;(I, M) = c;(x¥) € Ko(A/I) fori > 0.
Then e;(I, M) =0 fori > 4(I,M) and

xt(m) =Y (n j Z) ei(1, M)

i>0
in Ko(A/I) for n> 0.
Proposition 1.4.4 Let M € A mod . Then we have the following assertions.

(1) Let a be a superficial element of I with respect to M. We set M = M/aM. Then
ei(I, M) = e;1(I, M) for anyi > 1 and eg(I, M) = e;(I, M) + [(0) :az a).

) (I, M)o = ei(IAq, Mo) for any Q € V(I).
Proof. (1) Let n>> 0. Then, by 1.3.3, there exists an exact sequence
0= (0) tar @ — M/I"M 5 M/ M — T/I"H I — 0,
from which we see

x1'(m) = xi'(n) = x'(n— 1) +[(0) :m g

- (") - (" P+ (0

— g(njizl)ej(I,M)H(O) m al

.S (" N Z) espa(1, M) + (ex(I, M) + [(0) 22 a]) .

i>1
Thus we get the required equalities.
(2) Because

(M) M) = ; (" ! ") es(I, M)

for n > 0 and the localization K¢(A/I) — Ko(Ag/IAg) is a group homomorphism, we

have

e ) = e/ 410 = 3 (7 et Mo

i>0

for n > 0. Hence e;(IAg, Mg) = e;(I, M)q for any i > 0.
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Corollary 1.4.5 Let M € A mod and Q € V(I). Ife;(I,M)q #0, then i < ht4 Q.

Proof. Suppose e;(I, M)g # 0. Then, by 1.4.1 and (2) of 1.4.4, we have i < £(IAg, Mg) <
¢(IAg) < dim Ag = ht4 Q. Thus the required inequality follows.

Proposition 1.4.6 ([4, 3.1]) Let I be generated by an M-regular sequence of length m.
Then en(I, M) = [M/IM)] and e;(I, M) =0 for any i # m.

Proof. Let i > 0. Because I'M/I*+' M is isomorphic to the direct sum of ('™ ") copies
of M/IM, we have

(M) T M) = (Z J:nm )[M/IM]

in Ko(A/I). Then

n

xt'(n) = Y [I'M/IM]

- {% (”m ) [M/IM]
= (") wayraa,

and so we get the required assertion.

The following result is due to Fraser [4]. We will give another proof using superficial

element.

Proposition 1.4.7 ([4, 2.6]) Let I be minimally generated by ay,as,-++ ,am. Then for
any M € A mod we have A™x¥(n) = xa(as, -+ ,am; M).

We need the following

Lemma 1.4.8 Let M € A mod , £ > 2 and a, a superficial element of I with respect to
M. Then

XA(ahaQa"' ,G;e;M) :XZ(G‘_%' ,a'_h—M_),
where A= A/a;A,M = M/a;M and @; is the class of a; in A.
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Proof. By 1.2.10 we have
XA(alaaQa T, M) = XZ(-GJ_Z: v 7—a'?J—M—) - XZ(G'—% et ,W, (0) ‘M a’l) .

Because a;™((0) :ar a1) = (0) for some n > 0 by (4) of 1.3.2, the required equality holds
by 1.2.9.

Proof of 1.4.7. Let us prove by induction on m. Suppose first m = 1. Then by (3) of

1.3.1 a; is a superficial element of I = a; A with respect to M. Hence, for n > 0,
0— (0) ‘M 01— M/alnM '(ﬂ) M/a1”+1M — M/alM -0

is exact by 1.3.3, and so Ax¥(n) = [M/a;M] — [(0) :ar a1] = xa(a1; M). Let next
m > 2. By 1.3.5 there exists a superficial element a of I with respect to M such that a

is a part of a minimal system of generators for I. Suppose that by, -+ ,b,, are elements
with I = (a,bs,- -+ ,bm)A. Then, as H;(as, a9, ,am; M) = Hi(a,be, -+ ,bm; M) for all
i, xa(a1,a9,** ,am; M) = xa(a, b, -+ ,bm; M). Consequently, we may assume a; = a.

We set A = A/a;A, M = M/a; M and denote by @; the class of a; in A. Now, again by
1.3.3, the sequence

0= (0) :ar @y — M/I"M 2 M/I"M — M /TP — 0

is exact for n >> 0, which means Ax¥ = Xg — f where f: Z — Ko(A/I) is the constant
function with f(n) = [(0) :a a4] for any n € Z. Therefore, for n > 0, we get

A (n) = A™dg 1)
= Am‘lxg(n) (as m > 2 and deg f = 0)
= xz(@2, " ,Gm; M) (by the hypothesis of induction)

= xa(a1,a9, - ,am; M) (by 1.4.8)

and the proof is completed.

Corollary 1.4.9 Let M € A mod . If I is minimally generated by a1,as,: - ,an and
LI, M) <m, Then xa(ay, - ,am; M) =0.

Proof. By 1.4.1 the assumption implies deg x¥ < m, so A™x¥ = 0. Hence we get the
assertion by 1.4.7.
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1.5 Multiplicity

In this section we concentrate our attention on the "top term” in the expression of
a Hilbert-Samuel function using binomial coefficients. Throughout this section d =
dim A,¢ =£(I) and M € A mod .

Definition 1.5.1 We set e;(M) = e,(I, M) and call it the multiplicity of M with respect
to I.

Proposition 1.5.2 ef(M) = A¥M(n) for n > 0. Hence ef(M) =0 if (I, M) < £.
Proof. This follows immediately from 1.2.6.

Proposition 1.5.3 Let m > 1. Then, identifying Ko(A/I) with Ko(A/I™) through the
isomorphism Ko(A/I) = Ko(A/I™) induced from the canonical surjection A/I™ — A/I,
we get eym(M) = m® - ey (M).

Proof. Let us denote by o the isomorphism Ko(A4/I) = Ko(A/I™). We notice that

o(xM(mn +m —1) = x¥.(n) for any n > 1. Let X be an indeterminate. We set
Fi(X) = (mXer.’_ 1“)

i
for 0 < i < £. Then F;(X) is a numerical polynomial of degree i. Hence by [11, (20.8)]

there exist integers a;o,a;1," -+ , ay such that

Fi(X)=zi;aij(X;j).

In particular we can choose asq, g1, - -+ , Gz S0 that ag = m¥ since

X+1
1
is a numerical polynomial of degree £ — 1. Sending by ¢ the both sides of the equality

G(X) := Fy(X) — m¢<

¢
XY (mn+m—1)=> Fin)- e, M)
=0
in Ko(A/I) for n>> 0, we have

() = gFi<n>-a(ei(I,M>>
N osJZs:ise i <n ;L j) ol M)
- (”je)-mf'o<ez<M))+§(”jj)-£j,
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where £; = Y%, aijo(ei(I, M)). Therefore we get erm (M) = m? - o(e(M)) since £(I™) =

i=j

£(I) = £, which is the required assertion.

Proposition 1.5.4 Let I = (a1, ,a¢)A and ay, -+ , ap is an M-regular sequence. Then
ex(M) = [M/IM].

Proof. This follows immediately from 1.4.6.
Proposition 1.5.5 Let Q € V(I). If £(IAg) = m, then erao(Mg) = em(I, M)q.

Proof. By definition ers,(Mg) = en(IAg, Mg). Hence the assertion follows from (2) of
1.44.

Let us denote by €';(M) the ordinary multiplicity of M with respect to an m-primary
ideal I. Then, as is noticed in the introduction, when [ is m-primary, e;(M) is sent to
¢/;1(M) by the length function Ko(A/I) = Z. More generally we have the following.

Lemma 1.5.6 Let Q € Ming A/I withhtsy Q = s. Let
e(I,M)= > mp-[A/P] (mp€< Z)
Pev(l)

in Ko(A/I). Then mq = €'14,(Mg)-

Proof. Because {(IAg) = dim Ag = s, efao(Mg) = es(I, M)q by 1.5.5. On the other
hand, e;(I, M)q = mq-[Ag/QAg] by the assumption. Thus e;4,(Mg) = mq-[Ag/QAg].
Sending the both sides of this equality by the length function Ko(Ag/IAg) = Z, we get

the required assertion.

1

Lemma 1.5.7 Let N be an A-submodule of M such that I C y/annaM/N. If £ >0, we
have ef(M) = er(N).

Proof. By the lemma. of Artin-Rees, there exists an integer r > 0 such that "M [N =
I (I"M (N) for any n > r. Choosing r as big as enough, we may assume I"M C N.

Then I"M (NN = I"""N for any n > r. Now we consider, for n > r, the exact sequence

0— N/I"""N - M/I"M — M/N -0,
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which implies x¥ = x¥[—r] + f where f : Z — Ky(A/I) is the constant function such
that f(n) = [M/N] for any n € Z. Therefore we have

er(M) = co(x}')

= c(xf[-r]+f) (by 1.2.5)

= a(d[-r])  (as£>0)
= c(xy) (by 1.2.7)
= eI(N),

and the proof is completed.

Proposition 1.5.8 Let J be a reduction of I. Then via the isomorphism Ko(A/I) =
Ko(A/J) induced from the canonical surjection A]J — A]I, we have ef(M) = e;(M).

Proof. We denote by ¢ the isomorphism Ko(A/I) = Ko(A/J). If £ = 0, we have
o(erf(M)) = e;(M) = [M]. Let £ > 0 and let r > 0 be an integer with I"*! = JI",
Then, for any n > 0, we have [M/I"*" M| = [M/J*"I"M) = [M/I"M)+ [I"M/J"I" M] in
Ko(A/J), which means o o x¥[r] = x™ + f where f : Z — Ko(A/J) is the constant
function with f(n) = [M/I"M] for any n € Z. Therefore we have

o(er(M)) = o(clxi"))
= o(cex?'lr])) (by 1.2.7)
= cooxy[r])

= c(xi™+f) (by 1.2.5)

= c(xj ™) (as £>0)
= eJ(I’"M)
= es(M) (by 1.5.5).

Thus we get the required equality.
By virtue of 1.4.7 and 1.5.8, we immediately get the following.

Theorem 1.5.9 Let £ > 1 and J = (a1, a2, - az)A be a minimal reduction of I. Then
er(M) = xa(ay,- -+ ,ap; M) via the isomorphism Ko(A/I) = Ko(A/J).
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Corollary 1.5.10 ([4, 1.12]) Letay,as, - ,an be elements in m. Then for any positive

integers ny, Na, -+ , Ny, we have

n1 ng

XA(al s Qg "yt 7a‘mnm;M) =n1n2"'nm'XA(a1)a'27”" aam;M)

through the isomorphism Ko(A/(a1,a2, - ,am)A) = Ko(A/(a1™, a2, - ,am™™)A).

Proof. 1t is enough to show xa(ai™, ag, -+ ,0m; M) = n - xa(a1,as,- - ,am; M) for any
n > 0. Suppose first m = 1. Notice that £(a;"A) = £(a,A). If £(a;A) =1, by 1.5.3 and
1.5.9 we have x4(a1™; M) = egna(M) =n-egua(M) =n- xa(a; M). If £(a; A) = 0, then
xa(a1™; M) = xa(a;; M) = 0 by 1.4.9, so the required assertion is obviously true. Let
now m > 2. We put A = A/a; A (resp. A' = A/a,"A) and denote by @; (resp. a;') the
image of a; in A (resp. A’). As we have already seen, x4(a;™; M) = n-xa(a1; M) through
the isomorphism Ky(4) = Ko (A’). Hence we get

xar(az', -+, an)(xa(a™; M)) =n - xz(az,- - ,@m)(xa(a1; M))

through the isomorphism Ko(A/(a1,as," -+ ,am)A) = Ko(4/(a1", a2, -+ ,am)A) since the

diagram

XX(EEY" ,m)
——y

KO(Z) KO(A/(a'h ag, **, a’m)A)
1 4
KD(A’) X (ai’—";ﬂm ) KO (A/(a1n7 Ao, , a’m)A)

is commutative. On the other hand, by 1.2.10 we have
X0, @z, i M) = X (@', @) (xa(02™ M)
and
X4(a1, 82, -, am; M) = x7z(@2, - ,@m)(xa(a1; M)).
Therefore we get the required equality.
The next proposition is a direct consequence of 1.2.8, 1.5.6 and 1.5.7.

Proposition 1.5.11 Let0 — L — M — N — 0 be an ezact sequence in A mod . Then
er(M) = e;(L) + er(N).
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By virtue of 1.5.11 we get the group homomorphism e; : Ko(A) — Ko(A/I) sending
[M] to e;(M) for any M € A mod . If J = (a1, - ,ar)A is a minimal reduction of I,
the following diagram »

Ko(4) =5 Ko(4/1)

l 1
Ko(A) *A@53%) g (A7)

is commutative, where the vertical arrow denotes the isomorphism induced from the

canonical surjection A/J — A/I.

Proposition 1.5.12 Let

M= ) mq-[4/Q] (mqe€ 2)

Q€Spec A

in Ko(A). Then

er(M) = Z mg - er(A/Q).
QcSpec A )
LI+Q/Q)=¢

Proof. Notice that 0 < £(I+Q/Q) = £(I, A/Q) < £ for all prime ideals @ and e;(A/Q) =

0if £(I,A/Q) < £ by 1.5.2. Therefore we get the required equality since

eI(M)

Il

er() mq-[A/Q))
Q

= > mq-e(4/Q).
Q

When 7 is m-primary, 1.5.10 implies the additive formula:

¢i(M)= Y length, Mg ¢1(4/Q),
Q€Assh A

because mq = length,, Mg for Q@ € Min A, £=d and £(I + Q/Q) = dim A/Q.

Proposition 1.5.13 Let J = (ay,- -+ ,ap)A be a minimal reduction of I and 0 < k < 4.
We put K = (ay,- -+ ,ax)A. If8(I/K) = £ —k, then e;(M) = er/k(ex(M)).

Proof. As the assertion is obvious when k = 0 or k£ = £, we consider the case where
0 <k<£ Let A= A/K and @; be the image of a; in A. Notice that (K) = k and
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JA = (agy1,+++ ,a0)A is a minimal reduction of IA. Then by 1.5.9 and 1.2.11 we have

er(M) = xala, - a5 M)
= xz(@1, -+ @) (xalas, -+, ax; M))
= xz(@1, -+ @) (ex(M))
= epz(ex(M)).

Thus we get the required equality.

Let us notice that even if I = (a1, ,ap)A, £(I/(as," - ax)) < £ — k can happen for
some 0 < k < £. For example, let A = F[[X,Y]] be the formal power series ring over
a field F and T = (X2,XY)A. Then £(I) = 2. However £(I/X2A) = 0 as I[/X?A is
nilpotent. On the other hand, if a;,---,a, is a ssop for A or a d-sequence, then the
equality £(I/(ay, - ,ax)A) =€ —k holds for all 0 < Kk < 2.

Corollary 1.5.14 Under the same notations and assumptions as 1.5.13, let
ex(M)= > mq-[4/Q] (mqE€ Z)
QeV(K)
in Ko(A/K). Then

er(M) = Z mq - eyx(4/Q) -
QeV(K)
LI+Q/Q)=t—k

Proof. By 1.5.13 we have

er(M) = ef/g(eK(M))
= Z mq eI/K(A/Q) :

QeV(K)
However ey x(A/Q) = 0if £(I+Q/Q) = £(I/K, A/Q) < £—k. Hence we get the required
equality since £(I + Q/Q) < £ — k for all Q € V(K ).

When [ is m-primary, 1.5.14 means the associativity formula (cf. [11, (24.7)]). In
fact, in that case, £ = d and ay,-+- ,a4 is a sop for A. So /(I/K) = dim A/K = d — k.
Furthermore £(I 4+ Q/Q) = dim A/Q for all Q € Spec A. Therefore, as mq = €'k 4,(Mq)
for all @ € Ming A/K by 1.5.6, we have

er(M) = Z ' kaq(Mgq) - er/x(A/Q) .

QcAsshy A/K
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Now sending the both sides of the equality above by the length function Ko(A/I) = Z,
we get the associativity formula.

As is well known, when I is m-primary, we always have inequalities ¢'7(M) > 0 and
e'r(M) < length,M/JM for any minimal reduction J of A. Now we generalize these
facts. Let Ko(A/I)+ denotes the subset of Ko(A/I) consisting of the classes of finitely
generated A/I-module.

Proposition 1.5.15 We always have the following assertions.
(1) er(M) € Ko(A/I)4.
(2) [M/JM] —e;(M) € Ko(A/I)+ for any minimal reduction J of I.

Proof. By 1.5.9 we may assume ps(l) = ¢ (Hence I = J in (2)). We will prove
by induction on 4. If £ = 0, then I = (0), so e;(M) = [M] and the assertions are
obviously true. Suppose £ = 1. We write [ = aA. Then, by 1.5.9, e;(M) = xa(a; M) =
[M/aM] — [(0) :p a], from which we get [M/aM] — e;(M) = [(0) :pr a] € Ko(A/I)4.
Because (0) :pr a* C (0) :pr a*** for all 4, there exists 7 > 0 such that (0) :ps @™ = (0) :p7 a®
for any n > r. This implies that a”M/a™'M 2 ¢"M/a™'M is an isomorphism for

n > r. Then, setting E = a"M/a™*M and L = M/a" M, we have

xi'(n) = [M/a™'M]
= [M/a"M]+[a"M/a™ "M+ .-+ [a"M/a"T* M]
= (n—r+1)[E]+[L]

- ("1 @-rie

for n > r. Hence ef(M) = [E] € Ko(A/I);. Let now £ > 2 and assume that (1) and
(2) are true for any ideal whose analytic spread is less than £. If £(I, M) < £, then
er(M) = 0 by 1.5.2 and the assertions are obvious. So let us consider the case where
£(I,M) = £. We choose an element a € I satisfying the conditions of 1.3.5. We set
A= AJaA, T =TA and M = M/aM. Of course £(I) < pz(T) = £ — 1. On the other
hand, ¢(T) = £(I,A) > £(I,M) = £ — 1. Hence £(T) = £ — 1, and so e;(M) = e;_1(I, M).
Then we get ez(M) = ey(M) since e;_1 (I, M) = ep_1(I, M) = e;(I, M) by 1.4.4. Therefore
by the hypothesis of induction we easily see that the assertions (1) and (2) are true.
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Proposition 1.5.16 Let I = (ay,---,a,)A and let ny,- -+ ,n, be positive integers. We

assume £((a™, -+ ,a,™)A) = £. Then, through the isomorphism
Ko(A/I) = Ko(A/(a1™, -+ ,a,™)A),
we have
(a1t agm)A(M) = nyng -+ g - ef(M).
Proof, By 1.5.9 and 1.5.10 we have
(gm0 am)aA(M) = xala:™, - ,a™; M)

= mng-- Ny xa(a1, a5 M)

= mng---ng-ef(M).

The next result is a generalization of the lemma of Lech. But in order to state it, we

have to fix one more notation. Let m be a positive integer and

f:Zx---xZ—>G
e —
m times

a function, where G is an additive group. For 1 < i < m, we define

Nif:Zx - xZ—=>G
N, e’

m times

by setting A;f(na, -+ , iy y0m) = f(n1, - 04y ) — f(Rg, -0 m — 1,0 ngy).
Proposition 1.5.17 Let I = (a1,--- ,ap)A. We assume that

2(ar™, - ,a™)A (™, -, ™)A) =L —k
for all positive integers ny, -+ ,ny and 0 < k < £. Let

[:Zx---xZ—Ky(A/I)
£ times

be the function such that f(nq,--- ,ne) = [M/(a1™,- - ,a,™)M]. Then we have
Lalg - Dgf(ny, - yne) = er(M)
forny, -+ ,mp>0.
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Proof. We will prove by induction on £. If £ = 1, the assertion is a special case of 1.5.2.
Let £ > 2. We fix n; > 0 for a moment. We set A= Aja;™ A and M = M/a;™ M. Tt is

easy to see that

U(as™, - ,ag™) A (ag™, - ,ax™)A) = £—1—k

for all positive integers ny,--- ,ny and 1 < k < £ (the denominator is (0) when k = 1).
Let
9g:Z %+ xZ—Ko(A/(a1™, a9, ,a9)A)
£ —1 times

be the function such that g(ng,- -+ ,ny) = [M /(ag™,- -, ag"f)JT/f]. Then, by the hypothesis

of induction, we have
Do Drg(ng, - ne) = ey .. oz (D)

in Ko(A/(a1™,ag, -+ ,as)A) for ny,--- ,my > 0. Now we further set A = A/a; A and

M = M/a; M. Then, considering the commutative diagram

Ko(A) 5% Ko(A/(01™, a3, ,ar)A)
L ~ T
Ko(A) 2507 Ko(4/I),

where the vertical arrows denote the isomorphisms induced from the canonical surjections
A—Aand A/(a™,ay,- - ,a5)A) — A/I, we get

Dy~ Dgf(na,mg, -+ ,ng) = e(az,---,ag)Z([M/a’lnlM])
for ng, - ,np > 01in Ko(A/I). On the other hand, as £(a;A) -——bl,
[M/a;™* M) = ny - e4,4(M) + eg(ar14, M)
in Ko(A) for ny >> 0. Hence, setting £ = e, .. ,,va(eo(a14, M)), we have

e(az,... ,ag)K([M/alnlMD = Ny e(az,--- ,ag)X(ealA(M)) + §
= my-ef(M)+¢

for n; > 0. In conclusion we get
DDy Dgf(ng,ng, -+ - ,ne) = er(M)
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for ny,ng, -+ ,np > 0. Thus we have completed the proof.

So far we have verified that our multiplicities actually enjoy the same properties as
the ordinary ones. Now it should be required to consider the influence of the value e;(M)
on I and M themselves. As the first step of the study in this aspect, the following two

results are concerned with when e;(A4) = [A/I].

Proposition 1.5.18 Let A be a Cohen-Macaulay ring. Then er(A) = [A/I] if and only

if I is generated by a reqular sequence.

Proof. Suppose e;(A) = [A/I]. Let @ € Ming A/I. Then e;(A)g = [Ag/TAg] # 0
since it is mapped by the length function Ko(Aq/IAq) — Z to length,,Aq/IAq # 0.
Because er(A) = e,(, A), we get £ < ht4Q by 1.4.5. Hence £ < hts I, and so £ = ht4 I
as £ > hty I in general. Let J be a minimal reduction of I. Notice that, as A is Cohen-
Macaulay, J is generated by a regular sequence, from which we get e;(A4) = [4/J] by
1.4.6. Consequently the equality [A/I] = [A/J] follows from e;(A) = e;(A). Then,
for any Q € Ming A/J = Miny A/I, we have [Ag/TAq] = [Ag/JAg], which implies
length, Ag/IAq = lengthy,Ag/JAq and so IAq = JAq. Therefore I = J. Thus we
see that I is generated by a regular sequence. The converse is a direct consequence of
1.4.6.

Proposition 1.5.19 Let A/Q be a regular local ring. Assume Ass A = Assh A, where A
is the completion of A. Then eq(A) = [A/Q) if and only if A is regular.

Proof.  Suppose eg(A) = [A/Q]. By the same reason as in the proof of 1.5.18, we
have £(Q) = htaQ =: s. Let J = (ay,--,as) be a minimal reduction of Q. We
set A = A/J. Because A is quasi-unmixed by the assumption, it is equidimensional
and catenary, so dimA = d — s. Now choose the elements a,i1, - ,aq € m so that
(Gsy1,+++ ,0q)A is a minimal reduction of mA. Then, as ay,--- ,aq is a sop for A, by
'1.5.8 and 1.5.13 we see e,x(es(4)) = e, .. aya(€s(4)) = €@y, as)a(4). On the other
hand, we have e, x(es(4)) = e x(eo(4)) = e, x(A/Q) = em/q(A/Q). Thus the equal-
ity e(a;,- a0)a(A) = em/q(A/Q) follows. This implies €(,,,... a;)a(A) = &1m/q(A/Q), and
S0 € (41, ag)a(A) = 1 since A/Q is regular. Then €';p(A) = 1 since 0 < €(4) <
€ (a1, ag)4(A). In conclusion A is regular by [11, (40.6)]. Conversely, if A is regular, then
@ must be generated by a regular sequence since A/Q is regular. Hence eg(A) = [A/Q]
by 1.4.6 and the proof is completed.
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If I is equimultiple, then e;(A) # 0 by 1.4.1. The next proposition provides with
examples of non-equimultiple ideal whose multiplicities are not vanished.

Proposition 1.5.20 Let A be a Gorenstein ring and Q) € Spec A such that A/Q is a
Cohen-Macaulay normal domain. We assume that pa(Q) =hta Q + 1 and Ag is regular
(such a prime ideal is said to be an almost complete intersection (cf. [5, (2.1)])). Then

we have the following assertions.
(1) eg(A) =[A/Q] — [Ka/q), where K 4,q denotes the canonical module of A/Q.

(2) If A/Q is not Gorenstein, then eg(A) # 0. The converse is true when dim A/Q = 2
and [A/m] =0 in Ko(A/Q).

Proof. (1) We put s = ht4 Q. Because ht, Q < £(Q) < pa(Q), we have £(Q) = s
or s+ 1. However, since £(Q)) = s implies ps(Q) = s (cf [3, Theorem]), the equality
£(Q) = s+ 1 must hold. By [5, (2.5)] there exist elements a;, - - , as, b of A satisfying the

conditions
(i) Q@ =(ay, - ,asb)A and QAg = (a1, ,as)Ag,
(ii) a,--- ,as is an A-regular sequence and
(ili) K :4b= K :4 b?, where K = (a1, ,as)A.

Then by 1.4.6 and the condition (ii) above we have ex(A) = [A/K]. Moreover (ii) and
(iii) imply that a;, - - - ,as,b is a d-sequence, and so by 1.5.13, setting A = A/K, we get

eq(4) = ez(ex(4))
= ebZ(Z)'

Let n > 0and ¢ : A S A/ A = K + "A/K + b A. If & € Kerp, there exists
y € K such that b”z = "'y mod K. Then z — by € K :4 b*. The condition (ii)
implies K :p 0" =K :ybforalln>1. Hencez —by e K:p Qas K iy b =K :4 Q,
soz € Q@+ (K :4 Q). Conversely, @ + (K :4 Q) C Kerop is obvious. Thus we get
Kerg = Q + (K :4 Q). This implies 5"A/b"*'A & E, where E = A/Q + (K :4 Q). As a
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consequence, for any n > 0, we get
Xsa(n) = [A/b"HA]
= [A/Q1+> [bA/+4
i=1

1
- (") e+ (@ .
Therefore e,z(A) = [E]. Now we look at the exact sequence
0-Q+(K:4Q)/Q—A/Q—E —0.

In order to prove Q+(K :4 Q)/Q = K /g, we first notice the equality (K :4 Q) Q = K,
which is verified as follows: Because obviously (K :4 Q)@ 2 K, it is enough to show
(Kp:ap QAp)(NQAp = KAp for all P € AssyA/K. But this is trivial if Q € P. Even if
Q C P, we have Q = P as ht, P = s, and so the required equality holds by the condition
(). Now we get

Q+(K:14Q)/Q = K:uuQ/(K:aQ)NQ
= K:aQ/K
= Homu/x(4/Q,A/K).
Because A/K is Gorenstein, by [9, 5.9 and 5.14] K 4/q =& Homy,x(A4/Q, A/ K). .Thus the
exact sequence

0— Ky —+A/Q—E—0

is induced. Hence [E] = [A/Q] — [K4/q), and so we get the assertion (1).

(2) Let us consider the group homomorphism Kyz(4/Q) — Z @ Cl(A/Q) stated
in Section 1. This homomorphism maps eg(A) to (0,—cl(K4/q)). Notice that A/Q is
Gorenstein if and only if cl(K4/q) =0 in Cl(A/Q). Therefore if A/Q is not Gorenstein,
then eg(A) # 0. In the case where dimA/Q = 2 and [A/m] = 0 in Ko(4/Q), the
homomorphism above is isomorphic, which implies A/Q is not Gorenstein if eq(A) # 0.

Thus we have completed the proof.

The prime ideal in the formal power series ring F[[X,Y, Z,U,V,W]] over a field F' gener-

ated by the maximal minors of the matrix
XY 7
u v w
is a typical example of @ in 1.5.20
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Chapter 2

On the Integral Closures of Certain
Ideals Generated by Regular
~Sequences

2.1 Introduction

Let A = k[[X,Y, Z]] be the formal power series ring over a field k. Let p be a prime ideal

in A generated by the maximal minors of the matrix

X Y# Zz7

YA Z7 X«
where o, 3,7,0/, 3" and ' are all positive integers. For example, the defining ideal of a
space monomial curve: X = t™ )Y = t™ and Z = " with ged{n;,ns,n3} = 1 can be
expressed in that way (cf. [2]). We put a = 277 — X¥YP b = Xo+o' —YBZY and

c=YPF _ X277 Then p = (a,b,c)A. Let J = (a,b)A. The purpose of this paper is to

prove the following;:
Theorem 2.1.1 The integral closure J* is equal to

J* 1 (a,b,{X*Z%c |4, >0 and i/o’ +7/yY > 1})A
for alln > 1 and the Rees algebra R(J) is a Cohen-Macaulay ring.

Throughout this paper, we denote by 2 the integral closure of an ideal 2 in a ring R. For
a module M over R, £r(M) is the length of M. The multiplicity of M with respect to
2 is denoted by ey(M). We set Asshg M = {P € Assg M | dim R/P = dimgp M}, where

Assp M is the set of associated primes of M.
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2.2 J"Ap for P in Assp A/J

We begin with the following
Lemma 2.2.1 (X¥,Z")c CJ

Proof. Because X%a +YPb+ Z"c =0 and YPa+ Zb+ X¥c =0, so Z7¢c € J and
X%c e J. Thus we get the assertion.

Lemma 2.2.2 Assy A/J = Asshy A/J = {p,q}, where q = (X, Z2)A.

Proof. Because a,b is a regular sequence in A, so Assg4 A/J = Asshy A/J. Obviously,
{p,q} C Asshy A/J. Now we take any P € Asshy A/J. If X € P, then Z € P as
a=2"" - XY ¢ JCP,andso P=gq. f X ¢ P,thence J as X“ce JC P by
2.2.1, and consequently we get P = .

Lemma 2.2.3 For alln > 1, we have
Jr Ay = A
and
JrA, = J" ({XPZ7 4,5 >0 and i/d + /v > 1})A,.

Proof. Because X ¢ p, we have ¢ € JA, by 2.2.1. Hence JA, = pA,, which implies
the first equality. On the other hand, as ¢ & g, we have (X%, 27)A4, C JA, by 2.2.1.
The converse inclusion is obvious, so that we see JA, = (X, Z")A,. Therefore, as is
well known, JA, = ({X‘Z% | i,5 > 0 and i/a’ + j/y > 1})A,. Because A, is a two

dimensional regular local ring, we get the last assertion (cf. [6, Appendix 5] or [3, 3.7]).

2.3 Proof of Theorem 2.1.1

Lemma 2.3.1 Leti,j be non-negative integers with i/o’ + j/v' > 1. Then X'Zic € J.

Proof. As(XZic)®" C (X%, Z7)"'+ie.c2 and asiy'+jo > o/, we get (X?Zic)*" e
J¥7 by 2.2.1. Hence X*Zic e J. '

Let I = (a,b,{X?Z%c|4,j >0 and i/o/ + j/o > 1})A. Notice J C T C J.
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Lemma 2.3.2 A/I is a Cohen-Macaulay ring.

Proof. It is enough to show ey4(A/I) = £4(A/YA+1I). Because J C I C J, we have
Asshy A/I = {p,q} by ?7. Then, by the additive formula of multiplicity (cf. [5, (23.5)]),

ey a(A/T) = L4, (Ap/TA) - ey a(Afp) + L4, (Ag/IAg) - ey a(A/q).

Obviously, £4,(Ap/IAp) = eya(A/q) = 1 and ey4(A/p) = La(A/YA+p). Let B =
k[[X,Z]] and K = ({X*Z% | i,j > 0 and i/d’ + j/+ > 1})B. It is easy to see that
ITA, = KA, and KA, is qA;-primary, which implies £4,(Aq/IAq) = £5(B/K). Therefore

ev 4(A/T) = L4(A/Y A+ ) + Ln(B/K).
In order to compute £4(A/Y A+ I), we consider the exact sequence

0= YA+p/YA+T > AJYA+T — AJYA+p— 0.

Because .
YA+p ,, (277, X+ X*Z")B
YA+T (2, Xet)B + X< Z7K
N X*Z'B
~ (2, X+ \ BN X*Z1B + X*Z'K
and

(Zz, X*+\BN X*Z'B = (X°Z'*", X*+*' Z")B
CX*ZK,
we get YA+ p/YA+ 12 X*Z"B/X*Z"K = B/K. Therefore
La(AJYA+TI)=L4(A/YA+p)+¢p(B/K).
Thus we get the required equality.

Lemma 2.3.3 A/J"I is Cohen-Macaulay for all n > 0.

Proof. Because J"/J"*! is A/J-free, so J*/J"] = J*/J" @4 A/I is A/I-free. Hence,
considering the exact sequence 0 — J"/J"I — A/J"I — A/J" — 0, we get the assertion
by 2.3.2.

Proof of Theorem 2.1.1. Let n > 1. By 2.2.2 and 2.3.3 we have Assq A/J" I = {p,q}.
On the other hand, by 2.2.3, both of p and q do not support J*/J"*I. Hence Jr = Jgr I
since Assy Jm/J" 1] C Assp A/J* 1. Obviously J* I C I® C J», s0 I" = J*!I. In
particular, I? = JI. As A/I is Cohen-Macaulay by 2.3.2, we see that the Rees algebra
R(I) is Cohen-Macaulay by [1, (26.12)], and the proof of Theorem 2.1.1 is completed.
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Chapter 3

On Filtrations Having Small
Analytic Deviation

3.1 Introduction

The purpose of this paper is to develop a general theory on filtrations in Noetherian local
'rings, which enables us to look at several kinds of filtrations from the same point of view.

Let A be a d-dimensional Noetherian local ring with the maximal ideal m and let
F = {Fy}nez be a family of ideals in A such that (i) F,, 2 F,41 foranyn € Z, (ii) F = A
and F; # A, and (iil) F,,F,, C Fy,4y, for any m,n € Z. In this paper we simply call such

F a filtration. When a filtration F is given, we can consider the following algebras:

R(F) =Y F,T" C A[T] (T is an indeterminate),

R’(]:) = -ZFnT" C A[T, T‘l] , and
neZ
G(]:) = R'(]:)/T—lR,(:F) = @Fn/FnH .

n>0
Those algebras are respectively called the Rees algebra, the extended Rees algebra, and the
form ring associated to F. We always assume that R(F) is Noetherian and dimR(F) =
d + 1. Typical examples of filtration are constructed from an ideal I. For example,
setting F,, = I"™, we get the I-adic filtration. Symbolic filtration of I is defined by setting
E, = I™) where I®) = ﬂpeMinA AT I"A, N A. Tt is also important to set F;,, = I*, where
I™ denotes the integral closure of I™.

In order to treat these filtrations, we will use the extended notion of analytic spread,
which was originally introduced for ideals by Northcott and Rees in [12]. We denote by
¢(F) the Krull dimension of the ring A/m ® 4 G(F) and call it the analytic spread of F
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(cf. [13]). If F is the I-adic filtration, then ¢(F) is just the analytic spread of I in the
sense of Northcott and Rees. It is easy to see that, similarly as the case of ideals, the
inequality £(F) > ht4 F; always hold (here it should be noticed that ht4 F3 = ht4 F,, for
any n > 1). So, following Huckaba and Huneke [8], we set ad(F) = £(F) — ht4 F; and
call it the analytic deviation of F. For example, if F is the symbolic filtration of an ideal
I with ht4 I = s < d, then ad(F) < d — s. On the other hand, if I C Fn C In for
any n, then ad(F) coincides with the analytic deviation of I in the sense of Huckaba and

Huneke.

The main result of this paper is a characterization of the Cohen-Macaulay property of
the form ring associated to a filtration having small analytic deviation. If F is a filtration
with £(F) = £, we can choose elements a1, -+ ,a, in A so that a; € Fy,, -+ ,a¢ € Fy, for
some positive integers ki, -+ , k¢ and F,, = Zf=1 a; g, for any n > 0. We will show that,
in the case where ad(F) = 0, G(F) is Cohen-Macaulay if and only if A/(a1,--- ,as) + F,
is Cohen—Mécaulay for finite number of n and G(F,) is Cohen-Macaulay for any p €
Asshy A/Fi, where F is the filtration {Fn,Ag}nez of Ay and Asshy A/Fy = {p € Spec A |
Fy Cp and dim A/p = dim A/F1}. This characterization was already proved by Goto in
the case where F is the symbolic filtration of a prime ideal p such that dim A/p = 1 (cf.
[3]) We will also discuss the case where ad(F) = 1. Although the statement is rather
complicated, a condition for G(F) to be Cohen-Macaulay will be given similarly as the

case where ad(F) = 0.

Throughout this paper A is a d-dimensional Noetherian local ring with the maximal |
ideal m and F = {F,}necz is a filtration of A such that R(F) is a d + 1-dimensional
Noetherian ring. In the case where F is the I-adic filtration, we write R(I), R'(I), and
G(I) instead of R(F), R/(F), and G(F). Similarly we use the notation R,(I), R}(I), and
G,(I) when F is the symbolic filtration of I. For a graded ring § = @, 5» and an
integer m, we set S>m = @nzm Sy, which is an ideal of S. In particular, Sy = S>;. The
i-th local cohomology module of an S-module L with respect to an ideal 2 of S is denoted
by Hi(L). When (So,n) is local and L =

nez Ln is a graded S-module, we set

a(L) = max{n | [Hx (L)l # 0},

where t = dimg L and 9 = nS + S (cf. [6]).
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3.2 Preliminaries

In this section we summarize basic notion and facts we need throughout this paper. Let
F = {F,}nez be a filtration of A.

Definition 3.2.1 We set £(F) = dim G(F)/mG(F) and call it the analytic spread of F.

Definition 3.2.2 We say that a system ay,--- ,a, of elements of A is a reduction of F,
if ay € Fy,,+++ ,a, € Fy, for some positive integers ky, -+ ,k, and Fr, = >._, a;F,_y, for
any n > 0.

If aj, -+ ,a, is a reduction of F stated in 3.2.2, then we have £(F) < r. On the other
hand, we can always find a reduction of F consisting of ¢(F) elements. Hence we have

the following.

Lemma 3.2.3 ht4 F} < ¢(F) <d.

Definition 3.2.4 We denote by ad(F) the difference £(F)—ht4 F; and call it the analytic
deviation of F. In particular, F is said to be equimultiple, if ad(F) = 0.

Example 3.2.5 Let I be an ideal of A with htyI = s < d. Let F, = I®™ for any n.
Then ad(F) < d — s. In particular, F is equimultiple, if s =d — 1.

Proof. Since depth A/F,, > 0 for any n, we can choose z € m so that it is a non-zero-
divisor on G(F). Then

U(F) = dim G(F)/mG(F) < dim G(F)/zG(F) =d — 1.
Hence we get the required inequality.

Example 3.2.6 Let I be an ideal with a reduction J = (a1, - ,0,)A. Let F = {Fp}nez
be a filtration such that I® C F, C I* for anyn. Then ay,- -+ ,a, is a reduction of F. In

particular, if I is equimultiple, so is F.

Proof. As J is a reduction of I, the extension R(J) C R(I) is module-finite. On
the other hand, as I C F, C I* for any n, we see that R(I) C R(F) is an integral
extension, and so it is module-finite. Hence R(F) is finitely generated as a module over
R(J) = A[ayT, - -+ , a,T]. This implies that ay,-- - ,a, is a reduction of F.
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Let M be a finitely generated A-module and M = {M,, },ez a family of A-submodules
of M such that (i) M, 2 M,y for any n, (ii) M = M, for any n <« 0, and (iii)
E.M, C M., for any m,n. Such M is called an F-filtration. Let
R'(M) =Y M,T" C M[T,T""] and

neZ

G(M) = R/(M)/T™'R'(M) = @ My /My

neZ

Needless to say, R'(M) (resp. G(M)) is a module over R/(F) (resp. G(F)). We assume
that R’(M) is finitely generated over R/(F). The next assertion is a generalization of the
theorem of Vallabrega-Valla [15, Theorem 2.3].

Proposition 3.2.7 Suppose thatk,--- , k. are non-negative integers and a; € Fy,, -+ ,a, €

Fy,.. Let us consider the following two conditions.
(1) ayT*,--- ,a,T% is a G(M)-regular sequence.

(2) a,--- ,a, is an M-regular sequence and

(a1, e, ) M N M, = ZaiMn_ki

=1

for dnyn €.

Then we always have (1) = (2). The converse holds if k1, , k. are all positive. When

the condition (1) is satisfied, there is a natural isomorphism
GM)/(aT™, -+ ,a,T*)G(M) = G(M),
where M is the F-filtration
{(a1,"*+ ,a.)M + M, /(a1, -+ ,ar)M}nez
of M/(ax, - ,ar) M.
This assertion is well known and the proof is almost same as that of [15, Theorem 2.3].

Finally we state about localization of filtration. For a prime ideal p, we set M, =
{(M,)p}nez. Notice that F, is a filtration of A, and M, is an F,-filtration of M,. We
always have £(F,) < £(F). Because A, ®4 G(F) = G(F}), once G(F) is Cohen-Macaulay,
then so is G(Fy).
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3.3 Key lemma

Let F = {F,}nez be a filtration of A. Let M ba a finitely generated A-module with
depthy M =t and M = {M, }ncz an F-filtration of M. We fix integers r and ¢ such
that 0 < r < £ < t and take elements a; € Fj,--- ,a, € Fj, for some positive inte-
gers ki,--- ,k, so that a1,--- ,a, form an M-regular sequence. Let P = {p € Spec A |
Fy Cpand htyp < d—t+ ¢} In this section, we aim to prove the following.

Lemma 3.3.1 Assume that a;T*, - ,a,T* is a G(M,)-regular sequence for anyp € P
and depth, M/(ay, - ,a,)M + M, >t — £ for any n < N, where N is a fized integer.

Then we have the following assertion.
(1) depthy M/ > aiMy g, >t —£ for anyn < N + 1.
(2) (a1, - ,ar ) M N M, =3, a;M,_y, for anyn < N + 1.

(3) depthy M/M,, >t —{ for anyn < N.

Let J, = (a1, ++ ,aq)A for 0 < g <7 (Jo = 0). In order to prove 3.3.1, let us consider

the following conditions for any integer m.
(Am) depth, M/ > 1 aiM, 4, >t—£if0<q<randn <m.
Bm) JJMNM, =37 aiM, 4 if0<g<randn<m.

(Cr) depthy M/J M+ M, >t—£if0<g<randn<m.

Lemma 3.3.2 Let m be an integer. Assume that the conditions (Bw) and (Cyp,) are
satisfied. Then the condition (Am,+1) 18 satisfied.

Proof. We take any integer n < m + 1 and fix it. Let Ny =>_7  a;M,y, for 0< g <r
(No = 0). We prove that depthy M/N, > t — £ by induction on ¢. It is obvious for
q = 0. Let us assume that ¢ > 0 and depth, M/N,_; > t — £. It is enough to show
that depthy N,/N,—1 >t — £ + 1, since there exists an exact sequence 0 — Ng/Ny_1 —
M/Ny_y — M/N, — 0. For that, we consider the following isomorphisms:

Ng/Ng-1 & aqMyi,/aq([Ng-1 :m ag] N My_,)
Mn—k:q/[Nq—l M aq] N Mn—-k,?-

14
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As a, is a non-zero-divisor on M/J,—1 M, we have [N,_1 :m aq] C Jy-1M. Moreover, as
n — kg < m, by the condition (By,) we get J,_1M N My, = ;.’;11 ;i My, —k;, Whose
right-hand side is contained in [Ng_; :pr a,]. Hence [Ny—1 a1 ag)NMp—i, = Jo-1 MO My,

and so
Ny/Ny1 2 Jy M + Mn_kq/J 1M .

As the condition (Cy,) implies that depth . M/J;_y M+M,_x, > t—£ and as depth, M/ J, M >
t—q+12>t—£+1, weget depth, J,_1M + My, /J;-1M >t —£+1, and the proof is

completed.

Lemma 3.3.3 Let m be an integer. Assume that a,T*,--- ,a,T% is a G(M,)-regular
sequence for any p € P and the condition (Ay,) is satisfied. Then the condition (By,) is
satisfied.

Proof. Letn < mand 0 < g < r. We take any p € Assq M/ 7, a;iMn_y,. Then
htsp < d—t+4, since depthy M/ >"2 | a;M,_, >t — ¢ by the condition (A,,). If F; Cp,
we have p € P, and so by the assumption and 3.2.7, J,M, N (M), = >t ; ai(Mp—k; )p-
When F; € p, we get the same equality as (M,), = (Mp—k;)p = M,. Therefore J,M N
M,=%1,a:M, y,.

Lemma 3.3.4 Letm be an integer. Assume depthy M/J. M+ M, > t—{ for anyn < m.
Suppose that the conditions (B,,) and (Cy,—1) are satisfied. Then the condition (C,,) is
satisfied.

Proof. We take any n < m and fix it. We prove depthy M/J,M + M, > t — £ for any
0 < g < r by descending induction on q. Because this inequality is just the assumption
when g = r, let us assume ¢ < r and depthy M/J,,1M + M, >t — £. It is enough to
show that depthy Joy1 M + M,/J,M + M, >t — £. Because Jy1 M + M, /I, M + M, =
JgaM/J;M+(Jy11MNM,) and the condition (B,,) implies J,11 MNM, = S5 a; My,

we have

JoaM + Mo I, M+ My = Jp M) T M + ages Mo,

g1 M[(ag 1M NI M) + agp1 My,
= agiM/ag 1M + agy 1My,
M/JM + My, ..

R

IR
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Thus we get the required inequality since depth AM/JM + My . >t —2¢ by the
q —
condition (Cp,—1).

Proof of 8.3.1. Let m be sufficiently small. Then all of the conditions (An), (B,,), and
(C,,) are obviously satisfied. Hence, applying 3.3.2, 3.3.3, and 3.3.4 successively, we see

that the conditions (An41), (Byy1), and (Cy) are satisfied. Now we get the assertions
(1), (2), and (3) of 3.3.1 as special cases.

3.4 Equimultiple filtration

Let F be a filtration of A. The following theorem is a characterization of the Cohen-
Macaulay property of the form ring associated to an equimultiple filtration of a Cohen-
Macaulay ring. It was already proved by Goto [3, Theorem(1.2)] in the case where F is
the symbolic filtration of a prime ideal p with dim Alp=1.

Theorem 3.4.1 Let A be a Cohen-Macaulay ring and ht, Fy = s. Let aq,-++ ,as be
elements in A such that ay € Fy,,- -+ ,as € Fy, for some positive integers k1, -+ , ks and
Fo =3 16iFu, forn > 0. Set N = 33, ki + max{a(G(F,)) | p € Asshy A/F1}.

Then the following conditions are equivalent.
(1) G(F) is a Cohen-Macaulay ring.

(2) G(F,) is Cohen-Macaulay for anyp € Asshy A/F; and A/(aq, -+ , as)+F, is Cohen-
Macaulay for any 1 <n < N.

When this is the case, A/ F, is a Cohen-Macaulay ring for anyn > 1, F,, =37 | a;Fp_p,
for anyn > N, and

a(G(F)) = max{a(G(F,)) | p € Asshy A/F;}.

Proof. 'We prove in the case where s > 0. Similarly one can prove the theorem in
the case where s = 0, omitting most of the argument. We put K = (a1, ,as)A and
F = {K + F,,/K}ycz, which is a filtration of A/K.

(1) = (2) As is noticed at the end of section 2, G(F,) is a Cohen-Macaulay ring
for any p € SpecA. Let zs41,--+ ,24 be elements in m which form an sop for A/Fj.

Notice that a;T*,- -+ ,a,T*, 2541, , 4 is an sop for G(F), and so it is a G(F)-regular
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sequence. Then by 3.2.7

(%) G(F)/ (@ T, -+ ,a,T*)G(F) 2 G(F) = P K + Fu/K + Fopy
n>0
and Ty, ,Tq is a regular sequence on K + F,,/K + F,.; for any n > 0. Hence

depthy K + F,/K + Fpyy = d— s for any n > 0. This implies that A/K + F,, is a Cohen-
Macaulay ring for any n > 1. On the other hand, as Z,41,- -+ ,zq is & G(F)-regular
sequence, we get also that A/F, is Cohen-Macaulay for any n > 1.

(2) = (1) We apply 3.3.1, setting M = A, M = F, and r = £ = s. Notice that in
the present case, P = Asshy A/Fj, and so by the assumption a, %, - - - ,asT% is a G(F,)-
regular sequence for any p € P. Moreover, we are assuming that depthy A/K +F,, > d—s
for any n < N. Thus we get depth A/ > _; a;Fnt1—x, = d — s. Suppose that Fy,; #
Y i1 @iFnti1-k;. Then there exists an associated prime ideal q of Fiy;/ i aiFNy1k
Since q € Assq A/ > ;_; aiFNt1-k,, we have q € Asshy A/Fy, and so a;T*, -+ ,a,T" is a
G(F,)-regular sequence. Then |

a(G(F)/(@T™, - ,aT*)G(F,) = a(G(F)) + Y ki S N

2=1

and the left-hand side of the equality above coincides with

max{n | F,A, # Z a;Fp_i,Aq + Fry14g}

i=1
Hence Fiyi14q = Y ;i 6iFNi1-k,Aq. However this contradicts that q is an associated
prime ideal of Fini1/) ;_; aiFnj1-k,. Thus we see that Fyi1 = Y5 aiFnyi-k C K.
Therefore K + F,, = K for any n > N, and so depthy A/K + F,, > d — s for any n.
Then, applying 3.3.1 again, we get K N F,, = Y7, a;F,—, for any n. This implies that
a;T*,---  a,T* is a G(F)-regular sequence, and so again we get the isomorphism (%).
Notice that G(F) is a Cohen-Macaulay ring since depth, K + F,/K + F,,1 = d — s for
any n > 0. Thus we see that G(F) is a Cohen-Macaulay fing.

Now we prove the last assertion of the theorem. If n > N, then
F, = KNF,
= Z a,-Fn_ki .
i=1

Notice a(G(F)) = max{n | K + F, # K + F,y1}. As F, C K for any n > N, it
follows that a(G(F)) < N. Hence we get a(G(F)) < max{a(G(%)) | » € Asshy A/F;}
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as a(G(F)) = a(G(F)) + X.;_, ki. The converse inequality is obvious and the proof is
completed.

3.5 The case where ad(F) =1

Let F = {Fy}nez be a filtration of A with ht4 /i = s < d. Throughout this section
we always assume that ai,: - ,as, 6,41 are elements in A such that a, € F,--+ ,a, €
F,,asy1 € Fy, ., for some positive integers ky, - - - , ks, ks41 and F;, = Zf:ll a; Fy_y, forn >
0. Moreover, we assume that a,:-- ,as is an A-regular sequence and if q € Asshy A/F},
then F,Aq = Y ;_; @iFh_i,Aq for n > 0. It should be noticed that we can always find

such ay, - ,as,a5y1 if £(F) < s+ 1. We put

P={peSpecA|F, Cpandhtyp <s+1},

o= Zs: k; + max{a(G(F,)) | g € Asshy A/F1} +1,
-
8=k +max{a(G(%)) | p € P}, and

=1

K = (a3, - ,a5)A.
We will often denote a,y1 (resp. ksy1) by b (vesp. k).
Lemma 3.5.1 Let G(F,) be Cohen-Macaulay for anyp € P. Thena < B —k+1.

Proof. For any q € Asshy A/Fi, there exists p € P such that q C p. Then a(G(F,)) <
a(G(F,)). Consequently we get a — 33 ki —1< B~ k,andsoa < f—k+1.

Lemma 3.5.2 Assume that there exists ¢ € Asshy A/F; such that G(F,) is Cohen-
Macaulay. Then o> 0 and F,Aq =Y ;_, aiFp_,Aq for anyn > a.

Proof. Let S = G(F,)/(a,T*,--- ,asT*)G(F,). Since a;T*,--- ,a,T* is a G(F,)-
regular sequence, we get a(S) = a(G(F,)) + > ,_; ki < @. On the other hand, a(S) =
max{n | FoAq # > i_; aiFn—i,Aq} > 0. Hence we get the assertion.

Lemma 3.5.3 Assume that G(F;) is Cohen-Macaulay for any q € Asshy A/F;. Then
there exists T € (V,54[(3 i1 @iFn—r;) : Fn] such that a;,- -+ a5, + b is an ssop for A.
Moreover, if we take xgy9,-+- , 24 € m so that a1, -+ ,05,Z+ b, Lgy2, - ,Zq 18 an sop for
A, then a;yT*,--- ,a,T* & — bT*, x,19,-++ ,Tq is an sop for G(F).
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Proof. Set I, = Y ;_; a;Fp, and J = m N ((\,54[In : Fu]). Suppose that there exists
q € Asshy A/K such that J+bA C q. Then, for n > 0, we have Fi;" C F,, = I, +bF,_ C
q. This implies q € Asshy A/F;, and so by 3.5.2 F,A, = I, A, for any n > «. Hence
JAq = Npsallndq © FrdAg] = Ay. However it is impossible as J C q. Consequently,
J+bA & q for any q € Asshy A/K. Then, by [10, Theorem 124], there exists z € J such
that +b & q for any q € Asshy A/K. Needless to say, a,--+ ,as,z + b is an ssop for
A. Now choose 49, ,Z4 € m so that a;,--+ , a5, + b, Tsy9, -+ , 24 form an sop for A.
Set A = (a;T%, -+ ,asT*,x — bT*, Tg12, -+ ,xa, T 1)R'(F). We would like to show that
v/ is the graded maximal ideal of R/(F). Take an integer n such that kn > a. Then,
as (bT*)* -z € i, 7% = Y7 aTF « Fip, T¥ % C 2l and as (bT*)"(z — bT*) € 2, we
get (bT*)**! € 9. Hence bT* € v and z € V. Now, for any n > 0, taking m large
enough, we get (F,T™)™ C 3510 a,T% - Frpp i, T"™ % C /%, and so F,T™ C /2. Thus
R/(F); € V2. On the other hand, as a; = a;T" . (T-1)% € /A forany 1 <3< s+1,
we have (a1, ++ , G, T + b, Toy, -+ ,2a)R/(F) C /2. This implies mR'(F) C v&. Thus

we get the required assertion.

Theorem 3.5.4 Let G(F) be a Cohen-Macaulay ring. Then we have the following as-

sertions.
(1) depthA/K + F,, > d—s—1 for anyn > 0.
(2) bT* is a mon-zero-divisor on G(F)sa, where F is the filtration {K + F,,/K }nez of
A/K.
(3) depthA/K +bFy + F,, > d—s—1 for anyn > 0.
(4) F, =301 a;F, g, for anyn > B.
(5) a(G(F)) = max{a(G(F,)) | p € P}.

Proof. Set M = mG(F) + G(F);+ and choose z, Ts19,** ,24 € m as in 3.5.3. Then, as
arTF oo a,T% Tgp9,++ ,x4,x — bT* is a regular sequence on G(F)gy,
G(F)/(arT™, -+ ,a,T*)G(F) 2 G(F) = P K + Fu/K + Fopa
n>0
and Teya,- -+ ,Tq, ¢ — bT* is a regular sequence on G(F)gy. Since Toq9,- - ,Tq is a G(F)-
regular sequence, we have depthy K + F,,/K + F5,1 > d— s — 1 for any n > 0, so we get

the assertion (1).
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Moreover, setting F = {K + (zas2,"+ , 2a) + F, /K + (Tst2,° -, Za) }nez, we have that

G(F)/ (@12, ,20)G(F) = G(F)

and & — bT* is a non-zero-divisor on G(F)g;. Now, by the choice of z, the following

diagram

i
(G(F)za)m = G(F)m

l—ka lz—ka

(G(Fsa)m < G(Fm
(ex.)

is commutative. Hence bT* is a non-zero-divisor on G(F)sq. AS Zsig,: - ,Z4 are homo-

geneous elements of degree 0, they form a regular sequence also on G(F)s, and
G(F)za/ (st2,"+ 1 22)G(F)2a = (G(F)/(@sr2, ++ ,20)G(F))20-

This means that .9, - - ,Zq, bT* is a regular sequence on G(F)sq, and 50 bT*, 25,9, - , 4
is also a regular sequence on G(F)>q. In particular, we get the assertion (2).
Now we set M = K + F,/K and

M. = K+F,/K if n>a
n M if n<a.

Then M = {M,}nez is an F-filtration of M. Because G(F)sq = G(M), it follows that
bT*, 2519, ,Z4 is a regular sequence on G(M). Hence, setting M to be the filtration
{bM + M, /bM },cz of M/bM, by 3.2.7 we see that
G(M)/bT*G(M) 2 G(M) = @D bM + M, /bM + My
neZ .

and 549, - , T4 is a regular sequence on G(M). Therefore depth , bM+M,, /bM+M,,; >
d— s —1 for any n. This implies depth, M/bM + M,, > d— s — 1 for any n. Thus we get
the assertion (3) as M/bM + M,, 2 K + F,/K + bF, + F, for n > a.

Let V be the cokernel of the inclusion G(M) < G(F). Then [V], =0 unless 0 < n <
a. Take any p € P with ht4p = s+ 1. Let M = pG(F,) + G(F,)+. Applying the local

cohomology functor HE () to the exact sequence
0 — G(M,) — G(F,) — 4, ®4V — 0,
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we get an exact sequence
(t) Hn(4p ®4 V) = Hy(G(M,)) = Hy(G(F,)) = Hy(4, ®4 V).

Notice that a(G(F,)) = a(G(F,)) + Xoi_, ki < B — k, and so [Hy(G(F,))]n = 0 for any
n > B —k+ 1. On the other hand, [H} (4, ®4 V)], =0foranyn > a. Asa<pf—k+1
by 3.5.1, we see that [Hj(G(M,))], =0 for any n > B —k+1, and so a(G(M,)) < B—k.
Then, as bT"* is a non-zero-divisor on G(M,), we have a(G(M,)) < 8. Since the left-hand
side of this inequality coincides with max{n | bM, + (M), # bM, + (Mp11)p}, it follows
that bM, + (M,), = bM, + (M,+1)p for any n > 8, which holds also in the case where
ht, p = s. Let n > (. As is stated above, depth, bM + M,,/bM + M, 1 > d— s— 1, and
this implies Asss bM + M, /bM + M, ., C P. Therefore we get bM + M,, = bM + M, .1,

and so

M, = (bM + M) N M,
= BM N M, + M,
= an—-lc + Mn+1 .

Then, as n — k > «, we have K + F,, = K + bF,,_; + F,, 11, and so

F, = (K+bF+ F,1)NF,

= KﬂFn+bF—k+Fn+l
s+1

= Z a'iFn-—ki + Fn+1 .

i=1
This proves the assertion (4).

Since a(G(M)) = max{n | bM + M,, # bM + M, 1}, we have a(G(M)) < 8 by (4),
and so a(G(M)) < 8 — k. Now we consider the exact sequence

HE*(G(M)) — Hi*(G(F)) — HE*(V) — 0,

which is derived from the exact sequence 0 — G(M) — G(F) - V — 0. Becatse
[ng'{s(G(M))]n =0foranyn > f—k+1, [H*(V)], = 0 for any n > @, and a < f—k+1, ‘
it follows that a(G(F)) < 8 — k. This implies a(G(F)) < 8 — S35 k; = max{a(G(F,)) |
p € P}. On the other hand, it is obvious that a(G(F,)) < a(G(F)) for any p € Spec A.

Thus we get the assertion (5) and the proof is completed.
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Lemma 3.5.5 Let G(F,) be Cohen-Macaulay for any p € P. Then 8 < oo.

Proof. Let p € P and htop = s+ 1. Then, setting

o = Zk’ + max{a(G(F,)) | q € Asshy A/F; and q Cp} +1,
i=1

we get by 3.5.4 (2) that bT* is a non-zero-divisor on G(F;)>q/, where F, is the filtration
{KA, + F,Ay/ KAy }nez of Ay/KA,. Set M and M = {M,}nez as in the proof of
3.5.4. Since @’ < a and G(Fp)sq = G(M,), bT* is a non-zero-divisor on G(M,). Now
we take N > 0 so that F,, = Z:;Lll a;F,_y, for any n > N and a +k < N. Then
M, = bM,_ for any n > N, and so a(G(M,)/bT*G(M,)) < N. Thus it follows that
a(G(M,)) < N — k. Now, considering the exact sequence (h) in the proof of 3.5.4, we get
that a(G(F,)) < N — k. Hence a(G(F,)) < N — 2551 k;. Therefore 3 < N.

Theorem 3.5.6 Let A be a Cohen-Macaulay ring. Let G(F,) be a Cohen-Macaulay ring
for anyp € P and depth A/K +bFy + F,, > d—s—1 for any 1 <n < (. Then we have

the following assertions.
(1) depth A/F,, >d—s—1 for anyn > 0.

(2) If A/K+F, is Cohen-Macaulay for any1 <n < a, then G(F) is a Cohen-Macaulay

Ting.

Proof. We may assume that d > s+ 2. Set M = K + F,/K. Then depthy M = d — s.
Take z as in 3.5.3. Since M is a maximal Cohen-Macaulay A/K-module, z + b is a non-
zero-divisor on M. Hence b is a non-zero-divisor on M as M = 0 by the choice of .
Set M = {M, }nez as in the proof of 3.5.4. Let p € P. Then, as is stated in the proof of
3.5.5, bT* is a non-zero-divisor on G(M,). Moreover, as

K+Fy/K+bFa+F, if n>a

M/bM+M"={ 0 if n<a,

we have depthy M/bM + M,, > d — s — 1 for any n < 5. Now we apply 3.3.1, setting
r=£=1,N=f,a;, = b, and k; = k. It follows that depthy M/bMp11_ > d—s—1.
Assume that Mgy, # bMpy1—. Then there exists p € Assg Mpi1/bMpy1—. We have
p EPasp € Assy M/bMpy1i. Let f' = a(G(F,))+ 317, ki. Then, by 3.5.4 (4), FoA, =
Z:;rll a;Fyi, Ay for any n > . Hence Fg114, C KA, + bFsy1-1Ap, and so (Mpy1), =
b(Mgy1-k)p 88 @ < B+ 1 — k. However this contradicts p € Assg Mgi1/bMpgi1-k. Asa
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consequence, we get Mg,1 = bMpgy1_ C bM. It follows that depth, M/bM+M,, > d—s—
1 for any n. Then, applying 3.3.1 again, we get bM N M,, = bM,,_y and depth, M/M,, >
d — s — 1 for any n. In particular, by 3.2.7, bT* is a non-zero-divisor on G(M).

Now, considering the exact sequence 0 — M/M,, - A/K + F, - A/K + F, — 0, we
get depth, A/K + F, > d — s — 1 for any n. Therefore, by 3.3.1, a;T*,-.- |a,T* is a
G(F)-regular sequence and depth, A/F;, > d — s — 1 for any n.

In order to investigate the Cohen-Macaulayness of G(F), we notice that G(M) is
a Cohen-Macaulay G(F)-module. In fact, setting M to be the F-filtration {bM +
M, /bM} ez of M/bM, we have

G(M)/bT*G(M) 2 G(M) = @D M + M, /bM + My, .
n>a
Since depth, bM +M,,/bM + My 41 > d—s—1 for any n, it follows that depthg s, G(M) =
d — s —1, and so depthg ) G(M) = d — s. Hence we get the required assertion.

Let V = G(F)/G(M). Assume that A/K + F,, is Cohen-Macaulay for any 1 < n < a.
Then, as [V], = K+ F,/K + F,, for 0 <n < o and [V], = 0 unless 0 < n < a, we have
depthg(s) V = d — 5. Therefore, considering the exact sequence 0 — G(M) — G(F) —
V = 0, we see that depth G(F) = d — s. Thus it follows that G(F) is Cohen-Macaulay

and the proof is completed.

3.6 Applications

Let A be the formal power series ring K[[X,Y, Z, W]] over a field K. Let I be the ideal

of A generated by the maximal minors of the matrix

XY z wm
M=lY z w x |,

Zz W X Ym

where m is a positive integer. Then A/I is a Cohen-Macaulay ring with dim A/ = 2.
In the following, applying the results in previous sections, we will compute the symbolic
powers of I.

For 1 < i < 4, let a; be the minor corresponding to the matrix derived from M deleting

the 4-th column. Usually, we denote a1, az, as, and a4 by a,b, ¢, and d, respectively. Then
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we have the following relations:

(#1) Xa-Yb+Zc—Wmd=0,
(#2) Ya—Zb+We—Xd=0, and
(#s) Za—-Wb+Xe-Y™d=0.

Lemma 3.6.1 Let p € Asshy A/I. Then IA, = (a,d)A,. Hence I™A, = I"A, for any
n and G(IAy) is a Gorenstein ring with a(G(I4,)) = —2.

Proof. Let q be the ideal of A generated by the maximal minors of the mtrix

Y Z
zZ W |.
W X

Then I € qas q C (Y,Z,W)A and b = —X3 mod (Y, Z,W)A. It follows that ¢ Z p
for any p € Asshy A/I as q is a prime ideal with ht,q = 2. Because g/ C (a,d)A,
IA, C (a,d)A, for any p € Asshy A/I. Thus we get the assertion.

Theorem 3.6.2 Let m = 1. Then there exists e € I@\ I? such that R,(I) = A[IT, eT?).

When this is the case, Rs(I) is a Gorenstein ring.

Proof. Set

wu=XZ-Y?, v=X’-YW, w=XW-YZ,
F=XY-2ZW, g=YW~-22, h=XZ-W2.

Then we have the following relations:

(#4) v(c® — bd) = u(b? — ac),
(#:s) - w(c? — bd) = u(bc ~ ad) ,
(#s) f(c® —bd) = u(ab — cd),
(#+) g(c* — bd) = u(ac — d?),
(#s) h(c? — bd) = u(a® — bd).

Because u, v is a regular sequence, by (#4) there exists e € A such that ue = ¢* — bd and

ve = b% — ac. Moreover, by (#s) we have

we(c® —bd) = ue(bc — ad)
= (c® —bd)(bc — ad),
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and so we = bc — ad. Similarly, using (#s), (#7), and (#s), we get ; fe = ab — cd,
ge = ac — d2, and he = a® — bd. Hence e € I? : 2, where 2 = (u,v,w, f,g,h)A. This
implies e € I as ht 4% > 3. We have e ¢ I? since (Y,Z,W)A+ I? = (X%,Y,Z,W)A
and e = X* mod (Y, Z,W)A.
We set
> €F ifn>0

i,i>0

Fn= 2i+j=n
A ifn<0.

Then Fy = I, Fy = I? + €A, and I" C F, C I™ for any n. Let F = {F, }pez. It is easy
to see that F is a filtration such that F,, = aF,,_; + eF,_5 for any n > 2. Hence F is an
equimultiple filtration and a, e is a reduction of F.

Let p € Asshy A/Fy. Then by 3.6.1 G(F,) (= G(I,)) is a Gorenstein ring with
a(G(F,)) = —2, and so 1 + 2 + max{a(G(F;)) | p € Asshy A/F;} = 1. Notice that A/F;
is a Cohen-Macaulay ring. Therefore by 3.4.1 we see that G(F) is Cohen-Macaulay and
A/F, is Cohen-Macaulay for any n > 1. Now, by [4, Theorem 1.2] it follows that G(F)
is a Gorenstein ring with a(G(F)) = —2. Then [5, Corollary 1.4] implies that R(F) is a
Gorenstein ring. Let n be a positive integer. Since A/F,, is Cohen-Macaulay, F, C I™™),
and F,A, = I™A, for any p € Assy A/F, = Asshy A/I, we get F,, = I™. Therefore
R(F) = Rs(I) and the proof is completed.

Theorem 3.6.3 Let m > 2. Then there ezists e € I®) \ I3 such that R,(I) = A[IT, eT?].

When this is the case, Rs(I) is a Gorenstein ring.
Proof. We divide the proof into several steps. Let us begin with the following

Claim 1 Let p be a prime ideal such that I Cp andhtap < 3. Then I A, is generated by

a regular sequence of length 2. Hence I™ A, = I"A, for any n and G(I,) is a Gorenstein
ring with a(G(l,)) = —2.

Proof of Claim 1. Let A be the ideal of A generated by the 2-minors of the matrix M.
AsY?—XZ eUand Y™ — XZ € 2, we have Y2(Y™ 1 —1) = Y™ — Y2 € 2. Hence,
if A C p, it follows that Y € p, and so p = m. However this is impossible. Consequently,
A < p. Then there exists 1 < a < f <3 and 1 <7< j <4 such that the minor f

corresponding to the submatrix of M with rows ¢, 8 and columns 4, j is not contained in p.
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Let {k,1} = {1,2,3,4}\ {4,7}. Then, as fI C (ax,a;)A, it follows that T4, C (ax, a) A,.
Thus we get the claim.

Claim 2 depth A/(a,d) + 1% =1.
Proof of Claim 2. We set

o1 = (a b be &2 d),

Xb Xc Yb Ye Zb Zc d
-Y 0 -7 0 -W 0 0
P2 = Z -Y w —-Z X -W 0 , and
0 Z 0 w 0 X 0
W™ —-W™c —-Xb —Xc -Y™b -Y™c -—a
[z 0 W)

-W 0 -X
-Y w 0
Y3 = Z -X 0
0 -7 -Y
0 w Z

\ X2—YW™ Y™ _XZ XY™ - ZW™ }

Since we have
Xab—Yb?+ Zbc — W™bd =0

by (#1), the (1,1)-component of @i is 0. Similarly, we see that the other entries of
P19 are also 0. Moreover, we get a3 = 0 from the relations:
(X2—-YW™d=Y%—-XZb+XWc—-YZc,
(Y™ - XZ)d = 2% — YWb+ XYc~ ZWe,
(XY™ -~ ZW™)d =Y Zb— XWb + X?c — Z°c,
(X2 = YW™)a = XYb— ZW™ + W™ e — X Zc,
(Y™ -~ XZ)a=Y"Zb— XWb+ X*c— Y™Wc, and
(XY™ - ZW™)a = Y™b — W™Hp+ XW™c — Y™ Zc.
We get these relations computing (#1) XY — (#2) X X, (#2) X Z — (#3) XY, (#41) X Z —

(#3) X X, (#1) X X — (F#2) X W™, (#2) X Y™~ (#3) x X, and (1) x Y™ — (#3) x W™,
Therefore -

0— A% -2 A" 22 A5 255 A — Af(a,b?,bc,c?,d)A — 0
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is a complex. One can see that it is an exact sequence by [2]. Hence we get the claim as
(a,d)A + I? = (a,b? be, ¢, d) A.

Claim 3 Let p be a prime ideal of A such that I C p and htyp < 3. Then oT,dT is a

G(I,)-regular sequence.

Proof of Claim 8. Since G(I,) is Cohen-Macaulay by Claim 1, it is enough to show
that aT,dT is an ssop for G(I,). As (Y,Z,W)A € p, by (#1), (#2), and (#3) we have
b € (a,c,d)A,p, and so TA, = (a,c,d)A,. Moreover, by 3.6.1 we have IA, = (a,d)A, for
any q € Asshq A/I. Therefore we get the claim by 3.5.3.

Claim 4 1® = 2,

Proof of Claim 4. By Claim 2, Claim 3, and 3.3.1, we get depth A/I?> > 0. This yields
I® = J? since, by Claim 1, I?A, = I?A, for any prime ideal p such that 7 C p and
htgp < 3.

Claim 5 There exists e € I®) \ I® such that

(#9) Xe=0+W™ta?d+ Y™ 'd — Y™ 'W™ bd® — 2abc,

(#10) Ye=c®+ab® — a’c+ W™ tad® — (1 + W™ )bed,

(#11) Ze=Y" W™ 1@ — (Y™ ' + W™ Dacd — b*d + a®b + bc®, and
(#12) We=Y""ed® — (1+Y™ V)abd — ac® + a® + b’c.

Proof of Claim 5. By (#:) and (#,) we have
Whd=Xa—-Yb+Zc and We=Xd—-Ya+ Zb.
Substituting these equations to

c-Wmd=W™1d.Wec and b-We=c Wb,

we get
(#13) Z(c* -~ W™ d) = Y (bc — W™ 'ad) — X(ac — W™ 'd?) and
(#14) Z(b2 - ac) = Y(ab - Ym_lcd) - X(bd - Cz) .

Moreover, we substitute (#13) and (#14) to
Z(® — W™ bd) - (b2 — ac) = (¢ — W™ 'bd) - Z(b* — ac)
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and get

X(S +ab® — a’c+ W™ ad? — (1 4+ W™ )bed)
=Y+ W™ a?d + Y™ d — Ymlpmeipge 2abc) .

Hence there exists e € A satisfying (#9) and (#10). The equation (#14) yields
Ze(b® — ac) = Ye(ab— Y™ ed) — Xe(bd — c?) .
Substituting (#9) and (#10) to the right-hand side, we get

Ze(b® — ac) =
(Y™™ 1@ — (Y™ + W™ acd — b?d + a®b + bc?) (b2 — ac) .

This yields (#11). Finally, we get (#12) substituting (#o), (#10), and (#11) to
Wec=Xe-d—Ye-a+ Ze-b,

which is induced from (#3). Then e € I® : m, and so e € I®. Since (Y,Z,W)A + I°® =
(X°,Y,Z,W)A and e = —X® mod (Y, Z,W)A, we see that e & I* and the proof of the

claim is completed.

Now we set

Z ér ifn>0
4,j >0
F,= 3it+i=n

A ifn<0.

In particular, F} = I, F; = I?, and F3 = I3+eA. Notice that (#o), (#10), (#11), and (#12)
imply that b%,c®,bc?, and b%c are all contained in (a,d,e)A. Hence F3 C (a,d,e)A. It is
easy to see that F = {F, }cz is a filtration of A such that R(F) = A[IT, eT®]. Moreover,
the equalities (#9), (#10), (#11), and (#12) imply that F,, = aFp—1 + dF,—1 + eF,_3 for

any n > 3. Hence a,d, e is a reduction of F.
Claim 6 A/[(a,d) : €] is a Cohen-Macaulay ring.

Proof of Claim 6. Since a,d is a regular sequence contained in I, by [14, Proposition

1.3] A/[(a,d) : I} is a 2-dimensional Cohen-Macaulay ring. Hence it is enough to show
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that (a,d) : e = (a,d) : I. Obviously (a,d) : e D (a,d) : I as e € I. Suppose (a,d) :
e # (a,d) : 1. Then there exists p € Assu[(a,d) : €]/[(a,d) : I| C Assq A/[(a,d) : I]. Tt
follows that ht4 p = 2 as depth A/[(a,d) : I] = 2. If e € p, then I® C F3 C (a,d,e)A Cp,
and so p € Asshy A/I. Hence, in this case, by 3.6.1 we have (a,d)A, : A, = A,. This
contradicts that p € Assy A/[(a,d) : I]. Consequently e & p, and so (a,d)4, : e =
(a,d)A, : TA, = (a,d)A,. This is also impossible. Thus we get the required equality.

Claim 7 depth A/(a,d) + F5 > 0.

Proof of Claim 7. Notice that (a,d) + F3 = (a,d,e). Therefore, considering the ex-
act sequence 0 — A/[(a,d) : €] > A/(a,d) — A/(a,d,e) — 0, we get the claim as
depth A/[(a,d) : ] = 2 by Claim 6.

Claim 8 depth A/F,, > 0 for any n > 0 and G(F) is a Cohen-Macaulay ring.

Proof of Claim 8. Notice that by 3.6.1, if q € Assh4 A/F}, we have
F. Ay =aF, 1A+ dF, 1A,

forany n > 0. Let P = {p € SpecA | ICpandhtyp<3}. Set a =1+4+1+
max{a(G(F,)) | g € Asshy A/Fi}+1and § =1+1+ 3+ max{a(G(F,)) | p € P}.
By Claim 1 we see that, for any p € P, G(F,) is a Gorenstein ring with a(G(F,)) = —2.
As a consequence, we have o = 1 and 3 = 3. Notice that (a,d) + eF; + F,, = (a,d) + F,
for n = 2,3. Hence, by Claim 2 and Claim 7, depth A/(a,d) + eF; + F, > 0 for any
1 < n < 3. Therefore, by 3.5.6 we get the assertion of the claim.

Now we are ready to prove 3.6.3. Since G(F) is a Cohen-Macaulay ring such that
G(F,) is a Gorenstein ring with a(G(F;)) = —2 for any p € P, by [4, Theorem 1.2] it
follows that G(F) is a Gorenstein ring with a(G(F)) = —2. Then [5, Corollary 1.4] implies
that R(F) is a Gorenstein ring. Let n be any positive integer. Since depth A/F, > 0,
F,C1I ™) and F,A, = I™A, for any p € Assy A/F,, we get F,, = I™). Therefore
R(F) = R,(I) and the proof is completed. V
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Chapter 4

Hilbert Coefﬁcients‘ and
Buchsbaumness of Associated
Graded Rings

4.1 Introduction

Let A be a d-dimensional Noetherian local ring with the maximal ideal m and I an
m-primary ideal of A. Then there exist integers eg(I),e1(I),- - ,eq(I) such that
Ca(A/T™) = eo(D) (" ! d) — ex(I) (" * f; 1) oo (=1)ea(D)
for n > 0. These integers are called the Hilbert coefficients of I and a lot of results
are known on them in the case where A is a Cohen-Macaulay ring. For example, as was
proved by Northcott [8], we always have eq(I) — £a(A/I) < e1(I). Moreover, provided
A/m is infinite, Huneke and Ooishi proved that eo(I) — £4(A/I) = e;([) if and only if
I? = QI for some (any) minimal reduction @ of I, and when this is the case, by [11], the
associated graded ring G(I) = @, ["/I"*" is a Cohen-Macaulay ring. The purpose of
thié paper is to extend their results without assuming that A is a Cohen-Macaulay ring.
Suppose that I contains a parameter ideal @) as a reduction. Then, from Northcott’s
inequality, one can easily deduce that eg(I) — £a(A/I) < e1(I) — e1(Q) (See 4.3.1). As-
suming that Q is a standard ideal in the sense of [10, Definition 19 of Appendix], we will
investigate when the equality ey(I) — £4(A/I) = e1(I) — e1(Q) holds. In order to state
our result, let us fix some notation. For an ideal q of A which is minimally generated by

ai,** ,0s, We set
. .
(@) =q+ Z[(al’ St @1, G, 5 8s) 1A G
i=1
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It is easy to see that X(q) does not depend on the choice of the minimal system of
generators. For a module M over a ring R, we denote by H:(M) the i-th local cohomology
module of M with respect to a. In particular, we set W = HY(A). Then we have the

following.

Theorem 4.1.1. Suppose that I contains a standard parameter ideal () as a reduction.
Then eg(I) — L4(A/I) = e;(I) — e1(Q) if and only if I C QI+ W and £(Q) C I.

If the length of Ht (A), which is denoted by h*(A), is finite for any 0 < ¢ < d, we have
that

=1 /0 o\
—e(Q) < ; (Z - 1)hz(A)
with equality when () is a standard ideal (See 4.2.4). Therefore, as a consequence of 4.1.1

and (3], we get the next result.

Corollary 4.1.2 If A is a quasi-Buchsbaum ring, then

sup {eo(1) ~ £a(A/T) (D} = 3 (37 o).

VI=m pars 1—1
Moreover, assuming that A is a Buchsbaum ring or a slightly different condition, for
ideals I which enjoy the property stated in 4.1.1, we will study the Buchsbaumness of
G(I) together with I(G(I)) and a(G(I)), where I(x) and a(*) denote the I-invariant (cf.
[10, p. 254]) and a-invariant (cf. [4]) respectively.

Theorem 4.1.3 Suppose that either (i) A is a Buchsbaum ring or (i) A is a quasi-
Buchsbaum ring and I C m?. If I contains a parameter ideal Q such that I* C QI + W
and X(Q) C I, then G(I) is a Buchsbaum ring with I(G(I)) = I(A) and a(G(I)) < 2—d.

Throughout this paper (A, m) denotes a commutative Noetherian local ring with d =
dim A > 0 and I an m-primary ideal of A. The Rees algebra R(a) of an ideal a of a ring
R is the subring R[I#] of R[t], where ¢ is an indeterminate. The associated graded ring
G(a) is the quotient ring R(a)/aR(a). For f € R(a), we denote it’s image in G(a) by 7.

4.2 Preliminaries

We begin with the following result of one dimensional case.
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Lemma 4.2.1 Letd = 1. If I contains a parameter ideal Q as a reduction, then we have
that eo(I) — L4(A/I) < e;(I) + La(I N W) with equality if and only if I* C QI + W.

Proof. Let B = A/W. Then B is a Cohen-Macaulay ring with dimB = 1 and QB is a
parameter ideal of B contained in I B as a reduction. Hence, by Northcott’s inequality and
the result of Huneke and Ooishi stated in Introduction, we have that eg(IB)—£p(B/IB) <
e;(IB) with equality if and only if I2B = QIB. On the otiler hand, as £g(B/I"*'B) =
L4(A/I™Y) — £4(W) for n > 0, we have ep(IB) = ep(I) and e;(IB) = e;(I) + £4(W).
Moreover, £g(B/IB) = £4(A/I) — £a(W) + £4(I N W). Therefore we get the required
assertion as I2B = QIB if and only if I? C QI + W.

When we investigate higher dimensional case, we reduce the dimension using a super-
ficial element (cf. [7, Section 22]), and the next result, which may be well known, plays a

key role.

Lemma 4.2.2 Let d > 2 and a be a superficial element of I. We set B = A/aA. Then
dimB =d-1 and

e(I) if0<i<d—1

ea1(I) + (=1)4Y4(0:40a) ifi=d—1.
Proof. Let n>> 0. Then I"*'NaA = aI™ and I"N (0 :4 a) = 0. Hence we have an exact
sequence

a

0—0:4a— A/I" = (aA+ ")/ " — 0,
so that
¢5(B/I"'B)
= LA(A/IY = L4(AJT™) + £4(0 14 a)

d

= S (") S (M )+ a0

i=0 =0

= L") 0 e+ (a0}

i=0
Thus we get the required assertion.

Lemma 4.2.3 Suppose that A/m is infinite and J is a reduction of I. Then there ezists
an element a € J which is superficial for both of I and J. Moreover, for such element

a € J, setting B= A/aA, we have e;(I) — e;(J) = e;(IB) — e1(JB) provided d > 2.
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Proof. By taking a general linear form in G(J)/mG(J), we see the existence of a € J
satisfying the required condition. If d > 3, we get the equality since e;(IB) = e;(I) and
e1(JB) = ei(J). Even if d = 2, we have

e1(IB) —e;(JB) = {ei(I)—4£4(0:40a)} —{er(J) —£a(0:4 a)}
= el(I)—el(J).

Lemma 4.2.4 Let () be a parameter ideal of A. We have the following statements pro-
vided h*(A) is finite for any 0 < i < d.

(1) Letd=1. Then —e;(Q) = h°(A).

(2) Letd > 2. Then we have that

NCE z (522

with equality if Q is a standard ideal.

Proof. Letd = 1. Then, takingn > 0 such that W =0:4 Q™ and £4(A4/Q") = eo(Q)-n—
e1(Q), we see that —e (Q) = £4(W) since ey(Q) - n = ep(Q™) = L4(A/Q™) — £4(0 :4 Q™).
Thus we get the assertion (1).

Nékt we assume that d > 2. Moreover, in order to prove the assertion (2), we may
assume that A/m is infinite. Then we can choose a € Q\m( which is a superficial element
of Q. Let B= A/aA and 0 < i < d — 1. Considering the exact sequence

0—0:pa—AA—B—0,

we get the exact sequence
(#) HL(4) — Hy(4) — Hy(B) — H'Y(4) — H'(4).

Hence it follows that hf(B) < h*(A) + hi*1(A) with equality when Q is a standard ideal.
Let d = 2. Then —¢;(Q) = —{e1(QB) + £4(0 :4 a)} = h%(B) — £4(0 : 4 a). Because
the exact sequence (#) implies h®(B) < £4(0 :w a) + h'(A), we have —e;(Q) < h'(A).
Furthermore, if Q is standard, then h°(B) = h°%(A) 4+ h*(A) and 0 :4 @ = W, so that
—e1(Q) = h'(4). |
Let d > 3. Then e;(QB) = e;(Q). Hence we can easily verify the assertion (2) by

induction on d.
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4.3 General case

As a result in general case, we give the following assertion, which is a generalization of

Northcott’s inequality.

Theorem 4.3.1 IfI contains a parameter ideal Q as a reduction, then eo(I)—24(A/T) <
e(I) — e(Q).

Proof. We prove by induction on d. If d = 1, the assertion follows from 4.2.1 and 4.2.4,
Suppose that d > 2. We may assume that A/m is infinite, so that there exists a € Q\mQ
which is superficial for both of I and Q. Then, setting B = A/aA, we have

eo(I) —La(A/I) = ey(IB)—{¢p(B/IB) by 4.2.2
< e(IB)—e(@B) by the inductive hypothesis
ei(I) —e1(Q) by 4.23.

Thus we get the required inequality.

The next result gives a sufficient condition under which the inequality of 4.3.1 turns

into an equality in the case where ] = m.

Proposition 4.3.2 Let QQ be a parameter ideal which is a reduction of m. If there ezists
an ideal V of A such that dimaV < d and m® C Qm+V, then eg(m) —1 = e;(m) —e1(Q).

Proof. We prove by induction on d. If d =1, then V C W C m, so that by 4.2.1 we have
eo(m) — 1 = e;(m) 4+ £4(W), which yields the required equality since —e; (Q) = £4(W) by
4.2.4. Suppose that d > 2. As we may assume that A/m is infinite, it is possible to take an
element a € Q \ mQ such that dims V/aV < d —1 and a is a superficial element for both
of m and Q. Let B = A/aA. Then dimp VB < dim B as VB is a homomorphic image
of V/aV, so that by the inductive hypothesis we have eg(mB) — 1 = e;(mB) — e:(QB),

from which the required equality follows since eg(mB) = ep(m) and e;(mB) — e;(@B) =
er(m) — ex(Q).

Corollary 4.3.3 Let Q be a parameter ideal which is a reduction of m. Then eg(m) =1
if and only if e1(m) = €,(Q).

Proof. Because 0 < eg(m) — 1 = ep(m) — £4(A/m) < e1(m) — e1(Q), we get eg(m) =1

if e;(m) = e1(Q). In order to prove the converse implication, we may assume that A
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is complete. Now suppose that ey(m) = 1. Let a(p) be the p-primary component of
a primary decomposition of 0. We set V' = [, caq 4 0(p), Where Assh A denotes the
set of associated primes of A whose coheight is d, and B = A/V. Then dimyV < d
and eg(mB) = eg(m) = 1, which implies that B is a regular local ring. Hence we have
m = Q + V, so that m?> C Qm + V. Therefore, by 4.3.2 it follows that e;(m) = e;(Q).

4.4 The case where () is a standard ideal

Lemma 4.4.1 Let d > 2 and @ = (a1,02, -+ ,aq4) be a standard parameter ideal of A.
We set a = a1,b = aq,J = (a1,0as,"** ,a4-1) and K = (as,as, -+ ,aq). Then we have the

following.
(1) aJ :ab*=aJ :ab.
(2) aJ NbA C aJI provided £(Q) C I.
(3) P C QI+ W provided £(Q) C I, I CJI+[bA:4a] and I* C KI + [aA :4 b].

Proof. (1) Let us take any z € aJ :4 b* and write b®z = ay, with y € J. Then, as
y € [bPA 4 a]N (% a1, ,a4-1), there exists z € A such that y = b?z. Here we notice
that bz € J since z € J :4 b*> = J :4 b. On the other hand, as b’z = ab®z, we have
bz —abz € [0:4 b]NbA =0, so that bz = a-bz € aJ. Thus we get aJ :4 b* C aJ :4 band
the converse inclusion is obvious.

(2) Let us take any £ € aJ NbA and write £ = ay = bz, with y € J and z € A.
Moreover, we write ¥y = a1y ++ * * + @Gg—1Yd—1, With 1, -+ ,ya—1 € A. It is enough to show
y;€Iforany 1 <i<d-—1. However,asy, € K :4a?=K :4 a CXZ(Q) C I, we may
consider only the case that d > 3 and 2 < ¢ < d — 1. Because ay; € K, we can express
ayy = agZy++ - ++aqg2a, With 2o, -+ , 24 € A. Then z; € (@1, ,Qim1,@iy1,° " ,8a) 4G &1
for any 2 < i < d. On the other hand, as

bz = a(agz2 + -+ aaza) +agays + - + aGa-1Ya1

= aas(ys + 22) + -+ + a0a-1(Ya—1 + 2a-1) + aa42a,

it follows that

Y; + z; € (012, Q1,041,000 ’ad) tA Q45

C (ag, ** ,0i—1,8i41," "+ ,0a) ta0; ST
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for 2 <4 < d -1, and hence we get y; € I.

(3) It is enough to show [aA :4 ] N I? C JT + W. Let us take any z € [aA :4 B} N I2.
Then, bz = ay for some y € A, and az = af + bz for some £ € JI and z € A. From these
equalities we get a’y = abé +b°2. Hence z € aJ :4 b® = aJ :4 b, s0 that bz = an for some
n € JI. Then it follows that az = a€ + an, which impliess z ~ € —n €0:4 a = W. Thus
we have z € JI + W and the proof is completed. ‘

Proof of Theorem 4.1.1. We prove by induction on d. By 4.2.1 and 4.2.4 we get the

assertion when d = 1. Suppose that d > 2. As we may assume that A/m is infinite,

it is possible to choose a minimal system of generators ai,:--,aq of @ such that a,
and a4 are superficial for both of I and Q. We set a = a1,b = a4,B = AfaA,J =
(a1, ,84-1), K = (az,---,aq4) and @Q; = (@, ,ai-1,8i41,-** ,aq4) for 1 < i < d.

Because ey(I) = ey(IB),2a(A/I) = £5(B/IB) and e;(I) — 1(Q) = e1(IB) — e;(KB),
by the inductive hypothesis we have ey(I) — £4(A/I) = e;(I) — e1(Q) if and only if
I’B C KIB + H%(B) and ©(KB) C IB, which holds if > C QI + W and %(Q) C I
since WB C H2(B) and Z(KB) C £(Q)B. Now we assume that eg(I) — £4(A/I) =
e;(I) — e1(Q). Then it follows that 12 C KI +[aA :4 bl and Q; 14 a; C I for 2 <i < d.
Moreover, by passing A/bA we get I C JI+[bA:paland Q;:4a; CTfor1<i<d-—1.
Therefore, as $(Q) C I, we have I* CQI+W by 4.4.1 and the proof is completed.

Proof of Corollary 4.1.2. We may assume that A/m is infinite. Then any ideal of A has

a minimal reduction, so that by 4.2.4 and 4.3.1 we have

=2 0o\

o) = a4/1) —eun 3 (377 )
for any m-primary ideal I. Hence it is enough to find an m-primary ideal for which the
equality holds. Let z;,- -+ ,z4 be an sop for A contained in m? and ny,-- - ,ng be integers
not less than 2. We set Q = (1™, -+ ,z4™) and [ = @ :4 m. Then Q is a standard
parameter ideal by [10, Proposition 2.1] and I? = QI by [3]. Because we obviously have
¥(Q) € I, by 4.1.1 and 4.2.4 it follows that

1—1

=1

2 0o\
eo(I) — La(A/T) —ex(I) = ( )h’(A),
and the proof is completed.
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Example 4.4.2 Let R = k[[X,Y, Z,W]| be the formal power series ring with variables
X,Y,Z and W over an infinite field k. Let a = (X2, Y)R,b = (Z,W)R and A= R/anb.
Let z,y,z and w respectively denote the images of X,Y,Z and W in A. We set @ =

(x — 2,y —w)A and m = (z,y, 2,w)A. Then we have the following assertion.
(1) dim A = 2,depth A = 1,h'(A) = 2 and A is not a quasi-Buchsbaum ring.
(2) m® = Qm?2, but m?® # Qm.
(3) IfV is an ideal of A with dimsV < 2, then V =0, so that m> Z Qm + V.
(4) ep(m) =3,e;(m) =1 and ,(Q) = —1, so that eg(m) — £4(A/m) = e;(m) — e;(Q).

Proof. From the exact sequence 0 — A — R/a® R/b — R/a+ b — 0, we get
the assertion (1). One can directly check the assertion (2). Because dim A/p = 2 for any
p € Ass A, we have the assertion (3). The associated graded ring G(m) of m is isomorphic
to

kX,Y, Z,W]/(X?,Y)N(Z,W),
so that we have the exact sequence
0 — G(m) — k[X, Z, W]/(X?) @ k[X,Y] — k[X]/(X?) — 0.

This implies that the Poincaré series P(G(m), A) of G(m) is
1+ 1 |

G—n "= N
from which it follows that
Ca(A/m ) = gn2 + gn

for n > 2. Hence eg(m) = 3 and e;(m) = 1. Because k is infinite, there exists p € k
such that ¢ = (z — 2) + p(y — w) is a superficial element of Q. Let B = A/cA. Then
61(Q) = e1(QB) = —h%(B) and the exact sequence 0 — A —» A — B —» 0 yields
the exact sequence

0 — H2(B) — Hi(4) —= HL(4).

Because HY,(A) & R/a+ b 2 k[[X]]/(X?) and (X — Z) + (Y = W) = X mod a+ b, we
have H2(B) = [(X?) wyxy X]/(X?) = (X)/(X?). Thus we get ;(Q) = —1 and the proof

is completed.
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4.5 Buchsbaumness of G(I)

Throughout this section we assume that I contains a parameter ideal Q = (a1, ,aq) as

a reduction. We set R = R(J) and G = G(I). The graded maximal ideal of G is denoted
by M. Furthermore, we set f; = a;t € R for 1 <4 < d. For certain elements z, - - - T
of a ring S and an S-module L, we denote by e(z1,- - ,Z,; L) the multiplicity symbol of
%y, , T, With respect to L (cf. [10, p. 24]).

Lemma 4.5.1 e(fi™, -, fi"; Gu) = e(ar™, - -+ ,a4™; A) for any ny, -+ ,ng > 0.

Proof. Let G, be the ideal of G generated by homogeneous elements of positive degree.
As (f1,+-+, fa)G is a reduction of G, we have e(fy, -, f2; Gu) = €((G+)n). On the
other hand, as £g,,(G/(G+)") = La(A/I") for any n > 0, we have eo((G+)m) = eo().
Hence it follows that e(f1,- -+ , fa;Gar) = e(aq, - - - ,aq4; A). Therefore, for any ny,--- ,ng >
0

e(fi", -, fd"Gu) =mng - ng-e(fr, -, fa;Gur)

=mny---ng-e(ay, - 04 A) = e(@™, - a4 A).

Thus we get the required equality.

In the rest of this section, we furthermore assume that () is a standard ideal such that
PCQI+W,FCQand%(Q) C 1.

Lemma 4.5.2 Let ng,- -+ ,ng be positive integers. Then

A
(a1n17 e 7aﬂi.ni) n In — E ajndn—nj

i=1

foranyn € Z and 1 <1 < d. Hence we have
G/(fi™,---,i")G=G(IB),
where B = A/(a1™,- - ,a;™).

Proof. We may assume that n > n; forany 1 < j <. Let z € (@™, ,a™) NI
Then, as £ € QN (Q" I + W) = Q™ 'I, we can express

z=3 ypa* (el

A€A
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where A is the set of A = (Ay,-++,As) € Z? such that \y + -+ + Ay = n — 1 and

a* = a;*ag™ - - - ag. On the other hand, as

SUE(anl,"' ﬂQn—- ZanJQn— —nJ,
we can write

z=Zzya'7 (zy € A),

| ver
where I' = {y € A | 7; > n; for some 1 < j < i}. It is enough to show that 2z, € I for any
vel.

Let B = A[Th,--- ,T4) be the polynomial ring with variables T7,:-- ,T; over A and
¢ : B— R(Q) be the homomorphism of A-algebras such that ¢(7;) = f; for 1 < j < d.
Because ay, - - , aq is a d-sequence, ker ¢ is generated by homogeneous elements of degree
one (cf. [5]), so that ker o C IB as £(Q) C I. Now we set

f= Z T + Z(yfy — z)T7.

AeA\T ~yer

Then f € ker ¢. Hence we get 2, € I for any v € I'.
Lemma 4.5.3 We have
(1) [0:¢ filn = {wt™ |w e WNI"},
(2) 0:¢ fi=1[0:¢ i ®[0:c fil2,
(3) £g,,(0:¢ f1) = £a(W), and hence depth G > 0 if depth A > 0.

Proof. (1) Let € I" and 7" € 0 :¢ fi. Then a;z € I™*2, so that by 4.5.2 we have
a1z = a,y for some y € I™*!, which implies z € I"* + W since z —y € 0 :4 a3 = W.
Hence zt* = wi™ for some w € W N I"™. Thus we get [0 :¢ fi]. C {wt® | w e W NI},
and the converse inclusion is obvious.
- (2) This follow from the assertion (1) as WNI"CWNQ =0forn > 3.
(3) We get this assertion since [0 :¢ fili @ W/WNI? and [0:¢ fi]s 2 W NI

Lemma 4.5.4 fi,---, fs is a standard system of parameters for Gyr. In particular, it
follows that H3,(G) = 0 :g fi, so that h%(Gas) = h°(A). Moreover, we have I(Gy) = I(A).
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Proof. By 4.5.2 we have G/(f1,- -, fa)G = G(I/Q), so that

Loy (G/(f1,+++ , fa)G) = £a(A/Q) .

Similarly, setting a = (a;2,- - ,a4%), we have

Lan(G/(fi% -+ 15)G) = La(Afu).

Then, using 4.5.1 and that a;,- - , a4 is a standard system of parameters for A, we get

‘eGM(G/(fla et 7fd)G) - e(fl) e )fdaGM)
= EA(A/Q) - e(a’lv *er 5 0dy A)
= L4(A/a) —e(a:?, -+ ,a4%; A)
= eGM(G/(f12’ e 7fd2)G) - e(f12) R fd2; GM) .
Therefore by [10, Theorem and Definition 17 in Appendix], we have the required assertion.
Lemma 4.5.5 We have the following.
(1) If 0 < i < d, then H:;(G) is concentrated in degree 1 — i.
(2) a(G) <2 —d.

Proof. 'We prove by induction on d. Let d = 1. In this case, the assertion (1) insists

nothing. In order to prove the assertion (2), let us consider the exact sequence
0 — H,(G)(—1) — G(-1) -2 G — G/AG — 0.
This sequence yields the exact sequence
HY, (G/A1G) — Hyy(G)(-1) % Hj,(G) — 0,

which implies [H3;(G)]n—1 22 [H};(G)]. for n > 3 since [G/f1G], = I"/QI* ™ + "1 =0
for n > 3. Hence we get [H},(G)], = 0 for n > 2, so that a(G) < 1.

" Now we assume that d > 2. Let B = A/W. Then the kernel of the graded homomor-

phism G — G(IB) of A-algebras induced from the canonical surjection A — B has

finite length, so that we have Hi,(G) = Hi,(G(IB)) for i > 0. On the other hand, @B is

a standard parameter ideal of B such that I2B = QIB and ©(QB) C IB. Hence by 4.5.3

and 4.5.4 we have that f; is G(IB)-regular and f; - H{,(G(IB)) = 0 for any 0 < 3 < d.
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Furthermore, setting C = B/a1 B, we have G(IB)/fiG(IB) = G(IC) by 4.5.2. Therefore

we get the exact sequence
0 — G(IB)(-1) &% G(IB) — G(IC) — 0,

from which we see that Hi (G(IB)) — Hi,(G(IC)) for 0 < i < d and H%*(G(IB)) is
a homomorphic image of H3;?(G(IC))(1). Because QC = (ag,-** ,aq)C is a standard
parameter ideal of C such that I2C = QIC and X(QC) C IC, the inductive hypothesis
insists that Hi,(G(IC)) = [Hi;(G(IC))]1—; for any 0 < i < d—1 and a(G(IC)) < 3 —d.
Now the assertion (1) can be verified easily. In order to see the assertion (2), let us

consider the exact sequence
HiTY(G(IC)) — H(G(IB))(~1) -2 HE(G(IB)) — 0.

If n > 3 —d, then [H Y (G(IC))], = 0, so that [H,(G(IB))}n-1 = [H%,(G(IB))],. Hence
we have [H4,(@)], = [H%,(G(IB))], = 0 for any n > 3 —d. Therefore we get the assertion
(2) and the proof is completed.

Lemma 4.5.6 Suppose that ay,- -+ ,aq form a weak sequence (cf. [10, Definition 1.1]) in
any order. We arbitrary take x; € m for 1 <i < d and set & = x; — a;t. Then

(&, ,&)GNHY,(G)=0.

Proof. Let us take any ¢ € (&;,---,£)G NHY(G). As HY,(G) = 0 :¢ fi by 4.5.4, we
can express ¢ = wyt + wyt?, with wj € WN I for j =1,2. We would like to show that
w; € I+ for j = 1,2. For that, we write p = S0 & -7, with 7 € Rfor 1 < i < d.
Taking N > 0, We can express 7; = Z;V: LMt (i € IP) for 1 < i < d. Our assumption
implies mW = 0, so that mI? C mQJI. Hence I’ C Q for § > 3. Then, by 4.5.1 we
have n;; € QI’7! for j > 3. Furthermore, we can choose 7;; in QI since & € mA[t],
I? C QI +W and mW = 0. Because

d
wyt + wot? = Z&;m mod IR,

i=1
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we get the following congruence equations:

d
0 = Zxﬂ'ho mod I,

=1
d

w, = Z(zmﬂ — a;Mip) mod I2,
=1
d

wy = Y (wimi2 — aima) mod I,
i=1

d
0 = Z(wmij — a;nij—1) mod It for 3 < j < N and

i=1

d
0 = Zamm mod IV+2,

=1

The third equation implies w, € @, so that w, = 0. Hence it is enough to show w; € I2.

We need the following.

Claim There ezist elements ygﬂ) €l foranyl1 <j< N and1< a < B <d such that

d
Z a;(mi; + Zmay,(,;j,-) - Zwﬁyz%)) c [+,
i=1

a<i i<f

If this is true, setting
C— ;. L _ (1)
Vi =M+ Zxaym' Zmﬁyiﬂ )
a<i <f
we have Eg___l a;v; € I® = QI?. Hence there exist v} € I? for 1 < i < d such that

Zle a;(v; — v}) = 0. Then, for any 1 < i < d we get

I .
Vi —v; € (01,"',ai—1,&i+17"',ad) ‘A Qg

= (&1,“' y Ai—1,Aiy1, " )a’d) ‘Am,
so that z;(v; — v]) € @, which implies z;u; € Q as z;v. € mI? C Q. On the other
hand, we have Z?=1 T = Zle Z;M;1, so that ¢ € @, where q = Z;.i:l(mmﬂ — @iTio)-

Because w; — ¢ € I?, we have w; — ¢ = ¢’ + w' for some ¢’ € QI and w' € W. Then, as

w—w=¢g+q¢ €QNW =0, we get w, € I%
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(o )—-Oforany

(J)

Proof of Claim. We prove by descending induction on j. First, we set y,
1 < a < B <d. Next, we assume that 2 < j < N and we have the required elements y,;
Of course, y(J ) e QI'71 if j > 3. However, even if j = 2 we can choose y(’ ) in QI since
I C QI + W and mW = 0. Now we set

= i +Zway(’) Zxﬂ @)

a<i <g

Let Ko = Ko(f1,* - , fa; G) be the Koszul complex with the differential maps 8, : K, —
K,_, and let T}, T5, - - - , Ty be the free bases of K;. We set

d
g = E ’Uijtj . Tf‘,,
i=1

Then o € (f1,+-- , fa)K1 as vij € Q! for any 1 < i < d. On the other hand,

Oi(o) = Z fi-vgtl = (Z a;iv; U+ =

=1

in G, so that o € Z;(K,). Because fl, -++, fa is a d-sequence on G, we have

(furre F) KL O Za(KL) = Ba(K.)

As a consequence, it follows that there exist elements y(J Der'foranyl<a<pB<d
such that

52(2 yfjg”ﬁ—l TuNTg)=o0.
a<lg
The left hand side is equal to

4 |
>0 aayS™ — > agy N - T,

i=1 a<i <0

so that we have

v = Zaay Za y(J D mod [H

a<i i<

for any 1 < ¢ < d. This implies

Z TV = Z aaxﬁy Z xaaﬁy ) mod I/,

a<lf a<f
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On the other hand,

d d d
1 Vij Tilhis = z'rh,]—l .
i=1 i=1 i=1

Therefore we get

d
Dl + Y Tays =D weuly ) € P

i=1 a<i i<f

and the proof is completed.

Proof of Theorem 4.1.3. Only the Buchsbaumness of G is left to show. We prove by
induction on d. Because H,(G) = {wyt + wqt? | wy € W, wy € WN I} and mW = 0, we
have M - H},(G) = 0. Hence G is a Buchsbaum ring if d = 1.

Suppose that d > 2. Let B = A/W and C = B/a;B. Then C and IC inherits the
assumption on A and I in 4.1.3 (cf. Proof of 4.5.5). Therefore the inductive hypothesis
implies that G(IC) is a Buchsbaum ring, so that G(IB) is also a Buchsbaum ring since
G(IB)/fiG(IB) = G(IC), f1 is G(IB)-regular and f; - Hi,(G(IB)) = 0 for any i < d
(cf. [10, Proposition 2.19]). Furthermore, it is easy to see that the kernel of the graded
homomorphism G — G(IB) coincides with H},(G). Thus we get that G/H},(G) is a
Buchsbaum ring.

Let V = m + It C R. Because we may assume that A/m is infinite, we can choose a
system of generators i, -+ ,& of V such that {;}ica form an sop for G, for any subset
A C{1,2,--. £} with d-elements. In order to prove the Buchsbaumness of G, it is enough
to show that '

({&}ieA)GNHY(G) =0

for any A stated above (cf. [10, Proposition 2.22]). Let A = {i; < 42 < -+ < i4} and
&, = T, — bt (z, € m,b, € I) for 1 < k < d. Because (bit,--- ,bst)G + mG coincides
with the M-primary ideal (&,,---,&,)G + mG, we have that bi¢,--- ,bgt is an sop for
G/mG. Hence Q' = (by,- - ,by) is a reduction of I. Then, by our assumption that (i) A
is a Buchsbaum ring or (ii) A is a quasi-Buchsbaum ring and I C m?2, we have that Q' is
a standard parameter ideal of A, and hence by 4.1.1 we get I? C Q'+ W and X(Q') C I.
Therefore, by 4.5.6 we have (&,,-- - ,&,) NH3(G) = 0 and the proof is completed.

The next example insists that the assumption of 4.1.3 that I C m? is necessary when

A is a quasi-Buchsbaum ring but not a Buchsbaum ring,.
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Example 4.5.7 Let F = k[[X,Y, Z,W]] be the formal power series ring with variables
X,Y,Z and W over a field k. Let a = (X,Y)F N (Z,W)F N (XY, 2% W)F and A =
F/a. Let z,y,z and w respectively denote the images of X,Y,Z and W in A. We set
m=(z,y,2,w)A,a=z—2,b=y—w and Q = (a,b)A. Then we have the following.

(1) A is a 2-dimensional quasi-Buchsbaum ring but not a Buchsbaum ring.

(2) Q is a standard parameter ideal of A such that m? = Qm + W. We obviously have
%(Q) Cm.

(3) G(m) is not a Buchsbaum ring.

Proof. Let n = (X,Y,Z,W)F and b = (X,Y)F N (Z,W)F. Then we have the exact
sequence 0 — F/b — F/(X,Y)F & F/(Z,W)F — F/n — 0, which implies that
F/b is a 2-dimensional Buchsbaum ring such that depth F/b = 1,HY(F/b) = k and
eo(n/b) = 2. Because b = a + XZF and XZn C a, considering the exact sequence
0—b/a— A—> F/b — 0, we get

W=H(A)=b/a=zzA>k,
HL(A) 2 H{F/b) 2k,
eo(m) = ep(n/b) = 2.

Hence A is a 2-dimensional quasi-Buchsbaum ring with I(A) = h%(A4) + h1(A4) = 2.

On the other hand, It is easy to see that A/Q = K[[X,Y]]/(X3,XY,Y?) and Q is
a reduction of m. Then £4(A/Q) = 4 and e(a,b; A) = eo(m) = 2, so that £4(4/Q) —
e(a,b; A) = I(A), which implies that Q is a standard ideal of A. Because F/b is a
Buchsbaum ring with eg(n/b) = 2 and depth /b > 0, by [1] and [2] it follows that F'/b
has maximal embedding dimension, so that we have n? = (X — Z,Y — W)n + b. Hence
we get m? = Qm + W.

Let o' = z—wand ¥ =y — 2 Then A/(a’,t)A 2 k[[X,Y]]/(X2 XY,Y?) and
(a/,0")A is a teduction of m. Hence £4(A/(d/,b')A) = 3 and e(d’,b'; A) = 2, so that
La(A/(d, b )A) — e(d’,b'; A) # I(A). Therefore o/, is not a standard sop for A, which

implies that A is not a Buchsbaum ring. Then G(m) is also not a Buchsbaum ring since
G(m) = S/{(X,Y)S N (Z,W)S N (X*Y, 2%, W)S},
where S = k[X,Y, Z, W], and the proof is completed.
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