(千葉大学学位申請論文)

日本における着氷性降水の 気候学的特徴と地域性 および発生予測手法に関する研究

2005年7月

千葉大学大学院自然科学研究科 多様性科学専攻 地域多様性学 松下 拓樹

要旨

着氷性の雨や霧雨が付着凍結する雨氷現象は、森林被害や送電設備の倒壊被害を発生させる。しかし、日本において、着氷性降水や雨氷現象がどのような地域で発生する傾向にあるのか、またどの程度の発生割合なのか、この問いに対する着氷性降水の気候学的特徴について十分な知識が得られていない。また、着氷性降水や雨氷現象が発生するときの気象条件は、周囲の地形形状やその地域の局地気象現象が関与していることが、雨氷の被害状況の地域的特徴から示唆されてきたが、これを局地気象解析によって詳細にかつ明確に示す研究はこれまでなかった。被害地域の想定や災害対策を行うための判断材料として、あらかじめ着氷性降水や雨氷現象の発生に関する地域分布を、長年の観測データをもとに気候学的に求めておくことが必要であり、着氷性の雨の発生を予測する場合、そのときの気象条件がどのような過程を経て形成されるのか、これを理解しておくことが重要である。

さらに、着氷性降水の発生予測手法は、国内外でいくつか提案が行われているものの、その多くは上空暖気層における降雪粒子の融解条件のみに着目したものであったり、飽和大気を仮定していたり、あるいは降水粒子表面の相変化に伴う潜熱の影響を無視したものであった。着氷性の雨や凍雨の発生判別には、上空暖気層の降雪粒子の融解条件に加え、地上付近の寒気層における雨滴の凍結条件も検討する必要がある。このとき、大気の湿潤状態も考慮することが重要である。

本論文では、日本における着氷性降水の気候学的および気象学的な特徴を解明し、その予測手法を確立することを目的として、

- ①気候学的な特徴の把握(総観気象規模の特徴)
- ②発生条件の形成過程の解明(局地気象規模の特徴)
- ③大気の熱力学的構造の解析(雲物理規模の特徴)

の3つの異なる観点から解析を行った。

①(第2章)では、日本における着氷性降水や雨氷現象の気候学的な特徴を明らかにすることを目的に、過去14冬季(1989年11月~2003年5月)の気象観測資料から、着氷性の雨、着氷性の霧雨、凍雨の発生率の地域分布を得た。さらに、これらの降水種の季節変化、経年変化、対応する総観規模の地上気圧配置パターンについて調査を行った。その結果、日本において

着氷性降水や凍雨の発生率が高い地域は、中部地方以北の内陸山間部と、関東地方以北の太平洋側平野部であることが示され、これらの降水種は 1~3 月に発生することが多く、毎年 10 回程度の割合で観測されることがわかった。しかし、その多くは凍雨として観測され、雨氷災害を起こす着氷性の雨の発生率は毎年数回程度であった。また、着氷性降水時の地上気圧配置は、各地域の南側を低気圧が通過する場合がほとんどであり、降雪粒子を融解させる上空の暖気層は、総観規模の気圧配置に伴う暖気移流によって形成されることが示唆された。

さらに、①では、雨氷現象の発生に関するより詳細な地域分布を得る試みとして、雨氷被害報告の多い長野県を例に、統計的な解析手法によって地域分布を求めた。具体的には、過去20冬季(1980年11月~1999年4月)の長野県におけるAMeDAS地点の雨氷発生日を、高層および地上気象観測資料から特定し、年平均雨氷発生日数を目的変数、地形因子値を説明変数とした重回帰分析結果から、長野県における年平均雨氷発生日数のメッシュマップを得た。この雨氷発生日は、雨氷が発生可能な気候学的なポテンシャルを示す意味があり、その年平均日数のメッシュマップ(約2km×2km)が得られた。この結果、長野県で年平均雨氷発生日数の多い地域は、中部や東部を中心とした山岳地域や高原地域などの高標高地域で、毎年数日の発生割合となっていることが示された。

②(第3章)の局地気象解析では、着氷性降水の発生率の高い中部地方以北の内陸山間部と、 関東平野以北の太平洋側平野部に着目して、両地域における気象条件の形成過程について解析を行った。その結果、上空の暖気層の形成は、総観規模の気圧配置に伴う暖気移流に起因することが確認されたが、地上付近の寒気層の形成には、局地的な気象現象や地形状況が強く関与していた。内陸山間部では、盆地地形による寒気滞留(冷気湖の形成)が地上付近の寒気層の形成に寄与し、弱風下で発生することが特徴である。一方、太平洋側平野部では、内陸からの局地的な寒気移流(寒気流出)によって地上付近の寒気層が形成され、内陸山間部に比べ風を伴って発生するのが特徴である。

両地域における地上付近の寒気層形成の違いによって、着氷性降水時の地上気象値の特徴 も異なり、太平洋側平野部の地域で風が強く、相対湿度が低い傾向にある。この地上気象の特 徴から、太平洋側平野部では雨氷表面から失われる熱フラックス(顕熱および潜熱)が大きく、内 陸山間部に比べて雨氷が発達しやすい大気状態にあると考えられる。

また、②では、強風を伴った雨氷現象の例として2004年2月、北海道の岩見沢周辺で発生し

た事例の詳細な解析を行った。この事例は、発生率の低い日本海側の平野部で発生したことと、強風を伴っていたこと、この2点が上記の解析で得られた一般的な傾向と異なり、雪氷気象災害上、注目すべき事例であると考えられる。解析の結果、岩見沢付近では、地形効果による地上付近の強い北東気流と、その上空の南からの暖気移流という気流構造により、融解過程による着氷性の雨の発生条件が形成・維持されたと考えられる。また、着氷性降水時の岩見沢における地上気温は-0.5℃前後で、雨氷発達の大気環境としてはそれほど低い気温状態ではなかった。しかし、6m/s 前後の風による通風効果の強まりによって雨氷表面における負の熱フラックスが増加し、雨氷を顕著に発生させたと考えられる。

③(第4章)では、降雪粒子の融解過程と雨滴の凍結過程について理論的な考察を行い、降雪粒子の融解条件と雨滴の凍結条件を判別する方法の提示を行った。また、着氷性の雨が観測されているときの気温と露点温度の関係から、着氷性の雨発生の地上気象条件を検討し、着氷性の雨と凍雨を含めた地上降水種の予測手法の提案を行った。

上空の暖気層(気温 0°C以上)における降雪粒子の融解条件は、暖気層の平均気温、平均相対湿度、厚さ、降雪粒子の大きさ(半径)によって決まり(第一条件)、地上付近の寒気層(気温0°C以下)における雨滴の凍結条件は、寒気層の平均気温、平均相対湿度、厚さ、雨滴の半径によって決まる(第二の条件)。また、着氷性の雨は、地上露点温度が0°C以下のときに発生している(第三の条件)。この三条件から、2003年1月3日21JSTの関東平野における事例を用いて、武蔵野で観測された凍雨の大きさ(半径1mm)を基準とした地上降水種の予測を行ったところ、実際の地上降水種の分布に良く対応した結果が得られた。また、飽和大気と未飽和大気の場合の予測結果と実際の降水種の地域分布を比較すると、地上の降水種の予測において、大気の湿潤状態を考慮することの重要性が指摘された。この地上降水種の予測手法は、Zerr (1997)による北米における観測資料ともよく対応した。

目次

要旨	······i
目次	·····iv
図の目次	ix
表の目次 ・・・・	xiii
第1章 序論	
1.1 研究の	D背景 ······· 1
1. 1. 1	着氷現象の種類と定義 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1. 1. 2	着氷性降水と雨氷の発生に関する一般概念 ・・・・・・・・・・・・13
1. 1. 3	着氷性降水に関する研究の歴史的背景
1.2 本論3	文の目的と構成 ・・・・・・・・・・・・・・・・・・・・・ 25
1. 2. 1	本論文の目的
1. 2. 2	本論文の構成
第2章 日本に	おける着氷性降水の気候学的特徴
2.1 はじめ	かに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2. 1. 1	着氷性降水に関する気候学的研究の背景 ・・・・・・・・・・・・・・ 29
2. 1. 2	本章の目的 ・・・・・・・・・・・・・ 31
	本章の構成 ・・・・・・・・・・・・ 32
	率の地域分布 ・・・・・・・・・・・・・・・・・・・ 33
	解析資料と解析方法 ・・・・・・・・・・・・・・・・・ 33
	着氷性の雨の発生率の地域分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	凍雨の発生率の地域分布 ・・・・・・・・・・・ 37
	着氷性の霧雨の発生率の地域分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	発生率の地域分布に関する考察 41
9 9 季節	かかり

2. 3. 1	解析資料と解析方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
2. 3. 2	日本全体における季節変化と経年変化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
2. 3. 3	地域別にみた季節変化と経年変化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44
2. 3. 4	季節変化と経年変化に関する考察	48
2.4 総観舞	見模の地上気圧配置の特徴 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	49
2. 4. 1	解析資料と解析方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	49
2. 4. 2	着氷性降水時の地上気圧配置の特徴 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
2. 4. 3	総観規模の地上気圧配置に関する考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	53
2.5 雨氷玛	現象の発生ポテンシャルに関する地域分布の推定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	54
2. 5. 1	解析資料 ••••••••••••••••••••••••••••••••••••	54
2. 5. 2	雨氷発生日の特定方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	57
2. 5. 3	上空の気象条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58
2. 5. 4	地上付近の気象条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	62
2. 5. 5	長野県における雨氷発生日の特定結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	64
2. 5. 6	雨氷の発生ポテンシャルに関する地域分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
2. 5. 7	考察	71
2.6 おわり	وراد	73
2. 6. 1	本章のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	73
2. 6. 2	今後の課題と展望	75
第3章 着氷性	上降水発生の気象条件の形成過程と地域性	
3.1 はじめ	うに	77
3. 1. 1	着氷性降水の地域性に関する研究 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77
3. 1. 2	本章の目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	79
3. 1. 3	本章の構成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	80
3.2 解析資	資料と解析方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	81
3. 2. 1	解析資料 ·····	81
3. 2. 2	AMeDAS 地点における温位の計算	82

雨氷表面における熱収支計算方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	83
山間部における特徴 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	85
新庄・山形盆地における特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	85
長野県における特徴	92
内陸山間部における一般的な特徴 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
羊側平野部における特徴 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
十勝平野・根釧台地における特徴 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
仙台平野における特徴	103
関東平野における特徴 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	109
太平洋側平野部における一般的な特徴 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	119
山間部と太平洋側平野部における比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	121
着氷性降水時の地上気象値の比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	121
雨氷形成に関する大気の熱的環境の比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	124
也の地域における特徴 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	126
北海道・石狩平野における事例・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	127
その他の地域における事例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	135
)に	137
本章のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	137
今後の課題と展望	139
主降水時の大気の熱力学的構造と予測手法	
かに	141
着氷性降水の予測手法に関する研究の背景 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	141
本章の目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	143
本章の構成	144
資料と解析方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	145
解析資料 ·····	
解析に用いる事例の気象概況 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	新庄・山形盆地における特徴 長野県における特徴 内陸山間部における一般的な特徴 ・ 一般平野部における特徴 ・ 一勝平野・根釧台地における特徴 ・ 一切・ 一切・ 一切・ 一切・ 一切・ 一切・ 一切・ 一切・ 一切・ 一切

	4. 2. 3 本研究の発生予測手法の概念	150
4.	3 降雪粒子の融解条件	153
	4.3.1 降雪粒子の融解過程の理論的取扱いと基本式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	153
	4.3.2 降雪粒子の融解に要する時間	158
	4.3.3 降雪粒子の融解に要する大気層の厚さ	160
	4. 3. 4 降雪粒子の半径と密度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	164
4.	4 雨滴の凍結条件	166
	4.4.1 雨滴の凍結過程の理論的取り扱いと基本式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	166
	4.4.2 雨滴の凍結に要する時間	171
	4.4.3 雨滴の凍結に要する大気層の厚さ	173
4.	5 地上付近の気象条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	175
	4.5.1 解析資料と解析方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	175
	4.5.2 着氷性降水時の地上付近の気象状況と予測手順 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	176
4.	. 6 着氷性降水の発生予測手法(飽和大気の場合) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	179
	4.6.1 降雪粒子の融解判別 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	4. 6. 2 雨滴の凍結判別 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	182
	4.6.3 着氷性降水の発生予測方法と地上降水種の推定結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	184
4.	. 7 着氷性降水の発生予測手法(未飽和大気の場合) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	187
	4.7.1 降雪粒子の融解判別 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	188
	4.7.2 雨滴の凍結判別 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	190
	4.7.3 着氷性降水の発生予測方法と地上降水種の推定結果	
4.	. 8 考察	194
	4.8.1 大気が飽和である場合の予測手法について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	4.8.2 大気が未飽和である場合の予測手法について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4	. 9 おわりに	
	4. 9. 1 本章のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	4. 9. 2 今後の課題と展望	• 199

第5章 結論

5.	1	本研究課題の今後の展望	201
5.	2	本研究で得られた成果のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	207
謝辞	•		211
参考	文i	献	213
付録			
A.	大	気水象の種類と定義	229
В.	球	で面における熱伝導の式 ······ 2	236
C.	大	:気の物性値 ・・・・・・・・・・・・・・・・・・・・・・・ 2	238
	C	. 1 空気の熱伝導率 $(k_a \setminus k_d)$ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	238
	C	. 2 空気中における水蒸気の拡散係数($D_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	238
	C	. 3 空気中を落下する雨滴や降雪粒子の通風係数 $(\overline{f}_{h},\overline{f}_{v})$	239
	C	. 4 空気の粘性係数 (η_a) ····································	241
D.		研究に関連する発表論文および学会発表 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	D	. 1 原著論文	242
	D	. 2 シンポジウム・学術会議 ・・・・・・・・・・・ 2	242
	D	. 3 学会発表	243
	n		244

図の目次

第1章		
図1.	1 .	水雲、氷雲、混合雲の気温に対する観測割合(水野, 2000) ・・・・・・・・・・・・2
図1. 2	2 :	航空機着氷の温度別出現頻度(Schultz and Politovich, 1992) ······ 2
図1.:	3	雲中着氷による電線着氷の種類と形態(黒岩, 1982) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
図1. 4	4	気温の違いによる着氷形態の変化(Kimura et al., 2004) ······ 5
図1. 5	5	樹氷型着氷の写真
図1. 6	6	着氷性の雨による雨氷 (Jones and Mulherin, 1998) ····· 8
図1.	7	着氷性の雨による雨氷被害の例(Ahrens, 2003) 9
図1.	8	樹霜(東海林, 1982)
図1.	9	飛沫着氷(東海林, 1982)11
図1.	10	融解過程による着氷性降水の発生条件とそのときの降水形態 ・・・・・・・・・・15
図1.	11	着氷性の雨と霧雨のときの気温と露点温度の鉛直分布(Bocchieri, 1980) ・・・・・・ 16
図1.	12	着氷性の霧雨が観測されたときの気温の鉛直分布の例 ・・・・・・・・・・・17
第2章		
図2.	1	地上気象観測地点の位置 ・・・・・・・・・・・・・・34
図2.		着氷性の雨の発生率の地域分布 ・・・・・・・・・・・・・・ 36
図2.		凍雨の発生率の地域分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
図2.	4	着氷性の霧雨の発生率の地域分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
図2.	5	日本における着氷性の雨、着氷性の霧雨、凍雨の月別発生数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		日本における着氷性の雨、着氷性の霧雨、凍雨の発生数の経年変化 ・・・・・・・・・・・・43
図2.	7	地方区分
図2.	8	日本の各地方における着氷性の雨、着氷性の霧雨、凍雨の月別発生数 46
		日本の各地方における着氷性の雨、着氷性の霧雨、凍雨の発生数の経年変化 … 47
	10	地上低気圧の移動経路の分類
		着氷性降水時の地上低気圧の移動経路の度数分布 52

図2.	12	長野県のAMeDAS 地点と日本の高層気象官署の位置 ·····	55
図2.	13	地上天気図(1989年2月26日3JST) ····································	57
図2.	14	輪島と館野における気温の鉛直分布(1989年2月25~26日)	59
図2.	15	850hPa付近の気温分布(1989年2月25日21JST) ····································	60
図2.	16	雨氷発生の上空暖気層の気象条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
図2.	17	信濃町と菅平における地上気象の時系列(1989年2月25~26日)	63
図2.	18	雨氷発生日数の経年変化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	66
図2.	19	月別の雨氷発生日数	66
図2.	20	AMeDAS 地点の年平均雨氷発生日数と重回帰式による推定値との対応 ······	69
図2.	21	年平均雨氷発生日数のメッシュマップ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
第3章	主		
図3.	1	地上天気図(1998年1月18日9JST) ·······	86
図3.	2	仙台における気象要素の鉛直分布(1998年1月18日9JST) ····································	87
図3.	3	新庄、湯の岱、江ノ島における気象要素の時系列(1998年1月17日~18日) ・・・・・	88
図3.	4	地上における温位と風の分布(1998年1月18日9JST) ····································	89
図3.	5	新庄と山形で着氷性の雨または凍雨が観測されたときの温位と風向の地域分布・・	90
図3.	6	新庄と山形で着氷性の雨または凍雨が観測されたときの風速の度数分布 ・・・・・・・	91
図3.		輪島における気象要素の鉛直分布(1989年2月25日21JST) ·······	
		地上天気図(1989年2月26日3JST) · · · · · · · · · · · · · · · · · · ·	
		850hPa 面と地上における温位の分布(1989年2月25日21JST) ······	
		温位と相当温位の時系列(1989年2月25日9JST~26日9JST) ·······	
図3.	11	内陸山間部における着氷性降水時の気象条件の形成過程の模式図	97
図3.	12	地上天気図(1991年12月23日21JST) ·······	99
		地上気象値の分布(1991年12月23日23JST) ····································	
図3.	14	気温と温位の時系列(1991年12月23日18JST~24日6JST) ······	101
図3.	15	帯広、広尾、釧路で着氷性の雨および凍雨が観測されたときの気象分布 ・・・・・・・	102
図3	16	地上天気図(1995年1月22日9IST) ······	104

図3. 1	7 仙台における気象要素の鉛直分布(1995年1月22日9JST) ·················	104
図3. 18	3 石巻、湯の岱、江ノ島における気象要素の時系列(1995年1月21日~22日)・・・・	105
図3. 19	9 地上における温位と風の分布(1995年1月22日9JST) ·················	106
図3.20) 石巻と仙台で着氷性の雨または凍雨が観測されたときの温位と風向の地域分布	107
図3.2	1 石巻と仙台で着氷性の雨または凍雨が観測されたときの風速の度数分布 ・・・・・・	108
図3. 22	2 武蔵野における降水種と府中における気象要素の時系列	111
図3. 23	3 武蔵野で観測された雨氷の写真 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	112
図3. 24	4 館野における気象要素の鉛直分布(2003年1月3日21JST) ·······	113
図3. 25	5 地上天気図(2003年1月3日21JST) ····································	113
図3.26	6 900hPa 面における相当温位と風の分布(2003年1月3日21JST) ······	114
図3. 2	7 地上の相当温位と風の分布(2003年1月3日18JST) ····································	115
図3.28	3 関東平野における凍雨の発生率の分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117
図3.29) 熊谷、東京、横浜で凍雨が観測されたときの地上気象の平均値の分布 ・・・・・・・・・	118
図3.30) 太平洋側平野部における発生条件の形成過程の模式図	120
図3.3	着氷性の雨が発生しているときの風速と相対湿度の平均値の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	123
図3.32	2 着氷性の雨発生時の気温と露点温度の平均値の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	123
図3.33	3 着氷性の雨発生時の顕熱フラックスと潜熱フラックスの平均値の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	125
図3. 34	4 着氷性の雨発生時の顕熱フラックスと潜熱フラックスの平均値(同じ気温を仮定)	125
図3.38	5 岩見沢における雨氷の写真(尾関, 2004b) ······	126
図3.36	6 北海道岩見沢の事例における解析範囲および気象観測地点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	130
図3.37	7 岩見沢における地上気象値と降水種の時系列(2004年2月22~23日) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	131
図3.38	3 札幌における気象値の鉛直分布(2004年2月22日21JST) ·······	132
図3.39) 地上天気図(2004年2月23日9JST) ····································	132
図3.40	利 相当温位と気温および風の分布(2004年2月22日21JST) ·······	133
図3. 41	岩見沢における雨氷表面の熱フラックスの計算結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	134
第4章		
図4. 1	関東平野における気象観測所の位置 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	146

図4.2	武蔵野で観測された凍雨の写真 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	148
図4. 3	地上降水種の分布と地上気温0℃の等温線の位置(2003年1月3日) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	149
⊠4. 4	関東平野各地の気温と露点温度の鉛直分布と地上降水形態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	151
図4. 5	仙台周辺で着氷性の雨および凍雨が観測されたときの気温の鉛直分布 ・・・・・・・	152
図4. 6	降雪粒子の融解過程に関わる熱収支の概念 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	155
図4. 7	気温 0℃以上のときの雪片の落下速度の測定例(Matsuo and Sasyo, 1981b) · · · · ·	163
図4.8	雨滴の凍結過程に関わる熱収支の概念 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	169
図4. 9	水滴の落下速度の近似式と実測値の比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	174
図4.10	着氷性降水時の地上気温と露点温度の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	177
図4.11	地上降水種の判別方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	178
図4. 12	暖気層の平均気温と厚さ、地上降水種の関係(水飽和大気の場合) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	181
図4. 13	寒気層の平均気温と厚さ、地上降水種の関係(氷飽和大気の場合) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	183
図4. 14	融解指数 MI と凍結指数 FI を用いた地上降水種の判別(飽和大気の場合) \cdots	185
図4. 15	融解指数 MI と凍結指数 FI による地上降水種の推定結果と実測の比較 ····・・	186
図4.16	暖気層の平均気温、厚さ、平均相対湿度および地上降水種の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	189
図4.17	寒気層の平均気温、厚さ、平均相対湿度および地上降水種の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	191
図4. 18	地上降水種分布の推定結果と実測の比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	193
図4. 19	降雪粒子の融解条件と雨滴の凍結条件の検証(飽和大気の場合) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	195
図4.20	降雪粒子の融解条件と雨滴の凍結条件の検証(未飽和大気の場合) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	197
第5章		
図5. 1	冬季(12~2 月)の地上気温および雨、雪、霙の発現率の平均値の地域分布 ・・・・	204
図5. 2	冬季(12~2月)における平均地上気温と雨、雪、霙の発現率の関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	205
図5. 3	冬季(12~2月)の平均気温を変化させたときの雨、雪、霙の発現率・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	206
付録		
図 A.	1 地上気象観測原簿(気象庁)の例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	235

表の目次

第1章		
表1.1	着氷現象の分類 ・・・・・・・・・・・・・・・・・・・・・・・・・ 12	2
第2章		
表2. 1	長野県における最近の雨氷発生記録 ・・・・・・・・・ 56	6
表2. 2	AMeDAS 地点の年平均雨氷発生日数 ・・・・・・・・・・・・・・ 6.	5
表2. 3	地形因子の定義 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
第3章		
表3.1	着氷性の雨または凍雨が発生しているときの風速と相対湿度の平均値 ・・・・・・・ 12	2
第4章		
表4. 1	水滴の落下速度の測定例(Gunn and Kinzer, 1949) ····· 17	4
付録		
表 A. 1	大気水象の種類と定義(気象庁, 2002) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0

第1章 序論

1.1 研究の背景

1.1.1 着氷現象の種類と定義

大気着氷 (atmospheric icing)とは、大気中に浮遊した過冷却水滴や過冷却状態で降る雨滴が、物体に衝突して過冷却が破れて付着凍結したり、水蒸気が冷えた物体の表面に昇華凝結する大気現象である。厳密には、着氷現象は、水滴が過冷却状態ではなくても付着物体が 0℃以下の場合で時々起こるが、本論文では、主に過冷却水滴の付着凍結現象を着氷と呼ぶこととする。

着氷現象は、その付着する水の形態によって次の3つに分類される。過冷却状態の霧粒や雲粒の付着凍結現象を雲中着氷 (in-cloud icing)、地上に降ってきた過冷却の雨や雪片が付着凍結する現象を降水着氷 (precipitation icing)、大気中の水蒸気が昇華凝結する現象を樹霜 (air hoar) という。このうち本研究では降水着氷を対象としているが、この章で着氷現象の種類と定義を述べることで、本研究の位置づけを示す。以下では、雲中着氷、降水着氷、樹霜の順に説明する。

雲中着氷は、大気中に浮遊する過冷却状態の霧粒や雲粒が付着凍結する現象である。霧粒や雲粒のように直径が小さい水滴は容易に過冷却状態となり、気温が 0℃~-30℃でも凍らず液体のままで空中に浮かんでいる。図1.1はその一例で、気温に対する水雲、氷雲、混合雲の観測割合を示す(水野,2000)。過冷却状態は熱力学的に不安定な状態であるため、水滴は固体表面に接触すると直ちに固化して氷になる。雲中着氷は、冬季、過冷却した霧や雲に覆われている高山地帯を経過する送電線や、過冷却の雲中を飛行する航空機に発生して災害をもたらす(図1.2)。そのため、雲中着氷に関する観測、実験、理論的検討などの研究は古くから行われており(今井,1941; Langmuir and Blodgett,1946; 高野,1950a~e; 中谷,1950; 小口,1951a~e; 黒岩,1951a~b)、着氷の形成過程における気温や風速、雲水量、被着氷物体の直径などの影響について詳細に調べられている(例えば、Makkonen,1981;1984; 内田ほか,1991;1993)。

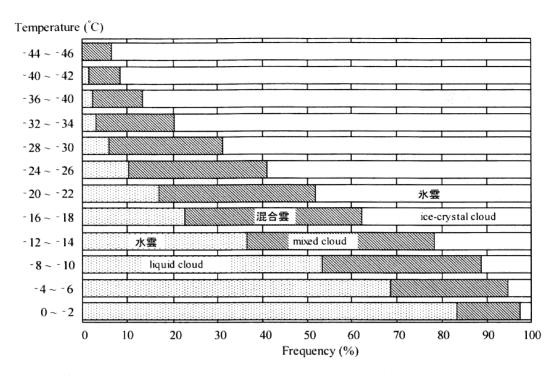


図1.1 水雲、氷雲、混合雲の気温に対する観測割合(水野,2000)

旧ソ連邦上空 41500 個の雲における 61580 回の観測からの統計データ (Matveev, 1984)から作図。

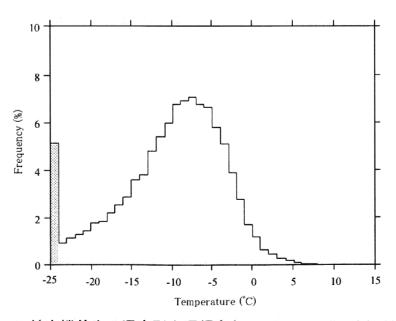


図1.2 航空機着氷の温度別出現頻度(Schultz and Politovich, 1992)

着氷データは、NOAA FSL(Forecast Systems Laboratory)で受けた米国内で航空機着氷を報じたパイロット報告(PIREP)。温度データは、PIREP 地点における NGM(Nested-Grid Model)格子点からの内挿値。統計期間は 1990 年 3 月 13 日~1991 年 3 月 25 日。

雲中着氷は、その凍結過程の違いによって、樹氷、粗氷、雨氷に分類される。図1.3は、過冷却水滴の衝突と凍結によって形成される電線着氷の種類と形態を示したものである(黒岩,1982)。 過冷却水滴は、物体に衝突して瞬時に凍るのではなく、ある一定の時間を必要とする。ここで、 τ_f を衝突した過冷却水滴が凍結するのに要する時間、 τ_f を次の過冷却水滴が衝突するまでの時間とする。一般に、凍結時間 τ_f は気温が低いほど、また風速が大きいほど短くなり、衝突時間 τ_f は水滴の空間密度または大気の雲(霧)水量が大きく、かつ風速が大きいほど短くなる。このような大気の状態に起因する着氷の成長過程の違いによって、図1.3および図1.4に示すような形態の異なる着氷が形成される。

図1. 3a および図1. 4a は、気温が低くいか風速があまり強くないときに成長する着氷で、凍結時間 τ_f が衝突時間 τ_i より短い場合 ($\tau_f < \tau_i$) である。この場合、衝突した水滴は、次の過冷却水滴が衝突する前に凍結してしまうので、着氷は風上側に向かって成長しエビのしっぽに似た外形となる (図1. 5)。これを樹氷 (soft rime) 型着氷といい、この成長過程 ($\tau_f < \tau_i$) を乾いた成長 (dry growth) という。気温が低いので (主として-6 ~ -7 \sim 以下) 電線に衝突した過冷却水滴は短時間で凍結し、その上に次の水滴が衝突して氷結するので、顕微鏡レベルの着氷構造を観察すると小さな氷のだんごが重なったような空隙の多い構造となっている。樹氷の色は白くて不透明、密度はおよそ $0.2 \sim 0.35 g/cm^3$ である。物体に対する付着力が弱いので、比較的軽いショックで簡単に脱落する。

一方、図1. 3c および図1. 4c は、気温が高く(過冷却度が小さく)、風速が比較的大きいときに成長する着氷である。気温が 0° に近いので大気によって熱の奪われる速度が遅く、過冷却水滴は衝突しても凍結するのに時間がかかる。凍りきらないうちに次の水滴が衝突してくるので、着氷面は常に水でぬれた状態で氷結が進行していく。つまり、凍結時間 τ_f >衝突時間 τ_i である。凍りきれない水は風下側に流されて氷結するが、それでも凍りきれないときは水滴のままで後流にしたたっていく。この状態で成長する着氷は純水に近く透明な氷である(図1. 4c)。これを雨氷 (glaze または clear ice) 型着氷といい、この成長過程 (τ_f > τ_i) を濡れた成長 (wet growth)という。雨氷の密度はおよそ $0.9 \sim 0.92 \mathrm{g/cm}^3$ で物体への付着力が極めて強く、取り除くことが容易ではない。

また、図1.3b および図1.4b は、樹氷と雨氷の中間の気象状態で成長する着氷で、凍結時間 τ_{ℓ} と衝突時間 τ_{ℓ} がほぼ等しいときに発達する。これは粗氷 (hard rime) 型着氷と呼ばれる。粗

氷の見かけ密度は 0.4~0.8 g/cm³ で乳白色で不透明(図1.4b)、付着力も透明な雨氷に次いで強い。顕微鏡で粗氷の組織を調べると、透明な氷の層と気泡を含んだ氷の層が互いに重なり合っていることが多い。

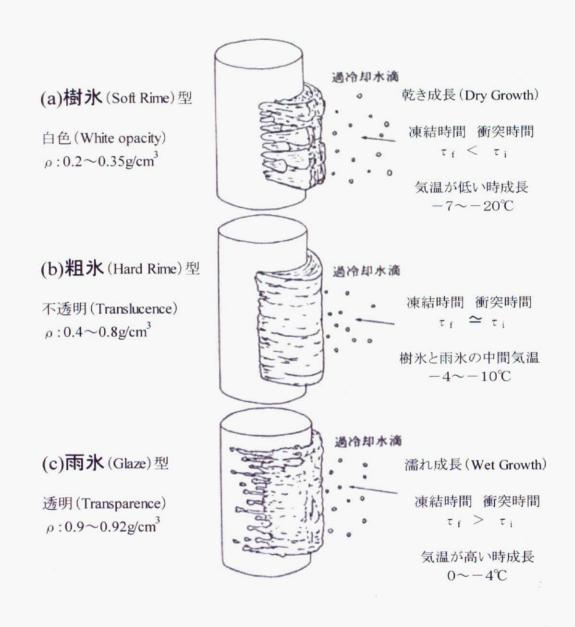
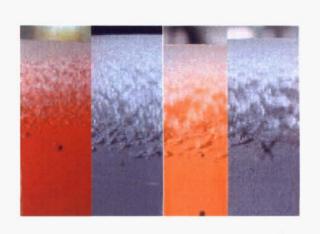



図1.3 雲中着氷による電線着氷の種類と形態(黒岩,1982)

(b)粗氷型 気温 -6℃

(c)**雨氷型** 気温 -2℃

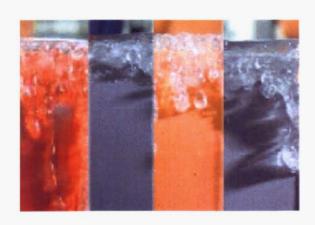


図1. 4 気温の違いによる着氷形態の変化(Kimura et al., 2004)

風洞実験によって形成された着氷で、各気温状態における様子を示す。(a) 気温-15℃の樹氷、(b) 気温-6℃の粗氷、(c) 気温-2℃の雨氷。風洞内風速 18m/s の条件で行われた実験結果。

図1.5 樹氷型着氷の写真

2000 年 7 月、フランス・シャモニのエギーユ・デュ・ミディ(標高 3842m)にて撮影。図中にスケールがないが、長さ10~15cmに成長した樹氷。

降水着氷は、大気中を落下する過冷却状態の着氷性の雨や霧雨(freezing rain/drizzle または supercooled rain/drizzle)が付着凍結する現象である(図1.6~図1.7)。雲中着氷の場合の雲粒や霧粒と比較すると雨滴の粒径が大きいため、物体に衝突した水滴が凍結するためには比較的長い時間を要する。そのため、乾いた成長過程を経て発達する樹氷型の降水着氷は例がなく、そのほとんどは濡れた成長によって発達する。そのため着氷性の雨や霧雨によって形成される着氷を、雨氷(glaze)と呼ぶことが一般的である。雲中着氷の雨氷と混同してしまうが、本論文では、過冷却の雲粒や霧粒による雨氷を「雨氷型雲中着氷」、着氷性の雨や霧雨による着氷を単に「雨氷」と呼ぶこととする。

着氷性の雨や霧雨による雨氷形成において、衝突した雨滴が凍結するのに時間がかかり、凍りきらないうちに次の雨滴が衝突してくるので、着氷面は常に水でぬれた状態で氷結が進行していく。凍りきれない水は物体の下側に流れてつららとなって氷結するが(図1.6)、それでも凍りきれないときは水滴のまま地面へ落ちる。この状態で成長する着氷は純水に近く透明な氷である。着氷形成時の気象状況によっては粗氷に近い状態で発達する場合も考えられるが、着氷性の雨や霧雨による着氷のほとんどは雨氷となる。雨氷の密度はおよそ 0.9~0.92g/cm³ で付着力が極めて強く、取り除くことが容易ではない。本研究では、この雨氷現象を研究対象としており、特にその要因である着氷性の雨の発生機構や大気条件に着目している。

さて、降水が物体に付着凍結する現象は、過冷却の雨だけではなく、降雪によっても起こる。つまり着雪現象(snow accretion)である。ただし、大気着氷の観点からみた着雪現象の位置づけが、国内と国外で少し異なるようである。日本では、水分を含む湿雪の付着凍結による着雪現象が多く発生するが、着氷性の雨や霧雨による着氷は極めて稀であるといわれる。逆に、寒冷なカナダやアメリカ、ヨーロッパの北部では、降水着氷の原因は過冷却の雨によるものが多く、湿雪によるものは少ない。また、国内では水分を含んだ湿雪による着雪現象の研究が古くから行われている歴史的な背景があるためか(例えば、荘田、1953)、大分類としてまず着雪(雪片の付着現象)と着氷(過冷却水滴の付着現象)とに分けて現象を捉える傾向があるようである。一方、海外では、大気中の浮遊物(雲粒や霧粒)の付着現象か降水(雪片や過冷却の雨)による付着現象かに着目して、雲中着氷と降水着氷に分けて考えられ、着雪は降水着氷に分類される(例えば、Fikke、2005)。着氷と着雪では、その発生条件や発達過程を熱力学的あるいは流体力学的にみた場合異なる点が多いものの、大気現象としてとらえた場合、着雪は降水(雪片)による付着現象

であるので、大分類としては降水着氷に分類されるべきであると考えられる。なお、着雪には、水分を含んだ湿雪による湿型着雪(wet snow accretion)と、気温 0℃以下で水分を含まない乾いた雪片による乾型着雪(dry snow accretion)がある。

図1.6 着氷性の雨による雨氷 (Jones and Mulherin, 1998) 1998年1月8日、ニューヨーク州北東部にて。

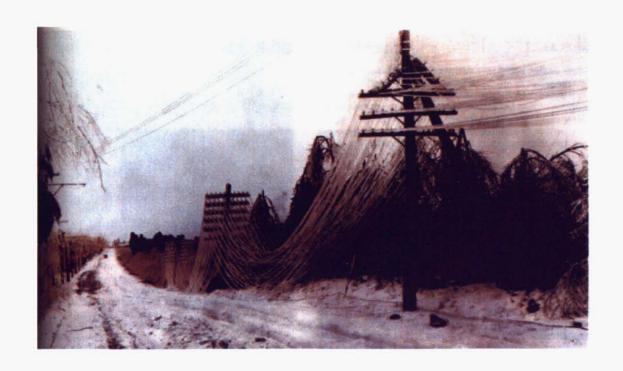


図1.7 着氷性の雨による雨氷被害の例(Ahrens, 2003)

樹霜は、空気中の水蒸気が 0℃以下に冷えた物体の表面に昇華凝結することにより、直接氷の結晶になったものである。したがって、本質的には過冷却水滴を必要としない。樹霜は一般に針状や樹枝状結晶であることが多い。通常、風の弱い静かな晴天の夜に、放射冷却が進んだ気象条件で発達する。物体に対する付着力やそれ自身の強度は弱く壊れやすいので、着氷としての樹霜による被害は少ない。図1.8は地上の草木に発達した樹霜の写真で、弱い冷気流のくる方向に発達している。逆に、樹霜の方向から冷気流の向きを推定できる。樹霜は太陽が照れば間もなく蒸発したり、風が吹けば壊れて落下してしまう。

この他、海水や湖沼などにおける飛沫着氷 (spray icing) がある(図1.9)。これは水面から供給される水滴の凍結現象で、大気中を浮遊あるいは落下する水滴による大気着氷とは、異なる発生機構をもつ。過冷却の水滴が付着凍結する機構は前述したとおりであるが、海域の場合、海水飛沫に含まれる塩分が凍結過程に影響が及ぼす。また、海水飛沫による着氷現象は、主に航行する船舶に付着凍結することから、船体着氷と呼ばれる。

以上、着氷現象の種類と定義について述べ、表1.1に、これらをまとめた。本研究では、着氷 性降水およびそれに伴う雨氷現象を研究対象とする。

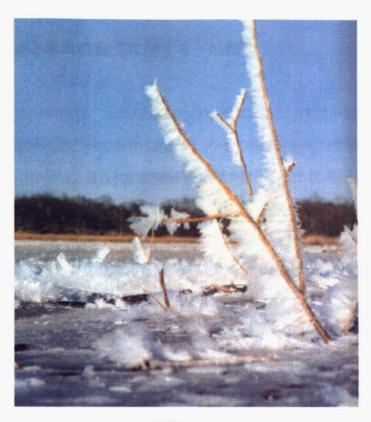
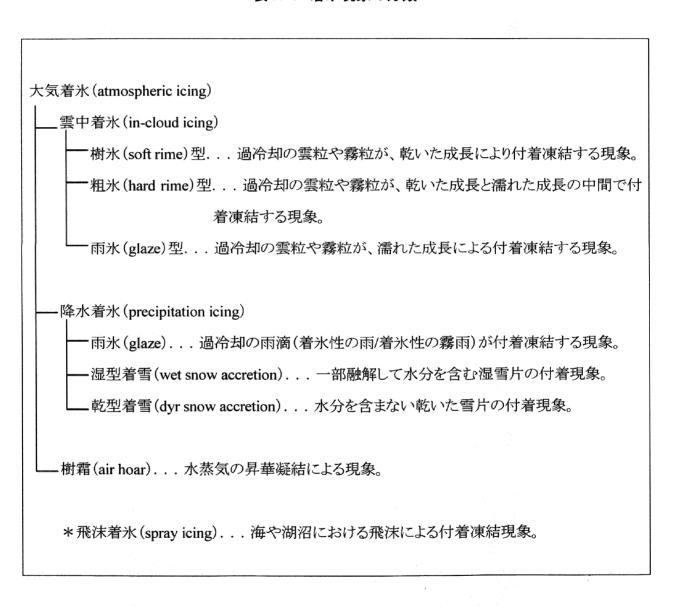



図1.8 樹霜(東海林,1982)

図1.9 飛沫着氷(東海林,1982)

表1.1 着氷現象の分類

1.1.2 着氷性降水と雨氷の発生に関する一般概念

着氷性の雨と着氷性の霧雨は、気象庁(2002)の定義によると、0℃より低温の雨で、地面や地物または飛行中の航空機にあたって着氷 (水と0℃の氷の混在)を起こす降水である。このうち雨滴の粒径が0.6mm 未満のものを着氷性の霧雨と定義される。着氷性の雨と霧雨をまとめて呼ぶときは、着氷性降水 (freezing precipitation)と呼ぶ。

また雨氷は、一般に均質で透明な氷層が地物に付着した現象で、過冷却した雨または霧雨 (着氷性の雨または霧雨)が、0℃以下または 0℃よりわずかに高い温度(過冷却でない場合は 0℃以下)の地面や地物にあたって凍結したものであると定義されている(気象庁,2002)。

着氷性降水が発生する一般的な気象条件は、図1.10 に示すように、上空に雪片などの降雪粒子を融解して雨滴にする暖気層(気温 0℃以上)があり、その下層に雨滴を冷却して過冷却状態とする寒気層(気温 0℃以下)が存在することである。つまり、気温 0℃を境にした逆転層が上空に存在することが必要となる。これを融解過程(melting process)という。このとき地上に到達する前に雨滴が再凍結したものは凍雨(ice pellets)と呼ばれる。凍雨は、透明の氷の粒の降水で、球状または不規則な形であり、直径は5mm未満である(気象庁、2002)。

融解過程によって着氷性の雨が発生する気象条件のとき、上空暖気層における降雪粒子の融解に関わる大気条件と、下層寒気層における雨滴の凍結に関わる大気環境によって、着氷性降水と凍雨だけではなく非常に多様な降水形態がみられるのが特徴である(図1.10)。こうした降水種は降水時の地域的な差としてみられるばかりでなく、同じ地点においても雪から凍雨、着氷性の雨、雨へと変化したり、あるいはその逆に変化したり、それらが同時に降ってくる場合もある(例えば、Stewart and King, 1987; Stewart and Crawford, 1995; Zerr, 1997; Szeto et al., 1999; Robbins and Cortinas, 2002)。Robbins and Cortinas (2002)によると、着氷性の雨が単独で降る場合は全体の25%に過ぎず、着氷性降水の期間中は、雪や凍雨など他の降水種へ変化する場合や、同時に他の降水種が降る場合がほとんどである。このことから、着氷性降水は、非常に狭い温度範囲の大気状態によって発生していることが示唆される。

着氷性降水は、上記の融解過程の他、大気全層が気温 0℃以下の状態で凝結成長過程あるいは衝突併合過程を経て過冷却水滴が成長する場合(supercooled warm rain process)もある

(Ohtake, 1963; Bocchieri, 1980; Huffman and Norman, 1988; Cober et al., 1996; Rauber et al., 2000)。しかし、そのほとんどは粒径の小さい着氷性の霧雨となることが報告されており(例えば、Bocchieri, 1980; Rauber et al., 2000)、この過程を経て着氷性の霧雨が形成されるときの雲水量や凝結核濃度の影響について調べられている(例えば、Rasmussen et al., 2002)。

図1. 11 に示すように、着氷性の雨のときと、着氷性の霧雨のときの平均的な気温の鉛直分布を比較すると、着氷性の霧雨の場合は、大気全層で気温 0℃以下となる(Bocchieri, 1980)。また、図1. 12 は、北海道の根室で着氷性の霧雨が観測されたときの気温と露点温度の鉛直分布である。この図1. 12a の場合をみると、気温 0℃以下の浅い飽和層が地上付近にあり、これは雨滴が気温 0℃以下の過冷却状態で凝結成長あるいは衝突併合して成長した例であると考えられる。一方、図1. 12b の場合は、上空 200m 付近に気温 0℃以上の飽和層があり、その下層は気温 0℃以下の寒気層となっている。霧雨は上空の気温 0℃以上の飽和層で凝結成長や衝突併合成長をして形成され、これが地上付近で冷やされて過冷却状態となったと考えられる。このように着氷性の霧雨が発生するときの大気条件は非常に多様であることがわかる。

これに対して、図1.11 によると、着氷性の雨が発生するときの気象条件は融解過程である場合がほとんであると考えられる。地上における雪氷気象災害の観点からみると、雨氷形成による被害に関して、粒径の大きい着氷性の雨の場合の方がより多く着氷が発達すると考えられるので、融解過程によって発生する着氷性の雨を考えることが重要となる。融解過程を経た着氷性の雨による雨氷現象の解明には、

- (1) 上空暖気層の存在と降雪粒子の融解過程
- (2)下層寒気層の存在と雨滴の冷却または凍結過程
- (3) 地上付近の気象条件や地上物体の状態

の3つの物理的な条件を調べる必要がある。

本研究では、融解過程による着氷性の雨と雨氷現象を研究対象とした。

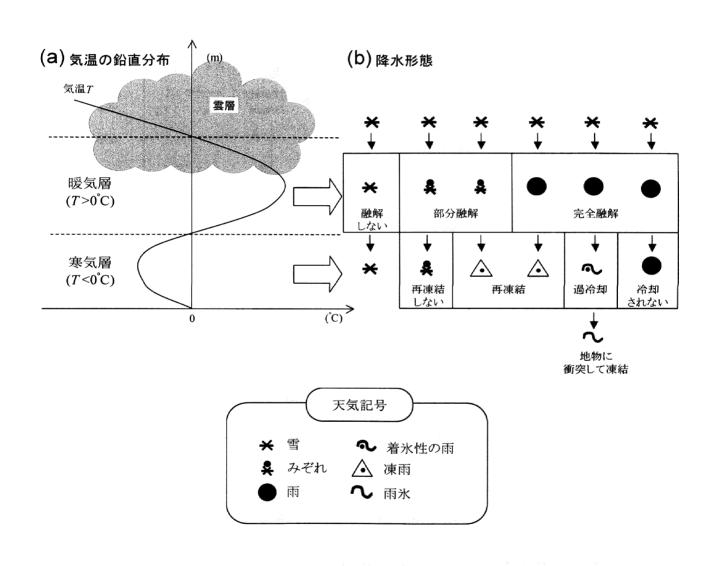


図1.10 融解過程による着氷性降水の発生条件とそのときの降水形態

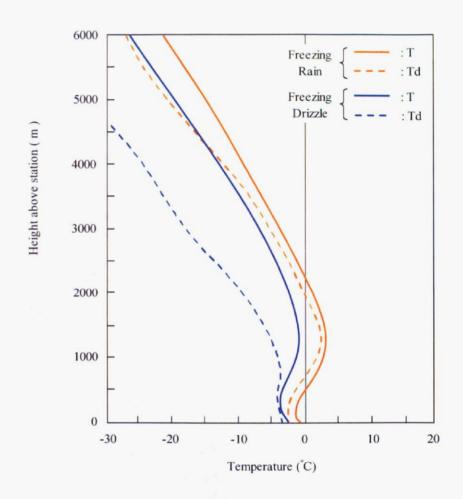


図1. 11 着氷性の雨と霧雨のときの気温と露点温度の鉛直分布(Bocchieri, 1980)

図は着氷性の雨 94 例と着氷性の霧雨 127 例の合成。統計期間は 1972/73~1976/77 の 10 月 ~4 月。アメリカにおける 48 箇所のラジオゾンデ観測資料を使用。

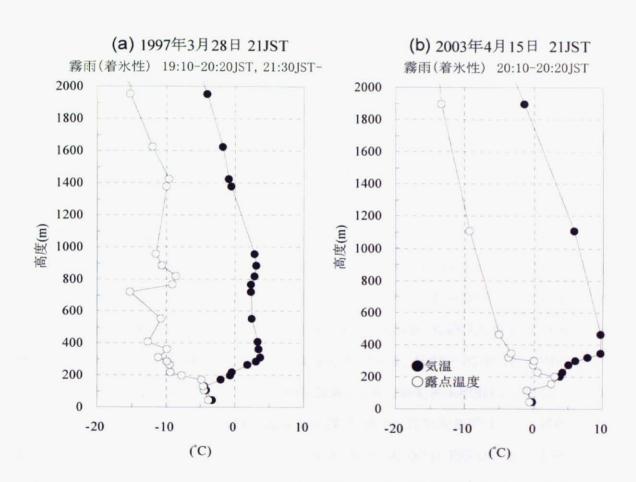


図1.12 着氷性の霧雨が観測されたときの気温の鉛直分布の例

根室において着氷性の霧雨が観測されているときの気温と露点温度の鉛直分布の例。各図の上に着氷性の霧雨の発生時刻(JST)を示す。

1.1.3 着氷性降水に関する研究の歴史的背景

過冷却状態で降る雨や霧雨(着氷性の雨/霧雨)が、地面や地物にあたって付着凍結する雨 氷現象は、その荷重により倒木などの森林被害や送電設備の倒壊被害を発生させる(Henry, 1922; 林野庁, 1957; Mahaffy, 1961; Chainé, 1973; 古川ほか, 1999; 鳥田ほか, 2004)。そのため、 この現象は古くから国内外で研究が行われ、被害の状況や雨氷形成の観察が行われている。

着氷性降水や雨氷現象の被害に関する研究報告について、古い時代のものを列記すると、 (海外) 1920 年 1 月 20~25 日、アメリカ東部 (Meisinger, 1920)

1922 年 2 月 21~23 日、アメリカ、ウィスコンシン州、ミシガン州 (Henry, 1922)

1925 年 4 月 19 日、アメリカ・ニューイングランド地方(Brooks, 1925)

1929 年 12 月 17~20 日、アメリカ・ニューイングランド地方 (Jones and Mulherin, 1998)

1930年11月15~16日、アメリカ、ノースダコタ州とミネソタ州 (McClurg, 1930)

1930年11月18~20日、アメリカ、サウス・ダコタ州(Blystone, 1930)

1951 年 1 月、アメリカ、ルイジアナ州からヴァージニア州の広い範囲(Harlin, 1952)

1969年12月26~27日、アメリカ北東部(Ackley and Itagaki, 1970)

(日本)1902(明治35)年1月8日、東京(Okada, 1914)

1914(大正3)年3月7日、北海道·旭川(Okada, 1914)

1922(大正 11)年 1月 10日、東京(玉手, 1922)

1923(大正 12)年 1月 22~23 日、長野県中部(三沢,1923a~c)

1923(大正 12)年4月5日、長野県中部(三沢,1923d)

1931(昭和6)年2月5日、長野県諏訪地方(三沢、1931)

1933(昭和8)年1月17日、東京

などがある。このように着氷性降水や雨氷現象はアメリカ東部で発生する場合が多く、カナダの モントリオール周辺でも1961年2月25~26日(Mahaffy, 1961)や1971年3月22~23日(Chainé, 1973)などの事例において電力設備などに被害が生じている。また、日本国内でも古くから雨氷 現象の観察的な研究やそのときの気象状況の考察が行われている。

このように国内外で着氷性降水や雨氷現象が発生しているなかで、北米において広範囲にわ

たり重大な被害を生じた最近の顕著事例として、

1990年2月14~15日(Valentine's Day Ice Stormと呼ばれる)の事例(Martner et al., 1992; 1993; Prater and Borho, 1992; Rauber et al., 1994)

1998年1月4~10日の(Great Ice Storm と呼ばれる)の事例(Jones and Mulherin, 1998; Lu et al., 2000; DeGaetano, 2000; Gyakum and Roebber, 2001; Jones, 2003; Roebber and Gyakum, 2003)

2002年1月の事例(Ahrens, 2003)

がある。1990 年 2 月 14~15 日の Valentine's Day Ice Storm では、カンザス州などアメリカ東部を中心にした広い地域(約 35 の州に及ぶ)とカナダ南東部で着氷性の雨や霧雨が降り、落雷を伴う嵐となった。イリノイ州のシャンペーンでは 18 時間も着氷性の雨が降り続けてその降水量は45mmとなった(Rauber et al., 1994)。このとき 9 名が死亡、27 名が負傷し、被害総額は 12 億ドルを超えた(Martner et al., 1992)。

また、1998 年 1 月 4~10 日の Great Ice Storm では、アメリカ北東部とカナダ東部で局地的に 100mm を超える着氷性の雨が降り、この嵐の影響は 115 時間を越えた (DeGaetano, 2000; Roebber and Gyakum, 2003)。そのため、数十万の人々への電力供給が停止し、長い地域で3週間以上も電気のない生活が強いられた (Jones and Mulherin, 1998)。このため、アメリカとカナダでは電力設備の被害を中心に数十億ドルの被害が生じた (DeGaetano, 2000; Lu et al., 2000)。

さらに、2002 年 1 月の事例では、カンザス州とミズーリ州に大きな被害が生じ、過去 100 年で最も最悪なアイスストームによって、これらの地域は厚さ 5cm の氷で覆われ、30 万人以上が電力の供給を絶たれた(Ahrens, 2003)。日本国内において、北米での事例のように広範囲に重大な被害をもたらす雨氷の発生事例はほとんどなく、非常に局地的に発生する場合が多い。

重大な被害を発生させる着氷性降水や雨氷現象の発生に関する地域分布は、被害地域の想定や災害対策を行う上で必要な判断材料になると考えられる。こうした着氷性降水や雨氷現象の発生に関する気候学的な地域分布は、ヨーロッパ(例えば、Carrière et al., 2000; Bezrukova et al., 2004)や北米(例えば、McKay and Thompson, 1969; Stuart and Isaac, 1999; Cortinas et al., 2004; Changnon and Karl, 2003)ですでに得られており、その地域特性(Bernstein, 2000)や対応する総観規模現象(Rauber et al., 2001b; Robbins and Cortinas, 2002)について調べられている。これらによると、雨氷被害の多発する北米では、ノースカロライナ州やヴァージニア州およびニュ

ーヨーク州からニューイングランド地方などの北東部を中心に発生頻度が極めて高いという偏った地域分布を示す。また、ヨーロッパからシベリアを含めたユーラシア大陸では、ドイツ南部などのヨーロッパ地域で発生割合が高くなっている。

また、極値統計理論に基づく着氷性降水の発生あるいは雨氷の重量や厚さなどの再現期間値の評価も行われており(例えば、Jones and Mulherin, 1998; Jones, 2003)、ハザードマップの作成が試みられている(例えば、McKay and Thompson, 1969; Laflamme and Périard, 1996)。雨氷現象に強風が伴う場合、雨氷の付着重量に風圧荷重が加わるため、被害の拡大を招く恐れがある。そのため、Jones (2003)は、カナダのセントローレンス谷地域において着氷性の雨による着氷荷重とそのときの風による風圧荷重を合わせた再現期間値を求め、また最大着氷荷重時の風荷重を求めている。

一方、日本では、着氷性降水や雨氷現象の発生に関する気候学的な地域分布は、ほとんど 明らかにされていない。こうしたなかで、牛山(1991)は都道府県単位の雨氷被害事例をまとめた。 これによれば、日本における雨氷発生による被害の報告は、東日本や北日本を中心にした地域 で多く、なかでも長野県での記録が多いことが示されている。長野県における雨氷現象の研究は 古くから行われていて(三沢、1923a~d; 1931)、近年においても多くの研究論文が発表されてい る(例えば、牛山・宮崎、1992; 1993; 古川ほか、1999; 浜田、2000; 浜田・牛山、2001)。 長野県の 他、日本における雨氷現象の発生事例を、その発生地域に着目して列記すると、北海道の上川 盆地(井上・増田、1955)と日高地方(佐藤ほか、1970、鳥田ほか、2004)、岩手県の北上山地(大 原ほか、1990、松岡ほか、1990)、福島県の阿武隈高地(平川・渡辺、1985)、新潟県の長岡市 (Kimura and Kajikawa, 1984)、関東地方の秩父山地(梶ほか, 1991; 1994)、東京都(岡田, 1902; Okada, 1914)、千葉県(村井, 1936)などがある。また、九州の阿蘇山麓(河野ほか, 1975)でも雨 氷現象による被害報告がある。これら被害報告の地域性からも、牛山(1991)が示したように、雨 氷現象は北日本と東日本で多く発生する傾向が示唆される。しかし、この傾向は雨氷による被害 に関するもので、被害に至らない軽微な雨氷現象や着氷性降水の発生そのものを捉えた傾向で はない。日本全域を対象とした着氷性降水や雨氷現象の発生割合やその地域特性について、 均質で継続的な資料を用い、かつ客観的に調べた例はない。

さて、着氷性降水が発生するときの気象条件に関して、地上付近の気温 0℃以下の寒気層の 上空に、気温 0℃以上の暖気が覆い被さり、気温の逆転層(融解過程による気象条件)が形成さ れたときに発生することは、古くから当時の限られた気象資料に基づく考察によって知られていた(岡田,1902; Okada, 1914; Frankenfield, 1915; Meisinger, 1920; 三沢, 1923b)。Okada (1914)によると、この気象条件を最初に示したのはドイツの Meinardus 博士であり、1898年10月20日にドイツ中部および東部で発生した雨氷事例から、(1)上空に気温 0℃以上の暖気層が存在すること、(2)この暖気層の大気状態が非常に湿潤で風速の鉛直成分があること、(3)暖気層の下には気温 0℃以下の寒気層が存在すること、この3条件が雨氷の発生に必要であると述べられている。その後、気温と風の鉛直分布の観測結果から、上空の暖気層では南西風を伴い、地上付近の寒気層では北東風となっているなど、風についても暖気層と寒気層の間に強い鉛直シアーがあることが示された(例えば、Harlin, 1952)。

Bernstein (2000)によると、着氷性の雨が降っているときの気温の鉛直分布の一般的傾向として、暖気層 (厚さ 2800m まで)の最高気温は 1~10℃の範囲、寒気層 (厚さ 1400m まで)の最低気温は−1~−7℃の範囲である。また、Robbins and Cortinas (2002)は、着氷性の雨のときのゾンデ観測資料を用いて、上空暖気層と地上付近の寒気層の大気状態の統計的な中央値 (メディアン)を求めた。それによると、上空暖気層の最高気温は3.2℃でその高度はおよそ1100m、暖気層の厚さは約1300m、寒気層の湿球温度の最低値は−2.9℃でその高度はおよそ200m、厚さは約600mである。また、地上気温は−1℃であることが示された。

近年は、ドップラーレーダなどによるリモートセンシング技術の活用や大気シミュレーションを併用した解析によって、着氷性降水が発生しているときの詳細な大気構造が示されている (Stewart, 1992; Prater and Borho, 1992: Martner et al., 1993: Hanesiak and Stewart, 1995; Szeto et al., 1999; Coleman and Marwitz, 2002)。例えば、着氷性降水時におけるドップラーレーダの観測 結果から、前線面上に降雪粒子の融解を示すブライトバンド層が存在し、これが地上の着氷性の雨や凍雨が観測されている地域に対応していることが示された。そのため、着氷性降水や雨氷の発生域は前線に平行に帯状に分布する傾向がある(例えば、Mahaffy, 1961; Chainé, 1973; Martner et al., 1993)。また、上空暖気層と地上付近の寒気層との間に下層ジェット気流が存在し、これと降雪粒子の融解による大気の非断熱冷却によって上空に局地的な二次循環が起こり、これが地上に激しい降水をもたらす要因になっていることが示されている。

また、上空に気温 0℃以上の暖気層が存在しなくても、大気全層が気温 0℃以下の状態で凝結成長過程あるいは衝突併合過程を経て過冷却水滴が成長する場合が、Bocchieri (1980)、

Huffman and Norman (1988)、Rauber et al. (2000)などによって、ゾンデ観測資料による気温の鉛直分布から指摘され、Cober et al. (1996)による詳細な航空機観測によって確認が行われている。また、Rasmussen et al. (2002)は、着氷性の霧雨が形成されるときの雲水量や凝結核濃度の影響について調べている。この過程を経て成長する過冷却水滴は大きな雨滴にまで十分に成長しないので、そのほとんどは粒径の小さい着氷性の霧雨となることが報告されている(例えば、Bocchieri、1980; Rauber et al., 2000)、

着氷性降水時における総観規模の地上気圧配置の一般的な特徴は、まず Riehl et al. (1952) や Bennett (1959)によって整理された。これらによると、北米では、低気圧の通過に伴って発生する場合と、極気団の影響下にある停滞前線に対応して発生する場合の2通りに大きく分けられる。前者の場合、低気圧の温暖前線の寒気側に着氷性降水の発生域が広がり、その北側では雪、南側では雨が観測される。一方、停滞する極前線に伴う場合は、着氷性降水域は前線の北側に沿ってより広範囲に分布するのが特徴で、雨の降り方は弱いものの長時間降り続く傾向にある。Robbins and Cortinas (2002)によると、北米における着氷性降水の発生傾向として、極前線に伴う場合が全体の 57%にあたる。また、Rauber et al. (2001b)は、着氷性降水が発生しているときの地上気圧配置と着氷性降水域の対応関係を調べたところ、極前線の場合は、総観規模の気圧配置に伴って着氷性降水の発生域が広く分布するが、低気圧に伴う場合は、特にその暖域において、地形形状の影響によって着氷性降水域が局地的に分布することが示された。

このように、着氷性降水や雨氷現象の発生は、周辺地形や地表面状態などの局地的な影響を強く受けることが知られている。例えば、北米では、アパラチア山脈における総観規模の寒気移流の堰き止め効果(cold-air damming)が、着氷性の雨の発生に強く関与していることが報告されており(例えば、Forbes et al., 1987; Bell and Bosart, 1988)、五大湖では湖面からの潜熱供給の影響により、沿岸部における着氷性の雨の発生頻度が内陸部に比べて少ないことが示されている(Cortinas, 2000)。また、Hanesiak and Stewart (1995)は、カナダ東部のニューファンドランドでは、海氷の存在によって地上付近の寒気層の気温が低下し、このことが凍雨を長時間降らせた要因であると述べている。さらに近年の都市気候の問題に関連して、Changnon (2003b)は、都市域では周囲の地域より地上気温が高いために着氷性降水の発生する季節が短いことを示した。

雨氷被害の分布状況と、その地域の地形的な特徴との関連性は、主に日本において調べられている。これらによると、雨氷の被害程度は斜面方位によって異なり、等高線に沿ったある標

高帯(標高 1000~1500m の例が多い)で雨氷が発生しやすい傾向にあることが示されている(三沢, 1923c; 林野庁, 1957; 大原ほか, 1990; 梶ほか, 1991; 牛山・宮崎, 1992; 古川ほか, 1999; 浜田, 2000)。また、内陸の盆地地形では、周囲の山岳が下層の暖気移流を遮蔽することで、上空の暖気層と地上付近の寒気層という融解過程の気象条件を形成することが指摘されている(例えば、坂上, 1994; Robbins and Cortinas, 2002)。

以上のような着氷性降水の発生に関する気象条件や地域的特徴を踏まえ、着氷性降水の発生条件に関して、気温の鉛直分布、暖気層と寒気層の気温、層厚、高度などに着目して調べられている(例えば、Zerr, 1997; Rauber et al., 2000; Robbins and Cortinas, 2002; Hux et al., 2001)。また、これらを指標として着氷性降水の発生を予測する試みが数多く行われており、その多くは上空の暖気層の気象条件に着目している(Bocchieri and Maglaras, 1983; Stewart and King, 1987; 石原・田所, 1989; Czys et al., 1996; Hux et al., 2001; Cheng et al., 2004)。Stewart and King (1987)は、暖気層の高度と気温の関係から地上の降水種を判定する手法を提案している。石原・田所(1989)とCzys et al. (1996)は、大気と降雪粒子との理論的な熱収支計算によって降雪粒子が完全に融解するときの暖気層の気温と厚さを求め、これを指標とした着氷性の雨や雨氷の発生判別図を示した。ただし、大気は水飽和していると仮定された。また、降雪粒子の融解過程に関する理論的および実験的な研究は、Matsuo and Sasyo (1981a~c)および Mitra et al. (1990)により詳しく行われている。それらによると、降雪粒子が完全に融解するためには、少なくとも 100m 以上の厚さの暖気層が必要である。

一方、地上付近の寒気層の気象条件に関して、寒気層の層厚と最低気温との関係(Zerr, 1997)、地上気温と降水形態の関係(Huffman and Norman, 1988; Cortinas, 2000; Carrière et al., 2000; Cortinas et al., 2004)を調べた例などがある。Stewart et al. (1990)は、部分融解した降雪粒子の再凍結条件を理論的な熱収支計算より求め、寒気層の厚さと気温を指標にした融解雪片の再凍結条件を示した。ここでも大気は氷飽和の条件が仮定されている。この他、着氷性の雨と凍雨を分ける気象要因は、上空の暖気層の気象条件より、むしろ地上付近の寒気層の厚さが重要であることが指摘され(Szeto, et al., 1999)、地上付近の寒気層で雨滴が凍結して凍雨になるには、寒気層の厚さがおよそ 400m 以上必要であることが示されている(Zerr, 1997; Cortinas, 2000)。

上記の着氷性の雨に関する発生判別方法は、上空の暖気層と地上付近の寒気層のそれぞれ についての検討結果である。ここで、Bourgouin (2000)は、降雪粒子の融解条件と雨滴の凍結条 件、この2つの条件を組み合わせて、暖気層と寒気層の大気の熱容量を指標とした着氷性の雨と凍雨を判別する方法を提案している。この解析で、統計解析によって着氷性の雨と凍雨を分ける判別線が得られているが、ここでも大気は飽和していることが仮定された。

これまでの着氷性降水に関する発生予測手法は、相対湿度 100%の飽和大気を仮定しているか、降雪粒子や雨滴の表面における水の相変化に伴う潜熱の影響が無視されている。しかし、実際は大気の湿潤状態も降雪粒子の融解条件や雨滴の凍結条件に関与することが指摘され、降水粒子の性質(大きさ、降雪粒子の密度)にも左右される(Matsuo and Sasyo, 1981b; Stewart and King, 1987; Mitra et al., 1990; Crawford and Stewart, 1995)。

こうしたなかで、Tremblay and Glazer (2000)は、雲物理過程を数値的に表現して、雲粒の水相と氷相およびその混合状態を判断して、着氷性降水(主に着氷性の霧雨)の発生予測を行う方法を示している。また、最近、Theriault and Stewart (2005)は、降水粒子と大気との熱的な数値計算から、着氷性の雨が降る大気状態のときの降水種(着氷性の雨、凍雨、雪、雨、湿雪など)の質量比を時系列的に求める方法を示している。

なお、着氷性降水が物体に付着凍結して雨氷を形成するかは、過冷却水の凍結過程や雨氷 表面における熱収支検討など別の解析が必要である。地上気象観測値をもとにした雨氷表面の 熱収支計算から、着氷する量や厚さを求めるモデルがいくつか提示されている(例えば、 Makkonen, 1984; 1998; Jones, 1996)。

以上、国内外における着氷性降水や雨氷現象に関する研究の歴史的背景について述べた。着氷性降水や雨氷現象は、日本国内および海外で古くから研究が行われていたことがわかる。しかし、日本では、これらの現象の発生に関する気候学的な特徴や地域性、局地気象現象との関連などの気象学的な観点からの研究が海外に比べてほとんど行われていない。また、着氷性降水や雨氷現象の発生予測に関する研究は、未だ十分な成果が得られたとは言えない状況にある。

1.2 本論文の目的と構成

1.2.1 本論文の目的

日本における着氷現象の研究は、主に雲中着氷に関して古くから行われてきた。一方、降水 着氷(雨氷)に関する研究は北米で盛んに行われているが、日本でも古くから雨氷現象の発生 事例について報告があり、近年では雨氷被害の地域的な特徴などが調査されている。

しかし、日本における着氷性降水や雨氷現象の研究は、1回の発生事例を扱った解析が多く、これらの現象がどのような地域で発生する傾向にあるのか、またどの程度の発生割合なのか、この問いに対する着氷性降水や雨氷現象の発生に関する気候学的特徴について、十分な知見が得られていない。

また、日本におけるこれまでの研究の多くは、雨氷被害の地域分布より得られる特徴からの議論にとどまっており、局地気象の観点から着氷性降水が発生するときの大気条件の形成過程について調査を行った研究例はほとんどない。着氷性降水の発生を理解する上で、そのときの気象条件の形成過程や、これに関連する局地気象現象や周辺の地形状況との関係を詳細に明らかにすることが必要と考えられる。

さらに、着氷性降水の発生を予測する手法は、国内外でいくつか提案が行われているが、その多くは上空暖気層における降雪粒子の融解条件のみに着目したものであったり、飽和大気を仮定することで降水粒子表面の相変化に伴う影響を無視している。着氷性の雨や凍雨の発生判別には、上空暖気層の降雪粒子の融解条件に加え、地上付近の寒気層における雨滴の凍結条件も検討する必要があり、さらに大気の湿潤状態も考慮することが重要であると考えられる。

以上のことから、本論文では、日本における着氷性降水および雨氷現象の気象学的および気候学的な特徴を解明することを目的として、次の3つの異なる観点から解析を行った。

- (1)気候学的な特徴の把握(総観規模の特徴)
- (2) 発生条件の形成過程の解明(局地規模の特徴)
- (3) 大気の熱力学的構造の解析(雲物理規模の特徴)

- (1)では、日本全域を対象とした着氷性降水の発生に関する気候学的な地域分布を求めることを目的とする。また、これに対応する地上気圧配置などの総観規模の気象現象や着氷性の雨や霧雨、凍雨の発生に関する季節変化や経年変化についても調べる。このことで、日本における着氷性降水や雨氷現象の発生に関する全体像を捉えることがねらいである。
- (2)では、着氷性の雨や凍雨が発生するときの気象条件(融解過程)について、局地気象の観点からみた場合の形成過程を明らかにすることが目的である。このとき、周辺の地形状況や地域特有の局地気象現象との関連性に着目した解析を行い、気象条件の形成過程における一般的な地域性を明らかにすることを目的とする。この局地気象解析によって、(1)で得られる着氷性降水の発生に関する地域性を説明することができると考えられる。
- (3)では、着氷性の雨や凍雨が降っているときの大気の熱力学的条件、つまり上空の暖気層における降雪粒子の融解条件と地上付近の寒気層における雨滴の凍結条件を理論的に検討する。この熱力学的な理論検討によって、着氷性の雨や凍雨の発生に関する予測手法を提案することを目的とする。

1.2.2 本論文の構成

本論文の構成は、研究の目的や背景(第1章)、解析内容と結果(第2章~第4章)、研究成果のまとめと今後の展望(第5章)の3つに大きく分けられる。

第1章では、本研究における背景と国内外の研究状況を述べ、本論文で行う研究の目的と位置づけを明示した。

第2章から第4章は、第1.2.1節で示した、本研究の3つの目的に対応する解析内容が各章に分けられて述べられている。また各章では、各研究目的に対する背景や今後の展望について述べた。以下、各章の内容の概略について説明する。

第2章では、日本全域を対象とした着氷性降水の発生に関する気候学的な地域分布を求め、これに対応する地上気圧配置の特徴、着氷性の雨や霧雨、凍雨の発生に関する季節変化や経年変化について調べた。また、雨氷現象の発生に関するより詳細な地域分布を得る試みとして、解析対象地域に雨氷発生記録の多い長野県を選び、統計的な手法によって年平均雨氷発生日数の地域分布図(メッシュマップ)を作成した。

第3章では、着氷性降水の発生割合の高い地域に着目して、着氷性の雨や凍雨が発生するときの気象条件の形成過程を、局地気象解析によって調べた。また、地域間における着氷性降水時の地上気象状況を比較し、それが雨氷形成に与える大気の熱的影響の違いについても解析を行った。さらに、強風を伴った雨氷現象の例として、2004年2月に北海道の岩見沢で起きた雨氷事例について詳細な解析を行った。

第4章では、着氷性降水の発生予測手法を提案した。ここでは、2003 年 1 月 3 日に関東地方で着氷性の雨や凍雨が降ったときの解析結果をもとに、上空における降雪粒子の融解条件と雨滴の凍結条件について理論的な検討を行った。この2つの熱力学的な大気条件と、地上の気象条件を加えた3つの条件から、融解過程による着氷性の雨の発生予測を行う手法について提案を行った。

第5章では、本研究によって得られた成果をまとめるとともに、本研究課題の今後の展望について述べた。

第2章 日本における着氷性降水の気候学的特徴

2. 1 はじめに

2.1.1 着氷性降水に関する気候学的研究の背景

着氷性降水が、樹木や送電線などの地物にあたって凍結する雨氷現象は、その重量と強い付着力によって倒木被害や停電被害、交通障害等の雪氷災害を誘き起こす。被害地域の想定や災害対策を行うための判断材料として、あらかじめ着氷性の雨や雨氷現象の発生に関する地域分布を、長年の観測データをもとに気候学的に求めておくことが重要である。

こうした着氷性降水や雨氷現象の発生に関する気候学的な地域分布は、ヨーロッパ(例えば、Carrière et al., 2000; Bezrukova et al., 2004) や北米(例えば、McKay and Thompson, 1969; Stuart and Isaac, 1999; Cortinas et al., 2004; Changnon and Karl, 2003)においてすでに得られており、着氷性降水の年平均発生日数や時間数、または年最大日数などの統計値に関する地域分布が示されている。特に、1920~1930 年代の古い資料を用いた解析例もあり(Bendel and Paton, 1981; Changnon, 2003a; Changnon and Creech, 2003)、着氷性降水の発生に関する地域分布の長期的な変動傾向などが調べられている(Changnon and Karl, 2003)。また、災害対策の観点から、着氷性の雨の発生頻度やそれによる雨氷量(重量や厚さ)について、再現期間値などの統計的な極値が求められ、その地域分布が得られており(例えば、McKay and Thompson, 1969; Laflamme and Périard, 1996)、着氷性の雨をもたらす低気圧(ice storm)の地域的な頻度分布やそれによる被害総額に関する地域分布も得られている(Bendel and Paton, 1981; Branick, 1997; Changnon, 2003a)。

上記のような着氷性降水の発生に関する地域分布によると、雨氷被害の多発する北米では、 東部沿岸地域で発生頻度が極めて高いという偏った地域分布を示す。また、ヨーロッパからシベ リアを含めたユーラシア大陸では、ドイツ南部などのヨーロッパ地域で発生割合が高くなっている。 さらに、Rauber et al. (2000)は、着氷性降水時の気温と露点温度の鉛直分布の特徴から、これを 6つの型に分類して、そのそれぞれについて地域分布を求めた。その結果、融解過程の気象条 件で発生する場合、アメリカ東部で着氷性降水の発生割合が極めて高いという傾向がより顕著に 現れた。

また、着氷性降水の発生に関する地域特性(Bernstein, 2000)や対応する総観規模現象 (Rauber et al., 2001b; Robbins and Cortinas, 2002)についても調べられている。Rauber et al. (2001b)は、着氷性降水が発生しているときの地上気圧配置を、着氷性降水の発生域との対応関係に着目して整理した。その結果、地上の前線に平行してその寒気側に着氷性降水の発生域が分布する4種類の気圧配置型と、地形の影響を強く受けて地形形状に沿うように着氷性降水の発生域が分布する3種類の気圧配置型に分類できることが示された。

着氷性降水の気候学的な特徴として、その季節性や経年変化、あるいは発生の継続時間などについても調べられている。例えば、着氷性の雨が観測される最も早い月と遅い月の地域分布が示され、着氷性の雨が発生する季節性に関する地域分布が調べられている(例えば、Laflamme and Périard, 1996; Changnon and Karl, 2003)。これらによると、北米では、おおむね11月から3月にかけた季節に発生する場合が多い。また、Cortinas (2000)は五大湖周辺における着氷性の雨の季節変化を調べ、この地域では11月から4月にかけて発生するが、12月と3月にわずかな極大があり、1~2月の発生度数はやや少なくなる傾向にあることが示された。しかし、こうした着氷性降水の季節変化には地域性があることが指摘されている(McKay and Thompson, 1969; Laflamme and Périard, 1996)。

着氷性の雨の継続時間を調べた例として、Cortinas (2000)や Cortinas et al. (2004)があり、これらによると着氷性の雨の継続時間はおおむね2~3時間である場合が多いが、なかには10時間以上も降り続ける場合が数%ある。さらに Cortinas et al. (2004)は、着氷性降水の時刻別の発生頻度を調べ、着氷性降水は夜半から翌日の午前中にかけた時間帯で多く発生する傾向が示されている。

一方、着氷性降水の発生に関する経年変化を調べた例として、Changnon and Karl (2003)は、1948~2000年の約50年間の資料から、各年代における着氷性の雨の発生日数の地域分布を作成し、その経年変化を示した。

このように、着氷性降水や雨氷現象の発生に関する気候学的な研究は、主にそれらの発生割合の高い北米で盛んに行われている。一方、日本国内では都道府県単位の雨氷災害分布(牛山,1991)が得られているが、日本全域を対象とした着氷性降水の発生割合やその地域特性について、均質で継続的な資料を用い、かつ客観的に調べた例はない。

2.1.2 本章の目的

これまでの日本における着氷性降水や雨氷に関する研究は、1回の雨氷現象を扱った事例的な解析がほとんどで、着氷性降水や雨氷の発生に関する地域分布および対応する総観規模の気象現象などの気候学的な特徴を捉えた研究例はほとんどない。また、着氷性降水や雨氷現象の発生に関する季節変化と経年変化について調べた研究例も少なく、日本における着氷性降水の気候学的な発生実態はほとんど明らかにされていない。そこで、本章では日本全域における着氷性降水の発生に関する気候学的特徴を明らかにすることを目的とした。

まず、日本全域を対象とした着氷性降水の発生に関する気候学的な地域分布を求めた。また、着氷性降水時の地上気圧配置の特徴や着氷性の雨や霧雨、凍雨の発生に関する季節変化や経年変化について調べた。このような気候学的な解析を行うことで、日本における着氷性降水や雨氷現象の発生に関する全体像を捉えることが目的である。

次に、より詳細な雨氷現象の発生に関する地域分布を得る試みとして、解析対象地域に雨氷発生記録の多い長野県を選び解析を行った。長野県内の AMeDAS 箇所における雨氷発生可能日数を、地上気象および高層気象観測資料から判断し、これをもとに統計的な手法によって年平均雨氷発生日数の地域分布図(メッシュマップ)を作成した。こうした雨氷現象に関する詳細な発生度数分布を得ることは、災害対策の面から重要と考えられる。

2.1.3 本章の構成

本章(第2章)の構成は以下に示すとおりである。

第2.1節では、着氷性降水や雨氷現象に関する気候学的な研究の背景を述べ、この章における目的と構成を述べた。

第2.2節では、気象庁の地上気象観測原簿資料(気象官署)をもとに、着氷性の雨、着氷性の霧雨、凍雨の発生に関する地域分布を示した。解析は過去14冬季(1989年11月~2003年5月)において行い、日本における153箇所の気象官署について、これらの降水種の一冬季あたりの発生率を求めた。

第2.3節では、同じ気象官署資料を用いて、着氷性の雨、着氷性の霧雨、凍雨の発生に関する季節変化と経年変化について調べた。また、日本を北海道、東北、関東、中部の地方に区分して、各地方における着氷性降水の季節変化と経年変化に関する地域性について論じた。

第2.4節では、着氷性降水が発生しているときの総観規模の地上気圧配置の特徴について 調査した。地上気圧配置の種類は、主に低気圧の移動経路によって分類され、北海道、東北、 関東、中部の各地方における着氷性降水時の総観規模の特徴について述べた。

第2.5節では、雨氷現象の発生に関する詳細な地域分布を得る試みとして、長野県を対象とした雨氷発生のポテンシャル的な地域分布を示した。この詳細な地域分布は、長野県内のAMeDAS 箇所における雨氷発生可能日数を、地上気象および高層気象観測資料から判断し、これをもとにした統計的な解析手法によって得られた。

第2.6節では、本章の解析結果をまとめ、着氷性降水や雨氷現象の気候学的研究の今後の 課題と将来展望について述べた。

2.2 発生率の地域分布

ここでは、気象庁の地上気象観測原簿資料を基に、日本の153箇所の気象官署における着氷性の雨、着氷性の霧雨、凍雨の一冬季あたりの発生率を求め、その地域分布を得た。

2.2.1 解析資料と解析方法

解析に使用した資料は、気象庁提供による地上気象観測(気象官署)資料である。この気象官署資料には 1 時間間隔の地上気象観測値の他、着氷性の雨、着氷性の霧雨などの大気現象も観測されており、これらの降水種の発現時刻と終了時刻が記録されている(付録 A. を参照)。ここでは、着氷性の雨と着氷性の霧雨に加え、凍雨の発生に関しても調査を行った。凍雨は、雨氷を生じないが、その発生条件は着氷性の雨と同じであり、また着氷性の雨を伴って降る場合も多い(例えば、Stewart and King, 1987; Stewart and Crawford, 1995; Zerr, 1997; Szeto et al., 1999; Robbins and Cortinas, 2002)ので本研究の調査項目に加えることにした。

気象庁(2002)による地上降水種の定義(付録 A. を参照)に基づいて観測された、着氷性の雨、着氷性の霧雨、凍雨の観測回数を、全国 153 地点の気象官署(図2.1)について調べた。降水期間が2日に及ぶ場合、一降水イベントとして1回とした。昼間(8:30~17:00JST)のみ大気現象の観測を実施している43 地点(図2.1の白丸)では、実際の発生数より少なく記録されている可能性がある。しかし、そのための処置は行わず、図中に下線などで注釈した。また、これらの地点の多く(31 地点)は、視程計による自動観測に移行しており、移行後の期間は除いて調査した。解析期間は、11月から5月までを一冬として、1989年11月から2003年5月までの14冬季間である。

以上の方法で調べた各地の着氷性の雨、着氷性の霧雨、凍雨の観測回数を観測年数(冬季年)で除して、これを発生率とした。

図2.2~図2.4に、日本における着氷性の雨、凍雨、着氷性の霧雨の発生率の地域分布を示すが、南西諸島はこれらの観測例がないので図から除いた。図中で下線で示した地点は、これらの降水種の夜間観測が行われていない地点である。

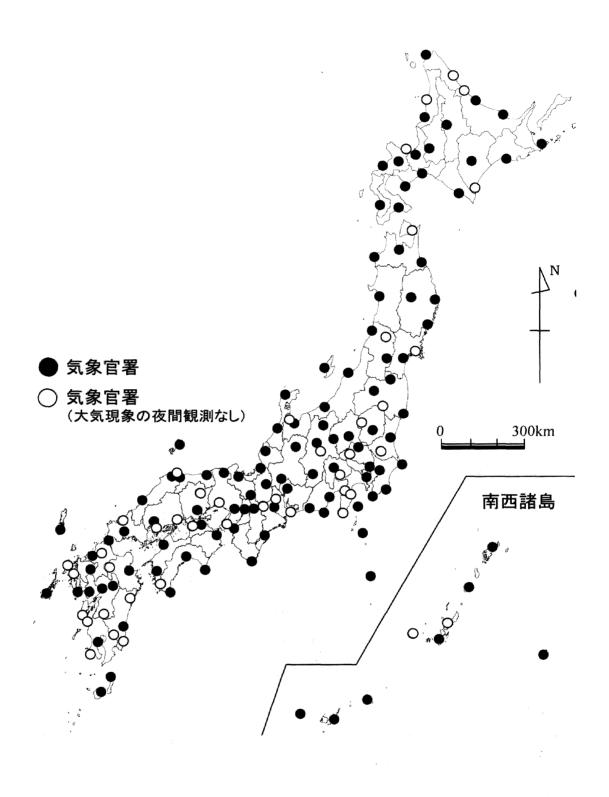


図2.1 地上気象観測地点の位置

白丸は昼間(8:30~17:00JST)のみ大気現象の観測が行われている地点を表す。

2.2.2 着氷性の雨の発生率の地域分布

図2. 2は、着氷性の雨の発生率の地域分布である。過去 14 冬季(1989 年 11 月~2003 年 5 月)において着氷性の雨の発生率が高いのは、帯広(0.29)と軽井沢(0.29)、新庄(0.22)、石巻(0.21)、山形(0.21)、若松(0.21)、阿蘇山(0.22)で、次いで釧路(0.14)や高山(0.14)となっている。この他、北海道の網走、旭川、広尾、長野県の松本でも過去 14 冬季において着氷性の雨が観測されている。

図2.2より、着氷性の雨の発生に関する地域的な特徴をみると、中部地方から東北地方の内陸山間部と、東北地方から北海道地方にかけた太平洋側の平野部で発生率が0.2以上と高く、4~5年に一度の割合で発生していることがわかる。長野県は雨氷の発生報告の多い地域であるが(牛山,1991)、図2.2では、東北地方の内陸山間部、および東北地方や北海道の太平洋側平野部でも、長野県と同じ発生率をもって着氷性の雨が観測されている。

また、中部地方以西の地域では、着氷性の雨の観測例がほとんどない。しかし、最も南の地域では阿蘇山で着氷性の雨が観測されており、この地域における雨氷現象の発生例の報告もある(河野ほか、1975)。このことから、普段あまり雪の降らない九州や四国においても気象条件によっては着氷性の雨が発生して雨氷現象が生じる可能性のあることがわかる。一方、日本海側の地域では、過去14冬季において着氷性の雨の観測例がない。

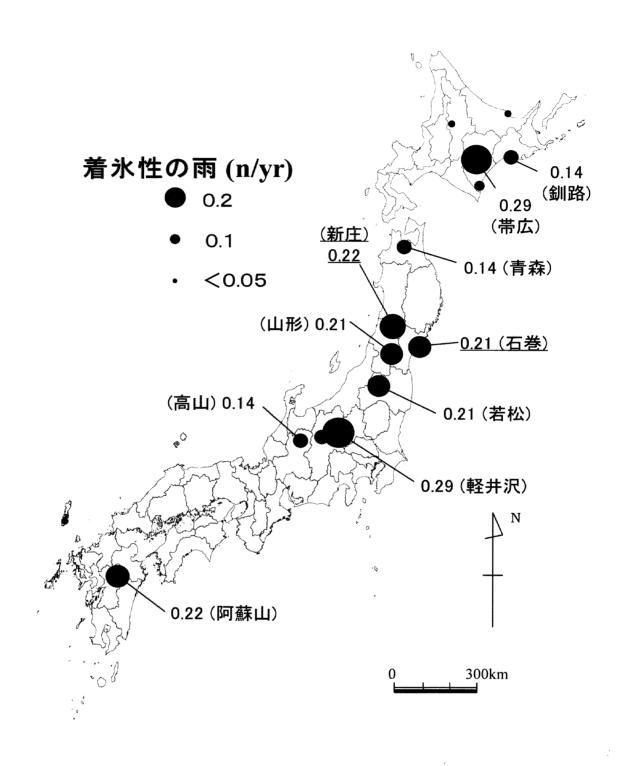


図2.2 着氷性の雨の発生率の地域分布

下線で示す地点は、昼間(8:30~17:00JST)のみ大気現象の観測を実施している地点。

2.2.3 凍雨の発生率の地域分布

図2. 3は、凍雨の発生率の分布である。過去14冬季(1989年11月~2003年5月)において 凍雨の発生率の高い地点は、日光(2.02)、若松(1.29)、軽井沢(1.21)、飯田(1.21)、東京(1.14)、 熊谷(1.00)、高山(1.00)で、次いで盛岡(0.79)、山形(0.79)、横浜(0.79)、松本(0.79)となって いる。その他、瀬戸内地方以北の内陸部を中心にした広い地域で、凍雨の観測例があるのが特 徴である。また、九州地方の内陸部でも凍雨の観測例がある。

図2. 3から、凍雨の発生率の高い地域に着目すると、中部地方から東北地方にかけた内陸山間部と関東地方で、これらの地域では毎年1回以上の発生割合となっている。このうち着氷性の雨の地域分布(図2. 2)に比べて最も特徴的なのは関東地方で、過去14冬季で気象官署における着氷性の雨の観測記録がないにも関わらず、凍雨の発生率は毎年1回以上ある。一方、中部地方や東北地方の内陸山間部において周辺地域より発生率が高い特徴は、着氷性の雨の発生率の地域分布に共通する特徴である。

凍雨は地上の物体に付着凍結して雨氷現象を生じるわけではないが、発生する気象条件は着氷性の雨と同じであり、実際、同じ箇所で着氷性の雨を伴ったり、凍雨が降っている付近で着氷性の雨が観測される場合は多い(例えば、Stewart and King, 1987; Stewart and Crawford, 1995; Zerr, 1997; Szeto et al., 1999; Robbins and Cortinas, 2002)。そこで、着氷性の雨と凍雨の地域分布(図2. 2と図2. 3)を合わせて考えると、発生率の高い地域は、中部地方以北の内陸山間部と関東地方以北の太平洋側平野部といえる。これに対して、日本海側の地域では、着氷性の雨や凍雨の発生が少ない傾向にある。

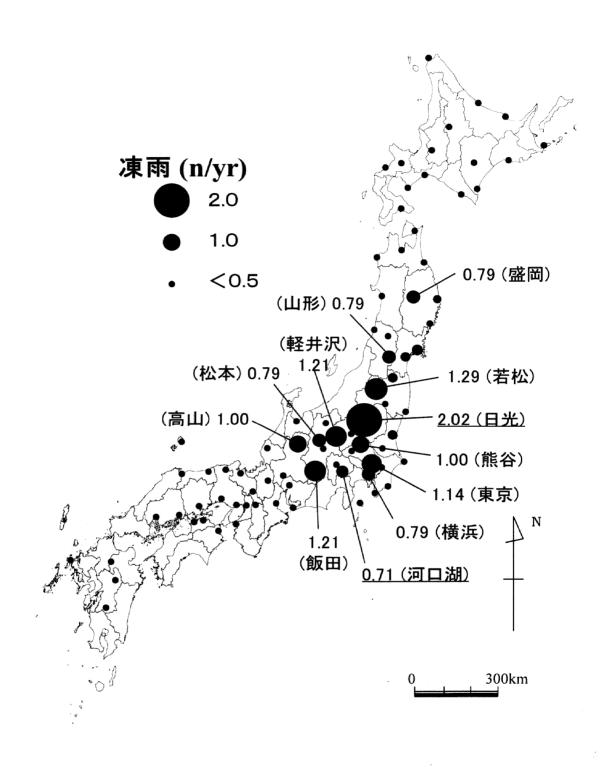


図2.3 凍雨の発生率の地域分布

下線で示す地点は、昼間(8:30~17:00JST)のみ大気現象の観測を実施している地点。

2.2.4 着氷性の霧雨の発生率の地域分布

図2. 4は、着氷性の霧雨の発生率の地域分布である。過去 14 冬季(1989 年 11 月~2003 年 5 月)で着氷性の霧雨の発生率が高い地点は、根室(0.21)、軽井沢(0.14)、松本(0.14)である。

図2. 4より、日本における着氷性の霧雨は全体的に観測数が少ないものの、中部地方から東北地方にかけた内陸山間部と北海道東部で観測例があり、着氷性の雨(図2. 2)や凍雨(図2. 3)とほぼ同じ地域分布を示す傾向にある。特に、北海道東部の沿岸部と長野県中部で発生がみられる。着氷性の霧雨と着氷性の雨の発生過程は必ずしも同じではないが(第1. 1. 2節を参照)、ともに同じ地域分布を示すことから、これらの降水種における気候的あるいは地理的な要因の関連性が示唆される。

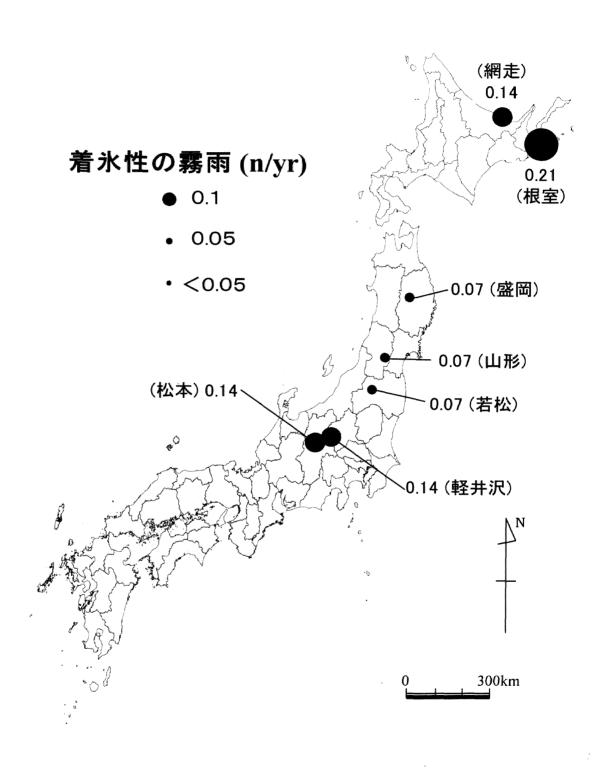


図2.4 着氷性の霧雨の発生率の地域分布

2.2.5 発生率の地域分布に関する考察

ここで示した地域分布は、気象観測所における地点での発生率が基になっており、日本全体を隙間なく網羅した地域分布ではないことに注意が必要である。総観気象として着氷性の雨や凍雨の発生条件が形成されても、観測事例としては局地的な傾向を有することがある。例えば、長野県中部に位置する八ヶ岳北麓で雨氷の発生割合が高いことが災害記録資料(牛山, 1991)と理論解析(第2.5節を参照)の両面で示されているが、こうした細かな地域分布は表現されていない。この詳細な地域分布については、第2.5節で述べる。

また、日本海側の地域で着氷性の雨や霧雨、凍雨の観測例がほとんどない結果となっているが、日本海から少し内陸へ入った新潟県の長岡でも着氷性の雨や凍雨の観測報告(Kimura and Kajikawa, 1984)があり、北海道の石狩平野に位置する岩見沢周辺でも着氷性の雨による雨氷現象が報告されている(尾関, 2004a; 2004b; 第3. 6. 1節を参照)。また、着氷性の霧雨に関連して、過冷却霧の発生頻度に関する地域分布(水野・山本, 1995)では、北陸や山陰地方でも観測事例があることが示されている。

本研究では、日本全体における着氷性降水発生の傾向として、雨氷による災害報告が中部地 方以北で多いという地域的な特徴(牛山、1991)に一致した結果が得られた。

2.3 季節変化と経年変化

2.3.1 解析資料と解析方法

着氷性降水の発生率を求めた第2.2節と同様に、気象庁提供の地上気象官署資料を用いた。 ただし、この節で日本における着氷性の雨、着氷性の霧雨、凍雨の発生に関する季節変化と経 年変化について調べるにあたり、ここでは大気現象の自動観測に移行した地点(図2.1の白丸) を除いた。また、一事例の定義を、一つの降水系あるいは降水イベントにおいて、日本のどこか で着氷性の雨や霧雨、凍雨が観測されたときとした。そのため複数地点で同時に着氷性の雨と 凍雨が観測された事例や、同じ地点で凍雨から着氷性の雨へ変わった事例等があるが、それら は例えば雨(着氷性)・凍雨などのように分類した。

2.3.2 日本全体における季節変化と経年変化

図2.5は日本における着氷性の雨、着氷性の霧雨、凍雨の月別の発生事例数である。図2.5より、これらの降水種の発生時期はおよそ12~4月の季節で、1月から3月にかけて多くなる季節変化をしていることがわかる。特に、1月と3月で発生数が多い二山型の季節変化をしている。着氷性の雨の発生数に着目すると、気温が最も低くなる2月で多くなるのではなく、その前の季節である12月~1月に発生する傾向にある。一方で、着氷性の霧雨は季節の後半である1~5月に発生している。

図2.6は日本における着氷性の雨、着氷性の霧雨、凍雨の年別の発生事例数である。図の横軸の年は、各冬季年の1月の年を示す。図2.6に示す経年変化より、着氷性の雨や霧雨、凍雨の発生数は1991~1994年の時期と1999年、2003年で多く、平均的にみると毎年10回前後の発生割合となっている。しかし、そのほとんどを凍雨が占め、着氷性の雨の発生は毎年数回程度、着氷性の霧雨の発生は数年に一度の発生割合である。

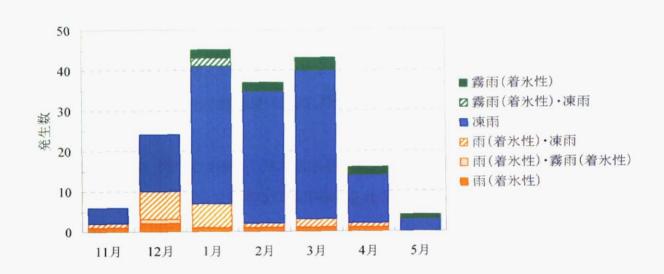


図2.5 日本における着氷性の雨、着氷性の霧雨、凍雨の月別発生数

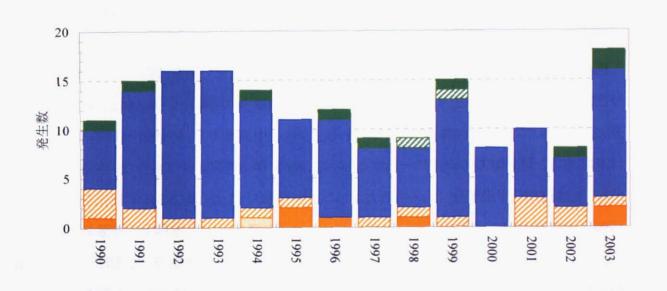


図2.6 日本における着氷性の雨、着氷性の霧雨、凍雨の発生数の経年変化 横軸は、各冬季(11~5月)の1月の年を表す。凡例は図2.5に同じ。

2.3.3 地域別にみた季節変化と経年変化

着氷性の雨や霧雨および凍雨の発生数の季節変化と経年変化について、ここでは地域別に 分けて調べてみた。図2.7に示すように、日本を北海道、東北、関東、中部の4つの地域に区分 した。これ以外の地域は、着氷性の雨や霧雨、凍雨の発生数が少ないため、解析の対象からは 除いた。

図2.8は、北海道、東北、中部、関東の各地方における着氷性の雨、着氷性の霧雨、凍雨の発生数の季節変化である。図2.5の日本全体における季節変化と比較すると、東北地方と中部地方は1月と3月で発生数が多い二山型の季節変化を示し、日本全体における傾向と同じである。一方、関東地方は1月で最も多い一山型の季節変化を示し、北海道では1月の発生数が冬季間の中で最も少なく、3~4月に多くなる季節変化をしている。このことから、これらの降水種の発生に関する季節変化において地域性があることがわかる。

図2.8の季節変化のうち着氷性の雨の発生数に着目すると、北海道では最も寒い季節の前後の期間(11~12月と3~4月)で発生し、東北地方でも12~1月にかけて発生数が多い。一方、中部地方は、12月をピークにそれ以降3月まで着氷性の雨の発生があり、他の地域に比べ着氷性の雨の発生期間が長いことが特徴である。

図2.9は、北海道、東北、中部、関東の各地方別の経年変化である。図2.6の日本全体における経年変化と比較すると、1991~1993年の時期と2003年で多いという特徴は、東北地方と関東地方においておおむね共通した特徴である。しかし、中部地方では、1991~1993年の多発期は東北地方と関東地方の特徴に一致するものの、2003年は期間の中でも少ない年となっている。また、北海道は、季節変化でもみられたように、他の地方とは全く異なる経年変化を示し、特に1990~1995年頃までの期間のように、他の地方とは逆の発生傾向で推移する特徴がある。

図2.9の経年変化のうち着氷性の雨の発生傾向に着目すると、各地方とも凍雨と着氷性の霧雨の発生数を合わせた全体の変化傾向に必ずしも一致しない。着氷性の雨のみ観測された年もあれば、全体の発生数が多いのに着氷性の雨が発生していない年もある。また、東北地方の場合のように、着氷性の雨は数年続けて発生する傾向にあり、北海道では最近、着氷性の雨が毎年のように観測されている。

図2.7 地方区分

着氷性降水の発生率の高い中部地方以北の地域について、北海道、東北、中部、関東の4 つの地方に区分した。

図2.8 日本の各地方における着氷性の雨、着氷性の霧雨、凍雨の月別発生数

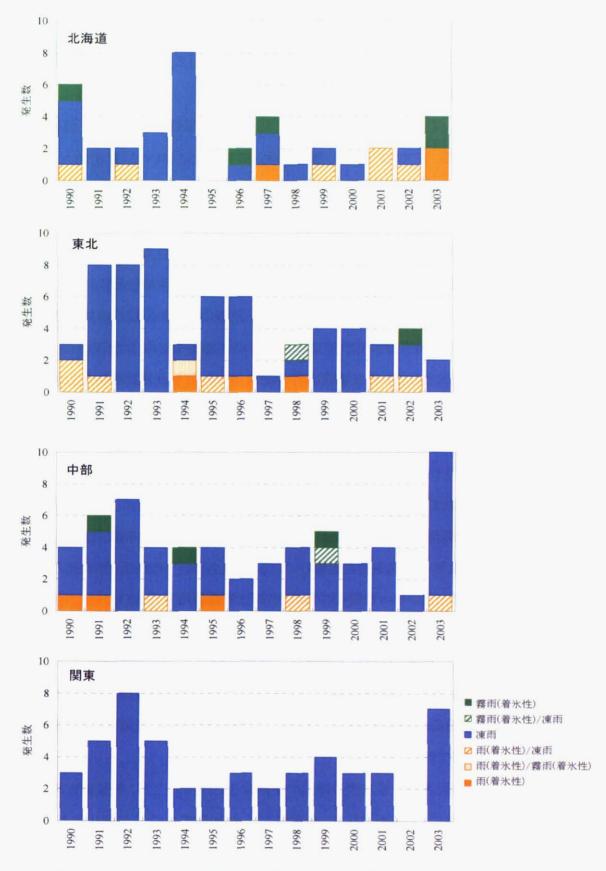


図2.9 日本の各地方における着氷性の雨、着氷性の霧雨、凍雨の発生数の経年変化 横軸は、各冬季(11~5月)の1月の年を表す。

2.3.4 季節変化と経年変化に関する考察

着氷性の雨、凍雨、着氷性の霧雨の季節変化と経年変化において、東北地方、関東地方、中部地方では、それぞれの地域特性が現れているもののほぼ同じような変化傾向を示し、これが日本全体における季節的および経年的な特徴に結びついていると考えられる。一方、北海道は、季節変化と経年変化の両方において、他の地域とは独立した変化傾向を示す。このことは、北海道が他の地域と地理的に離れていることに起因して、着氷性降水をもたらす低気圧の移動経路等の総観規模現象が他の地域と異なることが考えられる。言い換えると、中部地方や関東地方、東北地方は地理的に比較的近いため、ほぼ同じような総観規模の気象状況のもとで着氷性降水が発生することが考えられる。着氷性降水時の総観規模の気象状況については次節で述べる。着氷性降水の発生の季節変化や経年変化における地域性は、McKay and Thompson (1969)、Laflamme and Périard (1996)、Changnon and Karl (2003)により北米でも確認されている。

着氷性の雨は、最も寒くなる 2 月を中心にした時期に発生数が多くなるのではなく、その前後の季節(11~12 月および 3~4 月)で発生することが特徴であった。こうした季節変化は、上空に気温 0℃以上の暖気層をもたらす低気圧の通過頻度の季節性にもよるが、着氷性の雨や凍雨が発生するときの気温等の大気条件も影響していると考えられる。例えば、着氷性の雨が降っているときの地上気温は 0℃から-4℃前後の場合が多く、それより低い気温では凍雨が降る傾向がある(例えば、Huffman and Norman, 1988; Cortinas, 2000; Cortinas et al., 2004)。つまり、気温が最も低くなる時期では、上空を含めた大気全体の気温が低くなり着氷性の雨や凍雨自体が発生しないか、または発生の気象条件となっても気温が低いことで過冷却雨滴が地上に到達する前に凍結して凍雨になる場合が考えられる。上空における降雪粒子の融解条件や雨滴の凍結条件については、第5章で詳しく述べる。

以上、着氷性の雨、凍雨、着氷性の霧雨の季節変化と経年変化が、各気象官署における発生数を基にした統計値によって示された。今後はこうした季節変化や経年変化に影響を及ぼす気象要素または気候要因について研究を行い、その変動機構を説明することが重要と考えられる。

2.4 総観規模の地上気圧配置の特徴

2.4.1 解析資料と解析方法

ここでは着氷性降水時における総観規模の地上気圧配置の特徴を調べた。総観規模の地上気圧配置は、気象庁作成の毎日 9 時の地上天気図を基に判断し、図2. 10 に示すような分類を行った。図2. 10 の分類は、低気圧の移動経路に関する分類で、加藤(1988)による地上気圧配置パターンの分類方法を参考にした。図2. 10 の分類では、低気圧の中心の移動経路から、北日本低気圧、日本海低気圧、南岸低気圧、二つ玉低気圧の4つに大きく分けた。

北日本低気圧(N)は、緯度線に対してほぼ平行に東北以北を東西に通過する低気圧で、その経路のおおよその緯度によってさらに4つ(N-1、N-2、N-3、N-4)に分けた。

日本海低気圧(J)は、日本海から進んで北東進する低気圧で、北海道の北側を通過するもの (J-1)、北海道上空を通るもの(J-2)、東北北部および北海道南岸を通るもの(J-3)、東北南部を 横断するもの(J-4)、近畿から関東地方へ抜けるもの(J-5)の5つに分けた。

南岸低気圧(S)は、九州から関東の南岸に沿って移動する低気圧で、北海道の東海上へ抜けるもの(S-1)、関東南岸からそのまま東海上へ抜けるもの(S-2)、徐々に本州南岸から離れていくもの(S-3)の3つに分けた。

以上の分類は一つの低気圧が移動する場合であるが、複数の低気圧が移動するときを、二つ 玉低気圧(W)として、図2. 10 に示す6つのパターン(W-1~W-6)に分類した。図中の W-2 の〇 印は、低気圧の停滞を意味する。

このような低気圧の移動経路に関する分類を行い、北海道、東北地方、関東地方、中部地方の各地方(図2.7)における着氷性降水時の各低気圧パターンの度数を求めた。

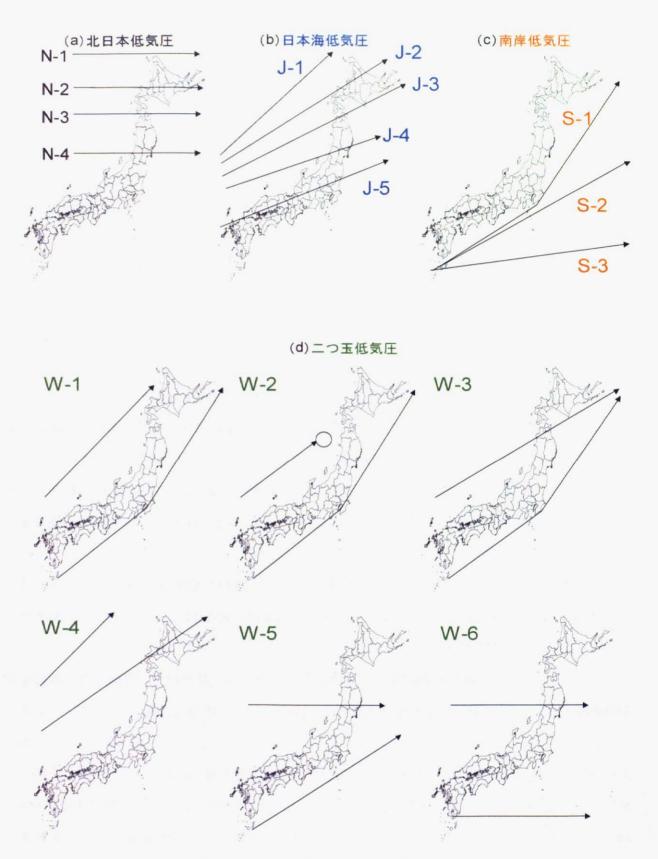


図2.10 地上低気圧の移動経路の分類

図中の矢印は低気圧の中心の移動経路を表し、○印は停滞を意味する。

2.4.2 着氷性降水時の地上気圧配置の特徴

図2.11 は、着氷性降水時の低気圧の移動経路について、北海道、東北地方、中部地方、関東地方の各地域別に調べた結果である。

図2.11より、中部地方、東北地方、関東地方は同じ傾向を示し、南岸低気圧(S-1~S-3)に伴って着氷性降水が発生する場合が極めて多く、全体の49~62%を占めている。次いで多いのが二つ玉低気圧であるが、そのなかでも二つのうち南側の低気圧が本州南岸を通って北海道東方へ抜ける場合(W-1~W-3)が多い。これらを合わせると、着氷性降水時の72~89%にあたり、各地域の南側を低気圧が通過する際に、着氷性降水が発生していることがわかる。

一方、北海道では、他の地域とは異なる地上気圧配置で着氷性降水が発生している。図2. 11より、北日本低気圧のN-2とN-3、日本海低気圧のJ-2とJ-3、南岸低気圧のS-1、二つ玉低気圧のW-1、W-2、W-3 の度数が高く、北海道の南側あるいは上空を低気圧が通過しているときに着氷性降水が発生していることがわかる。

以上のことから、着氷性降水の多くは総観規模の低気圧に伴って発生し、特に各地方の南側を低気圧の中心が通過する場合に着氷性降水の発生割合が高くなる。このことから、その発生の気象条件の一つである上空の融解層は、低気圧接近に伴う暖気移流によって形成されると示唆される。気象条件の形成過程に関する詳しい解析結果は、第3章で述べる。

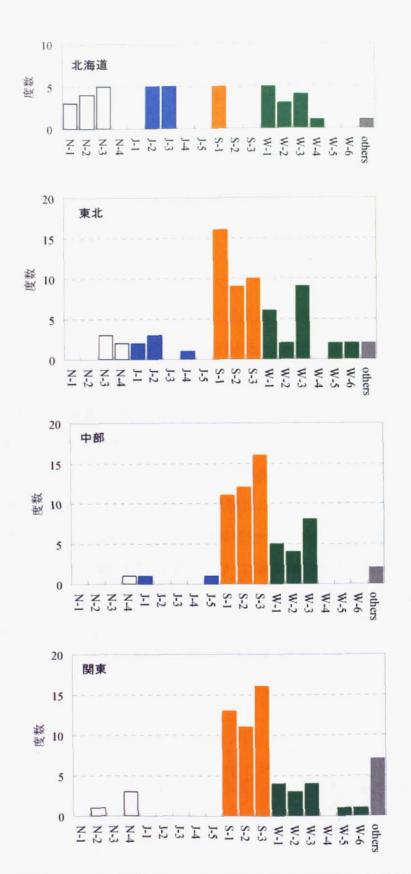


図2.11 着氷性降水時の地上低気圧の移動経路の度数分布 横軸の記号は、地上低気圧の移動経路(図2.10 参照)。

2.4.3 総観規模の地上気圧配置に関する考察

ここで示した着氷性降水時の地上気圧配置の特徴は、おおまかな傾向を示すものである。実際に着氷性降水の発生を左右するのは、上空の暖気層や地上付近の寒気層の存在とそのときの大気状態である。このことを定量的に評価するためには、特に気温の分布や移流量を示す各事例の合成図などを用いた数値解析が必要である。

しかし、図2.11 に示すように、着氷性降水は、総観規模の暖気移流場の中で発生することが 示唆された。このことは、発生の気象条件の形成過程を考える上で非常に重要である。つまり、 融解過程による気象条件のうち、上空の暖気層は、広範囲に及ぶ総観規模の暖気移流によって 形成されることが示唆され、着氷性降水に関する局地的な地域性は、主に下層の寒気層の形成 過程に左右されると考えられる。次に示す第2.5節では、このような観点から雨氷現象に関する より詳細な地域分布を求める解析を行った。

2.5 雨氷現象の発生ポテンシャルに関する地域分布の推定

第2.2節では、全国 153 箇所の気象官署資料をもとに、着氷性の雨、凍雨、着氷性の霧雨の発生率の地域分布が得られた。しかし、これらの地域分布は気象観測所における地点での発生率が基になっており、日本全体を隙間なく網羅した地域分布ではない。例えば、都道府県単位で着氷性降水の発生率をみようとすると、空間的に非常に粗い地域分布となっている。ここでは、より詳細な雨氷現象の発生に関する地域分布を得る方法の一つとして、統計的な解析による推定方法について述べる。

2.5.1 解析資料

解析には、気象庁提供の高層気象観測資料と地域気象観測(AMeDAS)資料、国土地理院発行の数値地図標高データを使用した。図2.12に、解析の対象範囲である長野県のAMeDAS地点の位置と、全国の高層気象官署の位置を示す。

高層気象観測資料の気温データは1日2回(9 JST、21 JST)、風向風速データは1日4回(3 JST、9 JST、15 JST、21 JST)の観測値である。3 JST および15 JST の気温は、9 JSTと21 JST の気温の内挿値を使用した。AMeDAS 資料は、4 要素(気温、降水量、風向、風速)の1時間間隔の時別値で、長野県内30地点のAMeDAS 資料を使用した。

数値地図標高データは、緯度1.5″×経度2.25″(約50m×50m)格子間隔の標高データで、 雨氷発生日数をメッシュ展開する際の地形因子値の計算に使用した。

解析期間は、11月から翌年4月までを1冬季として、1979年11月から1999年4月までの20冬季である。以下では、各冬季を1月の年で表す。例えば1980年冬季といった場合、1979年11月~1980年4月までの期間を示す。

表2.1に長野県における最近の主な雨氷発生記録を示す。最近の雨氷記録は、長野県の東部と中部で多く、そのときの地上気圧配置は南岸低気圧である場合がほとんどである。

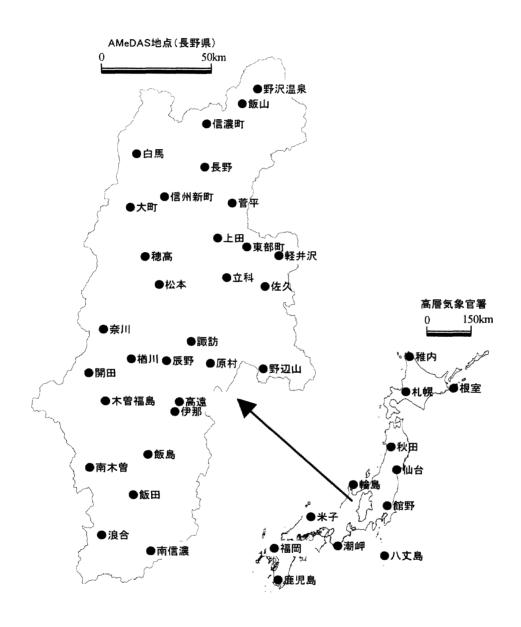


図2. 12 長野県の AMeDAS 地点と日本の高層気象官署の位置

表2.1 長野県における最近の雨氷発生記録

No.	日付	気圧配置	発生地域	文 献
①	1980年 3月22~23日	南岸低気圧	上田·北佐久地方	長野地方気象台ほか(1988)
2	1983年 2月 2日	南岸低気圧	軽井沢付近	長野地方気象台ほか(1988)
3	1983年 2月18日	日本海低気圧	北信地域	長野地方気象台ほか(1988)
4	1989年 2月25~26日	南岸低気圧	東信地域	牛山・宮崎(1992)
(5)	1991年 3月23日	南岸低気圧	中部	牛山・宮崎(1993)
6	1992年 3月 5~ 6日	南岸低気圧	中部	牛山(1993)
7	1993年 1月15日	日本海+南岸低気圧	軽井沢付近	坂上(1994)
8	1995年 1月 4日	南岸低気圧	中央アルプス付近	原田ほか(1998)
9	1998年 1月15~16日	南岸低気圧	下伊那・上伊那・木曽地域	古川ほか(1999)
10	1998年 4月 1~ 2日	南岸低気圧	中信·東信地域	古川ほか(1999)、牛山(1998)
	n,	JJ	北部(新潟県境付近)	鈴木ほか(1998)

2.5.2 雨氷発生日の特定方法

本解析では、上空の気象条件(気温 0℃以上の暖気層)を高層気象観測資料から、地表付近の気象条件(気温 0℃以下の寒気層と降水の有無)を AMeDAS 資料から調べ、この二つの気象条件を満たす日を雨氷発生可能日(以下、雨氷発生日)と定義した。

雨氷発生日の特定方法は、雨氷発生の典型例として、1989年2月25日~26日の雨氷現象 (梶ほか, 1991; 牛山・宮崎, 1992)を取り上げ、第2.5.3節および第2.5.4節で説明する。図2.13は、この事例のときの地上天気図で、前線を伴った低気圧が、本州の南岸を通過している。この南岸低気圧が、長野県における雨氷発生の代表気圧配置である(表2.1および第2.4節を参照)。

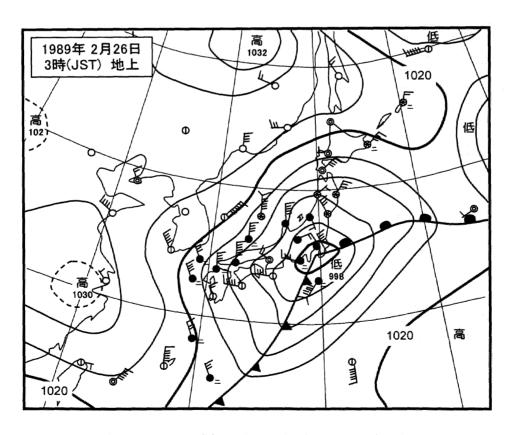


図2. 13 地上天気図(1989年2月26日3JST)

2.5.3 上空の気象条件

上空の気象条件は、館野と輪島における上空の気温データを用いて調べた。図2.14 は、両地点の1989年2月25日~26日の気温の鉛直分布で、25日2IJSTの850hPa付近に気温の逆転層があり、気温0℃以上の暖気層が形成されている。図2.15に、この時刻の850hPa付近の気温分布を示す。図中の矢印は900hPaと800hPaとの風向風速の鉛直シアー(温度風)で、等温線は温度風の関係(Holton,1992)を用いて描いた。図2.14と図2.15から、長野県の上空850hPa付近には、気温0℃以上の暖気層があり、これは地上低気圧の前面の南西からの暖気移流によるものである。

雪片などの降雪粒子が融解して雨滴になるには、降雪粒子の大きさ、暖気層の厚さ、湿度などの条件によって異なる(詳細は第5章を参照)。石原・田所(1989)や Czys et al. (1996)は、暖気層の厚さと気温を指標にした判別解析を行なっている。Czys et al. (1996)の判別曲線は、石原・田所(1989)より条件が厳しく、Zerr (1997)による観測事例のうち数例が判定もれとなる。また、気温 4℃でほとんどの雪片が完全に融解すること(Stewart and King, 1987)、暖気層の厚さは少なくとも 100m必要であること(Mitra et al., 1990)から、その条件により近い石原・田所(1989)の判別曲線の方が適当であると考え、本章の上空暖気層における降雪粒子の融解判別に使用した。なお、降雪粒子の融解過程に基づく上空暖気層の条件は、第5章であらためて理論的に検討し、着氷性の雨の発生予測手法を提案する。

石原・田所(1989)による降雪粒子の融解判別には、暖気層の厚さと最高気温が指標として用いられる。上空暖気層の厚さと最高気温の計算には、館野と輪島の平均気温を用いた。この理由として、上空暖気層が、主に地上低気圧よる南~南西の暖気移流により形成されるとすると、風下に位置する館野と輪島の中間地点で条件が満たされれば、風上側の長野県上空ではより厚い暖気層におおわれていると考えられ、暖気層における降雪粒子の最低限の基準を満たすと考えられるからである。また、長野県は全体的に標高が高いので、上空暖気層の判断は850hPa(上空約1500m)以上を中心として行った。

図2.16 に、石原・田所(1989)による上空暖気層の判別曲線と、表2.1の長野県における近年の雨氷発生事例のプロット結果を示した。この中で、高層気象観測の時間間隔によって、気温

0℃以上の暖気層が特定できないものが 10 例中 3 例あり、それは図2. 16 から除いた。図2. 16 より、1989年2月25日21JSTの事例を含めたすべての雨氷事例のとき、長野県上空には、雪片などの降雪粒子を融解して雨滴にする暖気層が存在したと判断される。

以上のように降雪粒子の融解条件から、上空暖気層の気象条件を判別した。

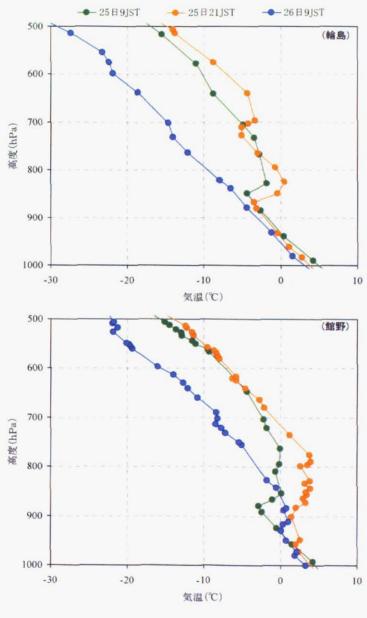


図2. 14 輪島と館野における気温の鉛直分布(1989年2月25~26日) 1989年2月25日9JST、21JST、26日9JSTの気温の鉛直分布を示す。

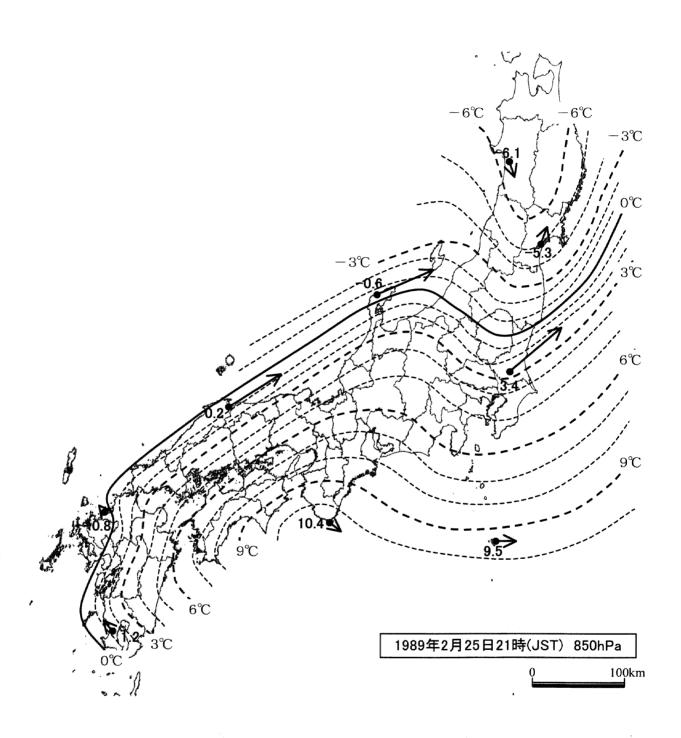


図2. 15 850hPa 付近の気温分布(1989年2月25日21JST)

図中の等温線は 1℃間隔で、太線は 3℃間隔。矢印は、900hPa と 800hPa との風向風速の鉛直シアー(温度風)である。

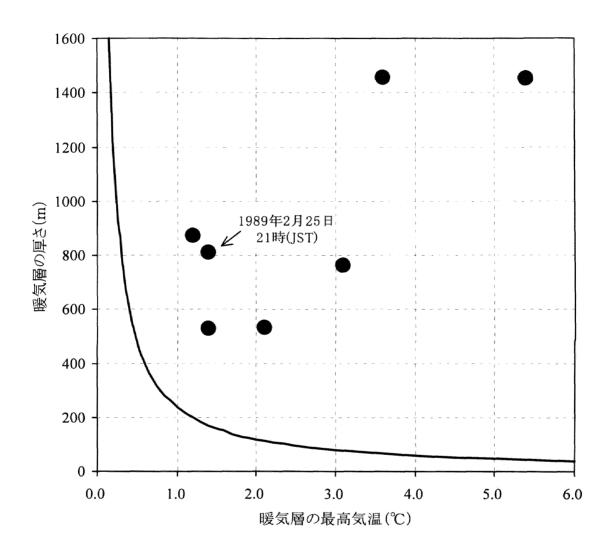
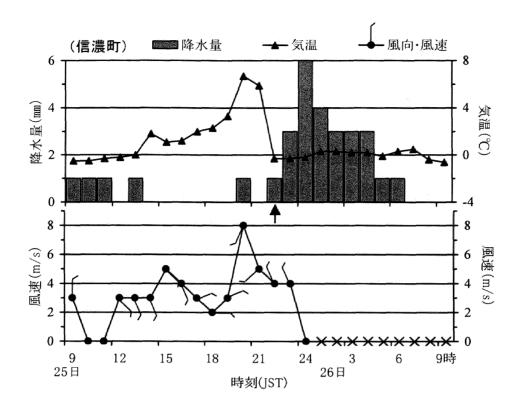


図2.16 雨氷発生の上空暖気層の気象条件


石原・田所(1989)の判別曲線(相当水滴半径 0.5mm、相対湿度 100%で計算)と表2.1 の事例(●)を示す。この曲線より右上領域で、降雪粒子が完全に融解して雨滴になると判断される。

2.5.4 地上付近の気象条件

地上付近の気象条件は、上空暖気層が確認されたときの AMeDAS 資料を用いて調べた。高層の気温データは6時間間隔(そのうち3JSTと15JSTの気温は9JSTと21JSTの内挿値)であるが、1 時間間隔の AMeDAS 資料を最大限活用する意味で、上空の暖気層が確認された時刻を中心にした前後3時間以内(合計7時間)の AMeDAS 資料について調べた。

落下する雨滴の温度は顕熱や潜熱によって変化するが、極めて短い時間に平衡状態に達して湿球温度になる(Syono and Takeda, 1962)。厳密には、湿球温度や露点温度を過冷却雨滴の判別に用いる方が良いと考えられが(第4.5.2節の図4.10を参照)、AMeDASでは相対湿度の観測が行われていない。長野県各地に分布するAMeDAS地点を活用して雨氷現象の詳細な地域性を把握することを目的に、ここでは気温 0℃以下になると、雨滴はただちに過冷却状態になると考えた。雨氷発生時における地上気温の観測例からも、おおむね地上気温 0℃以下の降水時に発生する傾向が見出せる(例えば、Huffman and Norman, 1988; Zerr, 1997; Cortinas et al., 2004)。よって、雨氷発生の地表付近の気象条件は、気温 0℃以下で降水があるとき(降水量1mm以上)とした。

図2. 17 に、上空暖気層が確認された 1989 年 2 月 25 日 21JST を中心とした、信濃町と菅平の気象要素の時系列を示す。信濃町では 22JST 以降、菅平では 23JST 以降で気温 0℃以下の降水が認められる。その後、26 日 1JST から風向風速が欠測となっており、雨氷による着氷の影響と考えられる。このとき、軽井沢でも 25 日 19JST 以降に気温 0℃以下の降水が観測された。この事例では、これら 3 地点が、上空の暖気層の存在、地表付近の寒気層の存在と 1mm 以上の降水という雨氷発生の二つの気象条件を満たしているので雨氷発生日とした。

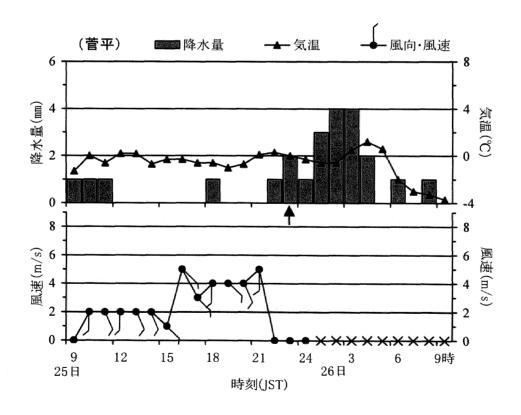


図2. 17 信濃町と菅平における地上気象の時系列(1989年2月25~26日)

1989年2月25日9JST~26日9JSTの降水量、気温、風向、風速の時系列を示す。図中の矢 印は雨氷発生と判断した時刻、風速の×印は欠測を表す。

2.5.5 長野県における雨氷発生日の特定結果

以上の方法によって、長野県の AMeDAS における雨氷発生日を特定した。この日数は、実際に雨氷現象が発生した日数ではなく、雨氷現象が発生すると考えられる気象条件から判断された日数である。したがって、ここで示す雨氷発生日数は、雨氷発生に関するポテンシャルを表すものと考えられる。

表2. 2は、AMeDAS 地点ごとに集計した過去 20 冬季(1980~1999 年)の雨氷発生日数の年 平均値である。気象官署の年平均値(長野地方気象台・日本気象協会(1988)の 1957~1987 年 の資料から算出)と比較すると、統計期間の違いはあるが、軽井沢を除いてほぼ一致している。

表2.2によれば、雨氷の発生割合は地点により大きく異なる。年平均雨氷発生日数の多い地点は、菅平、野辺山の約3日で、次いで、軽井沢、奈川、開田、原村で多く、毎年1日以上の発生割合になる。これらの地域は、いずれも標高1000m以上の地点である。他の多くの地点では、年平均雨氷発生日数が0.5日以下で、数年~10年に1日の発生割合となる。長野と南信濃では0日であった。長野県全体の年平均雨氷発生日数(長野県のAMeDAS 地点のどこかで雨氷が発生する可能性のある日数)は、7.9日である。

図2. 18は、雨氷発生日数の経年変化で、長野県全体とAMeDAS地点の菅平、開田を示した。 長野県全体に着目すると、雨氷発生日数が多い年では 10 日以上、少ない年では 4 日以下となっており、年による変動が大きく、特に 1994年以降は年平均値の 7.9 日を下回り、雨氷発生日数の少ない時期となっている。 1993年で最も発生数が多い傾向は、第2. 3節で示した中部地方の着氷性の雨、凍雨、着氷性の霧雨の観測数の傾向に一致する。また、菅平と開田の経年変化をみると、両地点の変動は必ずしも一致しない。例えば、菅平だけで発生したとされる年(1984年、1985年など)や開田だけの年(1997年)があり、雨氷現象の地域性を表していると考えられる。

図2.19 に、月別の20 冬季(1980~1999年)の累積雨氷発生日数を示す。長野県全体の雨氷発生日数は、3 月で最も多く、次いで12 月に多い。この二山型の季節変化は、第2.3節で示した中部地方の着氷性の雨、凍雨、着氷性の霧雨の観測数の変化傾向に一致する。また、地域別では、菅平でも3 月に最も多くなるが、開田では12 月に多く、菅平とは異なる推移を示す。雨氷発生の季節変化においても、雨氷現象の地域性が示唆される。

表2.2 AMeDAS 地点の年平均雨氷発生日数

表中の文献による日数は、長野地方気象台・日本気象協会(1988)による 1957~1987年の資料から算出した。

地点名	標高	年平均日数	
AMeDAS	(m)	結果	文献
野沢温泉	571	0.2	
信濃町	675	0.9	
飯山	313	0.4	
白 馬	703	0.9	
長 野	418	0.0	0.3
大町	784	0.8	
信州新町	509	0.3	
菅 平	1253	3.6	
上田	502	0.1	
穂高	540	0.3	
東部町	958	0.8	
軽井沢	999	1.9	0.3
松本	610	0.3	0.4
立 科	715	0.1	
佐久	683	0.3	4. 5382
奈 川	1068	1.0	
諏訪	760	0.2	0.3
開田	1130	1.7	
楢川	900	0.5	
辰 野	729	0.3	
原村	1017	1.6	and the second second
野辺山	1350	2.8	
木曽福島	750	0.5	
高遠	780	0.5	
伊那	674	0.6	
南木曽	560	0.1	
飯島	728	0.9	
飯田	482	0.2	0.3
浪合	940	0.3	
南信濃	410	0.0	
長野県		7.9	

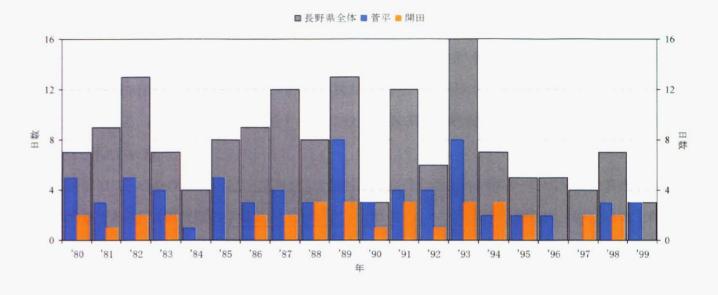


図2.18 雨氷発生日数の経年変化

長野県全体と菅平、開田における各冬季(11月~4月)の雨氷発生合計日数の経年変化。

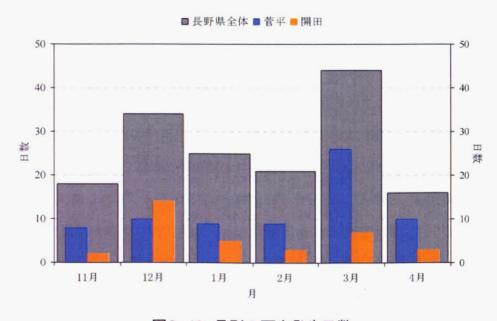


図2.19 月別の雨氷発生日数

長野県全体と菅平、開田における月別の20冬季(1980年~1999年)累積雨氷発生日数。

2.5.6 雨氷の発生ポテンシャルに関する地域分布

雨氷発生の地域分布と地形状況との間には、北向き斜面やある限られた標高帯で雨氷被害が発生しやすいなどの関連性が指摘されている(例えば、三沢、1923c; 林野庁、1957; 梶ほか、1991; 牛山・宮崎、1992; 浜田、2000)。そこで、雨氷発生日数の地域分布を求めるにあたり、地形状況を表す地形因子を設定し(表2.3)、各 AMeDAS 地点の地形因子値を数値地図標高データから求めた。そして、表2.2の年平均雨氷発生日数を目的変数、表2.3の地形因子値を説明変数として重回帰分析を行った。このとき、統計期間の短い伊那(1993~1999年の7冬季)は除き、他の29地点を使用した。式(2.1)に、重回帰分析の結果得られた、未観測地点における年平均雨氷発生日数の地域分布を求めるための推定式を示す。

年平均雨氷発生日数=
$$-46.561+0.31889\times$$
(緯度) $+0.86614\times$ (経度)
$$+0.00271\times$$
(標高) $+0.00061\times$ (起伏度 10 km)
$$-0.00056\times$$
(傾斜 E-W 2 km) $-0.00156\times$ (傾斜 N-S 2 km) (2. 1)

図2. 20 に AMeDAS 地点の年平均雨氷発生日数と式(2. 1)の重回帰式による推定値との対応を示す。この重回帰式は、重相関係数が0.90、寄与率が81.6%で、統計的に有為(有為水準0.5%)である。

次に、緯度 60″×経度 90″(約 2km×2km)間隔の地形因子値を求め、これを式(2.1)に入れることで、図2.21 に示す長野県における年平均雨氷発生日数のメッシュマップを得た。このとき、上空暖気層の判断を 850hPa(上空約 1500m)より上空を中心としたことと、AMeDAS 地点の最高標高が 1350m(野辺山)で、それより標高の高い地点での推定値に信頼が持てないことから、標高 1500m 以上の地域は推定値なし(黒の塗りつぶし領域)とした。

図2. 21 の年平均雨氷発生日数の分布から、標高 1500m 以下では、標高分布に対応して高標高地域で日数が多く、低標高地域で少なくなる傾向がある。特に、山岳地域や東部県境付近の高原地域で、年平均雨氷発生日数 2 日以上の地域が多くみられる。低標高地域では、長野県東部の佐久盆地周辺、中部の諏訪盆地を中心にした地域で比較的多く、1 日前後となっている。

一方、長野県北部と南部の低標高地域では 0 日の地域が広くみられる。長野県全体でみると、中部と東部で年平均雨氷発生日数が多く、北部と南部で少ない傾向にある。また、八ヶ岳周辺に着目すると、西斜面に対して北~東斜面で相対的に年平均雨氷発生日数が多く、周辺の地形状況が反映された分布となっている。

表2.3 地形因子の定義

雨氷発生日数の地域分布を求めるための地形因子の定義と計算方法を示す。

記号	地形因子名	計算方法	単位		
X_1	緯度	地点の緯度(゜)の100分位	O		
X_2	経度	地点の経度(゜)の100分位	0		
X_3	標高	地点標高	m		
X_4	起伏度(1km)	半径1km以内の最高点標高と地点標高との差	m		
X_5	起伏度(4km)	半径4km以内の "	m		
X_6	起伏度(10km)	半径10km以内の "	m		
X_7	起伏度(20km)	半径20km以内の "	m		
X ₈	起伏度(50km)	半径50km以内の "	m		
X_9	陸度	半径50km以内の陸の占める割合	%		
X_{10}	海度	半径5km以内の海の占める割合	%		
X_{11}	海岸距離	海岸までの最短直線距離	km		
X_{12}	傾斜(E-W 4km)	東4km地点の標高と西4km地点の標高との差	m		
X_{13}	傾斜(E-W 2km)	東2km地点 " 西2km地点 "	m		
X_{14}	傾斜(N-S 4km)	北4km地点 " 南4km地点 "	m		
X ₁₅	傾斜(N-S 2km)	北2km地点 " 南2km地点 "	m		
X ₁₆	曲率(E-W 4km)	東4km地点の傾斜(E-W)と西4km地点の傾斜(E-W)との差	m		
X ₁₇	曲率(E-W 2km)	東2km地点 "と西2km地点 "	m		
X ₁₈	曲率(N-S 4km)	北4km地点の傾斜(N-S)と南4km地点の傾斜(N-S)との差	m		
X_{19}	曲率(N-S 2km)	北2km地点 "と南2km地点 "	m		
X ₂₀	合成曲率(4km)	$X_{16} + X_{18}$	m		
X_{21}	合成曲率(2km)	$X_{17} + X_{19}$	m		
X ₂₂	開放度	半径20km以内で地形が放射状に開いている部分の角度の合計	О		
X_{23}	開放走向	の中心方位で、	0		
	北を0°として時計回りの角度をとる				

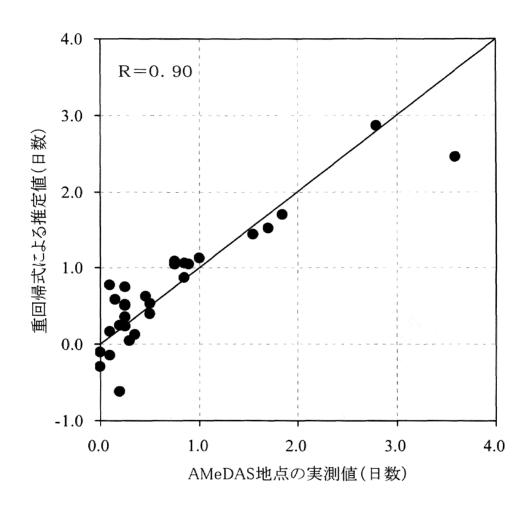


図2. 20 AMeDAS 地点の年平均雨氷発生日数と重回帰式による推定値との対応 横軸は表2. 2の日数、縦軸は式(2. 1)による計算値。

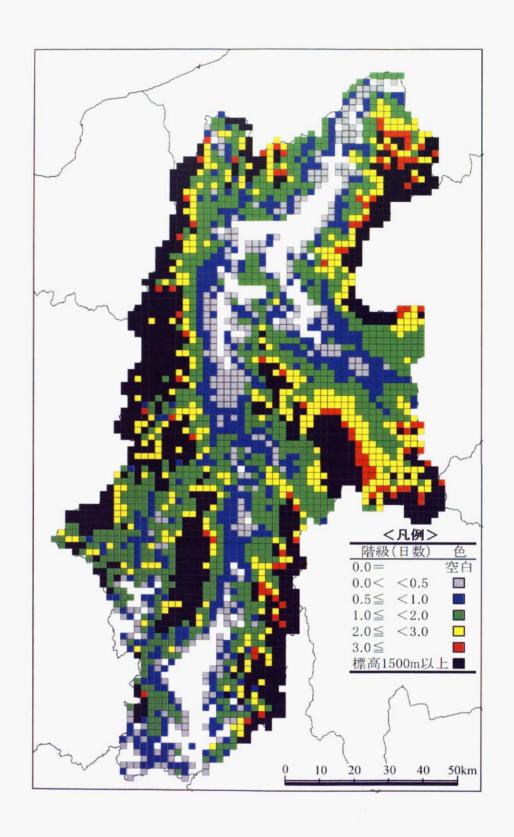


図2. 21 年平均雨氷発生日数のメッシュマップ

緯度 60″×経度 90″(約 2km×2km)の格子間隔の推定値。

2.5.7 考察

図2. 19 の月別の雨氷発生日数では、そのピークが 12 月と3 月にある。この二山型の季節変化は、第2. 3節で示した中部地方の着氷性の雨、凍雨、着氷性の霧雨の観測数の変化傾向に一致する結果であった。一方、牛山(1991)によれば、雨氷の発生は1月に多く、大規模な発生事例も1月に多い。本解析で求めた日数は、その着氷規模に関係なく、大規模なものから軽微なものまで含んだ値であり、雨氷発生のポテンシャルの傾向を示したものである。そのため、牛山(1991)が示した大規模な雨氷現象の季節変化とは異なる変化傾向を示したと考えられる。

図2. 21 では、年平均雨氷発生日数のメッシュマップを得た。長野県における雨氷の発生や被害は、中部を中心にした地域で多く(牛山, 1991)、特に、松本付近、諏訪から山梨県境にかけた地域、小諸から軽井沢にかけた地域で多く発生する(長野地方気象台・日本気象協会, 1988)。また、表2. 1に示す最近の雨氷発生事例からも、中部と東部を中心にした地域で多いことがわかる。図2. 21 の年平均雨氷発生日数のメッシュマップは、この地域的な傾向をよく表現しており、今までにない詳細な地域分布を示しているものと考えられる。

また、上空に気温 0℃以上の暖気が流入し、降水が 1mm 以上あるときの AMeDAS 地点の気温を調べたところ、標高が高い地点ほど気温が低くなる傾向が得られた。つまり、今回行った標高 1500m 以下の地域では、標高の高い地域ほど雨氷発生の気象条件を満たしやすい傾向にあり、年平均雨氷発生日数と標高との対応が良いと考えられる。しかし、さらに標高が高くなり上空の暖気層に近づくと、地上気温は逆に高くなる(牛山・宮崎, 1993)。この傾向は、雨氷による森林被害が、等高線に沿ったある標高帯(標高 1000~1500m の例が多い)に集中するという指摘(例えば、林野庁, 1957; 大原ほか, 1990; 梶ほか, 1991; 牛山・宮崎, 1992; 古川ほか, 1999; 浜田, 2000)からも示唆される。本解析では標高 1500m 以下を対象としたためか、特定の標高帯で雨氷発生日数が多くなるような傾向は得られなかった。

また、地上付近の寒気層の厚さ、気温、湿度などの気象条件によって、過冷却となった雨滴が 再凍結して凍雨になることも考えられる。ここでの解析では、雨滴の凍結に関する凍雨と着氷性 の雨の判別を行っていないが、第5章で示すような判別方法を応用することが必要である。

表2.2で、年平均雨氷発生日数の文献(長野地方気象台・日本気象協会、1988)による値と本

解析の値を比較すると、長野、松本、諏訪、飯田ではほぼ一致し、軽井沢では本解析の値が文献の値より多い結果となった。長野県における雨氷発生時の気圧配置は、南岸低気圧型がほとんどであり、このときの降雪量分布は局所的に軽井沢周辺に多い分布となる(長野地方気象台・日本気象協会,1988)。また、軽井沢の標高は、他の4地点に比べて高く、上空に暖気層が存在した場合にも、軽井沢の気温は他の4地点に比べて相対的に低い。以上から、上空に暖気層が存在した場合、軽井沢では気温0℃以下の降水発生の機会が多く、この降水は着氷性の雨や凍雨、それらの混在(例えば、Stewart and King, 1987; Stewart and Crawford, 1995; Zerr, 1997; Szeto et al., 1999; Robbins and Cortinas, 2002)の確率があるものと考えられる。本解析の軽井沢の雨氷発生日数は、これらを含めた発生ポテンシャル的な意味をもつものと考えられる。

2.6 おわりに

2.6.1 本章のまとめ

日本における着氷性降水や雨氷現象の気候学的な特徴を明らかにすることを目的に、まず過去14冬季間(1989年11月~2003年5月)の気象観測資料をもとに、日本における着氷性の雨、着氷性の霧雨、凍雨の発生率の地域分布を求めた。また、これらの降水種の発生に関する季節変化と経年変化についても調べ、対応する総観規模の地上気圧配置パターンについて調査を行った。その結果、次のことが明らかとなった。

- (1) 着氷性の雨の発生率が高い地域は、中部地方以北の内陸山間部と東北地方から北海道東部にかけた太平洋側平野部である。
- (2) 凍雨の発生率が高い地域は、中部地方から東北地方にかけた内陸山間部と関東地方である。特に関東地方は、毎年1回以上の発生割合となっている。
- (3) 着氷性の霧雨は、全体的に観測数が少ないものの、中部地方から東北地方にかけた内陸山間部と北海道東部の沿岸部で発生している。
- (4)以上をまとめると、日本において着氷性降水の発生率の高い地域は、中部地方以北の内陸 山間部と関東地方以北の太平洋側平野部である。
- (5)日本では、これらの降水種は1~3月に発生することが多く、毎年10回程度の割合で観測される。しかし、そのほとんどは凍雨である。
- (6) 着氷性の雨は、最も寒い時期に発生するのではなく、その前後の季節に発生する傾向がある。また、経年変化より、着氷性の雨の発生率は毎年数回程度である。
- (7) 着氷性降水の季節変化と経年変化は、関東地方、中部地方、東北地方でほぼ共通した特徴を示すが、北海道ではこれらの地域とは異なる変化傾向を示す。
- (8) 着氷性降水時の地上気圧配置は、各地域の南側を低気圧の中心が通過する場合がほとんどである。よって、融解過程による発生条件のうち上空の暖気層は、総観規模の気圧配置に伴う暖気移流に起因すると考えられる。

さらに、雨氷現象の発生に関するより詳細な地域分布を得る試みとして、雨氷被害報告の多い長野県を例に、統計的な解析手法によって地域分布を求めた。具体的には、過去20年間(1980年11月~1999年4月)の長野県におけるAMeDAS地点の雨氷発生日を特定し、年平均雨氷発生日数を目的変数、地形因子値を説明変数とした重回帰分析結果から、長野県における年平均雨氷発生日数のメッシュマップを得た。解析結果は、以下に示すとおりである。

- (9)上空の気象条件を、輪島と館野の高層気象観測資料より判断した。
- (10) 地上付近の気象条件を、気温 0℃以下で降水量 1mm 以上とした。
- (11)上空の気象条件と地上付近気象条件から、長野県の各 AMeDAS 地点における雨氷発生 日を特定した。この雨氷発生日は、雨氷が発生可能な日を客観的に判断した結果であり、雨 氷発生の気候学的なポテンシャルを示す意味がある。
- (12) 雨氷発生日数の経年変化から、長野県における雨氷発生日数は、年々の変動が大きく、特に最近6年間は少ない傾向が続いている。
- (13) 雨氷発生日数の季節変化では、雨氷の発生が3月で最も多く、次いで12月に多い。しかし、 発生のピークや季節の変化傾向は地点により異なる。
- (14) 地形状況の影響を考慮した地形因子を用いて重回帰分析を行った。その結果、雨氷現象 の発生に関する詳細な地域分布として、年平均雨氷発生日数のメッシュマップが得られた。
- (15)年平均雨氷発生日数の多い地域は、山岳地域や高原地域などの高標高地域で、毎年数日 の発生割合となっている。
- (16)長野県北部と南部の低標高地域では、年平均雨氷発生日数が少ない傾向にあり、0日の地域が広くみられる。

2.6.2 今後の課題と展望

本章(第2章)では、日本における着氷性降水の気候学的な特徴として、着氷性の雨、凍雨、着氷性の霧雨の発生率の地域分布、季節変化、経年変化、着氷性降水時の地上気圧配置の特徴が明らかにされた。北米における着氷性降水の地域分布に関する研究(例えば、Laflamme and Périard, 1996; Changnon and Karl, 2003)によると、発生の地域分布にも経年変動や季節変化があることが示されている。また、都市域では地上気温が周囲の地域より高いため、着氷性降水の発生する季節が短いことが指摘されている(Changnon, 2003b)。年代によって着氷性降水の発生しやすい地域が変動するわけであるが、これと対応する総観規模の気候変動との関係、地上における土地利用形態の変化などとの関係を明らかにすることが必要と考えられる。このことは、将来における着氷性降水の発生に関する地域分布を予測する上で重要なことと考えられる。これに関連して、近年、北半球中緯度において温帯低気圧の発達する割合が高くなったという研究報告(Carnell and Senior, 1998; Ulbrich and Christoph, 1999; Knippertz et al., 2000; 卜藏; 2003)がある。

また、日本における着氷性降水の日変化や発生時刻、発生の継続時間については、今回の研究では行わなかった。海外では 10 時間以上も着氷性の雨が続く場合も報告されているが(例えば、Rauber et al., 1994; Cortinas et al., 2004)、国内ではそれほど長い時間、着氷性降水が継続することはほとんどない。しかしながら、雪氷気象災害の観点から、着氷性降水の継続時間の特徴を把握することは重要であると考えられ、これと対応する総観規模の気象現象との関連性を常に意識した解析が必要であると考えられる。

第2.5節では、長野県における年平均雨氷発生日数の地域分布を求めた。しかし、第2.2節で示したように、雨氷は長野県に限られた現象ではなく、北海道(井上・増田,1955; 佐藤ほか,1970)、岩手県(大原ほか,1990; 松岡ほか,1990)、福島県(平川・渡辺,1985)、東京都(岡田,1902)、千葉県(村井,1936)、熊本県(河野ほか,1975)などでも報告があり、気象条件が整えば他地域でも発生する。このことから、第2.2節の地域分布をもとに、日本全域における着氷性降水や雨氷現象の発生に関する詳細な地域分布を求めることが必要とされる。このとき、第2.5節のような統計的な解析手法を用いる場合と、第4章で示すような客観解析資料を用いた熱力学的

な発生条件の理論的検討による方法が考えられる。

また、着氷性降水による雨氷被害を考える場合、形成される雨氷の重量が問題となる。本解析における地域分布などの気候学的特徴は、大気現象としての着氷性の雨の発生に関するものであった。また、第2.5節で求めた雨氷発生日数には、着氷重量や厚さなどの量的な要素は含まれていないので、雨氷による着氷被害が起きるか起きないかは、また別の問題となる。過冷却の雨滴が地上の物体に付着凍結して雨氷が形成される物理的機構は非常に複雑であるが、降水量や地上気温などの気象観測値を用いて、雨氷の重量や厚さを推定するモデルがいくつか提案されている(例えば、Makkonen, 1984; 1998; Jones, 1996)。こうした雨氷モデルを用いて、第2.5節で判定したような雨氷発生日の気象観測値から雨氷の重量や厚さを推定することが可能であると考えられる。着氷性降水の発生率の地域分布だけではなく、雨氷に関する定量的な評価も必要であると考えられる。例えば、Laflamme and Périard (1996)や Jones and Mulherin (1998)が示すように、雨氷の重量や厚さに関する再現期間値による評価も必要であるう。

以上のような着氷性降水や雨氷現象の発生に関する気候学的な研究は、着氷性降水による雨氷災害の実態を把握するために欠かせない研究課題である。これと合わせて、以下の第3章と第4章で示す、着氷性降水の局地気象の観点からみた発生機構、および雲物理学的な大気の熱力学的環境を解明することで、本章で示したような気候学的な特徴を説明していくことが必要である。また、こうした研究成果を基本として、将来の気候変動に対する雪氷気象災害の様相変化という問題にも取り組むことが大切であると考えられる。近年、危惧されている気候変動に対する生物の脆弱性の問題(IPCC, 2001b)に関連して、日本においても着氷性降水による雨氷の森林被害は各地で発生しており(例えば、林野庁, 1957; 大原ほか, 1990; 梶ほか, 1991; 牛山・宮崎, 1992; 古川ほか, 1999; 浜田, 2000; 浜田・牛山, 2001; 鳥田ほか, 2004)、また強風を伴うことで雨氷による被害地域が拡大することも懸念される(尾関, 2004a; 2004b; 第3. 6. 1節を参照)。着氷性降水や雨氷現象による災害は、今後、ますます注目を受けることが予想され、また雪氷気象災害の中でも注意を要する気象現象であると考えられる。

第3章 着氷性降水発生の気象条件の形成過程と地域性

3.1 はじめに

3.1.1 着氷性降水の地域性に関する研究

着氷性の雨が発生する大気条件は、上空に気温 0℃以上の暖気層があり、その下層に気温 0℃以下の寒気層が存在すること(融解過程)が一般的である(第1.1.2節を参照)。このように 着氷性の雨は、気温 0℃付近の狭い温度範囲で発生することが多く、わずかな温度変化が降雪 粒子の融解過程や雨滴の凍結過程に影響を及ぼし、地上で観測される降水形態を変化させる。 また、下層寒気層の大気条件は、地表面の状態や周辺地形によって強く影響を受けるので、そのわずかな地域差によって着氷性の雨の発生域が決まると考えられる。着氷性の雨の発生を予測する場合、そのときの気象条件がどのような過程を経て形成され、局地気象現象や周囲の地形状況がどのように影響しているのか、これを理解しておくことが重要である。

着氷性降水時の気象条件の形成過程に関する研究は、主に北米の研究者を中心に行われており、対応する総観規模現象(Rauber et al., 2001b; Robbins and Cortinas, 2002) やその地域性 (Bernstein, 2000) について調べられている。Bernstein (2000)は、アメリカにおいて着氷性降水の発生頻度の高い地域に着目し、着氷性降水時の気温と露点温度の鉛直分布、地上前線の位置および地域的な風の分布の特徴から、各地域における着氷性降水時の気象条件の形成機構について考察を行っている。

着氷性降水の発生に関連する局地気象現象として、この他、北米アパラチア山脈における寒気移流の堰き止め効果(cold-air damming)が、着氷性の雨の発生に強く関与しており(例えば、Forbes et al., 1987; Bell and Bosart, 1988)、五大湖周辺では湖面からの潜熱供給の影響により、沿岸部における着氷性の雨の発生頻度が内陸部に比べて少ない傾向にある(Cortinas, 2000)ことが指摘されている。また、カナダ東部のニューファンドランドでは、地上付近の寒気層形成における海氷の影響が調べられ、海氷の存在によって地上付近の寒気層内の気温が下がり、これが凍雨を長時間降らせた要因であると述べられている(Hanesiak and Stewart, 1995)。さらに、都市域では地上気温が周囲の地域より高いため、着氷性降水が発生する季節が短いことが指摘され

ている(Changnon, 2003b)。

一方、ドップラーレーダなどにより着氷性降水時の大気構造が詳細に観測されている(Prater and Borho, 1992: Martner et al., 1993: Hanesiak and Stewart, 1995; Coleman and Marwitz, 2002)。 例えば、着氷性降水時におけるドップラーレーダの観測結果から、上空暖気層と地上付近の寒気層との間の強い風のシアー層と下層ジェット気流の存在、および前線面上に降雪粒子の融解を示すブライト・バンド層の存在が示されており、また降雪粒子の融解による大気の非断熱冷却によって上空に局地的な二次循環が起こり、これが地上に激しい降水をもたらす要因であることなど、大気の運動学的および熱力学的構造などの詳細な構造が明らかにされている。

着氷性降水や雨氷現象の発生は局地的な地形状況からも影響を受け、それが地域分布の特徴として現われることが知られている(例えば、三沢、1923c; 林野庁、1957; 梶ほか、1991; 牛山・宮崎、1992)。これらによると、雨氷発生の地域分布と地形状況との間には、等高線に沿ったある標高帯(標高 1000~1500m の例が多い)で雨氷被害が発生しやすい傾向があり、また北向き斜面で被害が大きいなど斜面方位によって被害程度が異なることが知られている。さらに、坂上(1994)は、局地的な地形の影響による地表付近の寒気滞留や暖気流入のブロックによって着氷性降水発生の気象条件が形成され、雨氷現象が発生することを示した。

以上のように、着氷性の雨や雨氷現象の発生は地域性が強く、その気象条件の形成過程は、 その地域の局地気象現象や周辺の地形形状に大きく左右されると考えられる。しかし、日本国内 では雨氷現象の事例的な解析や被害の地域的な特徴からの議論にとどまり、局地気象現象との 関係については十分に明らかにされていない。

3.1.2 本章の目的

本章(第3章)の目的は、着氷性の雨や凍雨が発生するときの気象条件(融解過程)の局地規模における形成過程を明らかにすることである。このとき、周辺の地形状況や地域特有の局地気象現象との関連性に着目した解析を行い、発生条件の形成過程における一般的な地域性を明らかにすることを目的とした。

第2章では、着氷性の雨が発生するときの総観規模の気圧配置の特徴が示され、上空の暖気層は総観規模の気圧配置に伴う暖気移流によって形成されることが示唆された。本章では、こうした総観規模の気象場が与えられたときに、局地規模の気象現象からみて融解過程による着氷性降水の発生条件がどのように形成されるのかを調査した。特に日本において、局地気象規模の観点から着氷性降水が発生するときの大気条件の形成過程について調査を行った研究例は非常に少なく、雨氷被害の地域分布より得られる特徴からの議論にとどまっている。このことが着氷性降水が局地的に発生することの説明あるいは予測を難しくしていると考えられる。

また、第2章では、着氷性の雨と凍雨の発生率の地域分布(図2.2と図2.3)が求められ、これらの発生率が高いのは中部地方以北の内陸山間部と関東平野以北の太平洋側平野部であることが示された。本章では、特にこの両地域に着目して着氷性の雨や凍雨の発生機構と局地気象現象との関係について調べた。このことにより、第2章で得られた着氷性降水の発生に関する地域分布の理論的根拠を、局地気象の観点から示そうとするものである。

さらに、両地域における着氷性降水時の地上気象状況を比較し、それが雨氷形成に与える大気の熱的環境の違いについて理論的な解析を行った。地上の物体に衝突した着氷性の雨が凍結して雨氷を形成するかどうかの評価は、雪氷気象災害の観点から非常に重要な問題である。

以上の目的意識から、着氷性降水時の大気条件の形成過程に関する局地解析を行った。

3.1.3 本章の構成

本章(第3章)の構成は、以下のとおりである。

第3.1節では、着氷性降水発生の局地性に関するこれまでの研究と課題について述べ、本章の目的と構成について述べた。

第3. 2節では解析に用いる気象観測資料と解析方法について述べる。解析方法として、気圧の観測値のない AMeDAS 地点における温位の計算方法と、雨氷表面における熱フラックスの計算方法について説明する。

第3.3節では、内陸山間部における気象条件の形成過程の特徴として、新庄および山形盆地における解析結果と、長野県における解析結果を示す。この結果から内陸山間部における一般的な気象条件の形成過程について考察を行った。

第3.4節では、太平洋側平野部における気象条件の形成過程の特徴として、十勝平野および根釧台地の例、仙台平野の例、関東平野の例について解析結果を示す。この結果から太平洋側平野部における一般的な気象条件の形成過程について考察を行った。

第3.5節では内陸山間部と太平洋側平野部において、着氷性の雨や凍雨が降っているときの地上気象値の比較を行った。この結果から雨氷形成に関する大気の熱的環境の影響について評価し、その地域性について考察を行った。

第3.6節では、その他の地域における事例として、北海道・岩見沢で起きた雨氷事例の局地 気象解析結果を示す。この事例は、着氷性降水の発生割合の低い日本海側の平野部で起きた ことに加え、風速6m/s以上の強風を伴っていたことが、これまで報告されている雨氷事例と大きく 異なる。

第3.7節では、以上の解析結果のまとめを行う。また、着氷性降水の局地気象解析に関する 今後の課題と展望について述べた。

3.2 解析資料と解析方法

3. 2. 1 解析資料

解析に用いた資料は、気象庁提供による地上気象観測資料(気象官署、AMeDAS)および高層気象観測資料、地上天気図である。気象官署では、気温、相対湿度、気圧、降水量、風向・風速の1時間毎の観測値、AMeDASでは気温と降水量、風向・風速の1時間毎の観測値を用いた。高層気象観測資料は、毎日9時、21時(JST)の2回の気温、相対湿度、風向・風速の上空の観測値を用いた。

これらの資料より、着氷性の雨や凍雨が発生したときの局地的な気象条件の形成過程について調べた。特に、着氷性降水が発生するときの気象条件の形成過程を解析によって明らかにするために、温位や相当温位の時間変化や地域分布に着目した解析を行った。温位や相当温位は、空気の運動が断熱変化すると仮定した場合の保存物理量であり、大気の性質や気団・前線などの解析、気流の追跡などの解析に用いられる。このうち AMeDAS 地点における温位計算には気圧の観測値が必要であるが、周辺の気象官署における気圧の観測値を基に AMeDAS 地点の気圧を推定し温位を計算した(第3.2.2節)。

また、着氷性の雨が地上の物体表面で凍結して、雨氷を形成するときの大気の熱的環境を調べるために、第3.2.3節に示す雨氷表面における熱フラックスの理論計算を行った。この計算は、気象官署の1時間毎の地上気象観測値をもとに行われる。

3. 2. 2 AMeDAS 地点における温位の計算

着氷性の雨や凍雨が発生したときの気象条件の形成過程を調べるため、各気象観測地点の温位 θ の計算を行った。温位 θ は断熱変化に対して保存される物理量で、気流の追跡の解析に使用される。AMeDAS 地点における温位計算には、その地点の現地気圧 P_a を推定する必要がある。ここでは周辺気象官署の海面気圧の平均値 $\overline{P_0}$ (hPa)と大気密度の平均値 $\overline{\rho_a}$ (kg/m³)から、静力学平衡の関係を用いて AMeDAS 地点における現地気圧 P_a (hPa)を推定した。

$$P_a = \overline{P}_0 - gh\overline{\rho}_a \tag{3. 1}$$

ここで、g は重力加速度 (m/s^2) 、h は地点標高 (m) である。この方法で推定された現地気圧 P_a を用いて、AMeDAS 地点における温位 θ (K) の計算を行った。

$$\theta = T \left(\frac{1000}{P_a} \right)^{R/c_p} \tag{3. 2}$$

ここで、T は現地地上気温(K)、R は空気の気体定数、 c_p は定圧比熱(J/g K)である。式(3. 2) に示すように、温位 θ は現地の地上気温T を断熱変化を仮定して気圧 1000hPa にしたときの温度である。

3.2.3 雨氷表面における熱収支計算方法

着氷性の雨発生時の地上気象値の違いは、地上付近における雨滴の凍結環境や雨氷の形成過程を熱力学的に考えるとき重要な因子となる。ここでは、地上の気象観測値を用いた雨氷表面における熱フラックスの計算方法を示す。

熱フラックスの計算の前に、各気象官署における風速値V (m/s)がそれぞれ異なる高度で測定されていることを考慮する必要がある。ここでは、式(3.3)に示す風速の鉛直分布を表す対数法則を用いて、地上高 10m における風速値 V_{10} (m/s)に換算して解析に使用した。

$$V_{10} = V \frac{\ln(10/z_0)}{\ln(z/z_0)}$$
 (3. 3)

ここで、 z_0 は地表面粗度(\mathbf{m})である。各気象官署における地表面粗度 z_0 は、近藤ほか(1991)によって求められた値を用いた。なお、風速の鉛直分布は大気の安定度にも左右されるが、式(3.3)にはこの影響が考慮されていない。

雨氷表面における熱フラックスの計算は、以下に示す Jones (1996)による計算方法を引用し、 雨氷形成時における大気の熱的環境について調べた。この方法では、木の枝などの円柱上に 雨氷が発達し、その表面が未凍結の水膜に覆われていると仮定した熱収支計算を行う。雨氷表面における顕熱フラックス Q_{ν} (W/m^2)および潜熱フラックス Q_{ν} (W/m^2)は、

$$Q_s = -\pi h_h \Delta T \tag{3.4}$$

$$Q_l = -\pi L_e h_v \Delta \rho_v \tag{3.5}$$

と表される(Jones, 1996)。ここで、 ΔT と $\Delta \rho_v$ は大気と雨氷表面(0 でとする)における温度差($\mathbb C$) および水蒸気密度の差(kg/m^3)、 L_e は水の蒸発潜熱(J/kg)である。また、大気の熱交換係数 h_v ($W/m^2 \cdot \mathbb C$)と水蒸気交換係数 h_v (m/s)は、風速値 V_{10} と対象物の半径 r に応じて求められるレイノルズ数 R_e との関係から得られる(Jones, 1996)。

$$N_u = h_h r / k_a \approx R_e \tag{3. 6}$$

$$S_h = h_v r / D_v \approx R_e \tag{3.7}$$

ここで、 N_u はヌッセルト数、 S_h はシャーウッド数、 k_a は大気の熱伝導率 (W/m°)、 D_v は水蒸気の拡散係数 (m^2/s) である。ここでは対象物の半径 r=1cm (=0.01m) とした。大気の熱伝導率 k_a と水蒸気拡散係数 D_v は、付録 C に示す方法により求めることができる。

一方、雨氷表面の水膜が凍結するのに要する熱量 $Q_{f}(W/m^{2})$ は、

$$Q_f = L_f w ag{3.8}$$

である。ここで、 L_f は水の凍結潜熱 (J/kg)、w は降水量 P と風速 V_{10} から得られる降水フラックス (kg/m²·s)で、次式より求める (Jones, 1996)。

$$w = \left[(P\rho_w/3.6)^2 + (V_{10}W)^2 \right]^{1/2} \times 10^{-3}$$
 (3. 9)

ここで ρ_w は水の密度(g/cm³)、Wは大気中の雨水量(g/m³)である(Best, 1950)。

$$W = 0.067 P^{0.846} (3. 10)$$

雨氷形成に関わる熱フラックスは、大気の熱伝導による顕熱フラックス Q_s (W/m²)と、雨氷表面における水の相変化による潜熱フラックス Q_s の他、放射などによる熱フラックスが考えられるが、雨氷形成における熱的影響は小さい(Jones, 1996)。ここでは顕熱フラックス Q_s と潜熱フラックス Q_s のみを考えた。

雨氷形成に関する三つの熱フラックス (Q_s,Q_f,Q_f) は、地上気象観測値(気温T、相対湿度 RH、風速 V_{10} 、気圧 P_a 、降水量P)を入力条件として時々刻々求められる。計算は各気象官署における 1 時間毎の観測値を用いて行った。

3.3 内陸山間部における特徴

内陸山間部における着氷性降水時の気象条件の形成過程について、東北地方の新庄・山形盆地における例と、中部地方の長野県における例の局地気象解析の結果を示す。この解析結果から、内陸山間部における着氷性降水時の大気条件の一般的な形成過程を議論するとともに、着氷性降水時の地上気象の特徴について考察を行う。

3.3.1 新庄・山形盆地における特徴

1998年1月18日、新庄で着氷性の雨が観測された事例を示す。このとき地上低気圧の接近(図3.1)に伴う東~南の暖気移流により、仙台の上空200m以上では気温の高い暖気層が形成されている(図3.2)。

気温の時系列(図3.3a)より、17 日 20JST 以降、新庄と標高の高い湯の岱(標高 335m)の気温が逆転して、湯の岱では気温 0℃以上、新庄では気温 0℃以下で推移しており、融解過程による着氷性の雨発生の気象条件が形成されたと考えられる。湯の岱における気温上昇(図3.3a)は南風の期間(図3.3c)に対応しており、湯の岱(図3.3b)および仙台上空300m付近(図3.2)の温位は、沿岸部に位置し暖気移流の影響を受けている江ノ島の値に近い。このことから上空暖気層は、総観規模の気圧配置に起因する暖気移流によって形成されたと考えられる。

上空に暖気層が形成され始めてから 18 日 2JST までの間、新庄では気温と温位が下降傾向 (図3. 3a と b)であり、風が弱い(図3. 3c)。これは盆地地形に起因する寒気層(冷気湖)の形成を示している。2JST 以降、上空(湯の岱)の風速の強まりに伴う乱流の鉛直混合作用(近藤ほか、1983)によって気温は上昇傾向に転じるが、気温 0℃以下の気象条件は保たれたまま、8JST 頃から着氷性の雨が観測された(正確には「8:30JST に着氷性の雨を確認したが、その前から降っている」と記録されている)。

このときの温位と風の地上分布(図3.4)から、新庄から山形にかけた盆地地域では周囲よりも温位が低く弱風である。一方、湯の岱周辺は南よりの風とともに温位が高く、上空の暖気層の影響を受けている。このように新庄・山形盆地では、地上付近の寒気層の形成に、盆地内の寒気滞

留による冷気湖の形成が関与しており、この上空に暖気が移流することで、着氷性の雨の発生 に必要な気象条件(融解過程)が与えられると考えられる。

図3.5は、過去14冬季(1989年11月~2003年4月)において新庄あるいは山形で着氷性の雨や凍雨が観測されたときの平均温位と最多風向の分布である。気候学的な観点からも、盆地地形に沿った低温位領域の広がりと、湯の岱周辺の高温位領域が確認できる。このときの新庄と山形の風速は、2m/s 以下である場合がほとんどである(図3.6)。

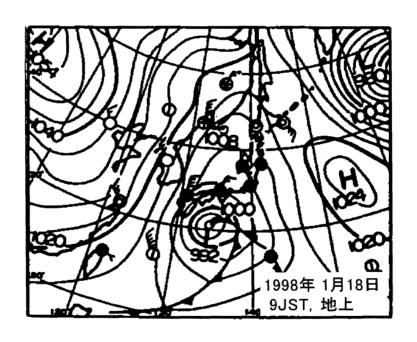


図3. 1 地上天気図(1998年1月18日9JST)

新庄で着氷性の雨が観測された 1998 年 1 月 18 日 9JST の地上気圧配置。

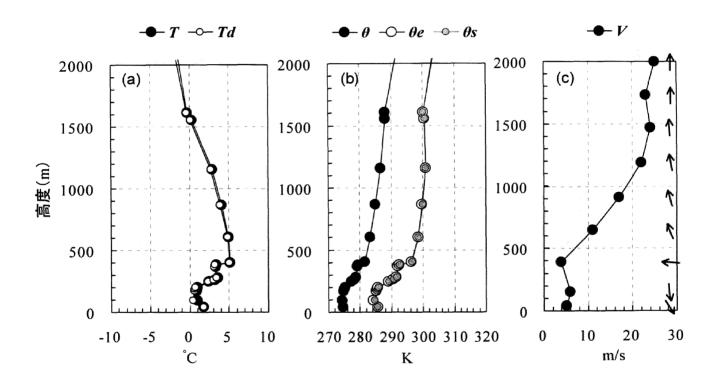


図3. 2 仙台における気象要素の鉛直分布(1998年1月18日9JST) 1998年1月18日9JSTの(a) 気温Tと露点温度 T_d 、(b) 温位 θ 、相当温位 θ_e 、飽和相当温位 θ_s 、(c) 風速Vと風向(矢印)の鉛直分布を示す。

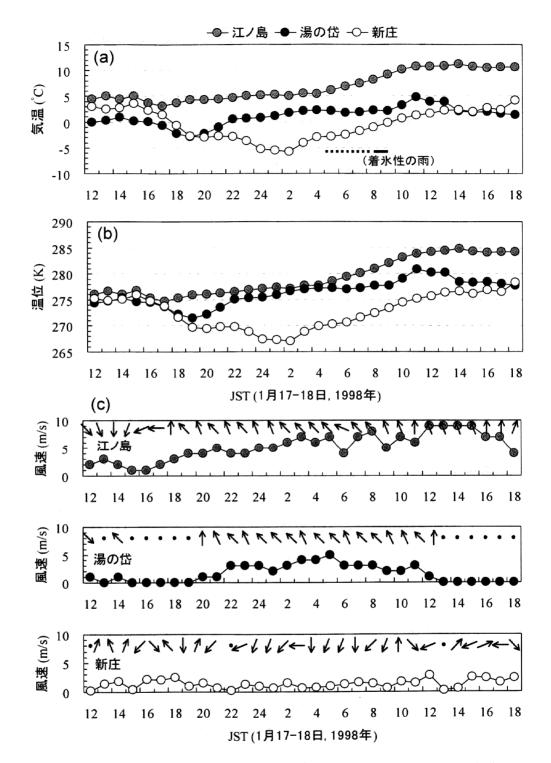


図3.3 新庄、湯の岱、江ノ島における気象要素の時系列(1998年1月17日~18日)

(a) 気温、(b) 温位、(c) 風速と風向を示す。また新庄における着氷性の雨の発生期間(太実線)を示す。記録では「8:30JSTに着氷性の雨を確認したが、その前から降っていた」となっており、発生時刻が定かではないので降水期間(点線)も示した。

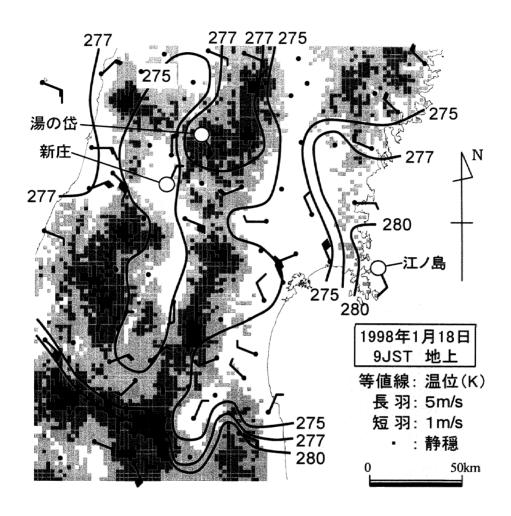


図3.4 地上における温位と風の分布(1998年1月18日9JST)



図3.5 新庄と山形で着氷性の雨または凍雨が観測されたときの温位と風向の地域分布

過去 14 冬季(1989 年 11 月~2003 年 5 月)において、新庄か山形で着氷性の雨または凍雨を観測したときの平均温位と最多頻度風向の分布。図中の黒丸(●)は、静穏の頻度が最も多い地点を示す。

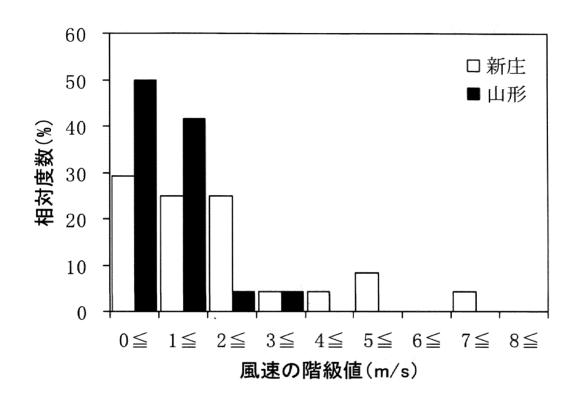


図3.6 新庄と山形で着氷性の雨または凍雨が観測されたときの風速の度数分布 過去14冬季(1989年11月~2003年5月)において、新庄と山形で着氷性の雨または凍雨を 観測したときの風速の相対度数の分布を示す。

3.3.2 長野県における特徴

長野県における雨氷発生の典型事例として、1989年2月25日に長野県中部で雨氷が発生したときの事例(牛山・宮崎、1992)を示す。このとき長野県の立科周辺で雨氷が発生しており、この事例をもとに着氷性降水が発生するときの大気条件の形成過程について解析を行った。

図3. 7は、1989年2月25日21JSTの輪島における気温と温位の鉛直分布で、850hPa付近に気温0℃以上の暖気層(温位285K)がある。図3. 8の地上気圧配置図より、この暖気層は低気圧の接近に伴った南よりの暖気移流によって形成されたと考えられる。

このときの大気条件の形成過程を詳しくみるために、長野県における気象官署と AMeDAS 地点の地上気象観測資料を用いて温位による解析を行った。AMeDAS 地点の温位計算方法は、第3.2.2節で示したとおりである。また、上空 850hPa 面の等温位線は、各地の高層気象観測資料から温度風の関係(900hPa 面と 800hPa 面の風の鉛直シアーで図中の矢印)(Holton, 1992)に基づいて作成した。

図3. 9a は上空 850hPa 付近の温位分布、図3. 9b は長野県における地上の温位と風向風速の分布である。上空 850hPa 面では長野県全域が 285K 以上の高温位層(図3. 7の暖気層に対応)に覆われており、地上では長野県の中央部を境に北側で285K以下、南側で290K以上の分布となっている。特に290Kの等温位線に着目すると、上空850hPa面と地上でほぼ同じ位置にある。また地上の風向風速分布から、290K 等温位線の南側では南風が卓越して暖気移流場となっているのに対し、北側では風速が弱く顕著な移流が認められないのが特徴である。

地上の290K 等温位線の北側の地点(松本、立科、軽井沢)と、南側の地点(飯田、高遠)の温位の時系列(図3.10a)をみると、北側の地点では約280Kの一定値で推移しているのに対し、南側の地点では暖気移流の影響を受け、25日20JSTころから26日1JSTまでの期間、温位は290Kまで上昇している。気象官署における相当温位(図3.10b)の時系列においても同様の傾向を示している。

以上の解析より、着氷性降水や雨氷現象が発生するときの融解過程の大気条件は、長野県の 山間地域では、山岳の影響によって地表付近に滞留した寒気層の上に、覆い被さるように暖気 が移流することによって形成されると考えられる。

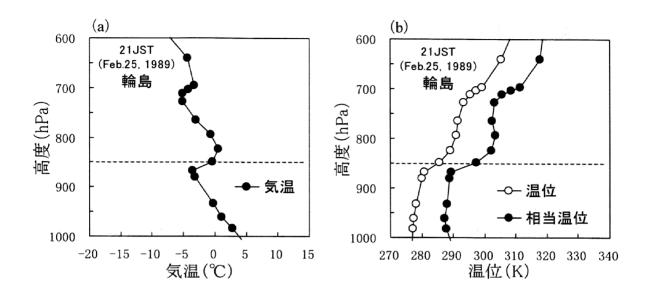


図3. 7 輪島における気象要素の鉛直分布(1989 年 2 月 25 日 21JST) 1989 年 2 月 25 日 21JST $\mathcal{O}(a)$ 気温T、(b) 温位 θ と相当温位 θ_e の鉛直分布。

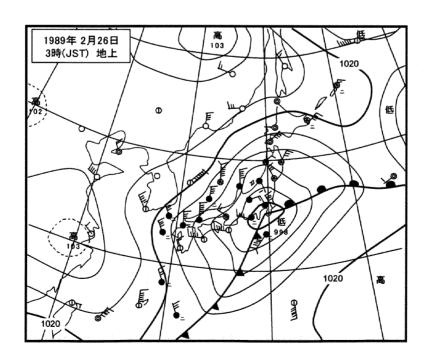


図3.8 地上天気図(1989年2月26日3JST)

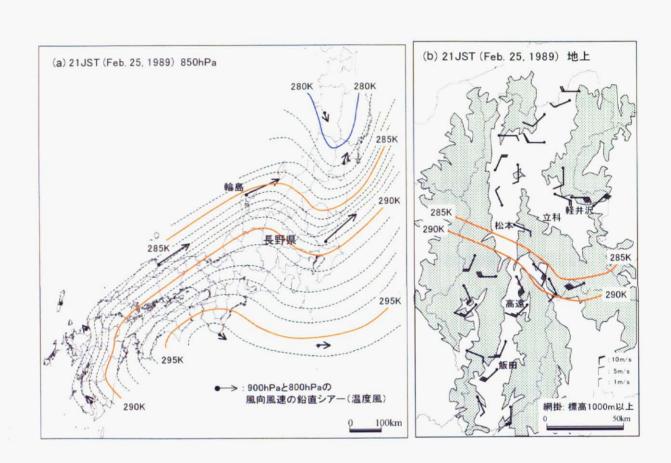


図3. 9 850hPa 面と地上における温位の分布(1989年2月25日21JST)

(a) 850hPa 面、(b) 地上の温位分布を表す。(a) の等温位線は 1K 間隔で、太線は 5K 間隔、 矢印は、900hPaと800hPaとの風向風速の鉛直シアー(温度風)である。(b) の等温位線は 5K 間隔。陰影域は標高 1500m 以上の地域を表す。

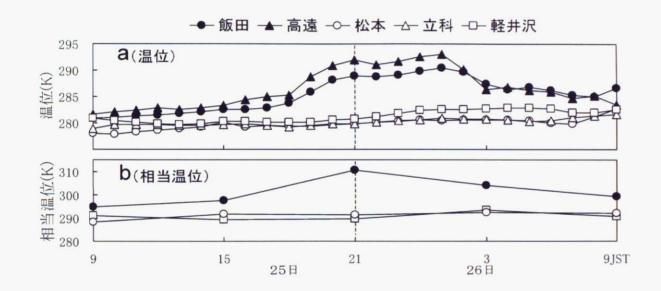


図3. 10 温位と相当温位の時系列(1989年2月25日9JST~26日9JST)

(a) 飯田、高遠、松本、立科、軽井沢における温位の時系列、(b) 飯田、松本、軽井沢における相当温位の時系列。

3.3.3 内陸山間部における一般的な特徴

以上、内陸山間部における着氷性降水時の大気条件の形成過程に関して、新庄・山形盆地の例と長野県における例を示した。両地域とも、上空の暖気層は総観規模の気圧配置に伴う暖気移流によって形成されるが、地上付近の寒気層形成において、盆地内の寒気滞留による冷気湖の形成、あるいは周囲の山岳による暖気移流の遮蔽効果による影響が大きな特徴であった。つまり地形状況に起因する局地気象現象が、地上付近の寒気層形成に関与し、その上空に総観規模の暖気が移流することで融解過程による着氷性降水の発生条件が形成されると考えられる(図3.11)。坂上(1994)なども同様な指摘をしている。

雨氷発生の地域分布と地形状況との間には、北向き斜面や等高線に沿ったある標高帯(標高1000~1500mの例が多い)で雨氷被害が発生しやすいなどの関連性が指摘されている(三沢,1923c; 林野庁,1957; 大原ほか,1990; 梶ほか,1991; 牛山・宮崎,1992; 古川ほか,1999; 浜田,2000)。このうち周囲の山岳による暖気移流の遮蔽効果については、暖気が進入してくる方角によって遮蔽されるかどうかが決まるようである。例えば、第3.3.2節で示した長野県の例では、飯田の位置する伊那谷に沿って暖気が進入しているが、暖気移流が西よりである場合、飯田の西側にある山岳によって暖気移流が遮蔽されるため、飯田付近で着氷性降水の発生条件が形成される場合がある。つまり暖気移流の進入方向によって着氷性降水の発生地域を予測できる可能性が示唆されるが、この一般性を確認するためにはより多くの事例について解析を行う必要がある。

以上のような特徴は、内陸山間部の他の地域、例えば、盛岡、若松、高山でも同様の傾向を示し、このような地形的な影響によって、内陸山間部で着氷性の雨や凍雨の発生率が高くなっており、第2章の発生率の分布でみられる地域特性を示すものと考えられる。地上付近の寒気層形成における地形の影響としては、上記の他、谷地形による寒気の捕捉効果(例えば、Bernstein, 2000; Rauber et al., 2001b)などが指摘されている。

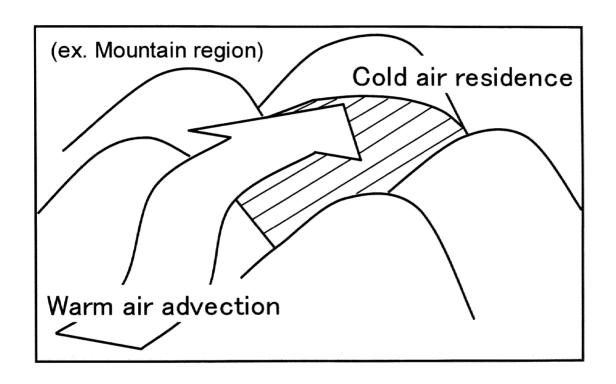


図3.11 内陸山間部における着氷性降水時の気象条件の形成過程の模式図

図は、内陸山間部において、融解過程によって着氷性降水が発生するときの気象条件の形成過程を模式的に示したものである。

3.4 太平洋側平野部における特徴

太平洋側平野部における着氷性降水時の気象条件の形成過程について、北海道の十勝平野および根釧台地における例、東北地方の仙台平野における例、関東平野における例の局地気象解析の結果を示す。この解析結果から、太平洋側平野部における着氷性降水時の大気条件の一般的な形成過程を議論するとともに、着氷性降水時の地上気象の特徴について考察を行う。

3.4.1 十勝平野・根釧台地における特徴

1991 年 12 月 23 日から 24 日にかけて釧路(22:00~01:50JST)と広尾(20:00JST~)で着氷性の雨、帯広(22:20~01:30 JST)で凍雨が観測された事例を示す。図3. 12 より、低気圧の接近に伴って、北海道周辺は南からの暖気が流入しやすい気圧配置であることがわかる。

23 日 23JST の地上の気象状況(図3. 13)をみると、浦河や根室では低気圧に伴う暖気移流の影響で気温が高く、天候は雨である。一方、十勝平野は内陸からの北西系の寒気移流、根釧台地は北東系の寒気移流が支配的で気温が低く、天候は釧路と広尾で着氷性の雨、帯広で凍雨となっている。特徴的なのは、根室付近における局地前線の存在である。

図3.14は、このときの気温と温位、風向の時系列である。釧路、標茶、別海の温位に大きな変化はなく緩やかな上昇傾向にあり、北東風が卓越している。しかし、内陸山間の標高の高い地域に位置する阿寒湖畔(標高 430m)では、東よりの風に伴って温位が急上昇している。この傾向は根室における温位変化に一致しており、両者はほぼ同じ値で推移している。このことから、根釧台地の地上付近では、山脈に沿った北東系の寒気移流が卓越し、その上空に低気圧接近に伴う南東系の暖気が流入したと考えられる。

同様に十勝平野でも、地上付近の北西系の寒気移流層の上空に暖気が流入することで、着 氷性の雨や凍雨が降る気象条件が形成されたと考えられる。

図3. 15 は、帯広、釧路、広尾で着氷性の雨あるいは凍雨が観測されたときの地上における平均温位と卓越風向の分布である。気候学的な平均状態においても上記事例のような特徴が明瞭である。

以上の解析結果より、帯広を中心とした十勝平野では北西系の寒気移流が支配的で、低気圧の接近に伴う暖気移流場の中で取り残されるように寒気層が形成されていると考えられる。十勝平野におけるこのような内陸からの寒気流出は、低気圧が北海道太平洋沿岸を通過するときに特徴的な現象(山本, 1984)であり、関東平野で凍雨が観測されたときにみられる状況(第3.4.3節)によく似ている。両地域とも平野の西部と北部を山に囲まれており、下層における暖気の流入が妨げられる地形的な影響が考えられる。

同じく図3. 15 より、根釧台地では、知床から阿寒へ延びる山脈に沿った北東系の寒気移流が卓越しており、根室地方の南系の暖気移流場との間に局地的な前線を形成している。知床から阿寒へ延びる山間地域では南よりの風系で温位が高く、根釧台地上空は暖気層に覆われていると考えられる。阿寒湖畔の標高(430m)から、根釧台地の寒気層の厚さは数百 m 程度と推定される。根釧台地で卓越する北東系の寒気移流は、アメリカのアパラチア山脈にみられる寒気移流の堰き止め効果(例えば、Forbes et al., 1987; Bell and Bosart, 1988)に似ており、この地域でも着氷性降水の発生との強い関連性が指摘されている(Rauber et al., 2000; Bernstein, 2000)。

以上より、十勝平野と根釧台地に特徴的な地上付近の寒気移流が、着氷性の雨の発生条件 の形成に寄与し、これが両地域で着氷性降水の発生割合の高い理由として考えられる。

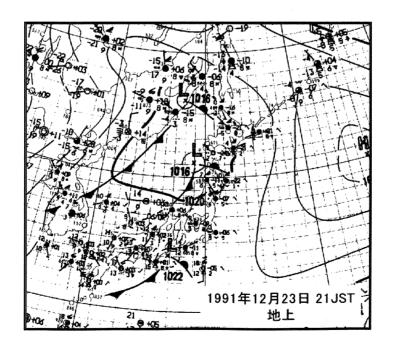
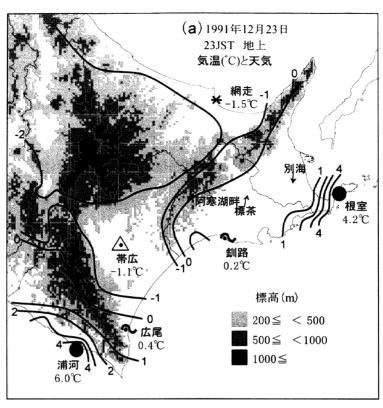
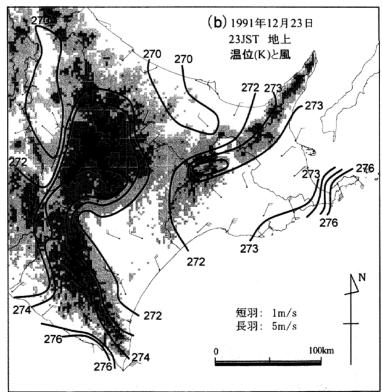
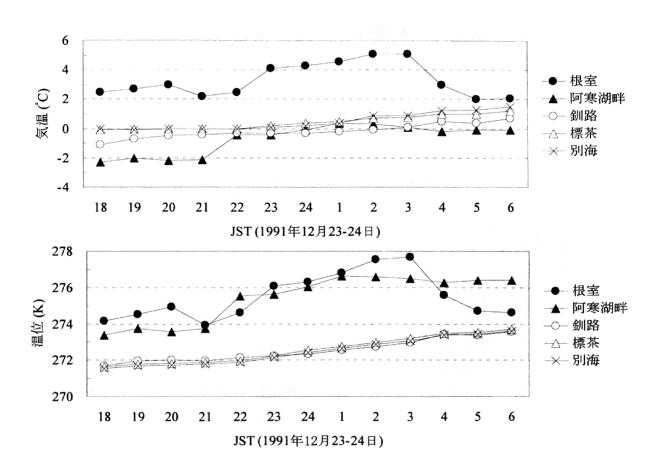





図3. 12 地上天気図(1991年12月23日21JST)

図3. 13 地上気象値の分布(1991年12月23日23JST) (a)は気温と現在天気、(b)は温位と風の分布を示す。

図3. 14 気温と温位の時系列(1991 年 12 月 23 日 18JST~24 日 6JST) 根室、阿寒湖畔、釧路、標茶、別海における(a)地上気温と(b)温位の時系列を示す。

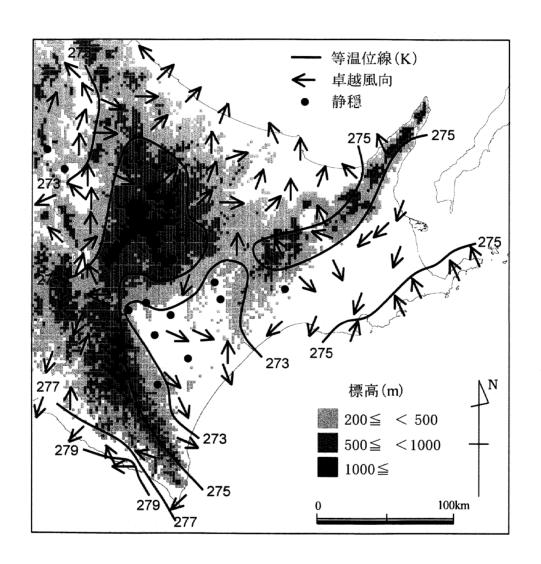


図3.15 帯広、広尾、釧路で着氷性の雨および凍雨が観測されたときの気象分布

過去14冬季(1989年11月~2003年5月)において帯広、広尾、釧路で着氷性の雨または凍雨が観測されたときの平均温位、最多頻度風向の分布を示す。図中の黒丸(●)は、静穏の頻度が最も多い地点を示す。

3.4.2 仙台平野における特徴

1995年1月22日に石巻で凍雨と着氷性の雨が観測された事例を示す。このとき南からの暖気移流が卓越する気圧配置(図3.16)であり、仙台の上空200m以上では、東~南風を伴う暖気層が存在する(図3.17)。この暖気層より下層では北西風が卓越する寒気層が存在している。

石巻と湯の岱(標高335m)における気温の時系列(図3.18a)を比較すると、22日6JSTに石巻と湯の岱の気温が逆転し、それ以降、湯の岱では気温 0℃以上、石巻では気温 0℃以下で推移している。この期間、石巻で22日7:25JSTに凍雨が降り始め、9:10 JST に着氷性の雨に変わった。この事例でも、融解過程による着氷性降水の発生条件が形成されたと考えられる。

新庄での事例(第3.3.1節)と同様、湯の岱における気温上昇(図3.18a)は南風の期間(図3.18c)に一致している。また、22 日 9 JST の湯の岱(図3.18b)や仙台上空 300m 付近の温位(図3.17)は、沿岸部に位置する江ノ島の値(図3.18b)に近い。このことから、総観規模の気圧配置に伴う暖気移流が、上空暖気層の成因として考えられる。

石巻では、期間を通じて 4~5m/s の北よりの風が卓越し(図3.18c)、気温と温位の変化は緩やか(図3.18aと図3.18b)である。図3.19に22日9JSTの温位と風の地上分布を示す。石巻と仙台周辺の地上付近では、内陸からの北~北西の寒気移流が卓越しており、これにより周辺の地域より低い気温(温位)状態に保たれていることがわかる。つまり、石巻周辺では内陸からの寒気流出によって地上付近の寒気層が形成され、この上空に暖気が移流することで、着氷性の雨が発生する気象条件が形成されたと考えられる。

図3. 20 は、過去 14 冬季において石巻あるいは仙台で着氷性の雨または凍雨が観測されたときの平均温位と最多風向の地上分布である。気候的な平均状態においても、この地域における内陸からの寒気流出が顕著で、これが地上付近の寒気層を形成し、着氷性の雨の発生に関与していることがわかる。また、湯の岱周辺の高温位領域もみられ、上空暖気層の形成も確認できる。このときの石巻と仙台の風速(図3. 21)は 3~4m/s の場合が多く、風を伴って着氷性降水が発生していることが特徴である。この点、内陸山間部の盆地地形による冷気湖の形成とは異なる気象条件をもつ。

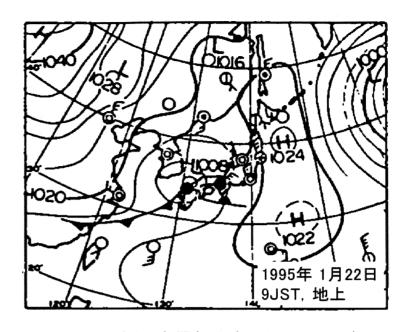
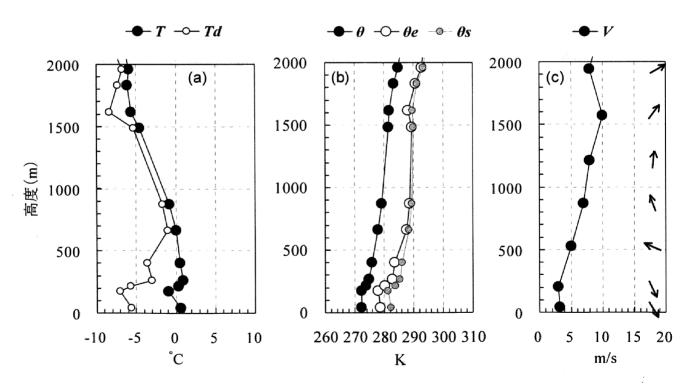



図3. 16 地上天気図(1995年1月22日9JST)

図3.17 仙台における気象要素の鉛直分布(1995 年 1 月 22 日 9JST)

1995年1月22日9JST σ (a)気温Tと露点温度 T_d 、(b)温位 θ 、相当温位 θ_e 、飽和相当温位 θ_s 、(c)風速Vと風向(矢印)を示す。

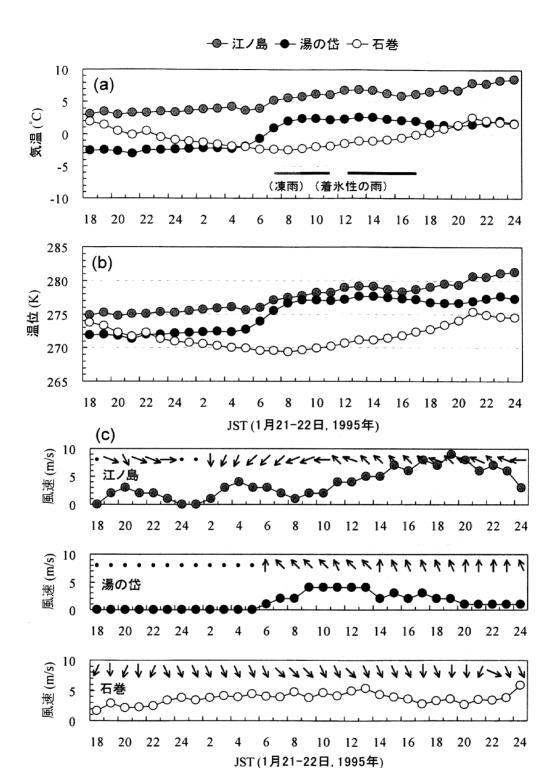


図3. 18 石巻、湯の岱、江ノ島における気象要素の時系列(1995年1月21日~22日)

(a) 気温、(b) 温位、(c) 風速と風向を示す。また、石巻における凍雨の発生期間 (7:25~9:10JST; 薄実線)と、着氷性の雨の発生期間 (9:10~11:15JST と 12:45~17:20JST; 濃実線)を示す。

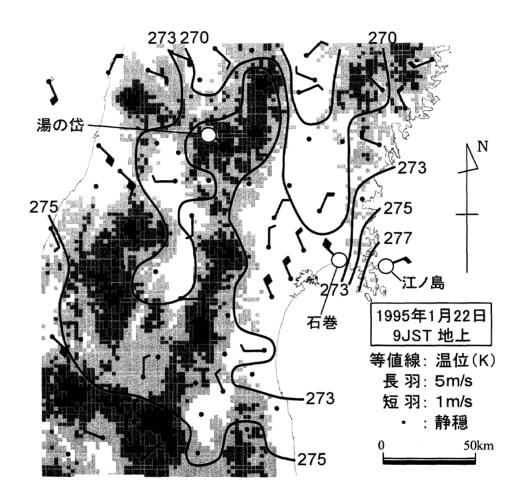


図3. 19 地上における温位と風の分布(1995年1月22日9JST)

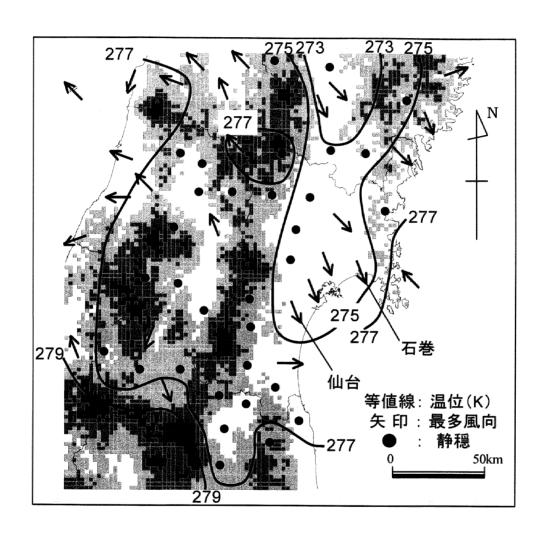


図3.20 石巻と仙台で着氷性の雨または凍雨が観測されたときの温位と風向の地域分布

過去 14 冬季(1989 年 11 月~2003 年 5 月)において、石巻か仙台で着氷性の雨または凍雨を観測したときの平均温位と最多頻度風向の分布。図中の黒丸(●)は、静穏の頻度が最も多い地点を示す。

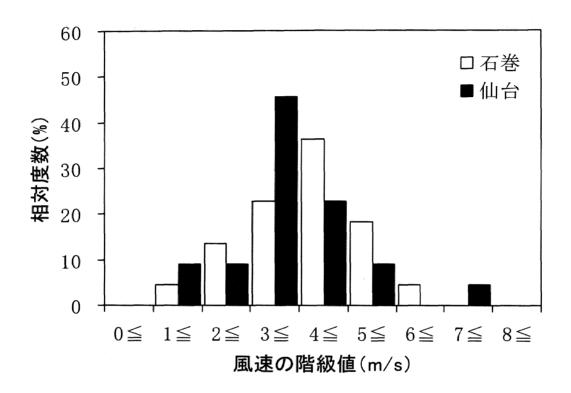


図3. 21 石巻と仙台で着氷性の雨または凍雨が観測されたときの風速の度数分布 過去14冬季(1989年11月~2003年5月)において、石巻と仙台で着氷性の雨または凍雨を 観測したときの風速の相対度数の分布を示す。

3.4.3 関東平野における特徴

2003 年 1 月 3 日、関東平野の南西部に位置する武蔵野市で、凍雨と着氷性の雨(過冷却の雨)を観測した。このとき関東平野北部の埼玉県と群馬県付近では、着氷性の雨による雨氷現象によって、鉄道の架線が約 50km にわたり 1~2cm の厚さの透明な氷に覆われた。このことで、長時間にわたり鉄道網が停止したため約 1 千人が車中泊し、約 4 万 8 千人に影響がでた。

図3. 22 は、武蔵野市における地上降水種の観測結果と、その西南西およそ 5km に位置する AMeDAS 府中における気温と降水量、風向、風速の時系列である。2003 年 1 月 3 日の朝から、武蔵野では断続的に雪が降っていたが、1700JST 頃から凍雨が降り始めた。凍雨は直径約 2mm の透明で球形の氷の粒で(第4章の図4. 2を参照)、窓ガラスなどに当たり激しい音がした。その後、凍雨は断続的に降り続け、1810JST 頃雨に変った。このときの地上気温が-0.5℃であり、植木や車などに約 1cm の透明なつらら(雨氷)を確認したことから(図4. 23)、このときの雨を着氷性の雨と判断した。着氷性の雨は 1830JST 頃に一旦止んだものの、2000JST 頃から再び降りだし、地上気温が 0℃を上回る 2400JST 頃まで雨氷が確認できた。

凍雨や着氷性の雨が降っていた期間、地上気温は-0.5℃から緩やかに上昇し、降水量は 1~3mm/h であった。また、北西~北の 1~2m/s の風が観測され、22JST 以降は静穏状態となった。 武蔵野市で観測された凍雨が透明な球形の氷であったことから、このとき上空に降雪粒子を完全に融解する暖気層が存在し、その下層の地上付近の寒気層で融解雨滴が再凍結したことが示唆される。

図3. 24 は、2003 年 1 月 3 日 21JST の館野における気温、風向風速および温位の鉛直分布である。高度 3000m 以下の大気全層がほぼ飽和の状態である。図3. 24 より、高度 400~500m付近に強い逆転層があり、その上空には高度 600m付近に気温 5℃の極大をもつ暖気層が形成されている。気温 0℃以上の暖気層は約 1500m の厚さをもち、20m/s 前後の強い南風を伴っている。また、この暖気層の下に気温 0℃以下の寒気層がある。このことから、融解過程による着氷性の雨発生の気象条件となっていたことがわかる。

図3.25は、2003年1月3日21JSTの地上気圧配置である。当日は、日本海と本州南岸に中心をもつ二つの低気圧の影響で、日本付近の上空は南からの暖気移流が卓越する気圧配置と

なっていた。図3.24 に示した館野上空の暖気層は、この総観規模の気圧配置に伴った強い暖 気移流によって形成されたと考えられる。

図3. 26 は、上空の暖気層に対応する 900hPa 面の相当温位と風の分布および 0℃等温線の位置である。関東平野上空は強い南からの暖気移流が卓越していて、900hPa 面の 0℃等温線は関東平野の北部に達しており、融解過程による着氷性の雨発生の気象条件が、関東平野の広い地域で形成されていたことがわかる。

図3. 27 は、各地で着氷性の雨や凍雨が観測され始めた 18JST の地上の相当温位と風の分布である。図3. 27 より、地上では、関東平野の広い地域で北西または北よりの弱い寒気移流が卓越していることがわかる。この北西系の寒気移流は、各地で着氷性の雨や凍雨が降り続いた期間、24JST 頃まで持続していた。このことから、この内陸からの寒気移流によって、地上付近の寒気層が形成されたと考えられる。

以上、2003年1月3日の関東平野における着氷性の雨の事例では、地上付近の局地的な内陸からの寒気移流が存在し、その上空に総観規模の気圧配置に伴う南からの暖気移流によって、気温 0℃を境とした上空暖気層と下層寒気層が形成され、着氷性の雨が発生する気象条件となったと考えられる。

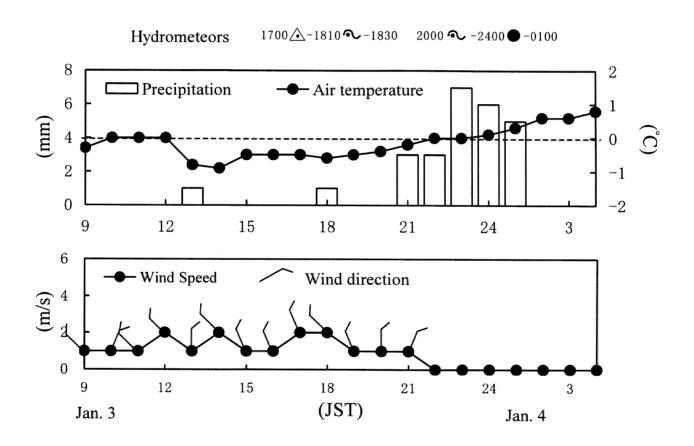


図3.22 武蔵野における降水種と府中における気象要素の時系列

2003年1月3日9JSTから4日4JSTまでの武蔵野における地上降水種(図の上)、AMeDAS 府中における気温、降水量、風向、風速の時系列を示す。

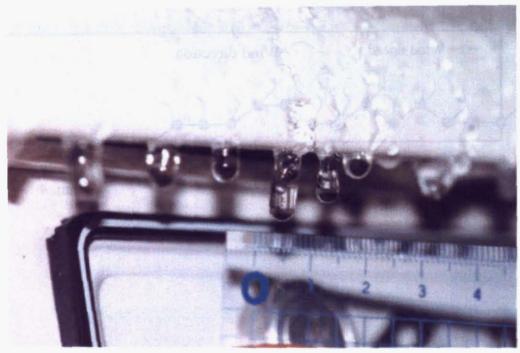


図3. 23 武蔵野で観測された雨氷の写真 2003 年 1 月 3 日、22JST(上)、19JST(下)撮影。

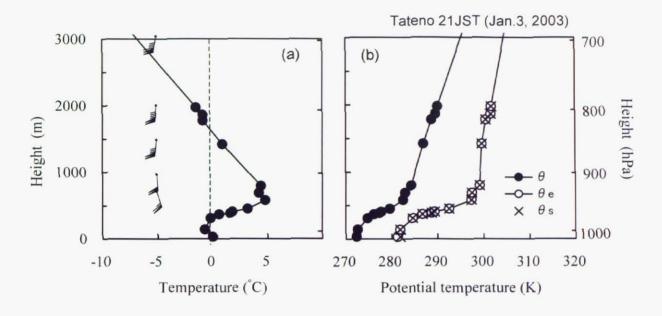


図3. 24 館野における気象要素の鉛直分布 $(2003 \oplus 1 \text{ 月 } 3 \text{ 日 } 21\text{JST})$ (a)気温と風の鉛直分布、(b)温位 θ 、相当温位 θ_e 、飽和相当温位 θ_s の鉛直分布を示す。

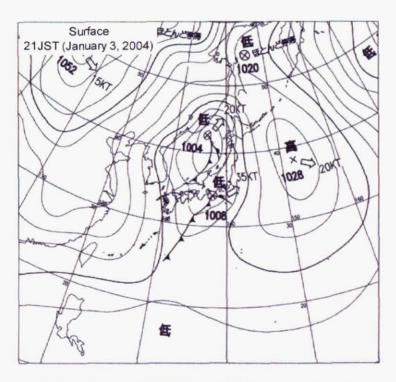


図3. 25 地上天気図(2003年1月3日21JST)

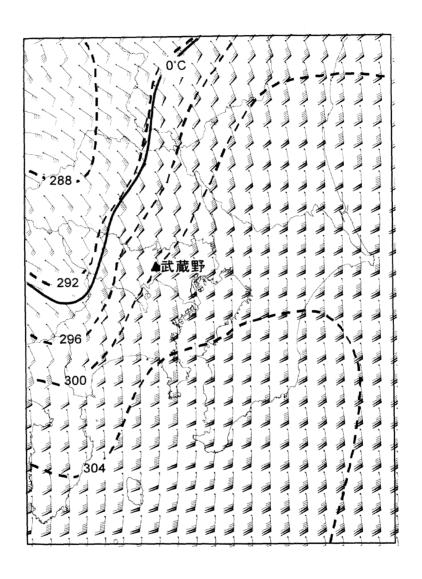
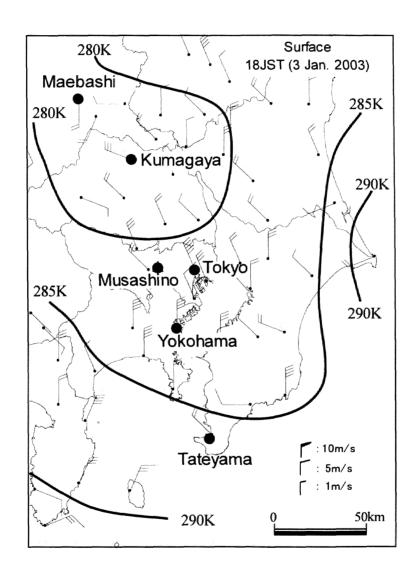



図3. 26 900hPa 面における相当温位と風の分布(2003 年 1 月 3 日 21JST) 破線は等相当温位線で 4K 間隔。実線は気温 0℃の等温線である。

図3. 27 地上の相当温位と風の分布(2003 年 1 月 3 日 18JST) 実線の等相当温位線は 5K 間隔。

気候学的な観点から関東平野における着氷性の雨や凍雨の発生に関する特徴をみるため、1989 年 11 月から 2003 年 4 月までの 14 冬季を対象として、各気象官署における着氷性の雨、凍雨、雨氷の発生回数を調べた。その結果、関東平野のどこかで凍雨が観測された回数は、過去 14 冬季で 50 回あった。一方、着氷性の雨と雨氷の観測記録はなかったが、風速計の凍結障害(着氷性の雨が原因と考えられる)記録は、本事例の 2003 年 1 月 3 日の他、1998 年 1 月 15日の合計 2 例あった。いずれの事例も凍雨を伴っていることが特徴である。

図3. 28 は、関東平野の各気象官署における I 年あたりの凍雨の発生率の地域分布である。 熊谷、東京、横浜の関東平野の西部で、凍雨の発生率が高いのが特徴で、関東平野における 凍雨発生事例のほとんどを占める。特に、東京と熊谷では毎年1回以上の発生割合である。

図3.29 は、熊谷、東京、横浜で凍雨が観測されたときの地上の平均相当温位、平均相対湿度、最多風向の分布図である。平均相当温位は東京における値との差を示す。図3.29 より、関東平野北西部の内陸からの低温、低湿の移流が顕著に現われており、地形形状に沿って弧を描くように東京や横浜にまで達している。その結果、内陸と沿岸部の間の地域で相当温位の水平傾度が強まっているのが特徴である。図3.28 との比較から、内陸からの寒気移流領域で凍雨の発生率が高いことがわかる。この特徴は、2003年1月3日の事例でもみられた特徴で、地上付近の内陸からの寒気移流が、着氷性の雨や凍雨発生の気象条件の一つである地上付近の寒気層の形成に寄与していることが、気候学的な観点からも確認できる。

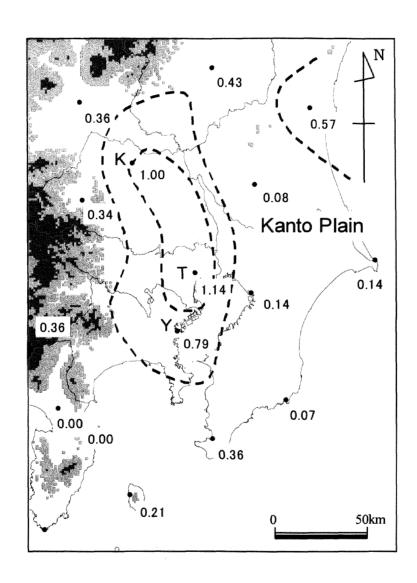


図3.28 関東平野における凍雨の発生率の分布

発生率とは、過去14冬季(1989年11月~2003年4月)における凍雨の発生事例数を冬季年で除した値(回/年)である。破線の等値線は0.5間隔。図中記号のKは熊谷、Tは東京、Yは横浜を意味する。

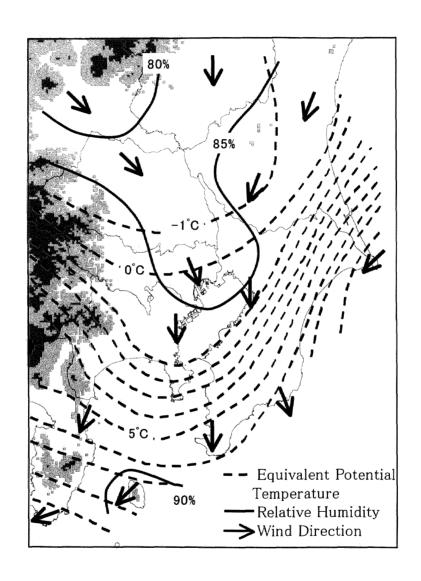


図3.29 熊谷、東京、横浜で凍雨が観測されたときの地上気象の平均値の分布

過去 14 冬季(1989 年 11 月~2003 年 4 月)において熊谷、東京、横浜で凍雨が観測されたと きの平均相当温位、平均相対湿度、最多頻度風向の分布。実線は平均相対湿度の等値線で 5%間隔、破線は東京における平均相当温位との差の等値線で 1℃間隔である。

3.4.4 太平洋側平野部における一般的な特徴

以上、着氷性の雨や凍雨が観測されたときの気象条件の形成過程について、北海道の十勝平野と根釧台地、東北地方の仙台平野、そして関東平野の例を示した。各地域とも、着氷性降水時は内陸からの弱い寒気移流が存在し、これが融解過程による着氷性降水の発生条件の形成に寄与していることが示された。また、第2.4節で示したように、各地における着氷性降水時の地上気圧配置を調べたところ、そのほとんどが対象地域の南側を低気圧の中心が通過するパターンであった。

太平洋側の平野部で卓越する内陸からの局地風(寒気移流)は、寒候期において本州南岸や日本海、北海道の場合はその南側を低気圧が通過するときに特徴的な地上風系であることが示されている(山本, 1984; 藤部, 1990)。この局地風に関しては、特に関東平野における研究が盛んで、北西山地斜面からの夜間冷気流の寄与によって平野部の寒気層が発達することが、数値実験(Kondo, 1995)と観測(Seino et al., 2003)によって示されている。また、この冷気流は日中でも持続することが特徴である(藤部, 1994; Seino et al., 2003)。長谷美・馬場(1994)によると、関東平野の着雪現象の地域性においても、この局地気象が関与していることが示されている。同様に、十勝平野や仙台平野でも内陸からの寒気移流が、着氷性の雨や凍雨の発生において重要な役割を担っていることが示された。

一方、同じ太平洋側に位置する北海道の根釧台地では様相が異なる。この地域では、着氷性降水時、知床から阿寒に延びる山脈に沿った北東系の寒気移流が卓越し、これが地上付近の寒気層の形成に関与していた(第3.4.1節)。この寒気移流は総観規模の気圧配置に対応したものであり、Forbes et al. (1987)や Bell and Bosart (1988)が示す北米アパラチア山脈における寒気移流の堰き止め効果(cold-air damming)に似た現象であると考えられる。また、この北米の地域との共通点として、根室付近でみられた局地前線の存在もあげられ、北米ニューイングランドにおける局地前線の研究は古くから行われている(例えば、Bosart et al., 1972; Nielsen, 1989)。

このように、太平洋側平野部の着氷性降水時において、内陸からの寒気移流が着氷性の雨や 凍雨が発生するときの地上付近の寒気層の形成に関与しており、この上空に総観規模の気圧配 置に対応した暖気が移流することで、融解過程による発生条件が形成されると考えられる。これ が太平洋側平野部の地域で着氷性の雨や凍雨の発生率が高い理由と考えられる(図3.30)。まとめると、南岸低気圧、このときの気圧配置に特徴的な内陸からの局地規模の寒気移流が地上付近の寒気層を形成し、その上空に低気圧接近に伴う総観規模の暖気移流によって暖気層が形成され、着氷性の雨や凍雨が発生する融解過程の条件が形成されると考えられる。

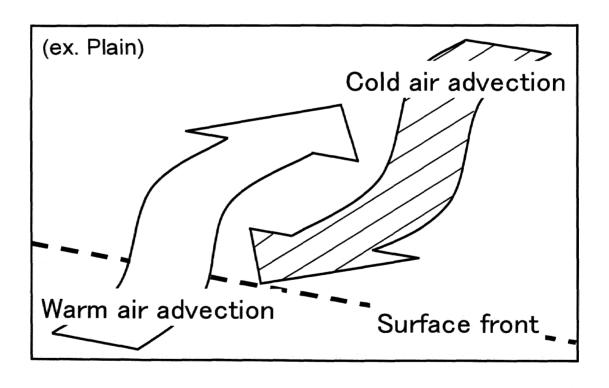


図3.30 太平洋側平野部における発生条件の形成過程の模式図

図は、太平洋側平野部において、融解過程によって着氷性降水が発生するときの気象条件の 形成過程を模式的に示したものである。

3.5 内陸山間部と太平洋側平野部における比較

3.5.1 着氷性降水時の地上気象値の比較

第2章より、着氷性の雨と凍雨の発生率が高いのは、中部地方以北の内陸山間部と関東地方以北の太平洋側平野部であった。また、本章における局地解析の結果、内陸山間部と太平洋側平野部では、着氷性の雨や凍雨の発生に関して、地上付近の寒気層形成に違いがみられた。内陸山間部では、寒気滞留による冷気湖の形成が地上付近の寒気層形成に大きく寄与している。従って静穏で弱風の時に発生するのが特徴である。これに対し太平洋側平野部では、内陸からの局地的な寒気移流が地上付近の寒気層形成に関与しており、風を伴うのが特徴である。

この傾向は、表3.1に示すように、着氷性の雨や凍雨が降っているときの各地の平均風速の 比較からも明らかである。また、大気の湿潤環境も異なり、着氷性の雨や凍雨発生時の平均相対 湿度(表3.1)は、太平洋側平野部で低い。このことは、地上付近における雨滴の凍結環境や雨 氷の成長過程を熱力学的に考えるとき、考慮すべき重要な気象要因となる。そこで、着氷性の雨 が降っている事例のみを対象として、内陸山間部と太平洋側平野部の両地域の気象状況の違 いを調べた。解析に用いた地点は、着氷性の雨が降っているときの1時間毎の地上気象観測値 が複数時間得られている内陸山間部の6地点(旭川、新庄、若松、山形、高山、飯田)と、太平洋 側平野部の4地点(帯広、釧路、広尾、石巻)で、これらの地点における解析結果を示す。

図3.31 は、過去14冬季(1989年11月~2003年4月)において、着氷性の雨が発生したときの平均相対湿度と平均風速の関係である。表3.1の着氷性の雨と凍雨が発生しているときの気象状況と同様に、着氷性の雨のみの場合の気象状況においても、内陸山間部の地点では風が弱く、大気は飽和状態に近いことが特徴である。一方、太平洋側平野部の地点では数 m/s の風を伴い、相対湿度が低い傾向にある。

図3. 32 は、着氷性の雨発生時の平均気温と平均露点温度の関係である。両地域とも平均気温は 0~-2℃の範囲にあるが、内陸山間部の地点の方がやや低い傾向にある。また、平均気温が0℃以上の場合でも、露点温度の平均値は0℃以下となっている。このことから、雨滴が過冷却状態となり、雨氷が形成されるための大気条件として、気温のみならず露点温度や相対湿度などの大気の湿潤条件も重要であることが示唆される。

表3.1 着氷性の雨または凍雨が発生しているときの風速と相対湿度の平均値

下線で示す地点は、昼間(8:30~17:00JST)のみ大気現象の観測を実施している地点。過去 14 冬季(1989 年 11 月~2003 年 4 月)において着氷性の雨か凍雨が降っていたときの平均値。

→ 7+ · 1 · 日日 → 7			十五次 加工 田 47				
内陸山間部				太平洋側平野部			
	風速の	相対湿度			風速の	相対湿度	
地点名	平均值	の平均値		地点名	平均值	の平均値	
	(m/s)	(%)			(m/s)	(%)	
盛岡	1.6	87.4		釧路	5.8	93.6	
山形	1.0	91.3		带広	1.0	87.4	
新庄	1.4	89.0		仙台	3.7	74.1	
若 松	1.1	89.4		石 巻	4.2	83.5	
松 本	0.5	94.4		熊 谷	1.8	79.4	
飯田	0.8	88.4		東京	5.0	84.8	
高 山	0.7	93.7		横 浜	5.9	85.9	

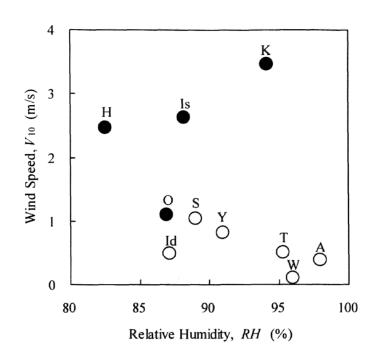


図3.31 着氷性の雨が発生しているときの風速と相対湿度の平均値の関係

過去 14 冬季(1989 年 11 月~2003 年 4 月) において着氷性の雨が降っていたときの平均値。 黒丸は太平洋側平野部に位置する地点(O:帯広、K:釧路、H:広尾、Is:石巻)、白丸は内陸山間 部に位置する地点(A:旭川、S:新庄、W:若松、Y:山形、T:高山、Id:飯田)を示す。

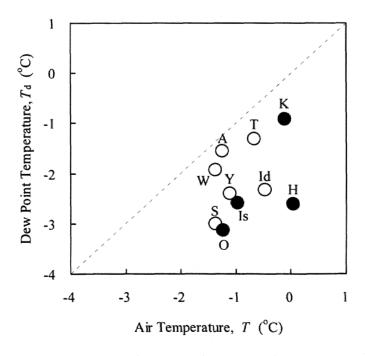


図3. 32 着氷性の雨発生時の気温と露点温度の平均値の関係 図中の記号は、図3. 31 に同じ。

3.5.2 雨氷形成に関する大気の熱的環境の比較

内陸山間部と太平洋側平野部の両地域における着氷性の雨発生時の地上気象値の違いは、 地上付近における雨滴の凍結環境や雨氷の成長過程を熱力学的に考えるときに重要な因子と なる。また、第3. 5. 1節でみられた両地域の気象状況の違いが、雨氷の形成過程に関与してい るとすれば、雨氷現象に対しても気象条件の形成過程の違いに起因する地域特性が存在するこ とが示唆される。

図3.33 は、過去14冬季(1989年11月~2003年4月)において、着氷性の雨が降っていたときの1時間毎の地上気象値から求めた、雨氷表面(薄い水膜に覆われていると仮定)の顕熱フラックスQ。と潜熱フラックスQ。の平均値である(第3.2.3節を参照)。潜熱フラックスQ。に着目すると、太平洋側平野部の地点で低い値を示し、雨氷表面から失う熱量が多く、雨氷が形成されやすい大気環境にあることがわかる。これは、太平洋側平野部では、着氷性の雨発生時の相対湿度が低く、風が比較的強いという気象条件によるものである。

一方、図3.33 において、顕熱フラックス Q_s は両地域で大きな差はみられなかった。着氷性の雨発生時の風速が、太平洋側平野部で大きいことから、顕熱フラックス Q_s においても太平洋側平野部で低い値となることが予想されるが、実際は、内陸山間部で気温がやや低い傾向にあることから、気温と風速の効果が相殺され、両地域で差が表れなかったものと考えられる。

そこで、両地域の風速と相対湿度の違いによる雨氷形成への影響を調べるために、すべての事例について気温-1℃および-1℃における相対湿度を仮定し、風速はそのままの値を用いて、あらためて顕熱フラックスQ。と潜熱フラックスQ,を計算した。図3.34がその結果である。内陸山間部と太平洋側平野部の地域において、同じ気温条件で着氷性の雨が降ると仮定した場合、太平洋側平野部の方が、雨氷表面から奪われる顕熱Q。および潜熱Q,の両熱フラックスが大きく、雨氷が形成されやすい大気条件にあるといえる。

以上の解析結果から、着氷性の雨が降っているときの気象条件の違い(低い相対湿度、強い 風)によって、太平洋側平野部では雨氷表面から失う熱フラックスが大きく、雨氷が発達しやすい 大気状態にあることがわかる。

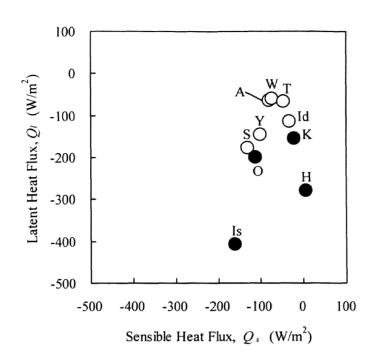


図3.33 着氷性の雨発生時の顕熱フラックスと潜熱フラックスの平均値の関係

過去 14 冬季(1989 年 11 月~2003 年 4 月)において着氷性の雨が降っていたときの平均値。 黒丸は太平洋側平野部に位置する地点(O:帯広、K:釧路、H:広尾、Is:石巻)、白丸は内陸山間 部に位置する地点(A:旭川、S:新庄、W:若松、Y:山形、T:高山、Id:飯田)を示す。

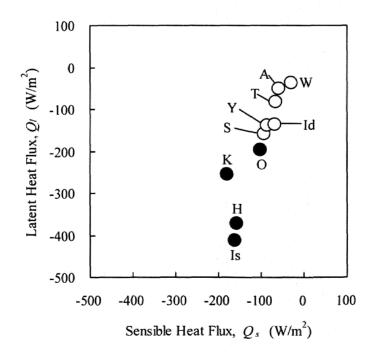


図3. 34 着氷性の雨発生時の顕熱フラックスと潜熱フラックスの平均値(同じ気温を仮定) 全ての事例の気温を-1℃とした場合。図中の記号は、図3. 33 に同じ。

3.6 その他の地域における特徴

日本における着氷性降水の発生は、主に中部地方以北の内陸山間部と関東地方以北の太平洋沿岸部で多く(第2.2節)、これらの地域で雨氷による被害報告も多い(牛山,1991)。ここではその他の地域の事例として、2004年2月に発生した北海道・岩見沢における雨氷事例について、詳細な局地気象解析を行った結果を示す。この事例は日本海側の平野部で発生しており、第2.2節の地域分布の発生割合の低い地域での発生事例である。また、国内の着氷性降水事例の多くは弱風下で発生する傾向にあるが(第3.5節)、今回の事例では岩見沢で6m/s以上の比較的強い風を伴っていたことが特徴であり、球場のフェンスが倒壊するなどの被害が発生した(尾関,2004a:2004b)。強風を伴う雨氷現象として、雪氷気象災害上、注目すべき事例と考える。

ここでは、2004年2月22~23日の岩見沢地域における雨氷事例に着目し、発生時の気象状況および雨氷形成に関する大気の熱的環境について解析を行った(第3.6.1節)。また、他地域における着氷性の雨や雨氷の発生事例について考察を行った(第3.6.2節)。

図3.35 岩見沢における雨氷の写真(尾関,2004b)

木の枝全体が約 1cm の透明な氷に覆われている。2004 年 2 月 23 日、北海道教育大学岩見 沢校の尾関俊浩助教授が撮影。

3.6.1 北海道・石狩平野における事例

2003~2004 年冬期は北海道の多雪地帯として知られる岩見沢において2度の着氷性の雨による雨氷害が発生した。なかでも2004年2月22日夜半から23日明け方にかけて発生した雨氷事例では、木の枝などが約1cmの透明な氷に覆われ(図3.35)、その後の暴風と相まって多くの被害が発生した。このとき岩見沢以外では、日高地方で雨氷による森林被害(尾関,2004a;2004b;鳥田ほか,2004)、十勝地方の広尾町野塚峠では凍雨が原因による雪崩の発生(川島ほか,2004)が報告されており、北海道の各所で着氷性降水による被害が発生した。図3.36は、この事例解析における解析対象範囲と気象観測所の位置である。

図3. 37 は、岩見沢における2月22日15 JSTから23日9 JSTまでの地上気象観測値の時系列と大気水象である。岩見沢では、22日朝から降り続いた雪が19:30 JSTに霙(みぞれ)に変わり、23日2JST前には雨になった。その後4:30 JSTに再び霙に変わり、5:00JST以降は雪となった。

図3.37で雨や霙が降っている期間の気温に着目すると-0.5℃前後で推移しており、気温や相対湿度に大きな変動がないにも関わらず降水形態が変化している。このことは上空に融解層が存在することを示唆する。22 日 22 JST 以降で霙から雨に変わった時刻は不明であるが、23 JST には風向風速計の感部凍結により風が欠測となっている。ここで気温 0℃以下で降る霙も着氷性降水とすると、岩見沢で着氷性降水が発生した期間は、22 日 19:30 JST から 23 日 5:00JST までの期間であると考えられる。

図3.37 で示した、着氷性降水時の気温-0.5℃は、雨氷が顕著に発達するにはそれほど低い 気温状態ではないと考えられるが、この期間、6m/s 前後の風を伴っており、風向が北北東でほぼ 一定であるのが特徴である。特に、23 日 3 JST 以降は、気温の下降に伴い風が強まり、10m/s 以 上の強風となった。

図3. 38 に、22 日 21 JST の札幌における気象観測値の鉛直分布を示す。図3. 38a より、およそ高度 500m から1700m までの気温 0℃以上の暖気層と、その下層の気温 0℃以下の寒気層の存在が明瞭で、融解過程による着氷性降水発生の気象条件となっている。気温 0℃の高度がおよそ 500m であることは、日高地方の雨氷害が標高約 500m 以下の地域で確認された調査結果(尾関, 2004a)に一致する。また、図3. 38b および図3. 38c より、高度 500m 以上の暖気層では、

強い南よりの風が卓越して相当温位が高度とともに高くなるのに対し、高度 500m 以下の寒気層では、東よりの風で等相当温位層となっている。このときの地上天気図(図3.39)より、低気圧が北海道の南海上を急速に発達しながら東北東に抜けており、図3.38で示した上空500m以上の気温 0℃以上の融解層は、この低気圧の前面の暖気移流によってもたらされ、地上付近における東よりの風は温暖前線の北側の風系に伴ったものと考えられる。

図3. 40は、22日 21 JST における850hPa 面、950hPa 面および地上における相当温位、気温、風の分布である。図3. 38 で示したように、850hPa 面は気温 0 C以上の暖気層高度、950hPa 面は地上付近の等相当温位層の上部高度に対応する。850hPa (図3. 40a) では南からの暖気移流が顕著で、気温 0 Cの等温線が北側へ大きく張り出している。一方、950hPa (図3. 40b) では、0 C等温線の北側領域で東からの寒気移流、南側で南東~南の暖気移流があり、その境となる 0 C等温線付近で相当温位の水平傾度が大きくなっている。

図3. 40a と図3. 40b に示す上空の 0 で等温線の位置関係に着目すると、雨氷が発生した岩見沢付近は、850hPa 面と 950hPa 面の 0 で等温線に挟まれた領域に位置している。また、図3. 40c より、岩見沢付近の地上気温は 0 で以下である。このことから、岩見沢付近の上空では、950 を850hPa 間に気温 0 で以上の暖気層が存在し、950hPa 付近から地上までが気温 0 で以下の寒気層であったと考えられる。

850hPa 面の 0℃等温線は、23 日 3 JST になると滝川付近に達している(図3.40c)。地上気温分布は、22 日 24 JST 以降、岩見沢付近において 0℃の境界が明瞭となり、それより北側の地域で氷点下の地点が広がっている(図は省略)。このことから、雨氷が顕著に発生した地域は、岩見沢から滝川にかけた約 40km の地域であると考えられる。この地域的な特徴は、24 日に行った国道 12 号線沿線の調査結果(尾関,2004a)に一致する。また、岩見沢付近における着氷性降水発生の気象条件は、22 日 21 JST 前から 23 日 3 JST すぎまで継続していたと考えられ、図3.37で示した地上気象観測値からみた着氷性降水期間に一致する。

950hPa(図3.40b)の東よりの卓越風に伴い、地上でも日本海沿岸地域を中心に東よりの風が卓越しているが、滝川から岩見沢にかけた地域では、地形に沿うように北~北東の 5m/s 以上の風となっている。図3.40bの950hPa面における0℃等温線北側の東風域の相当温位と岩見沢の地上相当温位、および図3.40c の地上付近の等相当温位層の値がほぼ等しい。このことから、岩見沢付近の北東風は、大気下層の東よりの気流が地形に沿うように流れ込んだためと考えら

れる。

着氷性降水の発生条件の形成において、岩見沢付近の地上の北東気流と、上空850hPaの南よりの暖気移流との強い鉛直シアの関与が示唆される。一方、着氷性降水の発生には鉛直方向の気温状態が最終的な決定要素となる。岩見沢付近における地形効果による北東気流が着氷性降水の発生に寄与しているのかは、事例が少ないため結論を導くことはできないが、注目すべき現象であると考えられる。北米において、地形効果によって地上付近の風向が変化し、これが着氷性の雨の発生気象条件およびそのときの降水量に影響を与えた事例がある(Roebber and Gyakum, 2003)。

さて、図3. 37 でみたように、着氷性降水時の気温-0.5°Cは、雨氷が顕著に発達するにはそれほど低い気温状態ではないと考えられるが、この期間、6m/s 前後の風を伴っているのが特徴であった。図3. 41 が、このときの雨氷表面における熱フラックスの計算結果である。図では雨氷の凍結環境をみるために、顕熱フラックス Q_s と潜熱フラックス Q_t の合計値(負の値)の絶対値をとった。この値と雨氷表面の水膜が凍結するのに要する熱量 Q_f を比較して大きければ、水膜が凍結(雨氷が発達)しやすいことを意味する。図3. 41a に示すように、観測値をもとにした計算結果では、22 日 19:30JST から 23 日 5:00JST までの着氷性降水の期間、 Q_s と Q_t の合計が Q_f を上回り、雨氷が発達しやすい大気状態であったことがわかる。一方、図3. 41b の弱風(0.5m/s)とした計算結果では、 Q_f の値が常に上回り、雨氷が発達しにくい状態となる。このことから、岩見沢では、6m/s 前後の風による通風効果の強まりによって、雨氷表面の負の熱フラックスが増加し、雨氷が発達しやすい大気環境にあったと考えられる。

国内の着氷性降水は、一般的に弱風下で発生する傾向にあるが、そのうち雨氷による被害は 比較的風が強い場合に生じやすいと考えられる。この風速の影響として対象物に対する風圧の 強まりが第一に考えられるが、ここでは雨氷表面の熱収支の観点から考察し、風の強まりによっ て負の熱フラックスが増加するため雨氷が形成されやすいことを指摘した。

また、今回の事例では、着氷性降水による雨氷形成後 10m/s 以上の強風となった。強風を伴う雨氷事例がどの程度の発生確率をもつのか、または今後はどうか、災害の観点から重要である。

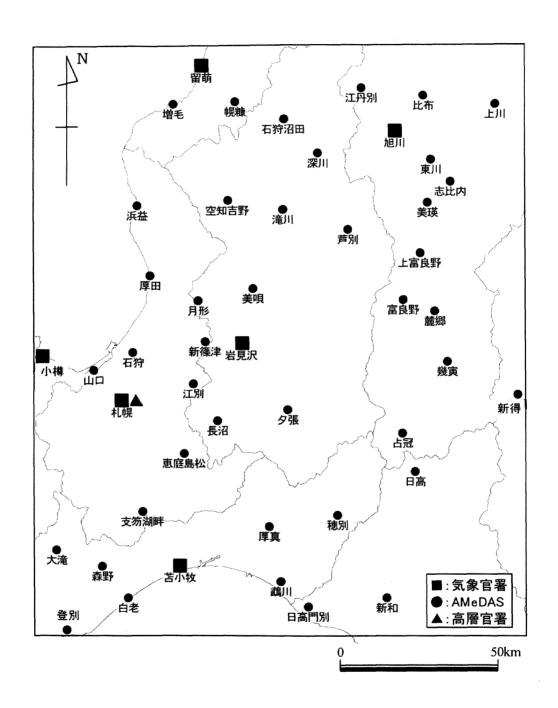


図3. 36 北海道岩見沢の事例における解析範囲および気象観測地点 ■は気象官署、●は AMeDAS、▲は高層気象官署を意味する。

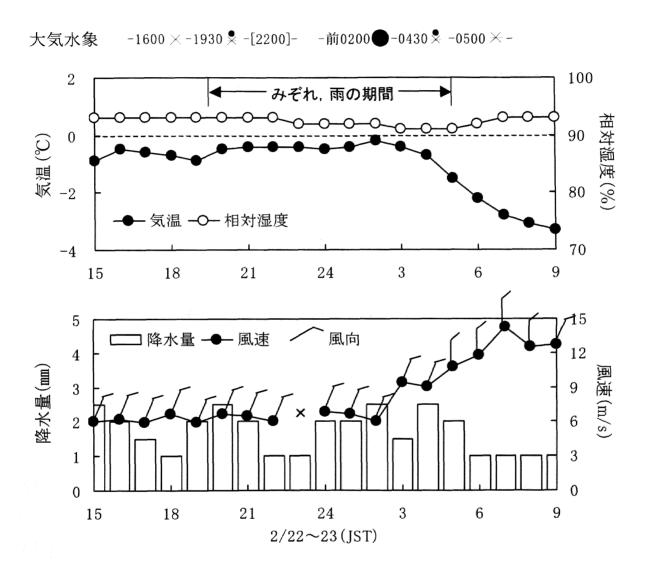


図3. 37 岩見沢における地上気象値と降水種の時系列(2004年2月22~23日) 2004年2月22日15JSTから23日9JSTの気温、相対湿度、降水量、風向・風速の時系列と大気水象の観測結果。図中の×印は、風向風速計の感部凍結による風の欠測を表す。

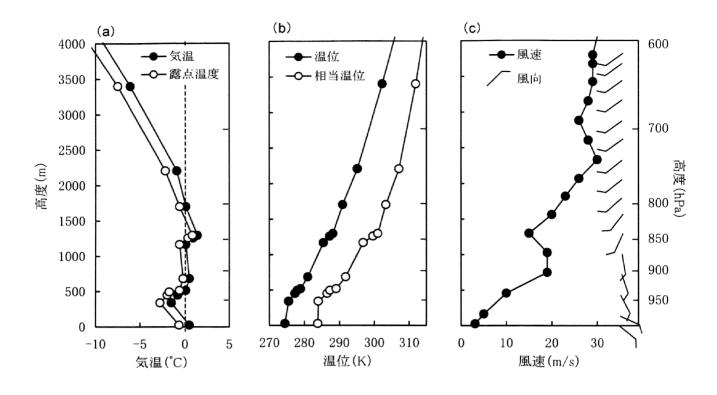


図3.38 札幌における気象値の鉛直分布(2004年2月22日21JST)

(a) 気温と露点温度、(b) 温位と相当温位、(c) 風向と風速の鉛直分布を示す。

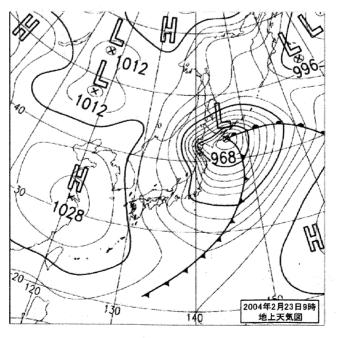


図3. 39 地上天気図(2004年2月23日9JST)

図3. 40 相当温位と気温および風の分布(2004年2月22日21JST)

(a) 850hPa 面、(b) 950hPa 面および(c) 地上における分布を示す。長い矢羽は 5m/s、短い矢羽は 1m/s、ペナントは 10m/s。(a) と(b) の破線は等相当温位線(2K 間隔)、実線は気温 0℃の等温線。(c) の数値は地上気温、カッコ内数字は相当温位、実線と破線は 22 日 21JST と 23 日 3JST における 850hPa 面の 0℃等温線の位置。陰影は標高分布である。

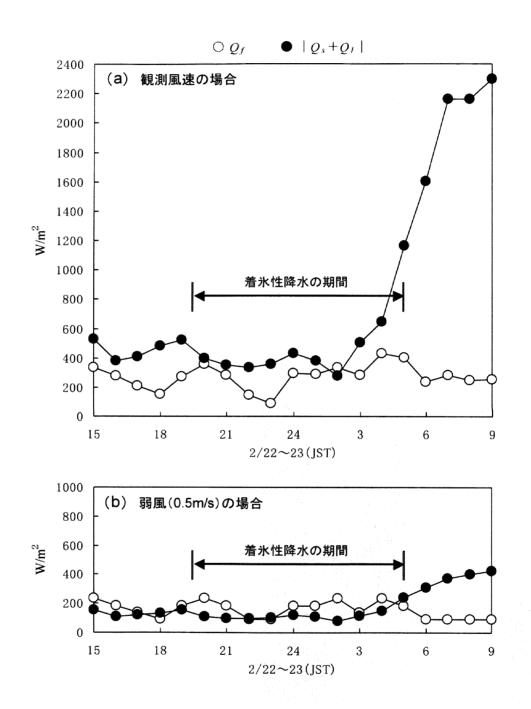


図3.41 岩見沢における雨氷表面の熱フラックスの計算結果

2004年2月22日15JSTから23日9JSTまでの計算結果を示す。 Q_f は雨氷表面の水膜が凍結するのに要する熱量、 Q_s は顕熱フラックス、 Q_f は潜熱フラックスである。図では Q_s と Q_f の合計値(負の値)の絶対値を示す。(a)は観測風速をもとにした計算結果、(b)は風速を 0.5m/s とした場合の計算結果。図中の着氷性降水の期間は、気温 0C以下で雨や霙が降った期間。

3.6.2 その他の地域における事例

本章では、着氷性降水の発生率の高い中部地方以北の内陸山間部と、関東地方以北の太平 洋側平野部の地域に着目して、着氷性降水時の気象条件の形成過程を調べた。その結果、融 解過程による発生条件のうち地上付近の寒気層の形成過程が、両地域で大きく異なることが明ら かにされた。内陸山間部では周辺の地形状況に影響される寒気の滞留または冷気湖の形成が 関与し、太平洋側平野部では内陸からの寒気移流が寄与している。

以上の局地気象の特徴は、内陸山間部と太平洋側平野部における一般的な傾向と考えられるが、本章で示した地域以外でも解析を行い、この一般的な特徴を確認していく必要があると考えられる。雨氷現象による被害は日本の各地で報告されているが、各事例に対して本章で行ったような局地気象面からの解析はほとんど行われていない。しかしながら、これらの雨氷事例の発生日時が明らかであるので、局地気象解析を行うことが可能であると考えられる。

内陸山間部における雨氷現象の発生報告としては、北海道の上川盆地(井上・増田, 1955)と日高地方(佐藤ほか, 1970; 鳥田ほか, 2004)、岩手県の北上山地(大原ほか, 1990; 松岡ほか, 1990)、福島県の阿武隈山地(平川・渡辺, 1985)、関東地方の秩父山地(梶ほか, 1991; 1994)などがある。また、九州の阿蘇山麓(河野ほか, 1975)でも雨氷現象による被害報告があるように、着氷性降水や雨氷現象は日本のほぼ全域で発生する可能性があるといえる。つまり、本章で示した内陸山間部における地上付近の寒気層形成の特徴を考えると、中部地方以南の地域でも着氷性降水や雨氷現象が十分に起こりうる現象であると考えられるので、このことを確認していく必要があると考えられる。これらの事例の局地気象現象としての特徴を明らかにすることは、興味ある課題である。

太平洋側平野部における雨氷発生報告は、関東地方を中心にした地域で多く、東京都の例 (岡田, 1902; Okada, 1914)や千葉県における発生事例(村井, 1936)がある。藤部(1990)によると、低気圧通過時の内陸からの寒気移流は、本章で示した地域の他、濃尾平野でも卓越する局地気象現象であることが示されている。濃尾平野は、第2章で示した着氷性降水の発生率の地域分布では、着氷性降水や雨氷現象があまり起こらない地域であるが、局地気象の観点からみると、関東平野と同様に着氷性降水の気象条件が形成されやすい地域特性をもつことが考えられる。

また、第3.6.1節で示した北海道の岩見沢における雨氷現象は、日本海側の平野部で発生したことと、強風を伴っていたこと、この2点が上記の一般的な特徴と異なり、注目すべき事例であると考えられる。特に、地上で強風を伴っていたことは、総観規模の低気圧の発達が背景としてあるものの周辺の地形状況も関与していることが示唆される。ただし、内陸山間部や太平洋側平野部における地上気象の特徴として、地上付近は安定または中立な大気層に覆われるため、強風を伴う総観規模の気象状況であっても、地上付近は比較的風が弱いのが一般的である。その一方で、岩見沢周辺の地形効果による地上風系と上空の暖気移流という気流構造が、融解過程による着氷性降水の発生条件を維持する役割をしたとも考えられる。今後、このような事例解析を進めることで、着氷性降水の発生条件の形成過程における局地気象現象の理解が深まると考えられる。なお、日本海側の他の地域における発生事例として、新潟県の長岡で着氷性の雨や凍雨が観測されている(Kimura and Kajikawa, 1984)。

以上のように、本章で示した地域以外における着氷性降水や雨氷現象の発生に関わる局地 気象現象について、気候学的な考察を行うだけの事例数を確保することはできないが、各事例 の解析を積み重ねることで本研究による一般的な特徴の確認を行うとともに、強風を伴い被害地 域が拡大するような特異事例に関する知識を蓄積していくことが必要と考えられる。

3. 7 おわりに

3.7.1 本章のまとめ

本章(第3章)では、着氷性降水の発生率の高い中部地方以北の内陸山間部と、関東平野以 北の太平洋側平野部における気象条件の形成過程について局地気象解析を行った。内陸山間 部における例として東北地方の新庄・山形盆地と中部地方の長野県を対象に、太平洋側平野部 における例として北海道の十勝平野と根釧台地、東北地方の仙台平野、および関東平野を対象 に解析を行った。その結果、以下に示すことが明らかになった。

- (1) 内陸山間部と太平洋側平野部の両地域において、着氷性降水の発生条件の一つである上空の暖気層は、総観規模の気圧配置に伴う暖気移流によって形成されることが確認された。
- (2)一方、地上付近の寒気層の形成には、局地的な気象現象や地形状況が強く関与している。
- (3) 内陸山間部では、盆地地形による寒気滞留(冷気湖の形成)が地上付近の寒気層の形成に 寄与し、弱風下で発生することが特徴である。
- (4)太平洋側平野部では、内陸からの局地的な寒気移流(寒気流出)によって地上付近の寒気層が形成され、内陸山間部に比べ風を伴って発生するのが特徴である。
- (5) 両地域の地上付近における寒気層の形成過程の違いによって、着氷性降水時の地上気象値の特徴も異なり、太平洋側平野部の地域で風が強く、相対湿度が低い傾向にある。
- (6) 地上気象の違いにより、太平洋側平野部では雨氷表面より失う熱(顕熱および潜熱)フラックスが大きく、内陸山間部に比べて雨氷が発達しやすい大気状態にあると考えられる。

以上の着氷性降水時における局地気象規模の特徴は、日本における一般的な特徴である。 2004年2月、北海道の岩見沢で発生した雨氷現象は、発生率の低い日本海側の平野部で発生 したこと、強風を伴っていたこと、この2点が上記の一般的な特徴と異なり、注目すべき事例であ ると考えられるので、詳細な局地解析を行った。解析結果は、次に示すとおりである。

(7) 岩見沢における着氷性降水期間は、22 日 19:30JST 頃から23 日 5:00JST 頃までである。

- (8) 雨氷が顕著に発生した地域は、岩見沢から滝川までの約 40km の地域と考えられる。
- (9) 岩見沢付近では、地形効果による地上付近の強い北東気流と、その上空の南からの暖気移流という気流構造により、融解過程による発生条件が形成および維持されたと考えられる。
- (10)着氷性降水時の岩見沢における地上気温は-0.5℃前後で、雨氷発達の大気環境としては それほど低い気温状態ではなかった。
- (11)しかし、6m/s 前後の風による通風効果の強まりによって雨氷表面における負の熱フラックスが増加し、雨氷を顕著に発生させたと考えられる。

この北海道岩見沢の事例では、着氷性降水による雨氷形成後、さらに風が強まり 10m/s 以上の強風となった。この事例のように、強風を伴って着氷性降水が降る場合、地物に付着凍結した雨氷の形成が促進されるばかりでなく、雨氷の重量と風による風圧効果によって、地上構造物や森林への被害が拡大すると考えられる。今後、強風を伴う雨氷現象の事例解析を行うことは、雪氷気象災害の観点から重要である。

3.7.2 今後の課題と展望

本研究では、着氷性降水の発生率の高い地域として、主に中部地方以北の内陸山間部と関東地方以北の太平洋側平野部に着目した局地気象解析を行った。第3.6.2節で述べたように、本章で解析を行った地域以外でも、着氷性降水や雨氷現象が発生する可能性は十分にあると考えられる。今後、他の地域における解析を進めることで、本研究で得られた気象条件の形成過程に関する一般的特徴を確認して、理解を深めていくことが必要であると考えられる。

着氷性の雨による雨氷被害について、日本では森林被害や交通障害などの局地的な被害報告は数多くあるものの、北米で数多く報告されているように広範囲でかつ大規模に発生し、重大な災害をもたらす発生事例(例えば、Jones and Mulherin, 1998; DeGaetano, 2000; Changnon, 2003a)は少ない。この理由として、日本における着氷性降水の継続時間が短いことや降水量が少ないこと、あるいは風が弱いという一般的な特徴に起因すると考えられるが、詳細な解析を行う必要がある。また、この違いが低気圧の発達や通過などの総観規模の気象現象に伴うものなのか、その空間および時間スケールの違いによるものなのか、あるいは局地的な気象現象の違いによるものなのか、今後比較解析を行うことで、日本における重大な雨氷被害の発生可能性について評価することが重要である。

こうしたなかで、第3.6.1節で示した北海道岩見沢の事例は、強風を伴っており、雪氷気象災害の観点から、注目すべき事例であると考えられる。特に、着氷性降水による雨氷形成後、さらに風が強まり10m/s以上の強風となった。この事例のように、強風を伴って着氷性降水が降る場合、地物に付着凍結した雨氷の形成が促進されるばかりでなく、雨氷の重量と風による風圧効果によって、地上構造物や森林への被害が拡大すると考えられる。今後、こうした強風を伴う雨氷現象の事例解析を行うことが必要であり、その発生頻度を調査することも重要である。

また、本研究で示した局地気象現象によって着氷性降水の発生条件が形成された場合でも、 着氷性降水や雨氷現象はさらに狭い範囲で発生することが考えられる。例えば、周辺の地形状 況との関係について、北向き斜面やある限られた標高帯で雨氷被害が発生しやすいなどの関連 性が指摘されている(例えば、三沢、1923c; 林野庁、1957; 梶ほか、1991; 牛山・宮崎、1992; 浜 田、2000)。また、都市域では周囲の地域より地上気温が高いために着氷性降水の発生する季節 が短いことが示されている(Changnon, 2003b)。このような、着氷性降水や雨氷現象発生の局地性についてより詳細な解析を進めることは、これらの現象の地域特性をより深く理解する上で必要なことであり、発生予測を行うための基礎的な知識になると思われる。特に、都市域における局地気象の影響は、近年数多くの報告があるように都市のヒートアイランド現象との関連から注目される現象である。

また、本章で行った局地気象解析において、上空の気象状況の把握は、資料の制限から、主に高層気象官署におけるポイントでの観測値、あるいは高標高地帯に位置する地上観測値から考察を行った。しかし、第3.6.1節の事例解析のように、客観解析資料などの活用による上空気象に関する面的な解析を行うことで、着氷性降水や雨氷現象の発生域を想定することができ、また総観規模の気象現象との関連性に関するより深い議論をすることが可能になると考えられる。今後の事例解析では、こうした気象資料の活用を視野に入れる必要がある。このような局地気象解析は、第4章で述べるように、大気の鉛直構造を考慮した降雪粒子の融解条件、雨滴の凍結条件を熱力学的に解釈し、着氷性の雨や雨氷の発生予測を行う上で欠かせない研究課題である。

なお、本章では着氷性の霧雨の発生過程には触れなかった。着氷性の霧雨の発生は、融解過程の他、大気全層が気温 0℃以下の状態で凝結成長あるいは衝突併合して成長する場合もあり、その形成過程や関連する気象条件は複雑である(例えば、Cober et al., 1996; Rauber et al., 2000)。第1章で、その例として根室における観測事例(図1.12)を示した。また、同じ着氷性の霧雨でも、海岸部に位置する根室と内陸の軽井沢では、関連する局地気象現象や大気の熱力学的構造が異なると考えられる。着氷性の霧雨の気象条件の形成過程について、この観点に着目して今後調査を行う予定である。

第4章 着氷性降水時の大気の熱力学的構造と予測手法

4. 1 はじめに

4.1.1 着氷性降水の予測手法に関する研究の背景

着氷性降水時の大気条件(融解過程)に関する研究は、気温の鉛直分布、暖気層と寒気層の気温、厚さ、高度などに着目して調べられており(Zerr, 1997; Rauber et al., 2000; Bernstein, 2000; Carrière et al., 2000; Robbins and Cortinas, 2002; Hux et al., 2001)、これらを指標とした着氷性降水の発生予測手法が提案されている(例えば、Bocchieri and Maglaras, 1983; Stewart and King, 1987; 石原・田所, 1989; Czys et al., 1996; Bourgouin, 2000; Cheng et al., 2004)。

Robbins and Cortinas (2002)は、着氷性の雨のときのゾンデ観測資料を用いて、上空暖気層と地上付近の寒気層の大気状態の統計的な中央値(メディアン)を求めた。それによると、上空暖気層の最高気温は3.2℃でその高度はおよそ1100m、暖気層の厚さは約1300m、地上付近の寒気層の湿球温度の最低値は-2.9℃でその高度はおよそ200m、厚さは約600mであった。また、このときの地上気温は-1℃であることが示された。Zerr (1997)もゾンデ観測資料から、着氷性の雨と凍雨が降っているときの暖気層の厚さと最高気温の関係、寒気層の厚さと最低気温の関係について調べ、また暖気層と寒気層の風向の鉛直シアーなどによって着氷性の雨と凍雨の発生を判別評価する試みを行っている。さらに、Hux et al. (2001)や Cheng et al. (2004)は、上空の気温や層厚、上昇気流などを指標とした着氷性の雨の発生判別を試みている。このような着氷性の雨と凍雨の発生判別手法に関する理論的背景には、降雪粒子の融解条件や雨滴の凍結条件などの大気の熱力学的構造の解釈が必要となる。

着氷性降水時の降雪粒子の融解条件や雨滴の凍結条件に関する理論的な研究は、古くは Okada (1914)により行われており、近年では Matsuo and Sasyo (1981a; 1981b)、Mitra et al. (1990)、Zerr (1997)などの研究がある。しかし、これらの研究は着氷性の雨の発生を予測する手法の提案 にまでは至っていない。

着氷性の雨の発生を予測する方法として、Stewart and King (1987)は、暖気層の高度や厚さと 気温を指標にして、着氷性の雨を含めた地上降水種を予測する方法を提案した。しかし、降水 粒子の大きさによって使用すべき判別図が異なるなど、着氷性の雨の発生を客観的に判断する には実用面で課題が残ると考えられる。また、この予測手法に対して、実測データを用いた評価 などの検証は行われていない。

石原・田所(1989)は、降雪粒子の融解過程を理論的に検討し、暖気層の最高気温と厚さを指標とした判別図を求めている。このとき気温の鉛直分布は、最高気温から得られる半円形の分布が仮定された。この判別図によって国内における主な雨氷現象の発生事例について検証したところ、全ての事例について降雪粒子が上空の暖気層で完全融解したときに雨氷が発生すると評価された。

同様な観点から、Czys et al. (1996)は、氷粒子の融解条件を熱力学的な理論計算によって求め、暖気層の平均気温と厚さを指標とした発生判別手法を提案している。しかし、Czys et al. (1996)が検討した融解過程は雹などの氷球に対するものであり、実際の降雪粒子の融解過程(第4.3節を参照)とは異なる理論展開がなされている。また、落下速度についても雨滴の落下速度が用いられており、降雪粒子の融解に要する大気層の厚さが少なめに評価されている可能性がある。Rauber et al. (2001a)は、ゾンデ観測資料を用いて Cyzs et al. (1996)による判別手法の検証を行ったところ、着氷性の雨の 48.4%、着氷性の霧雨の 51.9%が判定もれとなった。

Stewart and King (1987)、石原・田所(1989)、Cyzs et al. (1996)による着氷性の雨の予測手法は、上空暖気層における降雪粒子の融解条件のみに着目した解析結果が基になっている。一方、下層の寒気層における雨滴凍結に関する熱力学的な研究は、例えば Stewart et al. (1990)により行われている。これによると、部分融解した降雪粒子の再凍結条件が、寒気層の厚さと気温を指標にして示されているが、完全融解した雨滴の凍結条件は示されていない。完全融解して雨滴になった場合でも、その下層の寒気層で再凍結すると凍雨になる。着氷性の雨の発生予測には、降雪粒子の融解条件と雨滴の凍結条件、この2つの条件を組み合わせて判断することが必要である。こうしたなかで、Bourgouin (2000)は、暖気層と寒気層の大気の熱容量を指標として着氷性の雨と凍雨を判別する方法を提案し、統計解析によってその判別直線が求められている。

以上、着氷性の雨の発生を予測する手法がいくつか提案されている。しかし、これらの予測手法は相対湿度 100%の飽和大気を仮定しているか、降雪粒子や雨滴の表面における水の相変化に伴う潜熱の影響を無視している。実際には、大気の湿潤状態も降雪粒子の融解条件や雨滴の凍結条件に強く影響を及ぼすと考えられので、これを考慮した予測手法が必要となる。

4.1.2 本章の目的

本章(第4章)の目的は、降雪粒子の融解条件と雨滴の凍結条件に関して、大気の熱力学的構造を理論的に検討し、着氷性降水の予測手法を提案することである。ここでは、2003 年 1 月 3 日に関東地方で着氷性の雨や凍雨が降ったときの気象状況とその気象条件の形成過程に関する解析結果をもとに、上空における降雪粒子の融解条件と雨滴の凍結条件について理論的な検討を行った。この2つの熱力学的な大気条件と、地上の気象条件を加えた3つの条件から、融解過程による着氷性の雨の発生判別を行う手法について提案する。

関東地方における着氷性の雨や雨氷現象に関する事例報告は、古くは岡田(1902)、Okada (1914)、玉手 (1922)、村井(1936)などにより報告されているが、関東地方で被害を及ぼすほど顕著に雨氷現象が発生することは少ない。しかし、2003年1月3日の発生事例(第3.4.3節)のように、人口の集中する関東平野では、雨氷現象による社会的影響はたいへん大きく、また普段あまり雪の降らない地域であることから、このような雪氷気象災害に対して弱い都市構造を持つ。そのため、関東地方を例に、着氷性降水の発生予測手法の検討を行うことは意義があることと考えられる。

また、関東平野は広い単純な平坦地形であり、気温や降水量などのAMeDASで観測している 基本的な気象要素に加え、気圧や相対湿度、大気水象などの観測要素が豊富な気象官署が数 多く存在する。また、館野(つくば市)における高層気象観測資料や熊谷におけるウインドプロフ アイラなど、上空の気象状況に関する観測資料も豊富である。また、2003年1月3日の事例では、 武蔵野市において凍雨と着氷性の雨を著者が観測し、特に凍雨の大きさ(半径)を知ることがで きたことは、降雪粒子の融解条件や雨滴の凍結条件を理論的に検討するのに重要な情報であ った。このように、関東平野における2003年1月3日の着氷性降水の事例は、本章のような気象 予測手法の構築および検証を行うのに適した地域と考えた。

以上が、着氷性降水の発生予測手法の検討において、2003年1月3日の事例を用いる理由である。

4.1.3 本章の構成

本章(第4章)の構成は以下のとおりである。

第4.1節は、着氷性の雨の発生予測手法に関する研究の背景、本章における目的および構成を述べた。

第4.2節では、解析に用いる資料を説明し、2003年1月3日の関東平野の気象概況を述べる。 また、このときの気象概況から着氷性の雨の発生判別手法の基本概念について説明する。

第4.3節では、降雪粒子の融解過程に関する理論的な取り扱いと、降雪粒子の融解条件の 求め方について考察を行った。これが着氷性の雨の発生判別に関する第一の条件となる。

第4.4節では、雨滴の凍結過程に関する理論的な取り扱いと、雨滴の凍結条件の求め方について考察を行った。これが着氷性の雨の発生判別に関する第二の条件となる。

第4.5節では、着氷性の雨が降っているときの地上気温と露点温度の関係を調べ、これをもとに着氷性の雨が発生するときの地上気象条件を求めた。これが着氷性の雨の発生判別に関する第三の条件となる。

第4.6節では、上記の三条件を基にした、大気が飽和状態(相対湿度 100%)の場合における 着氷性の雨、凍雨の発生判別手法について提案を行う。

第4.7節では、上記の三条件を基にした、大気が未飽和状態(湿潤状態も考慮)の場合における着氷性の雨、凍雨の発生手法について提案を行う。

第4.8節では、上記の発生予測手法に関する考察と、文献による観測資料を用いた比較検証 を行う。

第4.9節では、本章における研究成果のまとめを行い、今後の研究への課題と展望について述べた。

4.2 解析資料と解析方法

4.2.1 解析資料

解析の対象地域である関東平野(図4.1)は、南部に東京やさいたま市などが位置し、人口の集中する地域(人口約4,000万人、日本の総人口の約1/3)である。また、北側と西側を山に囲まれており、東側と南側は太平洋へ開けた地形形状となっている。

解析には、気象庁提供(CD-ROM版)による地上気象観測資料(気象官署、AMeDAS)、高層気象観測資料およびメソ客観解析資料を用いた。地上気象観測地点および高層気象観測地点は図4.1に示すとおりである。

地上気象観測資料(気象官署、AMeDAS)は、1時間間隔の気温、降水量、風向、風速の観測値で、このうち気象官署では気圧や水蒸気圧、相対湿度なども観測しており、これらを用いて相当温位の計算を行った。また、気象官署では、雨や雪、着氷性の雨、凍雨などの大気水象の観測も行っており、各地上降水種の発現時刻と終了時刻が記録されている(付録 A. を参照)。これを各地の現在天気として使用した。

高層気象観測資料は、館野(図4.1)において1日2回(9JST、21JST)のゾンデ観測により得られる上空の気温、相対湿度、風向、風速の観測値を用いた。

メソ客観解析資料は、基準気圧面(地上、950hPa、925hPa、900hPa、850hPa など)における水平間隔10km×10kmの格子点上の気温、相対湿度、風向、風速の解析値であり、1日4回(3JST、9JST、15JST、21JST)解析されている資料である。この資料を用いることで、上空の気象値の詳細な分布を得ることができ、また高層観測の行われていない地点における気象値の鉛直分布を求めることができる。第4.6節と第4.7節で述べる地上降水種の予測に、この資料を用いた。

また、各地の標高は、国土地理院発行の数値地図 50m メッシュ標高データ (Digital Map 50m Grid (Elevation))を用いた。この資料には、緯度 1.5″ ×経度 2.25″ (約 50m 間隔)の格子点上における海抜標高が示されている。この資料よりメン客観解析資料の各格子点における標高を求めた。

なお、武蔵野市における降水種の観測、凍雨や雨氷の写真は著者によるものである。

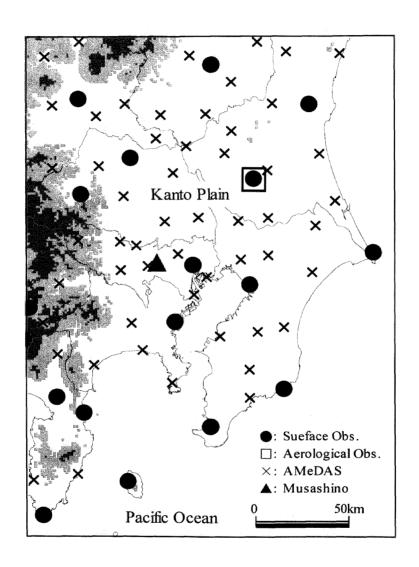


図4.1 関東平野における気象観測所の位置

●は気象官署、□は高層気象官署(館野)、×は AMeDAS の位置を示す。▲は武蔵野市の位置で、図4.2で示す凍雨を観測した地点である。陰影は標高分布である。

4.2.2 解析に用いる事例の気象概況

2003 年 1 月 3 日、関東平野の南西部に位置する武蔵野市で、凍雨と着氷性の雨(過冷却の雨)を観測した。第3. 4. 3節で示したように、武蔵野市では当日 1700JST 頃から凍雨が降り始めた。このときの凍雨は、図4. 2に示すように、直径約 2mm の透明で球形の氷の粒で、窓ガラスなどに当たり激しい音がした。その後、凍雨は断続的に降り続け、1810JST 頃雨に変った。このときの地上気温は→0.5℃で、樹木や車などに約 1cm の透明なつらら(雨氷)を確認したことから、このときの雨を着氷性の雨と判断した。着氷性の雨は 1830JST 頃に一旦止んだものの、2000JST 頃から再び降りだし、地上気温が0℃を上回る2400JST頃まで雨氷が確認できた。武蔵野市で観測された凍雨が透明な球形の氷であったことから、このとき上空に降雪粒子を完全に融解する暖気層が存在し、その下層の地上付近の寒気層で融解雨滴が再凍結したことが示唆される。

図4. 3は、2003 年 1 月 3 日における 18JST、21JST、24JST の関東平野各地の地上降水種を示したものである。18JST は甲府と武蔵野で凍雨、21JST は武蔵野で着氷性の雨、熊谷で凍雨が観測された。また、図4. 3には、風向風速計の感部凍結によって風が欠測となった時刻も示した。熊谷で風の欠測のあった22~23JST は、地上気温—0.3~0.0℃で雨が観測されており、欠測の原因は着氷性の雨による凍結と考えられる。館野、東京、千葉では、欠測時刻の地上気温がやや0℃を上回るが、このときの露点温度は氷点下である。また、湿潤断熱減率(0.65℃/100m)を考慮して、これらの地点の風速計設置高度における気温を見積もると 0℃以下となる。このことから、館野、東京、千葉でも、着氷性の雨によって風速計が付着凍結して風が欠測したと考えられる。

図4. 3に示す地上降水種の分布は、地上気温の 0℃等温線を境に海側の高温域で雨、内陸の低温域で雪となっており、その中間地域で凍雨や着氷性の雨、みぞれが観測されている。特に、地上気温 0℃の等温線の低温側で凍雨や着氷性の雨が観測されているのが特徴である。また風速計が凍結した地点は、地上気温 0℃の等温線のやや海側の地域に位置している。

以上のことから、2003年1月3日の関東平野では、地上気温0℃の等温線に沿った地域において、18JSTから24JST頃まで凍雨や着氷性の雨が降っていたと考えられる。

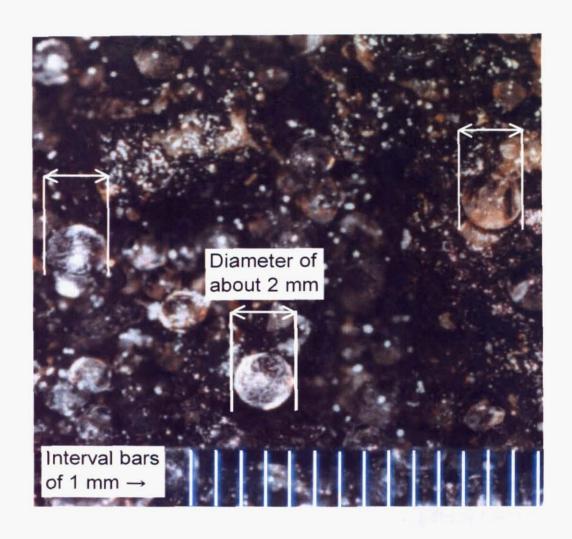


図4.2 武蔵野で観測された凍雨の写真 2003年1月3日18JST、撮影。

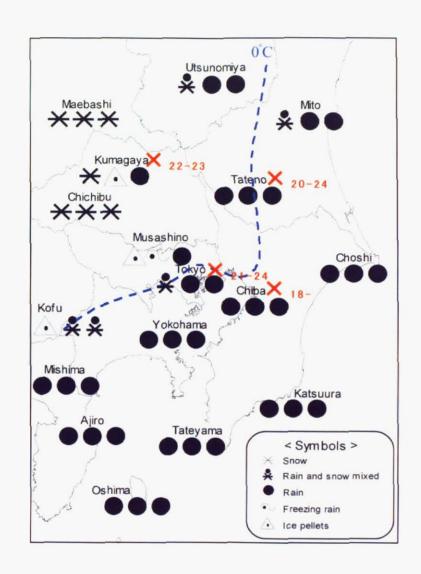


図4.3 地上降水種の分布と地上気温0℃の等温線の位置(2003年1月3日)

2003 年 1 月 3 日 18JST、21JST、24JST における各地の地上降水種。破線は 18JST における地上気温 0℃の等温線の位置。図中の×印は、風速計の感部凍結による欠測を表し、その右下数字は欠測時刻(JST)を示す。

4.2.3 本研究の発生予測手法の概念

図4. 4は、2003 年 1 月 3 日 21JST における関東平野各地の気温と露点温度の鉛直分布と地上の降水種を比較したものである。気温 0℃を基準とした暖気層と寒気層の厚さに着目すると、内陸ほど地上付近の寒気層が発達し、上空の暖気層は南部の沿岸部ほど厚い。また、暖気層は各地で飽和に近い大気状態であるが、地上付近の寒気層は内陸の地域で気温と露点温度の差が大きく、大気は比較的乾燥した状態である。地上の降水形態は、このような大気の鉛直構造に伴って変化していると考えられる。つまり、上空の暖気層の熱力学的環境が降雪粒子の融解条件を決め、地上付近の寒気層の大気状態が雨滴の凍結条件を決めると考えられる。

これを他の地域でも確認する。図4.5は、仙台における気温の鉛直分布に関して、その周辺 (石巻、新庄)で着氷性の雨または凍雨が降ったときの気温の鉛直分布を比較したものである。 上空の気温 0℃を境とした逆転層の高度に着目すると、明らかに両者の間に明瞭な差がある。凍雨では、その高度が高く気温 0℃以下の寒気層が厚いため、寒気層内で雨滴が再凍結する可能性が高くなると考えられる。一方、着氷性の雨の場合は地上付近の寒気層が薄く、過冷却となった雨滴が凍結しないで地上に到達する可能性がより高いことが示唆される。

以上のように着氷性の雨や凍雨が発生しているときの上空の気象状況を踏まえ、この章では、暖気層を気温 0° C以上の層、寒気層を気温 0° C以下の層と定義して、降雪粒子の融解条件と雨滴の凍結条件を理論的に検討した。その結果得られた着氷性の雨や凍雨が降るときの大気の熱力学的環境条件を判別指標として、着氷性の雨を含めた地上降水種の予測手法の提案を行う。具体的には、暖気層と寒気層の平均気温 $(\overline{T}_m \setminus \overline{T}_f)$ 、平均相対湿度 $(\overline{RH}_m \setminus \overline{RH}_f)$ 、厚さ $(D_m \setminus D_f)$ を指標として、降雪粒子の融解条件と雨滴の凍結条件を判別し、地上降水種の推定を行った。

第4.3節では降雪粒子の融解過程に関する理論的な取扱いと計算方法について、第4.4節では雨滴の凍結過程に関する理論的な取扱いと計算方法について議論する。

第4.6節および第4.7節で行う着氷性の雨を含めた地上降水種の推定は、2003年1月3日 21STの関東平野における事例をもとに行った。

図4.4 関東平野各地の気温と露点温度の鉛直分布と地上降水形態

2003年1月3日21JSTの前橋、熊谷、武蔵野、横浜、館山における気温と露点温度の鉛直分布および地上降水種。上空の気温と露点温度はメソ客観解析資料の近傍格子点におけるデータを使用し、地上の気温と露点温度は気象官署における観測値を用いた。

図4.5 仙台周辺で着氷性の雨および凍雨が観測されたときの気温の鉛直分布

気温の鉛直分布は仙台における観測値で、横軸が気温(℃)、縦軸が高度(m)。図中の横太線は、気温の逆転層のおおよその高度。各図の上に、着氷性の雨や凍雨が観測された地点と日時を示す。

4.3 降雪粒子の融解条件

融解過程によって着氷性の雨や凍雨が発生するときの第一条件として、上空の暖気層における雪片などの降雪粒子の融解条件を理論的に考察した。ここでは降雪粒子の融解過程に関する理論的な取り扱いについての考え方を示すとともに、降雪粒子の融解時間、落下速度、融解に要する大気層の厚さの計算方法について示す。

4.3.1 降雪粒子の融解過程の理論的取り扱いと基本式

降雪粒子の融解過程に影響を与える因子として、気温、相対湿度さらには降雪粒子の粒径、密度が重要である。降雪粒子の融解過程に関する熱は、外気から熱伝導で輸送される顕熱と降雪粒子の表面で起こる水の相変化に伴う潜熱である。物体と空気の間で起こる熱輸送や物質輸送の過程は、伝熱理論として古くから研究が行われており、形が簡単な球、円柱、楕円体への熱および物質の輸送速度は伝熱理論によって詳細に調べられている。

しかし、実際の降雪片は完全な球でもなく、表面も凹凸が多く形状が複雑で多種多様である。 また、その内部に多くの隙間を持つ多孔的性質を持っている。このような雪片の特徴のため、雹などの氷球の場合と違って、雪片の落下速度や外気から単位時間に輸送される熱量について理論的検討を行うことを難しくしている。

一般的に、雪片の融解過程に関する理論検討では、氷球に対する熱輸送理論を雪片へ拡張して利用される。つまり、雪片の融解過程に関する多くの理論研究(例えば、Matsuo and Sasyo, 1981a; 1981b; Mitra et al., 1990; Szyrmer and Zawadzki, 1999; Battaglia et al., 2003)では雪片は隙間の多い氷の球と仮定される。

雪片の融解過程に関する観察的な研究として、Fujiyoshi (1986)は、-10℃に冷やしたシリコンオイルを入れた容器に直接霙(融解雪片)を受けて凍らせ、それを接写している。これによると、融解水は雪片の内部へしみ込むが、重力のためと、雪片の下端ほど暖かい空気が直接あたって早く融けるため、雪片の下方に融解水が溜まる。また、雪片中の空隙部では空気が通り抜けるので、その周辺でも融解が進行する。また、南雲・藤吉(2004)は、2 次元のビデオディストロメーター

を用いた霙の観測を行った。それによると、地上気温が-2℃と+2℃で測定した雪片の画像から、 長径が 5mm 以上でも以下でも、氷点下での雪片に比べて、融解雪片は空隙が少なく、相対的 に丸みを帯びていることが示された。

また、Matsuo and Sasyo (1981a)と Mitra et al. (1990)による観察では、雪片表面で融解生成した水は雪片の内部へしみ込んでいくことが示されている。このことは、雪片が種々の結晶の混合体であり多くの隙間や孔を持っていることによる。つまり、雪片は氷の骨格をした穴だらけの構造を持っているともいえる。このような状態では水は毛細管の作用によって間隙や孔の中に容易にしみ込んでいく。これは雹などの氷球の融解過程と大きく異なる点である。

以上の雪片の融解過程に関する観察より、雪片が融解する場合、融解した液層が表面に存在しないので、外気から輸送される熱がそのまま雪片の融解に使われると考えられる。したがって、雪片の融解速度は、空気と雪片表面との温度差に依存する外気からの熱輸送速度によって決まると考えられる。本研究では、雪片を含めて降雪粒子と呼び、その形状を球形と仮定した空気との熱のやり取りを考える。これに関連して、雪片の蒸発速度や融解速度が室内実験によって求められている(Pruppacher and Rasmussen. 1979)。

外気から降雪粒子の表面へ輸送される熱は、主に表面に露出した氷を融解するために使われるが、熱の一部は表面に残った少量の水を0℃以上に昇温させるために使われることが考えられる。しかし、昇温に使われた熱は最終的には熱伝導によって水から0℃の氷に運ばれ、氷の融解に使われる。水の熱伝導率は空気の熱伝導率に比べてかなり大きく、この過程は外気からの熱輸送の過程に比べて十分速く起こるので、少量の水の0℃以上の昇温は考慮する必要がないと考えられる(松尾,1984)。また、外気から輸送される熱の一部は、熱伝導によって降雪粒子の内部へ運ばれ、降雪粒子全体を昇温させるために使われる。しかし、融解中の降雪粒子は生成した水のしみ込みによって、氷と水がよく混じった状態となっており、水と氷との間で起きる速い熱の移動によって、表面と内部との温度差は極めて小さいとみられる。したがって、融解中の降雪粒子の温度は一様に0℃であると近似してもよく、降雪粒子全体を昇温させるために使われる熱の影響は考慮する必要がないと考えられる。

以上の考察より、外気から輸送される熱はすべて降雪粒子の表面に露出した氷を融解させる ために使われると仮定する。降雪粒子の融解過程に関する熱は、外気から熱伝導で輸送される 顕熱と降雪粒子の表面で起こる水の相変化に伴う潜熱である(図4.6)。 dt 時間内に融解する 表層の氷の厚さをdr,とすると、次式が得られる。

$$-4\pi r_i^2 \rho_i L_m \frac{dr_i}{dt} = 4\pi r_i k_a \overline{f}_h \Delta T + 4\pi r_i L_s D_v \overline{f}_v \Delta \rho_v$$
 (4. 1)

ここで、 ρ_i は降雪粒子の密度 (g/cm^3) 、 L_m は氷の融解潜熱 (cal/g)、 k_a は大気の熱伝導率 (cal/cm^3) ϵ^{-1} \mathfrak{C}^{-1})、 \overline{f}_h は熱輸送に関する通風係数、 ΔT は降雪粒子と降雪粒子から十分に離れた空気との温度差 (\mathfrak{C}) 、 L_s は氷の昇華潜熱 (cal/g)、 D_v は水蒸気の拡散係数 (cm^2/s) 、 \overline{f}_v は水蒸気輸送に関する通風係数、 $\Delta \rho_v$ は降雪粒子表面と降雪粒子から十分に離れた空気との水蒸気密度差 (g/cm^3) である。式 (4.1) の左辺は氷の融解に要する熱量 Q_m で、右辺の第一項は熱伝導によって大気から降雪粒子へ輸送される顕熱量 Q_c を、第二項は水蒸気の輸送に伴う潜熱の輸送量 Q_s を表している (図4.6)。

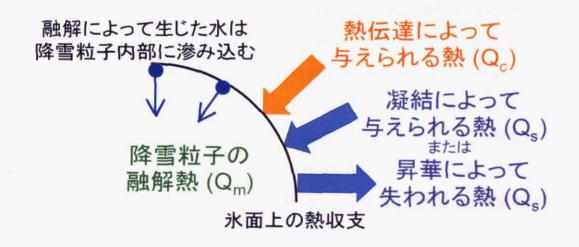


図4.6 降雪粒子の融解過程に関わる熱収支の概念

式(4. 1)の大気の熱伝導率 k_a は、Beard and Pruppacher (1971)による湿潤空気の熱伝導率の式を、大気の水蒸気拡散係数 D_v は、Hall and Pruppacher (1976)による式を用いて求めた(付録 C. を参照)。また、熱と水蒸気の輸送に関わる通風係数 \overline{f}_h と \overline{f}_v はほぼ等しく、 $\overline{f}_i \equiv \overline{f}_h \approx \overline{f}_v$ とみなすことができ(Matsuo and Sasyo, 1981a; Pruppacher and Klett, 1997)、 \overline{f}_i は降雪粒子の通風係数として Hall and Pruppacher (1976)の式を用いた(付録 C. を参照)。降雪粒子の密度 ρ_i は、0.030g/cm³ (Matsuo and Sasyo, 1981a; 石坂, 1995)とした(第4. 3. 4節の考察をもとに決定した)。

降雪粒子の融解は、大気状態にも影響を与える。融解層内では、降雪粒子は一般に昇華、融解、凝結等の過程を経て雨滴となる。このとき、昇華、融解に必要な熱は外気からの熱伝導で補給されるので、大気の温度は常に下降する傾向にある。また、昇華や融解に伴って起きる水蒸気密度と気温の変化によって、大気の相対湿度も常に変化すると考えられる。実際、雪片の融解が起きている大気層では大気が冷やされて、気温が 0℃近くになっている等温層が観測されている(Findeisen, 1940; Matsuo et al., 1985)。雪や雨を予報する場合、気温や相対湿度の予測に加えて、このような融解や昇華によって引き起こされる大気変化も考慮することが必要である(例えば、Kain et al., 2000; Lackmann et al., 2002; Theriault and Stewart, 2005)。しかし、ここでは降雪粒子の融解に伴う大気変化(気温および相対湿度の変化)については考えないこととし、降雪粒子が気温 0℃以上の大気層で直ちに融解を開始すると仮定した。

さらに、大気が氷未飽和の場合、相対湿度が低いほど降雪粒子の表面での水蒸気の昇華量が多くなるため、生成された雨滴直径は小さくなる。一方、大気が水飽和である場合は、大気中の水蒸気密度の方が高いので、降雪粒子表面で水蒸気の凝結が起き質量がやや増加すると考えられる。また、雪片同士の併合も考えられる。しかし、本研究では、このような降雪粒子表面における水蒸気輸送に起因する質量変化や併合過程については考慮しないこととした。

以上、本研究における降雪粒子の融解過程の理論的取り扱いは、次のような仮定に基づく。

- (1)降雪粒子は球形でしっかりした氷の骨格構造を持ち、この構造は融解により壊れないとする
- (2)融解は降雪粒子表面で起き、生成した水は骨格構造の降雪粒子内部へしみ込む。しみ込んだ水は融解速度に影響を与えない。
- (3)融解中の降雪粒子の温度は0℃とする。
- (4) 落下中に降雪粒子の分裂、併合はないとする。
- (5) 昇華による降雪粒子の半径の減少や凝結による半径の増加など、質量の変化については考慮しない。
- (6) 降雪粒子と空気との間の熱と水蒸気の輸送については、定常状態を仮定する。

4.3.2 降雪粒子の融解に要する時間

Matsuo and Sasyo (1981a)によると、雪片の融解実験中、気流の水蒸気密度は 0℃の水の飽和水蒸気密度にほぼ等しくなっていたため、式(4.1)の右辺第二項の影響は小さく無視できる(第一項の 3%程度)として、これを省略して式(4.1)を書き直すと、融解に伴う降雪粒子半径 r,の減少速度は次式で表される。

$$\frac{dr_i}{dt} = -\frac{k_a \Delta T}{\rho_i L_m} \frac{\varepsilon}{r_i} \left(1 + 0.24 \left(\frac{2r_i U_i}{\nu_a} \right)^{\frac{1}{2}} \right)$$
 (4. 2)

ここで、 $\overline{f}_i \approx \overline{f}_h = 1 + 0.24 R_e^{1/2}$ 、レイノルズ数 $R_e = 2r_i U_i / \nu_a$ の関係を用いた。 ε は氷球の理論を降雪粒子に適用した場合の調整係数であり、実験的に $\varepsilon = 1.75$ の一定値となることが示されている (Matsuo and Sasyo, 1981a)。 ν_a は空気の動粘性係数 $(\mathrm{cm}^2/\mathrm{s})$ 、 U_i は降雪粒子の落下速度 (cm/s) である。 ρ_i は融解していない降雪粒子の密度であるが、氷の骨格構造が融解中壊れないとすると、融解中一定とおける。式 (4.2) を時刻 t について解くと、

$$t_{m} = \frac{2L_{m}\rho_{i}}{\alpha^{4}\varepsilon k_{a}\Delta T} \left(\frac{\alpha^{3}}{3} \left(r_{i0}^{3/2} - r_{i}^{3/2}\right) - \frac{\alpha^{2}}{2} \left(r_{i0} - r_{i}\right) + \alpha \left(r_{i0}^{1/2} - r_{i}^{1/2}\right) - \ln\frac{1 + \alpha r_{i0}^{1/2}}{1 + \alpha r_{i}^{1/2}}\right)$$
(4. 3)

となる (Matsuo and Sasyo, 1981a)。ここで、 r_{i0} は降雪粒子の初期半径、 $\alpha=0.24 \left(2U_i/\nu_a\right)^{1/2}$ である。式 (4.3) の t_m を、降雪粒子が完全に融解するために要する時間とする。

しかし、式(4.3)は降雪粒子表面における水蒸気の輸送がない場合の融解時間を示す式である。近似的には相対湿度 100%の水飽和大気における降雪粒子の融解時間を表す式と考えられる。

本研究(第4.7節)では、降雪粒子の融解過程において大気の湿潤状態も考慮して、降雪粒子の融解時間を求めることとした。式(4.1)を降雪粒子半径r,の減少速度の式に書き直すと、

$$\frac{dr_i}{dt} = -\frac{\bar{f}_i}{\rho_i L_m r_i} \left(k_a \Delta T + L_s D_v \Delta \rho_v \right) \tag{4.4}$$

となる。この式(4.4)に大気の平均気温 \overline{T}_m と平均相対湿度 \overline{RH}_m から得られる平均水蒸気密度 $\rho_{v,m}$ を入力し、逐次降雪粒子半径 r_i の減少速度を求め、降雪粒子半径 r_i が0になったとき完全に融解したとして、このときの時間を融解時間 t_m とした。計算は0.1s 間隔で行った。

以下に示す着氷性の雨や凍雨の予測手法において、飽和大気における場合(第4.6節)は式(4.3)を用い、未飽和大気の場合(第4.7節)は式(4.4)を用いた。

4.3.3 降雪粒子の融解に要する大気層の厚さ

降雪粒子が完全に融解するのに要する大気層の厚さ D_m は、前節(第4.3.2節)の降雪粒子の融解時間 I_m を用いて、

$$D_m = t_m U_i \tag{4.5}$$

と表すことができる。ここで、U, は降雪粒子の落下速度(m/s)である。降雪粒子の落下速度は、 融解時間と同様、その理論的取り扱いが難しい。

雪片の落下速度の測定は、Magono (1953)および Langleben (1954)を初めとして数多くなされている。雪片の落下速度に影響する因子としては、粒径、質量の他に、外形、密度、雲粒付着の程度、構成結晶形、気温などが考えられる。粒径・質量以外の因子のうち、気温は融解の程度(含水率)を通して雪片の構造(密度と外形)に関わる(Matsuo and Sasyo, 1981a; 1981b)。

雪片の落下速度は、融解直径の関数として、融解直径のべき乗で表すことが多い(例えば、Langleben, 1954; Locatelli and Hobbs, 1974)。しかし、雪片の落下速度を表すのにべき乗の形式が適切であるとは必ずしもいえない(梶川ほか, 1996)。

梶川ほか(1996)は、気温 0℃以上と気温 0℃未満の条件下において、雲粒付六花(R1d)を卓越結晶形とする雪片の落下速度と融解直径との関係を調べた。この種の雪片は、中緯度で最も一般的なものである。特に、気温 0℃以上のときの落下速度をみると、ばらつきはあるものの融解直径 1~4mm の範囲では、落下速度 100~140cm/s となる。気温 0℃以下の場合(およそ 80~120cm/s)に比べて、落下速度が大きくなっている。また、他の結晶形との比較から、雪片を構成する卓越結晶形の違いによる落下速度の差は大きく、同一融解直径(同質量)でも構造(外形や密度)と内部組織に差が生じている。

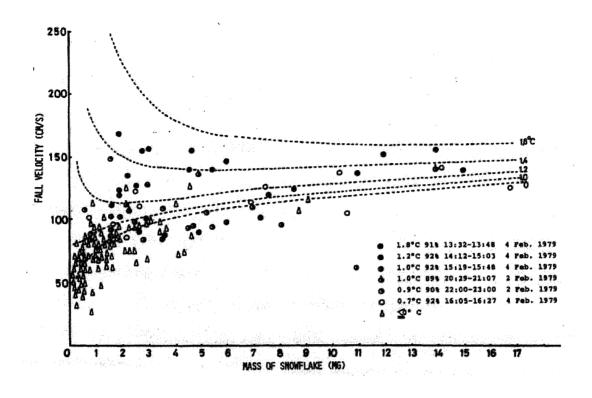
Matsuo and Sasyo (1981a)は、観測で得られた雪片の落下速度と質量の関係を調べた。その結果、雪片の落下速度が、地上気温、相対湿度、雪片質量によって変化することが示され、地上気温と相対湿度が高いほど、落下速度は大きくなる。例えば、相対湿度が 94%と高い場合には、2m/s 以上の大きい落下速度が見られるが、90%ではそれが見られない。また、地上気温が 0℃

以下の場合、落下速度は質量の増加とともに大きくなる。この傾向は、これまでの Magono (1953) および Langleben (1954)の観測結果とよく一致するが、気温が 0℃よりも高くなると、この傾向はみられなくなる。例えば、気温が 1.2℃以上と高い場合には、落下速度は質量によらず一定か、ときには小さい質量の雪片の落下速度が大きい質量のものより大きくなる場合がみられる。これは、気温の上昇による落下速度の増加において、小さい質量の雪片ほど融解の進行が早くて断面積の減少速度も大きくなり、落下速度が増加する度合が相対的に大きくなるためである。ここで特に興味深いのは、融解雪片の大きさと落下速度との関係で、地上気温が 1℃以上の場合には、融解雪片の落下速度はほぼ質量によらず一定になることが示されていることである(図4.7)。

以上の落下速度の検討は、構成結晶形の種類毎に求められたものであった。しかし、本研究では、特定の構成結晶形を持つ雪片の落下速度を用いることはせず、降雪粒子の一般的な落下速度を表す、Böhm, (1989)による次の理論式を用いることにした。

$$U_i = \frac{R_e \eta_a}{2\rho_a} \left(\frac{\pi}{A}\right)^{1/2} \tag{4. 6}$$

ここで、 R_e はレイノルズ数、 η_a は空気の粘性係数 $(g\ cm^{-1}\ s^{-1})$ 、 ρ_a は空気密度 (g/cm^3) 、A は降雪粒子の断面積 (cm^2) である。Böhm (1989)によれば、レイノルズ数 R_e は、以下のように定義される無次元のデービス数 D_a との関係式を用いて求められる。


$$D_{a} \equiv C_{d} R_{e}^{2} = \frac{8m_{i}g\rho_{a}}{\pi\eta_{a}^{2}} \left(\frac{A_{c}}{A}\right)^{1/4}$$
 (4. 7)

$$R_e = 8.5 \left[\left(1 + 0.1519 D_a^{1/2} \right)^{1/2} - 1 \right]^2$$
 (4. 8)

ここで、 C_a は抵抗係数、g は重力加速度 (cm/s^2) 、 m_i は降雪粒子の質量 (g)、 A_c は降雪粒子の外接円の面積 (cm^2) である。降雪粒子の落下速度は、式 (4.6) ~式 (4.8) に、大気中の環境条件 $(\rho_a$ 、 η_a 、g)と降雪粒子の性質 $(m_i$ 、 A_c 、A)を与えることで求まる。この方法による落下速度の推定誤差は、0.5mm より大きな長い針状結晶で最大 20%であるが、その他は ± 5 ~10%以下と評価されている $(B\ddot{o}hm, 1989)$ 。

暖気層を降下する降雪粒子の落下速度U, は、厳密には気温 0^{\circ}〇以上の大気中を融解しながら降下する降雪粒子の落下速度を必要とする。Matsuo and Sasyo (1981b)による観測結果では、気温 1^{\circ}〇以上になると、雪片の落下速度は質量に関係なく一定となる(図4.7)。また、Matsuo and Sasyo (1981b)によるによる理論計算結果では、相対湿度 90%、気温 0 \sim 1.6 \circ 0の範囲の場合、雪片の落下速度はおよそ 1.2 \sim 1.6 \circ 1.2 \circ 1.2 \circ 1.6 \circ 1.2 \circ 1.6 \circ 1.2 \circ 2.2 \circ 2.2 \circ 2.2 \circ 2.2 \circ 3.2 \circ 4.2 \circ 3.2 \circ 4.2 \circ 5.2 \circ 6.2 \circ 7.2 \circ 7.2 \circ 7.2 \circ 9.2 \circ 9.

また、融解中の降雪粒子の落下速度は、その融解の進行度合によって徐々に雨滴の落下速度に近づくことが考えられる。降雪粒子の落下速度の変化は、主に融解による降雪粒子の断面積の減少によって起こる。大気中における雪片の落下速度に関して、融解中の雪片の抵抗係数 C_d は、融けていない雪片の値(C_d =1.2)とそれと同質量の雨滴の抵抗係数(C_d =0.6)との間にある(Matsuo and Sasyo, 1981a)。また、融解中の雪片は断面積の減少による抵抗の変化を常に受けているので、必ずしも終端速度に達しているとはいえないが、その誤差は小さいことがわかっている(松尾, 1984)。さらに、Matsuo and Sasyo (1981b)によると、ある粒径よりも大きい霙粒子の落下速度は雪片と同様に粒径依存性が小さいが、融解が進むにつれて落下速度自体は速くなっている。また、ウィンドプロファイラーの測定結果(Fabry et al., 1994)から、融解雪片の落下速度は 0℃高度より下で徐々にその速度を増すが、ある層(60m間)で速い落下速度のパワースペクトルの急増がみられ、この大気層において雪片の融解が一気に進んだことが示されている。つまり融解中の降雪粒子の落下速度の増加は、主に融解過程の後半で急激に大きくなると考えられ、そのときには降雪粒子はほとんど融解して雨滴に近い状態になっていると考えられる。よって、本研究では、式(4.6)で求めた降雪粒子の落下速度が一定の状態で、融解が進行すると仮定した。

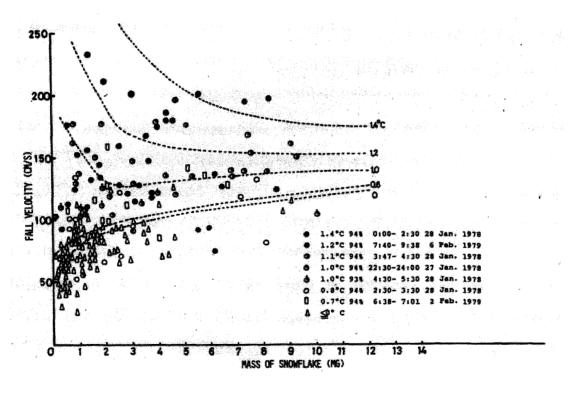


図4. 7 気温 0℃以上のときの雪片の落下速度の測定例(Matsuo and Sasyo, 1981b) (上)相対湿度が約 90%の場合、(下)相対湿度が約 94%の場合。

4.3.4 降雪粒子の半径と密度

降雪粒子の融解時間 t_m や落下速度を U_i 求めるためには、降雪粒子の大きさ(半径 r_i)と密度 ρ_i を知る必要がある。本研究では、武蔵野市で観測された凍雨の半径約 1mm を降雪粒子が融解して雨滴になった大きさ(相当水滴半径 r_i)として、降雪粒子の密度 ρ_i から降雪粒子を球形と仮定した半径 r_i を換算して求めた。このとき、融解雪片が上空で複数の雨滴に分裂する場合には、そのような換算によって降雪粒子の大きさを推定することに矛盾が生じる。そのため、まず一個の降雪粒子から一個の雨滴が生成されるかどうかについて議論する。

融解層内の上部では雪片が互いに併合して大きな雪片が形成されることは多くの研究によって明らかにされていることであるが、融解層内の下部で融解雪片が分裂するかどうかという点になると、融解中に分裂するのか、それとも融解後に分裂するのか、これに関する研究例はほとんどない。

雪片の融解過程における分裂の研究は少ないが、Gunn and Marshall (1958)は、観測された 雪片の粒径分布と雨滴の粒径分布との関係を調べ、融解層内で起こる雪片の分裂の効果が雨 滴の粒径分布の形成に重要であるとしている。一方、Ohtake (1969)は、高度が異なる2地点での 降雪粒子と雨滴の同時観測から、雪片の併合と分裂は融解層内ではあまり重要でないと述べている。Fujiyoshi and Muramoto (1996)は、融解雪片が分裂によって確率的にどのような大きさの 水滴を生成するかについて考察した。Mitra et al. (1990)や Matsuo and Sasyo (1981a)は、室内実験の結果から融解中の雪片は極めて分裂しにくいか分裂していないと述べている。

Barthazy et al. (1998)は、山裾に雨滴粒度計とXバンド・ドップラーレーダを設置し、山頂に光学式粒径分布計を置いて融解層内の粒径分布の変化を調べた。このなかで、融解層内では確かに雪片の併合と分裂が起こっているが、融解前の雪片の数密度フラックスと融解後の雨滴の数密度フラックスはほぼ同じで、平均的には雪片一個から雨滴一個が形成されており、Ohtake (1969)の結果と矛盾しないと報告している。また、このことは融解前の雪片の粒径分布と融解後の雨滴の粒径分布を比較しても、融解層内の雪片の併合や分裂の過程は分からないことを意味している。

以上の考察より、本研究では一個の降雪粒子から一個の雨滴が生成されるとして、武蔵野市

で観測された凍雨の大きさ(半径約 1mm)を融解したときの相当水滴半径 r_w として、降雪粒子の大きさ(半径 r_i)に換算した。

一方、雪片の密度 ρ , は、雪片の落下や融解過程を論じる場合に重要な物理量である。しかし、密度を求める場合に複雑な形の雪片の体積をどのように見積もるかが大きな問題である。雪片の密度は一般に結晶形、雲粒付着、融解等によって変化する。Magono and Nakamura (1965)は、落下後の雪片の大きさと高さから体積を計算したが、できれば空中での雪片の大きさから体積を求めることが望ましい。

石坂(1995)は、落下中の雪片のビデオ画像から、横方向からみた雪片の断面積(鉛直断面積)を用いて、体積はその断面積と同じ投影断面積を持つ球の体積として求めた。このようにして求めた体積は、例えば円錐の場合、縦横の比が同じであれば体積は球の方が大きくなるが、その差は数%のオーダーである。このようにして求めた体積は、雪片が大きくなるに従って密度が小さくなる傾向にあり、雪片同士の併合によって大きさが増すに従い、隙間の多い構造がつくられやすいことを示唆している。石坂(1995)による雪片の大きさと密度との回帰式から、例えば1cmの大きさの雪片の密度を求めると、雲粒の少ない雪片では0.025g/cm³、濃密雲粒付き雪片では0.027g/cm³、小さなあられ状粒子が混ざっている雪片では0.031g/cm³となった。いずれにしても、大きさが0.5~2cm程度の雪片の密度は0.01~0.1g/cm³に分布する。

Matsuo and Sasyo (1981a)は、雪片の質量と断面積を測定し、その関係を調べている。それによると、観測期間中の地上気温は各降雪によって異なり-4°C~+1.8°Cの間で変化したが、雪片の密度はおよそ 0.005~ $0.04g/cm^3$ の間にある。気温 0°Cを境に区別してみると、気温 0°C以上の場合の方が、0°C以下の場合に比べていくらか密度が大きく、平均でそれぞれ $0.017~g/cm^3$ (T>0°C)、 $0.014~g/cm^3$ ($T\leq 0$ °C) であった。全雪片の平均密度は $0.016~g/cm^3$ である。また、Matsuo and Sasyo (1981a)は、融解が起きる前の 14 個の試料雪片の断面積と質量の関係を求めた。雪片が球形であると仮定すると、その平均密度は $0.036g/cm^3$ となる。この値を用いて、Matsuo and Sasyo (1981a; 1981b; 1981c)は雪片の融解過程に関する数値実験を行っている。

以上の研究成果より、本研究で用いる降雪粒子の密度を、その平均的な値として 0.030g/cm³ とした。

4.4 雨滴の凍結条件

融解過程によって着氷性の雨や凍雨が発生するときの第二条件として、地上付近の寒気層に おける雨滴の凍結条件を理論的に考察した。ここでは雨滴の凍結過程に関する理論的な取り扱いについての考え方を示すとともに、雨滴の凍結時間、落下速度、凍結に要する大気層の厚さ の計算方法について示す。

4.4.1 雨滴の凍結過程の理論的取り扱いと基本式

雨滴の凍結に関する実験は、Takahashi and Yamashita (1969)、Takahashi (1975)、Spengler and Gokhale (1972)などによって行われている。Takahashi and Yamashita (1969)は、旭川において、11 階の窓から噴霧した水滴が、1 階の中庭に落ちるまでに凍結して降ってくるのを観察した。このときの気温は-15℃で、過冷却した水滴を凍結させる核(凍結核または氷晶核)として微量のヨウ化銀を加えている。この実験をきっかけとして、垂直の大型低温箱を建設して水滴の凍結に関する実験的研究を行った(山下、1991)。その結果、直径が約 0.5mm の水滴の場合、-14℃で凍結が始まったとき、その水滴の体積の約 6/1 が瞬間的に凍り、その後水滴は空気に冷やされて外側から凍結していくことが観察された。このとき水に溶けていた空気は、凍結の際に水滴の中心部などで析出して気泡となって残るが、この気泡が小さくて多いため凍結した水滴の中心部は不透明で白く見える。また、山下(1991)によると、水滴の凍結過程で、氷の殻の中に閉じ込められた水が凍結したときの体積膨張により、さまざまな変形を起こして凍結を終えることが観察されている。例えば、長い突起物をもつ変形を起こしたものが全体の約 15%、二つあるいはそれ以上に分裂したものが約 20%、残りのものもいずれかの変形を起こしていた。

山下(1991)による水滴の凍結実験と、第4.2節で示した武蔵野市で観測された凍雨を比較すると、次の点で相違がみられる。つまり、山下(1991)による実験では不透明で白くみえる部分があり凍結水滴のほとんどが不規則な形状になるとされるが、武蔵野で観測された凍雨は透明でほぼ球形の氷の粒であった。この相異の理由として、まず温度条件の違いが考えられる。山下(1991)による実験は気温−14℃で、武蔵野の地上気温−0.5℃から推察される上空の寒気層気温

より著しく低い。また、実験の水滴の直径 0.5mm は、武蔵野の凍雨の直径 2mm より非常に小さいことも相違する理由と考えられ、武蔵野で凍雨が観測された状態よりも急激に水滴の凍結過程が進んだ実験結果であると考えられる。Spengler and Gokhale (1972)は、大きな水滴の凍結過程を縦型低温風洞で観察した。その結果によると、白色で不透明な凍結水滴が形成されるのは、一6℃以下の気温状態で凍結が比較的早く進行する場合であることが示されている。一方、気温一5℃以上の場合、凍結水滴は透明になることが示されている。この実験結果は、Blanchard (1957)が示したように、凍結水滴が透明になるか不透明になるかの境界気温が-5℃であるという結果に一致するものである。また、水滴が比較的大きい場合、凍結によって体積膨張する割合が相対的に小さくなると考えられるため、山下(1991)が示したような著しい変形はあまり起きず凍結水滴は球形となる場合が多いようである。本研究では、雨滴の凍結は徐々に進行し、凍結後の変形は生じないと考える。

次に、大気中を落下する雨滴の形状が変化する場合、その表面における熱や水蒸気輸送に差が生じたり、落下速度が変化することが考えられる。落下する雨滴が大きくなるとその形が偏平になることが知られている(Pruppacher and Beard, 1970)。しかし、直径 2mm 程度の雨滴の場合、その縦径と横径の比は約 0.95 であり(Beard and Chuang, 1987; Tokay and Beard, 1996)、ほぼ球形とみなすことができる。また、武蔵野で観測された凍雨が、透明で球形の氷の粒であったことから、ここでは大気中を落下する雨滴の形状を球形とした。

雨滴が凍結を開始するためには凍結核の存在や大気中を浮遊する微粒子との接触などのきっかけが必要になる(水野, 2000)。しかし、そのきっかけによって雨滴がいつ凍結を開始するのかは未解明な課題であり、また本研究のように気温や相対湿度などの大気状態から判断するのは不可能である。そのため、本研究では、気温 0℃以下の寒気層に入った時点から雨滴が凍結を開始すると仮定した。

ここで、前述の山下(1991)が示したような、水滴の凍結過程の初期段階で起こる初期凍結について議論する。初期凍結が起こるとき、それによる水の凍結潜熱の大部分は残りの水に吸収され、水滴の温度は 0 \mathbb{C} 近くまで一時的に上昇する(山下,1991; Pruppacher and Klett,1997)。このとき、気温-T \mathbb{C} で水滴の温度もこれに等しく、初期凍結による水滴の温度変化を ΔT \mathbb{C} とし、また初期凍結によって質量 m_i の氷が形成され、氷自身と残りの水(質量 m_w)の温度を ΔT \mathbb{C} 上昇させたとすると、

$$m_i L_m = (m_w c_w + m_i c_i) \Delta T \tag{4.9}$$

の関係が成り立つ (Pruppacher and Klett, 1997)。ここで、 L_m は水の凍結潜熱 (cal/g)、 c_w は水の比熱 (cal/g $^{\circ}$ C)、 c_v は氷の比熱 (cal/g $^{\circ}$ C) である。 m_i << m_w として式 (4. 9) から、水の質量 m_w に対する氷の質量 m_v の比を求めると、

$$\frac{m_i}{m_w} \approx \frac{c_w \Delta T}{L_m} \tag{4. 10}$$

となる(Pruppacher and Klett, 1997)。これを雨滴の凍結過程の初期における極めて短い時間に 凍結する割合(初期凍結率)とする。

さて、初期凍結を経た雨滴は、その後気温 0℃以下の大気に冷やされて外側から徐々に凍結する(Spengler and Gokhale, 1972; 山下, 1991; 堀部ほか, 1992; Pruppacher and Klett, 1997)。つまり、外側を氷の殻で覆われた水が凍結すると仮定する。ここで、水と氷の部分を同心の球形として、水の部分の半径を r_w (中心から水と氷の接触面までの半径)、氷の外側の半径を r_i (凍結水滴の外径)とする。また、 r_w および r_i の箇所の温度を $T_{\rm int}$ および $T_{\rm srf}$ として、水の凍結による熱量とそれが熱伝導によって氷層を伝わる熱量が等しいと考えると、

$$4\pi \rho_{w} L_{m} r_{w}^{2} \left(1 - \frac{c_{w} \Delta T}{L_{m}} \right) = \frac{4\pi k_{i} r_{i} r_{w} \left(T_{\text{int}} - T_{srf} \right)}{r_{i} - r_{w}}$$
(4. 11)

と表される。ここで、 ρ_w は水の密度 (g/cm^3) 、 k_ι は氷の熱伝導率 $(cal\ cm^1\ s^1\ C^{-1})$ である。また、 氷表面と大気との間でやり取りされる熱量は、空気の熱伝導で輸送される顕熱と氷表面における 水の相変化に伴う潜熱であり、これらが氷層を伝わる熱量に釣り合うと考えると、

$$\frac{4\pi k_i r_i r_w \left(T_{int} - T_{srf}\right)}{r_i - r_w} = 4\pi r_i k_a \left(T_{srf} - T_{air}\right) \overline{f}_h + 4\pi r_i L_s D_v \left(\rho_{v,srf} - \rho_{v,air}\right) \overline{f}_v \qquad (4. 12)$$

となる。ここで、 T_{air} は水滴から十分に離れた大気の温度(\mathbb{C})、 $\rho_{v,srf}$ は氷表面における氷飽和水蒸気密度(g/cm^3)、 $\rho_{v,air}$ は大気の水蒸気密度(g/cm^3)、 L_s は氷の昇華潜熱(cal/g)、 D_v は大気における水蒸気拡散係数(cm^2/s)、 \overline{f}_h および \overline{f}_v は熱および水蒸気の輸送に関する通風係数である。式(4.11)および式(4.12)より、氷層に覆われた水滴の凍結に要する熱量は、

$$4\pi r_{w}^{2} \rho_{w} L_{m} \frac{dr_{w}}{dt} \left(1 - \frac{c_{w} \Delta T}{L_{m}} \right) = 4\pi r_{i} k_{a} \overline{f}_{h} \Delta T + 4\pi r_{i} L_{s} D_{v} \overline{f}_{v} \Delta \rho_{v}$$
 (4. 13)

と表される(Pruppacher and Klett, 1997)。ここで、 $\Delta T = T_{srf} - T_{air}$ 、 $\Delta \rho_v = \rho_{v,srf} - \rho_{v,air}$ とした。 式(4.13)を、雨滴凍結に関する大気との熱収支の基本式とする。図4.8に雨滴凍結に関する 熱収支の概念を示す。このとき、昇華による半径の減少や凝結による半径の増加、つまり質量の変化については考えないものとする。

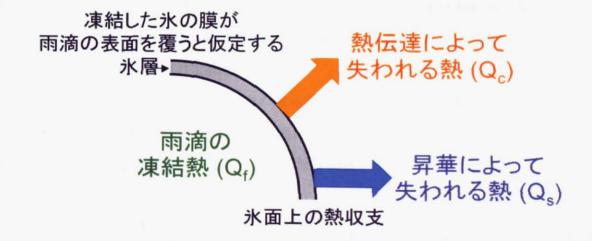


図4.8 雨滴の凍結過程に関わる熱収支の概念

以上、大気中を落下する雨滴の凍結は、式(4.13)によって表現されると考えた。このとき、雨 滴の凍結過程の理論的な取り扱いにおいて、以下のような仮定をした。

- (1) 雨滴は、気温 0℃以下になると直ちに凍結を開始すると仮定する。
- (2) 落下中の雨滴は球形で、表面から凍結していくと仮定する。
- (3)このとき初期の極めて短い時間に初期凍結核の形成が行われるとする。
- (4)凍結中の雨滴の表面温度は0℃とする。
- (5)落下中に雨滴の分裂、併合はないと考える。
- (6) 昇華による半径の減少や凝結による半径の増加、つまり質量の変化については考えない。
- (7)雨滴と空気との間の熱と水蒸気の輸送については、定常状態を仮定する。

4.4.2 雨滴の凍結に要する時間

雨滴の凍結時間を考察する前に、大気中を落下する雨滴表面で起こる通風効果について考える。式 (4.13) の雨滴凍結の基本式において、熱輸送に関する通風係数 \overline{f}_n と水蒸気輸送に関する通風係数 \overline{f}_n と水蒸気輸送に関する通風係数 \overline{f}_n はほぼ等しいと考えることができる (Matsuo and Sasyo, 1981a; Pruppacher and Klett, 1997)。ここで、凍結中の雨滴の表面は氷に覆われており、通風係数として降雪粒子のものを用いることが考えられるが、通風効果はその形状に大きく左右されることから、ここでは水滴に関する通風係数 \overline{f}_n を用いることにした。よって、 $\overline{f}_n \equiv \overline{f}_n \approx \overline{f}_n$ とした (付録 C. を参照)。

雨滴の凍結時間は、に関して、大気の相対湿度100%(氷飽和大気)を仮定すると、

$$t_{f} = \frac{\rho_{w} L_{m} r_{w}^{2} \left(1 - c_{w} \Delta T / L_{m}\right)}{3\overline{f}_{w} \Delta T \left(k_{a} + L_{s} D_{v} \left(\frac{d\overline{\rho}_{v}}{dT}\right)_{sat,i}\right)}$$
(4. 14)

の近似解が得られる(Pruppacher and Klett, 1997)。 $(d\bar{\rho}_v/dT)_{sal,i}$ は気温に対する平均水蒸気密度勾配(氷飽和) (g/cm^3) で、凍結雨滴の表面温度は 0° Cとする。Pruppacher and Klett (1997)によると、式(4.14)より計算される水滴の凍結時間は、半径 r_w が 500 μ m の水滴 $(\bar{f}_w=5)$ で約 13 秒、半径 r_w 2mm の場合 $(\bar{f}_w=14)$ で約 80 秒である。

式(4.14)は飽和大気を仮定した雨滴の凍結時間である。しかし、大気が未飽和であることによる雨滴表面の潜熱輸送も、雨滴の凍結過程において重要な影響を及ぼすと考えられる。そこで、式(4.13)を凍結雨滴の水の部分の半径の減少速度についてまとめると、

$$\frac{dr_{w}}{dt} = \frac{\overline{f}_{w}r_{i}}{\rho_{w}L_{m}r_{w}^{2}\left(1 - c_{w}\Delta T/L_{m}\right)} \left(k_{a}\Delta T + L_{s}D_{v}\Delta\rho_{v}\right) \tag{4.15}$$

となる。この式(4.15)に大気の平均気温 \overline{T}_f と平均相対湿度 \overline{RH}_f から求まる平均水蒸気密度 $\rho_{v,f}$ を入力し、逐次水滴半径 r_w の減少速度 dr_w/dt を求め、水滴半径 r_w が 0 になったとき完全に凍結したとして、このときの時間を凍結時間 t_f とした。ただし、初期凍結率 $(1-c_w\Delta T/L_w)$ は

初期時刻のみ計算に用いた。計算は 0.1s 間隔で行った。

以下に示す着氷性の雨や凍雨の予測手法において、雨滴の凍結時間 t_f を表す式として、飽和大気における場合(第4.6章)には式(4.14)を用い、未飽和大気の場合(第4.7章)には式(4.15)を用いた。

4.4.3 雨滴の凍結に要する大気層の厚さ

大気中を落下する雨滴の凍結に要する大気層の厚さ D_ℓ は、

$$D_f = t_f U_w \tag{4. 16}$$

と表される。ここで、 t_t は雨滴の凍結時間(\mathbf{s})、 U_w は雨滴の落下速度(\mathbf{m}/\mathbf{s})である。

雨滴の落下速度 U_{w} に関して、表4. 1に示すように、地上における雨滴の落下速度の実測値が測定されている(Gunn and Kinzer, 1949)。この表より、例えば、直径 0.2mm の雨滴の落下速度は約 1m/s、直径 1mm で約 4m/s、直径 3mm で約 8m/s である。大きな雨滴ほど落下速度が大きい。落下速度は、直径 1mm までは直径にほぼ比例して増加するが、それ以上になると落下速度の増加は鈍くなる。これは、大きな雨滴ではその形状が扁平になり(Pruppacher and Beard, 1970)、空気の抵抗をより多く受けるためである。

雨滴の落下速度 U_w の近似式として、Atlas et al. (1973)による

$$U_{w} = 965 - 1030 \exp(-12r_{w}) \tag{4. 17}$$

および Atlas and Ulbrich (1977)による

$$U_{w} = 1767(2r_{w})^{0.67} (4.18)$$

がある。ここで、 U_w が雨滴の落下速度 (cm/s)、 r_w は雨滴の半径 (cm)である。これらの近似式から求めた落下速度 U_w と表4.1の実測値とを比較した結果を、図4.9に示す。この図によると、Atlas et al. (1973)による近似式である式 (4.17)の方が、実測値によく適合していることがわかる。本研究では、式 (4.17)の近似式を用いて雨滴の落下速度 U_w を求め、式 (4.16) より雨滴が完全に凍結するのに要する大気層の厚さ D_f を求めた。

表4.1 水滴の落下速度の測定例(Gunn and Kinzer, 1949)

水滴の 半径 (μm)	大きさ 半径 (mm)	落下速度 (m/s)	質量 (μg)		水滴の 半径 (μm)	大きさ 半径 (mm)	落下速度 (m/s)	質量 (μg)
50	0.05	0.27	0.524		1300	1.30	7.57	9200
100	0.10	0.72	4.19		1400	1.40	7.82	11490
150	0.15	1.17	14.14	١	1500	1.50	8.06	14140
200	0.20	1.62	33.5		1600	1.60	8.26	17160
250	0.25	2.06	65.5		1700	1.70	8.44	20600
300	0.30	2.47	113.1		1800	1.80	8.60	24400
350	0.35	2.87	179.6	-	1900	1.90	8.72	28700
400	0.40	3.27	268	-	2000	2.00	8.83	33500
450	0.45	3.67	382	١	2100	2.10	8.92	38800
500	0.50	4.03	524		2200	2.20	8.98	44600
600	0.60	4.64	905	١	2300	2.30	9.03	51000
700	0.70	5.17	1437		2400	2.40	9.07	57900
800	0.80	5.65	2140		2500	2.50	9.09	65500
900	0.90	6.09	3050		2600	2.60	9.12	73600
1000	1.00	6.49	4190		2700	2.70	9.14	82400
1100	1.10	6.90	5580		2800	2.80	9.16	92000
1200	1.20	7.27	7240	l	2900	2.90	9.17	102200

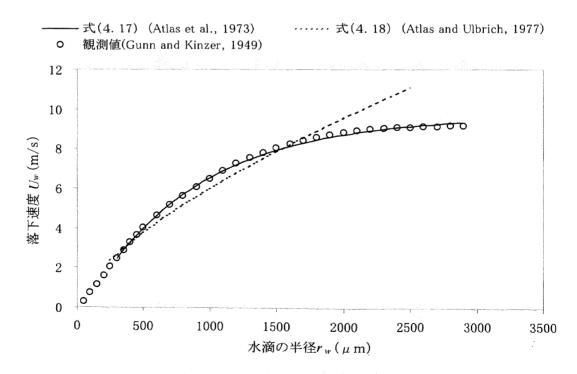


図4.9 水滴の落下速度の近似式と実測値の比較

落下速度の近似式は、Atlas et al. (1973)による式(4.17) および Atlas and Ulbrich (1977)による式(4.18) である。実測値は、表4.1に示す Gunn and Kinzer (1949)による測定結果。

4.5 地上付近の気象条件

融解過程による着氷性の雨や凍雨の発生条件のうち、第一条件として気温 0℃以上の暖気層における降雪粒子の融解条件(第4.3節)、第二条件として気温 0℃以下の寒気層における雨滴の凍結条件(第4.4節)を示した。これに加え、着氷性の雨の発生には、地上の気温や相対湿度などの大気状態も影響する。例えば、地上気温が高い場合、雨滴は暖められて過冷却状態が解消することが考えられる。ここでは、着氷性の雨の発生における第三の条件として、地上の気象条件について述べる。

4.5.1 解析資料と解析方法

解析に用いた資料は、気象庁提供による気象官署資料(地上気象観測原簿資料)である。このうち、大気水象の観測結果(着氷性の雨と霧雨)と1時間毎の地上気象観測値を用いた。

地上における着氷性の雨の発生条件として、雨滴が過冷却状態を維持しているかが問題であるが、雨滴の過冷却過程における知見がほとんど得られていないため、これを理論的に求めることは困難である。本研究では、全国の気象官署において着氷性の雨が観測されている時刻に着目し、そのときの気温および露点温度を調べることで、地上の気象条件を見いだすこととする。

なお、風速や降水量に関しては、主に過冷却雨滴が地上の物体に衝突し、それが凍結して雨 氷を形成する過程において重要である。風が強い場合、過冷却の雨滴が衝撃を受け凍結するこ とも考えられるが、風速の状況によって着氷性の雨と凍雨を分けるのは困難との研究例もある (Zerr, 1997)。ここでは、風速と降水量については考えないこととする。

また、凍雨は、地上付近の寒気層内(地上に到達する前の上空)で凍結するかどうかが重要な条件であり、気温 0℃以上の高い地上気温でも発生する場合があり、気温や露点温度などの地上気象値の条件を加えて凍雨の発生判別を行うことは意味がない。そのため、ここでの地上気象の条件は、着氷性の雨かどうかの判断のための条件である。

4.5.2 着氷性降水時の地上付近の気象状況と予測手順

図4. 10 は、過去 14 冬季(1989 年 11 月~2003 年 4 月)において、日本の各地で着氷性の雨および霧雨が観測されていたときの地上気温と露点温度の関係である。横軸の地上気温をみると、おおむね 0~-4℃の範囲で発生しているが、やや 0℃を上回る場合もある。図4. 10 の地上気温に対する着氷性の雨の発生頻度の傾向は、北米(Huffman and Norman, 1988; Cortinas, 2000; Cortinas et al., 2004) やヨーロッパ(Carrière et al., 2000)における傾向に同じである。一方、露点温度に着目すると、すべての観測事例で 0℃以下となっている。Cortinas (2000)による解析結果においても、着氷性の雨の発生割合は、気温 0℃以下とした場合は全体の約 70%、露点温度 0℃以下の場合は約 95%となることが示されている。地上付近の大気の湿潤状態を考慮して雨滴の過冷却が維持される条件を判断すると、地上の露点温度が 0℃以下という第3の条件を加える必要があると考えられる。

以上の3条件によって着氷性の雨を含めた地上降水種の判別を行った。

降水種の判別方法として、まず着氷性の雨や凍雨の発生判別は、客観解析資料の各格子点上における気温と相対湿度の鉛直分布をもとに、気温0℃以上の暖気層の存在と、気温0℃以下の寒気層の存在を調べる。図4.5のように、地上付近の寒気層の上空に暖気層が存在する場合は、第4.3節で述べた暖気層の平均気温や厚さ、平均相対湿度から降雪粒子の融解条件を判断し、第4.4節で示した雨滴の凍結条件を寒気層の平均気温と厚さ、平均相対湿度から判断する。具体的には、降雪粒子が暖気層で完全融解して、雨滴が寒気層で完全に凍結する場合は凍雨、降雪粒子は完全融解するが雨滴は完全には凍結しない場合を着氷性の雨とした。この時点で着氷性の雨と判断された場合、さらに地上の露点温度が0℃以下である場合を着氷性の雨、0℃以上の場合を雨とした。また、地上付近に暖気層のみ存在する場合は、降雪粒子の融解条件から雨か雪かを判断し、大気全層で気温0℃以下の場合は雪とした。

以上のように、地上の降水種(着氷性の雨、凍雨、雪、雨)を判別した。この地上降水種の判別 手順を、図4.11にまとめた。

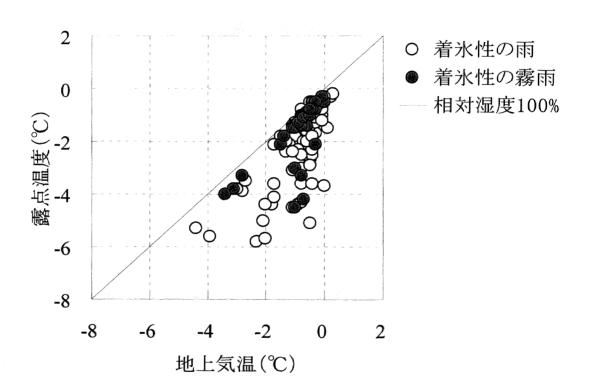


図4.10 着氷性降水時の地上気温と露点温度の関係

過去 14 冬季間(1989 年 11 月~2003 年 4 月)における日本各地の気象官署で、着氷性の雨が観測されているときの地上の気温と露点温度の関係。

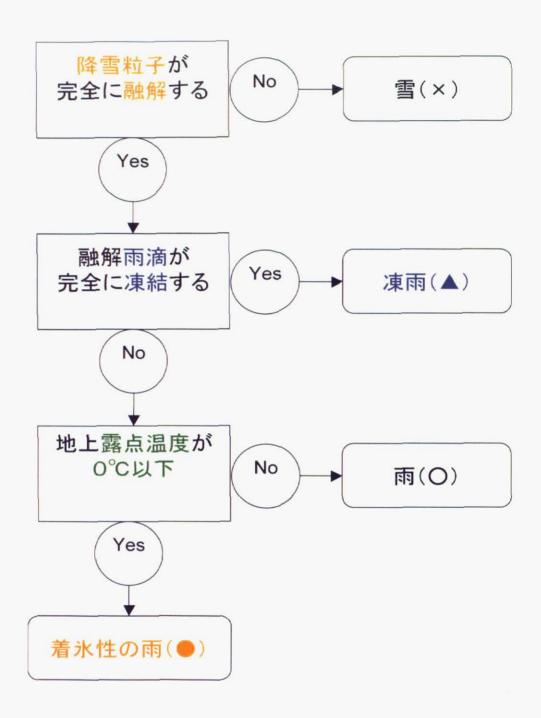


図4.11 地上降水種の判別方法

降雪粒子の融解条件、雨滴の凍結条件、地上気象条件から、地上降水形態として雪、凍雨、 着氷性の雨、雨を判別する方法を示す。

4.6 着氷性降水の発生予測手法(飽和大気の場合)

着氷性の雨や凍雨の発生には、気温のみならず大気の湿潤状態も強く影響することが考えられるが、ここでは大気が飽和している場合(相対湿度 100%)の発生判別手法について述べる。この場合、降雪粒子の融解時間 t_m および雨滴の凍結時間 t_f については、飽和大気における既存の理論式(式(4.3)および式(4.14))を用いるわけであるが、降雪粒子の融解時間 t_m を表す式(4.3)は、実際の雪片の融解実験に基づいた計算値を実測値に近づけるための調整係数が導入されている。以下の第4.7節では、降雪粒子の融解過程や雨滴の凍結過程において大気の湿潤状態も考慮した予測手法を提案するが、ここでは未飽和大気における発生判別手法に向けた予備的な方法、あるいは本研究における発生判別手法の基本的な概念の妥当性を検討するねらいがある。

また、ここで示す飽和大気における発生判別手法は、上空の気象状態として、気温だけしか与えられていない場合に有効な方法であると考えられる。さらに、降雪粒子の融解条件と雨滴の凍結条件を表す簡単な熱力学的判別指標(融解指数 MI、凍結指数 FI)を見い出し、これによって着氷性の雨の簡便な予報を行うことができると考えられる。

関東平野各地の気象官署における気温の鉛直分布は、メソ客観解析値の近傍格子点における気温の解析値を用いた。この資料から、各気象官署の上空における気温 0 C以上の暖気層の存在と、気温 0 C以下の寒気層の存在を調べ、それらの大気層の平均気温 $(\overline{T}_m, \overline{T}_f)$ 、平均相対湿度 $(\overline{RH}_m, \overline{RH}_f)$ 、厚さ (D_m, D_f) を計算した。

4.6.1 降雪粒子の融解判別

気温 0℃以上の暖気層が水飽和の場合、外気の水蒸気密度は 0℃の氷の飽和水蒸気密度より高いため、落下中の降雪粒子の表面へ水蒸気が凝結すると考えられる。よって、降雪粒子は、大気から熱伝導で輸送される熱と水蒸気の凝結熱の両方で融解すると考えられる。

降雪粒子の融解条件は、式(4.3)の降雪粒子の融解時間 t_m 、式(4.6)の降雪粒子の落下速度 U_i 、式(4.5)の融解に要する大気層の厚さ D_m を表すこれらの式を用いて計算した。ただし、式(4.3)の融解時間 t_m は、凝結熱の影響が小さいと仮定した近似式である。

降雪粒子の融解条件の計算手順は、次のとおりである。メソ客観解析資料より得られた各気象官署の上空暖気層の平均気温 \overline{T}_m を式(4.3)に入れて降雪粒子の融解時間 t_m を求める。式(4.6)より降雪粒子の落下速度U,を求め、降雪粒子の融解時間 t_m と落下速度U,から式(4.5)より降雪粒子が完全に融解するのに要する暖気層 D_m の厚さを求めた。この計算結果から、降雪粒子が完全に融解するときの暖気層の平均気温 \overline{T}_m と厚さ D_m の関係を求めた。

図4. 12 に、2003 年 1 月 3 日 21 JST における各地の暖気層の平均気温 \overline{T}_m 、厚さ D_m および地上の降水形態の関係を示す。図中の曲線は、相当水滴半径 r_w を 1.0mm および 0.9mm として式 (4.3)、式 (4.5)、式 (4.6) より求めたものである。この曲線の右上側で雪片が完全融解し、左下側で融解しない、あるいは部分融解することを意味する。図4. 12 の曲線と地上の降水形態との関係から、凍雨と着氷性の雨は曲線の右上側に位置し、雪の場合は左下側にプロットされている。つまり、凍雨や着氷性の雨が発生するときは、上空の暖気層で降雪粒子が完全に融解することが必要であると判断される。この判別曲線に関して、暖気層の平均気温 \overline{T}_m と厚さ D_m の積を求め、これを融解指数MIと定義した。

$$MI = \int T dz \approx \overline{T}_m D_m \tag{4. 19}$$

この融解指数 MI は、相当水滴半径 $r_w=1.0$ mm の場合は約 270 \mathbb{C} m、 $r_w=0.9$ mm の場合は約 220 \mathbb{C} m の一定値が得られる。この MI より大きい場合、降雪粒子が完全に融解すると判断される。これを飽和大気における着氷性の雨と凍雨が発生するときの第一の判別条件とした。

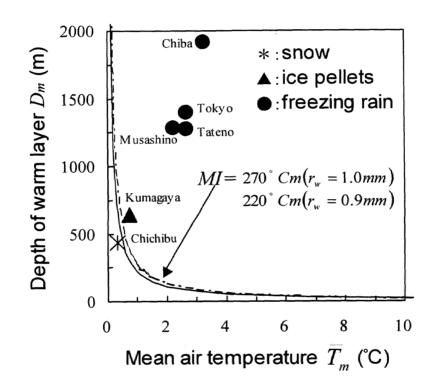


図4.12 暖気層の平均気温と厚さ、地上降水種の関係(水飽和大気の場合)

相当水滴半径 r_w を 1.0mm および 0.9mm とした場合の計算結果。地上降水種のプロット(*: 雪、 \blacktriangle : 凍雨、 \bullet : 着氷性の雨) は、2003 年 1 月 3 日 21JST の関東平野における気象官署のもので、同時刻のメソ客観解析資料の近傍格子点上のデータを用いて上空暖気層の平均気温と厚さを求めた。ただし、館野はゾンデによる高層気象観測資料を用いた。上空暖気層の平均気温 \overline{T}_m と厚さ D_m の積を融解指数MIとした。

4.6.2 雨滴の凍結判別

気温 0℃以下の寒気層が氷飽和の場合、外気の水蒸気密度は 0℃の氷の飽和水蒸気密度より低いため、落下中の凍結雨滴の表面から昇華によって水蒸気が大気へ放出されると考えられる。よって、雨滴は、大気から熱伝導によって失う熱と水蒸気の昇華熱の両方によって冷やされ凍結していくと考えられる。

雨滴の凍結条件は、式(4.14)の雨滴の凍結時間 t_f 、式(4.17)の雨滴の落下速度 U_w 、式(4.16)の凍結に要する大気層の厚さ D_f を表すこれらの式を用いて計算した。

雨滴の凍結条件の計算手順は、以下に示すとおりである。メソ客観解析資料より得られた各気象官署の上空寒気層の平均気温 \overline{T}_f を式(4.14)に入れて雨滴の凍結時間 t_f を求める。式(4.17)より雨滴の落下速度 U_w を求め、雨滴の凍結時間 t_f と落下速度 U_w から式(4.16)より雨滴が完全に凍結するのに要する寒気層の厚さ D_f を求めた。この計算結果から、雨滴が完全に凍結するときの寒気層の平均気温 \overline{T}_f と厚さ D_f の関係を求めた。

図4. 13 に、2003 年 1 月 3 日 21 JST における各地の寒気層の平均気温 \overline{T}_f 、厚さ D_f および地上の降水形態の関係を示す。図中の曲線は、相当水滴半径 r_w を 1.0mm および 0.9mm として式(4. 14)、式(4. 16)、式(4. 17)より求めたものである。この曲線の左上側が雨滴が完全に凍結する条件、右下側で凍結しない、あるいは部分凍結することを意味する。この判別曲線と地上降水形態の関係をみると、着氷性の雨に関しては曲線の右下側に位置し、雨滴が完全には凍結しない条件で降っていることがわかる。一方、凍雨は、相当水滴半径 r_w を 1.0mm とした場合は非凍結領域にプロットされるが、 r_w を 0.9mmとした場合は雨滴が完全に凍結する条件で降ったという評価になる。

この計算で用いている相当水滴半径 r, は、武蔵野で観測された凍雨の大きさに基づいているが、雨滴の大きささやその基となる降雪粒子の大きさには上空の気象状態に起因する地域差があることが考えられる。また、ここでの判別計算結果は、飽和大気を仮定しているので、大気下層が乾燥している場合は、凍結過程の雨滴表面における昇華作用が強くなるため、図4.13の計算結果よりも薄い大気層で雨滴が完全に凍結することが考えられる。しかし、ここでは飽和大気を仮定した近似計算としては、図4.13に示す雨滴の凍結条件によって凍雨と着氷性の雨が

判別できるものと考えた。大気の湿潤状態の影響(未飽和の場合)については、第4.7節で議論する。図4.13より、寒気層の平均気温 \overline{T}_f と厚さ D_f の積を凍結指数FIと定義した。

$$FI = \int T dz \approx \overline{T}_f D_f \tag{4. 20}$$

凍結指数 FI を求めて気温 0° ~ -10° の範囲で平均すると、相当水滴半径 $r_w=1.0$ mm の場合で $FI=-1850^{\circ}$ Cm、 $r_w=0.9$ mm で $FI=-1570^{\circ}$ Cm が得られる。この FI より大きい場合で、雨滴が完全に凍結すると判断される。これを飽和大気における着氷性の雨と凍雨が発生するときの第二の判別条件とする。

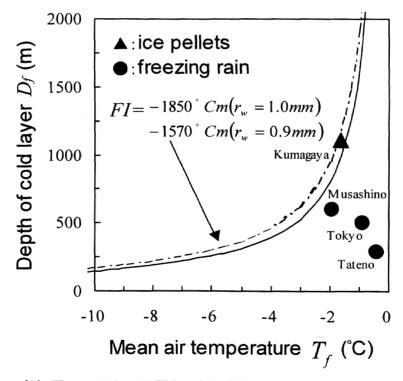


図4.13 寒気層の平均気温と厚さ、地上降水種の関係(氷飽和大気の場合)

相当水滴半径 r_w を 1.0mm および 0.9mm とした場合の計算結果。地上降水種のプロット(*: 雪、 \blacktriangle : 凍雨、 \bullet : 着氷性の雨)は、2003 年 1 月 3 日 21JST の関東平野における各気象官署のもので、同時刻のメソ客観解析資料の近傍格子点上のデータを用いて寒気層の平均気温 \overline{T}_f と厚さ D_f を求めた。ただし、館野はゾンデによる高層気象観測資料を用いた。寒気層の平均気温 \overline{T}_f と厚さ D_f の積を凍結指数 FI とした。

4.6.3 着氷性降水の発生予測方法と地上降水種の推定結果(飽和大気の場合)

降雪粒子の融解条件(図4.12)と雨滴の凍結条件(図4.13)を組み合わせて、着氷性の雨と 凍雨の発生判別を行うことを検討する。図4.14は、融解指標 MI と凍結指標 FI を座標軸にして、 地上の降水形態との関係をみたものである。地上における最終的な降水形態は地上気温も関与 するが(第4.5節を参照)、暖気層と寒気層の熱力学的な状態を表すこれらの簡単な指標により、 着氷性の雨や凍雨の発生判別を行うことが可能であると考えられる。

ただし、図4. 14 の発生判別手法を他の事例や他地域に適用する場合には、飽和大気を仮定していること、相当水滴半 r_w を 1.0mm の一定値としていることなど、ある程度限定したパラメータにしているが、予報資料から上空暖気層と寒気層の平均気温と厚さを求めることは比較的容易であるので、図4. 14 を用いることは、簡便な着氷性の雨の発生判別手法としては有効であると考えられる。

図4. 15 は、2003 年 1 月 3 日 21JST の関東平野における地上降水種を推定した結果である。 上空暖気層における降雪粒子の融解条件と寒気層における雨滴の凍結条件を図4. 14 より判断 し、これに地上の露点温度の条件(第4. 5章)を加え地上の降水種類を推定した。図4. 15 より、 この方法で推定された降水種の分布は、各気象官署における実際の降水種分布に良く対応して おり、着氷性の雨が関東平野西部の広い地域で発生していたことが予想される。ただし、凍雨の 発生域は1グリットのみで推定され、実際に観測された熊谷より北西に位置している。このことから、 雪と着氷性の雨の境界地域が、実際の降水種分布よりも北西側に推定された結果と考えられる。 この相異の主な理由として、図4. 4で示したように、地上付近の寒気層が未飽和であることの影響が考えられる。大気が未飽和である場合の地上降水種の推定結果は、第4. 7. 3節で示す。

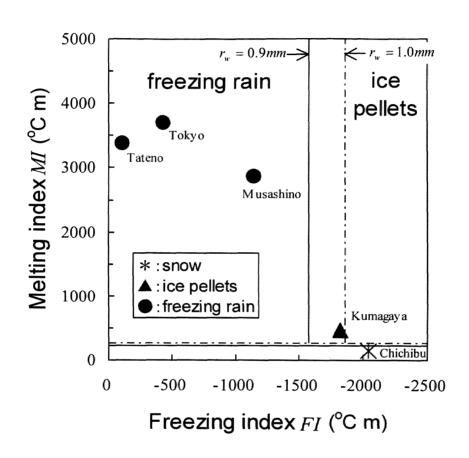


図4.14 融解指数 MI と凍結指数 FI を用いた地上降水種の判別(飽和大気の場合)

相当水滴半径を 1.0mm および 0.9mm とした場合の計算結果。2003 年 1 月 3 日 21JST の関東平野の各気象官署における結果。図中記号は降水種を表し、*が雪、▲が凍雨、●が着氷性の雨である。

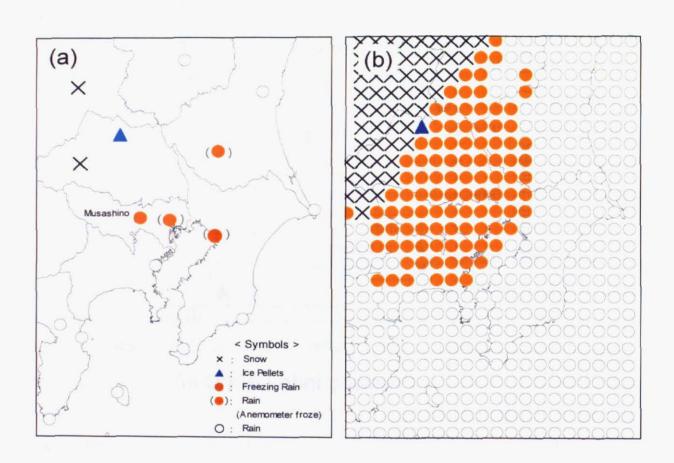


図4. 15 融解指数 MI と凍結指数 FI による地上降水種の推定結果と実測の比較

2003 年 1 月 3 日 21JST における(a) 実測の分布と(b) 推定結果。図中記号は降水の種類を表す(×:雪、▲:凍雨、●:着氷性の雨、(●):風速計の凍結障害(着氷性の雨が原因と考えられる)、○:雨)。

4.7 着氷性降水の発生予測手法(未飽和大気の場合)

第4.6節では、大気が飽和しているとき(相対湿度 100%)の降雪粒子の融解条件と雨滴の凍結条件をもとに着氷性の雨と凍雨の発生判別を行った。しかし、実際の降雪粒子の融解過程や雨滴の凍結過程において、大気の湿潤状態も大きな影響を与える。

例えば、降雪粒子の融解過程において、大気が水飽和の場合は 0℃高度の直下から降雪粒子表面へ水蒸気の凝結が起こり直ちに融解が進むが、未飽和の場合は降雪粒子の表面から水蒸気が昇華するため、降雪粒子は冷やされて融けない。つまり、大気が未飽和である場合、気温0℃の高度の下に降雪粒子が融解しない層が存在し、降雪粒子の融解時間は飽和である場合に比べて大きくなる。このことは、Matsuo and Sasyo (1981b; 1981c)や Mitra et al. (1990)などの理論計算や観測結果により確認されている。昇華に必要な熱は、外気からの熱伝導で流入する熱で補われる。

一方、雨滴の凍結過程において、大気が氷未飽和である場合、凍結雨滴の表面における水蒸気の昇華作用が強まり、飽和大気に比べて凍結時間が短くなると考えられる(例えば、Hanesiak and Stewart, 1995)。

このように、外気から熱伝導で降雪粒子や雨滴へ輸送される熱と同様、それらの表面で起こる 水の相変化に伴う熱交換が、降雪粒子の融解過程および雨滴の凍結過程に重要な影響を与え る。ここでは、大気の湿潤状態が与える効果も考慮して降雪粒子の融解条件と雨滴の凍結条件 を見い出し、この結果に基づいた着氷性降水の発生予測手法について述べる。

4.7.1 降雪粒子の融解判別

大気が未飽和な場合を含めた降雪粒子の融解条件は、式(4.4)から求まる降雪粒子の融解時間 t_m 、式(4.6)の降雪粒子の落下速度 U_i 、式(4.5)の融解に要する大気層の厚さ D_m を用いて理論計算した。メソ客観解析資料より得られた各気象官署の上空暖気層の平均気温 \overline{T}_m と、平均相対湿度 \overline{RH}_m から求まる平均水蒸気密度 $\overline{\rho}_{v,m}$ を式(4.4)に入れて降雪粒子の融解時間 t_m を求める。式(4.6)より降雪粒子の落下速度 U_i を求め、降雪粒子の融解時間 t_m と落下速度 U_i から式(4.5)より降雪粒子が完全に融解するのに要する暖気層の厚さ D_m を求めた。この計算結果から、降雪粒子が完全に融解するときの暖気層の平均気温 \overline{T}_m 、平均相対湿度 \overline{RH}_m 、厚さ D_m の関係を求めた。

図4. 16 が、2003 年 1 月 3 日 21 JST における関東平野各地の暖気層の平均気温 \overline{T}_m 、平均相対湿度 \overline{RH}_m 、厚さ D_m および地上の降水形態の関係である。図中の曲線は、相当水滴半径 r_m を 1.0mm として式(4.4)~式(4.6)より求めたものである。図中の各曲線は、平均相対湿度 \overline{RH}_m の違いに対応した平均気温 \overline{T}_m と暖気層の厚さ D_m の関係で、各曲線の右上側で雪片が完全融解し、左下側で融解しない、あるいは部分融解することを意味する。図4. 16 の曲線と地上の降水形態との関係から、各地点の平均相対湿度 \overline{RH}_m に対応する関係曲線に着目すると、凍雨と着氷性の雨は曲線の右上側に位置し、雪の場合は左下側にプロットされている。つまり、凍雨や着氷性の雨が発生するときは、上空の暖気層で降雪粒子が完全に融解することが必要であることがわかる。

図4.16 を着氷性の雨と凍雨の発生判別の第一条件として、暖気層における降雪粒子の融解 条件とした。

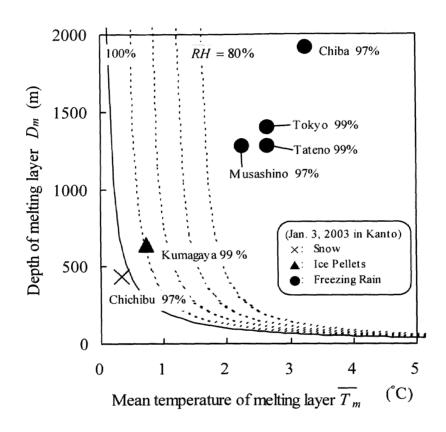


図4.16 暖気層の平均気温、厚さ、平均相対湿度および地上降水種の関係

実線は平均相対湿度 \overline{RH}_m が 100%の場合、破線は 95~80%まで 5%間隔で求めた計算結果。相当水滴半径 r_w を 1mm とした。地上降水種のプロット $(\times: \mathfrak{m}, \blacktriangle: \bar{\mathfrak{m}}, \bullet: \bar{\mathfrak{m}})$ は、2003 年 1 月 3 日 21JST の関東平野における各気象官署のもので、同時刻のメソ客観解析資料の近傍格子点上のデータを用いて上空暖気層の平均気温 \overline{T}_m 、平均相対湿度 \overline{RH}_m 、厚さ D_m を求めた。ただし、館野はゾンデによる高層気象観測資料を用いた。各地点の平均相対湿度 \overline{RH}_m は、地名とともに示した。

4.7.2 雨滴の凍結判別

大気が未飽和な場合を含めた雨滴の凍結条件は、式(4.15)から得られる雨滴の凍結時間 t_f 、式(4.17)の雨滴の落下速度 U_w 、式(4.16)の凍結に要する大気層の厚さ D_f を用いて計算した。メソ客観解析資料より得られた各気象官署の上空の寒気層の平均気温 \overline{T}_f と、平均相対湿度 \overline{RH}_f から求まる平均水蒸気密度 $\overline{P}_{v,f}$ を式(4.15)に入れて雨滴の凍結時間 t_f を求める。式(4.17)より雨滴の落下速度 U_w を求め、雨滴の凍結時間 t_f と落下速度 U_w から式(4.16)より雨滴が完全に凍結するのに要する寒気層の厚さ D_f を求めた。この計算結果から、雨滴が完全に凍結するときの寒気層の平均気温 \overline{T}_f 、平均相対湿度 \overline{RH}_f 、厚さ D_f の関係を求めた。

図4. 17 に、2003 年 1 月 3 日 21JST における関東平野各地の寒気層の平均気温 \overline{T}_f 、平均相対湿度 \overline{RH}_f 、厚さ D_f および地上の降水形態の関係を示す。図中の曲線は、雨滴半径 r_w を 1.0mm として式(4. 15)~式(4. 17)より求めたものである。図中の各曲線は、平均相対湿度 \overline{RH}_f の違いに対応した平均気温 \overline{T}_f と厚さ D_f の関係で、各曲線の左上側が雨滴が完全に凍結する条件、右下側で凍結しない、あるいは部分凍結することを意味する。各地点の平均相対湿度 \overline{RH}_f に対応した関係曲線に着目して地上降水形態との関係をみると、着氷性の雨に関しては曲線の右下側に位置し、雨滴が完全に凍結しない条件で降っていることがわかる。また、熊谷で観測された凍雨(平均相対湿度 89%)は、平均相対湿度 90%に対応した曲線の右上側にプロットされ、雨滴が完全に凍結する条件で降ったと判別される。

図4.17 を着氷性の雨と凍雨の発生判別の第二条件として、寒気層における雨滴の凍結条件とした。

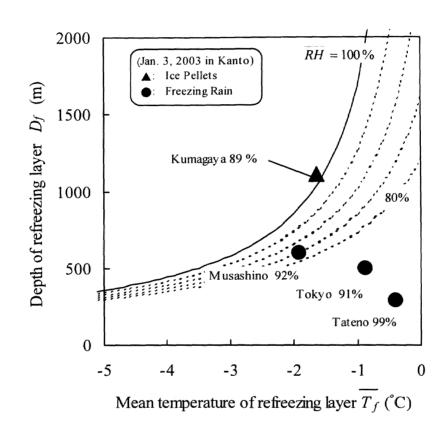


図4.17 寒気層の平均気温、厚さ、平均相対湿度および地上降水種の関係

実線は平均相対湿度 \overline{RH}_f が 100%の場合、破線は 95~80%まで 5%間隔で求めた計算結果。 水滴半径 r_w を 1mm とした。地上降水種のプロット(\triangle :凍雨、 Φ :着氷性の雨)は、2003 年 1 月 3 日 21JST の関東平野における各気象官署のもので、同時刻のメソ客観解析資料の近傍格子点 上のデータを用いて寒気層の平均気温 \overline{T}_f 、平均相対湿度 \overline{RH}_f 、厚さ D_f を求めた。ただし、 館野はゾンデによる高層気象観測資料を用いた。各地点の平均相対湿度 \overline{RH}_f は、地名ととも に示した。

4.7.3 着氷性降水の発生予測方法と地上降水種の推定結果

上空の暖気層における降雪粒子の融解条件(図4.16)と、地上付近の寒気層における雨滴の凍結条件(図4.17)が求められた。しかし、着氷性の雨の発生は、最終的には地上の気温や相対湿度にも影響され、地上気温が高い場合は、暖められて過冷却状態が解消することが考えられる。そこで第三の条件として、第4.5節で示したように、地上の露点温度が 0℃以下の条件を加えて、地上の降水種の推定を行った。

着氷性の雨や凍雨を含めた地上降水種の推定は、第4.5.2節で述べたように図4.11 に示す手順で行った。まず、メソ客観解析資料の各格子点上における気温と相対湿度の鉛直分布から、気温 0℃以上の暖気層と気温 0℃以下の寒気層の存在を調べた。地上付近の寒気層の上空に暖気層が存在する場合は、図4.16 から降雪粒子の融解条件、図4.17 から雨滴の凍結条件を判断した。この時点で着氷性の雨と判断された場合、さらに地上の露点気温 0℃以下の条件によって、雨または着氷性の雨を判別した。また、地上付近に暖気層のみ存在する場合は、図4.16 の降雪粒子の融解条件から雨か雪かを判断し、大気全層で気温 0℃以下の場合は雪とした。このように地上の降水種(着氷性の雨、凍雨、雪、雨)を判別した。

以上のような条件と計算によって、2003年1月3日21JSTにおける地上降水種の分布の推定を行った。図4.18がその結果である。図4.18%に示す推定結果は、図4.18aの実際の降水種(着氷性の雨、凍雨、雪、雨)の分布に良く対応している。着氷性の雨は、雪と雨の遷移域で発生したことが示され、関東平野西部の広い地域で着氷性の雨が発生したことが予想される。この地域は主に地上付近の内陸からの寒気移流域に対応していて、その南側の地域で着氷性の雨の発生が推定されている。一方、凍雨は、着氷性の雨の発生域の雪側の境界域で発生したことが示され、熊谷周辺から南北に延びる地域で発生したことが推定されている。第4.6節の図4.15で示した飽和大気の場合の推定結果と比較すると、凍雨の発生域が広く、また実際に凍雨が観測された熊谷周辺で発生が推定されており、実測の降水種分布により近い推定結果となった。

この結果は1事例のみの解析だが、本論文で示した方法によって着氷性の雨を含めた地上降 水種の発生判別を行うことができると考えられる。

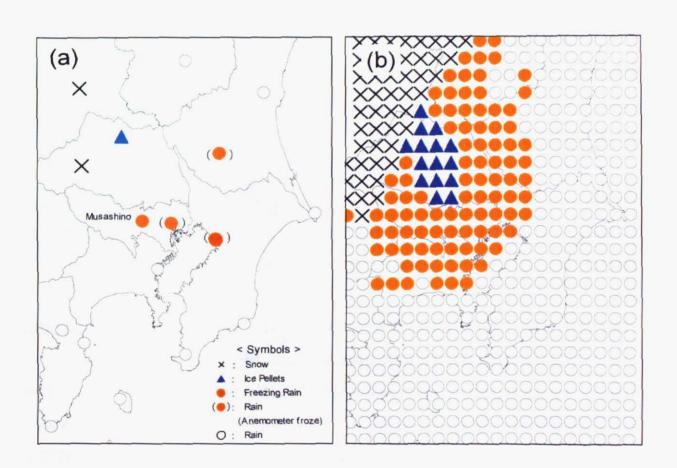


図4.18 地上降水種分布の推定結果と実測の比較

2003 年 1 月 3 日 21JST における(a) 実測の分布と(b) 推定結果。図中記号は降水の種類を表す(×:雪、▲:凍雨、●:着氷性の雨、(●):風速計の凍結障害(着氷性の雨が原因と考えられる)、○:雨)。

4.8 考察

4.8.1 大気が飽和である場合の予測手法について

第4.6節で示した飽和大気を仮定した着氷性の雨と凍雨の発生判別手法は、降雪粒子の融解条件と雨滴の凍結条件に関するいくつかの仮定をもとにした近似計算に基づくものである。また、一事例のみの解析結果であり、この手法の一般性を示すことが重要であると考えられる。この検討には上空の気温の鉛直分布が必要となるが、日本では高層気象官署におけるゾンデ観測時刻に着氷性の雨や凍雨が発生する機会は非常に少ない。そこで、Zerr (1997)によって提示された観測資料をもとに考察を行うこととした。

Zerr (1997)は、アメリカで着氷性の雨や凍雨が発生しているときの暖気層の最高気温と厚さ、寒気層の最低気温と厚さを表として示している。ここで、暖気層の最高気温と寒気層の最低気温は、Rauber et al., (2001a)の方法によりそれぞれの平均気温に換算した。この Zerr (1997)による観測資料と、第4.6節で得られた降雪粒子の融解条件、雨滴の凍結条件の比較結果が図4.19である。

図4. 19 によると、おおむね凍雨と着氷性の雨が判別されているといえるが、判定にもれる例もいくつかみられ、着氷性の雨 1 例が凍雨と判定され、凍雨 2 例が雪と判定されている。

Matsuo and Sasyo (1981b)によると、降雪粒子の融解が始まる高度は相対湿度に依存し、融解が完了する高度は相対湿度の他に降雪粒子の初期直径と密度に依存している。ここで、Matsuo and Sasyo (1981b)の計算例の中で一番重くて大きい雪片(初期直径が 13mm、密度が0.04g/cm³)の高度変化では、生成する非融解層と融解層の厚さは、相対湿度 100%でそれぞれ0mと620m、90%で120mと590m、80%で250mと570mとなる。相対湿度が低くなると非融解層は厚く、融解層は逆に狭くなる。雨滴の凍結過程においても、大気が乾燥している場合は、凍結雨滴の表面における昇華作用によって熱をより多く失うと考えられるので、図4.14で示した飽和大気を仮定した発生判別条件と異なる結果になると考えられる。

メソ客観解析資料や GPV 予報資料のように、上空の気温や相対湿度などの気象解析値が得られている場合には、第4.7節で示した大気の湿潤状態を考慮した予測手法を用いることが必要となる。

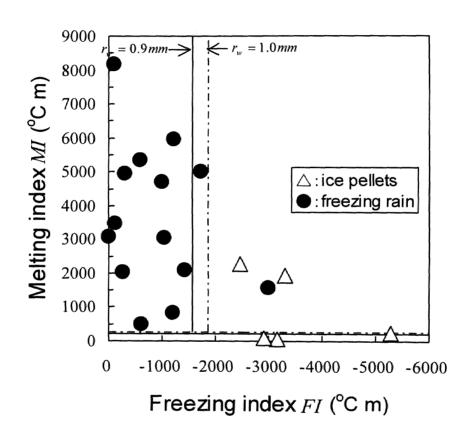


図4.19 降雪粒子の融解条件と雨滴の凍結条件の検証(飽和大気の場合)

融解指数 MI と凍結指数 FI を用いた推定手法の検証結果。図中の降水種のプロット(\triangle :凍雨、lacktriangle:着氷性の雨)は、Zerr (1997)により提示されたアメリカにおける観測資料に基づく。

4.8.2 大気が未飽和である場合の予測手法について

第4.7節で示した未飽和大気に対する着氷性の雨と凍雨の発生判別手法についても、降雪粒子の融解条件と雨滴の凍結条件に関するいくつかの仮定をもとにした近似計算に基づくものであり、また一事例のみの解析結果であるため、この手法の一般性を示すことが重要であると考えられる。こここでも Zerr (1997)による観測資料をもとに考察を行うこととした。ただし、この資料には相対湿度の提示はない。

図4. 20 は、Zerr (1997)による資料と、第4. 7節で得られた降雪粒子の融解条件、雨滴の凍結 条件を比較したものである。

図4. 20a の降雪粒子の融解条件では、凍雨の 2 例が判別曲線から外れて非融解あるいは部分融解の領域にプロットされている。これは、実際の凍雨がどのような状態で観測されたか不明であるが、降雪粒子の部分融解したものが再凍結して凍雨となった場合と考えられる。また、図4. 20a の計算結果が、相当水滴半径 1mm の計算結果であって、その時々の粒径を加味しているものではないことによると考えられる。しかしながら、着氷性の雨の場合、すべて相対湿度 95%の判別曲線の右上にプロットされており、よく判別されているといえる。

同様に、図4.20bの雨滴の凍結条件における比較では、着氷性の雨の1例が判別曲線の左上側にプロットされ、雨滴が凍結して凍雨になると判別されている。これも、実際の粒径の違いによる影響が考えられる。また、実際の雨滴の凍結には、凍結核の存在や大気中を浮遊する微粒子の接触などのきっかけが必要であるが、ここでの計算は気温0℃以下の寒気層に入るとすぐに凍結を開始するという仮定のもとでの計算結果である。このような仮定に基づく近似計算ではあるものの、図4.20bの判別曲線によって、凍雨と着氷性の雨が良く判別されているといえる。

さて、ここで示した着氷性の雨と凍雨の発生判別手法の検討要素には、降雪粒子や雨滴の大きさの問題が残される。本事例では、武蔵野で観測された凍雨の大きさから判断して、相当水滴半径 1mm の条件で計算を行った。岩井 (1970)、Stewart et al. (1990)、Crawford and Stewart (1995)による着氷性の雨が降っているときの雨滴の粒径分布をみると、半径 1mm という条件はやや大きめの雨滴に対応するようである。つまり、本事例で示した降雪粒子の融解条件や雨滴の凍結条件は、一般的には厳しい条件であることが考えられる。また、これに関連して、降雪片の

粒径分布に地域的な特性があることが報告されており(Harimaya et al., 2004)、雨滴の粒径分布に関しても、そのときの大気条件に起因する地域性や季節性があるものと考えられる。今後は、第四の指標として、粒径(相当水滴半径)の違いやその地域性について検討を行い、また事例検証を積み重ねることで、本論文で示した判別手法の精度および一般性について検証していきたい。

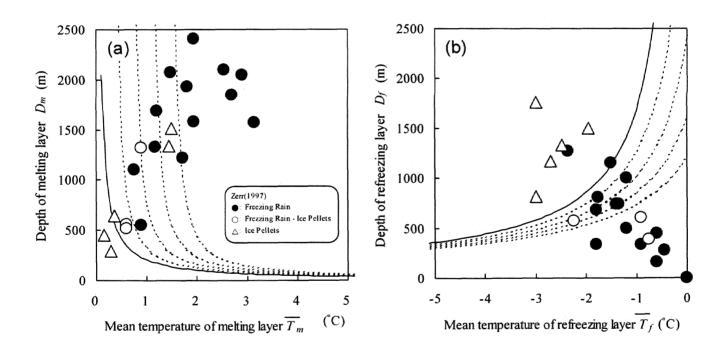


図4.20 降雪粒子の融解条件と雨滴の凍結条件の検証(未飽和大気の場合)

図中の降水種のプロットは、Zerr (1997)によるアメリカにおける観測資料に基づく。●は着氷性の雨、△は凍雨、○は凍雨と着氷性の雨が同時に観測された場合を示す。実線は相対湿度 100%のときの関係、破線は実線から離れるに従い相対湿度を 5%ずつ低くした場合の関係で 80%までを示す。

4.9 おわりに

4.9.1 本章のまとめ

本章(第4章)では、降雪粒子の融解過程と雨滴の凍結過程について理論的な考察を行い、 降雪粒子の融解条件と雨滴の凍結条件を判別する方法の提示を行った。また、着氷性の雨が観 測されているときの地上気温と露点温度の関係から、着氷性の雨発生の地上気象条件を検討し た。この三つの気象条件によって着氷性の雨と凍雨を含めた地上降水種の推定手法の提案を 行った。なお、この推定手法の検証は2003年1月3日21JSTの関東平野における事例につい て行った。本章における内容と解析結果をまとめると、以下のようになる。

- (1) 着氷性の雨と凍雨を含めた地上降水種の予測手法の提案を目的とした。
- (2) 気温 0℃以上の大気層を暖気層、気温 0℃以下を寒気層と定義した。
- (3)上空の暖気層における降雪粒子の融解条件は、暖気層の平均気温、平均相対湿度、厚さ、降雪粒子の大きさ(半径)によって決まる。これを着氷性の雨の発生の第一条件とした。
- (4)地上付近の寒気層における雨滴の凍結条件は、寒気層の平均気温、平均相対湿度、厚さ、 雨滴の半径によって決まる。これを着氷性の雨の発生予測における第二の条件とした。
- (5)着氷性の雨は、地上露点温度が 0℃以下のときに発生している。これを着氷性の雨の発生 予測における第三の条件とした。
- (6) 武蔵野で観測された凍雨の大きさ(半径 1mm)を基準として、2003 年 1 月 3 日 21JST の関東 平野における事例を用いて、地上降水種の予測手法の検証を行った。
- (7)飽和大気を仮定した場合、暖気層と寒気層の平均気温と厚さの積を、それぞれ融解指数 *MI*、凍結指数 *FI* として、これと地上の露点温度から降水種の推定を行った。
- (8)未飽和大気の場合、降雪粒子の融解条件、雨滴の凍結条件が熱力学的な理論計算によって求められ、これと地上の露点温度から降水種の推定を行った。
- (9)これらの予測結果と実際の降水種の地域分布は、良く対応している。また、飽和大気と未飽和大気の推定結果を比較すると、大気の湿潤状態を考慮することの重要性が指摘された。
- (10)ここで示した地上降水種の予測手法は、Zerr (1997)による観測資料ともよく対応した。

4.9.2 今後の課題と展望

本章では、着氷性の雨や凍雨を含めた地上降水種の発生予測方法について提案を行った。この予測手法における降雪粒子の融解条件や雨滴の凍結条件は、多くの仮定を経た熱力学的な理論計算結果に基づく。2003年1月3日の関東平野における事例とZerr (1997)により示されたゾンデ観測資料を用いて、この予測手法による推定結果の検証を行ったところ、着氷性の雨や凍雨の発生を良く判別できたと言える。ただし、Zerr (1997)の資料では、相対湿度などの大気の湿潤状況に関する観測値が提示されていない。この手法による地上降水種の予測評価は、より多くの事例について解析を行うことで、その誤差範囲を明確に示す必要があると考える。特に、関東平野以外の地域への適用について、今後事例解析を含めた検討を行うことが必要である。

本章で提案した地上降水種の予測手法によって、上空の気温および相対湿度の鉛直分布が得られれば、着氷性降水の発生予測だけではなく、着氷性降水の発生に関する理論的な評価を行うことができると考えられる。例えば、地上気温が 0℃より高くて雨が観測されている場合でも、上空に気温 0℃以上の暖気層とその下層に 0℃以下の寒気層が存在すれば、着氷性降水が発生する可能性があるはずであり、こうした評価を各地の高層気象観測資料を用いて行うことができると考えられる。長年の高層気象観測資料を用いて解析することにより、第2章で示した降水種の地上観測結果に基づく地域分布と、また違った観点から着氷性降水の発生に関する地域性を見いだすことができると考えられる。

また、均等な格子間隔で上空の気象値が得られる客観解析資料を用いることで、広範囲で詳細な地上降水種の分布を予測することが可能と考えられる。さらに長期間の客観解析資料から、この予測手法によって着氷性降水や雨氷現象の発生に関する気候学的な地域分布を求めることができ、第2章で示した発生率の地域分布より空間的に密で詳細な地域分布を得ることができると考えられる。このとき地上降水種の観測が行われていない箇所の予測が行えることが大きな利点と考えられ、特に海域を含めた北半球あるいは全球規模における発生ポテンシャル的な評価を行うことが可能であると考えられる。例えば、Zakrzewski et al. (1988)は、海水飛沫着氷に関するモデルを構築して、大西洋の北西部における広域な船体着氷速度の地域分布を推定する試みを行っている。

広域の発生予測または気候学的な発生ポテンシャル評価を行う場合、衛星観測データなどのリモートセンシング技術を合わせることも有効な方法と考えられる(例えば、Curry and Liu, 1992; Thompson et al., 1997)。 Curry and Liu (1992)は、過冷却雲粒による航空機着氷に関して、衛星観測データを活用した発生ポテンシャル評価を行う方法を提案している。また、Thompson et al. (1997)は、衛星データの活用によって着氷性の雨の発生域の絞込みを行っている。着氷性降水における衛星観測データの活用にはまだ検討すべき点が多いが、本章で提案した判別方法を衛星観測のアルゴリズムに取り入れて予測に活用していく努力が必要と思われる。

さらに、着氷性降水の予測において、地上からのドップラーレーダ等による観測データを活用することで、着氷性降水の発生に関わる大気構造の特徴を詳細に捉えることができ、着氷性降水の予測に有効に活用できると考えられる(Prater and Borho, 1992: Martner et al., 1993: Hanesiak and Stewart, 1995; Coleman and Marwitz, 2002)。例えば、着氷性降水時におけるドップラーレーダの観測結果から、上空暖気層と地上付近の寒気層との間の強い風のシアー層と下層ジェット気流の存在、前線面上に降雪粒子の融解を示すブライトバンド層の存在が示されている。また、降雪粒子の融解による大気の非断熱冷却によって上空に局地的な二次循環が起こり、これが地上に激しい降水をもたらす要因となっていることなど、大気の運動学的および熱力学的構造などの詳細な情報が得られる。

以上のように、高層気象のゾンデ観測資料に加え、大気構造を広域にかつ詳細に把握できる リモートセンシング技術との併用によって、より確かな着氷性降水の予測を行なうことができると考 えられる。これに加え、着氷性降水の予測には大気モデルへの組み込みを行う努力が必要であ る(例えば、Tremblay and Glazer, 2000; Lackmann et al., 2002)。ただし、そのためには、本章で 提案した予測方法の検証をより多くの事例を用いて行う必要があり、その予測誤差範囲を明確に することが重要であると考えられる。

なお、本章で提案した地上降水種の予測手法は、融解過程による着氷性降水の発生を予測するものである。よって、気温 0℃以下の状態で凝結成長過程あるいは衝突併合過程を経て発生する場合(主に着氷性の霧雨)は対象としていない。また、着氷性の雨が地上の物体に付着凍結して雨氷を形成する過程は、本章のような降水種の予測手法に加え、地上の気象観測値を基にした雨氷の成長モデル(例えば、Makkonen, 1984; 1998; Jones, 1996)による検討が必要であるが、将来的にはこれらを組み合わせた予測手法が要求されると考えられる。

第5章 結論

5.1 本研究課題の今後の展望

本研究は、着氷性降水や雨氷現象の気象学的および気候学的な特徴を明らかにすることを目的とした。特に、着氷性の雨と凍雨が降るときの大気条件について、総観規模の気象条件(第2章)、発生条件の形成過程における局地気象現象の関連性(第3章)、そして降雪粒子の融解条件と雨滴の凍結条件を熱力学的に検討した発生予測手法の提案(第4章)を行った。これら各研究項目に対する今後の課題と展望については、各章の最後に述べた。ここでは、本研究課題全体における今後の展望について述べる。

本研究課題は、過冷却の雨による着氷現象を対象とした。着氷性の雨や凍雨が発生する大気条件下(気温 0℃付近)では、地上における降水種類として雨や雪、霙が混じることが多く(第1. 1. 2節を参照)、第4章で行ったように、このときの大気構造を熱力学的に解明することは、雨と雪の判別のさらなる理解につながることが期待される。また、このような気象条件下で降る雪は水分を含んでぬれ雪(霙)状態となり、湿った雪が構造物に付着する着雪現象も発生することが考えられる。このように、着氷雪現象のような雪氷気象災害に対する問題意識から、本研究で得られた成果を基礎として、着雪現象も含めた重大な雪氷気象災害を招く大気現象を客観的に評価する手法の確立が必要であると考えられる。

着氷雪現象の問題は、特に全球規模の降雪地域の南限に位置する日本では、冬季の気象予測分野のなかで重要な位置を占め、降水の型(雨、雪、霙など)を精度よく予測することが重要な課題となってきている。例えば、社会生活において雨と雪では大きな違いが生じ、1 時間に 1mmという弱い雨でも、これが雪になると 1cm~10cm の積雪となる。そのため、雨であれば注意報にもならない降水量でも、雪の場合は交通網が寸断され道路の除雪や凍結防止に多くの人々が動員される。特に、大都市が集中する日本の太平洋側は、雪に対する備えが弱くわずかな降雪でも被害を受ける。これに降水着氷や着雪現象が加わると、さらなる被害を招くことになる。

さて、本研究課題は雪か雨かの問題にも関係し、この問題は災害としての問題の他に雪氷分布の変化を引き起こし、地域規模の生活環境や水資源環境、さらには生態系や気候系へ影響を与えることが考えられる。例えば、日本では、冬季における脊梁山脈の積雪は日本海側のみなら

ず太平洋側の地域の重要な水資源となっている。また、雨と雪が同じ割合で降るような地域では、冬季における気温の変化によって湿雪による着雪被害が増大することも予想され、新たな雪氷気象災害への対策が要求されると考えられる。一方、全球規模の気候変動に目を向けると、雨か雪かの問題は、積雪が生じる雪氷域の面積の増減や高山地帯の氷河の質量収支を変化させ、この積雪域面積の変動は、地域規模だけではなく全球規模の気候へも影響を及ぼす(例えば、Yasunari and Seki, 1992; IPCC, 2001a)。また、その結果引き起こされる気候の変動によって冬季の降水形態がさらに影響を受け、着氷雪現象などの災害の様相も変化することが考えられる。

本研究課題の今後の展望として、ここで得られた成果を基礎として、気候変動に対する着氷雪 現象や降水形態の様相変化を明らかにし、その将来予測に着目した研究を行うことが必要であ ると考えられる。これは国内外において、まだ影響評価されていない研究課題である。

IPCC (2001a)によると、20 世紀の全球平均気温は 0.6±0.2℃上昇し、1990 年代は最も気温の高い 10 年であった。また、1988 年以降、北半球の積雪域の縮小が続いており地上気温偏差と良い逆相関の関係がある。日本においても同様な傾向にあり、全国平均でみて、1898~1997 年の年平均気温のトレンドは 0.91±0.26℃/100 年である(気象庁, 1999)。特に 1980 年代後半以降の高温は、北日本と東日本で顕著に出現しており、季節的には冬季および春季に特徴的に卓越している。このような気温の上昇傾向が今後も持続すると、日本の降積雪地域では降雪量と積雪量が大きく減少することが指摘されている(小川・野上, 1997; 井上・横山, 1998; Inoue and Yokoyama, 2003)。

ここで、将来の気候変動に伴う降水形態の様相に関する解析例を示す。図5.1は、過去14冬季(1989年12月~2003年2月)の地上気象観測資料から調べた冬季(12~2月)の平均地上気温、および雨、雪、霙の平均発現率の地域分布である。図5.1より、本州の中部地方が冬季降水形態における雨と雪の境界地域となっている。また、霙の発現率は本州の日本海側の地域で高く、この地域では冬季降水日数の半数近く(40%)を霙が占めている。つまり、日本の降雪地域の多くは冬季地上気温が高く、降雪現象は雨と雪の判別気温付近で生じていることがわかる。

図5. 2は、図5. 1で求めた各地の冬季平均気温と雨、雪、霙の発現率の関係で、気温を指標にしたこれら降水種の気候学的な発現率を表現する関係式を得た。この関係式を用いて、現在の冬季平均地上気温を変化させた場合の各降水種の予測を行ったところ(図5. 3)、秋田や新潟など東北地方以南の地域では、1℃の気温変化によって冬季の降水形態が大きく変化するこ

とがわかる。また、札幌では、雨と雪の発現率にそれほど大きな変化は生じないが、気温上昇によって霙の発現率が高くなる傾向にある。このように、日本では、本州の日本海側地域のように比較的温暖で降雪がある地域では、少しの気温変化によって雪から雨の降る割合が高くなる。また、寒冷な北海道でも、気温の上昇に伴い湿った雪(霙)の降る割合が高くなることが考えられる。このことは、気候変化によって降水形態が変化するだけではなく、雪氷気象災害の地域性や様相も変化することを意味し、多様化する災害への対策が必要になる。

最後に、本研究課題は、気候変動に対する生物の脆弱性評価の問題(IPCC, 2001b)にも関連し、特に着氷性降水による雨氷現象や着雪現象による森林被害(例えば、林野庁, 1957; 大原ほか, 1990; 梶ほか, 1991; 牛山・宮崎, 1992; 古川ほか, 1999; 浜田, 2000; 浜田・牛山, 2001; 鳥田ほか, 2004)とこれによる生態系への影響評価も視野に入れた研究を行うことが重要であると考えられる。近年、北半球中緯度において温帯低気圧が発達する割合が高くなったという研究報告(Carnell and Senior, 1998; Ulbrich and Christoph, 1999; Knippertz et al., 2000; ト蔵; 2003)もあり、被害を拡大させるような強風を伴った着氷雪現象(第3.6.1節を参照)が今後増えるかどうか、雪氷気象災害の様相変化に着目した研究も要求されると思われる。着氷性降水による雨氷現象や着雪現象による災害は、今後ますます注目を受けることが予想される。

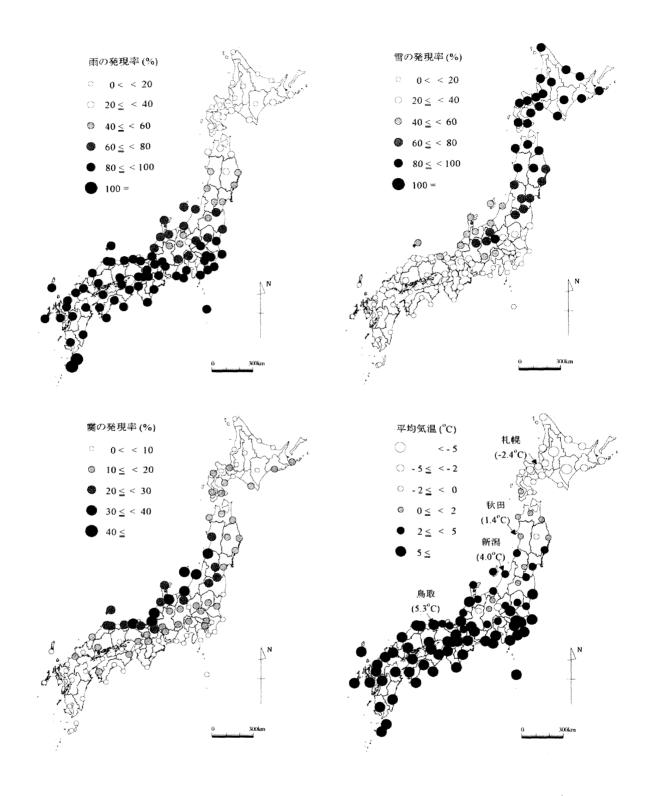


図5. 1 冬季(12~2月)の地上気温および雨、雪、霙の発現率の平均値の地域分布 過去14冬季(1989年12月~2003年2月)の平均値の分布。発現率は、雨、雪、霙が降った 日数に対する各降水種の日数の割合である。例えば、雪の発現率は、雪が観測された日数を、 雪、雨、霙のいずれかが観測された日数で除して求めた。

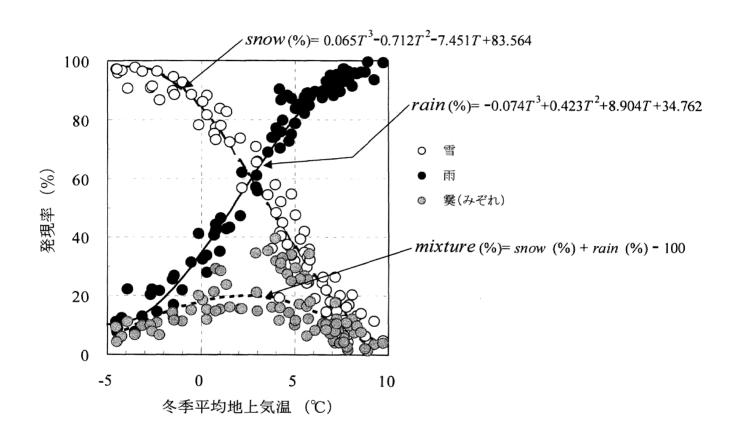


図5.2 冬季(12~2月)における平均地上気温と雨、雪、霙の発現率の関係 日本各地の過去14冬季(1989年12月~2003年2月)における平均値の関係。

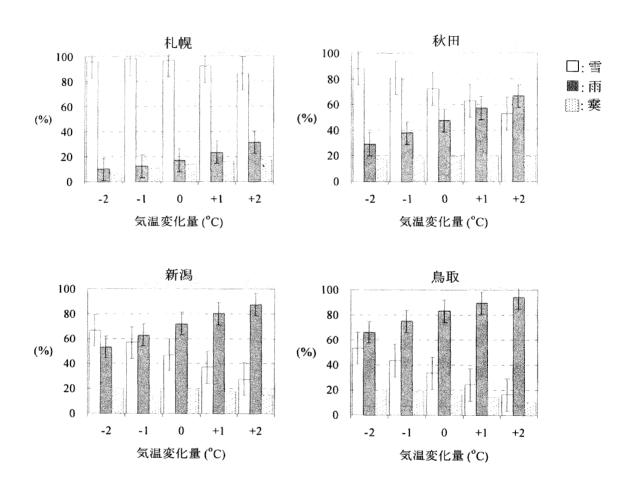


図5.3 冬季(12~2月)の平均気温を変化させたときの雨、雪、霙の発現率

過去 14 冬季(1989 年 12 月~2003 年 2 月)の平均地上気温を基準として、地上気温を変化させたときの雨、雪、霙の発現率の推定値。札幌、秋田、新潟、鳥取の例。図中の縦線は、95%の信頼区間を示す。

5.2 本研究で得られた成果のまとめ

本研究では、日本における着氷性降水および雨氷現象の気象学的および気候学的な特徴を 解明することを目的として、次の3つの異なる観点から研究を行った。

- (1)気候学的な特徴の把握(総観気象規模の特徴)
- (2)発生条件の形成過程の解明(局地気象規模の特徴)
- (3) 大気の熱力学的構造の解析(雲物理規模の特徴)

この3つの研究目的について、本論文ではそれぞれの章に分け、(1)は第2章、(2)は第3章、(3)は第4章としてまとめた。また、各章の最後には、得られた結果に対する考察を行った。 本研究で得られた結果を要約すると、次のようになる。

第2章(気候学的な特徴の把握...総観気象規模の特徴)

日本における着氷性降水や雨氷現象の気候学的な特徴を明らかにすることを目的に、過去 14 冬季間(1989 年 11 月~2003 年 5 月)の気象観測資料から、着氷性の雨、着氷性の霧雨、凍雨の発生率の地域分布を得た。さらに、これらの降水種の季節変化、経年変化、対応する総観規模の地上気圧配置パターンについて調査を行った。結果の要約は次のとおりである。

- (2-1)日本において着氷性降水や凍雨の発生率が高い地域は、中部地方以北の内陸山間部と、 関東地方以北の太平洋側平野部である。
- (2-2)日本では、これらの降水種は1~3月に発生することが多く、毎年10回程度の割合で観測される。しかし、その多くは凍雨であり、着氷性の雨の発生率は毎年数回程度である。
- (2-3) 着氷性降水の季節変化と経年変化は、関東地方、中部地方、東北地方でほぼ共通した特徴を示すが、北海道ではこれらの地域とは異なる変化傾向を示す。

(2-4) 着氷性降水時の地上気圧配置は、各地域の南側を低気圧が通過する場合がほとんどである。よって、融解過程による発生条件のうち上空の暖気層は、総観規模の気圧配置に伴う暖気移流に起因すると考えられる。

さらに、雨氷現象の発生に関するより詳細な地域分布を得る試みとして、雨氷被害報告の多い長野県を例に、統計的な解析手法によって地域分布を求めた。具体的には、過去 20 冬季間 (1980年11月~1999年4月)の長野県における AMeDAS 地点の雨氷発生日を特定し、年平均雨氷発生日数を目的変数、地形因子値を説明変数とした重回帰分析結果から、長野県における年平均雨氷発生日数のメッシュマップを得た。解析結果は、以下に示すとおりである。

- (2-5) 上空および地上付近の気象条件から雨氷発生日を特定した。この雨氷発生日は、雨氷が発生可能な日を客観的に判断した結果であり、雨氷発生に関する気候学的なポテンシャルを示す意味がある。
- (2-6) 地形状況を数値化した地形因子との重回帰分析によって、雨氷現象の発生に関する詳細な地域分布として、年平均雨氷発生日数のメッシュマップ(約 2km×2km)が得られた。
- (2-7)年平均雨氷発生日数の多い地域は、長野県の中部と東部を中心とした山岳地域や高原地域などの高標高地域で、毎年数日の発生割合となっている。
- (2-8) 長野県北部と南部の低標高地域では、年平均雨氷発生日数が少ない傾向にあり、0 日の地域が広くみられる。

第3章(発生条件の形成過程の解明... 局地気象規模の特徴)

着氷性降水の発生率の高い中部地方以北の内陸山間部と、関東平野以北の太平洋側平野部に着目して、両地域における気象条件の形成過程について局地気象解析を行った。また、着氷性降水時の地上気象や雨氷形成に関する大気の熱力学的な環境について両地域を比較した。その結果、以下に示すことが明らかになった。

- (3-1)内陸山間部と太平洋側平野部の両地域において、着氷性降水の発生条件の一つである 上空の暖気層は、総観規模の気圧配置に伴う暖気移流に起因することが確認された。一方、 地上付近の寒気層の形成には、局地的な気象現象や地形状況が強く関与している。
- (3-2) 内陸山間部では、盆地地形による寒気滞留(冷気湖の形成)が地上付近の寒気層の形成に寄与し、弱風下で発生することが特徴である。
- (3-3)太平洋側平野部では、内陸からの局地的な寒気移流(寒気流出)によって地上付近の寒気層が形成され、内陸山間部に比べ風を伴って発生するのが特徴である。
- (3-4) 両地域における地上付近の寒気層形成の違いによって、着氷性降水時の地上気象値の特徴も異なり、太平洋側平野部の地域で風が強く、相対湿度が低い傾向にある。
- (3-5) 両地域における地上気象の違いにより、太平洋側平野部では雨氷表面から失われる熱フラックス(顕熱および潜熱)が大きく、内陸山間部に比べて雨氷が発達しやすい大気状態にあると考えられる。

以上の着氷性降水時の局地気象の特徴は、日本における一般的な特徴である。2004年2月、 北海道の岩見沢周辺で発生した雨氷現象は、発生率の低い日本海側の平野部で発生したこと、 強風を伴っていたこと、この2点が上記の一般的な特徴と異なり、注目すべき事例であると考えら れるので、詳細な局地気象解析を行った。解析結果は、次に示すとおりである。

- (3-6) 岩見沢における着氷性降水期間は、2月22日19時30分頃から23日5時頃までである。
- (3-7)雨氷が顕著に発生した地域は、岩見沢から滝川までの約40kmの地域と考えられる。
- (3-8)岩見沢付近では、地形効果による地上付近の強い北東気流と、その上空の南からの暖気移流という気流構造により、融解過程による発生条件が形成・維持されたと考えられる。
- (3-9)着氷性降水時の岩見沢における地上気温は-0.5℃前後で、雨氷発達の大気環境としては それほど低い気温状態ではなかった。
- (3-10)しかし、6m/s 前後の風による通風効果の強まりによって雨氷表面における負の熱フラックスが増加し、雨氷を顕著に発生させたと考えられる。

第4章(大気の熱力学的構造の解析... 雲物理規模の特徴)

降雪粒子の融解過程と雨滴の凍結過程について理論的な考察を行い、降雪粒子の融解条件と雨滴の凍結条件を求めた。また、着氷性の雨が観測されているときの地上気温と露点温度の関係から、着氷性の雨発生の地上気象条件を検討した。この三つの気象条件によって着氷性の雨と凍雨を含めた地上降水種の予測手法の提案を行った。

- (4-1) 着氷性の雨と凍雨を含めた地上降水種の予測手法の提案を目的とした。
- (4-2) 気温 0℃以上の大気層を暖気層、気温 0℃以下の大気層を寒気層と定義した。
- (4-3)降雪粒子と大気との間の熱力学的な計算から、上空の暖気層における降雪粒子の融解条件が、暖気層の平均気温、平均相対湿度、厚さ、降雪粒子の大きさ(半径)を指標として求められた。降雪粒子が完全に融解する場合を、着氷性の雨発生の第一条件とした。
- (4-4) 雨滴と大気との間の熱力学的な計算から、地上付近の寒気層における雨滴の凍結条件が、 寒気層の平均気温、平均相対湿度、厚さ、雨滴の半径を指標として求められた。雨滴が完 全に凍結しないまま地上に到達する場合を、着氷性の雨発生の第二条件とした。
- (4-5)地上気象観測資料より、着氷性の雨は、地上露点温度が 0℃以下のときに発生している。 これを着氷性の雨の発生における第三の条件とした。
- (4-6) 武蔵野で観測された凍雨の大きさ(半径 1mm)を基準として、2003 年 1 月 3 日 21JST の関東平野における事例を用いて、地上降水種の予測手法の検証を行った。
- (4-7)飽和大気を仮定した計算では、暖気層と寒気層の平均気温と厚さの積を、それぞれ融解 指数 MI、凍結指数 FI として、これと地上の露点温度から降水種の推定を行った。この予 測結果と実際の降水種の分布はよく一致したが、凍雨の発生域が過少評価された。
- (4-8)未飽和大気の場合の計算では、大気の湿潤状態を考慮した降雪粒子の融解条件と雨滴 の凍結条件が熱力学的な計算によって求められ、これと地上の露点温度から降水種の推定 を行った。その結果、実際の降水種の地域分布に良く対応した結果が得られた。
- (4-9)飽和大気と未飽和大気の場合の予測結果と実際の降水種の地域分布を比較すると、地上 の降水種の予測において、大気の湿潤状態を考慮することの重要性が指摘された。
- (4-10)ここで示した地上降水種の予測手法は、Zerr (1997)による観測資料ともよく対応した。

謝辞

本研究は、前職の株式会社自然環境科学研究所に在籍当時、1998年4月に長野と新潟の県境付近で雨氷現象を観測したことが発端でした。現象そのものは、私の目で直に見たわけではありませんでしたが、これを機に、雨氷現象が発生するときの気象条件の解析を始め、長野県を対象としたハザードマップの作成を試みました(第2.5章を参照)。このとき、当時の株式会社自然環境科学研究所の石原健二博士には、雨氷現象の理解に関する基本的な手ほどきを受けました。また、同所の権頭芳浩氏(当時)には、このときの解析結果を論文としてまとめるにあたり、ハザードマップ作成の発案を含め解析内容に関する議論を通じて多くのことを学びました。

その後、この現象に興味を持ち続けて学会発表を継続していたところ、千葉大学環境リモートセンシング研究センターの西尾文彦教授より学位取得のお話しを受け、社会人として大学院(博士後期課程)に在籍することとなりました。西尾文彦教授には、北海道教育大学釧路校での学部時代から研究に対する姿勢と楽しみ方について教えていただくとともに、本研究をまとめるにあたり熱心な指導と支援をしていただきました。

着氷や着雪現象に関する基礎的な知識は、釧路の学部時代から現在に至るまで、北海道大学名誉教授の若濱五郎先生よりご教授いただきました。時には貴重な論文の別刷をいただきました。また、東京にお見えになった際、貴重な時間を割いて私の研究テーマや進捗状況について助言をしていただき、さらに着氷雪研究に関する貴重な体験談を拝聴できたことは、着氷雪の物理現象としてのイメージを得るのにたいへん参考になりました。

ここに学位論文としてまとめることができたことは、この上もない喜びです。学位論文をまとめるにあたり、千葉大学園芸学部の今 久教授、理学部の佐倉保夫教授、環境リモートセンシング研究センターの高村民雄教授には、本論文に対する適切な助言をいただきました。また、研究室のセミナーを通じて、極地研究所名誉教授の小野延雄先生には、着氷現象の一般概念と定義についてご指摘をいただきました。千葉大学環境リモートセンシング研究センターの直木和弘氏、武藤淳公氏には、大学院に入学する前より本研究テーマについて助言していただくとともに、普段大学にいることがほんどなかった私に対して在学中は様々な形でお世話になりました。

国内外の学会発表では、本研究に対する議論やそのときの雑談によって多くのヒントをいただき、これが次の研究ステップへの原動力となりました。特に、北海道大学名誉教授の小島賢治先

生、長野県環境保全研究所の浜田崇氏、北海道教育大学岩見沢校の尾関俊浩助教授、北海道 立林業試験場の鳥田宏行氏からは、論文の別刷やコピー、雨氷現象の写真などの資料提供を 受けました。また、研究の初期の段階では、日本で起こる着氷性降水や雨氷現象は珍しい現象 であるという認識でしたが、日本雪氷学会や日本気象学会での議論を通じて、この現象が日本 の各所で目撃されていることは驚きでした。さらに、着氷雪現象に対する豊富な経験を持つ株式 会社工学気象研究所の坂本雄吉氏、田所裕氏をはじめ、社員の方々からは多くの議論をしていただきました。

本論文について、適切な助言、丁寧なご指摘、また熱心な議論をしていただいた多くの方々に、ここに列記して感謝申し上げます。

本論文に関連する投稿論文の掲載までの過程のなかで、適切で有益な助言とご指摘をいただいた査読者の方々と丁寧な対応をしていただいた各学会誌の編集担当の方々にお礼申し上げます。特に、学術的な用語の使用法、文章や図の表現についてのご指摘から、コンパクトにかつ正確に重要な情報を文章化する方法など、解析結果を論文としてまとめる技術を学びました。

多くの研究がそうであるように、本研究も先人の研究成果の上に成り立っております。特に、降雪粒子の融解過程や雨滴の凍結過程(第4章)に関しては、Matsuo and Sasyo (1981a~c)やPruppacher and Klett (1997)による研究成果によるところが大きく、本研究を大きく進展させることができました。こうした先人達の研究について敬意を表したいと思います。

また、本論文で用いた解析データは、気象庁提供による気象観測資料が基本となっています。 特に、着氷性降水の発生率の地域分布(第2章)を求める際、全国の気象官署における降水種 の有人観測結果が基になっております。観測に携わった多くの気象庁職員と関係者の方々の観 測継続に対する努力について敬意を表したいと思います。

本研究は、会社勤めをしながら取り組んだため、家庭で過ごす随分多くの時間を割くこととなりました。最後になりますが、本研究を支え続けてくれた妻美菜子と家族に感謝いたします。

2005 年 7 月 4 日 松下拓樹

参考文献

- Ackley, S. F., and K. Itagaki, 1970: Distribution of icing in the northeast's ice storm of 26-27 December 1969. Weatherwise, 23, 274-279p.
- Ahrens, C. D., 2003: Meteorology today. Thomas Learning, Pacific Grove, USA, 624pp.
- Atlas, D., and C. W. Ulbrich, 1977: Path-and Aera-Integrated rainfall measurements by micro- wave attenuation in the 1-3 cm band. J. Appl. Meteor., 16, 1322-1331p.
- Atlas, D., R. C. Srivastava and R. S. Sekon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophysics. Space Physics., 11, 1-35p.
- Barthazy, E., W. Henrich and A. Waldvoge, 1998: Size distribution of hydrometeors through the menlting layer. Atmos. Res., 47-48, 193-208p.
- Battaglia, A., C. Kummerow, D-B. Shin and C. Williams, 2003: Constraining microwave brightness temperature by radar brightband observations. J. Atmos. Oceanic. Technol., 20, 856-871p.
- Beard, K. V., and H. R. Pruppacher, 1971: A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sci., 28, 1455-1464p.
- Beard, K. V., and C. Chuang, 1987: A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44, 1509-1524p.
- Bell, G. D., and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137-161p.
- Bennett, I., 1959: Glaze: Its meteorology and Climatology, geographical distribution, and economic effects. U. S. Army Quartermaster Research and Engineering Command Tech. Rep., EP-105, Natick, 217pp.
- Bendel, W. B., and D. Paton, 1981: A review of the effect of ice storms on the power industry. J. Appl. Meteor., 20, 1445-1449p.
- Bernstein, B. C., 2000: Regional and local influences on freezing drizzle, freezing rain, and ice pellet events. Wea. Forecasting, 15, 485-508p.
- Best, A. C., 1950: The size distribution of raindrops. Quart. J. Roy. Meteor. Soc., 76, 16-36p.

- Bezrukova, N. A., R. K. Jeck, L. S. Minina, M. F. Khalili and E. A. Stulov, 2004: 10-year statistics on freezing precipitation across the former USSR from surface weather observations. Proceedings of 14th International Conference on Clouds and Precipitation, 731-734p.
- Blanchard, D. C., 1957: The supercooling, freezing and melting of giant waterdrops at terminal velocity in air. Artificial Stimulation of Rain, New York, Pergamon Press, 233-245p.
- Blystone, M. E., 1930: Glaze storm in South Dakota, November 18 to 20, 1930. Mon. Wea. Rev., 58, 466-467p.
- Bocchieri, J. R., 1980: The objective use of upper air soundings to specify precipitation type. Mon. Wea. Rev., 108, 596-603p.
- Bocchieri, J. R., and G. J. Maglaras, 1983: An improved operational system for forecasting precipitation type. Mon. Wea. Rev., 111, 405–419p.
- Böhm, H. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 2419-2427p.
- ト蔵建治, 林信二, 2003: 進化する雪害 東北地方北部太平洋側に於ける近年の暴風雪災害. 雪氷, 65, 543-550p.
- Bosart, L. F., C. J. Vaudo and J. H. Helsdon, Jr., 1972: Coastal frontogenesis. J. Appl. Meteor., 11, 1236-1258p.
- Bourgouin, P., 2000: A method to determine precipitation types. Wea. Forecasting, 15, 583-592p.
- Branick, M. L., 1997: A climatology of significant winter-type weather events in the contiguous United States, 1982-94, Wea. Forecasting, 12, 193-207p.
- Brooks, C. F., 1925: Ice storm in central New England, April 19, 1925. Bull. Amer. Meteor. Soc., 6, 82-83p.
- Carnell, R. E., and C. A. Senior, 1998: Changes in mid-latitude variability due to increasing greenhouse gases and sulphate aerosols. Clim. Dyn., 14, 369-383p.
- Carrière, J-M., C. Lainard, C. le Bot and F. Robart, 2000: A climatological study of surface freezing precipitation in Europe. Meteor. Appl., 7, 229-238p.
- Chainé, P. M., 1973: Glaze and its misery: The ice storm of 22-23 March 1972 north of Montreal. Weatherwise, 26, 124-127p.

- Changnon, S. A., 2003a: Characteristics of ice storms in the United States. J. Appl. Meteor., 42, 630-639p.
- Changnon, S. A., 2003b: Urban modification of freezing-rain events. J. Appl. Meteor., 42, 863-870p.
- Changnon, S. A., and T. R. Karl, 2003: Temporal and spatial variations of freezing rain in the contiguous United States: 1948–2000. J. Appl. Meteor., 42, 1302–1315p.
- Changnon, S. A., and T. G. Creech, 2003: Sources of Data on Freezing Rain and Resulting Damages.

 J. Appl. Meteor., 42, 1514–1518p.
- Cheng, C. S., H. Auld, G. Li, J. Klaassen, B. Tugwood and Q. Li, 2004: An automated synoptic typing procedure to predict freezing rain: An application to Ottawa, Ontario, Canada. Wea. Forecasting, 19, 751-768p.
- Cober, S. G., J. W. Strapp and G. A. Isaac, 1996: An example of supercooled drizzle drops formed through a collision-coalescence process. J. Appl. Meteor., 35, 2250-2260p.
- Coleman, H., and J. Marwitz, 2002: Thermodynamic and kinematic structure of a snowband and freezing rain event during STORM-FEST. Wea. Forecasting, 17, 27-46p.
- Cortinas, J., Jr.,2000: A climatology of freezing rain in the Great Lakes region of North America.

 Mon. Wea. Rev., 128, 3574-3588p.
- Cortinas, J. V., Jr., B. C. Bernstein, C. C. Robbins and J. W. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377–390p.
- Crawford, R. W. and R. E. Stewart, 1995: Precipitation types characteristics at the surface in winter storms. Cold Reg. Sci. Technol., 23, 215-229p.
- Curry, J.A., and G. Liu, 1992: Assessment of aircraft icing potential using satellite data. J. Appl. Meteor., 31, 605-621p.
- Czys, R. R., R. W. Scott, K. C. Tang, R. W. Przybylinski and M. E. Sabones, 1996: A physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. Wea. Forecasting, 11, 591-598p.
- DeGaetano, A. T., 2000: Climatic perspective and impacts of the 1998 northern New York and New England ice storm. Bull. Amer. Meteor. Soc., 81, 237–254p.

- Fabry, F., A. Bellon and I. Zawadzki, 1994: Long term observations of the melting layer using vertically pointing radars. Research Report of Cooperative Center for Research in Mesometeorology (CCRM), MW-101, 64pp.
- Fikke, S. M., 2005: Modern meteorology and atmospheric icing. Proceedings of 11th International Workshop on Atmospheric Icing of Structures, 123-130p.
- Findeisen, W., 1940: The formation of the 0 °C isothermal layer in fractocumulus and nimbostratus.

 Meteor. Z., 57, 49-54p.
- Forbes, G. S., R. A. Anthes and D. W. Thomson, 1987: Synoptic and mesoscale aspects of an Appalachian ice storm associated with cold-air damming. Mon. Wea. Rev., 115, 564-591p.
- Frankenfield, H. C., 1915: Sleet and ice storms in the United States. Mon. Wea. Rev., 43, 608p.
- 藤部文昭, 1990: 本州中部におけるひと雨降水時の地上風系と冷気層. 天気, 37, 843-852p.
- 藤部文昭, 1994: 冬の日本海低気圧時における関東平野の地上風系の日変化性. 天気, 41, 321-330p.
- Fujiyoshi, Y., 1986: Melting snow flakes. J. Atmos. Sci., 43, 307-311p.
- Fujiyoshi, Y., and K. Muramoto, 1996: The effect of breakup of melting snowflakes on the resulting size distribution of raindrops. J. Meteor. Soc. Japan, 74, 343-353p.
- 古川仁, 片倉正行, 近藤道治, 岡田充弘, 小山泰弘, 畠山竜哉, 1999: 平成 10 年に発生した森林の雨氷害. 長野県林業総合センター カラマツ林業研究会報, 8-11p.
- Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15, 452-461p.
- Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243-248p.
- Gyakum, J. R., and P. J. Roebber, 2001: The 1998 ice storm—analysis of a planetary-scale event.

 Mon. Wea. Rev., 129, 2983–2997p.
- Hall, W. D., and H. R. Pruppacher, 1976: The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sic., 33, 1995-2006p.
- 浜田崇, 2000: 1998 年 4 月 1 日~2 日にかけて長野県中部で発生した雨氷による森林被害の分布. 長野県自然保護研究所紀要, 3, 55-60p.

- 浜田崇, 牛山素行 2001: 1998 年 4 月 1 日から 2 日にかけて長野県中部で生じた雨氷による森林被害の分布と被害要因 穂高町と堀金村の被害地域を事例として-. 長野県自然保護研究所紀要, 4、別冊, 1, 323-330p.
- Hanesiak, J. M., and R. E. Stewart, 1995: The mesoscale and microscale structure of a severe ice pellet storm. Mon. Wea. Rev., 123, 3144-3162p.
- 原田裕介,新田隆三,北村淳,前原徹,1998:1998年1月、中央アルプスで多発した雪崩について、1998年度日本雪氷学会全国大会講演予稿集、1p.
- Harimaya, T., H. Kodama and K. Muramoto, 2004: Regional differences in snowflake size distribution. J. Meteor. Soc. Japan, 82, 895-903p.
- Harlin, B. W., 1952: The great southern glaze storm of 1951. Weatherwise, 5, 10-13p.
- 長谷美達雄, 馬場邦彦, 1994: 南岸低気圧の通過に伴って関東地方に形成される局地前線と着雪発生について. 雪氷, 56, 119-126p.
- Henry, A. J., 1922: The great glaze storm of February 21-23, 1922 in the upper lake region: Discussion of general conditions. Mon. Wea. Rev., 50, 77-82p.
- 平川昇, 渡辺次郎, 1985: 福島県の阿武隈山地に発生した雨氷害. 雪と造林、6、20-26p.
- Holton, J. R., 1992: The thermal wind. An introduction to dynamic meteorology, Academic Press, New York, 73-77p.
- 堀部明彦,福迫尚一郎,山田雅彦,田子真,1992:寒冷気流中に置かれた液滴の凍結挙動. 第8回寒地技術シンポジウム講演論文集,478-483p.
- Huffman, G. J., and G. A. Norman Jr., 1988: The supercooled warm rain process and the specification of freezing precipitation. Mon. Wea. Rev., 116, 2172-2182p.
- Hux, J. D., P. C. Knappenberger, P. J. Michaels, P. J. Stenger, H. D. Cobb and M. P. Rusnak, 2001: Development of a discriminant analysis mixed precipitation (DAMP) forecast model for mid-Atlantic winter storms. Wea. Forecasting, 16, 248–259p.
- 今井一郎, 1941: 物体による気流中の微粒子の捕捉(着氷の物理). 気象集誌(J. Meteor. Soc. Japan), 2, 217-226p.
- 井上桂, 増田久夫, 1955: 上川盆地の雨氷被害について. 林業試験場北海道支場特別報告, 3, 97-103p.

- 井上聡, 横山宏太郎, 1998: 地球環境変化時における降積雪の変動予測. 雪氷, 60, 367-378p.
- Inoue, S., and K. Yokoyama, 2003: Estimates of snowfall depth, maximum snow depth, and snow pack environments under global warming in Japan from five sets of predicted data. 農業気象, 59, 227-236p.
- Intergovernmental Panel on Climate Change (IPCC), 2001a: Climate Change 2001: The Scientific Basis Contribution of Working Group I to the IPCC Third Assessment Report 2001.

 Cambridge University Press, Cambridge, UK, 881pp.
- Intergovernmental Panel on Climate Change (IPCC), 2001b: Climate Change 2001: Impacts,
 Adaptation and Vulnerability Contribution of Working Group II to the IPCC Third
 Assessment Report 2001. Cambridge University Press, Cambridge, UK, 1032pp.
- 石原健二, 田所裕, 1989: 雨氷発生の気象学的解析. 寒地技術シンポジウム講演論文集, 5, 101-109p.
- 石坂雅昭, 1995: 雲粒付雪片の落下速度について. 雪氷, 57, 229-238p.
- 岩井邦中, 1970: 地上気温0℃以下で降った雨の粒度分布. 志賀自然教育研究施設研究業績, 信州大学教育学部, 9, 93-99p.
- Jones, K. F., 1996: Ice accretion in freezing rain. Cold Regions Research & Engineering Laboratory Report, Hanover, U. S. A., 96-2, 22pp.
- Jones, K. F., 2003: Ice storms in the St. Lawrence Valley region. Technical Report of Cold Regions Research & Engineering Laboratory, Hanover, U. S. A., TR-03-1, 121pp.
- Jones, K. F., and N. D. Mulherin, 1998: An evaluation of the severity of the January 1998 Ice Storm in northern New England. Cold Regions Research & Engineering Laboratory Report, Hanover, U. S. A., Report for Federal Emergency Management Agency Region 1, 66pp.
- Kain, J. S., S. M. Gross and M. E. Baldwin, 2000: The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting, 15, 700-714p.
- 梶幹男, 沢田晴雄, 斉藤俊浩, 斉藤登, 中山勇, 赤岩朋敏, 伊藤幸也, 1991: 1989 年 2 月下旬 秩父演習林で発生した人工造林地雨氷害の要因解析. 東京大学農学部演習林報告, 85, 49-66p.

- 梶幹男, 沢田晴雄, 五十嵐勇治, 佐々木潔州, 1994: 1990 年 11 月下旬秩父山地甲武信ヶ岳周辺の亜高山帯針葉樹林で発生した雨氷害. 東京大学農学部演習林報告, 91, 115-125p.
- 梶川正弘,谷口泉子,伊藤誠子,1996: 雪片の落下速度と構成結晶形の関係. 雪氷,58,455-462p.
- 加藤美雄, 1988: 北海道の大雪における降水現象の細域特性-寒候期の降雪の場合-. 研究時報, 40, 57-69p.
- 川島由載, 池田保夫, 信太朋之, 2004: 凍雨が原因で発生した雪崩. 2004年度日本雪氷学会全国大会講演予稿集, 37p.
- Kimura, S., K. Furumi, T. Sato, M. Yoshida and K. Tsuboi, 2004: Evaluation of anti-icing coatings on the surface of wind turbine blade for the prevention of ice accretion. Proceedings of 7th International Symposium on Cold Region Development (CD-ROM), 726-735p, Sapporo, Japan, September 2004.
- Kimura, T., and M. Kajikawa, 1984: An observation of ice pellets. J. Meteor. Soc. Japan, 62, 802-808p.

気象庁, 1999: 異常気象レポート'99. 大蔵省印刷局, 東京, 341pp.

気象庁, 2002: 地上気象観測指針. 気象業務支援センター、東京、154pp.

- Knippertz, P, U. Ulbrich and P, Speth, 2000: Changing cyclones and surface wind speeds over the North Atlantic and Europe in a transient GHG experiment. Climate Res., 15, 109-122p.
- Kondo, H., 1995: The thermally induced local wind and surface inversion over the Kanto plain on calm winter nights. J. Appl. Meteor., 34, 1439-1448p.
- 近藤純正, 森洋介, 安田延寿, 佐藤威, 萩野谷成徳, 三浦章, 山沢弘実, 川中敦子, 庄司邦彦, 1983: 盆地内に形成される夜間の安定気層(冷気湖). 天気, 30, 327-334p.

近藤純正, 桑形恒男, 中園信, 1991: 地域代表風速の推定法. 自然災害科学, 10, 171-185p.

河野良治, 竹下幸, 志水俊雄, 吉本衛, 1975: 49年3月に発生した阿蘇地方における雨氷害の実態-気象および地形との関係-. 日本林学会九州支部講演集, 28, 211-212p.

甲藤好郎, 1979: 伝熱概論. 養賢堂, 東京, 44-182p.

黒岩大助, 1951a: 模型プロペラの着氷. 低温科学, 6, 1-9p.

黒岩大助, 1951b: プロペラの着氷. 低温科学, 6, 11-22p.

- 黒岩大助, 1982: 送電線の着氷雪と気象. 電気評論, 1982.3, 305-314p.
- Lackmann, G. M., K. Keeter, L. G. Lee and M. B. Ek, 2002: Model representation of freezing and melting precipitation: implications for winter weather forecasting. Wea. Forecasting, 17, 1016-1033p.
- Laflamme, J. N., and G. Périard, 1996: The climate of freezing rain over the province of Québec in Canada: a preliminary analysis. Atmos. Res., 46, 99-111p.
- Langleben, M. P., 1954: The terminal velocity of snow aggregates. Quart. J. Roy. Meteor. Soc., 80, 174-182p.
- Langmuir, I. and K. B. Blodgett, 1946: A mathematical investigation of water droplet trajectories. G. E. Res. Lab. Rep., RL, 225, 65p.
- Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 2185-2197p.
- Lu, M. L., N. Popplewell and A. H. Shah, 2000: Freezing rain simulations for fixed, unheated conductor samples. J. Appl. Meteor., 39, 2385–2396p.
- Magono, C., 1953: On the growth of snowflake and graupel. Sci. Rep. Yokohama Nat. Univ., Sec. 1. No. 2, 18-40p.
- Magono, C., and T. Nakamura, 1965: Aerodynamic studies of falling snowflakes. J. Meteor. Soc. Japan, 43, 139-147p.
- Mahaffy, F. J., 1961: The ice storm of 25-26 February 1961 at Montreal. Weatherwise, 14, 241-244p.
- Makkonen, L., 1981: Estimating intensity of atmospheric ice accretion on stationary structures. J. Appl. Meteor., 20, 595-600p.
- Makkonen, L., 1984: Modeling ice accretion on wires. J. Climate Appl. Meteor., 23, 929-939p.
- Makkonen, L., 1998: Modeling power line icing in freezing precipitation. Atmos. Res., 46, 131-142p.
- Martner, B. E., R. M. Rauber, R. M. Rasmussen, E. T. Prater and M. K. Ramamurthy, 1992: Impacts of a destructive and well-observed cross-country winter storm. Bull. Amer. Meteor. Soc., 73, 169-172p.

- Martner, B. E., J. B. Snider, R. J. Zamora, G. P. Byrd, T. A. Niziol and P. I. Joe, 1993: A remote-sensing view of a freezing rain storm. Mon. Wea. Rev., 121, 2562-2577p.
- 松尾敬世, 1984: 大気中における雪片の融解現象に関する研究. 気象研究所技術報告, 80pp.
- Matsuo, T., and Y. Sasyo, 1981a: Empirical formula for the melting rate of snowflakes. J. Meteor. Soc. Japan, 59, 1-9p.
- Matsuo, T., and Y. Sasyo, 1981b: Melting of snow flakes below freezing level in the atmosphere. J. Meteor. Soc. Japan, 59, 10-25p.
- Matsuo, T., and Y. Sasyo, 1981c: Non-melting phenomenon of snowflakes observed in subsaturated air below freezing level. J. Meteor. Soc. Japan, 59, 26-32p.
- Matsuo, T., H. Sakakibara, J. Aoyagi and K. Matsuura, 1985: Atmospheric cooling around the melting layer in continuous rain. J. Meteor. Soc. Japan, 63, 340-346p.
- 松岡廣雄, 北田正憲, 北田健二, 大丸裕武, 1990: 北上山地におけるダケカンバの霧・雨氷害. 日林東北支誌, 42, 48-50p.
- Matveev, L. T., 1984: Cloud dynamics. D. Reidel Publishing Company, 231-256p.
- McClurg, R. J., 1930: The glaze storm of November 15 to 16, 1930, in North Dakota and Minnesota.

 Mon. Wea. Rev., 58, 467p.
- McKay, G. A., and H. A. Thompson, 1969: Estimating the hazard of ice accretion in Canada from climatological data. J. Appl. Meteor., 8, 927-935p.
- Meisinger, C. L., 1920: The precipitation of sleet and the formation of glaze in the eastern United States, January 20 to 25, 1920, with remarks on forecasting. Mon. Wea. Rev., 48, 73-80p.
- 三沢勝衛, 1923a: 大正十二年一月二十二日二十三日の長野縣中部の雨氷に就て(第一報). 気象集誌第二輯, 1,45-49p.
- 三沢勝衛, 1923b: 大正十二年一月二十二日二十三日の長野縣中部の雨氷に就て(第二報). 気象集誌第二輯, 1,61-72p.
- 三沢勝衛, 1923c: 大正十二年一月二十二日二十三日の長野縣中部の雨氷に就て(第三報). 気象集誌第二輯, 1,87-95p.
- 三沢勝衛, 1923d: 大正十二年四月五日の長野縣中部に於ける雨氷に就て. 気象集誌第二輯, 2,137-144p.

- 三沢勝衛, 1931: 昭和六年二月五日諏訪地方に出現せる雨氷に関する報告. 気象集誌第二輯, 9,223-225p.
- Mitra, S. K., O. Vohl, M. Ahr and H. R. Pruppacher, 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47, 584-591p.
- 水野量、2000: 雲と雨の気象学. 朝倉書店, 東京, 196pp.
- 水野量,山本哲,1995: 国内飛行場で観測された過冷却霧の統計的性質. 研究時報,47,221-233p.
- 村井日吉, 1936: 千葉縣演習林の雨氷害報告. 東大農学部演習林報告, 27, 1-59p.
- 長野地方気象台,日本気象協会長野支部,1988:信州の気候百年誌.長野地方気象台,長野, 261pp.
- 南雲信宏, 藤吉康志, 2004: 2D-video-distrometer を用いた霙の観測. 日本気象学会春季大会講演予稿集, 85, 441p.
- 中谷宇吉郎, 1950: 霧退治. 岩波書店, 297pp.
- Nielsen, J. W., 1989: The formation of New England coastal fronts. Mon. Wea. Rev., 117, 1380-1401p.
- 小川真由美, 野上道男, 1997: 温暖化が冬季の降水量に与える影響. 水文・水資源学会誌, 10, 79-86p.
- 小口八郎, 1951a: 顕微鏡的構造による着氷の分類(着氷の物理的研究 1). 低温科学, 6, 95-101p.
- 小口八郎, 1951b: 着氷の気象条件に就いて(着氷の物理的研究 2). 低温科学, 6, 103-115p.
- 小口八郎, 1951c: 着氷の密度に就いて(着氷の物理的研究3). 低温科学, 6, 117-123p.
- 小口八郎, 1951d: 着氷の寸法効果(着氷の物理的研究 4). 低温科学, 6, 125-130p.
- 小口八郎, 1951e: 着氷の顕微鏡的構造と凍結の機巧(着氷の物理的研究 5). 低温科学, 6, 131-146p.
- 大原偉樹, 栗田稔美, 小野寺弘道, 糸屋吉彦, 神山安生, 外館聖八郎, 野呂忠幸, 佐々木孝昭, 1990: 1990年4月に発生した北上山地の雨氷害(I) ー御大堂山周辺のダケカンバニ 次林一. 日本林学会東北支部会誌, 42, 42-44p.

- Ohtake, T., 1963: Hemispheric investigation of warm rain by radiosonde data. J. Appl. Meteor., 2, 594-607p.
- Ohtake, T., 1969: Observations of size distributions of hydrometeors through the melting layer. J. Atmos. Sci., 26, 545-557p.
- 岡田武松、1902: 本月8日東京付近に起こりたる凝霜について. 気象集誌 I,21,398-402p.
- Okada, T., 1914: Notes on the formation of glazed frost. Mon. Wea. Rev., 42, 284-286p.
- 尾関俊浩, 2004a: 2004年2月22日-23日に北海道で発生した着氷雪に関する調査. 第23回日本自然災害学会学術講演会講演概要集, 77-78p.
- 尾関俊浩, 2004b: 2004年2月23日に北海道で観測された雨氷の発生地域の推定. 2004年度日本雪氷学会全国大会講演予稿集, 20p.
- Prater, E. T., and A. A. Borho, 1992: Doppler radar wind and reflectivity signatures with overrunning and freezing-rain episodes: Preliminary results. J. Appl. Meteor., 31, 1350-1358p.
- Pruppacher, H. R., and K. V. Beard, 1970: A wind tunnel investigation of the internal circulation and shape of water drops falling as terminal velocity. Quart. J. Roy. Meteor. Soc., 96, 247-256p.
- Pruppacher, H. R., and R. Rasmussen, 1979: A wind tunnel investigation of the rate of evaporation of large water drops falling at terminal velocity in air. J. Atmos. Sci., 36, 1255-1260p.
- Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of clouds and precipitation. Kluwer Academic Publishers, Dordrecht, Netherlands, 954pp.
- Rasmussen, R. M., I. Geresdi, G. Thompson, K. Manning and E. Karplus, 2002: Freezing drizzle formation in stably stratified layer clouds: the role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation. J. Atmos. Sci., 59, 837-860p.
- Rauber, R. M., M. K. Ramamurthy and A. Tokay, 1994: Synoptic and mesoscale structure of a severe freezing rain event: The St. Valentine's Day ice storm. Wea. Forecasting, 9, 183-208p
- Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy and K. E. Kunkel, 2000: The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteor., 39, 1185-1195p.

- Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy and K. E. Kunkel, 2001a: Further investigation of a physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. Wea. Forecasting, 16, 185-191p.
- Rauber, R. M., L. S. Olthoff, M. K. Ramamurthy, D. Miller and K. E. Kunkel, 2001b: A synoptic weather pattern and sounding-based climatology of freezing precipitation in the United States East of the Rocky Mountains. J. Appl. Meteor., 40, 1724-1747p.
- Riehl, H., and Coauthors, 1952: Forecasting in middle latitudes. Meteor. Monogr., No. 5, Amer. Meteor. Soc., 80pp.
- 林野庁, 1957: 昭和 31 年北陸並びに本州中部地方に発生した森林の気象災害調査報告. 178pp.
- Robbins, C. C., and J. V. Cortinas Jr., 2002: Local and synoptic environments associated with freezing rain in the contiguous United States. Wea. Forecasting, 17, 47-65p.
- Roebber, P. J., and J. R. Gyakum, 2003: Orographic influences on the mesoscale structure of the 1998 ice storm. Mon. Wea. Rev., 131, 27-50p.
- 坂上公平, 1994: 雨氷発生時のモデル. 研究時報別冊, 45, 108-109p.
- 佐藤休, 中村幸美, 松橋正明, 中井戸啓, 1970: 雨氷害を受けたカラマツ林の回復状況について. 日本林学会北海道支部講演集, 19, 123-126p.
- Schultz, P., and M. K. Politovich, 1992: Toward the improvement of aircraft-icing forecasts for the continental United States. Wea. Forecasting, 7, 491-500p.
- Seino, N., H. Yoshikado, F. Kobayashi, J. Sato and Members of Tsukuba area precipitation studies, 2003: Vertical structure of local fronts observed in Kanto, Japan. J. Meteor. Soc. Japan, 81, 367-391p.
- Spengler, J. D., and N. R. Gokhale, 1972: Freezing of freely suspended, supercooled water drops in a large vertical wind tunnel. J. Appl. Meteor., 11, 1101-1107p.
- Stewart, R. E., 1992: Precipitation types in the transition region of winter storms. Bull. Amer. Meteor. Soc., 73, 287-296p.
- Stewart, R. E., and P. King, 1987: Freezing precipitation in winter storms. Mon. Wea. Rev., 115, 1270-1279p.

- Stewart, R. E., and R. W. Crawford, 1995: Some characteristics of the precipitation formed within winter storms over eastern Newfoundland. Atmos. Res., 36, 17-37p.
- Stewart, R. E., R. W. Crawford, N. R. Donaldson, T. B. Low and B. E. Sheppard, 1990: Precipitation and environmental conditions during accretion in Canadian East Coast winter storms. J. Appl. Meteor., 29, 525-538p.
- Stuart, R. A., and G. A. Isaac, 1999: Freezing precipitation in Canada. Atmos. –Ocean, 37, 87-102p.
- 鈴木正嘉, 高月利治, 石川和明, 権頭芳浩, 1998: 高標高山岳地における雨氷現象. 日本雪氷 学会全国大会講演予稿集, 206p.
- 荘田幹夫, 1953: 着雪の研究. 雪氷の研究, 1, 50-72p.
- Syono, S., and T. Takeda, 1962: On the evaporation of raindrops in a sub-cloud layer. J. Meteor. Soc. Japan, 40, 245-265p.
- Szeto, K. K., A. Tremblay, H. Guan, D. R. Hudak, R. E. Stewart and Z. Cao, 1999: The mesoscale dynamics of freezing rain storms over eastern Canada. J. Atmos. Sci., 56, 1261-1281p.
- Szyrmer, W., and I. Zawadzki, 1999: Modeling of the melting layer. Part I: Dynamics and microphysics. J. Atmos. Sci., 56, 3573-3592p.
- Takahashi, C, 1975: Deformations of frozen water drops and their frequencies. J. Meteor. Soc. Japan, 53, 402-411p.
- Takahashi, C., and A. Yamashita, 1969: Deformation and fragmentation of freezing water drops in free fall. J. Meteor. Soc. Japan, 47, 431-436p.
- 高野玉吉, 1950a: 風洞による着氷の研究 I. 低温科学, 5, 1-8p.
- 高野玉吉, 1950b: 風洞による着氷の研究Ⅱ. 低温科学, 5, 9-20p.
- 高野玉吉, 1950c: 風洞による着氷の研究Ⅲ. 低温科学, 5, 21-36p.
- 高野玉吉, 1950d: 風洞による着氷の研究IV. 低温科学, 5, 37-50p.
- 高野玉吉, 1950e: 風洞による着氷の研究 V. 低温科学, 5, 51-60p.
- 玉手三葉寿, 1922: 大正 11 年 1 月 10 日東京目黒の雨氷. 森林測候所特別報告, 7, 林業試験場.
- Theriault, J., and R. Stewart, 2005: Winter precipitation types and icing at the surface. Proceedings of 11th International Workshop on Atmospheric Icing of Structures, 21-26p.

- Thompson, G, R. Bullock and T. F. Lee, 1997: Using satellite data to reduce spatial extent of diagnosed icing. Wea. Forecasting, 12, 185-190p.
- Tokay, A., and K. V. Beard, 1996: A field study of raindrop oscillations. Part I: Observation of size spectra and evaluation of oscillation causes. J. Appl. Meteor., 35, 1671-1687p.
- 鳥田宏行, 木戸一男, 清水敏道, 2004: 日高町で発生した着氷による森林被害. 2004 年度日本 雪氷学会全国大会講演予稿集, 116p.
- 東海林明雄、1982: 氷の世界. あかね書房、東京、52pp.
- Tremblay, A., and A. Glazer, 2000: An improved modeling scheme for freezing precipitation forecasts. Mon. Wea. Rev., 128, 1289-1308p.
- 内田武, 楠本韶, 安藤司文, 1991: 霧氷生成に及ぼす各種因子の影響(第一報: 温度・風速による影響). 雪氷, 53, 145-154p.
- 内田武, 楠本韶, 梶聖悟, 1993: 霧氷生成に及ぼす各種因子の影響(第二報: 被着氷物直径・ 雲水量による影響). 雪氷, 55, 11-19p.
- Ulbrich, U., and M. Christoph, 1999: A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Clim. Dyn., 15, 551-559p.
- 牛山素行, 1991: 雨氷現象についての基本的考察 長野県の事例を主として-. 年報長野県地理, 9, 18-27p.
- 牛山素行, 1993: 長野県中部で発生した雨氷現象. 天気, 40(1).
- 牛山素行, 1998: 1998 年 4 月 1 日から 2 日にかけて長野県中部で発生した雨氷. 天気, 45, 497-498p.
- 牛山素行, 宮崎敏考, 1992: 雨氷現象による森林被害に関する2, 3の考察 1989年2月26日 長野県東信地区で発生した森林被害のデータベース. 信州大学農学部演習林報告, 29, 25-45p.
- 牛山素行, 宮崎敏考, 1993: 1991年3月23日長野県中部で発生した雨氷現象の特徴. 天気, 40, 47-54p.
- 山本晃, 1984: 関東平野の雪-雨と雪の境目-. 研究時報, 36, 131-149p.
- 山下晃, 1991: 雨滴が凍るとどうなる. 光田寧編, 気象のはなしⅡ, 技報堂出版, 東京, 81-85p.

- Yasunari, T., and Y. Seki, 1992: Role of the Asian monsoon on the interannual variability of the global climate system. J. Meteor. Soc. Japan, 70, 177-189p.
- Zakrzewski, W. P., R. Blackmore and E. P. Lozowski, 1988: Mapping icing rates on sea-going ships.

 J. Meteor. Soc. Japan, 66, 661-675p.
- Zerr, R. J., 1997: Freezing rain: An observational and theoretical study. J. Appl. Meteor., 36, 1647-1661p.

付録

A. 大気水象の種類と定義

気象庁(2002)では、水滴または氷粒が大気中を落下したり、浮遊したり、地表から風によって吹き上げられたり、地面または地物に付着している現象を、大気水象(hydrometeors)として以下に示す表 A. 1のように定義し、全国各地の気象官署において観測を行っている。

このうち降水は、降水粒子の相によって、

- (a) 液体の降水 (liquid precipitation)... 霧雨、雨。
- (b) 着氷性の降水 (freezing precipitation)... 着氷性の霧雨、着氷性の雨。
- (c) 固形降水 (frozen precipitation)... 雪、雪あられ、霧雪、凍雨、氷あられ、ひょう、細氷。

に分類される。固形降水の種類が多いのは、その成長過程が多様であることを反映している。

なお、表 A. 1に示す霙(みぞれ)は、雨と雪が混在して降る状態という定義であり、英語表記では rain and snow mixed あるいは mixture of rain and snow である。しかし英国では、特にニュースメディアを中心にみぞれを sleet と呼ぶが、米国では凍雨を呼ぶときにも sleet が使われる(Ahrens, 2003)。ただし、学術的な英文誌をみると、凍雨は ice pellets と呼んでいる場合がほとんどである。

大気水象の他、気象庁(2002)では、煙霧、黄砂、風じんなどの大気じん像(lithometeors)、かさ、彩雲、にじなどの大気光象(photometeors)、雷電、電光、雷鳴を大気電気象(electrometeors)として定義し観測を行っている。

全国の気象官署では、図 A. 1に示すように、これらの大気現象の観測時刻や終了時刻、状態 (しゅう雨性、強度、強度の変化、方位、距離、状況等)などが記録されている。

表 A. 1 大気水象の種類と定義(気象庁, 2002)

種 類	記号	定義/解説
雨 Rain	•	水滴からなる降水。直径は多くは 0.5mm 以上であるがもっと 小さいものがまばらに降ることもある。雨滴の直径と集中度は雨 の強さや降り方によりかなり変化する。 雨滴は普通霧雨の粒よりも大きい。しかし降雨域の端で降っ ている雨滴は、蒸発のために霧雨の粒と同程度の小粒になるこ とがある。その場合には粒が分散して降るので霧雨と区別でき る。
着氷性の雨 Freezing rain 過冷却の雨 Supercooled rain	•	0℃より低温の雨である。 地面や地物または飛行中の航空機にあたって着氷(水と 0℃ の氷の混在)を起こす。
霧雨 Drizzle	•	きわめて多数の細かい水滴(直径 0.6mm 未満)だけがかなり 一様に降る降水。 粒はほとんど浮遊しているように見え、その ために空気のわずかな動きにも従うのが見える。 霧雨はかなり連続した濃い層雲から降る。この層雲は普通は 低く、ときには地面に達して霧となる。特に海岸沿いや山岳地帯 では、霧雨による降水量は、1 時間に 1mm 以上になることは少 ない。
着氷性の霧雨 Freezing drizzle 過冷却の霧雨 Supercooled drizzle	2	0℃より低温の霧雨である。 地面や地物または飛行中の航空機にあたって着氷(水と 0℃の氷の混在)を起こす。
雪 Snow	×	空気中の水蒸気が昇華してできた氷の結晶の降水。 雪の降り方、大きさ、結晶は雪が成長、形成される過程での 状況により、かなり変化する。雪の結晶には星状、角柱状、板 状、それらの組み合わせや、不規則な形をしたものがある。気 温が約−5℃より高いと結晶は一般に雪片化する。 過冷却した水滴が凍結してできた微少な氷の粒を少しつけた ものや多少水分を含んだものもある。このような結晶が多数くっ つき合って雪片(Snow flakes)をなして降ることが多いが、結晶 が個々離れ離れの状態で降る単独結晶の雪もある。
みぞれ Rain and snow mixed	*	雨と雪とが混在して降る降水。

表 A. 1 大気水象の種類と定義(気象庁, 2002) つづき

種 類	記号	定義/解説
雪あられ Snow pellets	×	白色で不透明な氷の粒の降水。粒は円すい状または球状である。直径は約5mm に達することがある。この粒は、堅い地面にあたるとはずんでよく割れることがある。砕けやすく、容易につぶれる。雪あられは、中心の氷の粒(普通は氷晶)が急速に凍った雲粒でおおわれている。中心の氷晶と凍りついた雲粒との間にすき間があるので雪あられの密度は一般に小さく 0.8g/cm³ 未満である。雪あられの降水は、普通は地面近くの気温が 0℃に近いときに雪片とともにしゅう雨性降水として降る。
霧雪 Snow grains	4	ごく小さい白色で不透明な氷の粒の降水。粒は雪あられに似ているが、へん平な形をしているかまたは細長い形をしている。 その直径は一般に 1mm より小さい。 この粒は、堅い地面にあたってもはずまないし、こわれもしない。降る量は普通非常に少なく、層雲か霧から降る。しゅう雨性降水の形では降らない。気温が約−10℃~0℃の間のときに生じる霧雨に相当する。
凍雨 Ice pellets	\triangle	透明の氷の粒の降水。粒は球状または不規則な形でまれに 円すい状である。直径は 5mm 未満である。凍雨は一般に高層 雲か乱層雲から降る。 この粒は、普通堅い地面にあたるとはずみ、音をたてる。また 容易につぶれない。凍雨は部分的には液体であってもよい。凍 雨の密度は氷の密度(0.92g/cm³)に近いか、あるいはそれ以上 である。しゅう雨性降水としては降らない。
氷あられ Small hail		半透明の氷の粒の降水。粒はほとんどいつも球状で、時に円すい状のとがりをもつ。直径は5mmに達し、まれに5mmを超えることがある。この粒は簡単にはつぶれず、堅い地面にあたると、音をたててはずむ。

表 A. 1 大気水象の種類と定義(気象庁, 2002) つづき

75. NO.	≑∃ □	定 義 / 解 説
種 類	記号	氷の小粒またはかたまりの降水。直径 5mm から 50mm の範
ひょう		那で、ときにはそれ以上のものもある。単独に降るかまたはいく
Hail		囲で、ときにはてれ以上のものもある。単独に降るかまたはいくつかがくっついて、不規則なかたまりとなって降る。
		ひょうは透明な氷または透明な層(厚さ 1mm 以上)と半透明
		な層とが交互に重なってできているものや、透明または不透明
		な氷そのものもある。ひょうは一般に強い雷電に伴って降る。
細氷	↔	晴れた空から降ってくるごく小さな氷の結晶の降水で、大気
Diamond dust		中に浮遊しているように見える。
		細氷は非常によく晴れた静穏の寒い日に起きやすく、気団が
		急激に冷え込み、気温が-10℃未満に下がるとできる。一般に
		は板状結晶のものが多く、その直径は約30~200μm である。
		この結晶が太陽光の中ではきらきら輝いて見える、また顕著
		なかさ現象をしばしば見ることができる。
	 	水平視程は激しく変動するが、その下限は1km以上である。
霧	=	ごく小さな水滴が大気中に浮遊する現象。水平視程が 1km
Fog		未満の場合をいう。
		十分に光があたっているときには、一つ一つの霧粒が肉眼で
		見分けられることがあり、そのときには霧粒がいくぶん不規則に
		動いているように見える。霧の中の空気は通常湿っぽく冷たく感
		ずる。霧の中の相対湿度は一般に 100%に近い。全体としては
		白みがかっているが、工場地帯では煙とじんあいのため灰色ま
		たは黄色みを帯びる。
		霧と煙が混じったものをスモッグ(smog)ということもある。
低い霧	=	目の高さの水平視程は 1km 未満であるが、天空がかすかに
Low fog		見えるくらいに霧が薄い場合は、低い霧という。
地霧	==	目の高さの水平視程は1km以上であるが、地面近くに霧があ
Shallow fog		る場合は、地霧という。
氷霧	=	多数のごく小さな氷の結晶(直径約2~30 µ m)が大気中を浮
Ice fog		遊する現象。水平視程を著しく減少させる。
		この結晶は日がさしていると輝いて見える。氷霧に細氷が混
		じるとかさなどを生じることがある。
		一般に高緯度地方・山岳地方で気温-30℃以下の静穏な晴
		天のときに現れる。
もや		ごく小さい水滴または湿った吸湿性の粒子が大気中に浮遊し
Mist		ている現象。水平視程は 1km 以上の場合をいう。
		もやの中の空気は霧の中でのように湿っぽくも冷たくも感じな
		い。もやの中の相対湿度は一般に霧の場合よりも小さく、目安と
		しては75%以上が多いが100%になることはない。もやは一般に
<u> </u>		多少とも灰色がかっている。

表 A. 1 大気水象の種類と定義(気象庁, 2002) つづき

種 類	記号	定義/解説
地ふぶき Drifting and blowing snow	+	地ふぶきは、積もった雪が吹き上げられる高さの違いにより、 低い地ふぶき及び高い地ふぶきの二種類がある。
低い地ふぶき Drifting snow	+	積もった雪が地表からわずかの高さに吹き上げられる現象。 目の高さの水平視程はほとんど減じない。雪の粒子は地表を はうように移動し、このため非常に低い地物はぼんやり見えた り、隠されたりする。
高い地ふぶき Blowing snow	+	積もった雪が地上高く吹き上げられる現象。目の高さの水平 視程は一般に非常に悪い。吹き上げられた雪はときには全天を 覆い、太陽さえも隠すほどになることがある。これらの雪は絶え ず風によって激しくかき回される。
ふぶき Snow storm	*	高い地ふぶきと雪とが同時に起こっている現象。
しぶき Spray	Q	広い水面、一般的には波がしらから、風により水滴が吹き飛ばされる現象。水面が荒れた状態では、泡を伴うことがある。 台風、季節風など広範囲の強い風にともない発生し、視程障害を発生させた場合に記録する。
露 Dew	_	地面や地物などに大気中の水蒸気が凝固し水滴となって付着したもの。草や木の葉だけにできたものは除く。
凍露 White dew	۵	露の粒が凍結したもの。
霜 Hoar-frost	ч	大気中の水蒸気が昇華して、地面または地物に付着した氷 の結晶。一般にうろこ状、針状、羽状または扇子状をしている。
霜柱 Ice columns	다 -	地中の水分が柱状の氷の結晶となって、地中または地面に析出したもの。
霧氷]	樹氷や地物に白色ないし半透明の氷層が付着したもので、 樹霜、樹氷、粗氷の三種類がある。
樹霜 Air hoar	닌	おもに水蒸気の昇華によって生じた氷の結晶からなり、針状・ 板状コップ状などの結晶形が明らかに認められることが多いが、 凍った霧粒が混じってついていることもある。物体の風上側に 成長しやすい。
樹氷 Rime または Soft rime	V	おもに過冷却した霧粒または雲粒(山岳域)が、地物に吹きつけられてできた白色不透明のもろい氷で、うすい針状、または尾びれ状の塊が集まってできている。側面に樹霜ができていることもある。弱い風の下では地物の全方向に付着する。

表 A. 1 大気水象の種類と定義(気象庁, 2002) つづき

	T .	
種 類	記号	定義/解説
粗氷	\vee	樹氷と同じようにしてできる。半透明か、または透明に近い氷
Rime または Hard rime	•	の塊で、霧粒が大きく、気温が-2℃~-10℃の間でできやす
		い。また風方向に発達する。
雨氷	~	一般に均質で透明な氷層が地物に付着した現象。過冷却し
Glaze または Clear ice		た霧雨または雨(着氷性の霧雨または雨)が、0℃以下または
		0℃よりわずかに高い温度(過冷却でない場合は 0℃以下)の地
4.4		面や地物にあたって凍結したものである。
積雪	×	固形降水が、観測場所周辺の地面の半ば以上を覆う現象。
Snow coverage		
冠雪		山頂(山頂が見えない場合は中腹)が雪、または白色に見え
		る固形降水で覆われている状態を、観測所から望観できたと
		き。
		通常、寒候期に初めて観測した日を記録する。
結氷	Н	屋外にある水が凍る現象。
Freezing		
たつ巻][激しいうず巻。柱状または漏斗状の雲が積乱雲の底から、た
Spout		れ下がり、海面から巻き上げられた水滴、または地面から巻き上
		げられたちり、砂などが尾のように立ち上がっている。
		漏斗状の雲の軸は鉛直かまたは傾いている。ときには曲がり
		くねっていることもある。漏斗の先が、地面または海面からの
		「尾」とつながっていることが珍しくない。
		たつ巻の中の空気は、低気圧性に急速に回転することが多
		い。積雲の下に弱いたつ巻が観測されることがある。

観測	現地	海面	気温		蒸気圧	相対	風向	風速	日照時間	全天 日射量	降水量	降雪の深さ	積雪の深さ	戾天	視程	全雲量
時刻	気圧	気圧	90	温度		湿度	1 C to the	(1	10/14
0.175	hPa	hPa	°C_	°C	hPa	%	16方位	m/s	h	MJ/m²	mm	CIB	CED		km	10分比
01時	1018.2		-3.1	-7.6	3.5	71	WNW	1.40					11	-		
02時	1017.7		-2.8	-7.5 -7.0	3.5 3.6	70		1.90					11 11	曼	20	10
03時	1016.2		-3.2	-6.7	3.6	75 77	SSW SW	1.40	######################################				11	35	20	10
04時	1015.6		-3.3	-6.7 -6.5		77	SSW				0.0					
05時	1014.3		-3.1 -2.8	-5.1	3.8 4.2	84		1.60 1.40			0.0		11 11			
06時	1013.5			-3.1 -4.5	4.4	88	WNW	0.90		0.00	0.0		11			
07時	1012.5 1011.5		-2.8 -3.2	-4.5 -4.4	4.4	91	N	1.00	سيس	0.00	1.5		15			
09時	1011.5		-2.9	-4.4	4.4	90	NE NE	0.60		0.04	3.0	7		あられ	5	10
		1014.6	-1.7	-3.6	4.4	87	W	1.20		0.12	1.0		17	めわれ	Э	10
10時 11時	1009.1		-0.8	-3.3	4.7	83		0.90		1.06	0.0		16			a. 25 Same
12時	1006.6		-0.5	-2.7	5.0	85	W	1.60		0.50	0.0		15			
13時	1005.1		0.0	-1.9	5.3	87	SSW	1.90		0.38	1.0		15			-
14時	1003.1		0.0	-1.9	5.3	86		1.30		0.36	0.0		15			L
15時	1004.9		0.4	-1.2	5.6	89	N	1.40		0.43	0.5	0	13	曇	10	10-
16時	1003.2		0.4	-1.0	5.7	90		2.20		0.06	0.0		14	<u> </u>	10	10
17時	1004.0		0.1	-1.0	5.7	92	ESE	0.70		0.00	0.0		14			
18時	1005.6		4.1	-0.9	5.7	70		5.60	armana armana di Salani dan s	0.00			14			
19時	1006.1		4.2	-3.1	4.9	59	- NW	8.10	2.45				14			
20時	1006.8		3.0	-3.5	4.7	62		6.10					14			
21時	1008.2		3.1	-4.1	4.5	59		6.70					14	薄曇	20	10-
22時	1008.6		3.2	-3.8	4.6		WNW	6.10					14	107 329		10
23時	1009.0		0.7	-3.9	4.6	71		5.80					14			
24時	1008.8		1.5	-4.1	4.5	66		3.40		er er er et et et austret en herrten en			14		alconact to the conference	
日別値	平均気		最低海	ti ī	亚均	最高気		最低気	E .	平均	相対湿	连		日照	全天	平均
1 3 3 1 1 2	現地	海面	気圧	起時	気温	201-17	起時	AL PLANT	起時	蒸気圧	平均		起時	時間	日射量	
	hPa	hPa	hPa	時分	°C	$^{\circ}\!\mathbb{C}$	時分	°C .	時分	hPa	%	%	時分	h		10分比
	1009.6		1009.9	1620	-0.4	4.5		-3.4	18		78		2139		3.3	10
日別値	平均	最大風油			最大瞬				最大15		最大10		降雪の			蒸発量
1 7/18	風速		風向	起時	風速	風向	起時	降水量			降水量		深さ合計	当日翌日	積雪	当日翌日
	m/s	m/s	16方位	時分	m/s	16方位		mm	mm	時分	mm	時分	cm	9h-9h	cm	9h-9h
	2.5	8.1	NW	1900	14.7		2047	7.5	4	844	1.5		7	00	17	
天気	昼:	雪	後	rii							1.0		<u> </u>			
概況	夜:	晴		140		<u></u>	<u> </u>		20-	<u> </u>	فالشهد صعب					
記事																
日に事	0420	× -072	20v1 ×	-0830	→ -0	840 🗙	, \land - ·	× ⁰>, /	$\langle 0 \rangle_{00}$	-0950 <i>4</i>	V-103	30.				
	10404	\ -130	10	1450	1500	1 -152	·	, _	. 09		2 - 00					
1	1040	-0-13(1400.	1900	-1930	<i>J</i> .									

図 A. 1 地上気象観測原簿(気象庁)の例

2000 年 11 月 26 日、帯広の例を示す。このとき、08:40JST(日本標準時)から雪と伴に凍雨が降り、09:50JST に着氷性の雨に変わった。その後、1300JST には雨となった。

B. 球面における熱伝導の式

ある厚さdxをもつ平らな物体の中を伝わる単位面積あたりdsの熱量の時間変化dQ/dtは、

$$\frac{dQ}{dt} = k \frac{dT}{dx} ds \tag{B. 1}$$

と表される。ここで、dT は物体の厚さ dx 間の温度差、k がこの物体の熱伝導率である。これが一般的な熱伝導の式である。式(B. 1)を差分の形式にすると、

$$\frac{dQ}{dt} \approx k \frac{\left(T_1 - T_2\right)}{\left(x_1 - x_2\right)} ds \tag{B. 2}$$

となり、熱伝導率kが既知であれば、ある距離を隔てた x_1 と x_2 における温度 T_1 、 T_2 からこの物体中を伝わる熱量を求めることができる。

次に、この理論を球座標に展開する。球座標における熱伝導の式は、

$$\frac{dQ}{dt} = k \frac{dT}{dr} 4\pi r^2 \tag{B. 3}$$

となる。ここで、rは球体の半径である。式(B. 3)を温度Tと半径rについてまとめ積分すると、

$$\int dT = \frac{dQ/dt}{4\pi k} \int \frac{dr}{r^2}$$
 (B. 4)

となり、その解は次のようになる。

$$T = \frac{dQ/dt}{4\pi k} \left(-\frac{1}{r}\right) + C \tag{B. 5}$$

ここで、C は積分定数である。いま式(B. 5)に半径 r_1 とその位置の温度を T_1 を代入したものと、半径 r_2 における温度 T_2 を代入したものとの差をとり、積分定数Cを消去すると、

$$(T_1 - T_2) = \frac{dQ/dt}{4\pi k} \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$$
 (B. 6)

となり、熱量の時間変化dQ/dtについてまとめると、次式が得られる。

$$\frac{dQ}{dt} = 4\pi k \frac{(T_1 - T_2)r_1 r_2}{(r_2 - r_1)}$$
 (B. 7)

この式(B. 7)が球体における熱伝導の一般式である。

C. 大気の物性値

C.1 空気の熱伝導率 (k_a, k_d)

雨滴や降雪粒子の表面温度 T_w や T_i と周囲の空気の温度Tとの間に温度差 ΔT ができると、熱の拡散が生じる。雨滴や降雪粒子を球形と仮定すると、熱の拡散は次のように表され、

$$\frac{dQ}{dt} = 4\pi r k_a \Delta T \tag{C. 1}$$

単位時間当たりdQ/dt の熱で雨滴や降雪粒子を冷却または加熱すると考える。ここで、r は雨滴や降雪粒子の半径、 ΔT は雨滴や降雪粒子の表面と周囲の空気との温度差である。 k_a は湿潤空気の熱伝導率で、次のように表される(Beard and Pruppacher, 1971)。

$$k_a = k_d \left[1 - (1.17 - 1.02 k_v / k_d) (\rho_v / \rho_a) \right]$$
 (C. 2)

$$k_d = (5.69 + 0.0168T) \times 10^{-5}$$
 (C. 3)

$$k_v = (3.73 + 0.020T) \times 10^{-5}$$
 (C. 4)

式(C. 2)~(C. 4) において、T は \mathbb{C} 単位、 k_a 、 k_d (乾燥空気の熱伝導率)、 k_v (水蒸気の熱伝導率)は cal cm $^{-1}$ s $^{-1}$ \mathbb{C}^{-1} 単位である。 ρ_a は空気密度 (g/cm 3) である。なお、通常の条件 (ρ_v << ρ_a)では、 k_a ≒ k_d である。

C.2 空気中における水蒸気の拡散係数 (D_x)

雨滴や降雪粒子の表面に昇華あるいは昇華凝結する水分子量は、大気中における水分子の拡散(diffusion)現象によって決まると考えられる。つまり、拡散現象によって周囲の水蒸気場から雨滴や降雪粒子の表面に移動、あるいは逆の移動をすると考えられる。

水分子の拡散現象は、次の拡散方程式(diffusion equation)によって表される。

$$\frac{\partial \rho_{\nu}}{\partial t} = D_{\nu} \nabla^2 \rho_{\nu} \tag{C. 5}$$

ここで、 ρ_v は水蒸気密度、 D_v は空気中における水蒸気の拡散係数である。拡散係数 D_v は、 $-80^\circ C \sim 40^\circ C$ の温度 T の範囲について、

$$D_{\nu} = 0.211 \left(\frac{T}{T_0}\right)^{1.94} \left(\frac{p_0}{p}\right)$$
 (C. 6)

で与えられる (Hall and Pruppacher, 1976)。ここで、P は気圧 (hPa)、 T_0 =273.15K、 p_0 = 1013.25hPa、水蒸気の拡散係数 D_v は cm²/s 単位である。

C.3 空気中を落下する雨滴や降雪粒子の通風係数 (f_{t}, f_{t})

落下する雨滴や降雪粒子のように周囲に空気が流れる場合は、静止している物体あるいは周りに空気の流れがない場合に比べて水蒸気や熱の輸送が多くなる。例えば、水蒸気輸送に関して、周囲の空気の流れによる増加の割合を \overline{f} 、として定義すると、

$$\overline{f}_{v} \equiv \frac{dm/dt}{\left(dm/dt\right)_{0}} \tag{C. 7}$$

と表される(Pruppacher and Klett, 1997)。ここで、dm/dt は空気の流れがある場合の質量変化量、 $(dm/dt)_0$ は流れがない場合の質量変化量である。 \overline{f}_v が水蒸気輸送に関わる通風係数 (ventilation coefficient) である。物体が静止していれば \overline{f}_v =1 となり、大気中を落下する雨滴などの場合は \overline{f}_v >1 となる。

甲藤(1979)の伝熱理論によれば、通風係数は、一般に熱輸送に関するプラントル数 P_r 、水蒸気輸送に関するシュミット数 S_c 、これらとレイノルズ数 R_e の関数で表現することができる。

$$\overline{f}_h = a + bP_r^{1/3} R_e^{1/2}$$
 (C. 8)

$$\overline{f}_{v} = a + bS_{c}^{1/3} R_{e}^{1/2}$$
 (C. 9)

ここで、 \overline{f}_n は熱輸送に関する通風係数、 \overline{f}_v は水蒸気輸送に関する通風係数、 $a \ge b$ は係数 (定数)である。なお、プラントル数 P_r 、シュミット数 S_c 、レイノルズ数 R_e は次のように定義される。

$$P_r \equiv \frac{\nu_a}{k_a} \tag{C. 10}$$

$$S_c \equiv \frac{\nu_a}{D_v} \tag{C. 11}$$

$$R_e \equiv \frac{U^2/r}{v_a U/r^2} \tag{C. 12}$$

ここで、 ν_a は空気の動粘性係数 $(\mathrm{cm}^2/\mathrm{s})$ 、 k_a は空気の熱伝導率 $(\mathrm{cal\ cm}^{-1}\ s^{-1}\ C^{-1})$ 、 D_v は水蒸気の拡散係数 $(\mathrm{cm}^2/\mathrm{s})$ 、U は落下速度 $(\mathrm{cm/s})$ 、r は降雪粒子や雨滴の半径 (cm) である。空気のプラントル数 P_r とシュミット数 S_c は、通常 0.71 と 0.60 の値であるので、 $P_r^{1/3}$ と $S_c^{1/3}$ はほぼ同じ値となる $(\mathrm{Matsuo\ and\ Sasyo},\ 1981a)$ 。つまり、熱輸送に関する通風係数 \overline{f}_n と水蒸気輸送に関する通風係数 \overline{f}_n はほぼ等しいと考えられる $(\mathrm{Pruppacher\ and\ Klett},\ 1997)$ 。

また、物体の形が同じであれば流速(ここでは落下速度)や温度を変化させても係数も含めて式の表現は変わらない。通風係数の式表現や係数に変化が起こるのは、降雪粒子や雨滴の形が落下中に変化する場合である。しかしながら、降雪粒子は全体的には融解中も最初の形を保つ傾向にあり(Matsuo and Sasyo, 1981a)、半径2mm程度の雨滴についてもほぼ球形のまま落下すると考えられる(Beard and Chuang, 1987; Tokay and Beard, 1996)。

本研究では、球形の概念的な降雪粒子の通風係数 $\overline{f_i}$ として、Hall and Pruppacher (1976)によって示された、

$$\overline{f}_{i} \approx \overline{f}_{v} = 1.00 + 0.14 \left(S_{c}^{1/3} R_{e}^{1/2} \right)^{2}, \qquad S_{c}^{1/3} R_{e}^{1/2} < 1.0 \qquad (C. 13)$$

$$\overline{f}_{i} \approx \overline{f}_{v} = 0.86 + 0.28 S_{c}^{1/3} R_{e}^{1/2}, \qquad S_{c}^{1/3} R_{e}^{1/2} \ge 1.0 \qquad (C. 14)$$

を降雪粒子の融解条件の計算(第4.3章)に用いた。このとき $\overline{f}_i \equiv \overline{f}_v \approx \overline{f}_n$ の概念に基づく。 同様に、雨滴の通風係数 \overline{f}_w として、Pruppacher and Klett (1997)によって示された、

$$\overline{f}_{w} \approx \overline{f}_{v} = 1.00 + 0.108 \left(S_{c}^{1/3} R_{e}^{1/2}\right)^{2}, \qquad R_{e} \leq 2.5$$
 (C. 15)

$$\overline{f}_{w} \approx \overline{f}_{v} = 0.78 + 0.308 S_{c}^{1/3} R_{e}^{1/2}, \qquad R_{e} > 2.5$$
 (C. 16)

を雨滴の凍結条件の計算(第4.4章)に用いた。

C. 4 空気の粘性係数(n_a)

空気の粘性係数 η_a (poise: g cm⁻¹ s⁻¹)は、次に示す温度T に関する式を用いた (Pruppacher and Klett, 1997)。

$$\eta_a = (1.718 + 0.0049T) \times 10^{-4}, \qquad T(^{\circ}C) \ge 0^{\circ}C \qquad (C. 17)$$

$$\eta_a = (1.718 + 0.0049T - 1.2 \times 10^{-5} T^2) \times 10^{-4}, \quad T(^{\circ}\text{C}) < 0^{\circ}\text{C} \quad (C. 18)$$

Pruppacher and Klett (1997)によると、この式から求められる空気の粘性係数 η_a は、 $\pm 0.002 \times 10^4$ poise の精度である。

D. 本研究に関連する発表論文および学会発表

D. 1 原著論文

- 松下拓樹,権頭芳浩, 2000: 雨氷発生日数の地域分布に関する統計的解析. 雪氷, 62, 355-365p.
- 松下拓樹, 西尾文彦, 2004: 着氷性降水の気候学的特徴と地域性について. 雪氷, 66, 541-552p.
- 松下拓樹, 尾関俊浩, 西尾文彦, 2005: 2004年2月に北海道・岩見沢付近で発生した雨氷現象の特徴. 天気, 52, (印刷中).
- Matsushita, H., and F. Nishio, 2005: Atmospheric characteristics of freezing precipitation and its diagnostic method over the Kanto Plain, Japan On the case on January 3, 2003 J. Meteor: Soc. Japan, (投稿中).

D. 2 シンポジウム・学術会議

- 松下拓樹, 2003: 北海道東部における着氷性降水の気候学的特徴. 寒地技術論文・報告集, 19, 722-727p, 第19回寒地技術シンポジウム, 北海道 釧路市, 2003年11月.
- Matsushita, H., and F. Nishio, 2004: Diagnosis of thermodynamic conditions required for occurrence of freezing rain. Proceedings of 14th International Conference on Clouds and Precipitation, 1249–1252p, Bologna, Italy, July 2004.
- Matsushita, H., and F. Nishio, 2004: Relationship between occurrences of snow/rain fall and winter mean temperature in Japan. Proceedings of 7th International Symposium on Cold Region Development, 59-68p, Sapporo, Japan, September 2004.
- 松下拓樹, 西尾文彦, 2004: 日本における冬季降水形態の気候学的様相. 寒地技術論文・報告集, 20, 577-584p, 第 20 回寒地技術シンポジウム, 北海道 稚内市, 2004 年 10 月.

Matsushita, H., and F. Nishio, 2005: Local influences on occurrences of freezing rain and precipitation icing in Japan. Proceedings of 11th International Workshop on Atmospheric Icing of Structures, 33-38p, Montréal, Canada, June 2005.

D. 3 学会発表

- 権頭芳浩, 松下拓樹, 1999: 長野県における雨氷発生の推定分布. 日本雪氷学会全国大会講演予稿集, 67p, 日本雪氷学会, 鳥取県 米子市, 1999 年 10 月.
- 松下拓樹, 権頭芳浩, 2002: 雨氷発生の気象条件の形成について. 日本雪氷学会全国大会講演予稿集, 153p, 日本雪氷学会, 山形県 山形市, 2002年10月.
- 松下拓樹, 2003: 東京で観測された凍雨と雨氷. 日本気象学会春季大会講演予稿集, 83, 456p, 日本気象学会, 茨城県 つくば市, 2003 年 5 月.
- 松下拓樹, 2003: 日本における着氷性降水と凍雨の発生率の分布. 日本雪氷学会全国大会講演予稿集, 191p, 日本雪氷学会, 新潟県 上越市, 2003 年 10 月.
- 松下拓樹, 2003: 着氷性の雨と凍雨の発生判別について. 日本雪氷学会全国大会講演予稿集, 47p, 日本雪氷学会, 新潟県 上越市, 2003 年 10 月.
- 松下拓樹, 2003: 関東地方における凍雨の気候学的特徴. 日本気象学会秋季大会講演予稿集, 84,329p, 日本気象学会, 宮城県 仙台市, 2003 年 10 月.
- 松下拓樹, 2004: 季節平均気温からみた降水形態の様相変化. 日本気象学会春季大会講演予稿集, 85, 310p, 日本気象学会, 東京都千代田区, 2004年5月.
- 松下拓樹, 2004: 雪片融解過程における着氷性の雨の発生条件. 日本気象学会春季大会講演 予稿集, 85, 279p, 日本気象学会, 東京都 千代田区, 2004 年 5 月.
- Matsushita, H., and F. Nishio, 2004: Atmospheric characteristics of freezing precipitation and climatological conditions with its occurrence in Tokyo, Japan. International Symposium on Ice and Water Interaction, Portland, U.S.A., July 2004.
- 松下拓樹, 2004: 地上気象値からみた着氷性降水と着雪の発生条件. 日本雪氷学会全国大会 講演予稿集, 61p, 日本雪氷学会, 滋賀県 彦根市, 2004年9月.

松下拓樹, 2004: 着氷性降水時における地上降水種の推定方法. 日本気象学会秋季大会講演 予稿集, 86, 474p, 日本気象学会, 福岡県 福岡市, 2004 年 10 月.

D. 4 講演

- 松下拓樹, 2004: 日本における着氷性降水の特徴とその発生予測手法について. 第8回着氷雪研究会, 京都府 京都市, 2004年2月.
- 西尾文彦, 松下拓樹, 2004: 着氷性の雨が発生する気象条件、その予測に向けて. 雪と氷の摩擦、付着、破壊、衝突に関する研究集会, 20p, 北海道 札幌市, 2004 年 3 月...