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1. BEREOHE
1.1 [FLC&IZ

FHOEL L TRERORRIEARBRILBT I2EELRRETH S, JNITIIFEHYE
¥, RFEWEER ERe RoBRBERT R, RTEYBEEREEREE 2TV,
BRI C BT 5 RFEOMRRIFEIROERIZ LY, FHOELIZBIT 2 E0&E| %2 EREICKR
FTE2RIMITRY D0 B,

BEHA=56LLELOBEVTEOARICEL T s BRL rBERLICHONTNER, =
NOTIEHFATERD, BFERRICEAEERENEET 2 Z bbb TWS, Znb
DFEDERGL, BFOWMERSRTHHECHETRIZB VTR 2/KRDOERN2THR
& BB FE (rapid-proton capture process,rp @F2) O FREMESHEM S, BF@EEED
BEEIPHEL TS, ITF, BFmEE— LDRRBILHE > TREEZEOWESEA TR Y,
SHOBFRREOHEDMENBF L S TND,

1.2 KWHEZREDBE

ARFFE CIITTREBRICE ST 2 B HEREEOHEE 2 MRMNERIC L R, FHICBY

5 rpRRBRTRAHRICED A EL ORFERSOFREEEZHETA2Z 2 HNE Lz, B
B R T RRERE X E R B FRREED S ESERFEMERLMNITEZ L
ZEHE Lz, HHIIBWTIIHRIZ,

(a) BEV (p 3K U sd BREIK) B FIBRIZIZIS 1T 5 Thomas-Ehrman 27 b DRIEHIFFE,
(b) BETILRRRAED b DR FBILFERDFEIE DR,

(c) §&% D observable( B FAEHMERSLHA LY « TA Vv—DWER L) 2B FEE
BEORERZFAND L
WCEREBVTHEZES LT,

EFED 5B (a),(b) 12T, BWRERFEERIZEBIT 2 rp BROFTEFTREENE R
»5, BFEREOEER, 7 —u VEBEO D FHFRERE L 1IHRc REBEVWEFBES,
%%ﬁ%&@%wmm&~ﬂVﬁ@%@&@%%ﬁﬁ@ﬁ<%&@%%%EE&%@%
RELTWS, 36k rpBRICEST 2 RAOEHF AR OBIEIL T DHEPZEDO L O TR
FENTEER, FIFNCR—B/RRBBRFET 5 Z & (Thomas-Ehrman 7 M) b 515
non3a, &FH4 1320 Thomas-Ehrman 7 MIETA2HHEBEREL, 7—n N
DBERDOENIERIIRKE RREZ R T LEALNI L, ZOBRITs BLERT T
BRI R E W2 rp BB TRARO LT U AT RE REEL S X DARENRD Y, BHEN A
TFENEEND, & OIT, EHBRED S OB FREOH S rp B L OFEICBVWTEE
THBHN, FDEENFMBES TR, EED drip line (T DEABIE DEAET, KRR
BEICBET A HBROES T AN LT, BT RHEEOHEEZHITOIZ L ZBE LT,
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AHERBEICH T HTEGHERR

(1) BV BFEREO#E

PR BRI OREY, 7 — o VERED 7 0 FHETREIE & 13k L REBEVER LR D,
B TBRIEOBEMIZIE, 7 — a2 V ADREROPRIZT TRIBROPR L EE2F
EERIELTND, itk BRICEET 2 RACHFBREIZOEEILT OEBEED
L OTRASNTE 8, FAKICA—R2RESFET 5 Z & (Thomas-Ehrman
L7 ) bEBN TN B, BifHi4 132 D Thomas Fhrman 7 MR 2 #Eim &
BIEL 7 —nr ADERODENERICRERBERERETZ L 2R LT L
= OPRIT s EBT TRICKE VD, BRTRER O VT U AICKE REEE
52 BEREMRD Y, REERTIENZEND,

1. BV ZICB81) 5 Thomas-Ehrman Shift & FZhHH E/EM

HENHETENCRITAEEREE TH Y, ERICRESRIROEBRED
TRAF—WEMITIZIER U & AR5, L LR bREMRRD b
EFEOENERIICA LR BIZE BV, EBED L~ OHF TS
APD LN L TCHEERTNEZRL TN bORFERINTND, RNT
I ONBE DL S0, EREREBOREVREZIZEMELHFELTND

= OFiE Thomas-Ehrman Shift & X T3, KRBV THRAIXIO
FHOEEREFRRZICEIT S s BTREORIBENCH D L LT, Hif
BIFRAT 21T 272
FFEFERBICIN T, 18, Bl EOBTF OBES MIREBEEICER L,
@ XX —ORFICHED . 7 —a VSRR LEBERS OEF~O LA
LB A EER~DEELRT Lz, TOFHRIT, BRERRIZRZD &,
o%m%%38m<6&\wmfk%<ﬁbh5:kﬁ%éntoﬁﬁ@:®
EE 15y, BT HBEET 5 2 RORPHREER 1TFIEEHR T reduction factor %
R, VBT HZLTEETEDHI L ERELT

EAHITIE pod BB A B L L, BNYF OEEREZIICD & LBV phRR
L BT AT RN XM OKRERFR—EER, TOBR, TNTNOK
B B - TR A SR B VR O 1THIE SR (0ds/20p1/2J| Von|0ds 20p1/27)
L <Op1/20d5/2Jl%n|0p1/20d5/2j> DEB I (131/20p1/2‘flvlm|181/20p1/2J> &
(Op1/2151/2J | Vpa| Op1j21s1/27) DEZWETAL, BEDENELIRENVWI L
QC{K%LTU\%) : & 75§\ *“Ey% LT:O @—fi?bt) <181/20p1/2jlVpn|181/20p1/2,]> @
E% ST B (0p1j21s1/27| VealOp1j2ls1ja]) ORI 08 ELIELTHZ &T, p
#4470 Thomas-Ehrman shift #H—RICEMTED Z &R L, & DICKIE
BR B 26 X7 sd— B TIL 180-BNe (2B B L, J = 0T REBOF—HEMIZ
FEh L7z,

#E5 Thomas-Ehrman shift [3= R /LF —EALIZRBIT 5 THEBERL TR,
Hx I DEX B S BICRESYE, REEKCRT sHEBREROTE LTH
PR sd BN ESR RET I L 0EBESEFRET D, L XITFEREOS—
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FRREBEIZRBT B ftEOTHR Y, B RREE DK —RBMD - DI RTT R &
BELMBEOT TS, ZNHICEALTIISHOEREZE L2V,
éB,ﬁ%ﬁ%ﬁ6®%%ﬁﬁ®ﬁn%m@&£@%L IBWCEETHD

A EDOFFFERRREIZE VO Tik Complex scaling YT X a2 B&1Z L7223,
EJZIKE!’J T2 BB IR SR O BRI & 7R o T,

L HET T T EBRBILBITAT A YA HMEME DTSR

2L DEFHEDTRVE—RENND, TA VA RBMEIZIERIC LW R
SFREE ZZ BN TWA, )5, Thomas-Ehrman 7 "D XS5 2T AV AL
VRIMEDON #RTEREEEMT S LT, TRAF M TR LKEIHE
O & K Lz OB EIZ DN T L, T4 VAL USFHERN EDRER
Do TWNBDONFN, TA VY ACUHMEE LV BEICRIET 2 2 L NEE
N5, FOET, ST—KROFET « 77 —BEMEIL, BARERTHr L=—
I IRFEEEZ D,
BILDOEBRENMOESHIC LY, WERBRRKISIZL T O FREICHYS T 55T
BEERQNSDOHET « 77 —BBRENBEICHETE AL )I122Y, sdi
ERECTCIT—HBEONET - T —BEEEDOLKBTRRL 2V 22oh B,
AIFZECIE, KRERKRFEBELREFLETEERIN—TIH LT, sd%ER
DI T—1%, BAl(He,t) FBTHRLERT —& & 881 O_X— X FIEME O
B, FEND CBREREHERRLOHBRICE ST, 7 - T —BEBRHREIC
BIS 27 A VR EVHBHEIC OV TR, 881 & BMg iz 0V TZ R —HEfr
TR TET - T3 —BBREIZONTHT A VA UIFRER LY
YoTWEEBZLNDZ L, EMBRBKIGORISHREIRE L V€7 - 7
S5 —BBBEMTIIHA T2 L 2R Lz, SEHEITEY - 77—
BREORRT —Z 2 I<BHRALTRBY, ZOIT—RKHTHTA VA
RMEER B - L REROBBEDBMBOELHEERLTVEEEL L), &
ITE, BFEEICK L CGREAHEIC L AR ED 2 EBO—0 % 5
ZEERAZELTELD, AL, VBB FREEICRoTHRTTA VA
EURHEOREI B E S BT ANTEL AN TRL, SBOFEDOIRE
BRI,

Fh, TAVAE UV OERZDIREROBMEIBTELHRE L, PLEAESHED
TE RUOHEFRHBROEREEMETH N TENRE, FE7 - T75—8
BLEUOEEFICL-TEI D, #iZ, EROLICT A VAL FREN
<Y Z-oTNBZ AR TELRE, MEXBTESRELTET T
S—EBBBELHRTAIZLICLY, EAEHEDFSICETAHERNRED
NAFREMDRD D, (PHe,t) DT —% LEEFOERRT —F 2abt, E7oRiEi
HEDRKRL BB LERDL, BEFOBEERSOFFIZONTE N,
7¥, TOWEIIERD LS ICKRREFREFHOBHEZFRD LB AL TTo
EHOT, WUEHEHES N — T IIRCBREAICE S ERFER I ENIZESL
EmmrHEY LT,
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N = 82 T R FiEDREE

1. 7 = 64 FfE DG REIRE O FT T 28 OfEST

Kleinheinz & 12 & 2B IBEI 7 = 64 822 B84 2 ERAAFRIC L Y, 6Gd 11X
2 BB AR L TVAZ ERPELNIZEN, EbITZ > 64D N = 82
BT (Ohay o) ? S B TR TE B LT 5B XM, BN E SN Tz, BIC
1B2Vh Bt A J = 107 —» J =8t O B2 BREROHASIT, J =107 k=
FVF 212D EPGBRAPSHACERIMAFE LT, €=FVFT4 T4
v —& LTHOEIN TV,
Be it 0Bk RFCEMERE, BTARR N = 2 OFRNE21T o7,
Thbb Z = 64 BIRICFEET D O0hyyys BUELSED 2s1)3, 1dg, BUEHERY A
Nz X VBREMRERT, H—ICBEEININETHLIEEZ T,
FZ THE—EEME L LT (Ohyyy2, 25172, 1day) 7754 BRI 2 RIE Lz & 0 BARAG 25
BWRZEAL., 2NOOED TRV - LN E2 BERHERY T3 E
Lz, TOfRE, E2BBHRRBIIZ =72 TRELRD, ZEREAEVES Z L
R LE, ZORKIIGTHEORMHEBEIZEY., J=107**Yb) IZ8BV T 0hyyys
BE D 5§ AR F IO EEE N (Ohyyye) B L. N(Ohyype) <6 L7222 L3
BNZTIR 5T,
FEBRTRT B2YD 2B T N(Ohyyy2) ~ 6 ZFHT D720, REFR2 BB L &
L. e LTI HoTz M5Gd ORFiEE Z R L BB aEEIZITV, N = 82
BRI —E0 J =101 REOSTEITo/z, FORKER, THEEZBRET 5
Z IRV, Ohyyyy BLE O SBRIFEAIEML, B2Yb 23T N(Ohyyy2) ~ 6
BEBHRE, m*w%~ﬁu.Em%% WZE L COFHE—RI 0 BB EBARIZAR
L7z,
T DOFEEIIEROBFEER N = 2BIZOVWTORBERELEZDL DT
BB, BIZEEDE=F VT4 T4 YV =—0W& % & 0 R U LS
b ENTmE=F VT 4T A V~—] OEEMEZRL, quasi spin & DOEE
ZHLMNI LT,

L 136By 0T A Y — DR

182 134X e 188Ce D N = 80 ZICR N TIEWT LS J =10 BT A V~=—L L
TERMICERINTWE, EZABRUL N =808 Th 5 ¥¥Ba T, ER
FOREEEHS J =101 OL I REALRBOERPEHEL S, RERALTH-
77, BEAARBETFHFEFORBE L OERIN— 1L, EHIERERICZ H
Wz EBRIZIBW T, ¥6Ba DF R B RREDAERIZERIIL, 3.357TMeV Db =
ZNFREL LTI =10t 2RA LT,

XBIey—yFARRREICED, 20 J=10" OFMA Ty =94+ 100s THD
MR LT, Z 0 E2ERMEL, ITED ¥2Te L B4Xe @ J = 101 D E2
BEL LR, BLL/NEL, EhOTHEHRREBTHD Z LA L,
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(251/2,0h11/2, 1dg) B (ZZTr =0,1,2,3,4) %, —FFEFIZIT
(1ds/2, Ohi1/2,281/2, 1ds 2, 0grye) 2 BALEARE Lz, ARMEEIER & L TIXBF-
B, - FRICIESDI Z A L, Br-F RIS, BRLBETFR-
HHETFROMBICEERAERD (Q- Q7)) AWz, "INV =T 5D
FHEICER LTIE, EVEERERICH T ORENMEI A CERTE R LEZ B,
B RDE=2VU7 v > 5 DREBIEERIN L TITo 72,

ZORER, BBa OEWEIERERSER I, J = 101 11 3.32MeV 2B b,
2.94MeV D J = 8T L 5 ERR L DO+HR—8E ATz, BONKEEED
b, BE2BBICELTY, —HED N =80 2B 5 Z KFHEL L HHA L,
KRz ¥Ba D J = 10 IRBBIE, L LT | =0T x J, =100 b2 5 2 &N
HEAL, S E2BB CRIEND J=8T1X|,=2"TxJ, =6") ThHrHrZ LM
5, E2EBBHEEO/NS IPFERTE 2,

(WD) KU v 75 ViRED CuTA Y h—T Ol

BB F i # (proton drip line) iTfE DRFIZHTFICIL, £ DOXTHETH 5 iR
(neutron drip line) ¥ DFE-FIZATIE & R DY 3BV | 2L DRRERE DT
FEMENS D D, FRICTTEMFREICS &O0%, PEFRERZOEE D b B TR OHE
EIZBET A RENRIEREB/DII LT TH D, ZOLIRERND, BLTE
FAFFRFTO & T LIRS E BV TITON I FEFE N = 403860 Ni @8R
BIEICER L,

8B Cu DIEVEIRIREEIX, J = 17(0keV), J = 27(84.1keV),J = 3 (610keV), J =
67 (721keV) TH D Z & BEBRANUCH LAY, N = 40 fHEIZ RT3 T ETE
& LT foja,p1/2, goj2 EIE L TODIRILDA B ANT 2207z, FRITH 1 RERRAR J = 2+
DB EERRE J = 1T ~0 M1 BENAE S, BREEOERMEL (21| M1||11)] =
0.197up & . BMZREINIIRE 7ps jovpr /2 I DBBHER | (mpy/ovp1 227 || M1||wps avp1/211)| =
0.46 1, DXDITKIBIZ/NEL RO TNBZ EWRRENT, —FJ = 1T OBEE— A
v P DOERBREIX g(17) = 2.48u, &, 1FIE |mpyjavpred = 1) RETOHREIZIE
WIZEARHBA LT, b OEICHE— LBERIMERETT ) 2, HLXRENL
BLANZ b L SXREER THEI Lz, FHEIBTF. FHEFICHLT (pg/sz,/g,pl/z)ﬂ’ +
Fris(Paja oz, pry2)™ " B ZARTE LTz, T DOfER, BEMEELHERT AL MOR—
HOBRIZIE, B CTH B frp POORMEE—FE2ERET 5 Z & DEEMENRINE,

(IV) FHHELTOKNEHEEER &L TREKDORRE

ESEO T REBICRT A FEERORRIZL D, FREEHICRIT DG N
DREEDBEAE L Bl o> TWAZ ERAL TR -7n, T EEEDRAIZHE
bABEETHIEEZLY, FOREELE LT, BFRELEB S TWS Z 2ick
BINBECHENEAEEAOEERENBERSNTODY, EXERLEZIIBLNT
WAV, T, FHETRERST AR BTREZLED, SEERND
BN - B A OEME RO Ty B D EEE R BRI I VTS 2 L2 B L,
AR ORI FNCHE LEEEFET NI XADOBEETT 17,
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ek, EFEOTHEHEIIY e - LU DICEM{L &7 Skyrme B EER Z AW
TITbNDZ ENEholz, LxL, RV o7« SAVEBETEE DSR2
WX LT, B—0 Skyrme B EBE/ER CHa»nE I TEBATRY, Z DT,
HRGER L O RB— BB L OIS LERL T, ARV VHEEERE
STk BEEREZHO ZEE2EBERL, FNCE LT AT XL L LTHRK
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ML, FOFEFERMLELTT oS 7AZBRB LE, ZhidEl, BEIRMES
NEEFEER D OICHEENRTETH D,

bz, AR GITANICH BT RBROMBEESEDE TRE SN, BRUSOMR
TR AN b T A 0nhbw s M3Y FEERAZEICL, BMEOHESENL T
NEBELEHFLOEDHEERZRE L, ZOFPHEFERIT, ZERROK
FEET N TIIRESED Skyrme Bl 5 % Gogny BUAHEFER & IZIEEEROFE Rz 5
2 A—F, BETEREGER TN ~ 16° N ~ 32 OREENEROHBEEIER &L £2o
TR, FEREELTFELRY, FREEOBREEIH L T—EOTERLZFEOZ
LR E NS, UL, ERERHENZEESRESNTRY, S8BT A—F
OMELE DL RABENLIVFELIBRT S LREEND,

ERERE T T )V R RIC & 2 BRI O HERLEE O AT

MER 7 ~ N, BEERCENTHRCBFEREMICH->T, rpBETRE
FRORIZ L RBAREERD Y, rpBBRTRAROBEDIGERE N 5 120D T DEIEN
BENERCEETH D, BEMEELHRBOICRD 2 LT, BERRIIE» LK
RN L ARERETTIDONEENDZ &, EREOEDICEBTFE TNV
(EMERlE T A vaiE, BELTSMMCHE) BEZTHD Z LIk, FIFREOBIZER
HECHAHEENRRLTCERBEY TH5B, LizL, SMMCERZSHTEE, &
EREEE T A OBEITEINAINV =T UO—HEZERLTRY, TOEDT
AV AL BRI NE—RRZELLBRTERVEVWIMER ST, Th
TERT 7~ N BRI E R ET A BRIORLI R L RV /D,

- OFFE T, SMMC SHEEFOBICE Y IR LTT A Y AV REZ RIT
FBHEFFICERL, Z~ NEICHLTT A Y AL EOBAEEZHE X <
KDBZEICHEI L, SBIT, T4 YAEVICE DR NF—5H e ERESED)
LEMELELET, TA Y AEVEQEMBERZMAELED I LICLY, RIENE
BN T b IEEEOBVEENETTESZ & &R Lz, R, Ormand iZ&
BB INFEEHNR TRV F—SROBENRBR RN LEZRALIILT,



1.4 MHETIHERE

(I) jj FEAEFRITH &S BBERFE o — OB
A FEFREEATICARFIR 2RI L LT, RFEOMBRRERZITO BERFETH
AEFEBREAHERA 0 /T 00— FORBERD B, VEELERTH B EFHIT
QEEOT7 =2 VI VBT LEHRTNLRIETR T, TORFRIZH &SV
IZER L TN U gk, AEBERFR, SFEEFRZ EERNICH- &
RERLRVERAINFET D, TNbEBERICHZL, REETHLEIHEEE
FRIZSERIREETREL T 5O RBEIThH 5, AWITIEE CHR Lo o —
Rid jj-coupling 12% & D BB T, BB T2 =4V 7 BERFLNIFERATE
LHREE L > TWN D,
1. Hamiltonian
ERNIIZHF. PHEFRENETNOHEZERICHD L LTWVD, FRENLD
NINIET B H, . Hy BEOBF-FHEFHEEEREZ V), &35, N3
V=T U HIE
H.z %p + %n "l_ %n
T Hy X LRIF=RAF— ¢, (3) BE 2 KD ENER V,,(i5) ZHWT
Hyp = iep(1) + Bigi Vip(35)
LEG, FEFRICH L TCHRBEICLITO L S 1272 5,
Hy = Zien (3) + Tty Van (25)

2. Basic Vectors
B, FHEFICRLTENEN 6BEE COZEBEZRAT L Z L3 k5, %
IVEIV, Jp1, 2, Jess Jpar Jos Jpe B L TN Jn1, Jn2, Jnds Jnd, Jns, Jns &5 D & B F
ROEBNT v, RETFROEBRS MVZUTOL 212720,

oy Jp) = ljgfl (a1 Jpl)jg§2 (apZJpZ)[JpH]j;gg (ctp3Jps)[Jpazs]
X o (papa) gyt (Ctps Jps) [ Tpas | (0to Tp6) [pass] Jp )
|atnJn) = |nt* (0tn1Jn1)in3* (On2 Jn2) [ Jn12]n3° (na Jn3 ) [ Jna2s]
X gt (o Ina) Jn® (Ctns Ins) [ Jnas | ing® (06 Ine) [ Inass) Jn )
FORER, REEETRT HERN Ui
lad) = |apdy X oyt J)
E72%, RBEPELTOETH opy, - omy WIFE=F I T 4 ZFATY
D, LIeRoTHET2Z0E=4V T 110 LI IRIERIRAIREL 72 D
3. Effective Interaction

o KO EAE R Vi, Vi Vi & L CHEAITIIER 2 MECTATIT 528, (EiE



B RF XL, TrbbHnA, LS, Ty E, MR EFEEL LT
Yukawa ® . GaussBE2 EERF UV AN TFAZ—FRNTHETHZ LB
BETh B, |
4. Calculation of Hamiltonian matrix

SENESOBETHED, HBOMICH BT, FHEFEREEETWI, o
7 l\liE@JE’J Jkﬁf BAERL, NIN =T UTFIOETHEREZFHEL, &
Wb, Z BEARICEE L TlE. EREMNS MICEEN E T (Bl
Ew*\i?iﬁ\ 'Ev—ﬂ') F 1) 12 ESREBRIBOEALFRETH D,

5. Diagonalization
KIS NEFTRIERLFEAIRY, 70F a3 ABECH LSV TEHAEZ REEHR
B B IEBEIZTRD 5,

6. Calculation of nuclear property
BLNEEERE AT, EHEBRE, N—FRETIER, 1737
RS2 B1T B spectroscopic factor, 72 & DMBBEZFHET D,

(1) BEARFEET R~

AWEREZT ERE L LERO 0/ 702N T, BYE LSOO TEEZR
EIrLSETE, BEESNABREEB/IZENTE L, AFERBEORRO—DL
(MBS, FOMEEZLUTICRET,

L A N—RTFEA~DIG A |
PESENA N—REDERRITIE (K, 7)) BUSR (nt, K1) RIS AV TN,
TN INEESRO/NE R A DERR Y, N SR EORRSH D03, AS
B FORENBIZ VW EWVWI KERREADRDH 2T, EZTINLIZRDDHT
FoonAd N—IZERTTREME L LT, BT MEREZAVE (6,e) 128D, (v, KT)
Wk BRIENREL DD, TRbb

(v,K*): pluud) + v — A(uds) + K (u3)

KiTh b,

T ORE TG LATESENKE L, Lrb AU REREFED K& <
FEEDER L REEL D b, BAEVRERBI BRSNS ZLRTRISNS,
BT T |(0dsy2)ST = 0F) 2% |(0dsy2); - (0dsj2)aJ) REEAER SN D & &,
J = 5t REAREERKELRE L THD, €I THRAIITHRIHER D OB
ge 7 —F L HFAT, WL OPDRTFEEENC LT (v, KT) RRET o725
%mViaV~VaV%%%ﬁoko%K%ﬁﬂ%ﬁﬁ%w\%M%Kﬂ%M
BEOKRN AT o7z, WIRERD 88i(J = 0F) & LT (0dsa, 15172, 0day2) '\ ZERK
=nBdsNA IN—1% 28A1A LT (0d5/2, 151/2, 0d3/2)11 X (0d5/2, 131/2, Od3/2)A 2R
AR E 2T o T, EORBEEFAVT B, = 1.3GeV 2B D RhERE
Tk, EBRAREMEET L, RIS VA R—IE R0 FRmE O R 224
Fxnd,



2. BLHEER M A ERRE~DIEH

BB O EEREBO X B 43F5Ma< J = 0% ¢, ZhITEFICE < tEEE
RO L BRI NT W, TR0 bR FEICE < MEER (52 : J|Vea |52
J) TJ=0ERPMOER L bARARERFINMEAMIZH D235 Th D,

& Z A CW.Johnson biX2 (FHEEMEMR & LTEEEZAWEREESTH,
RO ERITY &, J =0T AL REREERIEL R RN, R kg
MEBFERLL BN, ZLLRENVWIEEFTLE, ZhiXJ =0 BEREO
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Hartree-Fock approach to nuclear matter and finite nuclei with M3Y-type
nucleon-nucleon interactions

H. Nakada*
Department of Physics, Faculty of Science, Chiba University, Yayoi-cho 1-33, Inage, Chiba 263-8522, Japan
(Received 7 April 2003; published 30 July 2003)

By introducing a density-dependent contact term, M3Y-type interactions applicable to the Hartree-Fock
calculations are developed. In order to view basic characters of the interactions, we carry out calculations on
the uniform nuclear matter as well as on several doubly magic nuclei. It is shown that a parameter set called
M3Y-P2 describes various properties similarly well to the Skyrme SLy5 and/cr the Gogny D1S interactions. A
remarkable difference from the SLyS and D18 interactions is found in the spin-isospin properties in the nuclear
matter, to which the one-pion-exchange potential gives a significant contribution. Affecting the single-particle
energies, this difference may play a certain role in the new magic numbers in unstable nuclei.

DOL: 10.1103/PhysRevC.68.014316

L. INTRODUCTION

Various models for nuclear structure have been developed
in order to study low energy phenomena of the atomic nu-
clei. Whereas straightforward application of the bare NN in-
teraction is yet limited only to light nuclei [1], the nuclear
structure seems to be well described by relatively simple
effective interactions at low energies. Although the effective
interactions may depend on the models, there should be basic
characters in the effective interactions for the low energy
phenomena, irrespective of the model. On the other hand,
since the invention of the secondary beam technology, ex-
perimental data on the unstable nuclei have disclosed new
aspects of the muclear structure. A remarkable example is the
dependence of magic numbers on the neutron excess [2]. In
regard to the new magic numbers discovered near the neu-
tron drip line, a question has been raised on a character of the
effective interactions relating to the spin-isospin flip
mode [3].

Mean-field theories have successfully been applied to the
nuclear structure problems, in particular for stable nuclei.
They are also useful to investigate basic characters of the
effective interactions. However, not many effective interac-
tions have been explored for the nuclear mean-field calcula-
tions so far. The Skyrme interaction [4] has been popular in
the Hartree-Fock (HF) calculations, since the zero-range
form is easy to handle. Among a limited number of finite-
range interactions, the Gogny interaction [5] is widely ap-
plied to the mean-field calculations, in which the Gaussian
form is assumed for the central force. The parameter sets,
both of the Skyrme and Gogny interactions, have been ad-
justed mainly to the data on the nuclei around the S stability.
It is not obvious whether the available parameter sets of
these interactions account for the new magic numbers prop-
erly.

In order to exploit effective interactions applicable also to
unstable nuclei, guide from microscopic theories will be im-
portant. Brueckner’s G matrix has been a significant clue to
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studies in this course. Although microscopic approaches us-

ing the G matrix have not yet been successful in reproducing

the saturation properties, notable progress has been made

recently. In the shell model approaches, microscopic effec-

tive interactions have been shown to reproduce observed lev-

els remarkably well [6]. It should be noted, however, that the

shell model interactions are usually specific to mass regions,

and their global characters have not been discussed in detail,

despite several exceptions [7]. The so-called Michigan three- -
range Yukawa (M3Y) interaction [8] has been derived from

the bare NN interaction, by fitting the Yukawa functions to

the G-matrix. Represented by the sum of the Yukawa func-

tions, the M3Y type interactions will be tractable in various

models. It has been shown that the M3Y interaction gives

matrix elements similar to reliable shell model interactions

[9]. Moreover, with a certain modification, M3Y-type inter-

actions have successfully been applied to nuclear reactions

[10]. By using a recently developed algorithm [11], a class of
the M3Y-type interactions can be applied also to the mean-

field calculations. Under such circumstances, it will be of
interest to explore M3Y-type interactions and to investigate

their characters in the mean-field framework. In this paper,

we shall develop M3Y-type interactions and investigate their
characters via the HF calculations.

11. MODIFICATION OF M3Y INTERACTION

Nugclear effective Hamiltonian consists of the kinetic en-
ergy and the effective interaction,

2

P;
H=K+V;, K=2, —,
z,'2M

V= E Vjj- m
i<j

Here i and j are the indices of individual nucleons. It will be

natural to assume the effective interaction v;; to be transla-

tionally invariant, except for the density dependence men-

tioned below. We consider the effective interaction having

the following form:

. (C), . (LS), (TN), . (DD
vp=0{P+o i+ o+ (3P,
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SE, TE; SO
U(1(2:)=2 (tfz )PSE+t,(>1 )-PTE+[£1 )PSO
n
TO o
+tfz )PTO)jfz )(r12)’

LSO Ls
v{E9=2 (B Pt (50 o) A () Lg- (51 +55),

n

TNE T™NO ™ 2
vi=2 (B P+ TN P 1) (7 10)r 8 10,
n

pEP) = P14+ xPDIP ) p(x;)]*8(x ). @

The relative coordinate is denoted by riy=r,—r; and 7y,
=|r,|. Correspondingly, the relative momentum is defined
by p12=(p,—p2)/2. Ly, is the relative orbital angular mo-
mentum,

®

$;, S, are the nucleon spin operators, and S, is the tensor
operator,

Lip=r;pXp,

@)

fa(r12) represents an appropriate function of ry5, the sub-
script n corresponds to the parameter attached to the function
(e.g., the range of the interaction), and ¢, is the coefficient.
Examples of f,,(71,) are the delta, the Gauss, and the Yukawa
functions. P, (P,) denotes the spin (isospin) exchange op-
erator, while Pgp, Prg, Pso, and Prg are the projection
operators on the singlet-even (SE), triplet-even (TE), singlet-
odd (SO), and triplet-odd (TO) two-particle states, respec-
tively, which are defined by

S1p=4[3(s1 T12) (52 F12) = 51- 8]

1-P,1+P, 14P, 1—P,
Psp=—— 3 =3 3

1-P,1—P 1+P, 1+P
Pso=—; 0"2_7: Pro=—5 - 3 . ®)

The nucleon density is denoted by p(r). The original M3Y
interaction is represented in the form of Eq. (2), with
fu(ri)=e~#" 12/ y 1, and v{PP)=0. As discussed in Ref.
[11], the Skyrme and the Gogny interactions are obtained by
setting f,,(712) appropriately, except for some parameter sets
of the Skyrme interaction in which certain terms are ex-
pressed only in the density-functional form.

The saturation of density and energy is a basic property of
nuclei. In developing effective interactions adaptable for
many nuclei, it is required to reproduce the saturation prop-
erty. However, the nonrelativistic G matrix fails to reproduce
the saturation at the right density and energy. Therefore, it
will not be appropriate to use the G matrix for HF calcula-
tions without any modification, although several HF ap-
proaches using interactions derived from the G matrix were
tried in earlier studies [12]. The M3Y interaction was ob-
tained so that the G matrix at a certain density could be
reproduced by a sum of the Yukawa functions. The M3Y

PHYSICAL REVIEW C 68, 014316 (2003)

interaction gives no saturation point within the HF theory,
unless density dependence is taken into account explicitly.
Khoa et al. applied the M3Y interaction to nuclear reactions
in the folding model, by making the coupling constants de-
pendent on densities [10]. The exchange terms are treated
approximately. However the exchange terms may contribute
significantly to the nuclear structure. We here keep the cou-
pling constants in v{3) independent of density, while intro-
ducing a density-dependent contact interaction [v{2™ in Eq.
(2)], as in the Skyrme and the Gogny interactions. We can
then treat the exchange (i.e., the Fock) terms exactly with the
currently available computers. It should be mentioned that
there has been an interesting attempt to approximate the ex-
change terms of the interaction in the density-matrix expan-
sion [13], although the accuracy of the density-matrix expan-
sion should be checked carefully.

We start from the Paris-potential version of the M3Y in-
teraction [14]. This original parameter set with no density
dependence is hereafter called “M3Y-P0.” We shall modify
this interaction so as to reproduce the saturation properties.
In the isotropic uniform nuclear matter, matrix elements of
{55 and v{IV between the HF states vanish. Therefore
{57+ v 0P determines the bulk properties such as the satu-
ration. The range parameters for the Yukawa functions
SO =e"# pyrpy in 0l are pi'=0.25, py =04,
and 3 '=1.414fm in the M3Y interaction, which corre-
spond to the Compton wavelengths of mesons with masses
of about 790, 490, and 140 MeV, respectively. We do not
change these parameters. For the longest-range part (»
=3), the coupling constants 1 | ({7, 159 and £ are
fixed to be those of the one-pion-exchange potential (OPEP),
as in M3Y-PO. The interaction v{5") in Eq. (2) acts only on
the SE and TE channels,

v PP = (P01 —x D)) §(r1y) Psg

+t(DD)(1 +X(DD))5(I'12)PTE .

©)

Microscopic investigations have shown that the density de-
pendence of the TE part is primarily responsible for the satu-
ration [15], as a higher-order effect of the tensor force. While
the interaction in the SE channel is attractive at low densi-
ties, it also has certain density dependence originating in the
strong short-range repulsion. Thus, a possible way of modi-
fying the M3Y interaction may be to replace a fraction of the
repulsion in the SE and TE channels by vﬁl_?D’ .

In addition to the saturation properties that are relevant to
the central force, the spin-orbit (LS) splitting is significant in
describing the shell structure of nuclei. While true origin of
the LS splitting is not yet obvious [16], LS splittings ob-
tained from HF calculations with the G matrix interaction are
too small, in comparison with the observed ones. From the
HF calculations for finite nuclei, we find that v{5> should be
about twice as strong as that of M3Y-PO to reproduce the
observed LS splittings. The tensor force influences the
ordering of the single-particle (s.p.) orbits. To reproduce

the observed ordering, v{3'” should be smaller than that of

014316-2
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M3Y-P0. We here introduce an overall enhancement factor to
p{5% and an overall reduction factor to v{JN, as will be
shown in Sec. V.

In this paper we shall use two parameter sets for modified
M3Y interaction, “M3Y-P1” and “M3Y-P2,” in order to
show sensitivity to the parameters for some results. In M3Y-
P1, we replace the shortest-range (n=1) repulsive part of
{9 by v3™ in a simple manner. We reduce both {°%) and
t(lTE) by a single factor, keeping the SE/TE ratio in v(1123D)

equal to 55B/A™ in M3Y-P0, by imposing

£(TE) _ ((SE)
ot ___ 1 __ @)
£{T8) 4 ((SE)

The reduction factor and #P®) are determined so as for the
saturation density and energy in the nuclear matter to be
typical values, as presented in the following section. Charac-
ters of M3Y-Pl will be investigated in the nuclear matter.
Although this modification is too simple to reproduce prop-
erties of finite nuclei, the M3Y-P1 set will be useful to clarify
what characters arise from the original M3Y interaction, rela-
tively insensitive to the phenomenological modification. In
the M3Y-P2 set, all 1, parameters belonging to the n=1 and
2 channels in v{3) are shifted from those of M3Y-P0. Al-
though we have three ranges in v(lg) , the number of adjust-
able parameters is no greater than in the Gogny interaction,
since we fix the OPEP part. We fit those parameters, together
with the enhancement factor for v{5® and the reduction fac-
tor for vgN) , to the binding energies of several doubly
magic nuclei. The resultant values of the parameters will be
shown later.

111. PROPERTIES OF NUCLEAR MATTER AT AND
AROUND SATURATION POINT

Basic characters of nuclear effective interactions can be
discussed via properties of the infinite nuclear matter; in par-
ticular, properties at and around the saturation point. In this
section we investigate characters of the M3Y-type interac-
tions via the nuclear matter properties within the HF theory.
In comparison, we also discuss those of the Skyrme and the
Gogny interactions. We use the D1S parameter set [17] for
the Gogny interaction. In most of the Skyrme HF ap-
proaches, the LS currents arising from the momentum depen-
dence of the central force are ignored, and the parameters are
adjusted without their contribution. Although this treatment
occasionally improves some characters of the interactions, in
this paper we would focus on characters of the two-body
interactions, rather than those of density functionals. For this
reason we adopt the SLy5 set [18], which is devised for
calculations including the LS currents.

In the HF theory of the nuclear matter, the s.p. wave func-
tions can be taken to be the plane wave,

1
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Here x4 (x,) denotes the spin (isospin) wave function, and
{) indicates the volume of the system, for which we will take
the —o0 limit afterward. The s.p. energy for this state is
defined as

K? Q
(ko) =t —— f &k
(ke M (2m)? "227'2 ky<kpr, o, :

X(koT,ky 0y 73| v 1ol ko T,y 075 7). ©)

Energy of the nuclear matter is expressed by a function of
densities depending on the spin and the isospin, p,, (7
=p,n; o=1,]). The density variables can be converted to
the total density p=3%,.p,,, and the spin- and isospin-
asymmetry parameters

E 0P re

D= aT - PpT—ppL“"pnT—'an,
5 p p H

> g
_ aoaT

— ppT+pp1,'_PnT_'pnl

77!— p p E
2 orp
- oT T0= Ppt —PpL " Pt Puy (10)
8§t p p ?

where o (7) in the summation takes * 1, corresponding to
o=T,]l (7=p,n). By assuming that the s.p. states are occu-
pied up to the Fermi momentum, the density is related to the
Fermi momentum for each spin and isospin,

1

pTO‘=_6—;£k]3370" (11)
The total energy of nuclear matter is given by
Q K2
= —-——————-3— f d3k1—1
(2m)" aimy Jki<ke, 4, M
QQ
+ - > f - dry J’ Py
2(2m)° ooy Jki<ke, g, ey <kpy,q,
X (k071 Ky 03 7o |V ol 01 71 g 05 7). (12)

As already pointed out, only v{$’+v{2™ contributes to the

energy of the isotropic nuclear matter. In Appendix A, sev-
eral formulas on the HF energy of the nuclear matter are
derived for interactions expressed in the form of Eq. (2),
with general and typical ff,c)(rlz). The nuclear matter ener-
gies are calculated for the Skyrme and the Gogny interac-
tions, as well as for the M3Y-type interactions, by using
these formulas.

In the spin-saturated symmetric nuclear matter, we have

= k- =75,= 7,,=0, which indicates kg, =k, = kg, 1=k
1) (r)_————g’k "YoXr- (8) Ns= M= Ms: » Fpl Fpl Fn Fnl
kot \/ﬁ_ i and p,1=p,| =pp1=p, =p/4. In this case we denote the
014316-3
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FIG. 1. Energies per nucleon £=E/4 in the symmetric nuclear
matter for several effective interactions. The thick dotted, dot-
dashed, and solid lines represent the results with the M3Y-P0, M3Y-
P1, and M3Y-P2 interactions, respectively, while the thin dashed
and solid lines represent those with the SLy5 and D1S interactions.

Fermi momentum simply by kp. The lowest energy for a
given p normally occurs along this line. The saturation point
is obtained by minimizing the energy per nucleon £=FE/4,

&

—| =0 (13)
ap sat,

Ed

which yields the saturation density p, (equivalently, kro) and
energy &. Figure 1 illustrates £ as a function of p for the
symmetric nuclear matter with the M3Y type as well as with
the SLy5 and DIS effective interactions. We set M= (M,

+M,)/2, where M, (M,) is the measured mass of a proton
(2 neutron). The pammetcrs for v(C) and v {OD) of the M3Y-
type interactions are listed in Table I. As mentmned above,
the M3Y-PO interaction gives no saturation point. We do

TABLE L. Parameters of central forces (including v{5™) in the
original and modified M3Y interactions. See text for the u, param-
eters.

Parameters M3Y-PO M3Y-P1 M3Y-P2
45D (MeV) 11466 8599.5 8027
AT (MeV) 13967 1047525 6080
) (MeV) —-1418  —1418  —11900
AT (MeV) 11345 11345 3800
159 (MeV) —3556 ~3556 —2880
£ (MeV) —4594  —4594  —4266
£ (MeV) 950 950 2730
A0 (MeV) —-1900  —1900 -1780
459 (MeV)  —10463 —10463 —10.463
£ (MeV)  —10463 —10463 —10463
£590 (MeV) 31389 31.389 31.389
AT (MeV) 3.488 3.488 3.488
p 1/3 1/3
£(DD) (MeV fm) 0 1212 1320
x(PD) 0.09834  0.72576
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TABLE 1I. Nuclear matter properties at the saturation point.

M3Y-P1  M3Y-P2  SLyS DIS
ko (fm) 1.358 1.340 1334 1342
& (MeV) —1599 —16.14 —1598 —16.01
K (MeV) 2257 2204 2299  202.9
MM 0.641 0.652 0.607  0.697
a, (MeV) 3035 30.61 3203 3L12
ag (MeV) 2081 21.19 3747 2618
a, (MeV)  37.63 38.19 1515 29.13

have saturation points in M3Y-Pl and M3Y-P2 owing to
v(llzm) Differences among the saturating forces, i.e., SLy3,
DIS, M3Y-P1, and M3Y-P2, are small at p<<py. At rela-
tively high density (p=0.3 fm™>), the M3Y-P1 and the
M3Y-P2 interactions have lower £ than SLy5 and higher than
D1S. The values of kg and &, are tabulated in Table II. The
M3Y-P1 set has been determined so as to give kg
=1.36 fm and £y=16 MeV.

In Figs. 2 and 3, contribution to £ from each of the SE,
TE, SO, and TO channels in v(c) (DD is shown as a func-
tion of ky. Sum of all these channels and the kinetic energy
(K)/A=(3/5)(k%/2M) is equal to £ in Fig. 1. As seen in Fig.
2, the TE channel takes a minimum at kg=1.3-1.5 fim ex-
cept for M3Y-P0 and M3Y-P1, primarily responsible for the

150 '

SE channel v

100

50—

VIA [MeV]

150 TE channel

100+

50

VIA [MeV]

n
- = 0
50
e,

-100 T T T T T 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0
ke [fm™]

FIG. 2. Contribution of the SE and TE channels to £. See Fig. 1
for conventions.
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160

100 -
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50 -
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FIG. 3. Contribution of the SO and TO channels to £. In both
channels, the results of M3Y-PO are equal to those of M3Y-P1,
which are presented by the dot-dashed line. See Fig. 1 for the other
conventions.

saturation at kgp=~1.3 fm. In the DIS interaction, the energy
out of the SE channel monotonically goes down. This is not
compatible with the presence of the strong short-range repul-
sion in the NN force, and causes an unphysical property in
the neutron matter, as will be shown in Sec. IV. Both the SO
and TO channels do not contribute to £ significantly for p
<p; (i.e., kgSkp). While the SO channel becomes attrac-
tive and the TO channel stays small in the SLy5 and the D1S
interactions, both channels are repulsive in the M3Y-type
interactions at p> pg, including M3Y-P0. A certain part of
this character of the M3Y-type interactions comes from the
OPEP part.

The curvature at the saturation point with respect to p is
proportional to the incompressibility,

PE PE
K=ki—| =90"—; (14)
dks ap sat.

sat.

The effective mass (£ mass) at the saturation point A ¥ is
defined by ‘

PHYSICAL REVIEW C 68, 014316 (2003)

The volume asymmetry energy corresponds to the curvature
of £ with respect to 7,:

(16)

Analogously, the following coefficients are defined from the
curvatures of £ with respect to 7, and 7,,,

1 3¢ 1 8% )
a=5 ey
2 975 sat. 2 ?7‘3’ sat.

The coefficients a, a,, and ay, are relevant to the spin and
isospin responses in finite nuclei. In Table II we also com-
pare K, My, a,, a,, and a,, among the effective interac-
tions.

The incompressibility X is sensitive to a in v{0™). The
experimental value of K has been extracted from the excita-
tion energies of the giant monopole resonances. Despite a
certain model dependence, most non-relativistic models are
consistent with the experiments if X~210 MeV. For finite-
range interactions, i.e., the Gogny and the M3Y-type interac-
tions, a==1/3 seems to give reasonable values of X, while in
the Skyrme interactions e~ 1/6 looks favorable, because of
the momentum-dependent terms in v{$ . The k mass is em-
pirically known to be M7= (0.6-0.7)M [19]. The M3Y-type
interactions tend to yield slightly smaller M§ than the SLy5
and the D1S interactions. The volume asymmetry energy a,
is important in reproducing global trend of the binding ener-
gies for the Z#N nuclei. From empirical viewpoints a,
=30 MeV seems appropriate, as is fulfilled in the M3 Y-type
interactions under consideration.

The a, and a, coefficients are relevant to the spin degrees
of freedom. The kinetic energy has a certain contribution to
a, and a;, as well as to a,, which amounts to about
12 MeV at p= pg equally for a,, a,, and a,,. The interac-
tion v{$+v 5™ gives rise to the rest of these coefficients.
Both the M3Y-type interactions have similar tendency with
respect to these coefficients. It is remarkable that a, is sub-
stantially larger in the M3 Y-type interactions than a,. As is
suggested by close a, and a,, values between M3Y-P1 and
M3Y-P2, the original M3Y interaction already carries this
feature. In particular, the OPEP part included in the M3Y-
type interactions plays a significant role, increasing a,, by
about 11 MeV. On the other hand, a, and a, are comparable
in the Gogny DI1S interaction, and we have even a,>a,, in
the Skyrme SLyS interaction. In the SLyS5 case, a,, is close to
the value due only to the kinetic energy.

Global characters of the spin and isospin responses are
customarily discussed in terms of the Landau parameters.
Formulas on the Landau parameters at the zero temperature
are given in Appendix B. We compute the parameters of Eq.
(B22). The results are shown in Table III. It is remarked that
the M3Y-P1 and M3Y-P2 interactions give similar results.
The g, and the g; parameters are closely related to the a,

M =E.°__ (15) and the a,, coefficients, respectively. It has been known that
. Mg gp is small, while gy should be relatively large [20]. Al-
014316-5
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TABLE Ill. Landau parameters at the saturation point.

M3Y-P1 M3Y-P2 SLys D18
fo —0.370 -0.357 —0.276 —0.369
fi -1.078 —-1.044 -0.909 —0.909
J2 —0.381 —0.436 0.0 —0.558
J3 —0.191 —0.210 0.0 —0.157
f 0.525 0.607 0.815 0.743
Fi 0.537 0.635 -0.387 0.470
i 0.250 0.245 0.0 0342
7 0.101 0.096 0.0 0.100
£0 0.046 0.113 1.123 0.466
re 0.372 0273 0.253 ~0.184
2 0.199 0.162 0.0 0.245
£ 0.088 0.078 0.0 0.091
P 0.891 1.006 —0.141 0.631
Py 0.230 0.202 1.043 0.610
P 0.073 0.040 0.0 —0.038
0.008 —0.002 0.0 —0.036

g3

though it is not easy to extract precise values of the Landau
parameters from experimental data because they could de-
pend on the interaction forms, qualitative trend will not de-
pend on effective interactions. The M3Y-type interactions
seem to have reasonable characters on the spin and isospin
responses, while SLy5 and D1S donot, although the spin and
isospin natures of the Skyrme interactions seem to be im-
proved if the LS currents are ignored [21]. It is likely that the
difference in these coefficients may significantly influence
predictions of the spin and isospin responses of finite nuclei.

1V. PROPERTIES OF ASYMMETRIC NUCLEAR MATTER
AND NEUTRON MATITER

We turn to the asymmetric nuclear matter. In Fig. 4,
energies per nucleon & are depicted as a functions of p
for the spin-saturated (i.e., 7;= 7, =0) nuclear matter with
7,=—0.2 and —0.5. The results from the M3Y-type inter-
actions are compared with those of the Skyrme and the
Gogny interactions. Energies of the spin-saturated neutron
matter (L.e., 77,= — 1) are presented in Fig. 5. Results from a
microscopic calculation in Ref. [22] are also shown as a
reference. Although the dependence on the interactions is not
strong at low densities even for the neutron matter, it be-
comes stronger at p>0.2fm as |7, increases. In the D1S
result for the neutron matter, £ has a maximum at p
~0.6 fm and goes to — as p—. This unphysical behay-
ior arises from xP?'=1 in the D1S set, which implies no
density dependence in the SE channel [see Eq. (6)]. This
could also give rise to 2 problem in practical calculations for
finite nuclei. With the SLy5 interaction £ goes up rapidly at
any 7,, because of the momentum dependence of the inter-
action. In contrast to them, the M3Y-type interactions give
moderate £ for the neutron matter. The microscopic energy
of Ref. [22] lies between those of M3Y-P1 and M3Y-P2. It
will be possible, if necessary, to adjust the parameters of the
M3Y-type interactions to the microscopic results.

PHYSICAL REVIEW C 68, 014316 (2003)

E/A [MeV]

E/A [MeV]

FIG. 4. Energies per nucleon £=£/4 in the asymmetric nuclear
matter with 7,=—0.2 and —0.5 for several effective interactions.
See Fig. 1 for conventions.

Y. PROPERTIES OF DOUBLY MAGIC NUCLEIX

We next discuss properties of doubly magic nuclei in the
HF approximation. In the calculations for finite nuclei, we
use the algorithm presented in Ref. [11], where the following
s.p. bases are employed:

‘.Pal?jm(r) =Rafj(r)[y(€)(;))(cr]g{) s

R (1) = Nogrt 2Peexp[ — (r/v,)*]. (18)
100+ ,
’ .
v
’
7
80— 1/ '/’
Ve
= 60 v
E ,/ /.'
= P
< . Lo e
5 4 %
20
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6
-3
p [fm™]

FIG. 5. Energies per nucleon £=£/4 in the neutron matter for
several effective interactions. The circles are the results of Ref.
[22]. See Fig. 1 for the other conventions.
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TABLE IV. Parameters of noncentral forces in the original and
modified M3Y interactions. See text for the u, parameters.

PHYSICAL REVIEW C 68, 014316 (2003)

TABLE VL LS splitting around 0. Experimental data are ex-
tracted from Refs. [24,27].

Parameters M3Y-PO M3Y-P2 Expt. M3Y-pP2 SLys Di1S
LS (MeV) ~5101 —9181.8 €(0pyn)  (MeV) =218 —22.6 —206 —223
ALSO (MeV) —1897 —3414.6 e(0p1)  (MeV) —157 —162 —144 —159
ALS8) (MeV) —337 —606.6

ALs0) (MeV) —632 ~1137.6

ATNE) (MeV fm™2) —1096 —131.52 those of t.he SLy5 and the D1S interactions, as well as with
t(lTNO) (MeV fm™2) 244 29.28 the experimental data. The one-body teI:mS qf the center-of-
e (MeV fm™2) —30.9 —~3.708 mass (c.m.) energy are removt?d before iteration. The contri-
) (MeV fm™2) 15.6 1.872 bution of the two-body terms is subtracted from the conver-

Here Y9)(r) expresses the spherical harmonics. We drop the
isospin index without confusion. The index o indicates p , (2
non-negative integer) and v, , simultaneously. By choosing
Do 20d v, appropriately, these bases span the space equiva-
lent to that of the harmonic-oscillator (HO) bases, and can
also form the Kaminura-Gauss (KG) basis set [23]. Without
parameters specific to mass number or nuclide such as i w, a
single set of the KG bases is applicable to a wide range of
nuclides. In the following calculations we apply the hybrid
basis set [11] for the nuclei with 4<<50, in which an HO
basis is added to the KG basis-set, while the HO basis set
with N o< 15 and Aw=41.24"13 MeV for heavier nuclei.
In finite nuclei the noncentral forces are important as well.
In the M3Y interaction, the LS force v{5> and the tensor
force v{T™V are taken by setting ff,LS)(rm):e'“"r 12/ 719
and f™(rp)=e "2y r 1, in Eq. (2). We here fix the
range parameters as in v{9; p7 =025 fm, u;'=0.4 fim
for v{EY, and wy'=0.4 fm, py'=0.7 fm for v{]". The
coupling constants in the M3Y-P2 set are tabulated in Table
IV, together with those in the original M3Y-PO set. In M3Y-
P2, the enhancement factor for v{5® is taken to be 1.8 and
the reduction factor for v{J™ to be 0.12. The binding ener-
gies and the rms matter radii obtained from the HF calcula-
tions with M3Y-P2 are shown in Table V, in comparison with

TABLE V. Binding energies and rms matter radii of several
doubly magic nuclei. Experimental data are taken from Refs. [24—
26].

gent HF wave functions, in the D1S and the M3Y-P2 results.
There are also spurious c.m. effects in the matter radii,

(=5 3 (-

'1 2 2
=7 S =)

=‘%{(1—:})E) (r%)“%%(ri‘rj) . (19)

The first term in the right-hand side is expressed by one-
body operators with a correction factor (1—1/4). We need
two-body operators for the second term. For the D1S and the
M3Y-P2 interactions we fully remove the c.m. contribution
according to Eq. (19). For the SLy5 interaction we use only
the one-body terms with the correction factor, ignoring the
two-body terms in Eq. (19), as in calculating the energies.
Wave functions of the doubly magic nuclei are considered
to be well approximated in the spherical HF approaches. It
should still be noted that correlations due to the residual
interaction could influence their properties. Therefore we do
not pursue fine tuning of the parameters. As shown in Table
V, the M3Y-P2 set is fixed so as to reproduce the measured
binding energies of the doubly magic nuclei, including *°Zr,
within about 5 MeV accuracy. The binding energies of these
nuclei obtained from the SLy5 and the DI1S interactions are
in agreement with the experimental data within 3 MeV,
slightly better than M3Y-P2. We do not have to take this
difference seriously, before evaluating the influence of the

Bxpt. M3Y-P2 SLy5  DIS residual interactions. In addition to the binding energies, the
rms matter radii of these nuclei are reproduced by the
%0 ~-E  (Mev) 1276 1271 1286 1295 M3Y-P2 set similarly well to the other available interactions.
V7 (fm) 261 2.60 2.59 259 In Table VI we present the neutron s.p. energies €,(0ps;)

“Ca  —E (MeV) 3421 3387 3443 3445 and €,(0p ) around 0. The enhancement factor for v}
VOB (fm) 3.47 3.37 3.29 3.36 in the M3Y-P2 set has been adjusted approximately to the
#Cca  —E (MeV) 4160 4118 4160 4168 experimental value of this s.p. energy difference. The reduc-
Wy (fm) 357 3.52 344 350 tion factor for v{J™ has been determined so as to reproduce
07r —E  (MeV) 7839 7787 7824 7845 the sp. energy ordering for 2®Pb. Without this reduction
Vi (fm) 4.32 4.25 422 4.23 factor, the orbits with higher € have too high energies. The
gy —g  (MeV) 11029 10981 11035 11029  resultant sp. levels in **Pb with M3Y-P2 are depicted in
V& (fm) 4.79 4.77 4.76 Fig. 6. The levels obtained from DIS and the expe;imental
208py, ~F (MeV) 16364 16358 16352 1638. s.p. levels are also shown. The overall level spacings are
SO (fm) 549 553 55 551 related to Mg shown in Table II. In the usual HF calculations
the level spacings tend to be larger than the observed ones,
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FIG. 6. Single-particle energies for **Pb. Experimental values
are extracted from Refs. [24,27].

and it is not (and should not be) remedied until the correla-
tions due to the residual interaction (or the w mass) are taken
into account [19]. This is also true in the present case. We
find that M3Y-P2 yields as plausible s.p. levels as D1S does.
We thus confirm that the M3Y-P2 interaction well describes
the global nature of stable nuclei.

V1. SINGLE PARTICLE LEVELS IN N=16 ISOTONES

In the preceding section we have shown that the M3Y-P2
interaction reproduces the properties of the doubly magic
nuclei to a similar accuracy to the SLy5 and the D1S inter-
actions. At a glance, the spin-isospin characters in the
nuclear matter, which have been discussed in Sec. Ill via a,
and g;, do not seem to influence the nuclear properties
around the ground states. However, the spin and isospin
characters influence s.p. energies of finite muclei. Thereby
they may affect even the ground state properties. In this sec-
tion we illustrate this point by the neutron orbits in the N
= 16 isotones, following the arguments in Ref. [3], although
precise studies in this line are beyond the scope of this paper.

As was suggested in Ref. [3], the proton-number (Z) de-
pendence of the neutron s.p. energy €,(0dsp) relative to
€,(15,) can sizably be affected by effective interactions.
Figure 7 depicts Ae,= €,(0d3)— €,(15y) obtained from
the spherical HF calculations in the N=16 isotones. Though
it is not obvious whether the ground states of all of these
isotones are well approximated by the spherical HF wave
functions, it is meaningful to see the s.p. emergies, which
often give an indication to magic or submagic numbers. For
D1S we reduce the number of bases in Eq. (18) to avoid
instability occurring for some N= 16 nuclei, which probably
relates to the unphysical behavior in the neutron matter. It is
found that, if viewed as a function of Z, A e, strikingly de-
pends on the interactions. With the M3Y-P2 interaction, A€,
increases as Z goes from Z= 14 to Z=8. We have confirmed
[28] that even M3Y-P1 (with appropriate v{3® and v{]™)
shows similar behavior and that a significant part of this
feature originates in the OPEP part in v(lg) . It is thus sug-
gested that this behavior of Ae, is correlated to the spin-
isospin property in the nuclear matter.

PHYSICAL REVIEW C 68, 014316 (2003)

FIG. 7. Ae, for the N=16 isotones. The thick solid, dotted, thin
solid, and dashed lines correspond to the results with the M3Y-P2,
USD, D18, and SLy5 interactions, respectively.

For comparison, we also show the s.p. energies obtained
from the reliable shell model interaction for the sd-shell nu-
clei, the so-called universal sd (USD) interaction [9]. For this
purpose we define the effective values of s.p. energies for
each nucleus 4 from the shell model space and interaction,
which correspond to those of the spherical HF calculations,
as

2J+1
i+ +1)
(20)

P (j54) = €, "0) + 2 (N
jl

X{jj' 710 "SP 5,

where the sum with respect to j’ runs over the valence or-
bits. For (V,) 4, we assume that the nucleons occupy the s.p.
orbits from the bottom, according to e(j). From these s.p.
energies we obtain AeUSP= ESD(Odm 34)— €90(15,334)
for individual nucleus. This definition is equivalent to the
effective s.p. energies in Ref. [3] for the Z<SN(=16) nuclei.
The A €YSP values are also shown in Fig. 7. It is noted that in
the shell model approaches the nucleus dependence of the
s.p. wave functions is not fully taken into account. Effects of
rearrangement in the wave functions of the deeply bound
orbits are renormalized into the interactions among the va-
lence nucleons. In contrast, in the HF approaches the s.p.
wave functions are determined self-consistently, from
nucleus to nucleus. Therefore, the shell model s.p. energies
do not agree with their HF counterparts. However, there
should be qualitative correspondence, which arises from ba-
sic characters of the effective interactions. It is remarked that
the M3Y-P2 interaction has the same trend of A¢,, in terms
of the Z dependence, as the USD interaction. It has been
suggested [3] that the interaction in the (or- o) (7 7) channel,
which will be linked to a,, or to g, is significant to the
magic numbers in highly neutron-rich muclei, and that the Z
dependence of the s.p. energies in this region could be rel-
evant to the new magic number N=16 [29]. The present
results are fully consistent with the arguments in Ref. [3],
although we cannot draw conclusions on the magic number
problem without assessing the influence of residual interac-
tions.
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V1. SUMMARY AND OUTLOOK

We have developed effective interactions to describe low
energy phenomena of nuclei. Starting from the M3Y interac-
tion, we introduce a density-dependent contact term and
modify several parameters in a phenomenological manner,
whereas maintaining the OPEP part in the central force. In
order to view basic characters of the interactions, the
Hartree-Fock calculations are implemented for the infinite
nuclear matter (for which useful formulas are newly derived)
and for several doubly magic nuclei. We have shown that a
parameter set called M3Y-P2 describes their properties plau-
sibly. The properties that are well treated by the Skyrme
SLy5 and/or the Gogny D1S interactions are also reproduced
by the M3Y-P2 interaction. However, a remarkable differ-
ence is found in the properties relevant to the spin degrees of
freedom in the nuclear matter. The M3Y-type interactions
seem to give reasonable spin and isospin properties, in which
the OPEP part contained in v(lg) plays a significant role. We
have also shown that the difference in the spin-isospin prop-
erty affects the s.p. energies in finite nuclei to a considerable
extent. It will be interesting to apply extensively the M3Y-
type interactions, particularly to the magic number problems
far from the S stability.

Although the M3Y-P2 interaction seems to have various
desired characters, there still remains a certain room for fur-
ther tuning of the parameters. It should be noted that this
parameter set will not be a unique choice to reproduce the
properties of the nuclear matter and the doubly magic nuclei.
Effective interaction might not be constrained sufficiently
only from the HF calculations. The pairing effects in nuclei
give valuable information on the effective interaction, prima-
rily on the SE channel. Comparison of the matrix elements
with reliable shell model interactions will also be helpful, if
the core polarization effects are treated appropriately. These
points will be discussed in future publications.
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APPENDIX A: ANALYTIC FORMULAS FOR NUCLEAR
MATTER ENERGY

In this appendix we derive formulas conceming the inter-
action part of Eq. (12). The form of Eq. (2) is assumed for
Uyg-

Each term of v(lg) is expressed as jf,c)(rlz) 0,0, Its
nonantisymmetrized matrix element in the plane wave states
of Eq. () is evaluated as

PHYSICAL REVIEW C 68, 014316 (2003)
(k071,05 1|0 (r12) O, O k1 0, 71 ko 0y T
=_&%J' d3r1d3r22i(kl—k;)-rl+i(k2—k£)»r2f§1C)(r12)
X(o103|04] 1 05){ 7] 75| O,| 7y 7y)
- I’%f d3Rd3rnei(K' K')-R+i(k12—k;2)-rl%C)(rlz)
X{o103|Oglay o)1 75| O |71 1)

1
=a S 7o (kig—Kiy|)

X{o102| 04l 0109} 13| Of] 71 7). (A1)

where R=(r1+r2)/2, Ir'py=ry—rg, K=k1+k2, K/=k{
+ky, k=0 —kp)/2, ki;=(k;—k;)/2, and f(q) is the
Fourier transform of (),

F@)= [ drfreine 2

The density-dependent interaction v{0™ is also handled in a

similar manner, since the density behaves like a constant in
the nuclear matter. For the Hartree term we have (k o 7()
=(kjoi7) and (kpoy7p)=(ky0573), while (koy7)
=(kyo,7;) and (Ky0,7)=(k;oj7]) for the Fock term.
Therefore both terms satisfy K=K'. For the relative mo-
mentum the Hartree term (the Fock term) yields kj;—k{,
=0 (k;;—k{,=2ky). Contribution of the two-body interac-
tion to the nuclear matter energy is obtained by jntegraﬁ.ngf
in Eq. (A1) up to the Fermi momenta.

‘We here consider general cases where the Fermi momen-

. tum may depend on spin and isospin. In order to take into

account the spin-isospin dependence, we integrate f in the
range k) <kp; and ky<kgp,. The integration is immediately
carried out for the Hartree term, as far as f{r ;) is momen-
tum independent, since the integrand depends neither on k;
nor on Kj,

Witk k= [ [ eiio)
ky <k

ky<kp,

1642

5 kT (0. (a3)

For the Fock term contribution, the integral with respect to
k; and k; is converted to the one with respect to K and k,.
‘We here assume kp; < kg, Without loss of generality, owing
to the symmetry W(kg,kg)=W(kgy,kpy). Handling the
range of integral carefully, we obtain the following expres-
sion:

014316-9

51



H. NAKADA

Wik k)= [ k| @ik
ky<kgy ky<kp

j(/«n—/cn)/z
0
(kg + )12
+ dk
(kpp—kgi )2

8
+ 5 ey + ki) ey = 4 (K + k)

2

16 5 0
8 d/€12’3_kmk12f(2klz)

1
12{ - E(k]z:z_ k}zﬂ)zklz

8 .\
+§/‘12 f(2k) |- (A4)

These formulas are general to multicomponent uniform
Fermi liquids with equal masses.

In handling the spin-isospin degrees of freedom, we re-
write the central force in Eq. (2) as

tf,H)_P,— ti.M)PoPr)ﬂC)("u)»
(A5)

Cy_. W B
WP= (PP, -

The relations between the coupling constants are

£SB) = (W) _ ((B) _ () 4 (00

£TOY= (W) g (B 4 (D4 00
ASO)— (W) ((B) () _, M)

1T =/M+ (A6)

1B — () MO
After summing over the spin-isospin degrees of freedom, the
interaction energy is given by

>

2(2 )6 ; T oyT|Ty

W, B H
[+ 98,,,~ 75,

(=
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(2) p-dependent & interaction. Since the density is a con-
stant in the uniform nuclear matter, the ¥/ functions for
f(r1)=p*8(xyy) are similar to the above case,

6 2
WH(ky ka) =WF(k ) ky) =

p%kiks.  (A9)

Note that p is a function of the Fermi momenta, when we
take derivatives of the W functions.

(3) Gauss mteractlon For f(rp)=e (#" ‘2)2, we have
F(q)= (Nl p)’e™ @’ deriving
WH(kl,kz)—m 2(\/};)B/clkp (A10)
and
Wy ko) = —5— 32%—7 [ﬂ{(k —kyky k5= 2p%)
><e‘[(’°1+"2>’2/*12-(k§+k1k2+k§
—2p2)e~ k)21
-3 +k3)erfc( kl;;kz) +(i3
—/cl)erfc( )+\/_k1], (A11)
where

erfe(x) = fwe z (A12)

In Eq. (A11) we have postulated k; <k, again.
(4) Yukawa interaction. For the Yukawa interaction we set

Fr)=e 2 pury,, leading to f(g)=4m/ u(u*+q?).
This yields

64r
. WHky kg)=—7 k3ki, (A13)
- th) 50'10'2 51-, rz)wn(kFrl a',ﬁkFrzo'z) I'L
+(ILM)+I§1H)5010'2_— t(B)671f2 and
— W) F 27
In 5:710'2 51'11'2)Wn(k1*'7‘|0‘1’ka20'2)]' (A7) WF(kl ko) = ﬁ 4k1162{3 (k%‘\‘k%) _#2}
In Eq. (A7) we regard the sum over # to include v DD 1t is ok
noted that 4 = p, which is used to obtain the energy per —16 ,U»{ ( k:;' + kg)arcta.n( 1 2)
nucleon &. M
We next calculate the W functions for typical interaction ky~k;
forms. ~ —(kg—ki)arctan( 2 ) —{3(k3—k?)?
(1) & interaction. If f(rip)=8(r1), f(g)=1 and there- M
fore we have (ke +k
_ 6#2(/(%4_ K2 2y~ u*Hn #_2_(1—C2_)_
N 167° , | w2+ (ey = kr)?
WE(ky, ko) =W (kukz)— —5kiky. (A8) (A14)
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(5) Momentum-dependent & interaction. In the Skyrme
interaction we have momentum-dependent terms with the

form ${p}8(rip)+ 8(rp)ply} and pi: S(rpp)pre. The
former operates only on the even channels and yields
2
WH(ky ko) =WF(ky,ky) =ka/c§(kf+k§).
(A15)

"The latter acts on the odd channels, giving
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2
T ——ky k3 (kT +k3).

(A16)

The incompressibility K and the spin-isospin curvatures
a,, ag, a are expressed by the derivatives of the W func-
tions.

The single-particle energy e(kor) defined in Eq. (9) is
also expressed by the derivative of the W functions. We first
rewrite the integral in Eq. (12) as

WH(ky,kp) = = WE(ky ky) =

317 3 7 ’
j, d klj Pleo(k 017,k 0y 7|V 1K) 07y 71, Kg 07 T)
ky=k, ky<Skpr,q,

k) -

— 12 3

—41’Tf kl dkif d /cz<k10‘11'1,k7_0‘7_72|v]2|k10'17'1,k20'27'2>.
0 kZS Fr,a,

This immediately gives

"'(?*‘f d3kif d3k2(k10'1
Ok )k <k, ky<kr, g,

= 2 3 ’ /
—-4’7T/€1fk < d 162<k10'17'1 ,k20'27'2!l)12|1(10'[7'1,sz’sz).
2 Frymy

Therefore,

2
PRI ) B P

—+
2M - (2@)? 477/(1 n oy7y

H
- tﬁlH) 57'1 -rz— tsz) 50‘, Ty 57‘, rz)alwn (kl :kathz)

OP

7102

ek, 7)) =

M H B
+(M+MDg, -1 Ps

102 717y
~ 8, 0,85 ) IV (k1 kpre )], (AL9)

where we use the shorthand notation )
IWRT(ky ko) = ;;(,i—IW’f’F(kI ). (A20)

1t is now obvious that the effective mass of Eq. (15) is ex-
pressed by using the second derivative of the W functions.

APPENDIX B: LANDAU PARAMETERS FOR
SYMMETRIC NUCLEAR MATTER

Let us denote the occupation probability of the s.p. states
of Eq. (8) by 7,4(k). The nuclear matter energy of Eq. (A7)
can be rewritten as

Q (Mut(Mr
QO

a (B1)

)

014316-
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(A17)

71, K03 7|V ol K 0 7 Koy 0y 7o)

(A18)

%)L 2(2177 3 22 (ke (k)](0)
XU+ 1P 80, 5= 1708, 7, = 1008, 5,61, 7).
(B2)
%j= TG 2 0 o, M) ()
XFo(2kio) (00458, 5~ 1P,
=1,85,6,0n 1,)- (B3)
The Landau coefficient is defined by
2041 (1
Fg'?trl,rzaz(klskz)z 3 j_ld(ﬁl‘ﬁ2)Pf(Rl‘R2)
S((MYIQ) (B4)

on 110'1(1(1) on rzo'z(kZ) |

For the interaction independent of momentum and of density,
it is straightforward to write down the coefficients of Eq.
(B4) in terms of f, within the HF theory at the zero tempera-
ture. Noticing that p also depends on n,,(k), we evaluate
the contribution of the density-dependent &§ interaction (1
+x(DD)Pa)pa5(rl2) to F(r?o‘[,rza'z(kl:kl) as

11
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8o |ala—1)

amil 2 P PP=2 x| 2 0
7T) ar o

-0
T

} + apa—l{zpwpria'l —prza'2+x(DD)(pa']+pa'2

_th—pTz)}+pa{1“571’25‘7|C’z+x(DD)(6‘71”2_5’1’2)}]’
(B3)

where p,=3 ,p,, and p,=Z,p,,. Apart from the spin and
isospin degrees of freedom, the momentum-dependent & in-

teractions 2£P125(r12)+3(1' 12)PT} and pp- 8(rp)py, con-
tribute to FT: o o (K1:Kk2) BY

k? + k%
4

kiky

2

1 (B6)

1
(2m)8 ( Seo

In characterizing effective interactions, we view the Lan-
dau coefficients for the symmetric nuclear matter, where
pro=p/4 for any 7 and o. While formulas for the Landau
parameters were derived for the Skyrme interaction in Refl
[21] and for the Gogny interaction in Ref. [30], we here
derive expressions for interactions with the form of Eq. (2) in
a more general manner. It is customary to transform the
(7,0) variables into the following ones:

pT+pl+nl+tnl,
t---pl+pl=—nT—nl,
s---pT—pl+nl—nl,
t---pl—pl—nT+nl. (B7)
Since S,0=3,7=3,(07)=2(07)=0, all the off-

diagonal coefficients with respect to (1,t,5,5¢) vanish. The
diagonal coefficients are redefined as

2 FY

T2TIT2

F&f’(kl,k2>~

16 - rza'z(kl akz)a
1
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Seo
(W) 4 5 ;(B) _ 5 ,(H)
) 2 > (48 +24B) o0

— M7 (0),

Fl H(kl’kZ)"

Fi8ky ky) = ——— 2 (=240 M7 (0),

4(2 )6

F.(vflzl(kth)_ 2 (21(3) t(M)).fn(O)a

4(2 )6

2 (—18M7,(0),

Seo
4(2 ’Tl')é n (Bg)

Fky ,ky) =

while the Fock terms

F(lf];(kl ko) = —2123)

4(2m)8
GOk ,ky),

2 (2P =GOk ,ky),

F(k, ky)=
1 ¥ (k1K) 12t 2

Fifalk k)= - e > (25— GOk k),

FU%(ky kg) = > (=GO ky),

4(2 )¢ n
(B10)

where

o 20410
G (klak2)=_2_ _ld(kl'kz)Pe(kl'kz)fn(2k1z)~
B11)

Contribution of the density-dependent interaction ¢PP)(1
+xPDIP Y p@8(x,,) is given by

1 £) _ 5€0 (DD)3(05+1)(C¥+2)
£ ¢ =
FS (kr k) = 16 a'ﬁ%]rz TITzFS'lzflezaz(kl’kZ)’ Fipo(ks.ks) 4(2’71‘)6t 2 P
1
¢ (€) = (DD){ _ 5 ,.(DD) _
F£€)(k1’l‘2)= Tg (Tlfgﬂ?‘z 0-10'2F(T|L'1a7'202(kl’k'2)y FI,DD(kl’kZ) 4(277)61 )( 2xPD) 1)p%,
Fgf)(kl,kz)= . ”ET ) orlr,azrzFﬁ.fZ,] uTz”z(kl o). F.(cfﬁn(kukz)“ m {PD)(2,(OD) _ 1 e
1027172
(B8)
The Hartree terms of the momentum- and density- F(,, (ki skg) = - £0D) par, (B12)
independent interactions yield (2 77)
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For momentum-independent interactions such as the Gogny
interaction and the M3Y-type mteractlons, the Landau coef-
ﬁ01ents are obtamcd by F(k, k) =F 1}1(/‘1 2ka)

PHYSICAL REVIEW C 68, 014316 (2003)

— [y =kp)/2u)? ~I(k 2
{e [k =ka)2p]” _ o = [k +kp)/2p] },

S
G(O)(/Cl ,/Cz) = Mk k2

F(kl ko) +F1 Dn(kl ,k2), and so forth. The momentum- (B16)
dependent 6 interactions yield 3 )
el )(kl kz)_.B_\/E_ 1__2.}_1‘_ e Lk ~kp)2p1?
" 1 K+ k2 T pkiky kiky
Fiym(ky.ky) = S0 ”561/‘1/62) 2
8(2m)¢ 2 2u2\
34
X
{5th13), (3) Yukawa interaction. For the Yukawa interaction we
use f(q)=4m/p(pu*+4?). Inserting it into Eq. (B11), we
{ k% + kg obtain for even £,
FQm(y ly) = ( Oeo - 531"1/‘2)
" 8(2m)* 2 GOk, ko)
£MP(—2x(MP)— 1) o
x 2 \2m+1
tg,MD)(zx(zMD)'f‘ 1), = 21T(2€+ 1) ( H ) " (__)f/Z—m
Ma m=0 2k1/€2
1 k2+k2 ’ 2 2\ 2m
(vers)/m(kukz) - 6(5‘90 12 2—551161162) « (f+2m—1)N (1+kl+k2 wr (kg +ky)?
8(2m) 2m)!1(€—2m)! u? w2+ (ky— k)
(MD) (5 ,.(MD)
t 2x -1 2m—1
x{ QMD)( D) : Sy m)
(2w, 7o 2m—p p!(2m—p)!
2 2\ P 2\ 2m-p
1 24k3 ky+k; (ky—=ky)
FE ch Jeo) = (5 — 8ok k X| 1+ 1+ —
.rt,MD(cl ‘2) 8(2'77')6 €0 2 ALY w ,u,2
2n—p
(=P (ki +ky)?
Xlt&“"’, (B13) - H—/ﬁ— (B18)
where the upper row corresponds to the even channel inter-  and for odd €
action  $6{"(1+xMPP ) {pT,8(r1) + 5(1'12)[’12} hile
the lower to the odd channel interaction rMP(1 GOk, ,ky)
+xM) P yp1,- 8(r1p)pr, respectively. Equation (B13) is 2m(20+1) Y 2 \om+2
available for the Skyrme interactions in which the LS cur- = ( M ) (—)E=h=m
rents are not ignored. u? =0 \2kik,
We next show explicit form of the G factor in Eq. "
(B10) for typical interaction forms. % (£+2m)l
(1) 8 interaction. Substituting 7(2k ) by 1, we obtain (2m+1)1(€-2m—1)!
. 2 2\ 2m+1 2 2
G(e)(kl 2ka) =g - (B14) x| 1+ kit ks ”‘_fﬁi’_‘i
u? pr+(ky—k)?
2 Gauss interaction. Because 50 2o 2m+1)!
= 3 ,—(gl2p)?
(Vi) e , Eq. (B11) leads to 172 2m+l-pp'(2m+1-p)
GOk, ky) = D (o |2 ) ki k2 P Ga=k)?\
1,42 wkiky, i mi(E—m)! ka X| I+ 1+————;£-—
x{( ymg — [k — k) /2] (k +k2 2 n+l=p ‘
(=)o Ltz (B15) I+ = - (B19)
For £=0 and 1, we have For £=0 and 1, we have
014316-13
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T 24 (e, +ho)?
GOy, ky) = prtka) g
whiky ™y (ky—key)?
ar
Gm(/ﬁ],kz)z__"‘ (:Uﬂz""k%’*'kz)
2#(/‘1/‘2)2 2
2 (fey+ ko)?
’—‘2—31——2—)74@/@. (B21)
pot (kg ky)

Setting k; =k, = kpy and using the estimated level density
at the Fermi momentum No=(2)%2kpo Mg/ 7%, we define
the usual Landau parameters,

PHYSICAL REVIEW C 68, 014316 (2003)

Fe=NoFO kg kro), f2=NoFE (kpo ko),

ge=NoF O kpo.kso),  g4=NoF ' kgo,krp).
(B22)

The second derivaties of £ at the saturation point are con-
nected to the Landau parameters. The following relations are
verified:

o 1 3kfo e .
7’—‘ 1 +§f1: lC:M_Bk(l + /o), al:%(l +f0)’

2 2
a =—k-F—"—(1+g) a =ki(1+g') (B23)
s 6M6|< 0/> st 6M(.)l= 0/
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Measurement of B(M1) for the a-zpmvpl‘,% doublet in 58Cu
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Lifetimes of excited states in %Cu were measured by the -1 coincidence using two BaF, detectors
through the decay of %Cu™ produced by the (n, p) reaction. The half-life of the 2* state at 84 keV was obtained
as 7.84(8) ns, corresponding to the B(M1;27—1%) value of 0.00777(8)#%,. A shell model calculation with a
minimum model space of mpyyvpy, gives a good prediction of this B(M1) value by using experimental g
factors of neighboring nuclei. This small B(M]1) value can also be explained by a shell model calculation in the

SonPanfsnpin) ™ (r=0, 1) model space.
DOI: 10.1103/PhysRevC.68.054306

L INTRODUCTION

The nuclear structure around 5¥Ni, with Z=28 and N=40,
provides important knowledge of the shell structure in the
neutron-rich Ni region and thus many studies have been
made with the progress of experimental techniques [1-18].
Among these studies, the magic properties of ®®Ni have been
discussed from different angles. One of the issues is whether
one can treat the 9¥Ni nucleus as a core in a shell model
calculation. We previously demonstrated that the energy lev-
els in 7'Cu can be predicted very accurately by a shell model
calculation with the 7ps,vg5, model space, using experi-
mental energy levels in neighboring nuclei as residual two-
body interactions [7]. It is interesting to study to what extent
such a calculation is valid to explain the properties of nuclei
around %¥Ni.

In the ggCu39 nucleus, the proton () py, and the neutron
(v) pyy, orbitals lie near the Fermi surface. Therefore, the 1*
ground state and the 2* first excited state in %8Cu are ex-
pected to have a large component of the ﬂpmvp}}z configu-
ration. This simple configuration gives an insight into the
muclear structure around ®*Ni In particular, the B(M1;2*
—17) value provides a good test of a shell model calculation.
Furthermore, this B(M1) value gives information on the core
excitation, in particular, for the Z, N=28 core.

Excited states in %8Cu were first studied through the y
decay of the %8Cu isomer (7},,=3.75 min) produced by the
887n(n, p) reaction [19-22]. Sherman et al. [23] studied en-
ergy levels in %%Cu by the (t,°He) transfer reaction. Recently,
the g factors of the ground and the isomeric states were mea-
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275(67), Bejing 102413, China.

*Blectronic address: ishii@popsvr.tokai.jaeri.go.jp

"Present address: Kyoto University Research Reactor Institute,
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PACS number(s): 21.10.Tg, 23.20.—g, 21.60.Cs, 27.50.+¢

sured in %*Cu separated from fission products using a mass
separator with a chemically selective laser-ion-source [24].
We found a nanosecond isomer in %Cu [25] produced in
heavy-ion deep-inelastic collisions using an isomer-scope
[26].

In the present study, we have carried out a decay experi-
ment of %¥Cu” produced by the %Zn(n, p) reaction using
14-MeV neutrons. This reaction provides an almost pure
68Cu™ source without chemical or mass separation. We have
measured the lifetime of the first excited state and obtained a
small B(M1;2"—1%) value. We show that a parameter-free
shell model calculation within the wps,zvp;/lz model space
correctly predicts this B(M1) value by using experimental g
factors of neighboring nuclei. Furthermore, we show that this
small B(M1) value can be explained by a shell model calcu-
lation in the £/ (p3afsppin)™ ™ (=0, 1) model space.

1I. EXPERIMENTS

The %Cu™ source (Ty,=3.75 min) was produced by the
887n(n,p) reaction at FNS (fusion neutronics source) in
JAERI. Three ®Zn targets of 0.2 g and 10 mm in diameter
were prepared from the 99.4% enriched ®¥ZnO powder by
the following procedure. The #*ZnO powder was dissolved in
a 0.1M H,SO, solution. Then, the %Zn metal was deposited
by electrolysis on a thin platinum wire. The 87n metal re-
moved from the Pt wire was shaped by pressing it in a mold
10 mm in diameter. Each target was sealed in thin paraffin
paper and in a polyethylene film.

The 58Zn target was irradiated by 14-MeV neutrons at a
place of about 5% 10° cm™ s~ neutron flux; FNS generates
4x10'2 57! neutrons by the H(d, n) reaction using a 37 TBq
tritium rotating target. The %%Zn target was irradiated for
10 min and then transferred through a pneumatic tube to the
outside of the irradiation room. The irradiated target was
cooled for about 2 min. Thus, the cycle of 10-min irradia-
tion, 2-min cooling, and 8-min measurement was repeated

©2003 The American Physical Society
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using three 9Zn targets. Since the production cross section
of %Cu™ is 5 mb [27], the activity of the Cu™ source was
about 30 kBq at the beginning of the measurement.

Lifetimes of excited states in %Cu were measured using
two BaF, detectors of 25 mm in diameter and 10 mm in
thickness. These detectors were placed face to face at a dis-
tance of 20 mm and the ¥Cu™ source was placed at the cen-
ter between them. A B-ray absorber made of a 3.5-mm-thick
aluminum plate was attached to both of the detectors. The
lifetimes were also measured by another detector configura-
tion to reduce backscattering vy rays between the BaF, detec-
tors. In this configuration, the BaF, detectors were placed at
90° and a 3-mm-thick lead absorber was placed between
them. In Sec. III, the former detector configuration will be
referred to as the 180° setup, while the latter will be referred
to as the 90° setup. The purity of the %¥Cu™ source was
monitored through the lifetime measurement by measuring y
rays with a Ge detector.

The BaF, scintillator was mounted on a Hamamatsu-
H3378 photomultiplier tube and the time pickoff signals
were generated by an ORTEC-583 constant fraction dis-
criminator. An ORTEC-567 time-to-amplitude converter
(TAC) was employed and was calibrated using an ORTEC-
462 time calibrator. The -y-t coincidence data were re-
corded event by event. An energy resolution was 9% for the
570-keV y ray of 27Bi. A typical time resolution of this
system was 130 ps at full width at half maximum for the
1173-1332 keV +y-ray cascade of Co.

A y-ray singles measurement was performed in order to
obtain the ~-ray energies and intensities in **Cu using an n
type Ge detector of 33% relative efficiency. The distance
between the source and the surface of the detector was
102 mm. No B-absorber was placed on this detector. The
detection efficiency of the Ge detector was calibrated using a
standard source of ¥2Eu, 3°Ba, and 27Bi, and was corrected
for the self-absorption in the %8Zn target. This absorption was
estimated on the basis of the attenuation of the y-ray inten-
sities measured by putting the standard sources on the %Zn
target.

I11. RESULTS

Figures 1(2) and 1(b) show v-ray singles spectra mea-
sured with the Ge detector and with the BaF, detector, re-
spectively, in the lifetime measurement. Most of the vy rays
observed in the spectra are emitted by $*Cu™ Since the
ground state of %Cu decays to %¥Zn with T';,=31s, the y
rays in %®Zn also appear in these spectra. Although vy rays
following the A decay of §7Cu (I},=62h), ®Ni (Ty,
=2.5 h), and %Zn (T},=14 h) are also observed, these con-
tributions are small. Figure 1(c) shows a time spectrum mea-
sured with the BaF, detectors. It is remarkable that more than
half of the coincidence events are due to the decay with a
long lifetime for the 84-keV level.

The decay scheme of %8Cu™ is shown in Fig. 2. Coinci-
dence relationships measured in this work are consistent with
the previous scheme [28]. Spin-assignment of the 611-keV
level will be discussed in Sec. I'V. Figure 3(a) shows a vy-ray
spectrum coincident with the 526-keV <-ray energy (includ-
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FIG. 1. (a) A vray singles spectrum measured with a Ge detec-
tor. The y-ray energies are depicted for the transitions descending
from %Cu”. The 1077-keV y ray follows the 38 decay of the ground
state in ®*Cu. (b) A y-ray singles spectrum measured with a BaF,
detector. (c) A time spectrum measured by the BaF,-BaF,-t coinci-
dence with no gates on v rays.

ing the Compton continuum under the peak) and with the
delayed part, between 4 ns and 87 ns from the prompt peak,
of the TAC spectrum. This spectrum was derived from the
data of the 180° setup. Figure 3(b) is a y-ray spectrum coin-
cident with the 526 keV energy and with the prompt part
between —0.4 ns and +0.4 ns, derived from the data of the
90° setup. In Fig. 3(a), no other components except for the
84 keV peak are observed. This fact warrants the following
lifetime analysis for the 84-keV level.

Decay curves for the 84-keV level were obtained by set-
ting gates on a combination of y-ray energies measured with
the BaF, detectors. Figure 4(a) shows those curves derived
from the data of the 180° setup by setting the gates of
526—84 keV and 637-84 keV. The experimental data were
fitted with an exponential decay curve, a exp(—\?), by a least
squares method and the fitted lines are drawn, as shown in
Fig. 4(a), in the range where the experimental data were used
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FIG. 2. A decay scheme of %®Cu”. The y-ray and level energies
are in units of kilo-electron-volt. Relative intensities are shown in
brackets. The lifetime of the 6~ isomer is taken from Ref. [28].

as the input values. We deduced the lifetime of the 84-keV
level from the slopes of these fitted lines as well as from
those of the decay curves gated on 111-84 keV. All the val-
ues of the slopes for the six decay curves are the same within
measured uncertainties. Furthermore, the decay curves mea-
sured with the 90° setup give the same result. Consequently,
we determined that the lifetime of this level is Ty
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FIG. 3. (a) A yray spectrum in coincidence with the 526-keV
yray energy and with the delayed part, between 4 ns and 87 ns
from the prompt peak, of the TAC spectrum. (b) A y-ray spectrum
in coincidence with the 526-keV y-ray energy and with the prompt
part between —0.4 ns and +0.4 ns.
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FIG. 4. (a) Decay curves due to the lifetime of the 84-keV level
obtained by setting the gates on the yray combinations of
526~-84 keV and 637-84 keV. The lines fitted to an exponential
decay are drawn in the fitting ranges. (b) A time spectrum for the
611-keV level obtained by the gate on the 526-keV y-ray energy
(start signal) and the 111-keV <y-ray energy (stop signal). The slope
of the line drawn in this figure gives an upper limit for the lifetime
of the 611-keV level.

=7.84(8) ns. This error was estimated from the spread of all
the values obtained in the experiment and from the variation
of the values resulting from changing the fitting range. We
also ascertained that the contaminant with a long lifetime
component is negligible by fitting the experimental data with
a curve consisting of an exponential decay and a constant
background, a exp(—A£)+b.

Figure 4(b) shows a time spectrum obtained by setting the
gate on the combination of the 526 keV energy (start signal)
and the 111 keV energy (stop signal). This spectrum was
derived from the data of the 90° setup. Although this time
spectrum includes a component of the Compton continuum
under the 111-keV peak as shown in Fig. 3(b), this contribu-
tion is only about 10%. Thus, the slope of the line drawn in
this figure allows us to deduce an upper limit of 40 ps for the
halflife of the 611-keV level.

y-ray energies and intensities in *Cu are summarized in
Table I. We derived the y-ray intensities by taking into ac-
count the cascade summing effect, although the correction
resulting from this effect was about 1% except for the weak
610-keV transition. The intensity of the 610-keV yray has a
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TABLE 1. yray energies and intensities in 58Cu.

E ¥y (kCV) I Y ar

Present work Present work Swindle® Tikkn® Present work Swindle® Tikku®
84.12(6) 109(4) 96.4(58) 95(5) 0.05(4) 0.156(25) 0.21(7)
110.74(6) 22.2(7) 22.3(13) 24.3(16) 3.52(12) 3.19(22)
526.44(6) 100 100 100

610.3(3) 0.5(2) 1.4(4) 1.7(5)

637.14(6) 14.3(4) 11.2(15) 14.7(15)

“Reference [21].
PReference [22].

large error, because it was corrected by considering the sum
peak of the 526-keV and the 84-keV y rays as well as the
overlapped 609-keV yray following the decay of 2Bi in the
room background. The internal conversion coefficients
(ICCs) calculated from the y-ray intensity balance are also
given in Table I. Intensities and ICCs in the previous work
- [21,22] are shown in this table for comparison.

1V. DISCUSSION

We first clarify the difference between the present results
and those of previous reports [21,22]. The 611-keV level was
previously proposed as 37 on the basis of the ICC and the
lifetime of the 111-keV transition [21,22]. However, the ICC
of this transition a;=3.52(12) only supports this transition as
M3 or E3; a theoretical aris 3.71 and 3.75 for an M3 and an
E3 transition, respectively [29]. The tramsition rate of the
111-keV <y ray cormresponds to 1.0 W.au. and 0.02 W.u. for
M3 and E3, respectively. There is no reason this transition
rate favors an M3 multipolarity. We would rather propose
that the spin parity of this level is 3* on the basis of the
following shell model consideration. Low-lying negative-
parity states in ®¥Cu should have the 7p;,1gq/; configuration.
All the quartet members of this configuration were clearly
observed by the (, *He) transfer reaction [23]; the 6~ isomer
is a member of this quartet and the other members lie above
this isomer. Moreover, our recent experiment using heavy-
ion deep-inelastic collisions suggests that one of the quartet
members at 777 keV has the spin parity of 37 [25]. On the
other hand, the 3* state with the mps,v/5}, configuration very
plausibly exists at 611 keV, because the vf5j, state lies at
694 keV in the neighboring nucleus 4’Ni [3].

The intensity of the 84-keV yray measured by the present
work is also different from the previous ones [19-22]. This
intensity affects the estimation of the B(M1) value of the
84-keV transition, because the E2/M1 mixing ratio of this
transition is deduced from the ICC derived from the vy-ray
intensity balance. Since all the previous data were measured
in the early 1970s, one of the most likely reasons for this
discrepancy is that the efficiency calibration of a Ge(Li) de-
tector had a large error in the 80 keV energy region. To ob-
tain a detection efficiency at about 80 keV, one usually uses
the standard intensity of the 79.6- and 81.0-ke'V v line of the
133Ba source. This intensity in the references compiled in
1970s [30,31] was smaller than the present one [32] by about

10%. Therefore, the 1970s data of the 84-keV intemsity
would become smaller than that in the present result.

Now we discuss the B(M1;2"—17) value of the 84-keV
transition. From the present result of the ICC of the 84-
keV transition, @;=0.05(4), we regard this transition as a
pure M1 multipolarity; a theoretical aris 0.086 and 1.18 for
a pure M1 and E2 transition, respectively [29]. Then, the
B(M1) value is obtained as 0.00777(8)u2, or 1/230 W.u.,
from the measured lifetime of the 84-keV level and the the-
oretical oy for the pure M1 transition.

The B(M1) value can be estimated by a shell model cal-
culation which takes the core to be ¥Ni and uses experimen-
tal g factors of neighboring nuclei. The B{M1) value with
one proton {j,) and one neutron (j,) outside the core is cal-
culated as

3
B(Ml ’I)_’]f)zzq;(zlf+ 1)]11(]77+ 1)(2./11'+ 1)

XU alliljn) X (g =227, (1)
where g, and g, are g factors of the j,, proton and the j,

neutron, respectively [33]. The B(M1) value of the 84-
keV transition between the qrp3,21/p'l',12 doublets is

3 3
B(M1;2"— 1Y = okl Ry (gr—g,)%=0.042742,

2

where g,=1.893uy and g,=1.202uy are taken from the
experimental values of the 3/2 ground state in $3Cuy, and
the 1/2” ground state in $7Niy,, respectively [13]. This cal-
culation reproduces a small B(M1) value, which originates
from the cancellation of g,—g,. The g factor of the 1°
ground state in %®Cu was also measured recently by a
laser-ion-source technique to be +2.48(2)(7) uy [24]. This
g factor is calculated as

1
g(17) =7 (58~ g) = +2.07py. e
Thus, the calculation in the ng/zva/lz model space pro-
vides a good description of these M1 matrix elements in
8Cuy, using no free parameters. These results are shown in
Table II as Cal-4. However, it is difficult to adjust the
calculation more accurately for both the B(A41) value and
the g factor by only changing the g and g, effectively.
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TABLE 1II. Sliell model calculations of the M1 matrix elements
in 9Ni, ©Cu, and 8Cu. All the values in the table are in units of
- Cal-4, 7-rp3,2vpf,12 model space using the experimental g(1/27)
value of “’Ni and g(3/27) value of ¥Cu. Cal-B1, (pspfsnpin)”
model space. Cal-B2, f55(p3pnfsnpin)™ (7=0, 1) model space. Two-
body interactions used in Cal-B1 and Cal-B2 are described in the
text.

Nucleus Cal-4 Cal-B1 Cal-B82 Expt.
§7Nis g(1/2) 128 093  1.2001)°
S5Cuy 2327 253 2.08 1.89(1)*
g(1™) 207 276 2.60  2.48Q)(7)
88Cugo g2h 1L72 1.89 1.37
(a1 046 104 059 0.197(1)

*Reference [13].
"Reference [24].

This difficulty indicates a limit of this calculation using a
minimum model space.

We have further studied the nuclear structure of ¥Cu by a
shell model calculation in a fp model space. To investigate
the effect of a f7), particle excitation, a shell model calcula-
tion of the (p3//5P1/2)" model space was compared with that
of the f7,(p3nfsnp1n)™(r=0,1) model space. In the former
calculation Cal-B1, the MSDI two-body interactions by
Koops-Glaudemans were used [34]. In the latter calculation
Cal-B2, two-body interactions derived from the folded dia-
gram theory were used and single-particle energies were ad-
justed to reproduce low-lying levels in 57Ni and #$°Cu. The
results are summarized in Table II. In Cal-B1, the g factors of
the 1/2” state in “’Ni and of the 3/2 state in ®*Cu correspond
to the Schmidt values of the up, and the mp,, single-
particle states, respectively. In Cal-B2, the g(3/27) value of
%Cu is close to the experiment, while the g(1/27) value of
§7Ni is slightly smaller than the experimental value.

These calculations give a measure of the purity of the
mpyyvpy), doublet states in %8Cu; the amplitude of the
TIP3 WPy, component in the 1% ground state is 0.91 and 0.78

PHYSICAL REVIEW C 68, 054306 (2003)

in Cal-B1 and Cal-B2, respectively. The g(1*) value of %Cu
in Cal-B2 is as large as that in Cal-B1. This is in contrast to
the Cal-A4 result giving a smaller value than the experiment.
On the other hand, the reduced matrix element of (2*|3/1]]1")
in Cal-B2 is much smaller than that in Cal-B1. These calcu-
lations show that this matrix element comprises the compo-
pents originating from protons and from neutrons having a
comparable magnitude but an opposite sign and that the dif-
ference between these components in Cal-B2 is smaller than
that in Cal-B1. Therefore, this (21| M1][1*) matrix element has
a small value and is sensitive to a f;, particle excitation.
Although the experimental (2*|M1][1%) value is still smaller
than the Cal-B2 result, the calculation may be improved by
extending the model space to include the excitation to a Lo
orbital.

V. CONCLUSION

We have measured the lifetime of the first excited state in
8Cu through the y decay of %Cu” produced by the
88Zn(n, p) reaction using 14-MeV neutrons. We obtained a
small B(M1) value between the mps,vpy), doublet states in
88Cu. A parameter-free shell model calculation taking the
core as *Ni gives a good prediction of this B(M1) value by
using experimental g factors of the 1/2” state in 57Ni and the
3/27 state in °Cu. Both the B(M1;2*—1%) and the g(1m
values in %®Cu can be explained by a shell model calculation
in the fp model space including a f3, particle excitation.
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We present our results on properties of ground states for nucleonic systems in the presence of random
two-body interactions. In particular, we calculate probability distributions for parity, seniority, spectroscopic
(ie., in the laboratory frame) quadrupole moments, and discnss o clustering in the ground states. We find that
the probability distribution for the parity of the ground states obtained by a two-body random ensemble
simulates that of realistic nuclei with 4= 70: positive parity is dominant in the gromnd states of even-even
nuclei, while for odd-odd nuclei and odd-mass nuclei we obtain with almast equal probability ground states
with positive and negative parity. In addition, assuming pure random interactions, we find that, for the ground
states, low seniority is not favored, no dominance of positive values of spectroscopic quadrupole deformation
is observed, and there is no sign of a-clustering correlation, all in sharp contrast to realistic nuclei. Considering
a mixture of a random and a realistic interaction, we observe a second-order phase transition for the

Patterns of the ground states in the presence of random interactions: Nucleon systems

2C’yclotron Center, Institute of Physical Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan

a-clustering correlation probability.

DOL: 10.1103/PhysRevC.70.054322

L. INTRODUCTION

It was discovered in Ref. [1] that the dominance of spin-
zero ground states (0 g.s.) can be obtained by diagonalizing
a scalar two-body Hamiltonian with random valued matrix
elements, a so-called two-body random ensemble (TBRE)
Hamiltonian. The 0 g.s. dominance was soon confirmed in
Ref. [2] for sd-boson systems. This feature was found to be
robust and insensitive to the detailed statistical properties of
the random Hamiltonian, suggesting that the 0 g.s. domi-
nance holds for a very large ensemble of two-body interac-
tions other than a simple monopole paring interaction. An
understanding of this discovery is very important, because
this observation seems to be contrary to what is traditionally
assumed in nuclear physics, where the 0 g.s. dominance in
even-even nuclei is usually explained as a reflection of at-
tractive pairing interaction between like nucleons.

There have been many efforts to understand this observa-
tion, but a fundamental understanding is still out of reach [3].
There are also many works [4] studying other robust phe-
nomena of many-body systems in the presence of the TBRE,
for example the studies of odd-even staggering of binding
energies, generic collectivity, the behavior of energy cen-
troids of fixed spin states, correlations, etc.

*Electronic address: ymzhao@riken.jp

"Electronic address: shimizu@nt. phys.s.u-toyo.ac.jp
*Electronic address: ogawa@physics.s.chiba-u.ac.jp
$Electronic address: yosinaga@phy.saitama-u.ac jp
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PACS number(s): 21.60.Ev, 21.60.Fw, 05.30.Jp, 24.60.Lz

The purpose of the present paper is to focus our attention
on some physical quantities in the ground states which have
not been studied yet, specifically parity, seniority, spectro-
scopic quadrupole moments (i.e., measured in the laboratory
frame), and a-clustering probability. For realistic nuclei,
these quantities show a very regular pattern. In this paper, we
shall discuss whether these regular patterns are robust in the
presence of random interactions.

As is well known, all even-even nuclei have positive-
parity ground states (ie., 100%), whereas the ground states
of nuclei with odd mass numbers have only a slightly higher
probability for positive parity than for negative parity. Odd-
odd nuclei have almost equal probabilities for positive- and
negative-parity ground states (~50%). The statistics for the
ground-state parity of nuclei with mass number 4=70 are
summarized in Table 1. As the first subject, we will study the
ground-state parity distribution using random interactions.

TABLE L The positive parity distribution of the ground states of
atomic nuclei. We included all ground-state parities of nuclei with
mass number 4 = 70. The data are taken from Ref. [5]. We have not
taken into account those nuclei for which the ground-state parity
was not measured.

Counts Even-even Odd-4 Odd-odd
verified (+) 487 281 118
verified (-) 0 215 104
tentative (+) 0 159 70
tentative (-) 0 126 60

©2004 The American Physical Society
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The next subject that we shall discuss in this paper is the
distribution of seniority in the ground states. Seniority [6]
has been proven to be a very relevant concept in nuclear
physics, in particular for spherical or transitional nuclei. Se-
niority (v) is uniquely defined for a single-; shell; it was
generalized to the case of many-j shells by Talmi in Ref. [7].
In Refs. [1,8] it was reported that the pairing phenomenon
seems to be favored simply as a consequence of the two-
body nature of the interaction. The “pairing” of Refs. [1,8]
was characterized by a large matrix element of the S pair
annihilation operator between the ground states of an n fer-
mion system and an n—2, n—4,... system, where the S pair
structure is determined by using the procedure of Talmi’s
generalized seniority scheme. This indicated that the S-pair
correlation is dominant for the spin-0 g.s. of these systems.
However, an examination of this “pairing” correlation of fer-
mions in a single- shell in Ref. [9] showed that an enhanced
probability for low seniority in the spin-O g.s. is not observed
in most of the calculations using a TBRE Harmiltonian. For
many-j shells, there have been only a few discussions to
clarify this point so far.

Another subject that we shall discuss is the a-clustering
correlation in the presence of random interactions. The im-
portance of the a-clustering correlation in light and medium
nuclei has been emphasized by many authors [10]. The
a-clustering correlation also plays an important role in astro-
physical processes, such as the Salpeter process in the for-
mation of ‘2C. Many calculations of low-lying states, using
the antisymmetrized molecular-dynamics model, have been
done in recent years [11] to study the a~clustering and other
clustering correlations for both stable and unstable light nu-
clei. a-cluster condensation was suggested by Horiuchi,
Schuck, and collaborators in Ref. [12]. As a function of the
admixture of a realistic to the TBRE interaction, a phase
transition is observed for the a-clustering probability in the
ground state.

In this paper, we also discuss the spectroscopic quadru-
pole moments (i.e., measured in the laboratory frame) of the
ground states. A positive value of spectroscopic quadrupole
deformation is dominant in the low-lying states of atomic
nuclei. Recently, it has been argued in Ref. [13] that this is
due to the interference of spin-orbit and /2 terms of the Nils-
son potential.

Our calculations are based on the use of TBRE interac-
tions. The single-particle energies are set to be zero. The
Hamiltonian that we use conserves the total angular momen-
tum and isospin,

JT
1
H= > 2J+1\2T+1G]]
23
Ji2iyja : 4\/1+ T2 \/1+

X [(aT X a; )JT) X (aj31 X aj4z)(m](00):

(1)
where the GJ]TJ jyj, 2re defined as (T V] jajsJT) and fol-

low the following distribution:

( «’11213!4)
2x

1
P( 1117/3/4) ‘ZT; Cxp( (2)

with
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1 if (I T) =
x=31

|Gl T)
3)

otherwise.

The Hamiltonian so defined is called a TBRE Hamiltonian.
Here ji, jo, j3, and j, denote the respective single-particle
orbits, and J(T) denotes the total angular momentum (iso-
spin) of two nucleons. For each system, 1000 runs of calcu-
lations are performed in order to accumulate stable statistics.

This paper is organized as follows. In Sec. II, we present
our results for parity distributions for a variety of systems. In
Sec. I1I, we discuss the distribution of seniority in the ground
states using random interactions. In Sec. IV, we show our
results for spectroscopic quadrupole moments of the ground
states which suggest prolate or oblate shapes. In Sec. V, we
discuss the a-clustering correlation in the ground states. A
summary will be given in Sec. VI.

1. PARITY

We select four model spaces for studying the parity dis-
tribution in the ground states obtained by random interac-
tions.

(A) Both protons and neutrons are in the f5,p1/28¢/, shell,
which corresponds to nuclei with both proton number Z and
neutron number N~40.

(B) Protons in the f5npi/280 shell and neutrons in the
7145, shell, which corresponds to nuclei with Z~40 and
N~50.

(C) Both protons and neutrons are in the A}y ,,5,d5 shell,
which corresponds to nuclei with Z and N~ 82.

(D) Protons in the gypdss shell and neutrons in the
h119812d3s2 shell, which corresponds to nuclei with Z~ 50
and N~82.

These four model spaces do not correspond to a complete
major shell but have been truncated in order to make the
calculations feasible. These truncations are based on the sub-
shell structures of the involved single-particle levels. We
study the dependence on valence-proton number N, and
valence-neutron number N,, in these four model spaces. It is
noted that the numbers of states [denoted as D(J)] for posi-
tive and negative parity are very close to each other for all
these examples. The D(f)’s for a few examples are shown in
Fig. 1. One thus expects that the probability of the ground
states with positive parity is around 50%, if one assumes that
each state of the full shell model space is equally probable in
the ground state.

The calculated statistics for the parity of the ground states,
using a TBRE Hamiltonian, is given in Table II. This clearly
shows that positive parity is favored, and dominant for most
examples, for the ground states of even-even nuclei in the
presence of random interactions.

The statistics for nuclei with odd mass numbers and nu-
clei with odd values of both ¥, and N, (the number of pro-
tons and the number of neutrons, respectively) is also given
in Table II. These statistics show that the probabilities to
have positive or negative parity in the ground states are al-
most equal to each other with some exceptions. In general,
there is no favoring for either positive parity or negative
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FIG. 1. Number of states with total angular momentum J [de-
noted as D(/)] vs 1. One sees that the D{/) of positive parity levels
and that of negative parity levels are very close to each other. (a)
Two protons in the 1go,2p121f5n shell and four neutrons in the
2dsplgrn shell; (b) two protons and two neufrons in the
1gon2p1nlfsn shell; (c) two protons and three neutrons in the
1g9/22p1/21f5/2 shell; (d) three protons in the 11’!11/235‘1/22[15/2 shell
and three neutrons in the 2ds;1g7,, shell.

parity in the ground states of odd mass nuclei and doubly
odd nuclei in the presence of random interactions. It is noted
that these calculations are done for the beginning of the shell.
For the end of the shell, the results show a similar trend.

TABLE 1l. The positive parity probability for the ground states
(in %). Numbers of neutrons and protons (N,,N,) are given in
parentheses for each configuration.
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We also find that the above regularities for parity distri-
butions also hold for very simple cases, namely single-closed
two-j shells with one positive and one negative parity. We
have checked this explicitly in the cases (27,,2/,)=(9,7),
(11,9), (13,9), (11,3), (13,5), (19,15), (7,5), and (15,1).
The statistics is very similar to the above results: The prob-
ability of ground states with positive parity is about 85% for
an even number of nucleons, and about 50% for an odd
number of nucleons.

It is interesting to note that for all even-even nuclei, the
P(0%) is usually two orders of magnitude larger than P(07). It
would be very interesting to investigate the origin of this
large difference, i.e., why the 07 is not favored in the ground
states. As is the case for an odd number of bosons with spin
1[14], spin I=0 is not a sufficient condition to be favored in

the ground states of a many-body system in the presence of

the random interactions. It should be noted that for a realistic
g.s., not only is /=0 required but also positive parity.

One simple and schematic system to study the parity dis-
tribution of the ground states in the presence of random in-
teractions is the sp-boson system. First, we note that an
sp-boson system with an odd number of particles (denoted as
n) has the same number of states with positive and negative
parity, and for an even value of n there are slightly more
states with positive parity (the difference is only n+1). The
calculated results of Ref. [15] showed that when the number
n of sp bosons is even, the dominant / of the ground states is
0 or n (about 99%), with positive-parity dominance [the par-
ity for sp bosons is given by (-)]. When # is odd, only about
50% of the ground states in the ensemble have spin 0, and
about 50% have I=1 or I=n. This leads to about equal per-
centages for positive- and negative-parity ground states. This
pattern is very similar to that observed for fermion systems.

Basis A
1. SENIORITY
0,9 (0,60 2,2 2,4 2.6 . . . o .
%6.8% 86.2% 93.1% 81.8% 88.8% In this section, we discuss the distribution of the seniority,
: ’ . . the number of particles not pairwise coupled to angular mo-
2,3 (1,49 1,3 (0,5 1,5 (6,1 @20 mentum 0, of the ground states of nuclei in the sd shell in the
42.8% 38.6% 77.1% 45.0% 69.8% 38.4% 31.2% presence of random interactions. Because seniority is used in
Basis B classifying the states in our basis, we define the expectation
2.2 (2,4 4.2 value for seniority in the ground states as follows [16]:
72.7% 80.5% 81.0% w)=3 v )
G,4 (3,3 2,3 6,0 G2 @) 149 60 '
42.5% T49% T24% 42.9% 39.1% 75.1% 264% 44.1%  where f; is the amplitude of the ith component in the ground-
Basis C state wave function, and v, is the seniority number of the
corresponding component.
222’52 8(2’40) g(g ’9?; ég ’ 4(2 For even-even nuclei, we consider the spin-0 g.s. because
2% 8L1% 80.9% 82.4% previous discussions [8,9] were focused on spin-0 ground
(1,3 (1,5 2,3 (6,00 &1 states. For odd-mass nuclei, we consider the I=]5, %, and %
73.0% 64.4% 52.0% 42.6% 56.5% ground states, because these spin I’s are equal to the angular
Basis D momenta of the single-particle levels in the sd shell and are
) 42) 2.4 (0.6 favored as the ground states in the presence of random inter-
@2 42 @ 0) T actions. For odd-odd nuclei in this section we consider the
672% 76.1% 74.6% 83.0% ground states with /=1 (most favored) and /=0 states. The
that we have calculated include (N,,N,)=(0,4)
(3.3 (G,2) @3 (0.9 examples >N ,4),
54.5% 54.2% 54.0% 45.9% (Oyé)’ (2>2): (274), (2:6): (4:6), (0’5): (253): (255)7 (433)7
4.5), (3,3), (1,5), and (3,5).
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FIG. 2. Distribution of seniority in the ground states with spin
zero for even-even nuclei [refer to panels (a), (b), and (c)], spin /
=j1,J2,/3 for the odd-4 case [refer to panel (d)], or spin /=1,0 for
odd-odd nuclei [refer to panels (€) and (f)]. The error bar is defined
by the square root of the count (statistics) for each senjority bin
(step width is 1). The dominance of seniority zero components of
ground states is not observed.

Typical examples of the distribution of average seniority
({v)) in the ground states are shown in Fig. 2 in arbitrary
units (i.e., relative probability). The figure shows that for
none of the cases is a small value for {v) preferred. These
distributions of seniority in the ground states show that the
large matrix elements of the S-pair operator between the
spin-0 g.s. of an n-nucleon system and that of an
(n+2)-nucleon system, as observed in Ref. [8], should not be
understood as an indication of a large S pair condensate in
the spin-0 g.s. of TBRE Hamiltonians. Further studies are
necessary to understand the implications of Ref. [8].

1V. SPECTROSCOPIC QUADRUPOLE MOMENT

In this section, we study the quadrupole moments of the
ground or low-lying states. If the ground-state spin 7 is
smaller than 1 (i.e, 0 or %), the spectroscopic quadrupole
moment necessarily vanishes (even though there could be a
finite intrinsic moment) because the triangle relationship of
angular momentum coupling cannot be obeyed by the two I's
< ]5) and the angular momentum for the quadrupole opera-
tor (=2). For these cases, one can use an alternative, namely
the quadrupole moment of the next lowest state with /> %
For all cases that we have checked, it is found that the es-
sential statistics for positive and negative quadrupole mo-
ments obtained by this alternative is very close to that ob-
tained by neglecting cases with ground state J <%. In this
paper, we show the statistics which does not include the runs
of spin-0 and sp:in-% ground states. The total number of cal-
culated spectroscopic quadrupole moments is thus much less
than 1000. We note that a negative spectroscopic quadrupole
moment implies a positive quadrupole moment in the intrin-
sic frame and thereby a prolate deformation.

The spectroscopic quadrupole moment is defined by

O =(BIr* ;48D ()

for both proton and neutron degrees of freedom. In Eq. (5),
|BI) is the wave function of the ground state. In this paper, 0
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will be used to refer to the spectroscopic quadrupole moment
following from Eq. (5).

We have calculated Q for a number of cases in the sd
shell and for several fillings of the four single-particle bases
mentioned in Sec. II. The results are given in Table III. One
sees that negative values for O (corresponding to prolate
deformations) are dominant with two exceptions, (N,,N,)
=(4,3),(6,5) in the sd shell. In general we observe that for
the sd shell, the statistics for positive and negative values for
Q is comparable if &, and/or N, are close to their midshell
values.

From Table IlI, we conclude that at the beginning of the
shell, negative values for O are dominant, while at the end of
the shell, positive value dominate. This is similar to the result
for a harmonic-oscillator potential, for which prolate defor-
mation occurs at the beginning and oblate deformation at the
end of the shell [17].

V. & CLUSTERING

It was shown in Ref [18] that the essential parts of the
I=0,T=0 ground state for 2’Ne with two protons and two
neutrons in the sd shell are dominated by components with
the highest orbital symmetry [4]; 91.8% of the ground state
is given by components with orbital symmetry [4] which
corresponds to a pure a-clustering configuration. One may
use the expectation value of the Majorana interaction, P, as
the fingerprint for the a-cluster wave function. Another simi-
lar example is the /=0,T=0 ground state for *Be with two
protons and two neutrons in the p shell. If one uses the
Cohen-Kurath interaction, one sees that the expectation
value of Py, is —5.76, close to —6, which is the eigenvalue of
Majorana force. The overlap between the g.s. wave function
obtained by diagonalizing the Cohen-Kurath interaction for
’Be and that for exact SU(4) symmetry (namely, full sym-
metry [4] for the ground state) is 0.97." This dominance of
the full symmetry [4] with respect to the permutation of or-
bital degrees of freedom in the /=0 and 7=0 ground states of
these nuclei is an indication of a-clustering correlation from
the perspective of the shell model. In this paper, we concen-
trate on these two examples using random interactions.

To set the scale, we can calculate the matrix element of
Py, in the I=T=0 (spin-isospin singlet) ground state by as-
suming that all the possible /=7=0 states with different sym-
metries with respect to the exchange of the orbital degrees of
freedom appear at an equal probability. We call the P;, so
obtained the geometric P,.. To do so, one needs the number
of (J=0,7=0) states for each orbital symmetry.

The procedure to construct the states with particular spin-
isospin symmetry is given in Ref. [19], while that for con-
structing wave functions with certain orbital symmetry is
given in Ref. [20] for the Elliott model [21], with tables for

. the sd, pf, and sdg shells. Finally, the spin-isospin functions

should be coupled to the orbital functions with their conju-

'In this paper we set the single particle energies to zero. If we take
the single particle energies of Cohen-Kurath interaction, this over-
lap becomes 0.99.
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TABLE III. The number of cases with positive (negative) spectroscopic quadrupole moments are given in
bold (italic) font, respectively. We omitted the cases for which the spin of the ground state is less than 1; see

the text for further details.

Both protons and neutrons in the sd shell

(N, Ny) (VY] 2.3 @35

280 418 338 430 306 402
(N2 Nn) @0 4, 3) 45

287 425 434 374 320 370
(Np,Ny) 6.1 (6,3) (6,5)

201 530 400 444 420 348

Basis (A): protons and neutrons in fsppngon

(N Ny) (1,2) 1,3 (1,4

267 469 283 481 246 535
(N, Nn) (1,6) 2,3) ©, 5)

207 566 284 564 4477 459

Basis (B): protons (fsnp(289s), neutrons (g7,ds)

(N N) 1,4 @1 24

374 507 278 632 253 428
(N, Na) 3.4 4. 3) (6,1)

278 620 330 560 233 660

Basis (C): protons and neutrons in s;pdsphyn

(N, Na) 2,3) 2 5) 4, 3)

231 657 238 472 392 498
(N> V) (Y (5. 0) (3,3)

213 628 212 659 349 449

Basis (D): protons gydsy, neutrons sy pdaphyn

(N, N (14, 13) (15, 12)

781 ‘ 183 610 333

gate symmetry to obtain the fully antisymmetric wave func-
tions with respect to an exchange of two particles. The an-
gular momentum for each state is given by coupling S and L.

Table IV presents the number of /=0 states for two pro-
tons and two neutrons in the p shell and the sd shell with all
possible orbital symmetries. From Table II, one obtains the
geometric Py, for the J=T=0 states: P, is —g for the p shell
and —%% for the sd shell.

Using 2 TBRE Hamiltonian, we obtain the following
probabilities for spin-/ ground states: For 1000 runs, one
obtains 485 and 365 runs with (Z, 7)=(0,0) ground states for
®Be and 2°Ne, respectively. This is consistent with the result
[1,8] of the I=T=0 g.s. dominance in the presence of ran-
dom interactions. The average value of P,, for the (I,T)
=(0,0) g.s. that we obtain is —~1.26 (the geometric value is

§=—120) and —1.66 (the geometric value is —22.=—1.05)
for the p shell and the sd shell, respectively. The average
value of P, for a TBRE Hamiltonian and the corresponding
geometric value are very close to each other for the p shell,
indicating that e-clustering correlation is not favored by ran-
dom interactions. For the case of the sd shell, the average

value of Py, for a TBRE Hamiltonian deviates sizably from
its geometric value.

To check whether this deviation becomes larger for larger
shells, we calculate the case of two protons and two neutrons
in the sdg shell, for which we obtained 385 cases with
(I,7)=(0,0) ground-states among 1000 sets of TBRE Hamil-
tonians. The average P, value for these states is —0.629,
while that obtained by assuming a random orbital symmetry
is —%, which is close to the above value.

It is also interesting to study the distribution of overlaps
between the /=T=0 ground state obtained from the realistic
interactions and those obtained by pure random interactions
or by a combination of realistic and random interactions. As
an example, we discuss here the case of two protons and two
neutrons in the p shell where the realistic interaction is cho-
sen as the Cohen-Kurath interaction. We thus define a Hamil-
tonian

H (1 - }\)HTBRE + )\Hrcal' (6)

Here A=0 corresponds to the pure TBRE Hamiltonian and
N=1 corresponds to the realistic Cohen-Kurath interaction.
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TABLE IV. The number of /=0 states for two valence protons
and two valence neutrons in the p shell and the sd shell with defi-
nite symmetry with respect to exchange orbital degree of freedom
of two particles and the corresponding conjugate symmetry with
respect to exchange spin-isospin (S—7) degrees of freedom. L is the
total orbital angular momentum and S is the total spin. The last
column gives number of the /=0 states with 7=0.

L S I=0  [=T=0
The p shell
[4]0,2,4 0 0 0
[31]1,2,3 0,12 0? 0
[22]0,2 02,1,2 03 0?
[211] 1 0,132 0? 0
The sd shell
[4] 0%,25,3,44,5,62,8 0 ot 0*
[31] 0%,14,27,36,45,5%,62,7 0,12 00 0%
[2210%,1,25,32,4%,5.6 0%,1,2 ol 08
[211] 15,23,35,42,5% 0,13,2 0'8 0’
[1111]1,2,3 0,1,2 0%

We will vary \ in the range from 0 to 1, corresponding to the
situation of nuclear forces with different mixtures of random
noise.

The results for A=0, 0.3, 0.5, 0.7, and 0.9 are shown in
Figs. 3(a)-3(e). The error bars indicate the statistical errors
in determining the numbers, defined by the square root of the
number of counts for each bin. For case (a) with A=0 one

20 T T T T
15 -(@

10 -

counts

200 -
100 -

5 s .

0.2 04 0.6
Overlap

0 .
0.0 0.8

FIG. 3. The overlaps between the /=7=0 ground states for two
protons and two neutrons in the p shell obtained by Cohen-Kurath

interactions and those obtained by the Hamiltonian Eq. (6). (a)—(e)
correspond to A=0, 0.3, 0.5, 0.7, and 0.9, respectively.
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FIG. 4. Average overlap of the g.s. of the Hamiltonian of Eq. (6)
with that of the realistic Hamiltonian as a function of the mixing
parameter A. The line is plotted to guide the eyes.

sees that the overlaps distribute “randomly” from 0 to 1. This
suggests that pure random interactions produce “random?”
overlaps of the /=T7=0 ground states with the realistic
ground state. However, for A > 0.5, the J=T=0 ground states
are close to that of the realistic interactions for most of the
cases. This is especially clear from Fig. 4, where the overlap,
averaged over the different Hamiltonians in the ensemble Eq.
(6), is plotted versus \. The statistical inaccuracies are indi-
cated by the error bars in this figure. For values of X exceed-
ing 0.6, the overlap is very close to unity, while for larger
admixtures of the random component in the interaction, the
overlap decreases approximately linearly with A. This trend
has all the signatures of a second-order phase tramsition.
Only for limited magnitude of the random interaction does
the g.s. have a realistic structure, which breaks down when a
critical value is exceeded.

VI. DISCUSSION AND SUMMARY

"The present paper was stimulated by the discovery of the
spin-zero ground-state dominance (0 g.s.) of even fermion
systems [1] and boson systems [2] in the presence of the
random two-body ensemble (TBRE). This discovery sparked
off a sudden interest in many-body systems under the TBRE.
It also led to extensive studies of other physical quantities
[4], such as energy centroid of fixed spin states, collectivity,
etc. The purpose of this paper was to study the robustness of
some features which are well known in nuclear physics but
have not been studied under the TBRE.

First, we calculated in Sec. II the parity distribution of the
g.s. for a TBRE Hamiltonian. It was found that positive par-
ity is dominant for the g.s. of systems with even numbers of
valence protons and neutrons. For odd-4 and doubly odd
systems, the TBRE Hamiltonian leads to ground states with
comparable probability for both positive and negative parity.
This is similar to the global statistics for realistic nuclei with
A=70 (refer to Table I). Unlike the spin-0 g.s. dominance in
the presence of random interactions, the dominance of posi-
tive parity in the ground states of even-even nuclei has not
been pointed out explicitly so far. Since parity is a much
simpler quantity than angular momentum, an understanding
of the parity dominance of even-even systems may be help-
ful in understanding the spin-0 g.s. dominance of even-even
nuclei in the presence of random interactions.
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Second, our investigation showed that the seniority distri-
bution for the g.s. of sd-shell nuclei is not dominated by low
seniority components, contrary to the situation for realistic
nuclei. Our investigation also suggests that the correlation
between the wave function of the spin-0 g.s. for 4 nucleons
and that for 4+2 nucleons discussed in Ref. [8] should not
be understood as an indication of the dominance of the se-
niority zero component.

Third, the dominance of negative speciroscopic quadru-
pole moments at the beginning of the shell and positive
quadrupole moments at the end of the shell is also observed
in the g.s. obtained by using the TBRE interactions. This
situation is similar to the prediction obtained from a simple
harmonic-oscillator potential. This means that the TBRE
Hamiltonians do not lead to an overall dominance of the
prolate deformation. However, also in realistic nuclei a
dominance of prolate deformation is observed when both
valence protons and neutrons are in the first half of a major
shell.

Last, we studied the a-clustering correlation by calculat-
ing the expectation value of the Majorana operator in the J
=0, T=0 g.s. of TBRE interactions. We also calculated the
overlaps between the /=0, T=0 ground states of the TBRE
Hamiltonian and the ground state obtained from realistic in-
teractions. Our calculations on *Be and *Ne showed that the
a-clustering structure is not favored by a pure TBRE Hamil-
tonian. It is interesting to note that, as a function of the
admixture of a realistic Hamiltonian to a TBRE Hamiltonian,

PHYSICAL REVIEW C 70, 054322 (2004)

a second-order phase tramsition is observed. For Hamilto-
nians that contain less than ~0.4 admixture of random inter-
actions, the structure of the g.s. is close to the realistic case,
but for higher admixtures the overlap with a realistic wave
function becomes progressively worse.

In conclusion, we have observed in this paper the domi-
nance of positive parity in the ground states of even-even
nuclei in the presence of pure random two-body interactions.
Because parity is intrinsically a simpler quantum number
than angular momentum, it will be interesting to understand
the mechanism for this. In addition, it has been shown that,
even though the quantum numbers for the g.s. are realistic,
the dynamical properties of the ground states under the
TBRE Hamiltonian, such as seniority, which is a signature of
pairing correlation, the a-clustering probabilities, and the

.sign of quadrupole moments, are in sharp disagreement with

those of realistic nuclei.
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In this paper we study the behavior of energy centroids (denoted as E) of spin / states in the presence
of random two-body interactions, for systems ranging from very simple systems (e.g., single-/ shell for very
small /) to very comphcated systems (e.g.. many-/ shells with different parities and with isospin degree of
freedom). Regularities of E}'s discussed in terms of the so-called geometric chaoticity (or quasi-randomness of
two-body coefficients of fractional parentage) in earlier works are found to hold even for very simple systems
in which one cannot assume ne geometric chaoticity. It is shown that the inclusion of isospin and parity does not

“break” the regularities of Ej 's.
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Low-lying spectra of many-body systems with an even
number of particles were examined by Johnson, Bertsch,
and Dean in Ref. [1] by using random two-body interactions
(TBRE). Their results showed a preponderance of spinP™™ =
07 ground states. Many efforts have been made to understand
this very interesting observation and to study other regularities
of many-body systems in the presence of random interactions,
For instance, studies of odd-even staggering of binding
energies, generic collectivity, behavior of energy centroids for
spin / states, and correlations have attracted much attention in
recent years. See Ref. [2] for a recent review.

Among many works along the context of regularities
under the TBRE Hamiltonian, regularities of energy centroids
(denoted as E;’s) of spin / states are very interesting. We
denote by (/) the probability that E] is the lowest energy
among all E;’s. It was shown in Refs. [3,4] that P(I) is
large only when [ = I, or I 22 Iy, One thus divides the
TBRE into two subsets; one subset has E;~; . as the lowest
energy, and the other has E;~,,, as the lowest energy. We
define (E/)min ((E7)max) as the value obtained by averaging
E; over the subset where Ej~;, (Ej~r,.) is the lowest
energy. 1t was shown in Ref. [4] that (_E—;) mn >~ CIIT+1)
and (E)max = C [Tnax(Imax + 1) — I(1 + 1)], where C is a
constant depending on the occupied single-particle orbits and
the choice of the ensemble. These features were discussed
by using the quasi-randomness of two-body coefficients of
fractional parentage (cfps) in Ref. [4], and by using other
statistical views in Refs. [5,6].

The purpose of this Brief Report is to revisit regularities
of E;. We shall show that the aforementioned regularities of
P(I)’s and (—E)min’s hold even for very simple systems in
which one cannot assume that two-body cfps are random.
Previous studies of E; under random two-body interactions
have been restricted to identical fermions in one-/ shell or two-f
shells. Here we shall extend the study of E; under random
interactions to systems of many-j shells with the inclusion of
parity and/or isospin.
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PACS number(s): 21.10.Re, 21.60.Ev, 23.20.Js

In this paper we use the general shell model Hamiltonians
defined in Ref. [2] and take the TBRE of Ref. [1] for two-body
matrix elements. E ¢ and P(I) for “=£” parity states are denoted
by E;« and P(I%), respectively. The number of particles is
denoted by n. Proton (neutron) degree of freedom is denoted

y “p” (“n”). Our statistics are based on 1000 sets of the TBRE
Halmltoman

We begin with simple systems, that is, fermions in 2 small
single-j shell (j £ 7/2) and bosons with a small spin /. First we
study fermions ina j = 5/2 or7/2 shell. E; for three fermions

“were given in Egs. (2.1) and (D1) of Ref. [7]. E, for four

fermions in a j = 7/2 shell can be obtained based on Eq. (5)
of Ref, [8]. P(I)’s obtained by using the TBRE Hamiltonian
and those by applying the empirical rule of Ref. [7] are plotted
and compared in Figs. 1(a)-1(c), where reasonable agreement
is achieved. One sees that P(I)’s are large for I o Iy, or
I = L4, except that this pattern is not very striking for
Fig. 1(a) where there are only three E’s given by three
two-body matrix elements For j =17/2,P(I)’s are small for
“medium” /,
__Letus look at (E/)min’s, which are obtained by averaging
E; over the subset with E;~,, being the lowest energy. We
plot (E;)min’s for n = 3 with J=5/2,n=3with j =7/2,
and n =4 with j = 7/2 in Figs. 1(a’)-1(c’), respectively. We
see that (E})min’s are approximately proportional to 7(7 + 1).

Now we study bosons with small spin /. The case with / = 1
(pp bosons) can be easily understood: There is only one state for
each I; P(I) = 50% for I = Iy Of I = Ing, and P(J) =
for other / values; E; follows the E; = CI (I-+1) re]auon
precisely.

As for [ =2 (d) bosons, we predict P(I) values for
n=3, 4, 5, and 6 by applying the empirical rule of
Ref. [7] and compare them with those obtained using
the TBRE Hamiltonian in Figs. 2(a)-2(d). Figures 2(a’)-
2d) plot (Ej)min versus I(J +1). A linear correlation
between these two quantities is easily noticed. Because all
eigenvalues of d-boson systems are known, one can study

©2005 The American Physical Society
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FIG. 1. P(I)’s and {E}) s for three fermions in a j = 5/2 or
7/2 shell, and for four fermions in a j = 7/2 shell. (E)in’s are
obtained by averaging over the subset of Ey..; ;.. One sees that P(I)’s
are large for J 22 Ly, and [ 22 I yx, except in the case withn = 3 and
J =35/2 for which three states are given by three random two-body
interactions. A good agreement between P(I) obtained using the
TBRE Hamiltonian and that using the empirical rule of Ref. [7] is
easily seen. The dotted lines in (a')-(c') are plotted to guide the eyes.

P(I) and the correlation between (B )min and 7(J + 1) at
a more sophisticated level. From Egs. (2.7) and (2.8) of
Ref. [7], we have

—_ 1
E; = E'(n) + %'(106‘3 —Teo — 3¢y)

xv(v+3)+ —114—(64 —c)I(I + 1. (1)
Equation (1) shows that there are three terms in the E;’s: The
first is just a constant and the second is related to v(v + 3), the
difference of which between neighboririg/ is large for low f and
is negligible for I 3> Ini; the third one is 7(I + 1), which is
small for low / and becomes dominant for large {. Thus P(7) is
sensitive to the value of v(v + 3) only for low /. Let us evaluate
C in the formula (£} )mex = C [Imax(Inax + 1) — I(I + 1)] for
d-boson systems. A simple assumption here is (¢ — ¢2) <0.
The C value can be evaluated by averaging Tl«i(C4 — ¢) under
such a requirement:

C = ! X 2 X 1 ! /‘mte‘§dv
T 14 Va2l ;
1
= —— ~ —(.0806. (2)

/7
The value of C obtained by using the TBRE Hamiltonian is
~—0.731f E ey, is the lowest energy and ~0.070if E~y , is
the lowest energy. The difference between our predicted |C| of
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FIG. 2. P(I)'s and (E;)min’s for d bosons with n = 3,4, 5, and 6.
P(I)s are large when J o Jiyn o1 1 o2 Lnyy. P(I)’s predicted by using
the empirical rule are reasonably consistent with those obtained using
the TBRE Hamiltonian, (E;) s of these systems are proportional
to I(I + 1) with fluctuations.

Eg. (2) and those obtained by the TBRE Hamiltonian comes
from the complexity of v(v + 3), which can be formulated
aralytically for any /.!

Now we come to systems of many-j shells with the inclusion
of parity. Let us exemplify by a system with four identical
nucleons in two-j shells: j¥ = 5/2* and j = 3/2~. Figure 3
plots our calculated P(/¥) in terms of I* and (E;+)min
in terms of I*(I* +1). One sees that both P(/*) and
(E ) min behave similarly as P(I) and (E)mn in Ref. [7].
The P(I*)’s predicted using the empirical rule of Ref, [7]
are reasonably consistent with those obtained numerically
using the TBRE Hamiltonian. According to our statistics,
2o+ PUIF) =41.3%, whereas 3, P(I") = 58.7%; C* =
0.0372 +0.0017 and C~ = 0.0359 £ 0.0029. These C* val-
ues are close to those obtained for dspadsyy shells. For four
identical nucleons in dajdsy shells, C = 0.0401 = 0.0017.
This suggests that the relation (£ &) ~ CEIE(I% + 1) and
the value of C are not sensitive to parity of single-particle
levels in the model space.

'We can see this point from the following numerical experiment.
Let us take the subset where Ej..,.. is the lowest energy, and confine
our data of E; to large I cases where the contribution from v(v + 3)
is small. The value of C such obtained is well consistent with that
predicted by using Eq. (2). For example, if we adopt only I > 55 for
n =33, C = —0.08146 £ 0.00191 for (E7)max.
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We next study many systems with the inclusion of isospin
degree of freedom. Figure 4 presents a few typical exam-
ples of P(I) and (E)min. We see that P(I) is large only
when I 22 Iy, or 1 22 Ingy, and that (E;) g ~ CI(I + 1),
According to our calculations, C = 0.0354 % 0.0003,
0.0341 £ 0.0001, 0.0350 = 0.0001, and 0.0341 = 0.0002 for
(np, nn)=(4.4), (4,5), (4,6), and (6,6), respectively, in
s12dajadsyy shells. C = 0.0331 == 0.0002, 0.0331 =+ 0.0001,
and 0.0338 & 0.0001 for (n,, ny) = (2, 4), (4,3), and (4,4),
respectively, in fictitious two—j shells da jadfs /2.C values are very
close to those given by the empirical formula C >~ 1/(4Y"; j#)
suggested on the basis of numerical experiments in Ref. [4].

FIG. 4. P(I) and (E} )iy for a few systems with both valence
neutrons and protons.

We have also studied systems that include both parity and
isospin. Our results present similar regularities and suggest
that C* values are sensitive to J shells but not sensitive to
particle numbers, nor to the isospin degree offreedom.

Now we discuss the for_n_lpla of Z/ obtained in Refs. [5,6] by

evaluating the C value in {E} ) yin 2~ CI(I + 1). The coefficient
of the third term in Eq. (9) of Ref. [6] is a Gaussian random

. number with width

.. 2
o= Z ((2] + 1)3(J(J +1)—-2j( + 1)))

mevenJ

272 + D) + 1)?

One sees that o o j~%% when j — oco. The coefficient C
in (Efymin = CI(I + 1) is given by o x /2/7. The C value
based on Refs. [5,6] is therefore proportional to 1 /\/}'? at
the large-/ limit. This is different from the empirical formula
C = 1/4j> In Table I we list a few C values obtained by
different methods. This table shows that there is a systematic
discrepancy between the predicted C = /2/m o with o given
by Eq. (3) and that obtained by using the TBRE Hamiltonian,
The reason for this discrepancy should be clarified in the future.

To summarize, in this paper we have studied energy
centroids of spin / states in the presence of random two-body
interactions. First, we have shown that the regularities—P(I)’s
are large only when I 2 Iy, or I 22 Inag, and (E)min ~

3(1408 6 - 86475 — 4296 j4 — 5123 + 5688 j2 + 558 — 945)
56074(; + 1*(2j + 1)3 '

3

I(I + 1)—hold approximately even for very simple systems
in which cfps cannot be assumed “random.” These simple
systems include fermionsina j =5/2 or j = 7/2 shell,/ = 1
(p) bosons, and [ = 2(d) bosons. We point out that, although
these regularities of energy centroids of spin / states are noticed
and argued in Refs. [4-6], a sound understanding of ; is not
yet available. The arguments of Refs. [4—6] might be part of
the story, and the randomness of cfps is not the unique origin
of these regularities.

Second, we have shown that the these regularities are also
robust with the inclusion of parity and/or isospin: P(I%)’s
are large only when 7% = Iy or I o ey, and (B2 )iy ~
CEI*(I* +1). C* is not sensitive to parity or isospin but
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TABLE 1. The coefficients C for a single-/ shell. The column
“TBRE” is obtained by 1000 runs of the TBRE Hamiltonian.
The column “Empirical” is obtained by the simple formula 1/4 ;2
suggested in Ref. [4]. The column “Z-K” is obtained by the
formulas given in Refs. [5,6]. Because C is not sensitive to particle
number n, all results are given by n = 4. It is noted that C values
obtained by the formula of Refs. [5.6] are systematically smaller
than (about 70-80% of ) the “‘experimental” values for a single-/
shell.

27 TBRE Empirical Z-K

9 0.01374 0.01235 0.01026
11 0.00826 0.00826 0.006907
15 0.00474 0.004444 0.003604
21 0.00231 0.002268 0.001712
27 0.00131 0.001372 0.000963

PHYSICAL REVIEW C 71, 017304 (2005)

is sensitive to the value of j. We note without detail that this
pattern also holds for two-body random interactions that are
uniformly distributed.

Finally, we would like to mention two works on the energy
centroids and other trace quantities such as spectral variances.
In Ref. [9] Velazquez and Zuker used energy centroids and
spectral variances to obtain the lower bound of energy for spin/
states in the presence of random two-body interactions. In
Ref. [10] Papenbrock and Weidenmueller derived the
distribution of and the correlation between spectral variances
of different spin 7 states, and they discovered a correlation
between spin / ground-state probability and its spectral
variance multiplied by a scaling factor. These studies are very
interesting, and further studies along this line are called for.

We would like to thank Drs. V. K. B. Kota and W. Bentz
for discussions and communications.
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