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Abstract

‘We observed directional light emission in the millimeter-wave region when
a high-energy (150 MeV) electron beam passes just above a photonic crystal
made of polytetrafluoroethylene beads (=~ 3.2 mm in diameter). The relation
between the momentum and the energy of the emitted photons strongly sug-
gests that the observed light is generated by the umklapp scattering process
that changes the evanescent waves emitted by the electron beam into observ-
able ones. By comparing the obéerved spectra with calculated ones based

on the photonic band structure, we found that generated photons excite the



photonic band modes making them observable as enhanced fine structures in

the emission spectra.
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Photonic crystals (PhCs) have drawn much attention due to their potential applications
to new types of optical materials. Owing to their multidimensional periodic dielectric struc-
tures, they show unique optical properties arising from so called a photonic band gap (PBG)
and a photonic band (PB) [1-4]. In these days, light emission phenomena involving the ex-
citation of PB modes have become one of the hottest issues in this field of investigation,
because they are expected to show novel features; sharply enhanced Smith-Purcell radiation
(refs. 5 —7) and backward-pointing Cherenkov radiation (ref. 8) are such examples. These
novel features obviously come from the peculiar energy dispersion of photon (PBs) in PhCs.
Recently, an electron energy-loss spectroscopy (EELS) study has reported the Cherenkov
effect of a PhC [9). However, to the best of our knowledge, there is no study on direct
observation of the radiation involving the excitation of PB modes. In this communication,
we would like to report an experimental study of one of the radiation phenomena, which
was based on the theoretical prediction in refs. 5—7, to demonstrate that the light emission
involving the excitation of PB modes can indeed be observed.

Let us briefly explain the formulation of the light emission mechanism. An electron
running at a constant velocity in the z direction (Fig. 1(a)) emits an evanescent light whose

wave vector is defined by

ki = (km)q:tnl-‘i)' (1)

The suffix 7 of k; shows that this evanescent light is taken to be an incident light on the
PhC. We define the direction that is perpendicular to the PhC as the z direction (Fig. 1(d)).
Note that the z component of k; is fixed at the value k; = w/v, where w is the frequency
of the emitted light that varies from zero to infinity, and v is the velocity of the running
charge. The evanescent wave can be expressed by the superposition over g, values. T; is the
quantity that governs the propagation in the z direction of the evanescent light and which

is defined by

P.i= C——kg—qg':? ';:-2-—-;5—(],2 (2)



Since v is always smaller than ¢, I'; is always an imaginary number. This is why the direct
light from the charge is evanescent.

The umklapp process in the subsequent light scattering of the evanescent light by a
periodic structure (a grating or a PhC) converts it into a light which can be observed at a
far-field oBservation point. In a triangular lattice of a two-dimensional (2D) periodic array
of beads (see Fig. 1(a)), which is the PhC used in the present study, basis vectors of the

reciprocal space are (see Fig. 1(b))

4 _

K, = r\/g(l,o) = (Kiz, Kuy), (3)
dr 1 /3, _

K, = E_\/—E(E’ 7) = (Ko, Koy), (4)

where d is the diameter of each bead composing the PhC. The radiation due to the umklapp

process can then be described by a propagating plane wave whose wave vector is
kS = (k.'IJ + mKl:r + In’I(2Z) Qy + mKly + nKQy, an), (5)

with two integers m and n. By the energy-momentum relation, I, is given by

w?  w
L =4/ =5 = (5 + MKz + nKog)? = (¢ + mKy, + nKs,)2. (6)

In the (k, w) space, therefore, the dispersion line of the evanescent light is shifted by mK; +
nKo, from the outside to the inside region of the light cone whose boundary is the light line
(w = ck) (see Fig. 1(c)). In the fdllowing, we call these shifted evanescent light dispersion
lines H, , lines, using a set of (m, n) that defines the wave vector of the propagating light
after the scattering.

If we use a metallic grating as a periodic structure, the effect formulated above is known
as Smith-Purcell radiation (SPR) [10,11]. The difference from SPR. arises when we use PhCs
in place of a metallic grating; the photons on the H,, , lines are expected to excite PB modes.
It is predicted theoretically that a strongly enhanced sharp light emission will be generated
from PhCs [5-7]. Such a strongly enhanced light emission reflects the confinement effect of

electromagnetic energies, which results from the high Q value of an excited PB [12]. The



purpose of the present study is to observe such resonant emission of photons by exciting a
PB mode (REPEP).

We prepared the experimental set up illustrated in Fig. 1(d) at the Laboratory of Nuclear
Science (LNS), Tohoku University. Electrons with the energy of 150 MeV from the S-band
linear accelerator passed near the PhC in Fig. l(d). The duration of a burst of electron
pulses was 1.8 us, whose repetition rate was 16.67 Hz. Average beam current was typically
1.0 pA. The cross section of the beam was about 10 x 12 mm? The height of the beam
shown in Fig. 1(d) was 10 mm. In order to obtain emission angle dependence, we varied
the angle 6 of Fig. 1(d) from 60° to 112° by moving the mirror M1. The accéptance angle
of the optical system was £0.75° in the zz-plane, and +1.4° in the yz-plane. The radiated
light was directed to a Martin-Puplett type Fourier-transform spectrometer equipped with
a liquid helium-cooled Si bolometer. The resolution of the spectrometer was 8.75 GHz.

The PhC used in this study (Fig. 1(a)) is a single layer of polytetrafluoroethylene
(PTFE) beads periodically arrayed in a 2D triangular lattice. The diameter of a bead is
1/8 inch (=~ 3.2 mm). In a single layer of beads arrayed in a 2D lattice structure, each
whispering gallery (WG) mode of a bead, specified by the angular momentum index (I, m),
couples with WG modes of other beads to form tight binding bands with 2D dispersion.
The (21 + 1)-fold degeneracy of the WG mode is partly lifted in a lattice of beads due to
this mode mixing, producing the densely populated 2D PB structure. Existence of such
PB structures in PhCs of single layered beads has already been probed by the incident-
angle dependent transmission spectra of them, and very good agreement with the calculated
dispersion relation was confirmed [13-15].

Let us turn our eyes on the experimental result and discussion. Figures 2(b) and 2(c)
show spectral changes in the emitted light as 6 is varied. We can see sharp peaks with a
band width (FWHM) typically of about 5 GHz. The spectrum is thus characterized by the
presence of monochromatic light emissions. It should be noted that these emiésion peaks
present strong f-dependence. For example, the peaks indexed as (-1, 0), (-2, 0), and (-3, 0)

change their intensities drastically within the angle variation of 5° in Figs. 2(b) and 2(c).



To determine the origin of the directional light emission, the measured intensity data
in the (f,w) plane was converted to those of ((ks)s, w), where (k;), is the z-component,
of k, defined by Eq. (5). The values of (k,), are derived from 0 by using the relation
(ks)s = % cosf. The y-component of k, can be considered to be zero ((k,), = 0), because
the mirror M1 in our measurement system (Fig. 1(d)), which stands perpendicular to the
zz-plane, always moves within zz-plane. The contour map of the intensity thus obtained
is shown in Fig. 3. We can see that intense light emission indeed occurs around the H_; 4
line, and even around the H_5o and H_3 ¢ lines (Flg 3). This indicates that the emitted
photons corresponding to these parts are generated through the PhC and emitted into the
direction determined by Eq. (5).

In the emission spectra, however, there are some peaks that are not on the H,,, lines:
such emission peaks are indicated by asterisks in Figs. 2(b) and 2(c). These emission peaks
correspond to the part with strong emission intensity below H_; o line in ((ks)z, w) plane
(Fig. 3). One of the possible origins is an excitation of PBs by the transition radiation,
because the area of the light emission in the ((k;);, w) plane almost coincide with the
calculated PB dispersion curves. Since we cannot clearly identify the origin of these light
emissions at this stage, we will focus only on the light emission peaks on the H,,, lines in
the following discussioh._

Next, let us discuss the origin of the strong 6-dependence of the emission intensity along
the H,, , lines. If it were not for any dispersion curve of special modes in the ((ks)z, w) plane,
the emission intensity would show a smooth variation on 6. This is the case in a grating
system, where the SPR spectrum has generally a smooth change except the fine structures
brought about by Wood anomaly [16,17]. Moreover, fine structures of SPR spectra have their
f dependence much smaller than those observed here [7]. The strong 8 dependence observed
‘here therefore proves that the emission is indeed of REPEP origin, which is schematically
explained in Fig. 1(c). By varying w of the observed photons with 6 kept fixed, we can
experimentally sweep ((k;)z, w) space along the line w = c(k;)z/cos@ (called observation

line). An enhanced light emission occurs only when all the three curves, the observation line,



H,,, line and the dispersion curve of a PB, meet together in the ((k),, w) space. In Fig.
1(c), three observation lines are drawn to show that only the 6, line has an enhanced signal.
By varying 6, we can tilt the observation line to spoil the matching. This is the origin of
the rapid # dependence on the H,,, line. Since PBs have finite lifetimes, a dispersion curve
has a finite width, which determines the sharpness of the § dependence of REPEP signal.

If the peaks of the spectrum indeed arise from the excitation of PB modes along the H,, ,
line, they should reflect the PB structure. In order to confirm this point, we calculated the
PB structure and the spectrum of the emitted light by using the vector KKR. formalism
[1,18,19], which is the same method as that presented in ref. 7. The value of the complex
refractive index of the PTFE beads used in the calculation of the emission spectrum was
1.437 + 0.0002¢ (12 = —1) [13]. We can find a good correspondence between the calculated
emission peak positions (Fig. 4(b)) and the position where the PBs cross with the H_;q
line (Fig. 4(a)).

Then let us compare the calculated emission spectrum (Fig. 4(b)) and the observed one
(Fig- 4(c)). The spectrum was calculated along with a dispersion line, H_; o (Fig. 4(a))
in the ((k;)s, w) plane. Since the intensity of the experimental results shown in Fig. 4(c)
is not corrected by the difference in intensities arising from the difference in optical paths
between each f-const. spectrum (see Fig. 1(d)), we can only discuss the peak positions of
the observed light emission. Besides the peaks indicated by crosses [20], the peak positions
in the frequency ranges of 140 — 170, 125 ~ 140, and 90 — 110 GHz in the observed spectrum
correspond well to those in the calculated one [21]. This provides strong evidence that the
observed light emission reflects a PB structure, which is characteristic of the REPEP.

In conclusion, we observed for the first time REPEP from a PhC using an electron beam
running just above the PhC. The observed light emission spectrum consists of many sharp
peaks. The rapid variation in the emission peaks with change in the direction of observation
shows that the peaks indeed arise accompanying excitation of the PB modes. The excitation
of the PB modes was also confirmed by comparison of experimentally obtained spectrum

and the calculated one reflecting the PB structure.
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FIGURES

FIG. 1. (a) A picture of monolayer triangular lattice of PTFE spheres used in the present study
as a PhC sample. The ‘charge current, which is shown by a sélid arrow, runs in the z direction.
(b) Two basis vectors (K; aﬁd K>) in the reciprocal lattice space of the PhC used in the present
study. The Brillouin zone is enclosed by thick solid lines. (c) llustration of the umklapp scattering
process in the ((k;)z, w) plane. The dispersion line of the evanescent light (broken line) generated
by the running charge goes into the light cone (shaded area) to become an Hpn,n line (solid lines)
by the umklapp momentum transfer in the course of the scattering (see the text). The dispersion
curves of PBs are schematically shown by solid curves. The #-constant spectra obtained in the
experiment are the one along the dotted arrows in the ((ks)z, w) plane. The point of intersection
between an H, , line and a PB dispersion curve and an observation line ((ks)z = ¥ cos 63) is shown

by an open circle. (d) Experimental setup. M1, M3: plane mirrors; M2: concave mirror; h: beam

height. The position of mirrer M1 can be changed from M1’ to M1”.

FIG. 2. Emission-angle (§) dependence of the spectra of emitted light (panels (b) and (c)).
The emission peaks on the H,, , lines are indexed as (m,n) (see text). The dotted lines are guide

to the eyes. For comparison, panel (a) shows the spectrum with no PhC.

FIG. 3. Contour map of the light emission intensity in the ((s)z, w) plane. The dotted-broken
lines show the boundary of the light cone. The dotted lines show the H_;,, ((-1,‘0)), the H_5,
((-2, 0)) and the H_3,, ((-3, 0)) lines.

FIG. 4. Calculated PB structure of the single layer PTFE PhC (a), and comparison between
the theoretical (b) and experimental (c) emission spectra. Dotted curves and a solid line in (a)
correspond to the PBs and H_1 0 line, respectively. The emission spectra in (b) and (¢) are those

along H_ ¢ line (see the text). As for the peaks indicated by crosses, see ref. 20.
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Relativistic electron energy loss and induced radiation emission in two-dimensional
metallic photonic crystals I: formalism and surface plasmon polariton

Tetsuyuki Ochiai and Kazuo Ohtaka
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A fully relativistic description of the electron energy loss and the induced radiation emission in
arbitrary arrays of non-overlapping metallic cylinders is presented in terms of the multiple scattering
method on the basis of vector cylindrical waves. Numerical analysis is given for dilute and dense
arrays of Aluminum cylinders with a nanoscale diameter. The results of the electron energy loss
spectrum are well correlated with the dispersion relation of coupled surface plasmon polaritons, and
can be interpreted with an effective medium approximation when the electron runs inside the arrays,
In addition, the cavity modes localized in the grooves between the cylinders can affect strongly the

electron energy loss spectrum.

PACS numbers: 42.70.Qs,73.20.Mf,34.50.Bw

I. INTRODUCTION

Recently, much interest has been attracted in opti-
cal properties of composite materials such as cluster of
metallic nano-particles?, photonic crystal®#, and left-
handed material*S. They have the potential ability to
enhance various optical processes with their rich spec-
trum, and will be a key component of future optoelec-
tronics devices. So far, their properties have been investi-
gated mainly with far-field optical equipment. However,
near-field responses of them are of great importance, be-
cause much information can be attained from the evanes-
cent light involved in composite materials.

The electron energy loss (EEL) spectroscopy in a scan-
ning transmission electron microscope is closely related
to the near-field, and is a quite useful tool to investigate
both bulk and surface excitations of samples. In a typi-
cal BB, experiment the kinetic energy of electron is on
the order of 100 [keV], and a low-energy part of the EEL
spectrum is related to a collective excitation such as sur-
face plasmon. Thus, the spectrum is well interpreted in
terms of a classical macroscopic theory on the basis of
an effective dielectric functicn, taking account of geome-
try and anisotropy of samples. For instance, the EEL of
a multi-wall fullerene can be well explained with an ef-
fective dielectric function of the corresponding Graphite
sheets.”

There are extensive references on the EEL spectrum
for various geometrical objects®1!, though most works
neglect the retardation effect. As for the composite ma-
terials, Maxwell-Garnett(MG)-type approximations have
been widely used.
progress has been made on this subject. Pendry et
al. proposed a new theoretical method for the EEL
of periodically arranged nano-structures? in terms of
the real-space transfer matrix of the electro-magnetic
wave.!3 Garcfa de Abajo et al. developed a multiple-
scattering method for clusters of nano-particles, on the
basis of vector spherical waves!'41® and of the boundary
element method.!®!” These methods are very powerful
and in principle can be adapted to various complex ge-

In the last decade a remarkable

ometries. However, owing to the spatial discretization
used in the transfer matrix method and in the boundary
element method, the accuracy of the results reduces to
some extent at high frequencies.

Here, we present a fully relativistic multiple-scattering

“approach focused on arrays of non-overlapping cylinders

by using vector cylindrical waves. Though at present the
method works only for the cylinders with isotropic di-
electric functions, in principle it can work for anisotropic
cylinders such as multi-wall carbon nano-tubes®. With
this method the light scattering, as well as the KEL and
the induced radiation emission in arbitrary arrays of non-
overlapping cylinders can be treated in a unified manner
by solving exactly the multiple-scattering equation. In
addition, since the method utilizes the Fourier decom-
position along the cylindrical axis, the local optical re-
sponses of a certain wave vector along the axis can be
obtained. This property is feasible in order to see the ef-
fects of the localized electro-magnetic modes of cylinders
in detail. We should note that our method is optimized
for arrays of non-overlapping cylinders. In contrast to the
methods based on the spatial discretization, it maintains
high accuracy even at high frequencies. Though in this
paper we restrict ourselves to the low-frequency region,
we ;vill deal with the high-frequency region in the paper
It

A certain amount of the HEL in composite materi-
als is caused by the induced radiation emission. As for
a metallic nano-particle, this phenomenon is known as
the surface plasmon radiation emission.?’ By arranging
nano-particles periodically, so-called Smith-Purcell(SP)
radiation®?2 takes place. Ome of the authors (K.O.)
and his collaborators have studied the SP radiation in
the photonic crystals composed of dielectric spheres in
detail, where a notable enhancement of the intensity of
the SP radiation takes place owing to the singular state
density of photon in the photonic crystals.?3-25 However,
to the best of our knowledge, none has been reported
concerning the radiation emission from arrays of cylin-
ders. Thus, the quantitative evaluation of the radiation
emission in the arrays is another theme of the paper.



On the other hand, the determination of the effective
dielectric function of composite materials is still valuable
at low frequencies. It gives a concise explanation of the
absorption spectrum as well as the EEL spectrum of the
composite materials in bulk.?® Moreover, the determina-
tion is an important issue in the field of left-handed ma-
terial, which has negative permittivity and permeability
simultaneously. Several methods to determine them have
been proposed by many authors.?”-2® Here, we propose
an alternative method by using the scattering matrix of
semi-infinite photonic crystals and compare the EEL in
the effective medium with that of photonic crystal.

This paper deals mainly with the formalism of our
method as well as the numerical analysis on clusters
of Aluminum cylinders whose diameter is a few nano-
meters, bearing carbon nano-tube arrays in mind. In
the paper IT we will deal with a metallic photonic crys-
tal whose lattice constant is comparable with the plasma
wavelength of the constituent metallic cylinders. Since
it is very bulky to present a comprehensive analysis on
the EEL and the induced radiation emission in a single
paper, we should discuss the above topics separately. In
the nano-structures which are analyzed in this paper the
relevant range in wavelength, which is near the surface
plasma wavelength of metal, is much larger than the di-
ameter and than the pitch of the structure. As a result,
effects of usual photonic bands, which come from zone
folding and lifting of degeneracy on Bragg planes, do not
appear in the EEL spectrum and the induced radiation
emission spectrum at relevant frequencies. In particular
there is no remarkable feature in the SP radiation emis-
sion spectrum. Instead, unusual photonic bands of cou-
pled surface plasmon polaritons have a strong influence
on the EEL spectrum at very low frequencies. Moreover,
in the relevant frequency range an effective medium ap-
proximation can be reasonably adapted to the structure.
As for the structure which will be discussed in the pa-
per 11, we will show that effects of the usual photonic
bands are very pronounced for the EEL and the induced
radiation emission spectra.

The paper is organized as follows. In Sec.Il we briefly
summarize the vector cylindrical wave formalism. Using
the formalism the dispersion relation of the surface plas-
mon polariton in an isolated metallic cylinder is obtained.
The multiple scattering method is adapted to the EEL
and the induced radiation emission in clusters of metal-
lic cylinders in Sec.III. In Sec. IV the expression of the
EEL in metallic photonic crystals is derived. The nu-
merical results of the EEL spectrum are compared both
with those of the isolated cylinder and with those of an
effective homogeneous medium. Finally, we summarize
the results.

II. SURFACE PLASMON POLARITON IN AN
ISOLATED CYLINDER

An infinitely long metallic cylinder with a circular cross
section can support an electro-magnetic surface-localized
mode that is called surface plasmon polariton(SPP). The
SPP is characterized by an angular momentum I, a wave
number k,, and an angular frequency w, owing to the ro-
tation invariance with respect to the cylindrical axis, the
translational invariance along the axis, and the transla-
tional invariance of time, respectively. Before considering
its dispersion relation, it is valuable to note some formu-
las of the light scattering by an isolated cylinder using
vector cylindrical waves.®® From now on, we take the
cylindrical axis to the z-axis. Assume that a monotonic
ineident wave with a momentum k., along the cylindrical
axis is scattered by an isolated cylinder with a dielectric
function £,(w) and a radius r embedded in a host with a
permittivity 5. Throughout the paper € is taken to be
1 in numerical calculations, though we keep it unspeci-
fied in the following equations. The incident wave can be
written as a superposition of vector cylindrical waves:

EO(X) = eik.z [(_3\]_';2 X V") 'l/)M'O(X)
+ (Tt 2 e, o
PP =3 APy (8= M,N), (2)
1

w
)\b=\/¢1§*k§, Qb=\/33‘c-, (38)

where c is the speed of light in vacuum, (p, 9, 2) is the
cylindrical coordinate, £ is the unit vector along the 2-
direction, and V) is the differential operator with re-
spect to (p,6). In the present paper we take the follow-
ing convention of the square root of a complex number:
Im+/w > 0 for Im(w) > 0. Sometimes, we call the M(N)-
field the P(S) polarization. At k, = 0 the M(N)-field
corresponds to the TE(TM) polarization.

A metallic or dielectric cylinder scatters light irrespec-
tive of whether the light is evanescent or not. By impos-
ing the boundary condition of Maxwell's equation, we
can solve the scattering problem exactly. The induced
wave scattered by the cylinder is given by

B (x) = ik [(__)_‘1_2 x Vll) PMnd (o)
b
ik, 2‘_‘1 5 N,ind :|
* (/\b%v" * sz> )| (@)
¢ﬁ,ind(x) - ZHZ()\bP)Cilg’l/)f’md, (5)
1

W= PP af . (6)
pl

Here, H; is the Hankel function of first kind and tf F



is the t-matriz of the cylinder, its analytical expression
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It should be emphasized that except for k,; = 0 or | = 0,
the M(N) polarization mixes with the N(M) polarization
in the induced wave. This property is quite distinct from
the case of an isolated sphere, where the polarization mix-
ing does not take place. In the light scattering by cylin-
der there is another distinct point from that by sphere.
Since Ap is the wave number in the (z, y) plane, the in-
duced wave is evanescent when ) is pure imaginary. On
the other hand the induced wave by the sphere behaves
as hy(go|x|), where h; is the spherical Hankel function of
first kind. This means that induced wave by the sphere
is always real and has a net flux at [x| = oo irrespective
of whether the incident wave is evanescent or not.

Next, we focus on the SPP mode in an isolated metallic
cylinder. The SPP mode is a real eigenmode in the cylin-
der and can exist without the incident light. Therefore,
taking account of Eq.(6) the equation that determines
the dispersion relation of the SPP is given by

MM MN -1 ¢1M,ind
(e o) (Y ) =0

Like as the SPP on a flat metal/air interface, whose dis-
persion relation is given by the pole of the interface S-
matrix between the metal and air, the dispersion relation
of the SPP in a metallic cylinder is given by the pole of

the t-matrix. The above equation leads to the following .

secular equation:
d<M M d<MN
det{ wm “wv | =0, (12)
d d;

for the SPP mode with angular momentum 1. Strictly
speaking, we must say that the SPP mode is referred
to the mode with pure imaginary )., when the cylinder
is of metal. The secular equation also determines the
dispersion relation of the guided modes, in which ), is
real and positive, when the cylinder is of dielectric.

For simplicity, from now on, we restrict our consider-
ation to an Aluminum cylinder with diameter 2.5[nm)],
though the formalism presented in the paper can be

(i=0ab), d\=v@Z-K, g = \/E'% (10)

{

adapted to any types of cylinders as long as an isotropic
dielectric function of the cylinder is concerned. The di-
electric function of the Aluminum can be approximated
well with the Drude formula:
wp

fwp and 7in being 15[eV] and 1[eV], respectively. The
small diameter of the cylinder is comparable with that of
a carbon nano-tube and the plasma frequency is equal
to 3.67 x 10'5[Hz] and to 82.7[nm] in terms of wave-
length, which corresponds to ultra-violet light. Though
the cylinder has a nano-scale diameter, it seems still rea-
sonable to apply the macroscopic dielectric function to
the cylinder. ‘

In Fig.1 the dispersion relation of the SPP modes of
the Aluminum cylinder is shown. In this case the SPP

go(w) =1

0.8 / T T T T T y T

=1 +

1=

foy =

4 10
ck,/ fop

FIG. 1: The dispersion relation of the surface plasmon polari-
ton of the Aluminum eylinder with diameter 2.5[nm] in air.
The loss-less Drude dielectric function with Aw, = 15[eV] was
assumed for the Aluminum eylinder. The bold line is the light
line w = ck,.

mode with | = 0, which is the solution of dg&¥V =0, is



quite distinct from those with [ > 1. The mode with | = 0
ends at w = 0 and has positive slope in the (w, k,) space,
whereas the other modes end at finite w on the light line
w = ck; and have negative slopes. As [ increases, the
dispersion curves approach to w = w,/v/2. Though the
dispersion curves end on the light line, they can be ex-
trapolated inside the light-cone. With this extrapolation
we can understand how the SPP resonance occurs when
real light is incident on the cylinder. The resonance also
affects significantly the induced radiation emission when
a charged particle passes near the cylinder.

III. ELECTRON ENERGY LOSS IN CLUSTER
OF CYLINDERS

The formalism presented above serves to describe the
EEL and the induced radiation emission when a charged
particle runs near a cluster of cylinders. In this method
the retardation effect is fully taken into account, though
the recoil of the charged particle is neglected. In a typ-
ical EEL experiment the kinetic energy of the electron
is about 100 [keV], whereas the total energy loss is less
than 0.01% of it, so that the assumption of neglecting
the recoil is fairly justified.

Let us consider a charged point particle with a charge
e and a velocity v runs near the cluster composed of non-
overlapping metallic cylinders aligned in the z-direction,
whose positions are specified by two-dimensional (z and
y) vector Xq(or = 1,2, ..., N), N being the number of the
cylinders. For simplicity, we assume that the charged
particle does not penetrate any cylinders in the clus-
ter and the trajectory of the particle is perpendicular
to the cylindrical axes. Therefore, without losing gen-
erality, the position of the particle at time ¢ is taken to
X = (vt, Yo, 20) in the Cartesian coordinate. As is known
well, a running charged particle is accompanied by the
electro-magnetic wave that is given by

E° (x,w) = — ¢ / s sk igortinly-vol ik, =(==el4)

ei = :FEE'% ) (1’5)
5 1 k .
—Evy
w
1=yfd - (-, (16)

in the time-Fourier component. Here, the superscript of
€ is referred to the sign of y — yo. If the light velocity
in the background medium is smaller than v, the electro-
magnetic wave becomes real, yielding the Cerenkov radia-
tion. Here, we restrict ourselves to the region v < ¢/+/€p,
so that the electro-magnetic wave is evanescent (7 is pure
imaginary).

The above expression can be transformed into a linear
combination of the vector cylindrical waves centered at

X =X, 85

E%(x,w) = / %Ee““("“) [(—:\Lé X VN) PO (x)
b

+(Gmwi+ ) W], an
Abgp .
$E0(x) = Z Ti(olx = xq|)eCemxadyf0 - (18)

MO _ Hoew uo — 7 -
e = eyt m<iﬂ> Wk, (19)
Hpew kaw ;
¢ Hoew et o Tatir(Ya—yo) ( z ) ile=H0xx (00

2 YAy 20)
Here, 6+ is the argument of two-dimensional vector
K* = (w/v,£y) for a real 4. In the case of a pure
imaginary v we must define G+ as

. 1
eilﬂxi‘ = (w/’u)‘bi 7"7) (21)

Moreover, =+ in Eq (19) and (20) corresponds to the sign
of yo — ¥« and a/; is the multi-pole coefficient of the
incident wave for cylmder a. We should note that the &,
integration is involved in Eq.(17). However, since k, is a
conserved quantity for the cluster, each cylindrica.l wave
with fixed k, is independently scattered by the cluster.
The incident evanescent wave is multiply scattered
in the cluster of the cylinders. By using the multiple-
scattering method, the induced radiation field is self-
consistently determined as follows.!4 If we focus on cylin-
der o, the incident wave consists of the direct term
(Eq.(17)) plus the sum of the induced wave scattered
by another cylinder of/. Therefore, the induced wave
from cylinder « is obtained by multiplying the t-matrix
of cylinder a to the multi-pole components of the inci-
dent wave re-expanded around x = x,. As a result, the
self-consistent induced wave is determined as

Eind(x’w) =/_C_lzk_zeilc,(z—zo) [(—Xl‘é x V"> ¢M,ind(x)
b

T

ik,
+ ( Y ) ¥ (x )] ;o (22)
wm Zmnmx eltflxxa)yfind, (23)
Id"find = +Z Z Gla l'a"wz' ,md), (24)
B V alta ,
Groyrar = Hirmi(Mypar) e ~W0aat, (25)

Here, Gioyor is the propagator from cylinder o to «,
and in its expression pao and O, are the magnitude
and the argument of X, ~ X4, respectively.

As was mentioned in Sec. II, the induced wave con-
tains propagating components with real )\, which have
a net flux at p — oo. This implies that a radiation emis-
sion takes place when a charged particle passes near the



cluster. As a result, the charged particle losses its en-
ergy via the emission. In addition, if the cylinders are
lossy having positive imaginary part in £q(w), a part of
the energy is absorbed in the cylinders. The total en-
ergy loss is then the sum of the radiation emission and
the absorption. Qualitatively, the loss can be calculated
with the exerted force by the induced field reacting on
the particle. Thus, its expression is given by

Foy(w) = —gRe/dte'i“’tv-Ei“d(x,,w) (286)

per unit angular frequency. The integral over ¢ yields

dk
sz(w) = / '2—7}2' el(w: k‘z): (27)
Pei(w, k;) = —eZRe [e"'f%ii“l(yu—ya)
Lo
i) eilf ik T Mind kv ming
X (—12 K +— _ et , o8
( ) € ( P ¢l,a UQbAb7¢l’a >} )
Here, + in the above equation is referred as the sign of
Y0 — Y-

On the other hand the net flux of the induced radiation
emission is obtained by

Pan(w) = im % / dzdfp (29)

xRe [(Eind (%, w))* x Hi“d(x, w)] - p. (30)

per unit angular frequency. Using the asymptotic form
of the induced field (Eq.(22)), the net flux turns out to
be

% gk,

Pem-('-”) = Z_,Ir'Pcm(w’ kZ): (31)
—%
Pari k) = 22 [ a1 403+ |17 (0) ) 22

fﬁ(e) = [rib Ze—ia\;ﬁ-x,.-}-'ila(_i)l+1¢f,oind. (33)
o

The cutoff of the k, integral comes from the fact that
the scattered wave becomes evanescent when k2] > g
If there is no absorption in the cylinder, the energy loss
must be equal to the net flux of the radiation emission,
that is,

Pey(w, k,) = Pern(w, k,). (34)

This equality serves as a criterion of the correctness and
the convergence of numerically calculated EEL spectrum.
In the case of an isolated cylinder, the integration over
f in Eq.(32) can be performed analytically, yielding
Pl be) = — S Sy o8 (35)
BTN

First of all, let’s consider the EEL in the isolated Alu-
minum cylinder. The EEL spectrum of the c¢ylinder has

5

a sequence of peaks at the frequencies of the SPP modes,
This is because the t-matrix has a SPP pole on the rea)
axis in the complex plane of w as can be understood in
Eq.(7) and (12). To see the correspondence of the dis-
persion relation of the SPP, Fig.2 shows the integrand
Pei(w, k;) of the EEL spectrum, changing the k, value
from 0 to 10 in units of wp/c. Here, the velocity and the
Impact parameter of the charged particle were taken to
0.4c and 2r, respectively. One can find the main EEL
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FIG. 2: The electron energy loss spectrum in an isolated Alu-
minum cylinder with diameter 2r = 2.5[nm]. The spectrum is
given in units of pgce?r /2 and consecutive curves are shifted
4 (in the same units) upward for readability. The velocity of
the charged particle was taken to be v = 0.4c. The impact
parameter, ie., the distance between the cylindrical axis and
the trajectory of the charged particle, is 2.5[nm).

peak appears near w = w,/v/2, where the SPP bands
with I > 1 exist. In contrast to the fine structure of
these bands in Fig.1, no fine structure can be observed
in the peak. This is a direct consequence of rather large
imaginary part in the dielectric function of Aluminum,
which yields a broadening and mixing of the SPP bands
with I > 1. The peak frequency decreases with increas-
ing k;, reflecting the negative slopes of these bands. In
addition to the main EEL peak another EEL peak ap-
pears much below w = w,/+/2. This peak comes from the
SPP mode with [ = 0, as can be understood clearly by
comparing with the dispersion relation of the SPP mode
with [ = 0. In fact the peak frequency increases quite re-
markably with increasing k,, tracing the dispersion curve
of the SPP with I = 0. As a general tendency, Pe(w, k)
decreases with increasing |k,|.

Next, we consider how the imaginary part affects the
percentage of the radiation emission in the EEL. ‘Lo
this end, we show in Fig.3 the integrated EEL spec-
trum Pei(w) and the integrated radiation emission spec-
trum P, (w) at 7=0,1[eV]. At n = 0 these must coin-
cide. As can be seen, when the imaginary part in €,
Is introduced, the radiation emission spectrum is almost
unchanged from that in the loss-less cylinder except for
the SPP frequency region. However, the EEL spectrum
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FIG. 3: The integrated BEL and the radiation emission spec-
tra in the isolated Aluminum cylinder. The same parameters
as for Fig.2 were used.

receives a drastic change. According to the figure, the
EEL is dominated by the absorption in the cylinder un-
der study. Therefore, the efficiency for converting the
kinetic energy of the charged particle to the radiation
via surface plasmon is very low.

Finally, we consider how the spectra change when
another cylinder is added. In this case, the multiple-
scattering of the induced radiation significantly affects
the spectra. As we will see, almost touched metallic cylin-
ders causes a drastic change in the spectra as well as in
the near-field configuration. This phenomena is closely
related to the surface-enhanced Raman scattering,3!-34
in which the intensity of the induced electro-magnetic
field is enhanced more than thousand times as large as
that of the incident intensity. As an example, we explored
the EEL for various spatial arrangements of the two iden-
tical Aluminum cylinders. Fig.4 shows the EEL spectra
Pei(w, k) with k; = 0 corresponding to the arrangements
shown in the insets. In (a) and (b) the two-cylinders
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FIG. 4 The EEL spectra in the two identical Aluminum
cylinders with various spatial arrangements shown in the in-
sets. k; = 0 was assumed. See text for the other parameters,

are well-separated, the distance between the two cylin-
drical axes being 47 (r = 1.25[nm}), whereas in (¢) and
(d) they are very close to each other, the distance be-
ing 2.16r. The distance between the two cylindrical axes
and the trajectory of the charged particle is 2 in (a)
and (b), and is 1.08r in (c) and (d). As expected, if
the two cylinders are well separated along the trajectory
(case (a)), the EEL spectrum per cylinder has a single
peak near w = w,/v/2, though an asymmetry of the peak
is observed. In case (b) the two cylinders are separated
along the normal direction of the trajectory. This ge-
ometry still yields a single peak in the EEL spectrum at
W wp /\/5, Since there is the parity symmetry with re-
spect to the trajectory, No electro-magnetic modes with
the odd parity is involved in case (b). On the other hand,
if the two cylinders are very close to each other, several
loss peaks appear at the frequencies far from wp/VZ. In
particular, the spectrum of the case (d) has two marked
peaks at w/w, =~ 0.52 and 0.84. The latter peak is shared
also by case (¢). The peak at w/w, ~ 0.52 is related to
the weakly resonant cavity modes localized in the groove
between the two cylinders. 'l'o confirm this, we show the
fleld intensity |H.(x)[? at the peak frequency in Fig.5.
In the figure we can see clearly that the peak is caused

y[nm]

x[nm]

FIG. 5: The field intensity |H.(x)|* induced by a running
charged particle whose velocity is 0.4c is plotted at (kzyw) =
(0,0.523w;), where a peak is observed in the EEL spectrum.
The solid line stands for the edges of the two cylinders. The
trajectory of the charged particle is at y = —1.35[nm).

by the cavity mode in the groove. As for the peak at
wjwp = 0.84 we couldn't find a clear evidence of the
resonant cavity mode, as the field intensity at the peak
frequency has another local maximum at a boundary of
the cylinder beside that in the grooves. This feature sug-
gests that this peak to be caused by a strong mixing of
a cavity mode and the SPP modes. If the electron runs
across the groove of the almost touched cylinders (case
(c)), the peak at w = 0.52w, disappears owing to the
symmetry mismatch and the peak at w ~ 0.84wy, receives
an enhancement.

Regarding the radiation emission spectrum in the two
cylinders, its features are more or less similar to those



in Fig.4, though the magnitude of P, (w,k;) is much
smaller than that of Py(w, kz).

IV. ELECTRON RUNNING OUTSIDE
PHOTONIC CRYSTAL

A photonic crystal that consists of a periodic array
of metallic cylinders has a rich spectrum in it, includ-
ing infinite SPP bands for the TE polarization3$:36 and
a low-frequency cutoff for the 'I'M polarization.3” Com-
bining these properties with a running charged particle,
the system can react as a novel light emitter. In fact,
when a charged particle passes near the photonic crystal,
it induces the emission of real photon as was first pointed
out by Smith and Purcell for a metallic grating.2* In the
photonic crystal, this phenomenon can be interpreted in
two ways. One interpretation is as follows. The inci-
dent evanescent wave from the charged particle acquires
an Umklapp momentum transfer in the photonic crys-
tal, thereby coming into the light cone in the (w, ky)
space, ky being the wave vector parallel to the bound-
ary of the photonic crystal. As a result, real photon is
emitted from the photonic crystal. The other interpreta-
tion is to regard the phenomena as a coherent radiation
emission from different cylinders. Though these two in-
terpretations are equivalent, the two points of view give
us a deep insight of the Smith-Purcell(SP) radiation in
the photonic crystal.

In the case of an isolated cylinder, the induced radi-
ation emission is possible when g > k2, i.e.,when the
emitted light is inside the light cone of the (w, k) space.
On the other hand, the condition that the evanescent

light turns out to be a real photon via the Umklapp mo- _

mentum transfer in the photonic crystal is given by

w 2
g5 — k2 — (- - ﬂ~a—)2 >0, (36)
a being the pitch of the photonic erystal. Therefore,. the
allowed frequency range of the SP radiation is

- . -2 n’e
W <W< oy, k; < (2)2—:351,, (37)
)
ni+/ne — ((£)? -~ &)k

OLEE '
where & = wa/27c and k, = k,a/2m. If the above con-
dition is not satisfied in the light cone, a destructive in-
terference among the induced radiation fields from dif-
ferent cylinders occurs, leading to the prohibition of the
radiation emission. This also implies that if there is no
absorption in the photonic crystal, the concerned range
in the (w, ;) space does not contribute to the EEL in
the photonic crystal. The phase diagram of the radia-
tion emission at v = 0.4c is shown in Fig.6. In Fig.6 the
SP radiation is allowed in the shaded region. The allowed
region has the low-frequency cutoff which increases with

evanescent

1
k a/2m
pA

FIG. 6: The phase diagram of the induced radiation emis-
sion in a periodic array of cylinders with lattice constant a
is shown. The Smith-Purcell radiation is possible only in the
shaded region of the (k.,w) plane. The velocity of the charged
particle was taken to be v = 0.4c. The solid line is the light
line w = ck,.

increasing v value. Beside, in the allowed region of the
SP radiation the photonic density of state is in general
singular including the Van Hove singularity. Therefore,
we may expect a quite rich spectrum of the SP radiation
in the photonic crystals.’

The rich spectrum is not limited in the SP radiation.
We should mention that the photonic band structure ex-
ists also outside the shaded region of Fig.6. As long as
the imaginary part in ¢, is non-zero, the absorption of
the induced radiation is inevitable in the photonic crys-
tal. This causes the EEL outside the shaded region, and
the EEL is affected significantly by the photonic band
structure therein. Inside the shaded region the EEL con-
sists of the radiation emission and the absorption, and
they are independent physical observables.

Like as in the case of cluster of cylinders, the KKL and
the SP radiation in the photonic crystals can be treated in
a unifled framework with the multiple-scattering method
on the basis of vector cylindrical waves. Pendry and
Martin-Moreno presented for the first time an unified
framework in terms of the transfer matrix method to ar-
gue the EEL and the SP radiation in photonic crystals.!2,
The method is based on a discretization of Maxwell's
equation on a spatial mesh in order to obtain the real-
space transfer matrix.!3 They found that the scattering
matrix, which is obtained from the transfer matrix, is
directly related to the EEL and SP radiation spectra.
Their algorithm is easily adapted to the two-dimensional
counterpart3%:38:39 of the layer Korringa-Kohn-Rostoker-
Ohtaka (KIKRO) method“0-45, which is a generalization
of the multiple scattering method to periodic systems.
The layer-KKRO method has very high accuracy for the
photonic crystal under consideration. We should note
that the three-dimensional layer-KKRO method was al-
ready used for discussing the EEL and the SP radia-



tion in three-dimensional photonic crystals composed of
spheres, 23-25.46

Let’s assume that a running charged particle passes
outside a finite-thick photonic crystal composed of a pe-
riodic array of the Aluminum cylinders, The particle
runs with distance s from the boundary (y = y;,) paral-
lel to the (1,0) direction of the square lattice. Here, we
take the x axis to be parallel to the (1,0) direction. A
schematic illustration of the system under study is shown
in Fig.7. In this case the induced radiation field in the

transmitted SP radiation

reflected SP radiation

FIG. 7: A charged particle runs with distance s from the
boundary of the finite-thick photonic crystal, which is com-
posed of a square array of cylinders with pitch a. The po-
larization vector of the evanescent wave accompanied by the
charged particle is denoted by e*,

outer region of the photonic crystal including the particle
trajectory is given by

Kz i (e-xin)

Eind(x’w) _ _ Hotw Z

2 - 27
XQ_4(h,ho)eTe ™o, (30)
Ky = (kx + h, %, k2), (40)
% = kg + ho, | (41)
=1/~ (ko +h)? — K2, ()

where Qi (h,h'), which has spatial tensor index, is
the scattering matrix of the photonic crystal,3® k, is
the Bloch momentum in the irreducible surface Brillouin
zone associated with the boundary, h(= 27Z/a) is a re-
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ciprocal lattice vector, and x;, = (0, ¥in, o) in the Carte-
sian coordinate. In the opposite outer region of the pho-
tonic crystal the induced radiation field (transmitted SP
radiation in Fig.7) is given by :

B (x, ) = 0% Zf Eg;l:_eiK;"\(x—xaue)
h

2
X Q44 (hy ho)eT e mo?, (43)

where Xous = (0, Yout, 20), Yout being the y-coordinate of
the upper boundary. Quantitatively, the EKL per unit
length of the particle trajectory is expressed by the fol-
lowing equation:

Pﬁl(wrkz) == iyoezwg"zl’)’hols
X|TholIm [(€¥)TQ 1 (ho, ha)eT]. (44)

On the other hand the SP radiation spectrum per unit
length is given by

Pem(w, kz) = %#uez’we‘zmnls

x D7 M@+ ho)e [+ 1Q (, ho)et|(85)
h€open

where the summation is taken over the open diffraction
channels.

If the cylinders are loss-less in the photonic crystal,
again Pg(w, k,) = Pem(w,k;). This can easily be con-
firmed by considering flux conservation of through the
photonic crystal:

D 1 (1Qut(h ho)er |2 + | Qs (b, ho)et2)
h€open

= 2yho | (1)1 Q—y (ho, ho)e™] (46)

Here, we study two kinds of metallic photonic crys-
tals. One is a dilute photonic crystal that is composed
of the square array of the Aluminum cylinders with the
lattice constant a = 4r = 5[nm]. The other is its dense
version which corresponds to the cases (c¢) and (d) of
the coupled two cylinders treated in the last section
(a = 2.16r = 2.7[nm]). The photonic band structures
of these photonic crystals at k, = 0 projected on the sur-
face Brillouin zone associated with the boundary parallel
to the (1,0) direction of the square lattice are shown in
Fig.8. The band structures were calculated by using the
two-dimensional layer-KKRO method taking lpmax = 5
and 12 in the dilute and dense photonic crystals, respec-
tively. Here, we dropped the band diagram of the S(TM)-
polarization, because it is not relevant to our problem.
However, at non-zero k, we must take account of both
the S and P polarizations.

In both the photonic crystals the plasma frequency of
the cylinder is much smaller than the lattice scale, so
that the photonic band structure is very close to that of
the empty lattice at high frequencies. However, below



b
P — L
3 light line ——vy=0.4c ]
; 4
003
‘ — = 0.8
g N
%0-02_____._____. .._________—‘o.sg
0.4
0.01
o2
1 1 N 1 " L
Ry 03 0 02 o4 °
kxa/27t

FIG. 8 The photonic band structure of the square lattice of
the loss-less (i.e. 7 = 0) Aluminum cylinders at k, = 0 was
projected on the surface Brillouin zone associated with the
boundary parallel to the (1,0) direction of the square lattice.
In (a) the cylinders are well separated(lattice constant a =
4r=5[nm]), whereas in (b) the cylinders nearly touch(a =
2.16r=2.7[nm]).

w = wp many flat bands which characterize the meta)-
lic photonic crystals appear. These bands are generally
anisotropic, reflecting the Cy, symmetry of the square
lattice, and have a singular state density. In the di-
lute photonic crystal, many bands are concentrated near
w = wp/+/2. This indicates that they are merely a tight-
binding coupling of the SPP of the isolated cylinder. In
principle, we can find infinite numbers of the flat bands
around w = wp/v/2, and they are quite difficult to dis-
tinguish. On the other hand, in the dense photonic crys-
tal the flat bands are diverse in frequency, whereas their
center is still at w = w,/+/2. Some of the bands are origi-
nated from the cavity mode localized in the groove of the
two cylinders. However, most flat bands are considered
to be related with the SPP of an Aluminum cylinder.
In Fig.8 the dispersion line of the radiation involved
in the EEL, ie., w = v(k; + h) (which is referred to
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as the v line) as well as the light line w = =ck, are
also shown. Here, v is assumed to be either 0.4¢ or 0.9¢
and h is taken to be 0. In the frequency range con-
cerned only the line with h = 0 is relevant, because the
threshold of the SP radiation occurring along the v line of
h = 2m/a s rather high (&- ~ 0.286 and 0.474 in Eq.(38)
for v = 0.4¢ and 0.9c, respectively). As a result, the EEL
is caused solely by the absorption in the frequency range
concerned. When the v line meets the shaded region of
the projected band diagram, the charged particle can ex-
cite an eigenmode in the photonic crystal and thus causes
an enhanced absorption loss in BEL. Strictly speaking,
the projected band scheme should be used to understand
the feature of the photonic crystal with infinite thickness
along the I" — X direction. Since we are considering a
finite-thick photonic crystal, the shaded region in Fig.8
must be regarded as a set of the dispersion curves of the
eigenmodes in the finite-thick photonic crystal. Appar-
ently, as the thickness increases, the dispersion curves
fills up with the shaded region.

Fig.9 shows Fei(w,k;) with k, = 0 of the two pho-
tonic crystals, varying number of layers. The velocity of
the charged particle was taken to 0.4c and the parame-
ter s was taken to zero. Concerning the dilute photonic
crystal, the EEL spectrum has the double peaks near
w = wp/+/2 in the mono-layer case. This feature already
appeared in the result of the two separated cylinders (see
Fig.4), where an asymmetry of the loss peak is observed.
As the number of layers increases, the double peaks dis-
appear and the spectrum converges to a certain function
which has single peak near w = wp/ v/2. The converged
spectrum is not so far from the EEL spectrum of the iso-
lated cylinder in which the single peak is found at k, = 0.
These features are consistent with the numerical results
on the projected band structure (Fig.8): The v line of
v = 0.4c hits only the flat bands near w = w,/v/2. As
in the isolated cylinder, we can infer that the single peak
in the EEL spectrum is caused by the broadening and
mixing of the flat bands owing to the non-zero imaginary
part in g,.

As for the dense photonic crystal, there are several
loss peaks whose positions change as the number of lay-
ers increases. Compared with the case of coupled two
cylinders, the peak positions of the EEL spectrum in the
photonic crystal are well correlated with those of case
(d) of Fig.4. In particular, the two peaks at w =~ 0.55uwp
and 0.82w, at N = 32 are of reminiscences of those in
case (d), and the corresponding flat bands, which have
relatively large widths in frequency, can be observed in
Fig.8(b). Again, above wa/27mc ~ 0.01 the EEL spectrum
converges to a certain function with increasing number
of layers, though the convergence progresses slowly com-
pared with that in the dilute photonic crystal. A remark-
able feature in this case appears below wa/27c = 0.01,
where a frequency shift of a small loss peak is observed
with increasing N. In contrast to the dilute photonic
crystal, in such low frequency region the v line lies in
the shaded region of the lowest band even for.v = 0.4,
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FIG. 9: The EEL spectrum of the photonic crystals at k; = 0,
varying the number of layers. The velocity of the charged par-
ticle was taken to v = 0.4c. In (a) the cylinders are well sep-
arated(lattice constant a = 4r), whereas in (b) the cylinders
nearly touch(a = 2.167). The trajectory of the charged parti-
cle is just on the boundary of the photonic crystal (i.e. s =0).
Consecutive curves are shifted 2 x uoce?/8 and 5 x pqce?/8
upward in (a) and (b), respectively.

as can be seen in Fig.8, This band does not originate
from the SPP modes, and thus the loss peaks found be-
low wa/2me = 0.01 is different in feature from that by
the SPP bands.

The effects of the lowest band in the EEL spectrum
can be clearly demonstrated in the dilute photonic arystal
with large thickness, using a charged particle impinging
with such high-speed that the v line is in the lowest band
inFig.8(a). Fig.10 shows the two EEL spectra of v = 0.4¢
and 0.9¢ in the dilute photonic crystal having 256 layers.
As can be seen in the figure, the lowest band causes very
sharp loss peaks whose positions are distributed below
wa/2mc ~ 0.025. In order to understand this feature,
we must remark that outside the light cone the band
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FIG. 10: The EEL spectrum of the dilute photonic crystal
having 256 layers at k. = 0. The velocity of the charged
particle was taken to 0.4c (dashed line) and 0.9¢ (solid line).

becomes the set of the guided modes in the correspond-
ing finite-thick photonic crystal. Moreover, as mentioned
later, we can reasonably introduce an effective dielectric
function eeq(w), which is very close to that of Maxwell-
Garnett,?” to the photonic crystal under consideration.
The effective dielectric function of Maxwell-Garnett is

given by
2fo
eMO(w) =& (1 + 1~ffa) ) (47)
o=2"% (48)
T )

f being the filling ration of the cylinders. Using this ef-
fective dielectric function, the dispersion relation of the
guided modes in the (loss-less) effective medium is deter-
mined by

, 2
- (M) exp(2ird) = 0, (49)

v/es + ' [Re(eMP)
7=/ C) e -k, (50)
7 = /() Re(elf?) - (s1)

d being the thickness of the photonic crystal. By im-
posing the matching condition of frequency w and wave
vector k(= w/v), the above equation has a sequence of
solutions, which agree with the positions of the sharp loss
peaks of v = 0.9¢ in Fig.10 fairly well.

The convergence of Pe(w, k;) is a direct consequence
of the convergence of the scattering matrix Q. itself.
As was discussed by Botten et al, the converged value
of Q_4 gives the reflectance of the semi-infinite pho-
tonic crystal.3® This also implies that using the converged
value of Q_4, we can extract the effective dielectric func-
tion via Fresnel’s formula of the interface S-matrix. That



is, for the P-polarized incident wave, the scattering ma-
trix Q-4 of the semi-infinite photonic erystal can be re-
garded as the interface S-matrix between the background
medium and the effective medium:

[Q@—+(Po, o)) pp = 1/~ 7 [Een

SN
v/es+ ' [Een
7 =4/~ ()2, (53)

Here, k; = 0 was assumed. The effective dielectric func-
tion eeq obtained in this way, along with that of Maxwell-
Garnett for the dense photonic crystal are shown in
Fig.11. The function is not so far from the effective di-
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FIG. 11: (a) The effective dielectric function for the P-
polarized light in the dense photonic crystal(a = 2.167). The
case k; = 0 was assumed. (b) The effective dielectric function
of Maxwell-Garnett in the dense photonic crystal.

electric function of Maxwell-Garnett, though some extra
features at wa/2mc ~ 0.019 and 0.026 are observed. In
the next section we will see that the EEL spectrum in the
photonic crystal, when the charged particle runs inside
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the photonic erystal, is well reproduced with the effective
dielectric function having the extra features. As for the
dilute photonic erystal, our effective dielectric function is
very close to that of Maxwell-Garnett.

V. ELECTRON RUNNING INSIDE PHOTONIC
CRYSTAL

When a charged particle runs inside the photonic crys-
tals, the induced radiation field is rather involved owing
to the multiple-scattering among the layers above and
below the trajectory. However, the scattering matrix
formalism is readily adapted to the case as long as the
particle does not penetrate any cylinders in the photonic
crystals. A schematic illustration of the system under
consideration is shown in Fig.12. In this case the induced

FIG. 12: A charged particle runs inside the photonic crystal
with an equal distance from the upper and lower nearest layers
of the trajectory. The plane wave coefficients of the induced
wave in the void stripe including the trajectory are denoted
by a and b,

radiation field reacting back to the charged particle is de-
termined as

ind . _ Hoew &
B w) = 2 ;/ 2
% (aheiKz'(x—xD) + bheiK;-(x—xo)) , (54)

ap=(1-Q1_Q*)7'Q%_ (e + Q¥ et), (55)
bp=(1-Q¥ Q%)71QY (et + Q% _e7), (56)

where Ql(i) is the scattering matrix of the upper (lower)
layers above(below) the trajectory and xo = (0, o, 20).
Beside, the Fourier coefficients of the upper and lower



transmitted wave, denoted by t;—f, is also obtained as

) "ZQ++ By W) (et 6nrng + ans), (57)

th—ZQ

Therefore, the EEL and SP radiation spectra per unit
length becomes

(h, W) (€™ 8hrng +bu). (58)

€ — bhn : (6+X5p)

(60)

1
Pel(w: kZ) = “Zﬂoezwh}?’uum (azn :

1 -
Psp(w:kz) = '8‘/"062"‘-’ Z Th (It;nz -+ [t’h |2) .

h€open

Again, the flux conservation in a loss-less photonic crysta)
leads

> m (1 + 11?)
h€open
= =2l |Im (a}, - €™ = bag - (¢7)*),  (61)
which implies that the EEL is equal to the SP radiation
emission.

At low frequencies we may expect that the EEL in a
photonic crystal is somehow approximated by that of a
lossy effective homogeneous medium. As is known well,
the relativistic EEL in such a medium with permittivity

Eert is given by
= L netwre |1 (1= (&2 L
Poy(w, k) = zHoe wRe [7 <1 ('u) Eeﬂ)} , (62)

per unit length. When e.g is real and the condition v >
¢/+/Eet is satisfled, the above equation is equal to the
Cerenkov loss. Otherwise, Eq.(62) can be regarded as
the EEL by the absorption. In a homogeneous metal
the bulk plasmon dominantly contributes to the EEL
because of the factor 1/e.z.

Fig.13 shows the BEL spectra of the dense photonic
crystal and its simulation using the effective dielectric
function obtained by Eqs (52) and (53). Here, the
charged particle runs with velocity 0.4¢ between the 32th
and 33th layer of the 64-layer thick slab of the dense pho-
tonic crystal. ‘

One can observe that the frequency of the main loss
peak is larger than w = 0. pr, which is close to the bulk
plasmon frequency. This is quite reasonable, taking ac-
count that the dense photonic crystal has a large filling
ratio (~ 67%) and thus is close to the bulk metal of Alu-
minum. Beside the main loss peak, two small peaks are
observed in the EEL spectrum. Using the homogeneous
medium approximation with the effective dielectric func-
tion obtained in the previous section the above features

are well reproduced. It should be emphasized that the -

small two peaks in the dense photonic crystal can not be
explained with the effective medium theory of Maxwell-
Garnett based on eM° given by Eq.(47).
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FIG. 13: The EEL spectrum in the dense photonic crystal
having 64 layers along the ' X direction is shown. The EEL
spectrum in the effective medium whose dielectric function is
given by Fig.11 is also plotted. The velocity of the charged
particle is taken to 0.4c.

Regarding the EEL spectrum in the dilute photonic
crystal, our effective dielectric function as well as the
Maxwell-Garnett approximation reproduce the spectrum
having a single peak near w = w, /\/2 fairly well.

V1. SUMMARY

In this paper we have presented a fully-relativistic anal-
ysis of the EEL and the induced radiation emission in
various spatial arrangements of metallic cylinders by us-
ing the multiple scattering method and the layer-KKRO
method. In an isolated metallic cylinder with a nanoscale
diameter we showed that the EEL is dominated by the
absorption rather than the induced radiation emission.
Thus, the efficiency of converting the kinetic energy of
the charged particle to the radiation emission is very low.
In the two identical metallic cylinders a variety of EEL
peaks appear. Some of them are attributed to the cav-
ity mode localized in the groove between the cylinders.
Such a cavity mode as well as the SPP modes become the
seed of the flat bands in a dense periodic arrangement of
the metallic cylinders. After presenting a mathematical
description of the KEL and the SP radiation emission
in two-dimensional photonic erystals composed of cylin-
ders, we showed the numerical results of the EEL spectra
in both dilute and dense periodic arrays of the metallic
cylinders. In the dilute photonic erystal the EEL spec-
trum has a simple structure. The spectrum has a single
peak near w = w,/v/2 and is not so far from the EEL
spectrum in the isolated cylinder. However, when a high
speed charged particle passes near the photonic erystal,
a sequence of very sharp loss peaks, which comes from
the lowest photonic band guided in the finite-thick pho-
tonic crystal, are observed. The peaks are comparable in



magnitude with that by the SPP bands. On the other
hand in the dense photonic crystal the EEL spectrum is
very complicated reflecting the photonic band structure,
though a good correspondence to the EEL spectrum in
the almost touched two cylinders is observed. In both the
photonic crystals the effective dielectric functions, which
are obtained with the reflectance of the corresponding
semi-infinite photonic crystals, fairly reproduce the KkL
spectra when the charged particle runs inside the pho-
tonic crystals.

In this paper we have restricted ourselves to various
arrangements of Aluminum cylinders whose diameter is
a few nanometers, bearing carbon nano-tube arrays in
mind. Since the plasma wavelength of Aluminum is much
larger than the above scale, a metallic photonic crystal
composed of the cylinders behaves as if it has an effec-
tive dielectric function reflecting the coupled SPPs, in the
frequency range concerned. In addition the SP radiation
from the photonic crystal is completely absent. How-
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ever, it is of great importance to study the EEL and the
SP radiation emission spectra when the lattice constant
is comparable with the plasma wavelength of the con-
stituent cylinders. In this case an effective medium ap-
proximation cannot be adapted and usual photonic bands
affect strongly the EEL and induced radiation emission
spectra. To explorer the spectra in such metallic pho-
tonic crystals with and without a structural defect is the
main theme of the paper II.
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Relativistic electron energy loss and induced radiation emission in two-dimensional
metallic photonic crystals II: Photonic band effects
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This paper presents a fully relativistic analysis of the electron energy loss and the induced radiation

emission in a metallic photonic crystal. The crystal’
wavelength, and the analysis is presented in terms o
cylindrical waves. The electron energy loss and t
well correlated with the photonic band structures,

s lattice constant is comparable with the plasma,
f the multiple scattering method based on vector
he Smith-Purcell radiation emission spectra are

both with and without a structura] defect. In

particular, surface-localized modes and waveguide modes localized in a linear defect can be identified
in the spectra. In addition, we show that highly directive radiation emission is possible by using a

waveguide mode at the I’ point.

PACS numbers: 42.70.Qs,73.20.Mf,34.50 Bw

I. INTRODUCTION

In the preceding paper!' (referred to as Paper I) we
presented a fully relativistic description of electron en-
ergy loss (EEL) and induced radiation emission in arbi-
trary arrays of non-overlapping metallic cylinders. The
description is given in terms of the multiple scattering
method based on vector cylindrical waves. As an ex-
ample, we have explored arrays of aluminum cylinders
whose diameters are a few nanometers, considering car-
bon nano-tube arrays and other metallic nano-structures.
Using a nanoscale periodic structure, the induced radi-
ation emission is prohibited kinetically iri the frequency
range of interest which is near the plasma frequency of
aluminum. Thus, the EEL consists solely of the absorp-
tion in the structure. Moreover, an effective medium ap-
proximation can be reasonably applied to the structure
because the wavelength is much greater than the pitch of
the periodic structure.

However, if the diameter of the cylinders and the pitch
in an array of metallic cylinders are comparable to or ex-
ceeds the plasma wavelength, the EEL and the induced
radiation emission have a pronounced feature reflect-
ing the photonic band structure. In particular, Smith-
Purcell radiation (SPR) occurs in the frequency range of
interest. As a consequence, a significant part of the EEL
is caused by the SPR.

In this paper, we focus on the effects of photonic bands
in a periodic array of metallic cylinders. As a model
system, we choose a silver cylinder with radius r (160
[nm]) since silver has a low imaginary part in-the dielec-
tric function at the frequencies of visible light. Thus, we
may expect that the absorption in the photonic crystal
is quite small, so that the EEL is dominated by the SPR.
The dielectric function of silver at these frequencies can
be approximated with the Drude formula:

2
I
€a (W) = €00 (o i)’ (1)

where £00=5.7, T, = 9[eV], and hn = 0.04[eV]. The

surface plasmon polariton in a flat silver-air interface can
be found at
— 2)
VEx+1
in the non-retardation limit. The above dielectric pro-
file of silver, as well as copper and nickel, can be utilized
as the ingredient of a three-dimensional photonic crystal
with an omni-directional band gap.? In fact, a dense face-
centered cubic array of silver spheres with the same di-
ameter has the complete photonic band gap far below the
plasma frequency. Since the gap opens between the fifth
and the sixth bands, it is robust against disorder. This
is compared with the inverse opal, in which the complete
band gap opens between the eighth and ninth bands.
This feature repeats in a dense square array of the
silver cylinders in air. In contrast to metallic spheres,
an array of metallic cylinders gives rise to polarization-
sensitive light propagation because of the anisotropy of
the structure. As is common knowledge, a periodic ar-
ray of metallic cylinders behaves as if it is a bulk metal,
with the low-frequency plasmon for the 'I'M-polarized
light®, whose electric field is parallel to the cylindrical
axis, traveling in-plane perpendicular to the cylindrical
axis. The plasma frequency of the low-frequency plasmon
is roughly estimated as

- f
N Tt e ©

f being the filling fraction of the silver cylinders. Be-
low w = w, there is no bulk eigenmode of the TM po-
larization in the photonic crystal. For TE polarization,
in which the magnetic field is paralle] to the cylindrical
axis, the photonic band structure has a wide band gap
between the first and the second bands at k; = 0. There-
fore, the metallic photonic crystal has the polarization-
independent in-plane gap as long as w, exceeds the up-
per gap edge of the TE polarization. Owing to the band
gap, a variety of localized defect modes may appear when
structural defects are introduced. It is important to ex-
plore in detail what happens when a charged particle

W=



Passes near a metallic photonic erystal with such a band
gap. We address this issue in the present paper.

The paper is organized as follows. In Section II the
photonic band structure of a metallic photonic crystal is
studied in connection with the SPR. We explore how the
bulk eigenmodes as well as the surface-localized mode of
the metallic photonic crystal affect the EEL and SPR.
spectra in Section llI. Section |V discusses a possible
scenario of directive SPR. in the photonic crystal. Finally,
we summarize the results.

II. PHOTONIC BAND AND SMITH-PURCELL
RADIATION

Photonic band effects play a crucial role in the KEL
and SPR spectra in a photonic crystal, particularly in
the frequency range comparable with the lattice scale.
Here we study a metallic photonic crystals composed of
a square array of silver cylinders with the lattice con-
stant @ = r/0.45 ~ 355.6[nm|. The photonic crystal is
assumed to have infinite extent in the (1,0) direction of
the square lattice and to have a finite thickness along the
(0,1) direction. As in Paper I, the x, Y, and z aXes are
considered to be parallel to (1,0), (0,1), and the cylin-
drical axis, respectively. The photonic band structure
of P(TE)-polarization at k, = 0 projected onto the sur-
face Brillouin zone associated with the boundary paral-
lel to (1,0) is shown in Fig.l. The band structure was
calculated by using the two-dimensional layer Korringa-
Kohn-Rostoker-Ohtaka method taking Iy = 10. Here,
we dropped the band diagram of the S(TM)-polarization
because it is not relevant to our problem. However, at
non-zero k,; we must take account of both the S and
P polarizations owing to polarization mixing. In PFig.1
the shaded regions correspond to the bulk eigenmodes,
whereas the blank regions correspond to the (pseudo)
gaps. The photonic erystal has a large in-plane band
gap between the first and the second bands. The gap-
width/mid-gap ratio is about 36% at k, = 0. We
should note that the in-plane band gap is polarization-
independent because the cutoff frequency w, for the TM
polarization is about 0.92 in units of 2rc/a. The in-plane
gap, nevertheless, opens at small k, even after mixing
of the polarizations, whereas the gap increases in fre-
quency. In addition, at high frequencies near wa/2mc =
1, there are infinite flat bands of surface plasmon polari-
ton (SPP) origin. This is logical, taking into account
that wp/v/eco + 1 = 0.997 in units of 2re/a. The follow-
ing discussion is restricted to the frequency region below
wa/2me < 0.9, such that the flat bands of SPP origin can
be neglected.

Before discussing the effects of the photonic bands on
the EEL and SPR, we should recall the kinetics involved
in the EEL and SPR. A schematic illustration of the sys-
tem under study is shown in Fig.2. When a charged
particle passes near the photonic crystal with its trajec-
tory parallel to the (1,0) direction, the particle produces

FIG. 1: The 'I'E photonic band structure of the square lat-
tice of the silver cylinders at k, = 0 was projected onto the
surface Brillouin zone associated with the boundary parallel
to the (1,0) direction of the square lattice. The lattice con-
stant is a = r/0.45 o~ 355.6[um), where 7 is the radius of the
cylinders, which was taken to be 160[nm). The shaded regions
correspond to the bulk eigenmodes, whereas the blank regions
correspond to the (pseudo) gaps. The thick solid line is the
light line (w = %ck.) and the dotted(dashed) lines are the v
lines (w = v(kx+h)), which represent the the dispersion of the
radiation accompanied by the charged particle traveling with
velocity v = 0.5¢(0.9¢). The charged particle is supposed to
trave] parallel to the boundary of the photonic crystal. The
dispersion curve of the surface-localized mode (discussed in
Sec. III) and that of the waveguide mode, which is obtained
by removing a single column of the cylinders from the pho-
tonic crystal (discussed in Sec. IV), are also shown (solid and
dash-dotted lines).

a source term of the external current in Maxwell’s equa-
tion of the system. The term is proportional to §(z — ot),
where § is Dirac’s delta function. Therefore, the Fourier
transform with respect to z and ¢ yields the dispersion re-
lation w = vk, (referred to as the v line) for the radiation
accompanied by the charged particle. In a vacuum, this
dispersion is outside the light cone, and thus the radia-
tion is evanescent. However, the radiation is scattered by
the photonic crystal, acquiring an Umklapp momentum
shift for k, owing to the periodicity of the photonic crys-
tal. After the scattering, The shifted v line w = v(ky+h)
lies partially inside the light cone. Here, h(=2mnfa, n
. Integer) stands for a reciprocal lattice associated with
the (1,0) direction. Therefore, the evanescent radiation
can transform into a propagating one. In order to vi-
sualize this, the v lines of different velocities (v = 0.5¢
and 0.9¢c) and the light line w = +ck, (provided k, = 0)
are overlaid onto the projected band structure in Fig.1.
As can be seen in Fig.1, the shifted v line of v = 0.5¢
and h = 1 in units of 27/a is inside the light cone if
wa/2me > 0.333. For the shifted v line of v = 0.9¢ and
h =1, the line is inside the light cone if wa/2mc > 0.474.
In general, the shifted v line of velocity v and h = 1 is
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FIG. 2: Schematic illustration of the system under study.
The photonic crystal has infinite extent in the xz plane and
has a finite thickness along the y direction (just two layers
in the figure). A charged particle travels below the photonic
crystal and induces the Smith-Purcell radiation(SPR), The
polar angle 8 of the SPR is defined as the inner angle between
the unit vector directed to a far-field observation point and
the z axis. The azimuthal angle ¢ is defined on the yz plane.
The y(z) axis corresponds to ¢ = 0°(90°).

inside the light cone if the following condition is satisfied:

X
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This provides the low-frequency threshold of the SPR.

To describe the propagating direction of the SPR, it
is convenient to introduce the polar coordinate (Fig.2).
The polar angle (8) is defined as the inner angle between
the unit vector directed to a far-field observation point
and the x axis. The azimuthal angle (4) is defined on
the yz plane. Since the x component of the wave number
vector of the SPR. is given by k, = w/v — h, the polar
angle of the SPR is fixed as

@ _p
cos B = 2

) (5)

olE

at a given frequency w. The azimuthal angle of the SPR
depends on both w and k;, and is given by

ks
VEF-G-m R

Since the k. integral is involved in the SPR spectrum, as
was derived in Paper I, the azimuthal angle of the SPR
is not fixed.

In the photonic crystal we must combine the above
kinetics with the photonic dispersion relation w =
wn (ka, ky, kz) inside the crystal. We can expect that
a large enhancement of the EEL and SPR when the v

tan ¢ = (6)
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lines (including the shifted ones) hit the photonic bands.
This is caused by exciting photonic eigenstates on the
v lines. As depicted in Fig.l, the v lines are partially
in the shaded regions that correspond to the bulk eigen-
states and are also in the pseudo gaps. The shaded re-
gion does not truly represent a continuous distribution of
photonic eigenstates. Rather, it represents a dense but
discrete distribution of them. This is due to our using a
finite-thickness photonic crystal, and the quantization of
the momentum along the direction of thickness must be
considered. Therefore, by scanning w, the v lines hit a
sequence of discrete-leve] eigenstates, Thus, the KL and
SPR spectra reveal a rapid oscillation inside the shaded
regions. Let us suppose that one of the eigenstates on the
v line causes a strong enhancement in the SPR spectrum.
This yields a monochromatic radiation with a particular
frequency, and thus the radiation is directed to a certain
polar angle determined by Eq.(5). However, it does not
generally imply that the radiation is also directive as it
relates to the azimuthal angle. In Sec.IV, we will discuss
how to obtain a directive SPR relating to both polar and
azimuthal angles.

III. BULK AND SURFACE STATES

Let us consider the EEL and SPR when a charged par-
ticle passes near the finite-thickness photonic crystal. In
Fig.1 the v lines of v = 0.5¢ lie in the shaded region of
the lowest band at 0.2 < wa/2mwc < 0.33. The lines are
inside the photonic band gap in the frequency region be-
tween wa/2me =~ 0.33 and 0.52 and in the pseudo gaps
near wa/2me >~ 0.6,0.73 and 0.85. In contrast, the v lines
of v = 0.9¢ lie in the shaded region of the lowest band up
to wa/2me = 0.33. The lines are also inside the photonic
band gap and in the three pseudo gaps near wa/2mwe =
0.53, 0.73, and 0.8, Inside the band gap, the v line of
v == 0.9c lies partially outside the light cone.

As was mentioned, when the v line lies in a shaded
region, the charged particle excites a sequence of bulk
discrete-level eigenmodes in the region. Thus, the EEL
and the SPR spectra reveal a rapid oscillation. Fig.3
shows both of these spectra in the eight-layer-thick pho-
tonic crystal along the (0,1) direction, where v = 0.5¢
and k, = 0 were assumed. The distance between the
trajectory of the charged particle and the plane bisect-
ing the boundary layer is 0.5a. As was derived in Pa-
per I, the two spectra must coincide if there is to be no
absorption in the photonic erystal. Owing to the small
imaginary part in the dielectric function of silver, the
EEL spectrum is nearly equal to the SPR. spectrum in a
wide frequency region including the band gap. Below the
threshold of the SPR the EEL spectrum has a sequence
of very sharp peaks that appear when the v line les in
the shaded region of the lowest band in Fig.1. Since this
happens at rather low frequencies, an effective medium
approximation is plausibly applied, so that the positions
of these peaks can be estimated by the same procedure
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FIG. 3: The EEL (solid line) and SPR (dashed line) spectra
in the eight-layer-thick photonic crystal under consideration
(See the caption of Fig.1). The charged particle travels with
velocity v = 0.5¢, maintaining a distance of 0.5a from the
plane bisecting the boundary layer. k, = 0 was assumed.

used in Paper 1. Above the SPR threshold, both spectra
reveal a rich structure. At approximately wa/2mc = 04,
where the in-plane gap opens, the spectra have no pro-
nounced structure. Moreover, one can find a marked dip
at wa/2me ~ 0.61, where a pseudo-gap opens. Here, the
deviation of the SPR from the EEL is quite pronounced.
Generally, above the threshold, this deviation becomes
large at high frequencies even if the v line is in the shaded
regions. .

Though the band gap and the pseudo gap can be iden-
tified in the EEL and the SPR spectra, their effects can
be clearly demonstrated when we divide the SPR spec-
trum into the transmitted and reflected SPR spectra with
fixed h, with focus on the transmitted spectrum. The
transmitted and reflected SPR spectra are defined by

Pam(w,kz) = > (Pih(w, k) + Pk (w, k,)) ((7)
h€Eopen

1
PiMw, k) = ghoctwe™ 0050, 1Q . (h, ho)e*%(8)

1
P, ks) = Groctue™ ol [Q_, (h, ho) et 2(0)

=)= Gt 2 -, (10)

where Q14 is the scattering matrix of the finite-thickness
photonic crystal, et is the plane-wave coefficient of the
incident evanescent wave accompanied by the charged
particle, and w/v is divided into the momentum in the
first Brillouin zone k, and a reciprocal lattice hy (See
Paper I for details).

Fig.4 shows both the transmitted and reflected SPR
spectra for the same structure as in Fig.3. As illustrated
in Fig.4, the transmitted SPR spectrum is almost zero
in the gap and the pseudo-gaps. However, this does not
imply that the reflected SPR spectrum has a peak there,
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FIG. 4: Transmitted and reflected SPR spectra of Umklapp
shifted channel h = 1 in the eight-layer-thick photonic crys-
tal under study. The transmitted(reflected) SPR spectrum is
shown above(below) the horizontal axis. The same parame-
ters as in Figs.1 and 2 were used.

because the total SPR spectrum is a complicated funec-
tion of frequency. Instead, the reflected SPR spectrum
has no rapid oscillation in these gaps. Apparently, the
the transmitted SPR intensity decreases as the number
of layers increases owing to light absorption. In contrast,
the reflected SPR spectrum converges to a certain func-
tion as the number increases.

In Figs.3 and 4, there is another dip at wa/2mc =~ 0.67,
which does not correspond to any pseudo gap in the pho-
tonic band structure. In fact, the dip is located inside
the shaded region in Fig.1. The dip appears at the inter-
section of the shifted v line of h = 1 and the line of the
Bragg diffraction threshold (w = —ck,+27/a). Thus, the
dip is somehow related to the Rayleigh-Wood anomaly of
diffraction grating.*

In the band gap, the v lines may intersect the disper-
sion curve of a surface-localized mode on the interface
between the photonic crystal and air. This is the case for
the structure under consideration. As shown in Fig.1,
the v line of v = 0.9¢ lies outside the light cone in the
band gap, so that it can excite a surface-localized mode.
Fig.5 shows both the EEL and the tota] SPR spectra
in the 32-layer-thick photonic crystal, where the charged
particle travels with velocity v = 0.9¢. There is a re-
markable peak of the EEL spectrum at wa/27e =~ 0.42.
The peak is higher than any other peaks found in the
shaded region. Since the peak is found in the in-plane
band gap outside the light cone, the peak is attributed
to the surface-localized mode. By changing the veloc-
ity of the charged particle, we can trace the dispersion
curve of the surface mode. The result was already imple-
mented in Fig.1. With this analysis, the electron energy
loss spectroscopy is capable of experimentally determin-
ing the dispersion relation of the surface-localized mode.
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FIG. 5: EEL and SPR spectra in the 32-layer-thick photonic
crystal along the (0,1) direction. The charged particle travels
with velocity v = 0.9¢, maintaining distance 0.5a from the
plane bisecting the boundary layer.

IV. DIRECTIVE SMITH-PURCELL
RADIATION

In the previous sections, we studied the effects of pho-
tonic bands on the EEL and SPR: spectra in a finite-
thickness photonic crystal. There, the spectra were com-
pared with the projected band diagram, which is ob-
tained from the photonic bands of the corresponding in-
finitely thick sample along the stacking direction. In the
eight- or 32-layer thick samples, fine structures of the
EBEL and SPR spectra can be clearly observed. However,
as the number of layers increases, the fine structures be-
come hidden, owing to the non-zero imaginary part of
the dielectric function of silver. As a result, no marked
peak of high quality can be found in the SPR spectrum
of the thick samples, whereas the EEL spectrum still has
the very sharp peak of the surface-localized mode. In
view of coherent light source, it is advantageous to have
a sharp peak in the SPR spectrum at a particular fre-
quency. Moreover, the SPR is more useful when highly
directive.

When we consider the photonic band structure in
bulk, the wave vectors of the matched eigenstates to the
charged particle are distributed on a surface in ‘the first
Brillouin zone because the matching condition is given
by

w =w'n(kw;ky:kz); (11)
w 2

which generally has a two-dimensional solution in the
momentum space. Therefore, it is difficult to realize a
directive SPR in a thick sample.

The above difficulty can be overcome either by con-
sidering a monolayer of silver or by introducing a linear
defect into the photonic crystal. In the former case, we
can no longer adapt the concept of the projected band
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structure because it assumes infinite thickness along the
stacking direction. Instead, the band structure of the
quasi-guided modes with finite lifetimes must be taken
into account. The modes have a two-dimensional disper-
sion relation w = wy (ky, k.) in which confinement of light
in the y-direction removes the k, dependence in wy. In
the latter case, the linear defect can support a waveg-
uide mode localized in it. The waveguide mode also has
the two-dimensional dispersion relation. As a result, the
wave vectors of the matched eigenstates in these struc-
tures are distributed on a curve in the first Brillouin zone.
Thus, it is simple to have a directive SPR.

First, let us consider the monolayer case. Fig.6 illus-
trates the photonic band structure of the quasi-guided
modes in the light cone as well as the true guided modes
outside the light cone. Again, we set k, = 0 for sim-
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FIG. 6: Photonic band structure in the monolayer of silver
cylinders. The same parameters as Fig,1 were assumed. The
open(solid) circles are the even(odd) modes with respect to
the plane bisecting the monolayer, The thick solid line repre-
sents the boundary of the light cone; the thin solid line is the
v line of v = 0.87¢.

plicity. The quasi-guided modes in the figure were iden-
tified with the method given in Ref.5, whereas the true
guided modes were obtained by solving the secular equa-
tion det(S~') = 0, where S is the scattering matrix of
the monolayer. It should be stressed that if the shifted
v line hits a quasi-guide mode at the T' point, it yields
a directive SPR emission normal to the monolayer as
long as no Bragg channels open. This scenario of the
directive radiation emission is the same as that in dipole
radiation®, where very high directivity is achieved by ex-
citing a quasi-guided mode at the I" point.

To explore the directivity of the SPR in the monolayer,
the elastic differential cross section is introduced. At a
far-field observation point specified by solid angle 0 =
(0,4) (see Fig.2), the only plane-wave components that
contribute to the differential cross section at 0 are those
with the wave vector parallel to the solid angle. Thus,
the elastic differential cross section of the SPR is given
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Eg = cos? ¢ sin® O [t} (w, ko) 2, (13)
per unit azimuthal angle. Here, since the polar angle of
the propagating direction is fixed as in Eq.(5) in the SPR,
the polar angle dependence of the differential cross sec-
tion, which is given by a Dirac’s delta function at § = O,
was integrated out. In Eq.(18), t}, which stands for the
plane-wave coefficient of the electric field above the pho-
tonic crystal; has argument k, equal to (w/c) sin 8, sin ¢.

In order to attain a directive SPR normal to the mono-
layer, 6, must be equal to 90°.7 This can be achieved by
imposing w/v = h and by taking w to be the frequency wr
of one of the quasi-guided modes at the T point. For in-
stance, putting v = wpa/27n (n: integer) yields ), = 90°
for the channel of & = n in units of 2m/a. We should
note, however, at a typical velocity of the electron used
in the EEL spectroscopy in a scanning transmission elec-
tron microscope{ v =~ 0.5¢ ), only the channel of = 1
(in units of 21/a) is favorable for the directive SPR. This
is because in the frequency region relevant to the higher
channels of b > 2 the photonic band structure is so dense
in frequency that we will not be able to obtain the SPR
of monotonic frequency. In the following discussion we
thus restrict ourselves to the channel of A = 1.

As presented in Fig.6, the quasi-guided modes appear
at wa/2mec = 0.544, 0.759, and 0.870-0.877. However,
the lower two modes yield very broad peaks in the SPR
spectrum, reflecting that the corresponding peaks of the
optical density of state are very broad in frequency. In
contrast, the latter three modes combined yield a sharp
peak in the SPR spectrum. Thus, we may expect a di-
rective SPR normal to the monolayer to take place.

The scattering cross section of the SPR at wa/2mc =
0.870, provided v = 0.870¢, is shown in Fig.7. In this
case, the directivity of the SPR is not so high owing to
the rather flat dispersions of the relevant quasi-guided
modes along k.. Furthermore, two small peaks of the
angular distribution of the differential cross section are
observed at ¢ =~ 120° and 240° in the reflected SPR.
They represent the simultaneous excitation of another
quasi-guided mode. In fact, we found that the band that
terminates the quasi-guided mode of wa/2mc = 0.759 at
k2 = 0 intersects the line of wa/2mc = 0.870 near the light
line w = ck,. The quasi-guide mode at the intersection
is responsible for the small peaks. Therefore, in order to
obtain directive SPR using the quasi-guide modes, the
dispersion of the quasi-guided mode must be optimized.

Next, we consider a linear defect introduced in the sil-
ver photonic crystal employed in the previous section.
We first assume a nine-layer-thick photonic crystal, ie,
a stack of nine identical monolayers of the cylinders. We
then remove the fifth layer altogether, leaving the linear
defect parallel to the x4 plane, which is sandwiched by
four layers on each side. The resultant EEL and SPR
spectra reveal a sharp resonance at the frequency of the
waveguide mode. Thus, by tracking the peak frequencies
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FIG. 7: The azimuthal angle ($) distribution of the SPR
in the monolayer of the silver cylinders. The velocity of
the charged particle and the frequency were taken to be
v = 0.870c and wa/27c = 0.870, in order to excite the quasi-
guided mode at the I' point. The distance between the tra-
jectory of the charged particle and the plane bisecting the
monolayer is 0.5a.

as a function of k; and k,, we can determine the dis-
persion relation of the waveguide mode. The dispersion
curve obtained in this way is plotted in Fig.1. Moreover,
an ordinary transmission calculation across the linear de-
fect can also determine the dispersion curve in the light
cone.® We have examined both methods, and the results
are wholly consistent. As seen in Fig.1, the dispersion
curve lies mostly in the light cone, so that the SPR spec-
trum is strongly affected by the waveguide mode.

A waveguide mode can also be utilized for directive
SPR because it also has a two-dimensional dispersion re-
lation. It should be stressed here that the in-plane gap
shifts upward in frequency with increasing |k, |. The dis-
persion curve of the waveguide mode behaves similarly,
as will be seen later. Moreover, the I point is a minimum
as a function of k,. This yields the dispersion relation
approximated around (kz, k;) = (0,0) with

w=wy+akl + Bk (o8> 0), (14)

wq being the eigenfrequency of the waveguide mode at
(kzy kz) = (0,0). When w and v are chosen such that w =
wp and k; = 0, k; = 0 is also derived. Thus, the shifted
v line only hits the waveguide mode at ky = k; = 0 at
this frequency. This yields a highly directive emission of
SPR toward (6,¢) = (90°,0°).

A similar directive radiation emission was studied in
connection with the antenna application. Temelkuran
et al.,, reported that by introducing a planar defect in a
woodpile structure with a complete photonic band gap,
highly directive dipole radiation is achieved with the aid
of the resonance of the planar defect mode.®

The scattering cross section of the SPR at wa/27rc =
0.351, which corresponds to the waveguide mode at
(kz,kz) = (0,0) (the value of the dash-dotted curve at
k; = 0 in Fig.1), is shown in Fig.8. Here, we assumed
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FIG. 8: The azimuthal angle (¢) distribution of the SPR
in the photonic crystal with a linear defect. The velocity
of the charged particle and the frequency were taken to be
v = 0.351c and wa /2me = 0.351, in order to excite the waveg-
uide mode at (ks, k;) = (0,0). The SPR is highly directive,
compared with the monolayer case.

that the charged particle travels with velocity v = 0.351¢
inside the linear defect, keeping the same distance from
the layers that sandwich the defect. In this case, only
a waveguide mode with even parity with respect to the
trajectory can be excited because of the even symme-
try of the incident evanescent wave accompanied by the
charged particle. In addition, the upper and lower trans-
mitted SPRs are identical. As depicted in Fig.8, the
azimuthal angle distribution of the cross section is es-
pecially concentrated around ¢ = 0° (transmitted) and
180° (reflected). The high concentration is caused by
the fact that there is no matched bulk eigenstate in-
side the light cone other than the waveguide mode at
(kz,k.) = (0,0). This can be clearly seen in Fig.9. In
this figure the photonic band structure is projected onto
the the k, axis provided k, = 0, that is, the I' point
of the surface Brillouin zone. Outside the light cone
the frequency wa/2mc = 0.351 is matched to the bulk
eigenmodes, which cannot couple to external radiation.
Though these modes cause light absorption in the pho-
tonic crystal, the emitted light of the SPR is highly di-
rective at that frequency.

V. SUMMARY

In this paper, we analyzed how photonic bands af-
fect the EEL and SPR spectra in a two-dimensional
metallic photonic crystal composed of silver cylinders
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whose plasma. wavelength is comparable with the lat-
tice constant. The spectra are well correlated with the
photonic band structure of the sample with and with-
out a structural defect. In particular, photonic band
gaps, pseudo gaps, surface-localized modes, and waveg-
uide modes in the spectra can be identified. Thus, the
EEL spectroscopy and the SPR measurement in a scan-

FIG. 9: The photonic band structure of the square photonic
crystal under consideration (See Fig.1 caption) is projected
onto the k. axis, provided k; = 0. The shaded regions corre-
spond to the bulk eigenmodes, whereas the blank regions cor-
respond to the (pseudo) gaps. The thick solid line is the light
line w = ck, and the thin solid line stands for the dispersion
relation of the waveguide mode localized in the linear defect
of a missing column. The dotted line is of wa/2me = 0,351,

ning transmission electron microscope provide an experi-
mental method to determine such gaps and modes. How-
ever, possible fine structures in these spectra are hidden
in a thick sample because of a non-zero imaginary part
in the dielectric function of silver. This precludes the use
of the SPR as a coherent light source in regular metal-
lic photonic crystals. We proposed two routes to avoid
this problem. One is to use the monolayer of the cylin-
ders; the other is to use a linear defect introduced in the
metallic photonic crystal. In both cases, we can obtain
highly directive SPRs by tuning the frequency as well as
the velocity of the charged particle.
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We propose theoretically a means to send a photon to an optically inactive state at the I" point of
the Brillouin zone of a photonic crystal. It is shown that by using the light scattering of attenuated-

total-reflection (ATR) geometry, a combined s

ystem of a photonic crystal and a prisim placed

nearby, an optically inactive mode at the I point can be excited. The excitation is demonstrated
by calculating the ATR signal for a photonic crystal of spheres arrayed in a square lattice, which
presents a distinct dip due to excitation of the inactive mode. To confirm that the excited mode is

indeed the one of the I' point, we checked that e

quipartition of the energy of the excited mode is

established among four diffracted plane-waves associated with the four shortest reciprocal-lattice-

vectors of the excited Bloch wave.

PACS numbers: 42.70.Qs

Photonic crystals (PCs) have been attracting much in-
terest in recent years due to their potential technological
applications’2. One of the key concepts for realizing such
applications is the high Q value, or strong confinement
effect, of the modes set up in a PC., -

In the band structure of a PC, peculiar electromagnetic
modes that are inactive to external optical probes exist at
wave vectors of high symmetry in the Brillouin zone?®.
When the wave vector k is on, say, the I-X axis of a cubic
PC, each of the photonic-band (PB) modes at that k is
inactive to an external light of a particular polarization
due to the polarization mismatch. When the wave vector
Is exactly at the I’ point (k = 0), however, there are
special PB modes which are decoupled completely from
any of external plane-wave lights. . We call here these
special modes as optically inactive modes (OIMs). They
are characterized by complete confinement. More than
half of PB modes at the I point are generally OIMs.
They are free from radiative damping due to leakage of
the mode energies to the outer free space, despite the fact
that they exist in the radiative region of the w-k space,
w and k) being the frequency and wave vector component
parallel to the surface of the PC, respectively.

When a PB has an OIM at the I point, leakage to the
outer space gradually increases from zero as the wave
vector goes away from the I point along the dispersion
curve. Recently, Fan et al. examined these modes near
the I" point and proposed the use of their huge Q values
in the design of novel photonic devices®. Their idea is to
make use of a very small but finite leak from a PG, i,
a weak optical activity due to good, but not complete,
confinement. In this paper, we focus on the OIMs at the
[ point of exactly zero optical activity. We propose a
means to excite OIMs by using an external optical signal.

Suppose a slab of a PC that is bounded in the thickness
direction by two surface layers. For simplicity, we assume

the lattice structure in the lateral plane (z-y plane) to be
a two-dimensional (2D) square lattice of point group Cyy.
The 2D Brillouin zone in the kg-ky plane is then defined
by the region of —m/d < kg, ky < 7/d, d being the lattice
constant of the square lattice,

We restrict ourselves to the excitation of PB modes of
k) =0, i.e., the modes at the I’ point of the 2D Brillouin
zone. To excite them by a plane-wave light, we must use
a light of normal incidence by momentum conservation.
The point group of the group of wave vector at the I
point, G(ky) with ky = 0, is C4y, which has five irre-
ducible representations, Aj, As, By, By and E, in the
notation of group theory?. A;, A,, B; and B, are one-
dimensional irreducible representations, and E is a two-
dimensional irreducible representation. The modes that

.belong to one-dimensional irreducible representations are

all optically inactive®!%. Thus, a plane-wave light from
an external source can excite only PBs of B representa-
tion.

For later discussion, let us examine this situation in
more detail. When ky = 0, the electric field of a PB of
one-dimensjonal irreducible representation is expressed
as (—o0 < z < 00)

E(r), 2k =0) = Zeﬁn")(z) exp(th - 1y)
nn

+ 3™ (2) exp(ih - )+ (1)

2nn

Here, h stands for a 2D reciprocal lattice vector
and the symbol Y represents the sum over the h
points on the shell nearest-neighbor (nn) to the ori-
gin h = 0, which consists of four points, h(m) =
(£1,0) and (0,41) (in units of 27/d). The sum
over the second nearest-neighbor (2nn) shell is the sum
over h®™) = (41 1) and (41, —1)." The amplitudes
™ (), eZ™(2), etc. are generally finite even for z



outside the PC. The functions eg’“) (2) for four different
h'’s of the nn shell transform within themselves by any
operation of Cgy. To see it, let us take g = Cy4, 2 7/2 ro-
tation about the z axis, as an example of the operator g
of the group Cy,. In order for the Bloch functions given
by Eq. (1) to be a basis function of a one-dimensional
irreducible representation, operating g on it is equivalent
to multiplying a constant C. That is, it holds that

g9 (Z e{™ (2) exp(éh - r")) =Cy ™ (2) exp(ih 1))

(2)
and the same relation for the 2nn or higher shell, with
the same C. For example, h = (1, 0) = hy in Eq. (2),
operation on the left goes as

Il

(9en, (2)) exp(ihy - g™ 'xy)
(gen, (2)) exp(i(ghi) - Tj)X3)

g (ehl (z) exp(ihy - r"))

The vector gey, (2) is am/2rotation of ey, (z). Therefore,
from Eq. (2), it should hold that

g€, (z) = Cehz (z)1 (4)

where hy stands for the vector gh; = (0, 1). That is,
ey, () and ey, (2), generally ey(2) for all h’s in the nn
shell, should be related mutuallyS.

If Eq. (1) had a term belonging to the O-shell with a
vector amplitude ep(z), it should satisfy

geo(2) = Cep(2) (8)

with the same C as used in Eq. (2), because g0 = 0.
Therefore, by the operation of g = Cy4, the direction of
eo(2) should be invariant (for C > 0) or reversed (for C <
0). This is possible either when eq(z) is directed in the 2
direction or when it is zero identically. When eg(z) = 0
(second case), the mode cannot be excited by a light of
k| = 0 because the mode has no term to be connected
to the incoming field. When eq(2) is directed in the %=
direction (first case), the mode cannot be excited either,
because eg(2) is perpendicular to the polarization of the
incoming plane-wave light of k) = 0. In dropping the
0-shell term in Eq. (1), we have omitted this irrelevant
longitudinal case. Thus, the PB modes at ky = 0 of
one-dimensional irreducible representation are all OIMs.

Now we turn our attention to sending & photon to an
OIM. We begin by finding an OIM numerically. Figure
1(a) shows the calculated reflectance of an s-polarized
plane-wave light of k, = 0. It is shown as a function of
the frequency w for a monolayer of dielectric spheres of
refractive index n = 1.437 arrayed in a 2D square lat-
tice (a/d = 0.5, a being the radius of a sphere). The
~ value 1.437 is that of polytetrafluoroethylene (PTFE) in
the millimeter wave region'!. Thus, we are considering a
millimeter light in this paper. We used the vector KKR
algorithm to obtain Fig. 1312, The results are given in
the region 0.78 < w < 0.8 for several values of k;. With
decreasing k., we are approaching the case of normal
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FIG. 1: Reflectance of s-polarized light (a) and DOS of the
s-active modes (b) as functions of normalized frequency w
with k; kept fixed. The frequency w and wave vectors k are
expressed in units of 27c/d and 27/d, respectively. Here, ¢
is the speed of light. Each of the spectra in (a) is displaced
horizontally for clarity. The reflectance of k: = 0 in (a) is
that of normal incidence.

incidence. With decreasing k., the frequency of the re-
flectance peak, which proves the existence of a mode of
a slab PC!3, increases with both width and height of the
peak becoming progressively smaller. Finally, at k, = 0,
we can no longer observe any trace of peak in the re-
flectance. This feature shows that the peak arises due to
the excitation of an s-active PB when k; # 0 and the
mode tends to an OIM in the extreme limit of k, = 0;
i.e., at the T point?.

Figure 1(b) shows the calculated density of states
(DOS) of PBs of the same system. The results were ob-
tained by using the method described in Ref. 13, which
yields DOS of optically active PBs. In accordance with
the reflectance shown in Fig. 1(a), the frequency of the
DOS peak becomes gradually higher and the width of
the peak shows a rapid narrowing as k, approaches 0.
The narrowing of peak width shows that the radiative
damping rate decreases towards the I' point®. Figure 1
thus shows that in the limit &, - 0, the mode becomes
unable to couple to the incident s-polarized light.

In this way, we have confirmed the existence of an OIM
at the I" point in the scanned frequency range. The OIM
(its frequency wp being 0.7954x (2mc/d) at the I’ point)
is identified to be an A; mode by the symmetry of egm)
calculated for h's in the nn shell. We focus on this mode
in the following.

To excite this OIM, which has a wave function of
Eq. (1), we need to use an external probe having a lat-
eral component k;, which is equal to a reciprocal lattice
vector h in nn or higher shells. In the free space, an inci-
dent plane-wave light of frequency w with ky = h exists
in the frequency region w/c > |h|, for it then has a real z
component of the wave vector, equal to (w?/c? — [h|2)!/2.
We assume h of the incident light to be one of the vec-
tors in the nn shell, ie., h = h; = (1, 0). Thus, for w



in the region w > 27c/d, the mode at the T point is ac-
tually coupled to an outside plane-wave light of ky = h:
in other words, PB modes of one-dimensional representa-
tion at the I" point have a finite lifetime in this frequency
region, due to radiation damping through the diffracted
plane-waves. Strictly speaking, therefore, true OIMs of
infinite lifetime at the I" point exist only in the region
w < 2me/d. If we could somehow forward a photon in this
frequency region to an OIM, it would remain there for-
ever (in neglect of decay channels other than radiation).
The absence of radiative leakage is, however, equivalent
to the absence of its time-reversal counterpart, i.e., the
absence of an external excitation probe that couples to
this OIM. Let us next discuss a means to send a photon
to this mode.

In the frequency region 0 < w < 2mc/d, the incident
light of kj = h(") is evanescent. In this case, we can
use attenuated total reflection (ATR) geometry for our
purpose, as shown in Fig. 2. Figure 3(a) shows the band
structure along the I'-X axis near the I' point obtained
by plotting the peak positions of DOS (including those
shown in Fig. 1(b)). We present the band structure near
the I' point with the point kg = 27 /d taken at the center
of the horizontal axis, making use of the periodicity of
the band structure with respect to &,. The three straight
lines show the dispersion relations of the evanescent light
that are obtained when the total reflection occurs in the
prism of refractive index n,. Inside the prism, w and k,
are related by

by = E”C-n,, sin 6, (6)

where 6, is the angle of plane-wave light at the exit sur-
face of the prism, as shown in Fig. 2. For simplicity,
we treat a prism with semi-infinite thickness to eliminate
unessential Fabry-Perot type oscillations. For the case of
np = 2, the case we study in what follows, total reflec-
tion oceurs for 6, > 30.0°, where it is an evanescent light
of kg = 27/d that comes into the PC. We consider the
case of varying w with fixed 0p in the ATR geometry. To
observe an OIM present at the T point with a frequency
wy, it is necessary to adjust 6, so that the evanescent
light has k; = 27/d just at w = wp. From Eq. (6), this
matching is realized when 6, = 39.0°. In Fig. 3(a), three
dispersion curves of evanescent light for 6, = 39.0°, 40.0°
and 42.0° are shown.

The ATR spectrum, the w dependence of the squared
amplitude of the totally reflected light inside the prism,
is caleulated by taking into account the multiple scatter-
ing between the PC and the prism!4. If the evanescent
light from the prism excites a mode in the PC, the ATR
spectrum has a dip because a part of the energy of the
incident light escapes to the excited PB. Thus, once the
OIM of the T point is indeed excited, the spectrum ob-
tained with 6, = 39.0° has a dip. Photonic modes excited
by probes other than that of fp = 39.0° have a finite k,
value and can be excited by the incident light as a usual
leaky mode.

FIG. 2: ATR geometry composed of a prism and a slab pho-
tonic crystal. Solid and dotted arrows show the direction of
the flows of a plane-wave and evanescent wave, respectively.
The refractive index of the prism is np, and the spacing be-
tween the prism and the photonic crystal is b,
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FIG. 3: Band diagram around k, = 27/d (a) and ATR. spec-
tra (specular reflectance) (b). The three straight lines in (a)
show the dispersion relations of the evanescent waves for three
6p with np = 2.0. Panel (b) shows ATR spectra of the three
6p of (a) for b=d/2 (see Fig. 2). For clarity, the spectra are
offset horizontally by 0.1 from one another. To emphasize the
value 0.25 of the reflectance dip, the vertical line is given by
a thin solid line.

Figure 3(b) shows ATR spectra (specular reflectance)
of the incident light of ky = hy = (1, 0) for the three
values of 6, examined in Fig. 3(a). It shows that the
evanescent light incident with 6, = 39.0° (solid line) in-
deed excites the OIM. The breadth of the dip is a measure

-of the lifetime of the excited OIM, which is now caused

by its coupling with the plane-wave lights in the prism
region. The signal due to the OIM just at 0p = 39.0° is
seen to be the most prominent in the ATR signal. The
other two fine structures for 6, = 40.0° and 42.0° are
smaller, implying that the coupling between the evanes-
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FIG. 4: Intensities of four diffracted plane-waves in the prism.
The four h points of the nn shell are h; = (1, 0), hs = (0, 1),
hg = (—1, 0) and hy = (0, —1). The intensity of the h; wave
is the ATR signal shown in Fig. 3(b). In the magnified panel
of the inset, the horizontal line is given at the intensity 0.25.

cent light and a leaky mode is relatively small.

We can thus catch OIMs at the I’ point by ATR geom-
etry. This result can find the following application; if we
switch off the ATR coupling by some means immediately
after forwarding a photon to the OIM, it stays there for
a long time. In an ideal case, we can thereby use a PC
as a temporary container of photons.

The fact that the minimum value of the ATR. dip at
exact resonance (8, = 39.0°) is 0.25 in Fig. 3(b) is not
accidental. As shown in Eq. (1), the OIM consists of
four plane-waves of h in the nn shell, whose amplitudes
egl"")(z) are of equal magnitudes by symmetry. Excita-
tion of the Bloch state of Eq. (1) is equivalent to the
excitation of these four plane-waves in the nn shell with
equal amplitudes. They then give rise to four evanescent

4

lights in the region between the PC and prism, which are
finally converted into plane-waves in the prism region.

Reflecting the identical magnitudes ]eg‘“)! for four h's,
these plane-waves should have equal intensities. Their
intensities in the prism are plotted in Fig. 4. The inset
shows that the intensity of each of the four plane-waves
is indeed 0.25 at'w = wp. Thus, the light of unit intensity
incident at 6 = 39.0° is equipartitioned by four diffracted
plane-wave lights of hy, hy, hy and hy, as is explicit in
the wave form at the I' point given by Eq. (1). Interest-
ingly, the value 0.25 is guaranteed by the equipartition,
however large the distance may be between the PC and
prism. Namely, as the distance b becomes larger and the
prism-PC coupling gets smaller, the signal profiles of the
OIM excitation become sharper reflecting the increase of
the induced lifetime of the OIM but the dip and peak
values remain fixed at the value 0.25,

Finally, the scaling property of Maxwell’s equations
shows that the present results may be applied to PCs of
arbitrary lattice constant. Also, the use of a monolayer
PC such as that examined in this paper is not essential.
Results for stacked PCs can be easily obtained by using
the layer doubling method?®, which produces essentially
the same results except for quantitative details.

In summary, we have shown that optically inactive
modes appearing at the I" point of the Brillouin zone can
be detectable by using a plane-polarized incident light of
oblique incidence in the ATR geometry.
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This paper presents the formula for the density of states (DOS) of photonic bands (PBs) in the
leaky region of the phase space of a slab-type photonic crystal, It is expressed by the eigenphase
shifts of the scattering matrix defined in terms of the complex transmission and refiection amplitudes
of plane-wave external incident light. The derivation is given for the general case where a number
of diffracted plane-wave lights are produced by the incident lights. The DOS profile calculated as
a function of frequency and wave vector enables us to obtain the dispersion relation and lifetime of
leaky PBs. The usefulness of the derived formula is demonstrated by applying it to the PB structure
of dielectric spheres, arrayed periodically to form a photonic crystal of finite thickness.

PACS numbers: 42.70.Qs

I. INTRODUCTION

Photonic crystals (PCs) are usually practically applied
by preparing a system of finite thickness. When a pho-
tonic band (PB) mode is leaky, i.e. when its momentum
and frequency lie within the light cone in phase space
(k,w), its finite lifetime decisively influences the capa-
bility of that mode in technological applications. Due
to the lack of translational symmetry in a PC of finite
thickness, the treatment of the lifetime caused by the
leakage of PB modes through the PC surfaces is not
at all straightforward. This is in clear contrast to an
ideal PC of infinite size, where we can formulate a band-
structure calculation as a standard eigenvalue problem
of real eigenvalues.! In calculating the lifetime of a leaky
PB mode, we must take account of its coupling with the
plane-wave states of the exterior region of a PC,2# which
by definition have a continuous spectrum of the density
of states (DOS). For electrons, the finite lifetime of an
electronic state resulting from its coupling with the other
states of a continuous spectrum has been given much at-
tention in the physics of metal, giving us some interesting
topics, such as the Kondo effect and heavy fermions in
Kondo lattices.* Although the basic mixing mechanisms
of electrons and photons are conceptually very similar,
one important point in the photonic problem in PCs is
the need to obtain the lifetime and dispersion relation of
PBs with a precision high enough to be integrated into a
device design.

The purpose of the present paper is to present a
method of calculating the DOS of leaky PBs of slab PCs,
from which the dispersion and lifetime of PBs are both
obtained precisely. The method is based on the calcu-
lation of a scattering matrix (S matrix) for a set of ex-
ternal lights incident simultaneously on the slab PC. We
diagonalize the § matrix to obtain the eigenphase shifts,
which determine the phase changes of the incident light

passing through or reflecting back from the system. Con-
ceptually, the scattering phase shift of an external probe
relative to its free-space propagation is a standard quan-
tity used to examine a target black box (for example, the
Friedel sum rule for the screening of an impurity poten-
tial by electron cloud®). The formula of the DOS of PBs
derived in this paper is expressed by the frequency deriva-
tive of the sum of the eigenphase shifts. The derivation
of the DOS formula is given for a general case, where an
arbitrary number of diffracted lights emerge simultane-
ously from a PC slab. Such a general treatment is im-
portant because the presence of diffraction characterizes
the light scattering from PCs. Although the method pro-
posed here to derive the DOS of PBs is applicable only to
the leaky modes, its usefulness is obvious in the practical
applications of PCs; any PB mode to be excited by an
external light or to be used as a source of emitted light
should be regarded as leaky in the sense that it is used
through the coupling to the exterior free space. Some ex-
amples are light transmission and reflection in slab PCs,®
extraction of laser light through PC surfaces,” and Smith-
Purcell radiation from a charge traveling parallel to PC
surfaces.®~1% The efficiency of these phenomena depends
critically on the lifetime of the leaky PBs involved. In
other words, precise estimation of their lifetime is a cru-
cial task in the physical and technological applications of
PBs.

In Sec. 2, we define the S matrix of a slab PC and
derive the eigenvalue equation for the PB modes set up
in it, taking into account their leakage. The formula
is obtained in Sec. 3 for the increment of DOS due to
the presence of a slab PC relative to that of free space
by counting the number of solutions of the eigenvalue
equation. An application of the derived formula is given
in Sec. 4 for a number of slab PCs of arrayed spheres. We
illustrate there how to calculate the dispersion relation
and lifetime of leaky PBs from the DOS profile. A brief



summary is given in Sec. 5.

II. SCATTERING MATRIX AND ITS
EIGENVALUES

A. Definition of scattering channels

We consider a slab PC extending in the z, y direction
with the origin of coordinates r = 0 taken at its center.
The periodicity of the slab is assumed to be perfect in
the lateral plane —oo < 2,y < co. We use a symbol h
to denote a two dimensional (2D) reciprocal lattice (RL)
point in the zy plane. The vector h specifies a diffracted
wave, reflected or transmitted. Let w be the frequency
and k the wave vector of an incident plane-wave light.
We make explicit the direction of propagation of a light
by assigning a superscript & to various quantities, + to
the quantities associated with the waves propagating to
the +2 side of the slab from the —z side. For example,
the inciden light of k* (k™) stands for the light which is
incident on the slab towards the +z (—z) side, i.e., the
light coming to the slab PC from below (above). Let k
be the component of the wave vector of k parallel to the
zy plane,

ky = (ka, ky) 1

The translational invariance in the lateral plane shows
that all the normal modes (actually they may be lifetime-
broadened) of this system are specified by the lateral
Wwave-vector components.

From the dispersion relation of light in free space,

k* = (ky, £L0) = (kg, ky, £T0) (2)

Pg=1/w2/c2—k12|. (3)

In the same way, the wave vector kf of diffracted light
in the region outside the PC is defined to be -

with

ki = (kj +h, £ 4)

PhEFh(w)= 1/w2/62—(kn+h)2. (5)

Only in the case where

with

w > cky +h, (6)

h diffracted light comes out of the PC as plane-wave light,
which is observable at an observation point far from the
PC. If Eq. (6) does not hold, the h-wave is evanescent
with a pure imaginary I',. We call the channel h of real
I'y, an open channel and h of imaginary T'has a closed
channel. For a fixed w, each h defines one diffraction
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FIG.1: T and R lights, both N in number, produced by an
incident ki, light.

channel. All the channels other than those with smaller
[h| are closed. The number of open channels at a given
w equals the number of h's that satisfy Eq. (6).

Let us suppose that we are in the frequency region
where there are N diffraction channels open (one is the
channel h = 0 ). The incident light k* coming from
below the slab then gives rise to N transmitted lights (T
lights) on the +2z side and N reflected lights (R lights)
on the —z side. Let

S S o )

be the wave vectors of the T lights and

* k}—;Na (8)

be those of the R lights. Let h; stand for the channel
h = 0, which is open for any w.

Suppose in an open channel b/ we have an incident
light of wave vector ki, which propagates towards the
slab from below. This wave, too, is diffracted to produce
1" and R lights, each composed of N waves, as shown in
Fig. 1. If the incident light has the form

ki, ki, -

a e (9)

with a specified complex vector amplitude aj;, it pro-
duces the 1" (R) lights of wave vector ki (kj), which are
expressed by

T el exp(iky 1),

Rifaf exp(iky - x). (10)
The 3 x 3 tensor TH‘, of transmission describes the
complex amplitude of the h-wave in the process of the

up-propagating ki, light being converted to the up-
propagating ki wave. The tensor Ry} stands for the



FIG. 2: Simultaneous incidence of N lights in the open chan-
nels from above and below the photonic crystal.

process of a ki, wave being reflected back as a k;, wave.
The element zy of, e.g., the tensor Thh,,

(TEE) oy

is equal to the complex amplitude of the = component of
the kit light, produced by a y-polarized ki, light, which is
mcudent on the PC with unit amplitude. For an incident
amplitude aﬁ,, the = component of the reflected light
with wave vector k;, is given by

(Rawal), = > (Rah),, (ah),- (11)
i=z,y,2

‘We will now consider the situation of the simultaneous
incidence of the N plane-waves. Let

+ et +
Kiys Kigo - Ky

- £q ¢?
[‘Pz+ - F; ]outﬁow—__?;z};

h’

Here P} and P; are the z components of the Poynting
vectors of the + waves and — waves. This quantity equals
the energy inflow of the incident lights, which has the
form

Ep 02

P =Pl igen =55
h’

inflow

(Ph/ IaI, |2 + Ph"la;'|2>

(14)
in the simultaneous incidence.

+—- =
Riwaw)

and
h Koy <o o1 iy

be the wave vectors of the incident lights from below
and above the PC. This situation is shown in Fig, 2.
This incidence condition still gives T and R lights, each
composed of N plane-waves. After the scattering by the
PC of all these incident lights, the amplitude of the ki
wave that appears on the +z side of the PC has the form

> (Tital + Riwan), (12)
hl

where the summation over h/ runs over open channels,

B. Flux conservation and § matrix

Here, we examine the conservation of the energy flow in
the scattering event described above. We enclose the slab
PC in a large box as shown in Flg 3. The z component
of the Poynting vector of the kh wave, i.e. the outflow
of energy towards the +z direction through the surface
of the box in the -z side, is

(&)%
wic) 2

times the absolute square of the electric field; the quan-
tity in the parenthes being the directional cosine of the
outgoing wave vector ki with the z axis. If we consider
the flux conservation for the Poynting vector averaged
over one unit cell of the 2D lattice of a lateral plane, the
interference terms between different h's disappear and
the sum of the energy flows of all the open channels pro-
vides the total outflow in the +=z direction. Similarly, we
can express the outflow in the —z direction below the
PC. The sum of the two then gives

2 2

£ ¢ o
+‘£_Zrhz (Rpway + Trpag)| - (13)

In expressing the flux conservation

PF—pr

['P+ 'P ] z T Yz ]outﬁow’ (15)

inflow — [

which should hold for arbitrary incident amplitudes {a]f,
and {ap, }, we introduce the matrix notation. First, 3NV x



FIG. 3: A box surrounding the slab PC to consider the flux
conservation between the incoming and outgoing lights.

3N matrices T+ are defined by

++ ++ ++ ++
Thlhl Thl ho Thlhs e Th]hN
THt it Tt T+t
T = | Thehy Thene Tt - Tiha (16)
++ ot ot
ThN}n ThNhg Thnha e ThNhN

in terms of a 3 x 3 tensor T introduced in Eq. (10).
Matrices T~~ and R*~ are similarly defined using the
tensors Ty and R} . Also, we introduce the 3N x
3N diagonal matrix I’ defined by

T, 0 0 ... O
0 th 0 ... 0
T = 0 0 th e 0 == I‘hn Jh,,hmr (17)

0 0 0 ...Thy
where the 3 x 3 matrix I'y,, is

z Y z

T Phn 0 0
Th,.=vy 0 Ty, 0 . (]_8)
z 0 0 Phn

Using four block matrices, T++, etc., and I', we intro-
duce the following 6N x 6N matrices S’ and T

~ T+t R+- .
So(FED)
and
= ( 1; 12 ) . (20)

They are both 6N x 6N matrices because one RL point
h has two channels (h+) and (h—~) and each of the two
channels has three degrees of freedom.

4

"The flux conservation Eq. (15) is then expressed simply
as

EllEE (21)

where the dagger stands for the hermitian conjugate. Fi.
nally, we define matrix S by

1

L q-
s=[F]"s[F] (22)
An explicit form of the (h+, h’~) block of § is

[§]+” =T ? R |y T~} 23
oy = Dh hw Dy 72, (23)
The (h—,h’+), (h+, h'+), and (h—, h’~) blocks of the
§ matrix are given by replacing R+~ of this equation
by R™+, T**, and T~", respectively, according to the
definition of §’ [Eq. (19)].

The flux conservation expressed by Eq. (21) is now
rewritten compactly as

St§=1. (24)

The matrix S is thus a 6N x 6V unitary matrix. There-
fore, it has 6N eigenvalues of the form 2" (4 =

1,2,..., 6N) with areal phase §¢). The matrix element
of S,

Sh'-{-:z;,h—yy

for example, is a complex scattering amplitude in the pro-
cess of the incident light of unit amplitude of (h,~—,y) [a
y-polarized light in the (h—) channel] exiting out of the
PC as an (b'/,+,z) light. We call () an eigenphase shift.
For N =1, i.e. when only a direct transmitted light and
a specularly reflected light of h = 0 are produced by an
incident light, we have six eigenphase shifts. We should
have four eigenphase shifts instead of six, because we
are dealing with the scattering of the incident transverse
waves that give rise to transverse outgoing waves after
the scattering.!! This implies that out of six eigenphase
shifts, two are meaningless. In the general case of N open
channels, having 6N eigenphase shifts from a 6N x 6N
matrix S, 2V out of 6N eigenphase shifts are meaning-
less; they appear due to the longitudinal component of
polarization.

Such irrelevant eigenphase shifts had better be elimi-
nated from a practical point of view. For this purpose,
the local coordinate systems defined in reference to each
of the open channels are convenient. For a wave of chan-
nel (h+) or (h—), we define the right-handed system
{123} using the three orthonormal vectors

(en® (1), en* (2), en® (3)), (25)

e (1) and ejf(2) being perpendicular to ki and e;t (3)
being parallel to it. Thus, component 3 stands for the



lengitudinal polarization of k: light and axis 2 is always
taken to be in the lateral plane, irrespective of h. For the
{123} coordinates of the (h—) channel, we choose three
orthonormal vectors e, (i) (¢ = 1, 2, 3) to be the mirror
images of ef (i). Note that the {123} system differs from
one channel to another. In this sense, we call the {123}
system a local coordinate system.

We may then rewrite the S matrix using the 1 and
2 components of each channel in place of z, y, 2 compo-
nents. The actual procedure is given in Appendix A. This
procedure removes all the longitudinal components, and
we are left with a 2x2 matrix, which is denoted as ’I‘hh,,
etc.. By arranging Thh,, Rh;,, etc., according to the
channel labels, we may construct a 4N x 4N S matrix.
Let us denote the matrix thus obtained as S

T++ R+-
(3 520). (26)

A\t s .
(V) = (o2 (0, o, @, 02, (), 08, @) (1), 00 (@), .y 0

The form of the transposed vector of v%) has been given
with (1) and (2) specifying two transverse components of
each channel. Note that S and hence A and v all
depend on k||. For simplicity, we use the symbols S, A
and v without adding the suffix k; to indicate the Ky
dependence.

The purpose of introducing &) for the eigenvalue A()
in Egs. (27) and (28) is to express the frequencies of
normal-modes and hence their DOS by using the eigen-

)

o) (1) = o (1), 9, (2) =09 (2),
vl (1) = o (1), 9, (2) = - (2),

Let us assign the index 5 = 1, 2, ---,2N to the even-
parity modes and j = 2N + 1, 2N + -+ ,4N to the
odd-parity modes. From now on, we shal] focus on the
even-parity modes.

Equations (27) and (28) imply the following. We let
the wave

L (4) o
villeti T = (%8 ) i (31)

’Uh
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where T++ are block matrices formed by the array of
2 X 2 matrix Thh, Hereafter, we call S the S matrix.

When S operates on a 4N-dimensional column vec-
tor composed of the incident amplitudes of open chan-
nels (expressed in the local coordinates), Eq. (12) shows
that the result is the transmitted and reflected ampli-
tudes produced by the simultaneous incidence in all the
open channels. The eigenvalues of S are obtained by the
equation

Sv) = \(@y), (27)

with
A0 = 289 (28)
for j =1, 2, ...,4N. Explicitly, the eigenvector v(?), a

4N-dimensional column vector, has the form

D@ _@). e

phase shifts. To proceed further, we assume the mirror
symmetry with respect to the zy plane. Most artificially
fabricated PCs belong to this category.

‘When the zy plane is a mitror plane (for the case of
no mirror symmetry, see the comment at the end of this
section), we can classify the modes by their parities of
this mirror reflection. Since S commutes with this mirror
operation, we have even- and odd-parity modes with the
property of the eigenvector given by

(I=1~N) for even-parity modes,

(I=1~N) for odd-parity modes. (30)

[

propagate to the PC from above in the channel (h—) and
another wave

(9)
1) dkF. vy (1 ikt
v ee - (vf}iv; ) b (32)

propagate from below in the channel (h+) [see Eq. (29)

for the definition of vﬂ and vg_)_] Suppose they are sent
to the PC simultaneously with the waves of the other
channels, specified, similarly by the jth eigenvector, as
shown in Fig. 2. Since their amplitudes are set so that as
a whole, they constitute the jth eigenvector v(%) of S, the
wave of any channel exits the PC after having acquired



only a common phase change 2¢). Thus, for stationary
wave propagation, the electric field of a channel h above
the slab turns out to be

v]{‘jieik;.r + eQid(j)vl(lJ:')_Cik:r - eié(j)vl(ljii)_ei(k[|+h)-p
x cos(T',z + 6U), (33)

where p = (z, y). The first term expresses the incident
light of Eq. (31) and the second is the light produced by
the PC. Similarly, we find below the slab

v}(f;‘)_eik;;-r + 621‘5(")‘}.%’126&;# - eiéu)v}({)ei(k"-l-h)p
x cos(~Tnz 4+ §0). (34)

The property of even-parity modes, v,(f ) = vﬁ’l (= v}(f))
was used in Eqgs. (33) and (34). Combining them, we find
that the field of the channel h outside the slab has the
form

(189 vl(if)ei(kn‘*h)'p cos(T'nl2] +69)). (35)

This expression, which has the form of a standing wave, is
valid both above and below the PC and suits our purpose
of determining the eigenvalues.

C. Boundary condition and frequencies of normal
modes

To obtain the eigenvalues, we put the PC slab symmet-
rically between two perfect mirrors, as shown in Fig. 4.
We place the mirrors at z = L. To determine the nor-
mal modes of the whole space of —L < z < +L, which
has the PC at the center, we impose the boundary con-
dition that the lateral components of the electric field
vanish at the mirrors.

To find a solution subject to this boundary condition,
we superpose Eq. (35) over j and h

hy 2N i Lo )
B(r)= Y Y e v@ ettty p oog(Ty 2] + 60))C,
h=h1 j=1

(36)
with unknown coefficients C;, which we determine so that
E(r) satisfies the boundary condition. The lateral com-
ponents are z and y, and they are obtained by returning

N
Z 49 1t v cos(TnL + §NC; =i
=1

for all h. Asthe determinant of the 2 x 2 matrix r; is not
zero, the column vector of this equation should vanish.

( T2 €8990)(1) cos(Tn L + 600)C;
z
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from the local coordinates to the fixed coordinates, which
are obtained by using the inverse of the matrix Rﬁ given
by Eq. (Al). Retaining a 2 x 2 block of matrix (RE)-1
for conversion from (1, 2) to (z, y), we denote it as ri.
The procedure of Appendix A then leads to

hy 2N

Ex(r 1540 N s .
(50§ Eapns

v h=h; j=1
x cos(Twlz| + 6UNCy,  (37)

the product r;l"vflj ) giving a column vector composed of

the z and y components of vf‘j). The right-hand side

mirror

mirror

FIG. 4: Two parallel mirrors placed at z = +L to consider the
Fabry-Perot normal modes. We compare the number of the
normal modes set up between the mirrors with and without
the slab PC placed at z =0. .

of this equation should vanish at the mirror surfaces at
z = +[. Since the plane-waves e!(kITh) P of different h’s
are linearly independent, it then follows that

Lan B . =0 38
ji,l 6‘6(’) v,(f)(2) cos(T'n L + 5(-7))03' (38)

[

Finally, the condition for any open channel h leads to



j=1 2

h; e"'s:: v}(lll)(l) cos(I', L + 6(1) e”(:)v}(j) (1) cos(Tp, L+ 63y ... Ci

by | &b ()eca(ln L4 60) S 00) cory, L s®) . | |

hy e*‘s(l)'vg)(l) cos(T'n, L + §(1)) e”mv}(‘?(l) cos(T'n, L + 6(2)) :

i o2 .

hy | €70 0)(2) cos(Tu, L +60) ™52 (2) cos(Ty, L + 6) ... .| =0 (39)

. 5

hy Con

[

This equation reveals that the index J of the eigenvalue  modes are obtained from
of § cannot, in general, be the index to specify the nor-
mal modes. Rather, combined effect of all J determines
the normal modes. If it were not for the sum over Jin detM = 0. (41)

Eq. (36), we would have obtained the eigenvalue equation
from Eq. (38)

cos(TpL + 69y =, (40)

for a single 7. This equation should be satisfied simulta-
neously for all h's by the eigenvalue of w. This is indeed
impossible, for a solution for w of Eq. (40) of a particu-
ler h depends on that h and it cannot in general satisfy
Eq. (40) for the other open channels.

We have so far concentrated on the even-parity solu-
tions, constructed by using the even-parity eigenphase
shifts j = 1, 2, ..., 2N. For the odd-parity eigenphase
shifts j = 2N41, 2N +2, ..., 4N, an analysis similar to
the above leads to an odd-parity secular equation, which
is given by Eq. (39) with the cosines all replaced by sines.

When the mirror symmetry is absent in the slab, a
superposition of even and odd modes constitutes a solu-
tion. In this case, the phase space of j = 1,2, ...,2N
and that of j = 2N+ 1,2N +2, ..., 4N no longer de-
couple. Extension to this less symmetric case is similarly
carried out. Our remaining task is to count the number
of solutions of Eq. (39) in a given frequency range,

ITII. CHANGE OF DENSITY OF STATES

Let us denote the matrix appearing in Eq. (39) of the
even-parity modes as M. The eigenvalues for the normal

We can eliminate from M the factors that are irrelevant
in determining the eigenvalues. First, we divide each of
the columns by

8 gis® (42)
, Y een
We further eliminate the factor cosI',L from the hth
rows and cos 6) from the jth column of the matrix M,
making use of

cos (FhL + J(j)) = cosI'nLcos 691 ~ tan Ty, L tan 6]

in Eq. (39). These factors can be removed because they
are independent either of the phase shifts §(1), 6, .. or
the size L of the boundary condition: the eigenvalues w
must depend on them both in view of the induced shifts of
frequency from the free-space values. By this procedure
we are left with

det M =0 — det M’ =0, (43)

where



7’}(111)( )(1 — tanT'y,, Ltan (1) (2)(1)(1 ~tanTy, L tan §(2))
vl(jll)(Z)( —tanTy, Ltan sy v 21)(2)(1—ta111"hlLta,n6(2))
vﬁj(l)( — tan Ty, L tan 6) (2)(1)(1—-tan1‘h2Ltan5(2))
M'= vﬁ} (2)(1 ~ tan Ty, L tan §(1)) vhz )(2)(1 - tan Ty, L tan 5®) (44)

The poles of the factors
tanTh, L, tanT'y, L, . ..

of M’ or the solutions of cosT'y L = 0 in the complex w
plane, give even-parity eigenvalues of photons in the free
space bounded by the mirrors. Therefore, we conclude
that the eigenvalues perturbed by the presence of the PC
are given by the zeros of det M/, while the unperturbed
- eigenvalues in the absence of the PC are given by the
poles of detM’. Thus, the increment of the number of
the normal modes due to the presence of the slab PCin a
frequency interval is given by the number of poles therein
minus the number of zeros.

From the theory of complex function (see Ref. 12, for
example), the increment of the number of modes of wave
vector ky in the frequency interval [wg, w], denoted as
ANy (wo;w), is given by

L
ANk"(wo;w)=-11m o de“M(‘”*“)] (45)

det M/(wo + ie) |
where Im [-- -] stands for the imaginary part of [---] and
+e (€= +0) shows that the logarithms are evaluated on

the upper edge of the branch cut on the real w axis. The
change of DOS at the frequency w, denoted by Apy, (),

is obtained by differentiating AN, iy (wo; w) with respect
to w.

It seems difficult to reduce det M’ further to obtain
Apk" (w) because the dependences on the column index

h and row index j are both present in the matrix ele-
ments of Eq. (44). In the special limit L — oo, however,
we can proceed further to arrive at the final analytical
expression. In this limit, we find (Appendix B)

tan 'y (w +ie)L — 1 (L — o0). (46)
Thus, from Eq. (44) we find

det M’ = det

x [J(1—itans®).  (47)

J=1

[

The first factor of the right-hand side is unity and can
be removed. This property of the eigenvectors comes
from the unitarity of the S matrix and the reality of
the eigenvectors, the latter being guaranteed by the time
reversal symmetry of the S matrix. Since

N
- Z 500, (48)

=1

v 2N
Im [log H(l - itané(j))} = Zlm [log(l —itanéw)]

i

we find

A/‘)k" (w)(EVEn) =

d 1 cad |
TE e s o —_ (4
dwﬂ_Im logH(l itan¥’)

g=1

d
E(:;ANk" (wo; w)

= = Z = o0 (49)

for-even-parity PBs. This is our final expression for the
increment of DOS of even-parity PBs. We have assigned
the superscript ’even’ to emphasize that. The expression
for the odd-parity PBs is similar except that the odd-
parity eigenphase shifts 6 (j = 2N+1, 2N+2, ..., 4N)
are used:

4N

At

1
- e (50)

By ()04 = 2
F=2N+1

Altogether, we find

Ap, (W) = Ko () + Apy, ()

Z dg(a) (51)

ie. the w-derivative of the sum of the 4N eigenphase
shifts gives the total change of DOS. This expression of
the total increment is shown to be valid in the absence
of the mirror symmetry in the zy plane of the PC.



IV. APPLICATION TO PHOTONIC CRYSTALS
OF SPHERES ARRAYED IN A SQUARE
LATTICE AND A SIMPLE CUBIC LATTICE

In this section, we apply the above formula to slab PCs
of arrayed spheres. We examine 2D systems of dielec-
tric spheres arrayed periodically. Based on Egs. (49) and
(50), we calculate the DOS for monolayer and stacked
layer model PCs. We choose n, the refractive index of
spheres, to be 1.44, having in mind polytetrafluoroethy-
lene (PTFE)*? spheres whose diameter is in the millime-
ter range, and let the ratio of radius a of spheres to lattice
constant d be a/d = 0.5, for the system of spheres just
in contact in the square lattice. These parameters cor-
respond to the PCs, which were actually prepared and
used to examine their optical properties experimentally
in the millimeter wavelength region of light.!4

Light scattering from a slab of arrayed dielec-
tric spheres is treated precisely by the vector KKR.
formalism'®1" and layer KKR formalism,®!7 which give
us high-quality numerical data for the I’ and R lights and
hence the § matrix defined by Eq. (26) for a prescribed
ky value. All the eigenphase shifts are then obtained
by numerically diagonalizing the S matrix. We empha-
size that Egs. (49) and (50) are general, not limited to
systems of spheres, if only the amplitudes of T and R
lights of all the open channels are calculated. We assume
the square lattice of spheres in the lateral plane and the
simple cubic lattice when the layers are stacked.

First we study the monolayer system. This system
was examined both theoretically and experimentally by
Ohtaka, et al.,'* Kondo, et al.?® and Yano, et al..¥ The-
oretical analysis was also given for the DOS in the fre-
quency region of no diffraction. In what follows, we inves-
tigate the increment of DOS for the lateral wave vector
kyd/2m = (0.3, 0), which was chosen arbitrarily.

Pigure 5 depicts 2D RL points in the kyk, plane, each
specified by the point (27/d)(m, ) of the square lattice.
A circle of radius w is also shown with its center placed
at kyd/2r = (-0.3,0). In the figure, circles of three
different radii are drawn. From Eq. (5), the channel h
opens when the radius increases with w to cross the point
h. The number of the RL points inside the circle is equal
to the number of open channels at w.

For an incident light of frequency w and wave vector
ky, we can imagine an Ewald sphere of radius w in the
(kgkyk,) space, whose center is placed at

(—kp, =y flw/er 1),
The vector drawn from this center to the origin k = 0
represents the incident wave vector k*. A circle of Fig. 5
may also be viewed as a locus of this Ewald sphere cut

by the plane &k, = —, /(w/c)? —kﬁ, where the center is
lying; in this picture, the lattice points of Fig. 5 are the

horizontal view of the 2D reciprocal lattice rods arrayed
parallel to z.

kyd
27
(~0.3,0 1,2
0.70 [@.
MY 1.04 kd
AW (1,0) 2
A
1,-1)
1.22

=3 —z)Tc-l ,~2) T(o, 2) [(,-)

FIG. 5: Circles of radius w and 2D reciprocal lattices (RL) in
the kzk, plane. The center of the circles shown by the open
square is taken at (kz, ky)(d/27) = (—0.3, 0), corresponding
to the incident condition kyd/27 = (0.3, 0) under study. The
RL points of the square lattice are shown by open and solid
points, Three circles are given to show the critical situations
of channe] opening, with the touching RL point of each case
indicated by the filled lattice point.

As w increases in Fig. 5 with kyd/27 fixed at 0.3, the
circle becomes larger, touching first the point hd/2r =
(=1, 0) at wd/2me = 0.70, when the diffracted T light of
k" and R light of k;, start to appear in channel hd/2r =
(=1, 0). The frequency wd/2mc = 1.044 is for the second
contact, when two additional channels, hd/2r = (0, 1)
and (0, —1), open. The third (fourth) contact takes place
at wd/2me = 1.221 (1.30). Figure 6 shows N, the number
of open channels, in the (kg, w) plane for the incident
light of ky = (kgz, 0). The vertical dashed line corre-
sponds to the case (kg, ky)(d/2m) = (0.3,0), presented
in PFig. 5.

In the frequency region 0 < wd/27c < 0.70, there is
no diffraction (N = 1) for (ks, ky)(d/27) = (0.3,0). We
have one plane-wave T" light of a complex amplitude Tho
and one R light of a complex amplitude Rpg, representing
directly transmitted light and specularly reflected light.
The § matrix is 4 x 4, yielding four eigenphase shifts by
diagonalization. They are p-polarized and s-polarized
eigenmodes, both classified further into even and odd
parities of the mirror reflection in the zy plane. The
p and s modes decouple because our choice of k) to be
directed along the A axis of 2D Brillouin zone guaran-
tees the mirror symmetry in the zz plane (the p mode
is even and the s mode is odd). Analysis of Ref. 11
(Eqs. (A12) and (A15) thereof) proved that the sum of
the four eigenphase shifts is equal to the sum of the phase
of Ty of p-polarised incident light and that of s-polarized
incident light for the frequency range of N = 1. Namely,
the phase of Tyg of the p-polarized light is equal to the
sum of (p-+) and (p—) eigenphase shifts. The same holds
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FIG. 6: Number of open 2D reciprocal lattice points as func-
tions of w and ks, in the I-X direction (ky = 0). The number
N of the open RL points is given in parenthesis in each re-
gion, Three threshold values for wd/2mc of channel opening
are given for the case of kzd/2m = 0.3, corresponding to the
three circles of Fig. 5.

true for T of s-polarized light. Therefore, the DOS for-
mula defined in Ref. 11 is reproduced by the special case
N =1 of the present general theory.

In the frequency region wd/2mc > 0.70, we enter the
new regime of V > 2. We compare the calculated trans-
mittance |Too|? of the direct light with the DOS formula.
We restrict ourselves to the response of the s-polarized
incident light, because the discussion of the p incidence
is similar.

Let us first examine what the previous DOS formula,
valid only for N = 1, yields in the case of N > 2, Namely,
we plot the phase of Ty of s light as our DOS. Figure 7(a)
shows the calculated |2{y|? for the s-light, and Fig. 7(b)
shows the phase of the s-light Tpo. Note that we can
treat scalar Ipp in obtaining the phase because the po-
larization of the directly transmitted light is the same
as the incident light for k) along the A axis. There is
perfect coincidence in the positions of the fine structures
in Figs. 7(a) and 7(b). Consequently, the DOS formula
valid for N = 1 still works in the case V > 2 for sim-
ply determining the existence of PBs. However, we note
that a correct DOS change due to the presence of a PB
mode should be one, i.e. the sum of the phase shifts
should change by 7, whenever w increases to cross a PB
‘mode.!! In Fig. 7(b), we see that the change of the phase
shift at any fine structure is very short of . (For com-
parison, in Fig. 8, we plot the situation seen in the region
of N = 1 to show that the procedure indeed works there.)
Neither the DOS of PBs nor the leakage-induced lifetime
estimated from Fig. 7(b) is hardly reliable. For exam-
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ple, peaks and humps of the curves of Fig. 7(b) produce
singular line-shapes in the DOS profile when differenti-
ated according to Eqs. (49) and (50), quite different from
Lorentzian shapes expected from the general theory of
lifetime broadening. To summarize, the straightforward
extension of the DOS formula of N =1 to the new re-
gion of N > 2 does not give correct information. This
incorrect procedure using the previous DOS formula does
not take proper account of diffracted waves. So we apply
the present formula defined by Eqgs. (49) and (50) to this
condition.
Figure 7(c) depicts the sum of the eigenphase shifts

4N
Z §0) (52)
j=1

of Eq. (51), which we claim to be a correct formula for
the increment of DOS. We can easily classify by inspec-
tion the whole set of eigenphase shifts into the p- and
s-polarized modes by the numerically calculated eigen-
vectors of 8. We retain in (c) only the phase shifts of
s-polarized modes to obtain the DOS of s-active PBs,
which is to be compared with the s transmittance |Tho|?
given in (a). We display the sum of the phase shifts by
dividing it into = parities of the mirror symmetry with
respect to the zy plane. Panel (¢) obviously confirms
that the sum of the eigenphase shifts corrects the insuffi-
cient magnitudes of the jumps at the excited PB modes
shown in Fig. 7(b).

Figure 7(d) shows its w-derivative, the DOS of the PBs
of (kz, ky)(d/2m) = (0.3, 0). The DOS profile consists of
Lorentzian peaks, as it should, whose full width at half
maximum (FWHM) gives the inverse of the lifetime of the
PBs. Any optical response of a PC is related more or less
to its DOS profile and generally has a resonant enhance-
ment accompanying a PB excitation. For example, the
FWHM of excited PB modes primarily determines the
emission spectrum from an atom in a PC. Three DOS
peaks around wd/27c ~ 1.3 of Fig. 7(d) provide an esti-
mate FWHM = Awd/2mc ~ 0.01, leading to an estimate
of @ = w/Aw =~ 100. The kinks seen at the frequen-
cies of channel opening in Fig. 7(d) are interesting. The
singular behavior of the spectrum associated with the
channel opening has been historically named the Wood
anomaly?® and was analyzed in detail in quantum me-
chanics text book.?! Various kinds of singularities, ap-
pearing often as sharp kinks but sometimes as dips or
inflection points, are known to arise in the transmission
spectrum. See Ref. 22 for the variety of singularities in
the case of a PC. In Fig. 7(d), we have plotted the in-
crement of DOS due to the presence of a slab PC and
denoted it simply as DOS. Actually, therefore, a nega-
tive DOS of Fig. 7(d) just above the channel opening
stands for a decrease of DOS. We believe the negative in-
crement of DOS to be a genuine feature associated with
Wood anomalies.

Next, we turn to the systems composed of stacked lay-
ers of arrayed PTFE spheres. Let N; be the number of
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FIG. 7: Frequency dependence in the region 1.2 < wd/2mc <

1.4 of transmittance and increment of DOS of s-polarized ‘

light with (kz, ky)(d/27) = (0.3, 0). The calculation is made
for a monolayer PC consisting of a square array of dielectric
spheres, whose parameters are given in the text. Panel (a)
shows the transmittance of the direct light (h = 0), defined
by |4bo|®. Two arrows indicate the threshold frequencies for
the change of the number NV of open channels, one from the
case of N =4 to N = 6 at wd/2mc = 1.22 and the other from
N =6t N =17 at wd/2me = 1.30. See Fig. 5 for the val-
ues of the threshold frequency. Panel (b) shows the phase of
the complex amplitude derived from ‘' /|1bq], which would
yield a correct sum of the eigenphase shifts when N = 1.
Panel (c) shows the sum of the eigenphase shifts derived from
the formula (51). Only the eigenphase shifts of s-polarized
modes are retained. Panel (d) gives the correct DOS of the
s-polarized PBs, which is defined by Eq. (51). See the text
for the cause of the sharp decreases of DOS seen just at the
channel openings. '

stacked layers. For this case, too, a theoretical analysis
of DOS was given previously in the region of N = 1.8
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FIG. 8: Typical example of an abrupt phase change of the
complex transmission amplitude. The phase obtained from
To0/1Too| is plotted in the frequency region of N = 1. The
light is s-polarized with (kz, ky)(d/27) = (0.3, 0), incident on
the monolayer PC used in Fig. 7. The change of the phase is
just ar.

In the bilayer system (N = 2), the monolayer photonic-
bands of each of the two layers, which will be doubly de-
generate if they are sufficiently far apart, are coupled to
produce bonding and antibonding PB states.2324 There-
fore, as N, increases, the band population increases in
a given frequency range. Figure 9 shows DOS obtained
from our formulae [Eqgs. (49) and (50)] for several N; in
the same frequency range and array of spheres as above.
Except in the regions of channel opening, we can clearly
see the bonding and antibonding splitting, when N, be-
comes twice as large. The resonant optical response of
a PB becomes sharper and sharper.in accordance with
the sharpening of DOS peaks as N, increases. We can
see that the DOS peaks for N, = 4 have their Q values
several times larger than those in the system of N, = 1,
estimated above to be about 100. In this way, we can
quantitatively discuss the bonding and antibonding split-
ting of lifetime-broadened degenerate levels through the
corréct DOS formula and can calculate the Q values of
the split levels as functions of N;. These features are ex-
tensions of what was found previously in the frequency
region of no diffraction.2s

The plot of the positions of the DOS peaks as func-
tions of ky, gives the band structure of leaky PBs. Figure
10(a) illustrates the band structure for k) = (ks, 0), i.e.
along the I-X direction of the monolayer PC examined in
Fig. 7. We show only the band structure of s-active PBs,
derived from the s-active eigenphase shifts. The empty
(filled) circles correspond to the modes with even (+)
(odd (-)) parity with respect to the zy mirror symme-
try. The general features of the calculated band structure
are understandable using the band structure of an empty
lattice. The similarity to an empty lattice stems from the
fact that we have used a small refractive index n = 1.44
in the analysis. For a PC of larger n, no problem arises
except for a slower convergence in the calculation of the
matrix S, which, too, is overcome by the KKR formula-
tion used here,
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FIG. 9: Increment of DOS of a slab PC of stacked 2D lay-
ers as a function of frequency. N, is the mimber of stacked
layers, The result is given for PBs of s polarization with
(kzy ky)(d/2m) = (0.3,0). Panel (a) is a reproduction of
Fig. 7(d) and shows the DOS of a monolayer PC (N, = 1).
The solid (dashed) curve shows the even-parity (odd-parity)
PBs. The Q values of PBs improve, or their lifetimes be-
come longer and the density of the peaks increases, when N,
increases. '

In the band structure of Fig. 10(a), there are some
bands have disconnected parts, which are too broad
to produce a distinet peak there. Figure 10(b) illus-
trates this feature in the frequency region enclosed by
the square in Fig. 10(a). The DOS profiles for even-
parity (4) modes with several values of k, are given
in Fig. 10(b), which shows that the lifetime of a leaky
PB depends both on the wave vector k; and the band
‘index.2%! As k, becomes larger, the two peaks ap-
proach and at k, = 0.13 they coalesce into a single broad
peak, shown by the thick solid line. A further increase in
kg, however, resolves two modes again (e.g., the case of
kgd/2m = 0.16). Near k,d/2m = 0.13, we cannot follow
the two modes precisely.
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FIG. 10: Band structure and the wave-vector dependence of
the DOS profile (s-polarized PBs). Panel (a) shows the band
structure of a 2D PC (a monolayer array of spheres) along the
I'-X axis in the 2D Brillouin zone. The parameters for the
PC are the same as used above. The solid circles correspond
to the even-parity modes of s polarization, while the dotted
circles represent the odd-parity modes of s polarization. A
vertical line is drawn at kzd/27 = 0.3, corresponding to the
case examined in Fig. 7. Panel (b) shows how the width of
DOS peak depends on the band index and wave vector. The
phase space enclosed by the rectangle in (a) is examined in

(b).

V. SUMMARY

This paper presents a formula for the DOS of leaky
PBs. The DOS of PBs in the leaky region of the phase
space (w,k)) is a key factor that determines the magni-
tude of the resonant enhancement of optical signals from
PCs, such as the emission cross-section of photons from
an imbedded atom, for example.?6-30 In the DOS calcula-
tion, a complication arises from the need to take account
of the presence of energy-carrying diffraction channels.
We have shown that the DOS of leaky PBs of slab PCs
is obtained from the complex transmission and reflection
amplitudes of all the lights incident in the open chan-



nels and that it is expressed by the eigenphase shifts ob-
tained by diagonalizing the § matrix defined using all the
diffracted lights.

Based on the derived formula, we analyzed the trans-
mittance of incident light for PCs of arrayed spheres and
demonstrated that the extended definition of the scat-
tering matrix given in this paper is very crucial in the
frequency range where the diffraction channels are open.
To show the usefulness of the formula, we have calculated
the dispersion relations and lifetime of PBs from the DOS
profile obtained for a model PC of arrayed spheres of fi-
nite thickness.

Since the formula requires only the complex ampli-
tudes of the reflected and transmitted waves, its applica-
bility is quite general and not limited to PCs of spheres.
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APPENDIX A: CHANGE BETWEEN THE
LOCAL COORDINATES AND FIXED
COORDINATES

Using the polar angles, 6y, ¢n of the wave vector
ky, defined with respect to the fixed coordinate system
{zyz}, The {xyz} components are transformed to those
of the local coordinates {123} of a light of wave vectors
kif by a 3 x 3 transformation matrix

Rl Ri}’ R}z
Rﬁz R Y R%z
RE B RE
cosfhcospn  cosfysing, TFsin On
Al)

RE =

Fsinby coSs oy 0
£ sin O, cos gy, % sin 8y, sin Yn cosfy

The rule for transforming the tensor T{, from fixed to

local coordinates is then
R}l‘m Rly R}l}z

R]Z:c R Y R‘21z
R{* RY Ri
z\ b
THh THF THY\ (Rl R R8s
x | LEE L at ) Rl RY | . (A2)

R Y
vy Y ! !
THt Tht 5t \Rl b Rl

t
T — RITHY (RE)' =

This procedure causes the matrix elements related to the
local coordinate 3 (i.e. third row or third column of the
right-hand side) to vanish naturally. In this way, we are
left with a 2x2 matrix denoted T%. By arranging T4,
etc., according to the channel labels, we may construct
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a 4N x 4N § matrix. This is the § matrix S defined by
Eq. (26).

When we impose the boundary condition at the bound-
ary mirrors on the = and y components of the electric field
of channel h, we have to return from the local coordinates
{128} to the {zyz} system. For the components 1 and
2 of the jth eigenvector v,(f ) introduced in Eqgs. (27) and
(29), this is accomplished by

e ) _ ety [ @)
. = (r X
( o), (i) (v:(:’))z ,
where the 2 x 2 transformation matrix (rif)* is the 2 x 2
upper left block of

(A3)

(z,1) (,2) (z,3)
(Ra™)™! = (Ryt)t = (Ey 1) (:,3) (y,S)), (A4)

where Rit is defined by (Al) and (z, 3), for example, is
the direction cosine between the x and 3 axes. The (z, )

component of vg ) is obtained compactly by

(5)=5(3).

namely the product r,f v,(f ) gives the = and y components
of vgf ). This product notation is used in Eq. (37).

(A5)

APPENDIX B: REDUCTION OF THE MATRIX
M!

In Eq. (5) we note

Pu(w+i¢) = /[(w+ie)/c]? — (kg + b2
= (/9 ~ (ke + h)?2 +ie

= Iy +ie (B1)
with an infinitesimal € (¢ > 0), and hence
eil‘h(w-i-ie')L — 6iI‘hL~—eL‘ (BZ)
Thus
g _ _.Xp (Tl —eL) — exp (—iTyL + eL)
tonTn(w+ie) L= ~i exp (IlnL — L) + exp (—iTnL + L)’
' (B3)
In the limit L — oo, we obtain
tanlp(w+1ie)L —i (L — o). (B4)

Therefore, the h dependence in the (b, j) matrix element
1- tan Ty (w +i¢’) L tan 6 (B5)

of the matrix M’ disappears and we obtain Eq. (47).
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Abstract
Based on the numerical finding of a two-dimensional photonic material which
has large complete photonic gaps and structural uniformity, we propose a
photonic plate which can be used to design arbitrarily shaped photonic
mirrors and microcavities on a wavelength scale. This.}v)aper describés a
wavelength-sized parabolic mirror that can collect light very efficiently
without loss. In addition, we present circular microcavities of tunable

resonance frequencies with high values of quality factor Q.

PACS numbers: 71.55.Jv, 42.70.Qs, 42.25.Dd



§1 INTRODUCTION

Photonic crystals (PhCs) are artificial photonic materials whose periodic
structure engenders photonic gaps (PGs), ranges of frequencies at which light
cannot propagate within the PhCs. Using these PGs, PhCs can be used to
confine or guide light within the wavelength scale. Their increased use is
anticipated for wide technological applications in the near future.'-3 One
example is an optical waveguide, which is ordinarily formed by removing
periodic elements along a certain line. Consequently, its structure should be
commensurate with the periodicity of the host PhC. This characteristic is
different from the conventional waveguides of microwaves, which are made of
metal plates. Metals can reflect microwaves of arbitrary incidence angle
without loss. Therefore, optical materials that have both complete PG and
structural flexibility in the wavelength scale are necessary to create such an
arbitrarily shaped waveguide in the optical region.

We recently proposed a two-dimensional photonic material: uniformly
distributed photonic scatterers (UDPS).4 UDPS are formed by randomly
placing parallel dielectric rods under the condition that distance | R~Bj|
between the centers of #th and jth rods, B; and R}, is larger than a certain
value Dpmin, ie., |Ri~Fj|> Dmin. When rods have sufficient density and
dielectric contrast, UDPS have large complete PG. Our study also
demonstrated the highly efficient transmission of light in arbitrarily shaped
waveguides that is comparable with wavelength 1. Such efficiency is
achieved by combining UDPS and smooth side walls made of periodic rods.
The present study shows that combined use of UDPS and side walls, which
we call a UDPS plate, enables us to design two-dimensional curved mirrors
and microcavities of arbitrary shape whose size can be reduced to the

wavelength order.



§2 UDPS PLATES

Figure 1(a) shows an example of UDPS plates. Periodic rods of radius a
and dielectric constant &=12 surround a rectangular region of | x| <802 and
—26.67a<y<0. Each rod is reiaresented by a white circle. Then, we fill the
surrounded region with UDPS. We generate more than one million random
sets of rod positions within the rectangular region and place rods successively
so that the distances between a rod and those already placed are always
greater than D, This procedure yields extremely uniform and dense rod
distribution if the number of randomly generated rod positions is sufficiently
large. In this study, we commonly choose Dpi=4a. Transmittance T is
obtained for plane wave incidence of TM or TE (& or H// rod axis) mode from
the positive y axis by calculating the energy flow at the line L using the
multiple scattering method.5 o

Average transmittances over five rod conﬁguratior;s including Fig. 1(a)
are shown by blue (TM) and red (TE) lines in Fig. 1(c) as a function of size
parameter 2= 2na/A. Adopting the gap condition as | 77 < 0.01, we find the
PG of TM mode as 0.362<¢2<0.508 with average penetration depth of about
2a. The PG of TE mode is 0.732<¢2<0.782. Figure 1(a) shows distributions of
total electric field intensity and energy flow (white arrows) for TM mode
incidence at £20.40 (1= 15.714). One can see the yellow-red region of large
intensity lying parallel to the upper side wall, Its periodicity equals the
wavelength. Therefore, the UDPS plate in Fig. 1(a) can be regarded as an
ideal flat mirror without loss. Detailed calculation reveals that we can
effectively replace this UDPS plate with a perfectly reflecting flat mirror at
J=0.7a.

To illustrate the importance of the upper side wall, Fig. 1(b) shows an
example of incomplete UDPS plates in which the upper side wall is removed

from Fig. 1(a) and UDPS are filled in. Average transmittance of TM mode



over five cases including Fig. 1(b) is shown in Fig. 1(c) by the green line. As
shown, the gap position and depth are almost identical to the blue line,
indicating that gap structure is independent of the presence of the upper side
wall. However, the reflected electric field differs completely. We show in Fig.
1(b) the distributions of total electric field intensity and energy flow at
£2=0.40. The irregular presence of large intensity regions is shown by the
yellow or red dots in front of incomplete UDPS plate. This distribution
demonstrates that the smoothness of side walls is an essential prerequisite
for the UDPS plate to work as an ideal mirror. A recent independent report
has indicated the importance of side walls for efficient transmission in the

waveguide of PhCs.8

§3 UDPS MICRO MIRRORS AND CAVITIES

Figure 1 illustrates the simple procedure for producing a UDPS plate of
érbitrary shape: first decide the side wall shape; then fill the surrounding
region with UDPS. Thereby, if we place periodic rods along a curve, we can
produce a curved mirror of arbitrary shape and dimension. Figure 2(a) shows
such an example in which the upper side wall consists of equidistant rods
(period=44) on the parabola y=x2/(47) with £16.672. Here, we relaxed the
UDPS condition Dpj»<| BrR;| at right and left corners of upper side walls for
simplicity of construction. Figure 2(b) shows the TM mode transmittance of
plane wave incidence from positive yaxis. Obviously, we observe the same PG
with that in Fig. 1(c). Distribution of scattered electric field intensity at
¢2=0.45 is also plotted in Fig. 2(a). The incident plane wave from positive y
axis is collected reasonably well at the focal point (x=0, y=£) of a parabolic
mirror in the geometrical optics. This fact indicates that the UDPS plate in
Fig. 2(a) can be regarded as an almost ideal parabolic mirror.

Structural flexibility of UDPS plate allows formation of a



two-dimensional microcavity? of arbitrary shape with great ease. Figures
3(a)-3(c) show circular cavities of inner and outer radius By and R,y between
which we fill the UDPS. The red line in Fig. 3(d) is a plot of normalized
electromagnetic energy U stored within the cavity in Fig. 3(a) or 3(b) for
plane wave incidence of TM mode from the positive y axis. Sharp peaks
appear at (2=0.40586, 0.40702, 0.43054, 0.48318, and 0.48580 within PG.
These states are resonance states of the cavity. Corresponding values of
quality factor @ at these peaks are 1.49 x 107, 1.37 x 107, 2.56 x 107, 2.95 x
108, and 3.77 x 108, | '

Figures 3(a) and 3(b) also show distributions of total electric field
intensity and energy flow at (2=0.40586 and 0.43054, respectively. The
intensity distribution inside the cavity, shown in Fig. 3(a), has four-fold
symmetry indicating that this peak corresponds to the state with azimuthal
quantum number =2, whereas that in Fig. 3(b) represents the state with
m=0. The peak at 2=0.40702 also shows four-fold symmetry, but its
distribution is rotated by n/4 from that in Fig. 3(a). This rotation is-also
evident for peaks at (2=0.48318 and 0.48580, which represent the resonance
states with m=3. We can also observe smooth energy flow around the outer
circle. This flow smoothness indicates that the outer side wall plays the role
| of a circular mirror.

Resonance frequencies of the present circular cavity can be obtained
approximately from the condition that the electric field vanishes at the inner -
boundary R=Rp,. Corresponding. size ‘Parameters are given in terms of the
zeroes of the Bessel function Jn(jnd=0 (20, 221) as Qu=jmial Ry For
£;=13.33a, we have non-degenerate level £2r=0,1=2=0.4140, and two doubly
degenerate levels (2u=24=1=0.3852 and Om=3,4=1=0.4785 within PG. These
values concur well with those in Fig. 3(d). To achieve better agreement, we

simply reduce the cavity radius R, by the order of rod radius a, which is



consistent with the position of perfectly reflecting flat mirror in Fig. 1(a). The
lift of dégeneracy is caused by local non-uniformity of rod distribution in
UDPS. The resonant field has exponentially decaying amplitude within the
UDPS region. Because the field distributions at 2=0.40586 and 0.40702
differ by n/4 rotation, they are influenced by the difference of the rod
distribution within UDPS, as shown in Fig. 3(a).

From a practical point of view, it is desirable to use single mode cavity
with, say, m=0 and 4=1 mode. Such a single mode cavity can be designed
easily using a UDPS cavity. If this mode is chosen to appear in the middle of
PG at, e.g., £2=0.425, the cavity radius is determined as R;=5.664a because
Jm=0,4=1=2.405 and Ri=jmial2mr. A cavity of this size is plotted in Fig. 3(c),
where UDPS plate thickness (Rous i) is identical to that of Figs. 3(a) and
3(b). Corresponding normalized internal energy is shown by the green line in
Fig. 3(d) for plane wave inéidence of TM mode from positive y axis. As shown
in that figure, only a single sharp peak appears at (2=0.45527 with ¢)=8.30 %
108, shifted 7 % from the predicted position. We also show in Fig. 3(c) the
corresponding distributions of total electric field intensity and energy flow.

We will briefly discuss the origin of PGs in UDPS. PGs are formed either
by coherent interference of scattered waves from periodic rods like Bragg
diffraction in X-rays or by bonding and anti-bonding states of Mie resonance
within each rod that are similar to electronic bandgaps in semiconductors.
The latter are formed by local interaction. Therefore, they are not as easily
smeared out by fluctuations in position and radius of rods as in the former
case. Therefore, we conclude that PGs of UDPS result from interaction of Mie
resonance states. However, an important difference exists between electrons
and photons: resonance wavefunctions of photons are not localized
exponentially. Rather, they decay in inverse power and have a long-range

nature. This long-range nature of wavefunctions is responsible for formation



of PGs in UDPS which do not require even a short-range order. Consequently;
UDPS can acquire tremendous structural flexibility that is free from either

long-range or short-range ordering.

§4 SUMMARY

We have proposed a two-dimensional photonic material called UDPS plate.
It is a combination of smooth side walls and UDPS filling material. UDPS
plate allows the design of arbitrarily curved mirrors of wavelength size and
circular microcavity of requested resonance frequencies. Because the UDPS
cavity shape is not limited to that of a circle, UDPS plate provides an
intriguing research field of various microcavities of complicated shapes.
Détajled discussion of various characteristics of UDPS plates will be

undertaken in future studies.
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Fig. 1: (a), (b) Examples of UPDS plates. In (a), dielectric rods of radius a and
£=12 are arranged periodically within the vacuum as side walls along the
rectangular region of | x| <802 and -26.67a<y<0, whereas the upper side wall
is removed in (b). Their periods are 4.02 and 4.4424 along the x and y axes,
respectively. The rectangle interior is filled with rods satisfying the condition
that rod distance be larger than Dpim=44a. Volume fractions Vrare 0.174 and
0.164 in (a) and (b), respectively. Distributions are also shown of the total
electric field intensity and energy flow (white arrows) at £2=0.40 for TM mode
incidence of plane wave from the positive y axis. Intensity increases from
blue to red with maxima of 4.73 and 7.53 in (a) and (b), respectively. (c)
Transmittance as a function of size parameter =214/ at the line L of length
5.67aplaced at y=-28.17a. The plane wave of TM or TE mode is incident from
the positive y axis. Transmittance is the average of five configurations

including (a) or (b).

Fig. 2: (a) Parabola mirror made of UDPS plate, (b) Transmittance of TM
mode at line L. Plane wave of TM mode is incident from the positive y axis.
Rods are placed along the rectangular region of | x|<44.802 and -20a<y<
' 30.13a. Lower and xight or left side walls are made with period 4.07a and
4.592, respectively. The upper side wall is formed by putting rods with period
42 along the parabola y=x%/4fwith £16.67a. Volume fraction Vris 0.189. In
addition, (a) shows the distribution of scattered field intensity at (2=0.45 in
the region | x| <66.672 and -40a<y<93.33 2 with maximum intensity of 24.67.

Fig. 3: (a), (b), and (¢) Circular cavities of inner radius R and outer radius
Rout. Bin=13.332, Roum402, and V; = 0.169 in (a) and (b) while Ri=5.66a,
Fou=32.332, and 17=0.171 in (¢). The plane wave of TM mode is incident from

the positive y axis. Also shown are distributions of total electric field



intensity and energy flow at (a) £2=0.40586, (b) £2=0.43054, and (c) £2=0.45527.
Maximum field intensity is (a) 9.19 x 103, (b) 3.44 x 108, and (¢) 1.42 x 108. (Q)
Normalized energy U stored within cavities for TM mode incidence. Red and

green lines correspond to cavity (a) or (b), and (c), respectively.
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