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5.8 ey2 and ėy2 using only SAC (MIMO system) . . . . . . . . . . . 100
5.9 ey1 and ėy1 using adaptive SMC with SAC (MIMO system) . . 101
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Chapter 1

Introduction

1.1 Background

In any control problem, there will typically be difficulties in designing a good

controller for the actual plant. These difficulties are caused by unknown or un-

modelled dynamics, variation or changes in system parameters, disturbances,

uncertainties, and discrepancies between the actual plant and the mathemat-

ical model developed for the controller design [1–18]. Furthermore, since the

actual plants are nonlinear in reality, nonlinearities also contribute to those

difficulties [16].

Simple adaptive control (SAC) is a class of direct adaptive control meth-

ods. It was proposed by Sobel et al. [19,20]. SAC algorithm is called “simple”

because it does not use identifiers or observers in its feedback loop. For lin-

ear plants with unknown structures, SAC is an important class of adaptive

control schemes and can be applied to solve the above problems of designing

controllers. However, for nonlinear plants with unknown structures, it is not

possible to ensure a perfect plant output that follows the output of a refer-

ence model by using conventional SAC [21, 22]. On the other hand, neural

networks and sliding mode control (SMC) have shown good performance for

nonlinearities. However, there are also some weak points and drawbacks in

the conventional methods of using neural networks and SMC.

By combining SAC with neural networks and with SMC, this research ex-

pects to develop methods of SAC for nonlinear systems, that can solve the

above problems of applying the conventional SAC for nonlinear systems. Fur-

thermore, it is also expected that the weak points and drawbacks in the exist-

ing conventional methods of using neural networks and SMC can be reduced.

A brief background of adaptive control, SAC, neural networks, and SMC

will be presented in the following subsections for preliminary knowledges.
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1.1.1 Adaptive Control

Adaptive control was developed as an attempt to overcome difficulties of con-

trolling plants with unknown parameters and uncertainties [1, 2, 5, 7, 8, 13, 14,

17]. There have been many attempts over years to define adaptive control

formally. At an early symposium in 1961, a long discussion ended with the

following suggestion: “An adaptive system is any physical system that has

been designed with an adaptive viewpoint.” A renewed attempt was made by

an IEEE committe in 1973. It proposed a new vocabulary based on notions like

self-organizing control (SOC) system, parameter-adaptive SOC, performance-

adaptive SOC, and learning control system. However, these efforts were not

widely accepted. Åström et al. has defined in their book [7] that “An adap-

tive controller is a controller with adjustable parameters and a mechanism for

adjusting the parameters.”

Historically, adaptive control was conceived in the 1950s. Since then, it has

firmly remained in the mainsteram of research activity with hundred papers

and several books published every year [8]. In its about fifty years existence,

adaptive control theory has been steadily growing into a well-formed scientific

discipline: from inventions to rigorous problem formulations; from solutions

of basic problems to more demanding task for broader classes of systems;

from questions of existence and solvability to application-oriented issues of

robustness and performance [8]. The most success of adaptive control is for

plant models in which the unknown parameters appear linearly.

In the early 1950s, there was an extensive research on adaptive control

in connection with the design of autopilots for high-performance aircraft [7].

Such aircraft operate over a wide range of speeds and altitudes. It was found

that ordinary constant-gain, linear feedback control could work well in one

operating condition but not over the whole flight regime. A more sophisticated

controller that could work well over a wide range of operating conditions was

therefore needed. After a significant effort, it was found that gain scheduling of

adaptive control was a suitable technique for flight control systems. However,

the interest in adaptive control diminished partly beacuse the adaptive control

problem was too hard to deal with using the techniques that were available at

the time.

In the 1960s, there were much research in the control theory that con-

tributed to the development of adaptive control [7]. State space and stability

theory were introduced. There were also important results in stochastic con-

trol theory. Dynamic programming, introduced by Bellman, increased the
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understanding of adaptive processes. Fundamental contributions were also

made by Tsypkin, who showed that many schemes for learning and adaptive

control could be described in a common framework. There were also major de-

velopments in system identification. A renaissance of adaptive control occured

in the 1970s, when different estimation schemes were combined with various

design methods. Many applications were reported, but theoretical results were

very limited.

In the late 1970s and early 1980s, analysis and proofs of stability of adap-

tive system appeared [23–25]. It also sparked new and interesting research

into the robustness of adaptive control, as well as into controllers that are uni-

versally stabilizing [7]. Research in the late 1980s and early 1990s gave new

insights into the robustness of adaptive controllers. Investigations of nonlin-

ear systems led to significantly incerased understanding of adaptive control.

Lately, it has also been established that adaptive control has strong relations

to ideas on learning that are emerging in the field of computer science.

There have been many experiments on adaptive control in laboratories

and industry. The rapid progress in microelectronics was a strong stimula-

tion. Interaction between theory and experimentation resulted in a vigorous

development of the field. As a result, adaptive controllers started to appear

commercially in the early 1980s. And more recently, the research focus of

adaptive control theory has been transferred to nonlinear and time varying

plants [26].

1.1.2 Simple Adaptive Control (SAC)

SAC method was proposed by Sobel et al. [19, 20] as an attempt to simplify

the adaptive controllers. This method is called “simple” because it does not

use identifiers or observers in its feedback loop. Other advantages of this

method are that the order of the reference model used in this method is al-

lowed to be much smaller than the order of the real plant, and this method

was developed in consideration of multi-input multi-output (MIMO) plants.

Furthermore, this method is also easily implementable and applicable to real

control problems [13].

Basically, adaptive control methods can be divided into two categories:

direct or implicit adaptive control and indirect or explicit adaptive control

[13, 27]. Block diagrams of a direct and an an indirect adaptive control are

shown in Figs 1.1 and 1.2, respectively. Indirect adaptive control methods

separate parameter identification and control schemes. Direct control meth-

ods merge the identification and control function into one scheme. In such

3



direct methods, the control gains are computed directly without an explicit

identification of the system parameters. Thus, with fewer computations to per-

form, direct adaptive control has one advantage over indirect adaptive control:

speed [13].

Model reference adaptive methods might be classified as evolving from

three different approaches. First is the full state access method described by

Landau in [28], which assumes that the state variables are measurable. Second

is the input-output method, which originates from Monopoli’s augmented error

signal concept [29]. In this approach, adaptive observers are incorporated

into the controller to overcome the inability to access the entire state vector.

Third is the SAC approach originated by Sobel et al. [20]. This approach

is an output feedback method, which requires neither full state feedback nor

adaptive observers. Other important properties of this class of algorithms are

as follows [13]:

1. They are applicable to nonminimum phase systems.

2. The order of the plant (physical system) is allowed to be much larger

than the order of the reference model.

3. This approach considers plants with multiple inputs and outputs.

Direct model reference adaptive control was first proposed by Osborn,

Whitaker, and Keezer, which uses a performance index minimization ap-

proach. This approach later became known as the MIT design rule. This

was later extended to an accelerated gradient procedure, but stability could

not be guaranteed with either procedure. The stability of a linear system com-

bined with an adaptive controller is often in question because of the highly

nonlinear nature of the closed loop system [13].

A significant contribution to the theory of the direct model adaptive control

of single-input single-output (SISO) sytems was the augmented error signal

concept of Monopoli [29]. This technique eliminated the need for either state

feedback or derivatives of the output by incorporating adaptive observers into

the control law. Monopoli’s contribution encouraged much research into this

class of algorithms, which will be referred to as the input-output research.

Other contributions to this approach include the work of Morse [30], Feuer

and Morse [31], and Narendra et al. [23–25,27]. As stated in subsection 1.1.1,

Narendra et al. presented the stability analysis and proofs in [23–25]. The

contribution of Narendra et al. [24] settled the question of stability for the

input-output approach.
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Some of the recent work in the input-output approach to model reference

adaptive control (MRAC) is the stability in the presence of disturbances and

unmodeled dynamics. This area has become known as the robust adaptive

control problem.The observation that earlier stability proofs were not valid in

the presence of disturbances and unmodeled dynamics is discussed by Rohrs et

al. [32]. However, it is generally accepted that robust stability is a necessary

characteristic of any adaptive control algorithm. One of the robust MRAC

laws for SISO systems has been proposed that utilizes a fixed σ-modification

[13]. Nevertheless, the extension of the input-output approach to MIMO plants

is an interesting research area.

During the same time period that Monopoli was working on the augmented

error signal concept, Landau [28], Lindorff and Carroll [33], and others were

proposing a full state access approach to direct MRAC [13]. Stability was

ensured by using either Lyapunov’s stability theory or Popov’s hyperstability

theory. Although this approach applied to MIMO plants, the satisfaction of

Erzberger’s perfect model-following conditions was required [13].

The simple approach to direct MRAC, also called SAC, of MIMO plants

was first proposed by Sobel, Kaufman, and Mabius in their papers [19, 20] in

1979 and 1982, respectively. This approach uses a control structure that is a

linear combination of feedforward of the model states and inputs and feedback

of the error between plant and model outputs. This class of algorithms re-

quires neither full state access nor satisfaction of the perfect model-following

conditions. Asymptotic stability is ensured provided that the plant is almost

strictly positive real (ASPR) [13].

The appealing characteristics of this SAC algorithm over indirect and other

direct model reference adaptive methods include [13]:

1. independence on plant parameter estimates,

2. applicability to MIMO plants,

3. sufficiency conditions that are independent of plant dimension,

4. control calculation that does not require adaptive observers or full state

feedback,

5. ease of implementation,

6. and successful experimental validation.

The above characteristics make this SAC approach attractive to the practi-

tioner.
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This SAC approach is described in detail by Sobel, Kaufman, and Mabius

[20]. Later this method was developed further by Bar-Kana and Kaufman

[34, 35]. Bar-Kana and Kaufman extended the SAC approach to a robust

SAC law for ASPR MIMO plants. Later, this ASPR algorithm was extended

again by Bar-Kana and Kaufman [34] to the class of non-ASPR plants for

which there exists a known dynamic output stabilizing feedback with transfer

matrix H(s). In this case, it is shown that an augmented system consisting

of the plant in parallel with H−1(s) is ASPR. For practical applicability of

SAC, the problem of designing a feedforward compensator containing H−1(s)

to form an ASPR augmented system is discussed by Iwai and Mizumoto [36].

As the recent trend of focus of adaptive control theory has been transferred

to nonlinear and time varying plants [26], the implementation of SAC to solve

the control problems caused by the nonlinearities of nonlinear plants started to

be considered. However, for nonlinear plants with unknown structures, using

only conventional SAC described in [19, 20, 34, 35] cannot ensure a perfect

plant output that follows the output of a reference model [21, 22]. Attempts

to extend SAC to control nonlinear plants have been performed by combining

it with neural networks [21,22]. However, the theoretical analysis for proofs of

convergence and stability is not performed yet, and class of nonlinear systems

which can be controlled by this method of SAC with neural networks is not

provided yet either. Furthermore, the use neural networks itself has some

weak points such as will be explained in the next subsections.

A brief mathematical and theoretical explanation about the conventional

SAC for linear plants as proposed in [19, 20, 34, 34, 35] is given in section 2.2

as a further introduction.

Based on the basic idea proposed in [21, 22], this thesis will extend the

conventional method of SAC to provide SAC methods to control nonlinear

plants. Furthermore, a thorough analysis for proofs of convergence and stabilty

will also be provided. From the convergence and stability analysis, class of the

control target nonlinear plants of the methods of this thesis is defined.

1.1.3 Neural Network

A neural network is a machine that is designed to model the way of the brain

performing a spesific task [3, 4, 6, 9, 11, 37]. A definition of neural network in

the view as an adaptive system was proposed by Haykin [37] as follows: “A

neural network is a massively parallel distributed processor that has a natural

propensity for storing experiental knowledge and making it avalaible for use.

It resembles the brain in two respects:

6



Figure 1.1: Block diagram of a direct adaptive control system

Figure 1.2: Block diagram of an indirect adaptive control system

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used to

store the knowledge.”

The procedure used to perform the laerning process is called a learning

algorithm. This learning algorithm is the function to modify the synaptic

weights of the network in and orderly fashion so as to achieve a desired design

objective.

Research on neural networks has been motivated in the begining by the

recognition that the brain computes in an entirely different way from the

conventional digital computer [37]. The struggle to understand the brain owes

much to the pioneering work of Ramon y Cajal in 1911, who introduced the
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idea of neurons as structural constituents of the brain. The brain itself is a

highly complex, nonlinear, and parallel information processing system. It has

the capability of organizing neurons so as to perform certain computations,

such as pattern recognition, perception, and motor control, many time faster

than the fastest digital computer exists today.

In 1943, McCulloch and Pitts proposed a mathematical model of the neu-

rons and showed how neuronal-like networks could be computed. It described

a neuron to be developed of parts such as a net input (summarizing all of the

inputs for the neuron), a threshold function, and an output, as shown in Fig.

1.3.

The first set of ideas of learning in neural networks was contained in Hebb’s

book entitled “The Organization of Behaviour” in 1949. Before Hebb’s work,

it was believed that some physical change ust occur in a neural network

to support learning, however, it could not be determined what this change

was [11]. Hebb assumed that a reasonable biological change would be needed to

strengthen the connections between elements of the neural network only when

both the pre-synaptic and post-synaptic cell membranes were active simulta-

neously. The essence of Hebb’s ideas occurs in various learning paradigms.

Although the details of the rules for changing the weights may be different,

Hebb’s essential notion that the strength of connections between the units

must change in response to some function of the correlated activity of the

connected units has been adpted in many learning models.

In 1951, Edmonds and Minsky built their learning machine using Hebb’s

idea. However, the real beginning of a meaningful neuron-like network learning

can be traced to the work of Rosenblatt in 1962. Before that, in 1958 Rossen-

blat published a book on perceptrons, a machine that is capable of learning

how to classify information by adapting the weights. In 1960–1962, Widrow

and Hoff developed adalines and LMS rule. In their book in 1969, Minsky and

Papert show theoretical limits of perceptrons as general computers.

From 1969 to 1982, there was about 23 years of hybernation in the research

and development of neural networks. But, in that period, there were some

’stubborn’ individuals, such as Grossberg, Amari, Fukushima, Kohonen, and

Taylor, who continued doing research in neural networks.

In a breakthrough paper published in 1982, Hopield introduced a neu-

ral network architecture which is called Hopfield network. In this paper, he

describes how computational capabilities can be built from neural networks.

This paper marked a re-emergence of the field of neural networks.

8



The backpropagation is another approach which has been widely used in

the neural network paradigms. The conceptual basis of backpropagation was

first presented in 1974 by Werbos. Later, it was independently re-invented in

1986 by Rumelhart et al.. Rumelhart et al. introduced in their book entitled

“Parallel Distributed Processing” a broad persepective of the neural network

approaches.

The best known neural network architecture is the multilayer feedforward

neural network [9]. It is a static network that consist of a number of layers:

an input layer, one or more hidden layers, and an output layer connected in a

feedforward way. Each layer consists of a number of neurons, and each neuron

in each layer is linked with every neurons in previous and next layers with

weighted connections. In 1989 it was shown independently by Hornik et al.,

Funahashi, and Cybenko that a multilayer feedforward neural network with

one or more hidden layers is sufficient in order to approximate any continuous

nonlinear function arbitrarily well on a compact interval, provided sufficient

hidden neurons are available [9]. The structure of multilayer feedforward neu-

ral network is shown in Fig. 1.4.

The following features of neural networks makes them very attractive and

promising for application to modelling and control of nonlinear plants [9]:

1. Neural networks are universal approximators: it is proven tht any con-

tinuous nonlinear function can be aproximated arbitrarily well over a

compact interval by a multilayer neural network that consists of one or

more hidden layers.

2. Parallel distributed processing: the network has a highly parallel struc-

ture and consists of many processing elements with a very simple struc-

ture, which is interesting from the viewpoint of implementation.

3. Hardware implementation: dedicated hardware is possible, resulting in

additional speed.

4. Learning and adaptation: the intelligence of neural networks comes from

their generalization ability with respect to fresh, unkown data. Online

adaptation of the weights is possible.

5. Multivariable systems: neural networks have naturally many inputs and

outputs, which makes it easy to model multivariable systems.

Thus, unknown nonlinear functions in dynamical neural networks can be

parametrized by using multilayer neural networks. Furthermore, there is very

9



Figure 1.3: Structure of a neuron

strong relation between neural networks for control with the field of adap-

tive control, since the multilayer feedforward neural networks can be readily

thought of as performing an adaptive, nonlinear vector mapping [4].

However, there also a number of weak points of neural networks, such as:

1. the existence of many local optima in learning algorithms,

2. the choice of complexity of the neural networks,

3. the convergence and stability analysis of the dynamical systems that

contain neural network architectures (related to the complexity of the

neural networks in point no. 2).

There has been many research works presenting theories and applications

of neural networks for control, where some of the most recent works are such

as [38–52]. Some of them also discussing about the convergence and stability

analysis of the dynamical systems that contain neural networks [41,42,44,46,

49–52].

As a further introduction, brief mathematical and theoretical explanations

about the multilayer feedforward neural networks and the backpropagation

algorithm are given in sections 2.4 and 2.5, respectively.

This thesis uses multilayer feedforward neural networks based on the back-

propagation algorithm for the learning process in its proposed methods of

combination of SAC with neural networks.

1.1.4 Sliding Mode Control (SMC)

In the formulation of any control problem, there, there will typically be dis-

crepancies between the actual plant and the mathematical model developed

for controller design. This mismatch can be caused by unmodelled dynam-

ics, variation in system parameters or the approximation of complex plant
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Figure 1.4: Structure of a multilayer feedforward neural network

behaviour by a straightforward model [12]. In a design process, the controller

must be ensured to have the ability to produce the required performance lev-

els in practice despite such plant and model mismatches. This has led to an

intense interest in the development of “robust” control methods to seek the

solution for this problem. One particular approach to robust controller design

is the SMC methodology [12,15,16,18].

SMC is a particular type of variable structure control. Variable structure

control systems (VSCS) are characterised by a suite of feedback control laws

and a decision rule. The decision rule, termed the switching function, has as

its input some measure of the current system behaviour and produces as an

output the particular feedback controller which should be used at that instant

in time. The result is a variable structure system, which can be regarded

as a combination of subsystems where each subsystem has a fixed control

structure and is valid for specified regions of system behaviour. One of the

advantages of introducing this additional complexity into the system is the

ability to combine useful properties of each of the composite structures of the

system. Furthermore, the system may be designed to posses new properties

not present in any of the composite structures alone. Utilisation of these

natural ideas began in the Soviet Union in the late 1950s.

SMC is fundamentally a consequence of discontinuous control [18]. In the

early 1960, discontinuous control (at least in its simplest form of bang-bang

control) was a subject of study for mechanics and control engineers. As an ex-

ample, Hamel’s work in 1949 in France and Cypkin’s in 1955 and Emelyanov’s

in 1963 in Russia solved in a rigorous way the problem of oscillations ap-
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pearing in bang-bang control systems. These first studies turned rapidly to

synthesis problems in various ways. One of them was related to optimal con-

trol, another to linearization and robustness. Although both approaches and

objectives were at the beginning quite different, it is interesting to note that

they turned out to have much in common.

In fact, it was when looking for ways to design what we call now robust

control laws that sliding mode was discovered at the beginning of 1960s. For

the needs of military aeronautics, and even before the term of robustness

was used, control engineers were looking for control laws insensitive to the

variations of the system to be controlled. The existing linear controllers used

at these time did not bring enough compensation to use high gains required

to get parametric insensitivity.

SMC evolved from the pioneering work in Russia of Emelyanov and Bar-

bashin in the early 1960s. The ideas did not appear outside of Russia until

the mid 1970s when a book by Itkis in 1976 and a survey paper by Utkin in

1977 [53] were published in English. Although this subject of SMC has been

treated in many papers, such as [53–73], and books, such as [12, 15, 18], it

remains the object of many studies (theoretical or related to various applica-

tions) until nowadays.

In SMC, the controllers are designed to drive and then maintain the system

states to lie within a neighbourhood of the switching function or usually also

called “sliding surface”. Thus, there are two phases in SMC: the approaching

phase and the sliding phase, as shown in Fig. 1.5. In the approaching phase,

states of system is outside the sliding surface. In this phase, a corrective control

is applied to drive the states of system onto the sliding surface. When any

states that reach the sliding surface remain on it, a sliding mode or sliding

motion is occured and a sliding phase is started. In this sliding phase, an

equivalent control is capable of maintaining the system states to stay on the

sliding surface and driving them to the origin. The steps in designing a sliding

mode controller are: to construct a sliding surface that represents a desired

system dynamics, and then to develop a switching control law such that a

sliding mode exists on every point of the sliding surface, and any state outside

the surface is driven to reach the surface in a finite time. There are two main

advantages of this SMC approach:

1. it robustness against a large class of perturbations or model uncertainies,

2. and its applicability to control nonlinear systems which are usually dif-

ficult to control using conventional linear feedback control laws.
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However, the general approach of conventional SMC also has two draw-

backs [62,66,69,73]:

1. the chattering phenomenon,

2. and the difficulty in calculating its equivalent control law.

In the design of the conventional SMC law, it is assumed that the corrective

control, which usually uses a discontinuous switching function, can be switched

from one value to another infinitely fast [71]. However, this is impossible to

achieve in practical systems because finite tim delays are present for the control

computation, and limitations exist in physical actuators.

This nonideal switching results in a first drawback, the chattering phe-

nomenon. This chattering phenomenon is highly undesirable [55, 62, 71] and

may excite the high-frequency unmodeled dynamics which could result in un-

foreseen instability. Many research works have been performed and focused in

solving the first problem, the chattering phenomenon, such as [55, 56, 58, 61,

65, 67, 71]. One of the methods to overcome the chattering phenomenon is to

include an equivalent control law into the SMC law [12,18].

Thus, the second drawback, which is the difficulty in calculating the equiv-

alent control law of SMC, appears. This second drawback is caused by the

requirement of thorough knowledge of parameters and dynamics of the nomi-

nal controlled plant [62, 66, 69, 73]. Since those parameters and dynamics are

difficult to obtain or even unknown, the calculation of the equivalent control

law of SMC is very difficult and causes computational burden [73–75]. To over-

come the second problem, the difficulty in calculating the equivalent control

law of SMC, recently, intelligent techniques based on fuzzy logic and neural

networks have been applied to SMC [62, 64, 66, 68, 73]. However, those meth-

ods still require complex calculation process and consume time to calculate

the control law of SMC.

For a further introduction, a brief mathematical and theoretical explana-

tion about the general approach of SMC is provided in section 5.2.

One of the methods proposed by this thesis is a method of adaptive SMC

strategy using SAC. It is expected that this proposed method can also over-

come the difficulty in calculating the equivalent control law of SMC.

1.2 Objective

To solve the problems of applying the conventional SAC for nonlinear plants,

this thesis proposes adaptive control methods for nonlinear plants by combin-
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Figure 1.5: Phases of SMC: approaching phase and sliding phase

ing the conventional SAC with neural networks and with SMC. The control

input is given by the sum of the output of a simple adaptive controller and

the output of either the neural networks or SMC. The role of either the neural

networks or SMC is to compensate for constructing a linearized system so as

to minimize the output error caused by nonlinearities in the controlled system.

The role of the simple adaptive controller is to perform the model matching

for the linearized system to a given linear reference model. Furthermore, as

the advantages and weak points of each of the conventional methods of neural

networks and SMC have been described briefly in section 1.1, it is also ex-

pected that in the proposed methods of this thesis those advantages can be

maintained and the weak points can be reduced.

Theoretical analysis for proofs of convergences and stabilities of those

methods are performed, and the required assumptions and conditions are pro-

vided. From the convergence and stability analysis, class of the nonlinear

plants that can be controlled using the methods of this thesis is defined. Thus,

it is expected that the convergences and stabilities of the methods proposed in

this thesis can be guaranteed. Finally, the effectiveness of the proposed meth-

ods of this thesis will be confirmed by using either simulations or experiments.

1.3 Outline of the Thesis

This thesis consists of a study on SAC for nonlinear systems, using neural

networks and using SMC. The explanations in this thesis are performed in the

general scope of MIMO, and it can be easily adapted and applied to the SISO

case.
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The outline of this thesis is as follows:

Chapter 2 proposes and gives an introduction and a fundamental theoretical

explanation about the control method of SAC using a single neural network

for nonlinear systems. The analysis for proofs of convergence and stability is

discussed. Based on that convergence and stability analysis, the control target

nonlinear plants of this method are limited to a class of nonlinear systems with

bounded-input bounded-output (BIBO) and bounded nonlinearity.

Chapter 3 proposes and shows applications of a control method using a discrete-

time SAC and a neural network, which is developed based the method ex-

plained in chapter 2, to SISO and MIMO configurations of a nonlinear mag-

netic levitation system. In this chapter, the method proposed in chapter 2 is

presented in the discrete time domain. The conditions to guarantee the sta-

bility of the system by keeping the convergence and stability conditions given

in chapter 2 is also provided.

Chapter 4 proposes a control method for nonlinear systems using SAC with

multiple neural networks. In this chapter, a more general and thorough the-

oretical explanation is presented. The theoretical analysis and explanation

of convergence and stabilty proofs are developed and presented based on the

convergence and stability conditions given in chapter 2.

Chapter 5 proposes and gives an introduction and a fundamental theoretical

explanation about a new method of adaptive SMC strategy using SAC for

nonlinear systems. The stability analysis and proof are shown. As in chapters

2–4, the control target nonlinear plants of this method also are limited to a

class of nonlinear systems with BIBO and bounded nonlinearity.

Finally, chapter 6 gives the general conclusions.
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Chapter 2

SAC Using A Neural Network
for Nonlinear Systems

2.1 Introduction

Adaptive control methods were developed as an attempt to overcome difficul-

ties connected with the ignorance of systems structure and critical parameter

values as well as changing control regimes [2,5,7,14,17]. However, some prior

knowledge about the plant to be controlled must be given [14,39,48,76]. Most

self-tuning and adaptive control algorithms usually use reference models, con-

trollers, or identifiers of almost the same order as the controlled plant. Since

the dimension of the plants in the real world may be very large or unknown,

implementation of adaptive control procedures may be very difficult.

To overcome this problem, SAC procedure was developed by Sobel et

al. [19, 20] as an attempt to simplify the adaptive controllers, since no ob-

servers or identifiers are needed in the feedback loop [34]. Furthermore, the

reference model is allowed to be of very low order compared with the controlled

plant. For linear plants with unknown structures, SAC is an important class

of adaptive control scheme [13,34,36].

Recently, dealing with nonlinear systems using the concept of SAC has

been investigated [77,78]. However, for nonlinear plants with unknown struc-

tures, it may not be possible to ensure a perfect plant output that follows the

output of a reference model by using conventional SAC [21,22]. On the other

hand, for nonlinear plants, many methods for control using neural network

are proposed. It has been proven that these control methods show excellent

performance with nonlinearity [4, 39,48,79].

In our proposed method, we discuss SAC for continuous-time system.

Hence, we deal with a problem concerning actual realization of SISO and

MIMO SAC systems in this chapter. However, for generalization, we discuss
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it in term of MIMO system, where it can be directly applied to SISO system.

The synthesizing of a MIMO controller problem can be stated as follows.

The problem of compensation is compound, by the multiplicity of inputs

and outputs, and the interaction (coupling) between the different inputs.

In many multivariable processes, there exists strong interaction (coupling)

between inputs and control loops. In such a case, it is important to consider

a decoupling control strategy so as to improve performance of the closed-loop

systems. When the model parameters are unknown, a feasible approach is to

adopt an adaptive decoupling scheme [80]. For a nonlinear plant which has

unknown model structure and parameters, the decoupling control problem

becomes more complicated, as we need to design a controller that can solve

simultaneously the decoupling problem, the unknown model structure and

parameters problem, and nonlinearity problem of the plant. For decoupling

problem and unknown model structure and parameters problem we consider

that SAC is the best approach. And for nonlinearity problem, neural network

is considered to be the best approach.

Control methods for nonlinear systems using a combination of SAC and

neural networks have been proposed in [21, 22]. However, the methods in

[21, 22] have some deficiencies, the theoretical explanations about the con-

vergence and stability analysis are not provided, and the class of nonlinear

systems which can be controlled is not defined. We attempt to overcome these

deficiencies by providing the convergence and stability analysis, and defining

the class of nonlinear systems which can be controlled.

This chapter proposes a method of SAC for nonlinear systems using a

neural network for a class of nonlinear systems with BIBO and bounded non-

linearity. The control input is given by the sum of the output of a simple

adaptive controller and the output of the neural network. The role of the

neural network is to compensate for constructing a linearized system so as to

minimize the output error caused by nonlinearities in the controlled system.

The role of the simple adaptive controller is to perform the model matching

for the linearized system to a given linear reference model. In this chapter,

we use a design method using backpropagation training algorithm of simple

multilayer feedforward neural network, using the direct neural adaptive con-

trol method as mentioned in references [4, 9], in order to design the proposed

method. Furthermore, convergence and stability analysis for this proposed

method is performed. Finally, the numerical simulations for an SISO system

and an MIMO system consists of 2-inputs 2-outputs are executed and the

effectiveness of this control system is confirmed.
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2.2 Linear SAC

In this section, we briefly describe a linear continuous-time SAC, where the

controller is designed to realize a plant output which converges to reference

model output.

In a realistic environment, let us consider the following controllable and

observable but unknown parameter plant model of order np

ẋp(t) = Apxp(t) + Bpu(t) (2.1)

yp(t) = Cpxp(t) (2.2)

where xp(t) is the npth-order plant state vector, u(t) ∈ Rnj×1 is the system

input vector, yp(t) ∈ Rnj×1 is the system output vector, and Ap, Bp, Cp are

matrices with the appropriate dimensions.

It is necessary for us in the realization of linear SAC to control plant in

(2.1), (2.2) to make the following assumption.

Assumption 2-1

(a) Plant in (2.1), (2.2) is almost strictly positive real (ASPR). That is,

there exists a constant gain k∗e such that the transfer function

Gp(s) = Cp(sI −Ac)−1Bp (2.3)

is SPR (strictly positive real), where Gp(s) is the plant transfer function,

and Ac = Ap + k∗eBpCp.

(b)

det

[
Ap Bp

Cp 0

]
6= 0

Furthermore, let us consider that the plant is required to follow the input-

output behaviour of a reference model of the form

ẋm(t) = Amxm(t) + Bmum(t) (2.4)

ym(t) = Cmxm(t) (2.5)

where xm(t) is the nmth-order reference model state vector, um(t) ∈ Rnj×1

is the model input, ym(t) ∈ Rnj×1 is the model output,and Am, Bm, Cm

are matrices with the appropriate dimensions. The reference model can be

independent of the controlled plant, and it is permissible to assume nm ¿ np.
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However, the condition in assumption 2-1(a) is not satisfied by most of

the real systems. Therefore, to satisfy assumption 2-1(a), let us define the

supplementary values of an augmented plant as

ya(t) = yp(t) + ys(t) (2.6)

ys(t) = Dp(s)u(t) (2.7)

ey(t) = ym(t)− ya(t) (2.8)

where Dp(s) is simple parallel feedforward compensator (PFC)

Dp(s) =
Dp

1 + ρs
(2.9)

across the controlled plant to fulfill the condition in Assumption 2-1(a) to

guarantee robust stability of SAC system [34–36]. The augmented plant we

use here must satisfy the following conditions

1 Plant in (2.6) is ASPR.

2 ya(t) = yp(t) + ys(t) ∼= yp(t) which can be fulfilled by setting the value

of Dp to be very small [34, 36].

3 Dp(s) is physically realizable.

The control objective is to achieve the following relation

lim
t→∞ ey(t) = 0 (2.10)

Since the plant is unknown, the actual control input of the plant will

be generated by the following adaptive algorithm using the values that can

be measured, namely ey(t), xm(t) and um(t), to get the low-order adaptive

controller

u(t) = up(t) (2.11)

up(t) = Ke(t)ey(t) + Kx(t)xm(t) + Ku(t)um(t)

= K(t)r(t) (2.12)

where

K(t) = [Ke(t) Kx(t) Ku(t)] (2.13)

rT (t) = [eT
y (t) xT

m(t) uT
m(t)] (2.14)
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Figure 2.1: Schematic representation of the conventional SAC

and the adaptive gains are obtained as a combination of ’proportional’ and

’integral’ terms as follows

K(t) = Kp(t) + Ki(t) (2.15)

Kp(t) =
[

ey(t)eT
y (t)Tpey

ey(t)xT
m(t)Tpxm

ey(t)uT
m(t)Tpum

]

= ey(t)rT (t)Tp (2.16)

K̇i(t) = ey(t)rT (t)Ti − σKi(t) (2.17)

(Tp = T T
p > 0, Ti = T T

i > 0)

where the augmented plant error ey(t) can be reduced to a very small value

by increasing Tp and Ti to very large values, and σ is set to a sufficiently small

positive value to prevent Ki(t) from diverging [13].

The linear continuous-time SAC is represented in Fig.2.1.

2.3 Nonlinear SAC

When the input-output characteristic of the controlled object is nonlinear, it

is not possible to express it as (2.1), (2.2). Then, let the unknown nonlinear

plant to be expressed by a system that consists of a linear part and a nonlinear

part as

ẋp(t) = Apxp(t) + Bpu(t) + fx(xp(t), u(t)) (2.18)

yp(t) = Cpxp(t) + fy(xp(t)) (2.19)

where xp(t) ∈ Rnp×1 is the plant state vector, u(t) = [u1(t), u2(t), · · · , unj (t)]
T

∈ Rnj×1 is the control input vector, and yp(t) = [yp1(t), yp2(t), · · · , ypnj
(t)]T ∈
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Figure 2.2: Structure of MIMO nonlinear continuous-time SAC system with
neural network

Rnj×1 is the output vector. fx(·) and fy(·) are unknown nonlinear function

vectors. Then, we assume that the nonlinear plant in (2.18), (2.19) satisfies

the following assumption.

Assumption 2-2

(a) The nonlinear plant in (2.18), (2.19) is BIBO, where its linear and non-

linear parts are unknown.

(b) For the system in (2.18), (2.19), there exists an augmented plant which

its linear part satisfies assumption 2-1(a). This augmented plant, as in

(2.6), is formed by incorporating the system in (2.18), (2.19) with the

supplementary values in (2.6)–(2.9) [35].

(c) The nonlinear part of the system in (2.18), (2.19), which is represented

by fx(·) and fy(·), is bounded.

However, in this case, when the SAC rule in (2.11)–(2.17) is used to control the

nonlinear plant in (2.18), (2.19) which satisfies assumption 2-2, the problem

of output error will arise [21].

To overcome this problem of output error and to keep the plant output

yp(t) converging to the reference model output ym(t), the control input can

be expressed as

u(t) = h(yT
m(t), yT

a (t), yT
p (t), xT

p (t)) (2.20)
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according to (2.8), (2.18), (2.19), where h(·) is an unknown nonlinear function

vector.

In this chapter, we synthesize the control input u(t) by the following equa-

tion

u(t) = up(t) + ūp(t) (2.21)

where, up(t) = [up1(t), · · · , upnj
(t)]T is the control input vector of the simple

adaptive controller, as mentioned in (2.12). And ūp(t) = [ūp1(t), · · · , ūpnj
(t)]T

is a control input vector of the neural network given as

ūp(t) = αûp(t) (2.22)

ûp(t) = fzoh(ûp(k)) (2.23)

where α is a positive constant, ûp(t) is a continuous-time output vector of the

neural network, ûp(k) is a discrete-time output vector of the neural network,

and fzoh(·) is a zero-order hold function.

The structure of nonlinear continuous-time SAC system with neural net-

work is shown in Fig.2.2. A sampler is implemented in front of the neural

network with appropriate sampling period to obtain discrete-time multi-input

of the neural network, and a zero-order hold is implemented to transform the

discrete-time output ûp(k) of the neural network back to continuous-time out-

put ûp(t) as shown in Fig.2.2 and (2.23). For systems having bandwidths of a

few Hertz, appropriate sample rates are often in the order of 100Hz, so that

appropriate sample periods are in the order of 0.01sec [81].

Consequently, we can assume the discrete-time output ûp(k) as follows

ûp(k) = ĥ(yT
m(k − 1),

yT
p (k − 1), · · · , yT

p (k − n)) (2.24)

where ĥ(·) is an unknown nonlinear function vector, and n is the number of

past data of outputs of the plant.

Using the above approach, the neural network will be trained. The training

is done by adjusting the weights of the neural network until the output error

e(t) given as

e(t) = ym(t)− yp(t) (2.25)

satisfies the following relation

lim
t→∞ |e(t)| = lim

t→∞ |ym(t)− yp(t)| ≤ ε (2.26)

where ε is a small positive value.
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Figure 2.3: System configuration with neural network

2.4 Composition of the Neural Network

Figure 2.3 shows system configuration of the input-output relation for the

system with neural network. The neural network consists of three layers: an

input layer, an output layer and a hidden layer. Let ii(k) be the input to

the i-th neuron in the input layer (i = 1, · · · , ni), hq(k) be the input to the

q-th neuron in the hidden layer (q = 1, · · · , nq), oj(k) be the input to the

j-th neuron in the output layer (j = 1, · · · , nj), where ni, nq, and nj are the

number of neurons in input layer, hidden layer, and output layer, respectively.

Furthermore, let miq be the weights between the input layer and the hidden

layer, mqj be the weights between the hidden layer and the output layer.

In Fig.2.3, the control input is given by the sum of the output of the simple

adaptive controller and the output of the neural network. The neural network

is used to compensate for the nonlinearity of the plant dynamics that is not

taken into consideration in the usual SAC. The role of the neural network is

to construct a linearized model by minimizing the output error caused by the

nonlinearities in the control systems. Refer to (2.24), the input i(k) of the

neural network is given as

i(k) = [yT
m(k − 1), yT

p (k − 1), · · · , yT
p (k − n)]T . (2.27)

Therefore, the nonlinear function of an MIMO system can be approximated

by the neural network. Furthermore, values n should be chosen appropriately

according to practical nonlinear systems.
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2.5 Learning of the Neural Network

From Fig.2.3, we can obtain

hq(k) =
∑

i

ii(k)miq(k) (2.28)

oj(k) =
∑

q

S1(hq(k))mqj(k) (2.29)

ûpj (k) = S2(oj(k)) (2.30)

where S1(·) is a sigmoid function, S2(·) is a pure linear function, and j =

1, 2, · · · , nj . The sigmoid function is chosen as

S1(X) =
2

1 + exp(−µX)
− 1 (2.31)

where µ > 0, and the pure linear function is chosen as

S2(X) = X (2.32)

Consider the case when S1(X) = a. Then the derivative of the sigmoid

function S1(·) and the pure linear function S2(·) are as follows

S′1(X) =
µ

2
(1− a2)

S′2(X) = 1

The objective of training is to minimize an error function E(k) by taking

the error gradient with respect to the parameters or the weight vector m(k),

that is to be adapted. The error function is defined as

E(k) =
1
2
eT (k)e(k)

=
1
2

nj∑

j

[
ymj (k)− ypj (k)

]2 (2.33)

where e(k) is a discrete-time form of the output error e(t) in (2.25). Then,

the weights are adapted by using

∆m(k) = −c · ∂E(k)
∂m(k)

(2.34)

where c > 0 is the learning parameter. For the learning process, (2.34) will be
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expanded as follows

∆mqj(k) = −c · ∂E(k)
∂ypj (k)

· ∂ypj (k)
∂ûpj (k)

· ∂ûpj (k)
∂S2(oj(k))

· ∂S2(oj(k))
∂oj(k)

· ∂oj(k)
∂mqj(k)

(2.35)

∆miq(k) = −c ·
nj∑

j

∂E(k)
∂ypj (k)

· ∂ypj (k)
∂ûpj (k)

· ∂ûpj (k)
∂S2(oj(k))

· ∂S2(oj(k))
∂oj(k)

· ∂oj(k)
∂S1(hq(k))

· ∂S1(hq(k))
∂hq(k)

· ∂hq(k)
∂miq(k)

(2.36)

where
∂E(k)
∂ypj (k)

= − [
ymj (k)− ypj (k)

]

∂ypj (k)
∂ûpj (k)

= Jplantj

∂ûpj (k)
∂S2(oj(k))

= 1

∂S2(oj(k))
∂oj(k)

= 1

∂oj(k)
∂mqj(k)

= S1(hq(k))

∂oj(k)
∂S1(hq(k))

= mqj(k)

∂S1(hq(k))
∂hq(k)

=
µ

2
[
1− S2

1(hq(k))
]

∂hq(k)
∂miq(k)

= ii(k)

Furthermore, Jplantj represents the Jacobian of the plant. According to

reference [38], this plant Jacobian can be estimated by using a identified pa-

rameter and the internal variables of the neural network model in the indirect

neural adaptive control. In many cases this Jplantj is clear from physical insight

or can be estimated through some experiments, as mentioned and proposed in

the references [4,9]. Therefore, considering for holding the fundamental design

concept of SAC i.e. without any identifiers, in this chapter we utilize from the

direct neural adaptive control method [4, 9]

Jplantj = SGN(
∂ypj (k)
∂ûpj (k)

) (2.37)
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where SGN(·) is sign function.

2.6 Convergence and Stability

The stability analysis of SAC for controllable and observable linear plant with

disturbances with unknown parameter has been presented in [13], where the

plant is as follows

ẋp(t) = Apxp(t) + Bpup(t) + di(t) (2.38)

yp(t) = Cpxp(t) + do(t) (2.39)

where di(t) and do(t) represent bounded, unknown, and unmeasurable plant

and output disturbances, respectively, and we assume that the plant in (2.38)

and (2.39) fulfill the conditions in assumption 2-1. Thus, the following theorem

2-1 given in [13] will hold.

Theorem 2-1: Assume that the linear augmented plant, which is formed

by incorporating the plant in (2.38), (2.39) with the supplementary values in

(2.6)–(2.9), is ASPR and that the input and output disturbances are bounded.

Then, the adaptive control system in (2.12)–(2.17) is globally stable with re-

spect to boundedness. In other words, all values (states, gains, and errors) in-

volved in the control of the linear augmented plant are bounded. Furthermore,

the output tracking error ey(t) can be directly controlled and thus reduced via

the adaptation coefficient Tp.

Proof: The detailed proof of theorem 2-1 is presented in [13].

For the stability analysis of our proposed method we will modify and apply

the stability proof of theorem 2-1 presented in [13]. As mentioned in assump-

tion 2-2(b), the PFC in (2.7) and (2.9) is incorporated with the nonlinear

system in (2.18) and (2.19) to form the augmented plant, as in (2.6), which

its linear part is ASPR. However, for convenience, first it is necessary for the

PFC in (2.7) and (2.9) to be transformed into a state-space form as follows

ẋs(t) = Asxs(t) + Bsu(t) (2.40)

ys(t) = Csxs(t) (2.41)

then, by applying (2.40),(2.41) to (2.7),(2.18),(2.19), the augmented plant can

be described as follows

ẋ(t) = Ax(t) + Bup(t) + δ̂i(x(t), u(t), ūp(t)) (2.42)

ya(t) = Cx(t) + δ̂o(x(t)) (2.43)
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where

x =
[

xp

xs

]
∈ R(np+1)×1; A =

[
Ap 0
0 As

]
; B =

[
Bp

Bs

]
;

C =
[

Cp Dp

]
(2.44)

and δ̂i(x(t), u(t), ūp(t)) and δ̂o(x(t)) represent the nonlinear part of the aug-

mented plant described as follows

δ̂i(x(t), u(t), ūp(t)) =
[

fx(xp(t), u(t))
0

]

+Būp(t) (2.45)

δ̂o(x(t)) = fy(xp(t)). (2.46)

The nonlinear part of the system in (2.42)–(2.43) will be compensated

and minimized using the control input of the neural network ūp(t), to form a

linearized system. The control input of SAC up(t) will perform model matching

of the linearized system to a given linear reference model. The nonlinearity

compensation and minimization process and the linear model matching process

will be performed simultaneously. Therefore, it is necessary in our proposed

method that the control system is able to keep its stability while performing

those processes.

To prove the stability of our proposed method, we start from the stability

analysis of the SAC part of our proposed method, where its Lyapunov function

and its derivative is a modification of the ones for SAC for linear plant with

disturbances in (2.38), (2.39), as presented in [13], by replacing the terms di(t)

and do(t) with δ̂i(x(t), u(t), ūp(t)) and δ̂o(x(t)), respectively. The Lyapunov

function of the SAC part of our proposed method is given as

VSAC(t) = V1(t) + V2(t) (2.47)

where

V1(t) = eT
x (t)Pex(t) (2.48)

V2(t) = tr

{[
Ki(t)− K̃

]
T−1

i

[
Ki(t)− K̃

]T
}

(2.49)

where tr(·) is trace function, and ex(t) is given as

ex(t) = x̂(t)− x(t) (2.50)

where x̂(t) is the ideal target states of the system, and K̃ = [K̃e K̃x K̃u] is

the unknown ideal gains of SAC. The derivative of the Lyapunov function in

(2.47)–(2.49) will be

V̇SAC(t) = V̇1(t) + V̇2(t) (2.51)
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= −eT
x (t)Qex(t)

−2σtr
[
(Ki(t)− K̃)T−1

i (Ki(t)− K̃)T
]

−2eT
y (t)ey(t)eT

y (t)Tpey
ey(t)

−2eT
y (t)ey(t)

[
xT

m(t)Tpxm
xm(t)

+uT
m(t)Tpum

um(t)
]

−2σtr
[
(Ki(t)− K̃)T−1

i K̃T
]

−2eT
x (t)PF (t)

−2δ̂T
o (xp(t))(Ki(t)− K̃)r(t)

−2δ̂T
o (xp(t))ey(t)eT

y (t)Tpey
ey(t)

−2δ̂T
o (xp(t))ey(t)

[
xT

m(t)Tpxm
xm(t)

+uT
m(t)Tpum

um(t)
]

(2.52)

where F (t) is given as

F (t) = EBias(t)−BK̃eδ̂o(x(t))

+δ̂i(x(t), u(t), ūp(t)) (2.53)

where EBias(t) is a bias term as explained in [13].

For the derivative of Lyapunov function in (2.51)–(2.53), we can directly

apply to it the same method as the one used in [13] to prove the stability of

our proposed method if δ̂i(x(t), u(t), ūp(t)) and δ̂o(x(t)) are bounded. Refer-

ing to (2.46) and assumption 2-2(c), fy(·) is bounded by assumption, then this

means that δ̂o(xp(t)) is also bounded. However, refering to (2.45) and assump-

tion 2-2(c), eventhough fx(·) is assumed to be bounded, δ̂i(x(t), u(t), ūp(t)) is

bounded if and only if ūp(t) is also bounded. Therefore, based on (2.22),

(2.23), to prove that ūp(t) is bounded, it is necessary to prove the convergence

of the neural network. It means that the stability of our proposed method

requires the convergence of the neural network part. Furthermore, (2.24)–

(2.27), (2.34)–(2.37) show that the parameters of the neural network part are

not influenced directly by the SAC part, only influenced indirectly through

the augmented plant in (2.42)–(2.43). Thus, the convergence of the neural

network part can be proven separately.

To prove the convergence of the neural network part of our proposed

method, we refer to the method presented in [41], [42]. The Lyapunov function

of the neural network is given as

VNN (k) =
1
2
e2(k) (2.54)
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and the derivative of the Lyapunov function is given as

∆VNN (k) = VNN (k + 1)− VNN (k)

=
1
2

[
e2(k + 1)− e2(k)

]
. (2.55)

By expanding (2.34) as follows

∆m(k) = c · e(k) · Jplant · ∂oj(k)
∂m(k)

(2.56)

then as shown in [41], ∆VNN in (2.55) can be represented as

∆VNN (k) = ∆e(k)
[
e(k) +

1
2
∆e(k)

]

=
[

∂e(k)
∂m(k)

]T

· c · e(k) · Jplant · ∂oj(k)
∂m(k)

·
{

e(k) +
1
2

[
∂e(k)
∂m(k)

]T

· c · e(k) · Jplant · ∂oj(k)
∂m(k)

}

(2.57)

where the convergence is guaranteed if the boundary of c is chosen as

0 < c <
2

J2
plant,max · g2

max

(2.58)

as proven in [41], where Jplant,max is the limit on the plant Jacobian, which

refers to (2.37), will be

Jplant,max = 1, (2.59)

and

gmax : = maxk ‖g(k)‖ (2.60)

g(k) =
∂oj(k)
∂m(k)

(2.61)

where ‖·‖ is the usual Euclidean norm in Rn.

Furthermore, from (2.58)–(2.60), we can choose the boundary of the learn-

ing parameter for each type of weight of the neural network. For the weights

between the hidden layer and the output layer, mqj , the boundary of the

learning parameter is chosen as [41]

0 < c <
2
nq

. (2.62)
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For the weights between the input layer and the hidden layer, miq, the bound-

ary of the learning parameter is chosen as

0 < c <
2
nq

[
1

mqj,max · ii,max

]2

(2.63)

where

mqj,max : = maxk ‖mqj(k)‖ (2.64)

ii,max = maxk ‖ii(k)‖ . (2.65)

Proofs for (2.62) and (2.63) : See the Appendices 2A and 2B.

If the learning parameter c is set to be inside the boundaries in (2.62) and

(2.63), the convergence of the neural network part of our proposed method can

be guaranteed, and ūp(t) will be bounded. It means that δ̂i(x(t), u(t), ūp(t))

will be bounded too, and the stability of the SAC part of our proposed method

can also be guaranteed. Then, in general, the stability of our proposed method,

where the nonlinearity compensation and minimization process and the linear

model matching process are performed simultaneously, can be guaranteed.

Furthermore, the convergence of the neural network part of our proposed

method means that the error function E(k) in (2.33) is minimized, and the

output error e(t) in (2.25) satisfies the relation in (2.26). This shows that

the nonlinearity of the system in (2.18)–(2.19) has been compensated for and

minimized using the control input of the neural network ūp(t).

2.7 Computer Simulation

As for the nonlinear systems, two cases are considered, one of SISO and one

of MIMO. Then, for each of the SISO and MIMO nonlinear systems, we com-

pare the simulation results of using only SAC, only neural network, and our

proposed method.

2.7.1 SISO System

Let us consider the SISO nonlinear system, which is a modification from the

one in [4], described by

30



[
ẋp1
ẋp2

]
=

[
xp2
0

]
+

[
0
1

]
u

+




0

2
10

fsat
−10

(xp1 sin(xp1))




yp = xp1 + sin(xp1)

where
nupper

fsat
nlower

(·) is a saturation function with a lower limit at nlower and an

upper limit at nupper. Then, for the simulations using only SAC and our

proposed method, the parameters are set as

Tp = diag(5× 103, 5× 103, 5× 103) (in (2.16)),

Ti = diag(5× 104, 5× 104, 5× 104) (in (2.17)),

σ = 1 (in (2.17)),

α = 1 (in (2.22)),

µ = 2 (in (2.31)),

c = 0.001 (in (2.34)),

Dp = 0.001 (in (2.9)),

ρ = 1 (in (2.9))

and PFC

Dp(s) =
Dp

1 + ρs
=

0.001
1 + s

is fixed to guarantee that assumption 2-2(b) is satisfied. For these simulations

of SISO nonlinear system, we estimate the value of Jplantj by previously doing

some experiments to the nonlinear system. From those experiments we get

Jplant1 = −1.

For the simulation using only neural network, the parameters are set as

α = 1 (in (2.22)),

µ = 2 (in (2.31)),

c = 0.0000001 (in (2.34)),

Jplant1 = 1.

For all simulations of SISO nonlinear system, we assume a first-order ref-

erence model with parameters

Am = −10, Bm = 10, Cm = 1.
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The selection of the first-order models here is to emphasize the fact that low-

order models do not affect the ability of the adaptive control system.

Figure 2.4 shows the desired output ym(t) and the plant output yp(t) using

only SAC. The result in Fig.2.4 shows that the error between yp(t) and ym(t)

is large.

Figure 2.5 shows the desired output ym(t) and the plant output yp(t) using

only neural network, where the number of neurons in the input layer is 2, in

the hidden layer is 5, and in the output layer is 1. The input i(k) of the neural

network is given as

i(k) = [ym(k − 1), yp(k − 1)]T .

Furthermore, a sampling period 0.01sec is selected to obtain the values of i(k)

from [ym(t), yp(t)], where i(k) denotes i(t) at t = kT . The result in Fig.2.5

shows that the error between yp(t) and ym(t) is large.

Figure 2.6 shows the desired output ym(t) and the plant output yp(t) using

SAC and neural network simultaneously. Here, as in the simulation using only

neural network, the number of neurons in the input layer is 2, in the hidden

layer is 5, and in the output layer is 1. Also the same as in the simulation

using only neural network, the input i(k) of the neural network is given as

i(k) = [ym(k − 1), yp(k − 1)]T

where a sampling period 0.01sec is again selected to obtain the values of i(k)

from [ym(t), yp(t)].

It can be seen that the error of the system has been reduced, and the plant

output yp(t) can follow very closely the desired output ym(t).

2.7.2 MIMO System

Let us consider the MIMO two-input two-output nonlinear system, which is a

modification from the one in [82], described by
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Figure 2.4: ym(t) and yp(t) using only SAC (SISO system)

Figure 2.5: ym(t) and yp(t) using only neural network (SISO system)
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Figure 2.6: ym(t) and yp(t) using SAC and neural network simultaneously
(SISO system)

where
nupper

fsat
nlower

(·) is a saturation function with a lower limit at nlower and an

upper limit at nupper. Then, for the simulations using only SAC and our

proposed method, for SAC and our proposed method, the parameters are set

as

Tp = diag(1.7× 105, 1.7× 105, 1.7× 105,

1.7× 105, 1.7× 105, 1.7× 105) (in (2.16)),

Ti = diag(1.7× 106, 1.7× 106, 1.7× 106,

1.7× 106, 1.7× 106, 1.7× 106) (in (2.17)),

σ = 0.1 (in (2.17)),

α = 110 (in (2.22)),

µ = 2 (in (2.31)),

c = 0.01 (in (2.34)),

Dp = diag(0.002, 0.002) (in (2.9)),

ρ = 1 (in (2.9))

and PFC

Dp(s) =
Dp

1 + ρs
=

[ 0.002
1+s 0
0 0.002

1+s

]

is fixed to guarantee that assumption 2-2(b) is satisfied. For these simulations

of MIMO nonlinear system, we estimate the values of Jplantj by previously

doing some experiments to the nonlinear system. From those experiments we
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get

Jplant1 = +1, Jplant2 = +1.

For the simulation using only neural network, the parameters are set as

α = 0.0001 (in (2.22)),

µ = 2 (in (2.31)),

c = 0.01 (in (2.34)),

Jplant1 = +1, Jplant2 = +1.

For all simulations of MIMO nonlinear system, we assume first-order ref-

erence models with parameters

Am1 = −10, Bm1 = 10, Cm1 = 1,

Am2 = −10, Bm2 = 10, Cm2 = 1.

The selection of the first-order models here is to emphasize the fact that low-

order models do not affect the ability of the adaptive control system.

Figure 2.7 shows the desired output ym(t) and the plant output yp(t) using

only SAC. The result in Fig.2.7 shows that the error between yp(t) and ym(t)

is large.

Figure 2.8 shows the desired output ym(t) and the plant output yp(t) using

only neural network, where the number of neurons in the input layer is 8, in

the hidden layer is 5, and in the output layer is 2. The input i(k) of the neural

network is given as

i(k) = [yT
m(k − 1), yT

p (k − 1), yT
p (k − 2), yT

p (k − 3)]T .

Furthermore, a sampling period 0.01sec is selected to obtain the values of i(k)

from [ym(t), yp(t)], where i(k) denotes i(t) at t = kT . The result in Fig.2.8

shows that the error between yp(t) and ym(t) is large.

Figure 2.9 shows the desired output ym(t) and the plant output yp(t) using

SAC and neural network simultaneously, where the number of neurons in the

input layer is 8, in the hidden layer is 5, and in the output layer is 2. Also

the same as in the simulation using only neural network, the input i(k) of the

neural network is given as

i(k) = [yT
m(k − 1), yT

p (k − 1), yT
p (k − 2), yT

p (k − 3)]T

where a sampling period 0.01sec is selected to obtain the values of i(k) from

[yT
m(t), yT

p (t)].

It can be seen that error of the system has been reduced, and the plant

output yp(t) can follow very closely the desired output ym(t).
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Figure 2.7: ym(t) and yp(t) using only SAC (MIMO system)

Figure 2.8: ym(t) and yp(t) using only neural network (MIMO system)

2.8 Conclusions

This chapter proposed a method of SAC using a neural network for a class of

nonlinear systems with BIBO and bounded nonlinearity. The control input

was given by the sum of the output of the simple adaptive controller and the

output of the neural network. The neural network was used to compensate for

the nonlinearity of the plant dynamics that is not taken into consideration in

the usual SAC. The role of the neural network was to construct a linearized

model by minimizing the output error caused by the nonlinearities in the

control systems. Furthermore, the convergence and stability analysis of the

proposed method has been performed, and it showed the boundary where the

convergence and stability of the proposed method could be guaranteed. Finally
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Figure 2.9: ym(t) and yp(t) using SAC and neural network simultaneously
(MIMO system)

the effectiveness of the proposed method was confirmed through computer

simulation, where it has been shown that the plant output yp(t) can converge

to the desired output ym(t) after learning by the neural network.
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Appendix 2A

Proof of (2.62)

Refering to section 2.5, for the weights between the hidden layer and the

output layer, (2.61) will become

g(k) =
∂oj(k)

∂mqj(k)
= S1(hq(k))

where

S1(hq(k)) = [S1(h1(k)), S1(h2(k)),

· · · , S1(hnq(k))
]T

.

Since |S1(hq(k))| < 1, q = 1, 2, · · · , nq, by the definition of the usual Euclidean

norm in Rnq , ‖g(k)‖ <
√

nq and g2
max = nq. Then from (2.58),(2.59), (2.62)

follows.
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Appendix 2B

Proof of (2.63)

Refering to section 2.5, for the weights between the input layer and the hidden

layer, (2.61) will become

g(k) =
∂oj(k)

∂miq(k)

=
∂oj(k)

∂S1(hq(k))
· ∂S1(hq(k))

∂hq(k)
· ∂hq(k)
∂miq(k)

= mqj(k) · S′1(hq(k)) · ii(k)

Since 0 < S′1(hq(k)) < 1, q = 1, 2, · · · , nq, by the definition of the usual

Euclidean norm in Rnq , ‖S′1(hq(k))‖ <
√

nq, then

‖g(k)‖ ≤ ‖mqj(k)‖∥∥S′1(hq(k))
∥∥ ‖ii(k)‖

≤ √
nq ‖mqj(k)‖ ‖ii(k)‖ .

Then from (2.58)–(2.60), (2.63) follows.
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Chapter 3

SAC Using A Neural Network
for Magnetic Levitation
Systems

3.1 Introduction

Magnetic levitation systems have practical importance in many engineering

systems such as frictionless bearings for inertial instruments, vibration isola-

tion tables, and high-speed trains [83]. However, designing a controller for the

magnetic levitation system is very challenging, because of its strong nonlinear-

ities due to the natural properties of magnetic fields. Thus, it is very difficult

to design feedback controllers using classical methods to achieve the desired

stability and performance.

On the other hand, adaptive control methods have been developed as an

attempt to overcome difficulties connected with the unknown system struc-

tures and critical parameter values as well as the changing control regimes

[2,5,7,14,17]. However, most self-tuning and adaptive control algorithms usu-

ally use estimators or identifiers of almost the same order as the controlled

plant. Since the dimension of plants in the real world may be very large

or unknown, the implementation of adaptive control procedures may be very

difficult.

The SAC procedure was developed by Sobel et al. [19,20] as an attempt to

simplify the adaptive controllers, since no identifiers or observers are needed

in the feedback loop [34]. Furthermore, the reference model is allowed to be

of a very low order compared with the controlled plant. For linear plants with

unknown structures, SAC is an important class of adaptive control schemes

[13, 34, 36]. However, for nonlinear plants with unknown structures, it may

not be possible to ensure a perfect plant output that follows the output of a
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reference model by SAC [21,22,84].

For nonlinear plants, many methods for control using a neural network

have been proposed. It has been proven that these control methods show

excellent performance dealing with nonlinearities [4, 9, 21,22,79,84].

Our focus in this chapter is in designing adaptive controllers for SISO and

MIMO configurations of an experimental magnetic levitation system using the

method of SAC with the neural network proposed in chapter 2 and [84]. The

SISO magnetic levitation system using only one magnet has two configura-

tions, a configuration using a repulsive force from the lower coil to levitate the

lower magnet and another configuration using an attractive force via the upper

coil to levitate the upper magnet. The MIMO configuration of the magnetic

levitation system basically uses the two magnets, the lower magnet and the

upper magnet, simultaneously by applying a repulsive force from the lower

coil to levitate the lower magnet, and an attractive force via the upper coil to

levitate the upper magnet [85].

In principle, the problem of synthesizing an MIMO controller can be de-

rived from the SISO case. In many multivariable processes, there is a strong

interaction (coupling) between inputs and control loops. In such a case, it

is important to consider a decoupling control strategy to improve the per-

formance of closed-loop systems. When the model parameters are unknown,

a feasible approach is to adopt an adaptive decoupling scheme [80]. For a

nonlinear plant that has an unknown model structure and parameters, the

decoupling control problem becomes more complicated, because we need to

design a controller that can simultaneously solve the decoupling problem, the

unknown model structure and parameter problem, and the nonlinearity prob-

lem of the plant. For the decoupling and the unknown model structure and

parameter problems, we consider SAC to be the best approach, and for the

nonlinearity problem, a neural network is considered to be the best approach.

In this chapter, we present a control method for the SISO and MIMO con-

figurations of a nonlinear magnetic levitation system using the method of SAC

with a neural network. The control method is implemented using a computer;

therefore, it is necessary to apply the control method in the discrete-time do-

main. The control input is given by the sum of the output of SAC and that

of the neural network. The role of the neural network is to compensate for

the nonlinearity of the plant by constructing a linearized model so as to mini-

mize the output error caused by the nonlinearities in the control system. The

role of SAC is to perform model matching for a linear system with unknown

structures to a given linear reference model. In this chapter, as in chapter 2
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and [84], we use a design method using the backpropagation learning algorithm

of a simple multilayer feedforward neural network, using a direct neural adap-

tive control method [4,9], to design SAC for the nonlinear magnetic levitation

system. Furthermore, in this chapter, the magnetic levitation system is set

to satisfy the assumptions required by chapter 2 and [84]; thus, the stability

analysis in chapter 2 and [84] can be applied to it. Finally, experiments are

executed and the effectiveness of this proposed control method is confirmed.

3.2 Magnetic Levitation System

The magnetic levitation system, shown in Figs. 3.1 and 3.2, consists of lower

and upper drive coils that produce a magnetic field in response to a DC current,

as described in [85]. The magnet travels along a precision ground-glass guide

rod. The magnet is of an ultra-high field strength rare-earth type and is

designed to provide large levitated displacements to clearly demonstrate the

principles of levitation and motion control.

Two laser-based sensors measure the magnet positions. The lower sensor

is typically used to measure the position of a given magnet near the lower coil,

and the upper sensor is used near the upper coil. This sensor design utilizes

light amplitude measurement and includes special circuitry to desensitize the

signal to stray ambient light and thermal fluctuations.

The lower magnet is levitated through a repulsive magnetic force by en-

ergizing the lower coil. As the current in the coil increases, the field strength

increases and the levitated magnet height is increased. For the upper coil,

the levitating force is attractive. By separately using a repulsive force from

the lower coil to levitate a single magnet, and an attractive force via the up-

per coil, two SISO configurations are produced, where the SISO configuration

using the upper coil is more difficult to control than the SISO configuration

using the lower coil [85]. Furthermore, by simultaneously using a repulsive

force from the lower coil to levitate the lower magnet, and an attractive force

via the upper coil to levitate the upper magnet, an MIMO configuration is

created. Free-body diagrams of the suspended magnets of the magnetic lev-

itation system are shown in Figs. 3.3 and 3.4. The magnets are acted on by

forces from the lower and upper coils, from gravity, and from friction.

First, from Fig. 3.3, the dynamic model of the SISO magnetic levitation

system can be derived. From [85], for the configuration using the lower coil,

we have

mÿ1 + c1ẏ1 = Fu11 −mg (3.1)
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and for the configuration using the upper coil, we have

mÿ2 + c2ẏ2 = Fu22 −mg (3.2)

Then, from Fig. 3.4, we derive the dynamic model of the MIMO magnetic

levitation system. From [85], for the lower magnet, we have

mÿ1 = Fu11 − Fu21 − Fm12 − c1ẏ1 −mg (3.3)

and for the upper magnet, we have

mÿ2 = Fm12 + Fu22 − Fu12 − c2ẏ2 −mg (3.4)

where it is assumed that c1 = c2, and Fu11 , Fu12 , Fu22 , Fu21 , and Fm12 are

described as

Fu11 =
i1

a(y1 + b)N
(3.5)

Fu12 =
i1

a(yc + y2 + b)N
(3.6)

Fu22 =
i2

a(−y2 + b)N
(3.7)

Fu21 =
i2

a(yc − y1 + b)N
(3.8)

Fm12 =
2.69

(y12 + 4.2)N
(3.9)

where

y12 = yc + y2 − y1 (3.10)

y1 is the position of the lower magnet, y2 is the position of the upper magnet,

yc = 13 cm is the movement range of the magnets between the lower coil and

the upper coil, and i1 and i2 are the coil currents in the lower and upper coils,

respectively. However, in the control algorithm, the control input may be a

digital word, voltage, or current, and is presumed to be linearly proportional

to the coil current [85]. The parameter values of (3.1)–(3.9) are shown in Table

3.1.

For the upper magnet in the SISO configuration using the upper coil and in

the MIMO configuration, we limit the movement of the magnet to the ranges

of 1.1 cm and 0.8 cm, respectively, from the upper coil by using a clamp.

Thus, the movement of the upper magnet will always be inside the attracting

range of the upper coil.
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Figure 3.1: SISO magnetic levitation system apparatus [85]

Figure 3.2: MIMO magnetic levitation system apparatus [85]

3.3 Discrete-Time Linear SAC

The SAC method in section 2.2 will be implemented in discrete-time terms.

Thus, the control terms of the continuous-time SAC in (2.11)–(2.17) are trans-

formed into discrete-time terms described as

u(t) = fzoh(up(k)) (3.11)

up(k + 1) = Ke(k)ey(k) + Kx(k)xm(k) + Ku(k)um(k)

= K(k)r(k) (3.12)
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Figure 3.3: Free-body diagram and dynamic configuration of the SISO mag-
netic levitation system [85]

Figure 3.4: Free-body diagram and dynamic configuration of the MIMO mag-
netic levitation system [85]

where u(t) is the continuous-time plant input vector, up(k) is the discrete-time

SAC output vector, fzoh(·) is the zero-order hold function, and

K(k) = [Ke(k) Kx(k) Ku(k)] (3.13)

rT (k) = [eT
y (k) xT

m(k) uT
m(k)] (3.14)

where the adaptive gains are obtained as a combination of ’proportional’ and

’integral’ terms as follows

K(k) = Kp(k) + Ki(k) (3.15)

Kp(k) = ey(k)rT (k)Tp (3.16)

Ki(k) = ey(k)rT (k)Ti + σ′Ki(k − 1) (3.17)

(σ′ = exp−∆Tσ)

where expn is the natural exponent of n and ∆T is the sampling period.

45



Table 3.1: Parameter values of the magnetic levitation system [85]

Parameter Description Values
m mass of the levitated magnet 0.12 kg
g gravity 9.8 m/s2

a constant 1.65
b constant 6.2
N constant 3–4.5

c1, c2 friction coefficient 0–10

In (3.12)–(3.17), ey(k) is the discrete-time term of ey(t) in (2.8). The

supplementary values of the augmented plant in (2.6)–(2.9) are described in

discrete-time terms as

ya(k) = yp(k) + ys(k) (3.18)

ys(k) = Dp(z)u(k)

= exp
−∆T

ρ ys(k − 1) +
Dp

ρ
u(k) (3.19)

ey(k) = ym(k)− ya(k) (3.20)

The control objective is to achieve the following relation

lim
k→∞

ey(k) = 0 (3.21)

Furthermore, the discrete-time terms of the reference model in (2.4) and

(2.5) are given as

xm(k + 1) = Amxm(k) + Bmum(k) (3.22)

ym(k) = Cmxm(k) (3.23)

where xm(k) is the nmth-order state vector, um(k) ∈ Rnj×1 is the input,

ym(k) ∈ Rnj×1 is the output of the discrete-time reference model, and Am,

Bm, and Cm are matrices with appropriate dimensions. The reference model

can be independent of the controlled plant, and we can safely assume that

nm ¿ np.

The linear discrete-time SAC is schematically represented in Fig. 3.5. Us-

ing an appropriate sampling period ∆T , a sampler is implemented after the

plant to obtain the discrete-time plant output yp(k) to produce ey(k), as in

(3.14) and (3.18)–(3.20), as a part of the input of the discrete-time SAC. Then,

a zero-order hold is implemented to transform the discrete-time SAC output

vector up(k) back to the continuous-time plant input vector u(t), as shown in
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Figure 3.5: Schematic representation of the conventional discrete-time SAC

Fig. 3.5 and (3.11). For systems having bandwidths of up to 10Hz, appropri-

ate sample rates are often in the order of 100Hz, so that appropriate sample

periods are in the order of 0.01sec [81].

3.4 Nonlinear Discrete-Time SAC with Neural Net-
work

When the input-output characteristic of the controlled object is nonlinear,

as in the magnetic levitation system, it is not possible to express it as (2.1)

and (2.2) [84]. Then, we express the unknown BIBO nonlinear plant as a

system that consists of a linear part and a nonlinear part as in (2.18) and

(2.19). Then, following chapter 2 and [84], we assume that the nonlinear plant

satisfying (2.18) and (2.19) satisfies the assumptions 2-2(a), 2-2(c) and the

following assumption.

Assumption 3-1: For the system (2.18) and (2.19), there exists an aug-

mented plant with its linear part satisfying assumption 2-1(a). This aug-

mented plant, as in (3.18), is formed by incorporating the system (2.18) and

(2.19) through a sampler with the discrete-time supplementary values given

by (3.18) and (3.19).

However, in this case, when the SAC rules in (2.11)–(2.11) and (3.11)–

(3.17) are used to control the nonlinear plant (2.18) and (2.19), which also

satisfies assumptions 2-2(a), 2-2(c) and 3-1, the problem of an output error

will arise [21,22,84].
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To overcome the problem of output error and to ensure that the plant

output yp(k) converges to the reference model output ym(k), we adapt and

apply the method in chapter 2 and [84]. Thus, the control input is synthesized

as

u(t) = fzoh(u(k)) (3.24)

u(k) = up(k) + ūp(k) (3.25)

where u(t) is the continuous-time control input vector of the nonlinear plant,

u(k) is the discrete-time control input vector of the nonlinear plant, up(k) =

[up1(k), · · · , upnj
(k)]T is the control input vector of the simple adaptive con-

troller, as mentioned in (3.12), and ūp(k) = [ūp1(k), · · · , ūpnj
(k)]T is a control

input vector of the neural network given as

ūp(k) = αûp(k) (3.26)

where α is a positive constant, and ûp(k) = [ûp1(k), · · · , ûpnj
(k)]T is the

discrete-time output vector of the neural network.

The structure of the nonlinear discrete-time SAC system with a neural

network is shown in Fig. 3.6. Using an appropriate sampling period ∆T , a

sampler is implemented after the nonlinear plant to obtain the discrete-time

plant output yp(k) to be used as an input vector to the discrete-time controller.

Then, a zero-order hold is implemented to transform the discrete-time control

input vector u(k) of the plant back to the continuous-time input vector u(t), as

shown in Fig. 3.6 and (3.24). Consequently, we can assume that the discrete-

time output ûp(k) is as (2.24).

Using the above approach, the training of a neural network is performed.

The training is carried out by adjusting the weights of the neural network until

the output error e(k), given as

e(k) = ym(k)− yp(k) (3.27)

satisfies the following relation:

lim
k→∞

|e(k)| = lim
t→∞ |ym(k)− yp(k)| ≤ ε (3.28)

where ε is a small positive value.

The composition and training process of the neural network is performed

using the method given in sections 2.4 and 2.5.
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Figure 3.6: Structure of a nonlinear discrete-time SAC system with a neural
network

3.5 Control Configuration of the Magnetic Levita-
tion System

A diagram of the control configuration of the magnetic levitation system we

use in our experiments is shown in Fig. 3.7. It consists of three subsystems [85].

The first subsystem is the electromechanical plant, which has been explained

in section 3.2.

The second subsystem is the control box, which contains the digital-signal-

processor (DSP)-based real-time controller, servo/actuator interfaces, servo

amplifiers, and auxiliary power supplies [85]. The DSP is based on the M56000

processor family, which is capable of executing control laws at high sampling

rates allowing the implementation to be modeled very close to continuous time.

The scale of the sampling period ∆T highly depends on this high-sampling-

rate capability of the DSP. Four 16-bit analog-to-digital (ADC) converters are

used as samplers to digitize the laser sensor signals.

The third subsystem is the ECP Executive program, which runs on a PC

under Windows 2000TM . This graphical-user-interface (GUI)-based program

is the user’s interface to the system and supports the controller specification,

trajectory definition, data acquisition, plotting, and system execution com-

mands [85]. We discuss the implementation and testing of the conventional

SAC method in section 3.3 and our proposed method in section 3.4 to control

the magnetic levitation system using the ECP Executive program.
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Figure 3.7: Control configuration of the magnetic levitation system

3.6 Convergence and Stability

We will apply the convergence and stability conditions in chapter 2 and [84]

for this chapter. Therefore, as a first step, we are required to choose the

sampling period ∆T to be the minimum value that can be supported by the

real-time controller, so that the discrete-time SAC terms of our method closely

approximate the continuous-time SAC terms of the method in section 2.2

and [84].

The next step is to set the magnetic levitation system for the SISO and

MIMO configurations to satisfy the conditions in assumptions 2-2(a), 2-2(c)

and 3-1. The SISO configuration of the magnetic levitation system using

the lower coil is naturally stable and bounded, since the movement of the

magnet is always inside the repulsing range of the lower coil. However, the

SISO configuration using the upper coil and the MIMO configuration for the

upper magnet are unbounded, since the upper magnet can move outside the

attracting range of the upper coil and out of the range of control. Therefore,

as explained in section 3.2, we attach a clamp to limit the movement of the

upper magnet in such configurations so that it is always inside the attracting

range of the upper coil, to ensure that such configurations remain bounded.

Thus, all of the SISO and MIMO configurations of the magnetic levitation

plant are stable and bounded, where their dynamic models in (3.1)–(3.4) can

be expressed as in (2.18) and (2.19) and satisfy the conditions in assumptions

2-2(a), 2-2(c), and 3-1.

The last step is to choose a suitable value for the learning parameter c, so

that it satisfies the boundaries given in chapter 2 and [84]. For the weights

between the hidden layer and the output layer, mqj , the boundary of the
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learning parameter is chosen as

0 < c <
2
nq

(3.29)

For the weights between the input layer and the hidden layer, miq, the bound-

ary of the learning parameter is chosen as

0 < c <
2
nq

[
1

mqj,max · ii,max

]2

(3.30)

where

mqj,max = maxk ‖mqj(k)‖ (3.31)

ii,max = maxk ‖ii(k)‖ (3.32)

By carrying out the three steps above, we can ensure the convergence

and stability of our proposed method for controlling the SISO and MIMO

configurations of the magnetic levitation system.

3.7 Experimental Results and Discussion

In our experiment, we will apply the proposed method to both of the SISO

configurations using the lower coil and upper coil and to the MIMO config-

uration of the nonlinear magnetic levitation system, as explained in section

3.2. We will also compare the result of our proposed method to the result of

using linear SAC. In our proposed method, the plant dynamics are considered

to be unknown. Therefore, in this experiment we consider it unnecessary to

know the detailed parameters of the plant dynamics of the magnetic levitation

system. The experimental setup of the magnetic levitation system is shown in

Fig. 3.8.

3.7.1 SISO Configuration of the Nonlinear Magnetic Levita-
tion System Using the Lower Coil

We apply the control method to produce a repulsive force from the lower coil

to control the height of the magnet. The parameters of SAC and the neural
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Figure 3.8: Experimental setup of the magnetic levitation system
system

network are fixed as below:

Tp = diag(1, 1, 1) (in (3.16))

Ti = diag(2, 2, 2) (in (3.17))

σ′ = 0.99999 (in (3.17))

Dp = 10−8 (in (3.19))

ρ = 0.1 (in (3.19))

∆T = 0.0027 (in (3.19))

α = 1 (in (3.26))

µ = 2 (in (2.31))

c = 0.1 (in (2.34))

Furthermore, we assume the first-order reference model in (3.22) and (3.23)

with parameters

Am = 0.9048, Bm = 0.09516, Cm = 1

For this magnetic levitation system, we estimate the value of Jplant by

performing some experiments in advance. From those experiments we obtain

Jplant = −1

Using the above parameters, we apply SAC to the SISO nonlinear system

using the neural network to control the magnetic levitation plant. The number

of neurons of the neural network in the input layer is 2, the number in the
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Figure 3.9: ym(k) and yp(k) using only SAC

Figure 3.10: ym(k) and yp(k) using SAC and neural network simultaneously

hidden layer is 5, and the number in the output layer is 1. The input vector

i(k) of the neural network is given as

i(k) = [ym(k − 1), yp(k − 1)]T

A sampling period ∆T of 0.0027 seconds is selected in this experiment. Figs. 3.9–

3.11 show the results of this experiment.

3.7.2 SISO Configuration of the Nonlinear Magnetic Levita-
tion System Using the Upper Coil

We apply the control method to produce an attractive force from the upper

coil to control the height of the magnet. The parameters of SAC and the
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Figure 3.11: Comparison of E(k) using several values of learning parameter c
and using only SAC

neural network are fixed as below:

Tp = diag(1, 1, 1) (in (3.16))

Ti = diag(2, 2, 2) (in (3.17))

σ′ = 0.99999 (in (3.17))

Dp = 10−8 (in (3.19))

ρ = 0.1 (in (3.19))

∆T = 0.0027 (in (3.19))

α = 1 (in (3.26))

µ = 2 (in (2.31))

c = 0.05 (in (2.34))

Furthermore, we assume the first-order reference model in (3.22) and (3.23)

with parameters

Am = 0.9048, Bm = 0.09516, Cm = 1

In similar way as in subsection 3.7.1, we obtain

Jplant = −1

and the number of neurons of the neural network in the input layer is 2, the

number in the hidden layer is 5, and the number in the output layer is 1. The

input vector i(k) of the neural network is given as

i(k) = [ym(k − 1), yp(k − 1)]T
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A sampling period ∆T of 0.0027 seconds is selected in this experiment. Figs. 3.12–

3.14 show the results of this experiment.

3.7.3 MIMO Configuration of the Nonlinear Magnetic Levita-
tion System

We apply the control method to simultaneously produce a repulsive force from

the lower coil and an attractive force from the upper coil to simultaneously

control the heights of the lower and upper magnets, respectively. The param-

eters of SAC and the neural network are fixed as below:

Tp = diag(1, 1, 1, 1, 1, 1) (in (3.16))

Ti = diag(1, 1, 1, 1, 1, 1) (in (3.17))

σ′ = 0.99999 (in (3.17))

Dp = diag(10−10, 10−10) (in (3.19))

ρ = 0.1 (in (3.19))

∆T = 0.0044 (in (3.19))

α = 1 (in (3.26))

µ = 2 (in (2.31))

c = 0.05 (in (2.34))

Furthermore, we assume the first-order reference model in (3.22) and (3.23)

with parameters

Am1 = 0.9048, Bm1 = 0.09516, Cm1 = 1

Am2 = 0.9048, Bm2 = 0.09516, Cm2 = 1

In similar way as in subsections 3.7.1 and 3.7.2, we obtain

Jplant1 = −1, Jplant2 = −1,

and the number of neurons of the neural network in the input layer is 4, the

number in the hidden layer is 5, and the number in the output layer is 2. The

input vector i(k) of the neural network is given as

i(k) = [ym1(k − 1), ym2(k − 1), yp1(k − 1),

yp2(k − 1)]T

A sampling period ∆T of 0.0044 seconds is selected in this experiment. Figs. 3.15–

3.17 show the results of this experiment.
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3.7.4 Discussion

In our experiments, we apply the controller that uses only SAC and the con-

troller that uses our proposed method of SAC with a neural network to control

both of the SISO configurations using the lower coil and the upper coil and

the MIMO configuration of the nonlinear magnetic levitation system. These

controllers are required to control the real plant of the magnetic levitation sys-

tem to follow the desired outputs of the reference models. Then we compare

the results of these two controllers.

In subsections 3.7.1–3.7.3, we are required to select suitable values for some

parameters. To select the values for these parameters, the selection methods

of each SAC and neural network, as described in sections 2.2, 3.3–3.6, are

applied independently.

At first, we apply only SAC to the controller and find its parameters using

the selection method of SAC described in section 2.2. As mentioned in section

2.2, for linear plants, the augmented plant error ey(k) can be made very small

by setting the parameters Tp and Ti of SAC to very large values. However,

this cannot be applied for nonlinear plants. Furthermore, when Tp and Ti

are increased to above the hardware capability limitations, ey(k) will stop

decreasing further and start to increase again. Therefore, to set Tp and Ti for

nonlinear plants, we start by applying very small values. We increase these

values until we find the largest possible values of Tp and Ti, which produce the

smallest error. Then, we fix these values of Tp and Ti for the controller using

only SAC. Then, we also use these values of Tp and Ti for the SAC part of our

proposed controller.

After we have fixed the values of Tp and Ti for the SAC part of our proposed

controller, we start to run the neural-network part of our proposed controller

to find the learning parameter c that can reduce the remaining error. We

start with a small value of the learning parameter c, and increase it by small

increments to find the value that can reduce the remaining error function E(k)

to a satisfactory minimum level sufficiently quickly while maintaining stability

and convergence. In our experiments, the learning of the neural network is

performed and completed while the controllers are directly applied to the

experimental plants.

As mentioned in section 3.4, increasing the value of the learning parameter

c of neural network will reduce E(k) faster. However, in our proposed method,

we must keep the value of the learning parameter c inside the boundaries given

in (3.29) and (3.30). Otherwise E(k) will increase again and the convergence

56



Figure 3.12: ym(k) and yp(k) using linear SAC

Figure 3.13: ym(k) and yp(k) using SAC and neural network simultaneously

and stability of the system cannot be guaranteed. In practical applications,

the boundaries can be predicted without knowing their exact values. We can

predict the boundaries by noting that by the time the value of the learning

parameter c reaches the boundaries, E(k) will have started to increase again.

E(k) will increase faster as the value of the learning parameter c increases

further, and this will cause the system to become unstable.

The selection of the first-order system for reference models in subsections

3.7.1–3.7.3 is to emphasize the fact that low-order models do not affect the

ability of the adaptive control system.

Figs. 3.9–3.16 show the experimental results. Since real plants have non-

linearities and uncertainties, it is difficult to achieve exactly the same plant

outputs for the same actions as those shown in Figs. 3.9, 3.10, 3.12, 3.13, 3.15,

and 3.16.

Figs. 3.9, 3.12, and 3.15 show the desired output ym(k) and the plant

output yp(k) using linear SAC. These results show that the plant output yp(k)
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Figure 3.14: Comparison of E(k) using several values of learning parameter c
and using only SAC

cannot follow the desired output ym(k) closely, and also that the output error

between yp(k) and ym(k) is large.

Figs. 3.10, 3.13, and 3.16 show the desired output ym(k) and the plant

output yp(k) using SAC and the neural network simultaneously using the

online training of the backpropagation algorithm. It can be seen that the

output error has been reduced, and that the plant output yp(k) can follow the

desired output ym(k) closely.

Figs. 3.11, 3.14, and 3.17 show the error function E(k) versus the number

of learning iterations for values of the learning parameter from c = 0.05 to

c = 0.5 and also using only SAC. For the SISO configuration using the lower

coil, it can be seen from Fig. 3.11 that the error function E(k) can reach its

minimum value at c = 0.1. When we apply c = 0.5, the error function starts

to increase again. This shows that c = 0.5 is outside the boundaries given in

(3.29) and (3.30). For the SISO configuration using the upper coil, it can be

seen from Fig. 3.14 that the error function E(k) can reach its minimum value

at c = 0.05. When we apply c = 0.1, the error function starts to increase

again. Furthermore, when we apply c = 0.5, the error function becomes very

large and the system becomes unstable and diverges. This shows that c = 0.1

and c = 0.5 are outside the boundaries given in (3.29) and (3.30). For the

MIMO configuration, it can be seen from Fig. 3.17 that the error function

E(k) can reach its minimum value at c = 0.05. When we apply c = 0.1, the

error function does not change much. Furthermore, when we apply c = 0.5,

the error function becomes very large and the system becomes unstable and

diverges. This shows that c = 0.5 is outside the boundaries given in (3.29)
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Figure 3.15: ym(k) and yp(k) using linear SAC

and (3.30).

3.8 Conclusions

In this chapter, we have proposed a discrete-time control method for SISO

and MIMO configurations of a nonlinear magnetic levitation system using

the method of SAC with a neural network. The control input was given

by the sum of the output of the simple adaptive controller and the output

of the neural network. The role of the neural network was to compensate

for the nonlinearity of the plant by constructing a linearized model so as

to minimize the output error caused by nonlinearities in the control system.

Furthermore, in this chapter, the magnetic levitation system was set to satisfy

the assumptions required by chapter 2 and [84]; thus, the stability analysis in

chapter 2 and [84] could be applied. Finally, experiments were executed, and

the effectiveness of this proposed control method was confirmed; it was shown

that the output yp(k) of the magnetic levitation system, for all of the SISO

and MIMO configurations, could converge to the desired output ym(k) after

the learning of the neural network was performed.
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Figure 3.16: ym(k) and yp(k) using SAC and neural network simultaneously

Figure 3.17: Comparison of E(k) using several values of learning parameter c
and using only SAC
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Chapter 4

A Control Method for
Nonlinear Systems Using
SAC with Multiple Neural
Networks

4.1 Introduction

Adaptive control methods were developed as an attempt to overcome difficul-

ties connected with the ignorance of system structure and critical parameter

values as well as changing control regimes [2, 5, 7, 14, 17]. Among adaptive

control methods, SAC procedure was developed by Sobel et al. [19, 20] as an

attempt to simplify adaptive controllers, since no observers or identifiers are

needed in the feedback loop [34]. Furthermore, the reference model is al-

lowed to be of a very low order compared to the controlled plant. For linear

plants with unknown structures, SAC is an important class of adaptive control

schemes [13,34,36].

In the beginning, researches in the field of adaptive control methods were

focussed on linear plants. However, recently, their focus has been transferred

to nonlinear plants [26]. Therefore, dealing with nonlinear systems using the

concept of SAC has also been investigated [77, 78]. However, for nonlinear

plants with unknown structures, it is difficult to ensure a perfect plant output

that follows the output of a reference model by using conventional SAC [21,

22,84,86].

To solve the problem of using SAC to control nonlinear systems, at first,

control methods for nonlinear systems using a combination of SAC and neu-

ral networks have been proposed in [21] for SISO systems and in [22] for

MIMO systems. Chapter 2 and reference [84] have provided the theoretical
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explanations about convergence and stability analysis of the method of SAC

using neural network in the general form of MIMO, and defined the class of

nonlinear systems that can be controlled using that method. Chapter 3 and

reference [86] have discussed the application of the control method of SAC

using neural network for nonlinear magnetic levitation systems.

The methods in chapters 2 and 3 and in [22,84,86] are using a single neural

network. Because of that, the performance of those methods can be increased

by increasing the size of neural network, which means increasing the number of

the neurons in the neural network [9,87]. As the size of the neural network is

increased, the calculation time required for each sampling time in the training

process will also increase. When the size of the neural network is very large,

the calculation process will be very time consuming. If these methods are

applied to control an actual plant, it is necessary to drastically reduce the

calculation time required for each sampling time in the training process of the

neural network [21].

To solve this problem, references [21, 88] have proposed the using of sev-

eral parallel small-scale neural networks instead of a single neural network.

However, the methods in [21, 88] have some deficiencies, theoretical explana-

tions about convergence and stability analysis are not provided and the class

of nonlinear systems which can be controlled is not provided. Basing on and

extending the analysis given in chapter 2 and in reference [84], we attempt to

overcome these deficiencies by providing a thorough theoretical explanations

about convergence and stability analysis, and defining the class of nonlinear

systems which can be controlled. Thus, we expect to have a more general

method with a more general and thorough theoretical explanations compared

to chapters 2 and 3 and references [21,22,84,86,88].

This chapter proposes a control method for nonlinear systems using SAC

with multiple neural networks. The control input is given by the sum of the

output of the simple adaptive controller and the output of the multiple neural

networks. The multiple neural networks consists of several parallel small-scale

neural networks having identical structures. The role of the multiple neural

networks is to compensate for constructing a linearized system so as to min-

imize the output error caused by nonlinearities in the controlled system. By

using the multiple neural networks, we expect to drastically reduce the calcu-

lation time required for each sampling time in the training process of neural

networks. The role of the simple adaptive controller is to perform the model

matching for the linearized system to a given linear reference model. In this

chapter, we use a design method using backpropagation training algorithm of
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simple multilayer feedforward neural network, using the direct neural adaptive

control method, to train the multiple neural networks of our method. Further-

more, a thorough theoretical explanation of convergence and stability analysis

for this method is performed. Convergence and stability analysis shows that

stability can be guaranteed for the class of nonlinear systems with BIBO and

bounded nonlinearities. Finally, computer simulations for an SISO and a 2-

inputs 2-outputs MIMO nonlinear systems are executed and the effectiveness

of this control method is confirmed.

The preeliminary version of our method has been presented in [89] in the

scope of SISO. The proposed method of this chapter will be discussed in the

more general scope of MIMO.

4.2 Nonlinear SAC with Multiple Neural Networks

In this chapter, we consider the nonlinear system in (2.18), (2.19) which sat-

isfies assumption 2-2. To overcome the problems of the overlarge size of the

neural network and the time consuming calculation process of the method

proposed in chapters 2 and 3 and references [22, 84, 86], we will apply several

parallel small-scale neural networks, called multiple neural networks, instead

of one large neural network. Each of these small-scale neural networks has an

identical structure. Thus, the control input vector of the neural network in

(2.21)–(2.23) is replaced with the control input vector of the multiple neural

networks which will be synthesized as

ūp(t) = αûp(t) (4.1)

ûp(t) = fzoh(
nv∑

v=1

ûpv(k)) (4.2)

where nv is the number of small-scale neural networks and ûpv(k) = [ûpv1
(k),

· · · , ûpvnj
(k)]T is the discrete-time output vector of the multiple neural net-

works. The control input of SAC in (2.21) will be calculated using (2.12)–

(2.17) in section 2.2. The nonlinear SAC with multiple neural networks and

the multiple neural networks are represented in Figs.4.1 and 4.2, respectively.

As in chapter 2 and references [22,84], in our proposed method, we also im-

plement a sampler in front of the multiple neural networks with an appropriate

sampling period ∆T to obtain the discrete-time multi-input of the multiple

neural networks, and a zero-order to transform the sum of discrete-time out-

put ûpv of the multiple neural networks, as in (4.2) back to continuous-time

output ûp(t).
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Figure 4.1: Structure of the nonlinear SAC system with multiple neural net-
works

Consequently, we can assume that the discrete-time output ûp(k) of the

multiple neural networks is as follows

ûpv = ĥ(yT
m(k − 1),

yT
p (k − 1), · · · , yT

p (k − n)) (4.3)

where ĥ(·) is an unknown nonlinear function vector and n is the number of

past outputs of the plant.

Using the above approach, the multiple neural networks will be trained.

As in chapter 2, the training process is done by adjusting the weights of

the multiple neural networks, using the standard backpropagation algorithm

described in chapters 2 and 3 and references [84, 86], until the output error

e(t) given in (2.25) satisfies the relation in (2.26).

4.3 Composition and Learning of Multiple Neural
Networks

Each small-scale neural network of the multiple neural networks has an iden-

tical structure. Expanding from chapter 2 and reference [84], let the v-th

parallel small-scale neural network (v = 1, · · · , nv) consists of three layers: an

input layer, an output layer and a hidden layer. Let ivi(k) be the input to

the i-th neuron in the input layer (i = 1, · · · , ni), hvq(k) be the input to the
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Figure 4.2: Structure of the multiple neural networks

q-th neuron in the hidden layer (q = 1, · · · , nqv), ovj(k) be the input to the

j-th neuron in the output layer (j = 1, · · · , nj), where ni(k), nqv(k), and nj

are the number of neurons in the input layer, hidden layer, and output layer,

respectively. Furthermore, let mviq be the weights between the input layer

and the hidden layer, mvqj be the weights between the hidden layer and the

output layer. A small-scale neural network is represented in Fig.4.3.

The control input is given by the sum of the output of the simple adaptive

controller and the output of the multiple neural networks. The multiple neural

networks are used to compensate for the nonlinearity of the plant dynamics

that is not taken into consideration in the usual SAC. The role of the multiple

neural networks is to construct a linearized model by minimizing the output

error caused by the nonlinearities in the control systems. Refering to (4.3),

the input vector iv(k) of the multiple neural networks is given as

iv(k) = [yT
m(k − 1), yT

p (k − 1), · · · , yT
p (k − n)]T .

(4.4)

Therefore, the nonlinear function of the system can be approximated by the

multiple neural networks. Furthermore, the value of n should be chosen ap-

propriately according to practical nonlinear systems.

Adopting from chapter 2 and reference [84], we also can obtain

hvq(k) =
∑

i

ivi(k)mviq(k) (4.5)

ovj(k) =
∑

q

S1(hvq(k))mvqj(k) (4.6)

ûpvj
(k) = S2(ovj(k)) (4.7)

where S1(·) is a sigmoid function, S2(·) is a pure linear function, and j =
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1, 2, · · · , nj . The sigmoid function is chosen as

S1(X) =
2

1 + exp(−µX)
− 1 (4.8)

where µ > 0, and the pure linear function is chosen as

S2(X) = X. (4.9)

Consider the case when S1(X) = a. Then the derivative of the sigmoid

function S1(·) and the pure linear function S2(·) are as follows

S′1(X) =
µ

2
(1− a2) (4.10)

S′2(X) = 1. (4.11)

The objective of training is to minimize an error function E(k) by taking

the error gradient with respect to the parameters or the weight vector m(k),

that are to be adapted. The error function is defined as

E(k) =
1
2
eT (k)e(k)

=
1
2

nj∑

j

[
ymj (k)− ypj (k)

]2 (4.12)

then, the weights are adapted by using

∆mv(k) = −c · ∂E(k)
∂mv(k)

(4.13)

where c > 0 is the learning parameter. For the learning process, (4.13) will be

expanded as follows

∆mvqj(k) = −c · ∂E(k)
∂ypj (k)

· ∂ypj (k)
∂ûpvj

(k)
·

∂ûpvj

∂S2(ovj(k))

· ∂S2(ovj(k))
∂ovj(k)

· ∂ovj(k)
∂mvqj(k)

(4.14)

∆mviq(k) = −c ·
nj∑

j

∂E(k)
∂ypj (k)

· ∂ypj (k)
∂ûpvj

(k)

·
∂ûpvj

(k)

∂S2(ovj(k))
· ∂S2(ovj(k))

∂ovj(k)

· ∂ovj(k)
∂S1(hvq(k))

· ∂S1(hvq(k))
∂hvq(k)

· ∂hvq(k)
∂mviq(k)

(4.15)
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where

∂E(k)
∂ypj (k)

= − [
ymj (k)− ypj (k)

]

∂ypj (k)
∂ûpvj

(k)
= Jplantvj

∂ûpvj
(k)

∂S2(ovj(k))
= 1

∂S2(ovj(k))
∂ovj(k)

= 1

∂ovj(k)
∂mvqj(k)

= S1(hvq(k))

∂ovj(k)
∂S1(hvq(k))

= mvqj(k)

∂S1(hvq(k))
∂hvq(k)

=
µ

2
[
1− S2

1(hq(k))
]

∂hvq(k)
∂mviq(k)

= ivi(k)

Furthermore, Jplantvj
represents the Jacobian of the plant. According to

[38], this plant Jacobian can be estimated by using an identified parameter

and the internal variables of the neural network model in the indirect neural

adaptive control. In many cases, this Jplantvj
is clear from physical insight

or can be estimated through some experiments, as mentioned and proposed

in [4, 9].

Therefore, considering for holding the fundamental design concept of SAC,

i.e. without any identifiers, in this chapter we utilize from the direct neural

adaptive control method [4, 9]

Jplantvj
= SGN(

∂ypj (k)
∂ûpvj

(k)
) (4.16)

where SGN(·) is a sign function.

4.4 Calculation Cost

This section will give an analysis and comparisson of calculation cost between

a single large neural network and multiple neural networks. For simplicity,

in the analysis we focus on the numbers of multiplication required to update

each of the weights of the neural networks. We assume that it requires nmiq

multiplications to update the weights between the input layer and the hidden

layer, and nmqj multiplications to update the weights between the hidden layer

and the output layer.
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Figure 4.3: Structure of a small-scale neural network

First, let us consider a single large neural network with ni neurons in the

input layer, nj neurons in the output layer, and nq neurons in the hidden layer

as described in section 2.4 of chapter 2. Then, the total number nsingleNN of

multiplication required in one sampling time to update its weight is

nsingleNN = ninqnmiq + njnqnmqj (4.17)

Now, let us consider multiple neural networks with nv parallel small-scale

neural networks described in section 4.3. Each small-scale neural network

consists of ni neurons in the input layer, nj neurons in the output layer, and

nqv neurons in the hidden layer. In one sampling time, nv parallel small-scale

neural networks will perform calculation simultaneously. Thus, to update its

weight, the number nmultiNN of multiplication required in one sampling time

is

nmultiNN = ninqvnmiq + njnqvnmqj (4.18)

The relations between the number of neurons in a single large neural net-

work and a small-scale neural network of multiple neural networks are given

as

nq = nvnqv (4.19)

Then Eq.(4.18) can be rewritten as

nmultiNN =
1
nv

(ninqnmiq + njnqnmqj)

=
1
nv

nsingleNN (4.20)

Eq.(4.20) shows that in one sampling time, multiple neural networks perform

multiplication 1
nv

times less than a single large neural network. This means
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that the time for multiple neural networks required for one sampling time is

smaller than the time required by a single large neural network.

4.5 Convergence and Stability

The stability analysis of SAC for a controllable and observable linear plant with

unknown parameters and disturbances has been presented in [13], where the

plant is as described in (2.38), (2.39). This plant (2.38), (2.39) is controllable

and observable and fulfills the ASPR condition in assumption 2-1. Thus, the

theorem 2-1 given in [13] will hold.

For the stability analysis of our method, we will follow and expand the

stability proof presented in section 2.6 and [84]. As mentioned in assumption

2-2(b), the PFC in (2.7), (2.9) is incorporated with the nonlinear system in

(2.18), (2.19) to form the augmented plant, as in (2.6), which its linear part

is ASPR. However, for convenience, first it is necessary for the PFC in (2.7),

(2.9) to be transformed into a state-space form as described in (2.40), (2.41).

Then, by applying (2.40), (2.41) to (2.7), (2.18), (2.19), the augmented plant

can be described as (2.42)–(2.46).

The nonlinear part of the system in (2.42), (2.43) will be compensated

and minimized using the control input of the multiple neural networks ūp(t),

to form a linearized system. The control input of SAC up(t) will perform

model matching of the linearized system to a given linear reference model.

The nonlinearity compensation, minimization, and the linear model matching

processes will be performed simultaneously. Therefore, it is necessary in our

method that the control system is able to keep its stability while performing

those processes. We use the following theorem 4-1 to prove the stability of our

method.

Theorem 4-1: Assume that the nonlinear augmented plant in (2.42),

(2.43) satisfies assumption 2-2, then the control system described in section

4.2 is globally stable with respect to boundedness if the boundaries of the

learning parameter c of the multiple neural networks are set as [84]

0 < c <
2

nqv(k)
(4.21)

for the weights mvqj between the hidden layer and the output layer, and as

0 < c <
2

nqv(k)

[
1

mvqj,max · ivi,max

]2

(4.22)
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for the weights mviq between the input layer and the hidden layer, where

mvqj,max = maxk

∥∥mvqj(k)
∥∥ (4.23)

ivi,max = maxk ‖ivi(k)‖ (4.24)

In other words, all values (states, gains, and errors) involved in the control of

the nonlinear augmented plant are bounded. Furthermore, with a sufficient

number of neurons in each of the parallel small-scale neural network and a

sufficient number nv of the parallel small-scale neural networks of the multiple

neural networks, the remaining output tracking error ey(t) caused by nonlin-

earity can be directly controlled and thus reduced via a sufficient number of

training iterations of the multiple neural networks.

Proof: We start by defining the Lyapunov function of our method as follows

VSACNN (t) = VSAC(t) + VMultiNN (t) (4.25)

where VSAC(t) is the Lyapunov function of SAC of our method, which is a

modification from the one presented in [13], and VMultiNN (t) is the Lyapunov

function of the multiple neural networks of our method. Then, the derivative

of Lyapunov function of our method becomes

V̇SACNN (t) = V̇SAC(t) + V̇MultiNN (t). (4.26)

Following section 2.6 and [84], we start from the stability analysis of the

SAC part of our method. The Lyapunov function and derivative of Lyapunov

function of the SAC part of our method are expanded from the functions

presented in [13] for SAC for linear plant with disturbances in (2.38), (2.39).

We replace the terms δi(t) and δo(t) with δ̂i(x(t), u(t), ūp(t)) and δ̂o(x(t)),

respectively. As in section 2.6 and [84], the Lyapunov function of the SAC

part of our method is described as (2.47). The derivative of the Lyapunov

function in (2.47) is described as (2.52), (2.53).

For the derivative of Lyapunov function in (2.52), (2.53), as in section 2.6

and [84], we can directly apply the same method as the one used in [13] to prove

the stability of our method if δ̂i(x(t), u(t), ūp(t)) and δ̂o(x(t)) are bounded [84].

Refering to (2.46) and assumption 2-2(c), as fy(·) is bounded by the assump-

tion, then δ̂o(xp(t)) is also bounded. However, refering to (2.45) and assump-

tion 2-2(c), eventhough fx(·) is assumed to be bounded, δ̂i(x(t), u(t), ūp(t)) is

bounded if and only if ūp(t) is also bounded. Therefore, based on (4.1), (4.2),

to prove that ūp(t) is bounded, it is necessary to prove the convergence of the

multiple neural networks.
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To prove the convergence of the multiple neural networks part of our

method, we use the method presented in section 2.6 and [84], that followed

[41,42], and apply it to each parallel small-scale neural network that forms the

multiple neural networks. The Lyapunov function VNNv(k) and its derivative

∆VNNv(k) of the v-th parallel small-scale neural network is defined as

VNNv(k) =
1
2
e2(k) (4.27)

∆VNNv(k) = VNNv(k + 1)− VNNv(k)

=
1
2

[
e2(k + 1)− e2(k)

]
. (4.28)

By expanding (4.13) as follows

∆mv(k) = c · e(k) · Jplantv ·
∂ovj(k)
∂mv(k)

(4.29)

then as shown in [41], ∆VNNv(k) in (4.28) can be represented as

∆VNNv(k) = ∆e(k)
[
e(k) +

1
2
∆e(k)

]

=
[

∂e(k)
∂mv(k)

]T

· c · e(k) · Jplantv ·
∂ovj(k)
∂mv(k)

·
{

e(k) +
1
2

[
∂e(k)

∂mv(k)

]T

· c · e(k) · Jplantv ·
∂ovj(k)
∂mv(k)

}

(4.30)

where the convergence is guaranteed if the boundary of c is chosen such that

0 < c <
2

J2
plantv ,max · gv

2
max

(4.31)

as proven in [41], where Jplantv,max is the maximum limit of the plant Jacobian,

which refers to (4.16), will be

Jplantv ,max = 1, (4.32)

and

gvmax : = maxk ‖gv(k)‖ (4.33)

gv(k) =
∂ovj(k)
∂mv(k)

(4.34)

where ‖·‖ is the usual Euclidean norm in Rn.

Furthermore, from (4.31)–(4.33), we choose (4.21)–(4.22) as the boundaries

of the learning parameter for each type of weights of the parallel small-scale
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neural networks in the multiple neural networks. Proofs of (4.21)–(4.22) are

presented in [84].

If the learning parameter c is set to be inside the boundaries in (4.21)–

(4.22), ∆VNNv(k) in (4.30) will be negative definite. Thus, the convergence of

each parallel small-scale neural network of the multiple neural networks part

of our method can be guaranteed, and ūp(t) will be bounded. This means that

δ̂i(x(t), u(t), ūp(t)) will be bounded too, and the stability of the SAC part of

our method can also be guaranteed.

Then, in general, since the derivative of Lyapunov function of the multiple

neural networks V̇MultiNN (t) in (4.26) approximated as

V̇MultiNN (t) ∼= α

nv∑
v

∆VNNv(k)
∆T

(4.35)

is negative definite, V̇SACNN (t) in (4.26) is also negative definite. Thus, the

convergence of the multiple neural networks part and the stability of our

method can be guaranteed. This means that as the training progresses, the

error function E(k) in (4.12) will be minimized, and the output error e(t)

in (2.25) will satisfy the relation in (2.26). This shows that the nonlinearity

of the system in (2.18)–(2.19) are compensated for and minimized using the

control input of the multiple neural networks ūp(t).

For the SAC method using a single neural network in [84], finding a suf-

ficient number of neurons in the single neural network is very important for

the controller to be able to reduce the output error to satisfy the relation in

(2.26). However, as stated in Sect. 3, this will cause problems if the number

of neurons is too large. The use of multiple neural networks is proposed in

this chapter to overcome these problems. From (4.35), it can be seen that

the negative definiteness of (4.26) and (4.35) can be increased by increasing

the number nv of the parallel small-scale neural network of the multiple neu-

ral networks. Each parallel small-scale neural network of the multiple neural

networks consists of a sufficiently small number of neurons.

Furthermore, (4.35) also shows that either increasing the value of α or

reducing the sampling period ∆T will also increase the negative definiteness

of (4.26) and (4.35).

4.6 Simulation Results and Discussion

For nonlinear systems, two cases are considered, one of an SISO system and

one of an MIMO system.
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4.6.1 SISO System

Let us consider the SISO nonlinear system from [84] described by

[
ẋp1
ẋp2

]
=

[
xp2
0

]
+

[
0
1

]
u

+




0

2
10

fsat
−10

(xp1 sin(xp1))




yp = xp1 + sin(xp1)

where
nupper

fsat
nlower

(·) is a saturation function with a lower limit at nlower and an

upper limit at nupper. Then, the parameters of our method are set as

Tp = diag(5× 103, 5× 103, 5× 103) (in (2.16)),

Ti = diag(5× 104, 5× 104, 5× 104) (in (2.17)),

σ = 1 (in (2.17)),

α = 1 (in (4.1)),

µ = 2 (in (4.8)),

c = 0.001 (in (4.13)),

Dp = 0.001 (in (2.9)),

ρ = 1 (in (2.9))

and PFC

Dp(s) =
Dp

1 + ρs
=

0.001
1 + s

is fixed to guarantee that assumption 2-2(b) is satisfied. Furthermore, we

assume a first-order reference model with parameters

Am = −10, Bm = 10, Cm = 1.

We estimate the value of Jplantj for this SISO nonlinear system by previ-

ously carried experiments with the nonlinear system. From those experiments

we get

Jplantv1
= −1.

For each of the parallel small-scale neural networks, the number of neurons

in the input layer is 2, in the hidden layer is 2, in the output layer is 1, and

the input iv(k) is given as

iv(k)(k) = [ym(k − 1), yp(k − 1)]T .
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Furthermore, a sampling period of 0.01sec is selected to obtain the values of

iv(k) from [ym(t), yp(t)], where iv(k) denotes iv(t) at t = k∆T .

In the simulation, for this SISO nonlinear system, the training is performed

using the parameters set above in 4501 iterations for nv = 1 to nv = 3. Figures

4.4–4.8 show the simulation results.

Furthermore, Tables 4.1 and 4.2 show the comparisson of simulation results

using nv = 3 and different values of α and sampling period ∆T .

4.6.2 MIMO System

Let us consider the MIMO two-input two-output nonlinear system from [84]

described by




ẋp1
ẋp2
ẋp3
ẋp4


 =




−xp1 + xp4
xp2

−xp2 − xp3
xp3


 +




0 0
1 1
0 1
0 0




[
u1

u2

]

+




0
10

fsat
−10

(xp1xp3) +
10

fsat
−10

(2xp3u1)

10
fsat
−10

(xp
2
1) +

10
fsat
−10

(2xp3u1)

0




[
yp1
yp2

]
=

[
xp2 − xp3

xp4

]
+




10
fsat
−10

(xp1xp3)

10
fsat
−10

(xp
2
1)
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where
nupper

fsat
nlower

(·) is a saturation function with a lower limit at nlower and an

upper limit at nupper. Then, the parameters of our method are set as

Tp = diag(1.7× 105, 1.7× 105, 1.7× 105,

1.7× 105, 1.7× 105, 1.7× 105) (in (2.16)),

Ti = diag(1.7× 106, 1.7× 106, 1.7× 106,

1.7× 106, 1.7× 106, 1.7× 106) (in (2.17)),

σ = 0.1 (in (2.16)),

α = 10 (in (4.1)),

µ = 2 (in (4.8)),

c = 0.01 (in (4.13)),

Dp = diag(0.002, 0.002) (in (2.9)),

ρ = 1 (in (2.9))

and PFC

Dp(s) =
Dp

1 + ρs
=

[ 0.002
1+s 0
0 0.002

1+s

]

is fixed to guarantee that assumption 2-2(b) is satisfied. Furthermore, we

assume first-order reference models with parameters

Am1 = −10, Bm1 = 10, Cm1 = 1,

Am2 = −10, Bm2 = 10, Cm2 = 1.

We also estimate the values of Jplantj for this MIMO nonlinear system

by previously carried experiments with the nonlinear system. From those

experiments we get

Jplantv1
= +1, Jplantv2

= +1.

For each of the parallel small-scale neural networks, the number of neurons

in the input layer is 8, in the hidden layer is 2, in the output layer is 2, and

the input iv(k) is given as

iv(k) = [yT
m(k − 1), yT

p (k − 1), yT
p (k − 2), yT

p (k − 3)]T .

Furthermore, same as the previous case of the SISO nonlinear system, a sam-

pling period of 0.01sec is also selected to obtain the values of iv(k) from

[ym(t), yp(t)].
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In the simulation, for this MIMO nonlinear system, the training is per-

formed using the parameters set above in 1453 iterations for nv = 1 to nv = 3.

Figures 4.9–4.13 show the simulation results.

Furthermore, Tables 4.3 and 4.4 show the comparisson of simulation results

using nv = 3 and different values of α and sampling period ∆T .

4.6.3 Discussion

The selections of the first-order reference models for the simulations of the

SISO and MIMO nonlinear systems are to emphasize the fact that low-order

models do not affect the ability of the adaptive control system.

The simulation results of the SISO and MIMO nonlinear systems are shown

in Figures 4.4–4.12 and Tables 4.1–4.4.

Figures 4.4 and 4.9 show the desired output ym(t) and the plant output

yp(t) using only SAC. The result in Fig.4.4 shows that the error between yp(t)

and ym(t) is large.

Figures 4.5 and 4.10 show the desired output ym(t) and the plant output

yp(t) using our method with nv = 1. From Figures 4.5 and 4.10, it can be seen

that the error of the system has been reduced and the plant output yp(t) can

follow closer the desired output ym(t) compared to using only SAC.

For nv = 2, Figures 4.6 and 4.11 show that the error of the system has

been more reduced, where the plant output yp(t) can follow closer the desired

output ym(t), compared to using our method with nv = 1.

Figure 4.7 and 4.12 show that when using nv = 3 for our method the error

of the system has been very much reduced and the plant output yp(t) can

follow closely the desired output ym(t).

Thus, Figures 4.4–4.8, for the SISO nonlinear, and Figures 4.9–4.13, for

the MIMO nonlinear system, show that, with the same numbers of training

iteration, values of α, and sampling periods ∆T , the sum of the square error

of the system is decreasing as the number nv of the parallel small-scale neural

networks is increased. Figures 4.8 and 4.13 show the comparisson of the error

function E(k) using SAC with multiple neural networks and with a single

neural network. From Figures 4.8 and 4.13, we can see that the error function

E(k) of our method is close enough to the error function E(k) of the previous

method of SAC using a single neural network.

Furthermore, from Tables 4.1, 4.2, 4.3, and 4.4, it can also be seen that,

using the weights of the multiple neural networks resulted from the training

performed previously using parameters set in subsections 4.6.1 and 4.6.2, the

sum of the square error of the system is decreased as either the value of α is
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Table 4.1: Comparison of the sum of square error with nv = 3, ∆T = 0.01sec,
and different values of α (SISO system)

Values of Sum of Square Error
α (nv = 3, ∆T = 0.01 sec)
0.1 1.2311
0.5 0.4338
1 0.3181

Table 4.2: Comparison of the sum of square error with nv = 3, α = 1, and
different values of sampling period ∆T (SISO system)

Sampling Time Sum of Square Error
∆T (sec) (nv = 3, α = 1)

1 7.9946
0.1 5.6626
0.01 0.3181

increased or the sampling period ∆T is decreased.

4.7 Conclusions

This chapter proposed a control method for nonlinear systems using SAC

with multiple neural networks. The control input was given by the sum of

the output of a simple adaptive controller and the output of multiple neural

networks. Furthermore, thorough theoretical analysis and explanation of cal-

culation cost, convergence, and stability for this method have been presented

and discussed. As shown in the calculation cost analysis, it was obvious that

the calculation process time required for the training process of the multiple

neural networks was smaller than using a single neural network. The conver-

gence and stability analysis showed that stability can be guaranteed for the

class of nonlinear systems with BIBO and bounded nonlinearities. Finally,

computer simulations for an SISO and a 2-inputs 2-outputs MIMO nonlinear

systems were executed and the effectiveness of this control method has been

confirmed.

For applications to real nonlinear systems, each parallel small-scale neural

network in our method can be developed on one dedicated circuit or microchip.

Applications of our method to real nonlinear systems will be considered in our

future research.
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Figure 4.4: ym(t) and yp(t) using only SAC (SISO system)

Figure 4.5: ym(t) and yp(t) using SAC and 1 small-scale neural network (SISO
system)
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Figure 4.6: ym(t) and yp(t) using SAC and 2 parallel small-scale neural net-
works (SISO system)

Figure 4.7: ym(t) and yp(t) using SAC and 3 parallel small-scale neural net-
works (SISO system)

1
v

n =

2
v

n =

3
v

n =

Figure 4.8: Comparison of E(k) using SAC with multiple neural networks and
with a single neural network (SISO system)
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Figure 4.9: ym(t) and yp(t) using only SAC (MIMO system)

Figure 4.10: ym(t) and yp(t) using SAC and 1 small-scale neural network
(MIMO system)
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Figure 4.11: ym(t) and yp(t) using SAC and 2 parallel small-scale neural net-
works (MIMO system)

Figure 4.12: ym(t) and yp(t) using SAC and 3 parallel small-scale neural net-
works (MIMO system)
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Figure 4.13: Comparison of E(k) using SAC with multiple neural networks
and with a single neural network (MIMO system)
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Table 4.3: Comparison of the sum of square error with nv = 3, ∆T = 0.01sec,
and different values of α (MIMO system)

Values of Sum of Square Error
α (nv = 3, ∆T = 0.01 sec)
1 0.0146
5 0.0068
10 0.0042

Table 4.4: Comparison of the sum of square error with nv = 3, α = 10, and
different values of sampling period ∆T (MIMO system)

Sampling Time Sum of Square Error
∆T (sec) (nv = 3, α = 10)

1 0.0262
0.1 0.0072
0.01 0.0042
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Chapter 5

Adaptive SMC Using SAC for
Nonlinear Systems

5.1 Introduction

The ignorance of plant structure and critical parameter values, plant distur-

bances, uncertainties, and changing control regimes have caused difficulties

in designing appropriate controllers for real plants. Adaptive control methods

were developed to solve such difficulties [2,5,7,14,17]. In the beginning, the re-

searches of adaptive control methods were focussed for linear plants. However,

recently, their focus has been transferred to nonlinear plants [26].

Among the existing adaptive control methods, SAC procedure was devel-

oped by Sobel et al. [19, 20]. It provides a simplified method to design and

develop adaptive controllers. It is called ’simple’ because it does not require

any observers or identifiers in its control structure [13, 34, 35]. Furthermore,

it can use a reference model that is allowed to be of very low order compared

to the controlled plant. For linear plants with unknown structures, SAC is an

important class of adaptive control scheme [13,34,36]. However, for nonlinear

plants, using conventional SAC is difficult to ensure a perfect plant output

that follows the output of a reference model [22, 84]. For nonlinear plants

with unknown structures, a method of SAC using neural networks has been

developed previously [22,84].

On the other hand, variable structure control with sliding mode, which is

commonly known as SMC, is a nonlinear control strategy that is well known

for its robust characteristics [53]. It has a good ability in controlling nonlinear

systems with parameter uncertainties and disturbances to follow the desired

trajectories. It can switch the control law to drive the system states from any

initial state onto a user-specified sliding surface, and to maintain the states

on the surface for all subsequent time [53,71].
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The general approach of conventional SMC has two drawbacks [55, 62, 69,

71]. One of the drawbacks is the chattering phenomenon that is highly unde-

sirable and discussed in [55,62,71]. Another drawback is the difficulty in calcu-

lating its equivalent control law. This is caused by the requirement of thorough

knowledge of the controlled plant parameters and dynamics [55,62,69]. Since

those parameters and dynamics are difficult to obtain or even unknown, the

calculation of the equivalent control law of SMC is very difficult and causes

computational burden [73–75]. Recently, intelligent techniques based on fuzzy

logic and neural networks have been applied to SMC to overcome this prob-

lem [62,64,66,68,73]. However, those methods still require complex calculation

process and consume time to calculate the control law of SMC.

In this chapter, a new method of adaptive SMC strategy using SAC for

nonlinear systems with no explicit knowledge of parameters and dynamics

other than the assumption that the systems have BIBO, bounded nonlinear-

ities and bounded first and second derivatives of the output nonlinearities is

proposed. This method is proposed to deal with:

1. the difficulties in the conventional SAC to control nonlinear plants with

unknown structures,

2. the difficulties in the standard SMC caused by the requirement of thor-

ough knowledge of the controlled plant parameters and dynamics,

3. and the complexities and time consuming processes in the existing meth-

ods of SMC using intelligent techniques.

In this proposed method, the role of SAC is to construct an equivalent control

input of adaptive SMC. To construct a corrective control input, this chap-

ter applies a method using the sign function with a modified sliding surface.

Hence, except the assumption that the systems have BIBO, bounded nonlin-

earities and bounded first and second derivatives of the output nonlinearities,

no explicit prior knowledge of the plant is required for calculating the equiv-

alent control law. Furthermore, the stability analysis of the proposed method

is performed. The stability analysis shows that stability can be guaranteed

for systems with BIBO, bounded nonlinearities, and bounded first and sec-

ond derivatives of the output nonlinearities. Finally, computer simulations

are executed and the effectiveness of our control method is confirmed. Com-

puter simulations also show that the proposed control method can keep the

chattering phenomenon minimal.
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The preeliminary versions of our proposed method have been presented

in [74, 75] in the scope of SISO. The proposed method of this chapter will be

discussed in a more general scope of MIMO.

5.2 General SMC

General SMC based on state-space formulation is presented briefly in this

section. First let us consider a nonlinear plant described in (2.18), (2.19).

We further assume that the plant (2.18), (2.19) is BIBO, controllable, and

observable.

The steps in designing a sliding mode controller are:

1. to construct a sliding surface that represents a desired system dynamics,

2. and to develop a switching control law such that a sliding mode exists

on every point of the sliding surface, and any state outside the surface

is driven to reach the surface in a finite time.

The control objective is to determine a control input up(t) such that the

state vector xp(t) tracks a given bounded desired state vector x̂p(t) ∈ Rnp×1.

Therefore, the states error can be obtained as

exp(t) = x̂p(t)− xp(t)

=
[
exp(t), ėxp(t), · · · ,

np−1
exp (t)

]T

. (5.1)

Then, the sliding surface vector S(t) ∈ Rnj×1 in the space of state error can

be obtained as

S(t) =




S1(t)
...

Snj (t)


 =




cT
1 exp(t)

...
cT
nj

exp(t)




=
[

c1, · · · , cnj

]T
exp(t) (5.2)

where cj =
[
cj1, · · · , cjnp

]T
is the slope of the sliding surface (j = 1, · · · , nj).

The coefficients cj1, · · · , cjnp
describe the dynamics of the sliding surface. Gen-

erally, cj is chosen to force the state error to converge to zero when the state

is on the sliding surface. Any state that reaches this surface will then remain

on it for all subsequent time, and a sliding mode is said to occur.

When a system is in the sliding mode, its dynamics are governed only by

the dynamics of the sliding surface. Therefore the coefficients cj1, · · · , cjnp

85



must be chosen such that the system in the sliding mode produces the desired

behaviour [55].

On the other hand, the process of SMC can be divided into two phases,

the approaching phase with S(t) 6= 0 and the sliding phase with S(t) = 0. A

sufficient condition to guarantee that the trajectory of the error vector exp(t)

will translate from the approaching phase to the sliding phase is to select the

control strategy such that

ST (t)Ṡ(t) ≤ −η ‖S(t)‖ (5.3)

where η is a small positive constant and ‖·‖ is the usual Euclidean norm.

Condition (5.3) is called the reaching condition [57]. Corresponding to the

two phases, two types of control law can be derived separately. In the sliding

phase, we have S(t) = 0 and Ṡ(t) = 0, then the equivalent control input

vector ueq(t) will force the system dynamics to stay on the sliding surface.

The derivative of the sliding surface vector Ṡ(t) is derived from (5.2) as

Ṡ(t) =
[

c1, · · · , cnj

]T
[
˙̂xp(t)− ẋp(t)

]

=
[

c1, · · · , cnj

]T
[
˙̂xp(t)−Apxp(t)− fx(xp(t), ueq(t))−Bpueq(t)

]

= 0. (5.4)

Then, from (5.4), the equivalent control input vector ueq(t) is chosen as

ueq(t) = −
([

c1, · · · , cnj

]T
Bp

)−1 [
c1, · · · , cnj

]T

[
Axp(t)− ˙̂xp(t) + fx(xp(t), ueq(t))

]
. (5.5)

In the approaching phase, where S(t) 6= 0, in order to satisfy the reach-

ing condition (5.3), the corrective control input uc(t) (or the so-called the

switching function) must be added.

First, let the Lyapunov function be selected as

VSMC(t) =
ST (t)S(t)

2
. (5.6)

It can be noted that this function is positive definite. It is aimed that the

derivative of the Lyapunov function is negative definite. This can be achieved

if one can assure that

Ṡ(t) = −ks sign (S(t))

= −ks

[
sign (S1(t)) , · · · , sign

(
Snj (t)

)]T (5.7)
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where ks ∈ Rnj×nj is a positive definite constant diagonal matrix, and

sign (Sj(t)) =





+1, if Sj(t) > 0
0, if Sj(t) = 0
−1, if Sj(t) < 0

(j = 1, · · · , nj). (5.8)

Substituting (5.7) into the derivative of (5.6), the derivative of the Lya-

punov function is obtained as follows

V̇SMC(t) = ST (t)Ṡ(t) = −ST (t) ks

[
sign (S1(t)) , · · · , sign

(
Snj (t)

)]T
.

(5.9)

Furthermore, the reaching condition (5.3) is achieved if

ST (t) ks

[
sign (S1(t)) , · · · , sign

(
Snj (t)

)]T ≥ η ‖S(t)‖ . (5.10)

Again, the time derivative of (5.2) can be represented as

Ṡ(t) =
[

c1, · · · , cnj

]T
[
˙̂xp(t)−Apxp(t)− fx(xp(t), u(t))−Bpu(t)

]
.

(5.11)

Then, substituting (5.11) into the left hand side of (5.7), the control input

vector of SMC can be written as

u(t) = −
([

c1, · · · , cnj

]T
Bp

)−1 [
c1, · · · , cnj

]T

[
Axp(t)− ˙̂xp(t) + fx(xp(t), ueq(t))

]

+
([

c1, · · · , cnj

]T
Bp

)−1
ks

[
sign (S1(t)) , · · · , sign

(
Snj (t)

)]T

= ueq(t) + uc(t) (5.12)

where

uc(t) =
([

c1, · · · , cnj

]T
Bp

)−1
ks

[
sign (S1(t)) , · · · , sign

(
Snj (t)

)]T

(5.13)

is the corrective control input vector. Let

Ks =
([

c1, · · · , cnj

]T
Bp

)−1
ks (5.14)

then the final form of the corrective control input vector uc(t) can be written

as

uc(t) = Ks

[
sign (S1(t)) , · · · , sign

(
Snj (t)

)]T (5.15)

where Ks ∈ Rnj×nj is called the switching gain matrix.
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5.3 Adaptive SMC Using SAC

SAC, explained in section 2.2, can control linear plants with unknown struc-

tures perfectly [13,34]. However, when using only SAC to control the nonlinear

plant (2.18), (2.19) to follow the output of the reference model (2.4), (2.5),

the problem of output errors will arise [22,84].

On the other hand, SMC is known to have a good ability in controlling

nonlinear systems with parameter uncertainties and disturbances to follow

the desired trajectories. However, according to (5.5), thorough knowledge of

parameters and dynamics of the nonlinear plant (2.18), (2.19), such as Ap,

Bp, Cp, fx(·), and fy(·) are required to construct the equivalent control input

vector ueq(t) of SMC. Since such information is difficult to obtain or unknown,

the calculation of the equivalent control law of SMC is very difficult and causes

computational burden [73–75].

Therefore, to solve the problems mentioned above, we implement SAC

law (2.6)–(2.10), (2.12)–(2.17), to construct the equivalent control law, to

form adaptive SMC. First, it is necessary to use assumption 2-2 and add the

following assumption.

Assumption 5-1

(a) The first and second derivatives of the nonlinear part fy(·) of the non-

linear plant in (2.18), (2.19) are bounded.

Thus, by using (2.12), the equivalent control input vector ueq(t) can be de-

scribed as

ueq(t) = up(t) = K(t)r(t). (5.16)

In our proposed method of adaptive SMC using SAC, we consider that

the sliding surface S(t) in (5.2), that using state error exp(t) in (5.1), is not

necessarily known. Therefore, based on [68], we use the augmented plant error

ey(t) in (2.8) to form the modified sliding surface described as

Sy(t) =




Sy1(t)
...

Synj
(t)


 =




cT
y1

ēy1(t)
...

cT
ynj

ēynj
(t)


 (5.17)

where cyj =
[
cyj1

, cyj2

]T
is the slope of the modified sliding surface (j =

1, · · · , nj) and ēyj (t) is the vector consisting of the augmented plant error in

(2.8) of the j-th output of the plant and its derivatives described as

ēyj (t) =
[
eyj (t), ėyj (t)

]T
. (5.18)
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The derivatives of the augmented plant error in ( [?]) are estimated using

differentiators.

The approaching phase is performed when Sy(t) 6= 0, and the sliding phase

is performed when Sy(t) = 0. Furthermore, by applying (5.17) to (5.15), then

putting the result together with (5.16) into (5.12), the control input vector of

adaptive SMC can be expressed as

u(t) = ueq(t) + uc(t)

= K(t)r(t) + Ksy

[
sign

(
Sy1(t)

)
, · · · , sign

(
Synj

(t)
)]T

= K(t)r(t) + Ksy sign(Sy(t)) (5.19)

where Ksy ∈ Rnj×nj is the switching gain matrix of adaptive SMC.

5.4 Stability

The stability analysis of SAC for a controllable and observable linear plant

with bounded disturbances and no explicit knowledge of parameters has been

presented in [13], where theorem 2-1 given in [13] will hold.

For the stability analysis of our proposed method, we will modify and

extend the stability proof of theorem 2-1 given in [13]. First, as mentioned in

assumption 2-2(b), the PFC in (2.7), (2.9) is incorporated with the nonlinear

system in (2.18), (2.19) to form the augmented plant, as in (2.6), which its

linear part is ASPR. However, for convenience, it is necessary for the PFC in

(2.7), (2.9) to be transformed into a state-space form as (2.40),(2.41). Then,

by applying (5.19), (2.40), (2.41) to (2.18), (2.19), (2.6), (2.7), the augmented

plant can be described as follows

ẋ(t) = Ax(t) + Bueq(t) + δ̂i(x(t), u(t)) (5.20)

ya(t) = Cx(t) + δ̂o(x(t)) (5.21)

where

x =
[

xp

xs

]
∈ R(np+1)×1; A =

[
Ap 0
0 As

]
; B =

[
Bp

Bs

]
;

C =
[

Cp Dp

]
(5.22)

and δ̂i(x(t), u(t)) and δ̂o(x(t)) represent the nonlinear part of the augmented
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plant described as follows

δ̂i(x(t), u(t)) =
[

fx(xp(t), u(t))
0

]
+ Buc(t)

= δ̂′i(xp(t), u(t)) + Buc(t)

=




δi1(xp(t), u(t))
...

δinp+1(xp(t), u(t))


 (5.23)

δ̂o(x(t)) = fy(xp(t))

=




δo1(xp(t))
...

δonj
(xp(t))


 (5.24)

Then we use the following theorem 5-1 to prove the stability of our proposed

method.

Theorem 5-1: Assume that the nonlinear augmented plant in (5.20),

(5.21) satisfies assumption 2-2, then the adaptive control system in section

5.3 is globally stable with respect to boundedness. In other words, all values

(states, gains, and errors) involved in the control of the nonlinear augmented

plant are bounded. Furthermore, the remaining output tracking error ey(t)

caused by nonlinearity can be directly controlled and thus reduced via the

switching gain matrix Ksy .

Proof: We start by defining the Lyapunov function of our proposed method

as follows

VASMC(t) = VSAC(t) + VSMC′(t) (5.25)

where VSAC(t) is the Lyapunov function of SAC of our method, which is a

modification from the one presented in [13], and VSMC′ , which is derived from

(5.6), is the Lyapunov function of SMC of our method. Then, the derivative

of Lyapunov function of our proposed method becomes

V̇ASMC(t) = V̇SAC(t) + V̇SMC′(t). (5.26)

For the Lyapunov function of SAC of our method VSAC(t) and its derivative

V̇SAC(t), we use the following lemma 5-1 derived from section 2.6.

Lemma 5-1: The Lyapunov function of SAC of our method VSAC(t)

and its derivative V̇SAC(t) are developed by replacing the disturbance in the

Lyapunov function of SAC in [13] with the nonlinear part represented by

δ̂i(x(t), u(t)) and δ̂o(x(t)). First, as in [13], the Lyapunov function of SAC of

our method is chosen as

VSAC(t) = eT
x (t)Pex(t) + tr

{[
Ki(t)− K̃

]
T−1

i

[
Ki(t)− K̃

]T
}

(5.27)
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where P is a real symmetric positive definite matrix, and tr(·) is a trace

function. ex(t) is given as

ex(t) = x̂(t)− x(t) (5.28)

where x̂(t) are the ideal target states of the system, and

K̃ = [K̃e K̃x K̃u] (5.29)

are the unknown ideal gains of SAC. Then, the derivative of the Lyapunov

function in (5.27) becomes

V̇SAC(t) = −eT
x (t)Qex(t)− 2σtr

[
(Ki(t)− K̃)T−1

i (Ki(t)− K̃)T
]

−2eT
y (t)ey(t)eT

y (t)Tpey
ey(t)

−2eT
y (t)ey(t)

[
xT

m(t)Tpxm
xm(t) + uT

m(t)Tpum
um(t)

]

−2σtr
[
(Ki(t)− K̃)T−1

i K̃T
]
− 2eT

x (t)PF (t)

−2δ̂T
o (xp(t))(Ki(t)− K̃)r(t)− 2δ̂T

o (xp(t))ey(t)eT
y (t)Tpey

ey(t)

−2δ̂T
o (xp(t))ey(t)

[
xT

m(t)Tpxm
xm(t) + uT

m(t)Tpum
um(t)

]
(5.30)

where Q is a real matrix, and F (t) is given as

F (t) = EBias(t)−BK̃eδ̂o(x(t)) + δ̂i(x(t), u(t)) (5.31)

where EBias(t) is a bias term as explained in [13].

Proof: The steps of development of the derivative of Lyapunov function (5.30)

from (5.27) in lemma 5-1 are presented in Appendix 5A.

To define the Lyapunov function of SMC of our method VSMC′ and its

derivative V̇SMC′ , we start by using the following lemma 5-2.

Lemma 5-2: We assume that there exists an unknown sliding surface

vector Sx(t) in the space of state error ex(t) in (5.28) described as follows

Sx(t) =




Sx1(t)
...

Sxnj
(t)


 =




cx
T
1 ex(t)

...
cx

T
nj

ex(t)




=
[

cx1, · · · , cxnj

]T
ex(t) (5.32)

where cxj =
[
cxj1

, · · · , cxj(np+1)

]T
is the slope of the unknown sliding surface

(j = 1, · · · , nj), and the derivative of the unknown sliding surface Ṡx(t) is

given as

Ṡx(t) =
[

cx1, · · · , cxnj

]T
[
˙̂x(t)− ẋ(t)

]

=
[

cx1, · · · , cxnj

]T
[
˙̂x(t)−Ax(t)−Bueq(t)− δ̂i(x(t), u(t))

]
.

(5.33)
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The relation between Sx(t) in (5.32) and Sy(t) in (5.17) is given as

Syj(t) = Sxj(t)− cy
T

j
δ̄oj(xp(t)) (5.34)

where j = 1, · · · , nj , and

δ̄oj(xp(t)) =
[

δoj(xp(t))
δ̇oj(xp(t))

]
. (5.35)

Proof: The detailed proof of (5.34) is presented in Appendix 5B.

Then, the Lyapunov function of SMC of our method VSMC′ is given as

VSMC′ =
ST

y (t)Sy(t)
2

(5.36)

and its derivative V̇SMC′ is described as follows

V̇SMC′ = ST
y (t)Ṡy(t) =

nj∑

j=1

Syj(t)Ṡyj(t) (5.37)

where

Ṡyj(t) = Ṡxj(t)− cy
T

j
˙̄δoj(xp(t))

= cx
T
j

˙̂x(t)− cx
T
j Ax(t)− cx

T
j Bueq(t)− cx

T
j δ̂i(x(t), u(t))

−cy
T
j

˙̄δoj(xp(t)). (5.38)

Then, we assume that the linear part of the plant (5.20), (5.21) can be ap-

proximated by the equvalent control input ueq(t), and apply (5.19) into (5.38),

so that Ṡyj(t) becomes as follows

Ṡyj(t) = −cx
T
j δ̂′i(xp(t), u(t))− cy

T

j
˙̄δoj(xp(t))− cx

T
j Buc(t)

= −cx
T
j δ̂′i(xp(t), u(t))− cy

T

j
˙̄δoj(xp(t))− cx

T
j BKsy sign(Sy(t)).

(5.39)

Thus, by applying (5.39) to (5.37), we can obtain

V̇SMC′ = −
nj∑

j=1

[
Syj(t)cx

T
j δ̂′i(xp(t), u(t)) + Syj(t)cy

T

j

˙̄δoj(xp(t))

+Syj(t)cx
T
j BKsy sign(Sy(t))

]

= −ST
y (t)ksy sign(Sy(t))

−
nj∑

j=1

[
Syj(t)cx

T
j δ̂′i(xp(t), u(t)) + Syj(t)cy

T

j

˙̄δoj(xp(t))
]

(5.40)
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where ksy ∈ Rnj×nj defined as

ksy =
[

cx1, · · · , cxnj

]T
BKsy (5.41)

is a positive definite constant matrix.

The stability of our method requires that V̇SMC′(t) in (5.26) to be negative

definite. For the derivative of the Lyapunov function of SAC of our method

V̇SAC(t) given in lemma 5-1, (5.30), and (5.31), we can apply directly the

same method as in [13] to prove the stability of SAC of our method, since it

is known from (5.19), (5.23), (5.24), and assumption 2-2(c) that δ̂i(x(t), u(t))

and δ̂o(x(t)) are bounded. For the derivative of the Lyapunov function of SMC

of our method V̇SMC′(t) given in (5.37) and (5.40), since ˙̄δoj(xp(t)) is bounded

by assumption 5-1(a), its negative definiteness can be reached by setting the

values of the switching gain matrix Ksy to be suitable and large enough so

that the matrix ksy will have large enough values. The reaching condition

(5.3) can be achieved if

ST
y (t)ksy sign(Sy(t)) ≥ η

∥∥ST
y (t)

∥∥−
nj∑

j=1

[
Syj(t)cx

T
j δ̂′i(xp(t), u(t))

+ Syj(t)cy
T

j

˙̄δoj(xp(t))
]
. (5.42)

Furthermore, increasing Ksy , in (5.40) and (5.41), will increase ksy and the

negative definiteness of V̇SMC′(t) in (5.40), which will make the control objec-

tive in (2.10) achievable.

5.5 Computer Simulation

As for the nonlinear plants, two cases are considered, one of SISO and one of

MIMO.

5.5.1 SISO System

Let us consider the SISO nonlinear plant from [84] described by

[
ẋp1
ẋp2

]
=

[
xp2
0

]
+

[
0
1

]
u

+




0

2
10

fsat
−10

(xp1 sin(xp1))




yp = xp1 + sin(xp1)
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where
nupper

fsat
nlower

(·) is a saturation function with a lower limit at nlower and an

upper limit at nupper. Then, the parameters are set as

Tp = diag(103, 103, 103) (in (2.16)),

Ti = diag(104, 104, 104) (in (2.17)),

σ = 1 (in (2.17)),

cy = [15 1]T (in (5.17)),

Ksy = 149 (in (5.19))

and PFC

Dp(s) =
Dp

1 + ρs
=

0.001
1 + s

is fixed to guarantee that assumption 5-2(b) is satisfied. Furthermore, we

assume a first-order reference model (2.4), (2.5) with parameters

Am = −10, Bm = 10, Cm = 1.

The selection of the first-order model here is to emphasize the fact that

low-order models do not affect the ability of the adaptive control system.

Figure 5.1 shows the desired output ym(t) and the plant output yp(t) using

only SAC. The result in Fig.5.1 shows that the error between yp(t) and ym(t)

is large.

Figure 5.2 shows the desired output ym(t) and the plant output yp(t) using

our proposed method of adaptive SMC using SAC. It can be seen that the error

of the system has been reduced, and the plant output yp(t) can follow very

closely the desired output ym(t).

Furthermore, Fig.5.3 shows the curve of ey versus ėy of using only SAC

and Fig.5.4 shows the one of using our proposed method. It can be seen that

by using our proposed method, ey and ėy can be minimized, then, be driven

onto the sliding surface and finally to the origin (ey = 0 and ėy = 0).

5.5.2 MIMO System

Let us consider the SISO nonlinear plant from [84] described by
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Figure 5.1: ym(t) and yp(t) using only SAC (SISO system)




ẋp1
ẋp2
ẋp3
ẋp4


 =




−xp1 + xp4
xp2

−xp2 − xp3
xp3


 +




0 0
1 1
0 1
0 0




[
u1

u2

]

+




0
10

fsat
−10

(xp1xp3) +
10

fsat
−10

(2xp3u1)

10
fsat
−10

(xp
2
1) +

10
fsat
−10

(2xp3u1)

0




[
yp1
yp2

]
=

[
xp2 − xp3

xp4

]
+




10
fsat
−10

(xp1xp3)

10
fsat
−10

(xp
2
1)
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Figure 5.2: ym(t) and yp(t) using adaptive SMC with SAC (SISO system)

where
nupper

fsat
nlower

(·) is a saturation function with a lower limit at nlower and an

upper limit at nupper. Then, the parameters are set as

Tp = diag(1.8× 105, 1.8× 105, 1.8× 105,

1.8× 105, 1.8× 105, 1.8× 105) (in (2.16)),

Ti = diag(1.8× 106, 1.8× 106, 1.8× 106,

1.8× 106, 1.8× 106, 1.8× 106) (in (2.17)),

σ = 0.1 (Eq (2.17)),

cy1 = [1 1]T (in (5.17)),

cy2 = [1 1]T (in (5.17)),

Ksy =
[

2 0.1
0.3 5

]
(in (5.19))

and PFC

Dp(s) =
Dp

1 + ρs
=

[ 0.002
1+s 0
0 0.002

1+s

]

is fixed to guarantee that assumption 5-2(b) is satisfied. Furthermore, we

assume first-order reference models with parameters

Am1 = −10, Bm1 = 10, Cm1 = 1,

Am2 = −10, Bm2 = 10, Cm2 = 1.

The selection of the first-order models here is to emphasize the fact that

low-order models do not affect the ability of the adaptive control system.
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Figure 5.3: ey versus ėy using only SAC (SISO system)

Figure 5.5 shows the desired output ym(t) and the plant output yp(t) using

only SAC. The result in Fig.5.5 shows that the errors between yp(t) and ym(t)

are large.

Figure 5.6 shows the desired output ym(t) and the plant output yp(t) using

our proposed method of adaptive SMC using SAC. It can be seen that the

errors of the system have been reduced, and the plant output yp(t) can follow

very closely the desired output ym(t).

Furthermore, Figs.5.7 and 5.8 show the curves of eyj versus ėyj of using only

SAC, and Figs.5.9 and 5.10 show the ones of using our proposed method. It

can be seen that by using our proposed method, eyj and ėyj can be minimized,

then, be driven onto the sliding surface and finally to the origin (ey = 0 and

ėy = 0).

5.6 Conclusion

In this chapter, a new method of adaptive SMC strategy using SAC for non-

linear systems with unknown parameters and dynamics other then the as-

sumption that the nonlinear systems have BIBO, bounded nonlinearities, and

bounded first and second derivatives of the output nonlinearities, has been

proposed. This method was proposed to deal with:

1. the difficulties in the conventional SAC to control nonlinear plants with

unknown structures,

2. the difficulties in the standard SMC caused by the requirement of thor-
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Figure 5.4: ey versus ėy using adaptive SMC with SAC (SISO system)

ough knowledge of the controlled plant parameters and dynamics,

3. and the complexities and time consuming processes in the existing meth-

ods of SMC using intelligent techniques.

In this proposed method, the role of SAC was to construct an equivalent

control input of adaptive SMC. To construct a corrective control input, this

chapter applied a method using the sign function with a modified sliding sur-

face. Hence, except the assumption that the systems have BIBO, bounded

nonlinearities and bounded first and second derivatives of the output nonlin-

earities, no explicit prior knowledge of the plant was required for calculating

the equivalent control law. Furthermore, the stability analysis of the proposed

method has been performed. The stability analysis showed that stability could

be guaranteed for systems with BIBO, bounded nonlinearities, and bounded

first and second derivatives of the output nonlinearities. Finally, computer

simulations were executed and the effectiveness of our control method has

been confirmed. Computer simulations also showed that the proposed control

method could keep the chattering phenomenon minimal.

We limited ourselves to present and discuss our proposed method up to

theoretical explanations and computer simulations. Further problems of chat-

tering avoidance and other things related to the implementation to real sys-

tems will be formalized and solved in further papers with a more applicative

point of view.
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Figure 5.5: ym(t) and yp(t) using only SAC (MIMO system)

Figure 5.6: ym(t) and yp(t) using adaptive SMC with SAC (MIMO system)
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Figure 5.7: ey1 and ėy1 using only SAC (MIMO system)

Figure 5.8: ey2 and ėy2 using only SAC (MIMO system)
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Figure 5.9: ey1 and ėy1 using adaptive SMC with SAC (MIMO system)

Figure 5.10: ey2 and ėy2 using adaptive SMC with SAC (MIMO system)
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Appendix 5A

Development of The Derivative of Lyapunov Func-
tion (5.30) from (5.27) in Lemma 5-1

Following [13], let (5.27) redescribed as

VSAC(t) = VSAC1(t) + VSAC2(t) (5.43)

where

VSAC1(t) = eT
x (t)Pex(t) (5.44)

VSAC2(t) = tr

{[
Ki(t)− K̃

]
T−1

i

[
Ki(t)− K̃

]T
}

. (5.45)

Then

V̇SAC1(t) = ėT
x (t)Pex(t) + eT

x (t)P ėx(t). (5.46)

According to [13], ėx(t) can be expanded as

ėx(t) = (A−BK̃eC)ex(t)−B
[
K(t)− K̃

]
r(t)− F (t). (5.47)

Substituting ėx from (5.47), (5.46) becomes

V̇SAC1(t) = eT
x (t)(P (A−BK̃eC) + (A−BK̃eC)T P )ex(t)

−2eT
x (t)PB(K(t)− K̃)r(t)− 2eT

x (t)PF (t). (5.48)

Applying the positive real properties gives:

V̇SAC1(t) = −eT
x (t)Qex(t)− 2eT

x (t)CT (K(t)− K̃)r(t)− 2eT
x (t)PF (t)

(5.49)

V̇SAC2(t) = 2tr
{[

Ki(t)− K̃
]
T−1

i K̇T
i (t)

}
. (5.50)

or, substituting K̇T
i (t) from (2.17), (5.50) becomes

V̇SAC2(t) = 2tr
{[

Ki(t)− K̃
]
T−1

i (ey(t)rT (t)Ti − σKi(t))T
}

(5.51)
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and thus,

V̇SAC2(t) = −2σtr
{[

Ki(t)− K̃
]
T−1

i KT
i (t)

}

+2eT
y (t)(Ki(t)− K̃)r(t). (5.52)

Substituting in the second term of (5.52)

Ki(t) = K(t)−Kp(t) = K(t)− ey(t)rT (t)Tp (5.53)

gives

V̇SAC2(t) = −2σtr
{[

Ki(t)− K̃
]
T−1

i KT
i (t)

}
+ 2eT

y (t)(K(t)− K̃)r(t)

−2eT
y (t)ey(t)rT (t)Tpr(t). (5.54)

According to [13], ey(t) can be defined as

ey(t) = ym(t)− ya(t) = ŷa(t)− ya(t) (5.55)

where ŷa(t) is the unknown ideal augmented plant output defined as

ŷa(t) = Cx̂(t) = Cmxm(t) = ym(t). (5.56)

Thus, (5.55) becomes

ey(t) = Cex(t)− δ̂o(x(t)). (5.57)

Adding and subtracting 2σtr
{[

Ki(t)− K̃
]
T−1

i K̃T
}

and substituting ey(t)

from (5.57) into the second right-hand term of (5.54) gives

V̇SAC2(t) = −2σtr

{[
Ki(t)− K̃

]
T−1

i

[
Ki(t)− K̃

]T
}

−2σtr
{[

Ki(t)− K̃
]
T−1

i K̃T
}

−2eT
y (t)ey(t)rT (t)Tpr(t) + 2eT

x (t)CT (K(t)− K̃)r(t)

−2δ̂o(x(t))(K(t)− K̃)r(t). (5.58)

Adding (5.49) and (5.58) gives

V̇SAC(t) = −eT
x (t)Qex(t)− 2σtr

{[
Ki(t)− K̃

]
T−1

i

[
Ki(t)− K̃

]T
}

−2eT
y (t)ey(t)rT (t)Tpr(t)− 2σtr

{[
Ki(t)− K̃

]
T−1

i K̃T
}

−2eT
x (t)PF (t)− 2δ̂o(x(t))(K(t)− K̃)r(t).

(5.59)

Then, by subsituting K(t) = Ki(t) + Kp(t) = Ki(t) + ey(t)rT (t)Tp and

rT (t)Tpr(t) = eT
y (t)Tpey

ey(t)+xT
m(t)Tpxm

xm(t)+uT
m(t)Tpum

um, we can obtain

(5.30).
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Appendix 5B

Proof of the relation between Sx(t) and Sy(t) in (5.34)

We start by writing (5.28) as follows

ex(t) =




ex(t)
ėx(t)

...
np
ex(t)


 =




x̂1(t)− x1(t)
...

x̂np+1(t)− xnp+1(t)


 . (5.60)

Then, we write (5.18) as follows

ēyj (t) =
[

eyj (t)
ėyj (t)

]
=

[
ymj (t)− yaj (t)
ẏmj (t)− ẏaj (t)

]
. (5.61)

where (j = 1, · · · , nj). We consider that

C =




C1
...

Cnj


 . (5.62)

where Cj =
[
Cj1 , · · · , Cjnp+1

]
and (j = 1, · · · , nj). Thus, by applying (5.57)

and (5.62) to (5.61), we can obtain

ēyj (t) =
[

Cj(x̂(t)− x(t))
Cj( ˙̂x(t)− ẋ(t))

]
−

[
δoj(xp(t))
δ̇oj(xp(t))

]

=
[

Cjex(t)
Cj ėx(t)

]
−

[
δoj(xp(t))
δ̇oj(xp(t))

]
(5.63)

where (j = 1, · · · , nj).

We apply (5.63) to Syj(t) in (5.17) (j = 1, · · · , nj). Thus, Syj(t) can be
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described as

Syj(t) = cT
yj

ēyj (t)

= cT
yj

[
Cjex(t)
Cj ėx(t)

]
− cT

yj

[
δoj(xp(t))
δ̇oj(xp(t))

]

=
[
cyj1

, cyj2

]

 Cj1ex(t) + Cj2 ėx(t) + · · ·+ Cjnp+1

np
ex(t)

Cj1 ėx(t) + Cj2 ëx(t) + · · ·+ Cjnp+1

np+1
ex (t)




−cT
yj

[
δoj(xp(t))
δ̇oj(xp(t))

]
. (5.64)

From (5.64), by assuming that
n
ex(t) ∼= 0 for n > np, we can obtain (5.34),

where cxj of Sxj(t) in (5.32) can be approximated as follows

cxj1
∼= cyj1

Cj1

cxj2
∼= cyj1

Cj2 + cyj2
Cj1

...

cxjnp+1
∼= cyj1

Cjnp+1 + cyj2
Cjnp

. (5.65)
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Chapter 6

Conclusions

SAC procedure was developed by Sobel et al. as an attempt to simplify adap-

tive controllers, since no observers or identifiers are needed in the feedback

loop. Furthermore, the reference model is allowed to be of a very low order

compared to the controlled plant. For linear plants with unknown structures,

SAC is an important class of adaptive control schemes. However, for nonlinear

plants with unknown structures, it is difficult to ensure a perfect plant output

that follows the output of a reference model by using the conventional SAC.

In this thesis, chapter 2 proposed a fundamental of a method of SAC using

a neural network for a class of nonlinear systems with BIBO and bounded

nonlinearity. The convergence and stability analysis of the proposed method

was performed, and it showed the class of the nonlinear plant and the bound-

ary where the convergence and stability of the proposed method could be

guaranteed. Chapter 3 proposed a control method using a discrete-time SAC

with neural network for SISO and MIMO configurations of a nonlinear mag-

netic levitation system. Furthermore, in this chapter, the magnetic levitation

system was set to satisfy the assumptions required by chapter 2; thus, the

stability analysis in chapter 2 could be applied. Chapter 4 proposed a control

method for nonlinear systems using SAC with multiple neural networks. In

this chapter, a thorough theoretical explanation of convergence and stability

analysis for this proposed method was also presented and discussed. The con-

vergence and stability analysis showed that stability can be guaranteed if the

class of nonlinear systems was the one with BIBO and bounded nonlineari-

ties and if a certain boundary as in chapter 2 is satisfied. For applications of

the method proposed in this chapter 4 to real nonlinear systems, each parallel

small-scale neural network in our method could be developed on one dedicated

circuit or microchip. Thus, it was obvious that the calculation process time

required for each training iteration of the multiple neural networks could be
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kept the same as using only one small-scale neural network. In those methods,

the control input was given by the sum of the output of the simple adaptive

controller and the output of the neural networks. The neural networks were

used to compensate for the nonlinearity of the plant dynamics that was not

taken into consideration in the usual SAC. The role of the neural networks

was to construct a linearized model by minimizing the output error caused by

the nonlinearities in the control systems. Computer simulations in chapters

2 and 4 and experiments in chapter 3 were executed, and the effectiveness of

these control methods was confirmed. Furthermore, it can be seen that the

methods in chapters 2–4 could be used to deal well with:

1. the difficulties in the conventional SAC to control nonlinear plants with

unknown structures,

2. the choice of complexity and time consuming processes of the neural

networks,

3. the convergences and stabilities of the control systems (related to the

complexity of the neural networks which have been reduced in our meth-

ods),

4. and applications to a real nonlinear plant of magnetic levitation system.

In chapter 5, a new method of adaptive SMC strategy using SAC for non-

linear systems with unknown parameters and dynamics was proposed. In this

proposed method, the role of SAC was to construct an equivalent control input

of adaptive SMC. To construct a corrective control input, this chapter applied

a method using the sign function with a modified sliding surface. Furthermore,

the stability analysis of the proposed method was performed. The stability

analysis showed that stability could be guaranteed for the class of nonlinear

systems with BIBO and bounded nonlinearities. Computer simulations were

executed, and the effectiveness of this control method was confirmed. Com-

puter simulations also showed that the proposed control method could keep

the chattering phenomenon minimal. Thus, it can be seen that this method

was able to deal well with:

1. the difficulties in the conventional SAC to control nonlinear plants with

unknown structures,

2. the difficulties in the conventional SMC caused by the requirement of

thorough knowledge of the controlled plant parameters and dynamics,
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3. the complexity and time consuming processes in the existing methods of

SMC using intelligent techniques,

4. and the stability of the control system.
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