地雷探知ロボットのための

多機能マニピュレータ および制御型金属探知機の開発

2010年7月

千葉大学大学院工学研究科

人工システム科学専攻機械系コース

増永 聖二

(千葉大学学位申請論文)

地雷探知ロボットのための 多機能マニピュレータ および制御型金属探知機の開発

2010年7月

千葉大学大学院工学研究科

人工システム科学専攻機械系コース

増永 聖二

Abstract

A lot of buried landmines remain in all over the world, and it is a severe obstacle to restoration and development in these countries and areas. However, detection and demining activities of antipersonnel landmines are still done mostly by hand, and it is said that complete elimination of antipersonnel landmines will take from several hundred years to a thousand years.

This study has researched the hydraulic multifunctional manipulator and controlled metal detector for mine detection robots to make detection and demining activities of antipersonnel landmines more safety, highly accurate and highly effective in a humanitarian standpoint.

In the study of hydraulic multifunctional manipulator, the unilateral master slave system for intuitive operation has been constructed for obstacle removal works. However, highly accurate trajectory tracking controls of hydraulic manipulators are difficult due to time delay, stick-slip motions of hydraulic systems and vibration modes of mechanical structures. Therefore, the prediction method of future reference trajectories for the master slave system and discrete time frequency-shaped preview sliding mode control with pre-filter using the future reference trajectories have been designed, and improvements of the trajectory tracking control performance and work efficiency by suppression of these phenomena have been demonstrated by experimental studies. Moreover, discrete time reference model following frequency-shaped sliding mode control with pre-filter without using the future reference trajectories have been designed, and improvement of the trajectory tracking control performance has been demonstrated by experimental studies.

In the study of controlled metal detector, the metal detector that has the control mechanism for the gap and attitude of sensor heads to ground surface has been designed for landmine detection works, and it has been demonstrated that the controlled metal detector generates trajectories of the sensor head from the depth information of ground surface acquired with 3-D stereovision camera in order to avoid any obstacles and possible impact with ground surface, and then tracks the trajectories with a trajectory tracking controller. Moreover, the effectiveness and impact related to the gap and attitude control on the landmine detection performance have been demonstrated by experimental studies.

Key Words: Humanitarian Demining, Mine Detection Robot, Hydraulic Manipulator, Master Slave System, Metal Detector, 3-D Stereo Vision, Trajectory Planning, Discrete Time Sliding Mode Control, Frequency Shaping, Preview Control, Model Following Control, VSS Disturbance Observer

論文概要

全世界には数多くの埋設地雷が残存しており,地雷被埋設国の復興,開発に大きな障害 となっている.しかし,現在でも主に手作業による対人地雷の探知・除去活動が行われて おり,対人地雷の完全除去には数百年から一千年かかると言われている.

本研究では人道的観点から対人地雷探知・除去活動をより安全,高精度かつ高効率にす るため,地雷探知ロボットのための油圧駆動型多機能マニピュレータと制御型金属探知機 に関する研究を行った.

油圧駆動型多機能マニピュレータの研究では障害物除去作業を対象として,作業者が直 感的に操作可能なユニラテラルマスタスレーブシステムを構築した.しかし,油圧マニピ ュレータでは油圧系の応答遅れやスティックスリップ現象,機械構造物としての振動モー ド等により高精度な軌道追従制御が困難となる.そこで,マスタスレーブシステムにおけ る未来目標軌道の予測法とその未来目標軌道を利用した離散時間入力端周波数整形予見ス ライディングモード制御系を提案し,マスタスレーブ制御実験によりこれら現象を抑制す ることで軌道追従制御性能と作業効率が向上することを実証した.また,離散時間規範モ デル追従形入力端周波数整形スライディングモード制御系を提案し,軌道追従制御実験に より未来目標軌道を利用せずに軌道追従制御性能が向上することを実証した.

制御型金属探知機の研究では地雷探知作業を対象として,センサヘッドの地表面に対す る地上距離・姿勢制御機構を有する金属探知機を構築した. 3-D ステレオビジョンカメラに よる地表面情報を利用することで地表面との接触を回避可能な軌道の生成と良好な軌道追 従制御を実証した.さらに,地雷探知実験によりセンサヘッドの地上距離・姿勢制御の地 雷探知性能に対する有効性を実証した.

ii

目次

第1章	緒言	1
1.1	研究の背景	1
1.2	MF Arm の課題と従来研究	5
1.3	CMD の課題と従来研究	6
1.4	研究の目的	6
1.5	論文の構成	7
第2章	マスタスレーブシステムの構成	8
2.1	MF Arm	8
2.1.	.1 マニピュレータ	8
2.1.2	.2 エンドエフェクタ	12
2.1.	3 油圧システム	15
2.1.4	.4 センサ	
2.1.:	5 制御システム	19
2.1.0	.6 運動学	21
2.2	マスタアーム	
2.2.	.1 マニピュレータ	
2.2.2	2 順運動学	
2.3	マスタスレーブシステム	
2.3.	.1 スレーブアーム目標値の生成	
2.3.2	2 制御システム	
第3章	MF Arm の制御系設計	
3.1	モデリング	40
	= / / · / ·	
3.2	PSMC+PFの制御系設計と軌道追従制御実験	
3.2 3.2.	PSMC+PF の制御系設計と軌道追従制御実験	
3.2 3.2. 3.2.2	PSMC+PF の制御系設計と軌道追従制御実験 1 制御系設計 2 シミュレーション	
3.2 3.2. 3.2. 3.2.	PSMC+PF の制御系設計と軌道追従制御実験 1 制御系設計 2 シミュレーション 3 実験	
3.2 3.2. 3.2. 3.2. 3.2.	PSMC+PF の制御系設計と軌道追従制御実験 1 制御系設計 2 シミュレーション 3 実験 4 結言	

3.3.	1 制御系設計	67
3.3.	2 シミュレーション	71
3.3.	3 実験	76
3.3.	4 結言	76
第4章	マスタスレーブシステムの PSMC+PF 適用と作業性能評価	81
4.1	PSMC+PF の適用方法	
4.1.	1 未来目標軌道の予測法	
4.1.	2 未来目標軌道の逆運動学	
4.2	マスタスレーブ制御実験	
4.2.	1 制御系設計	
4.2.	2 実験	
4.3	結言	
第5章	制御型金属探知機の軌道追従制御および探知性能に関する考察	96
5.1	緒言	96
5.2	制御対象	97
5.3	運動学解析	
5.4	ビジョンによるデータ取得方法	
5.5	3-D ビジョン情報による目標軌道生成	
5.5.	1 姿勢角度の決定	
5.5.	2 Link 3 のストロークの決定	
5.5.	3 Link 3 のストロークの再決定	
5.6	軌道追従制御実験	
5.6.	1 実験結果	
5.6.	2 考察	
5.7	地雷埋設位置推定方法	
5.8	地雷探知実験	
5.8.	1 実験条件	
5.8.	2 実験結果	
5.8.	3 考察	114
5.9	結言	116
第6章	結言	117
参考文薩	犬	
研究業績	責	
謝辞		
図目次.		
表目次.		

第1章 緒言

1.1 研究の背景

科学技術が飛躍的に進歩している現在なお,依然として 20 世紀半ばに提案された手作業 による地雷除去活動が行われている.この方法を変えない限り,地球上に埋設されている 対人地雷の完全除去には数百年から1千年かかると言われている.手作業による方法を採 用しているのは一般的に地雷原には対人地雷,対戦車地雷,不発弾が混在しており,容易 に地雷処理車両が入れないことによる.また,手作業に変わる信頼性の高い代替技術が存 在しないということももう一つの理由である.現在の手作業による方法はほとんどの場合, 地雷探知センサとして金属探知機が用いられている.金属量の少ないプラスチック型対人 地雷等でも探知可能とするために金属探知機は高感度に設定されており,金属片による誤 認率が高い.そのため,全ての金属片を発掘,処理しながら作業をしていくために莫大な 時間を要する.また,手作業による方法では作業員の事故も報告されている.

ここで、一般的な地雷探知・除去作業の工程を以下に示す[1].

- 1. 地雷被埋設地域を特定するための広域センシング作業(戦闘記録,被害の調査やロー ラー車両などによる走行探索) [Level 1: General Survey]
- 2. 植生除去作業(手作業, 重機などによる除去)
- 3. 地雷探知作業(探針作業,金属探知機,地雷犬などによる探知) [Level 2: Technical Survey]
- 4. 地雷除去作業(手作業, 重機などによる除去, 粉砕処理)
- 5. 地雷除去の確認作業(3.の内容と同じ) [Level 3:Completion Survey]
- なお, []は"International Mine Clearing Standards and Survey type"との対応を示す.

地雷探知・除去作業の改善として、「地雷除去作業の機械化」、「地雷探知作業のロボ ット化」、そして、「地雷探知・除去作業の自動化」という3つのステップが想定される.

「地雷除去作業の機械化」として,現在でも建設機械や農業機械をベースに改造された 地雷除去機械が研究開発されており,実用化された事例もある.世界の地雷処理機械,装 備の実用化,開発状況については"Journal of Mine Action"や"Humanitarian Demining R&D Program"などの文献^{[2][3][4]}を参照されたい.日本では油圧ショベルの先端に耐爆性能に優れ た高速回転式カッタを取り付け,埋設地雷の爆破や作業の障害となる樹木の伐採が可能な ロータリカッタ式除去機(山梨日立建機株式会社),回転ドラムで地面を掘り起こすブルドー ザ型地雷除去機(株式会社小松製作所),地雷を破壊し破片を回収する除雪機を改良した地雷 除去機(川崎重工業株式会社)が開発されている^[5].ここで,地雷除去の技術実証・評価に関 する基準として国連の地雷対策統括組織の UNMAS(United Nations Mine Action Service)と GICHD(Geneva International Center for Humanitarian Deming)が協力して策定している IMAS(International Mine Action Standard)があり,この内容に留意した開発が望まれる.

次に「地雷探知作業のロボット化」として、地雷探知ロボットが研究開発されている. 地雷探知ロボットは地雷探知センサを搭載しており、移動機構は不整地への適用が求めら れ、車輪式、クローラ式、脚式のそれぞれで研究事例がある。地雷探知ロボットは主に地 雷探知センサのマニピュレーションとロボットの移動という 2 つの機能で構成され,地雷 探知というタスク志向な部分を除いては移動ロボットに共通する.ここで,世界中で研究 開発されている地雷探知ロボットの代表的な事例を紹介する. CCMAT(Canadian Centre for Mine Action Technologies)は 1998 年に人道的地雷探知・除去技術開発を目的に設立された国 立機関であり、CCMAT で開発された ARS(Articulated Robotic Scanner)^[6]を Fig. 1.1 に示す. ARS は遠隔操作可能な独立操舵車輪式の地雷探知ロボットである. レーザレンジファイン ダと超音波センサを組み合わせて地表面の凹凸を検出可能であり,5自由度のマニピュレー タにより地雷探知センサを地表面の凹凸に倣うことができる. Fig. 1.2 の SAMS(Semi-Autonomous Mine Detection system)^[3]はクローラ式の地雷探知ロボットであり、 アレイ状に金属探知機を配置した地雷探知センサを搭載している.また、本研究グループ でも安全で高効率な人道的地雷探知技術として,地雷探知用 6 脚歩行ロボット COMET(Chiba university Operating Mine detection Electronics Tools)を研究開発している [7][8][9][10][11][12][13][14][15][16][17]. 試作3,4号機である COMET-III, COMET-IV の外観を Fig. 1.3, Fig.

1.4 に示す.

最後に「地雷探知・除去作業の自動化」では地雷探知・除去作業の全工程をロボットに て行う.これは将来的に取り組むべき課題である.

独立行政法人 科学技術振興機構(以下,JST)の「人道的対人地雷探知・除去技術研究開発 推進事業」^{[18][19][20][21][22]}(以下,JST プロジェクト)では地雷探知作業のロボット化を目的と して,地雷探知センサとそのセンサを搭載するロボット,および車両の研究開発が実施さ れた.千葉大学チームはJST プロジェクトの一環として「地雷探知ロボットと無人処理車 による地雷除去支援」を掲げて,高感度を有する金属探知機と地中レーダ技術の長所を積 極的に活用し,安全かつ高精度な遠隔操縦方式の地雷探知ロボットの研究開発を行った ^{[23][24][25]}.開発された地雷探知ロボット(Mine Hunter Vehicle)の外観をFig. 1.5, Fig. 1.6 に示す. 2002 年,2003 年度は千葉大学,富士重工業株式会社のスバル技術研究所とクリーン事業部, 株式会社コス,2004 年 8 月までは千葉大学,富士重工業株式会社のスバル技術研究所とク リーン事業部,2004 年 9 月から2005 年度は千葉大学,富士重工業株式会社のスバル技術研究所とク 部が研究開発を実施した.著者は特に地雷探知ロボットのための多機能マニピュレータ(以下, MFArm: Multifunctional Arm)^{[26][27][28][29][30][31][32][33][34][35][36][37][38][39]}と制御型金属探知機(以下, CMD: Controlled Metal Detector)^{[40][41]}の研究開発を担当した. MF Arm は 6 自由度油圧駆動型マニピュレータで油圧駆動グリッパ,電動ドリル,電磁石,高圧エアジェットをエンドエフェクタとして搭載しており,岩石,金属片等の除去作業や地雷探知後の地雷露呈作業を行うシステムである.また, CMD はセンサヘッドの地上距離・姿勢制御機構を有した金属探知機で地雷探知作業を行うシステムである.

Fig. 1.1 ARS

Fig. 1.2 SAMS

Fig. 1.3 COMET-III

Fig. 1.4 COMET-IV

Fig. 1.5 Mine Hunter Vehicle

Fig. 1.6 Public demonstration and mine detection test in Sakaide city, Kagawa prefecture

1.2 MF Arm の課題と従来研究

MF Arm では障害物除去作業と地雷露呈作業を対象としている. これらの作業ではエンド エフェクタの軌道追従制御が重要となる. MF Arm のような多関節型油圧マニピュレータに おいて,エンドエフェクタを任意軌道に追従させるには各関節の協調動作が必要となる. そのため,通常の油圧マニピュレータのように各関節独立のマニュアル操作ではエンドエ フェクタの移動量から各関節の操作量を判断しなければならないために熟練した操作技術 を要する.また,地雷原では地雷誘爆の危険を伴うために誤操作は許されず,要求される 操作技術は高い.これらのことから,MF Arm では熟練した操作技術無しで作業可能とする ことが求められる.具体的には,エンドエフェクタの目標軌道を作業者が直感的に指示可 能なユーザーインターフェースとその目標軌道への軌道追従を実現する制御システムの構 築が求められる.

油圧駆動型多関節マニピュレータの軌道追従制御では油圧系の応答遅れやスティックス リップ現象,片ロッドシリンダ受圧面の非対称性,オーバーラップを有する比例電磁制御 弁の不感帯,マニピュレータの姿勢変動による非線形外乱が問題となる.これらの問題に 対し,油圧マニピュレータや油圧アクチュエータの制御に関する研究 ^{[31][42][43][44][45][46][47][48][49][50][51][52][53][54][55]}は非常に盛んに行われており,スライディングモード 制御を適用した研究が多い.特に,スライディングモード制御と外乱オブザーバを併用し た研究^{[31][49][50]}が盛んであり,その優位性が実証されている.また,目標値信号等の未来情 報が利用できる軌道追従制御において,未来目標値を積極的に利用する最適予見制御とス ライディングモード制御を融合した制御法の研究^{[12][56][57][58][59]}が盛んであり,制御性能の向 上が実証されている.一方,未来情報を利用できないシステムに対しては制御系全体の特性を規範モデルの特性に一致させる制御法であるモデル規範型適応制御とスライディング モード制御を併用することで制御性能の向上が実証されている^{[13][60][61][62]}.しかし,一般的 に振動モードを無視してモデリングしたシステムに対して,スライディングモード制御系 を実装する場合,無視した振動モードを励起してしまう可能性がある.この問題に対して, 周波数整形スライディングモード制御の研究^{[63][64][65][66]}があり,伊藤ら^[65]は制御入力端に低 域通過フィルタを付加するという簡便な方法で振動モードの励起を抑制している.ただし, 低剛性な油圧マニピュレータの振動モードを考慮した軌道追従制御に関する研究や周波数 整形スライディングモード制御と予見制御,モデル規範型適応制御を組合せた研究はほと んど行われていない.

また,遠隔操作ロボットの作業効率,作業性能の向上に関して,視覚や触覚の予測ディ スプレイの研究^{[67][68]}はあるが,予測ディスプレイを必要とせずに作業効率を向上させる研 究はほとんど行われていない.システムを安価に構成するためにも予測ディスプレイ無し で作業効率を向上させる技術は重要となる.

1.3 CMD の課題と従来研究

世界各地で研究開発されている地雷探知ロボットには地雷探知センサとして金属探知機 が搭載されていることが多い^{[6][7][81][82]}.これは金属探知機が手作業による地雷探知・除去作 業においても多く活躍しており,信頼性の面でも評価されているからである.金属探知機 の地雷探知性能はセンサヘッドと対象地雷との距離に大きく依存するためにセンサヘッド を地表面に接近させ,倣うように走査することが望ましく,ロボットによる地雷探知作業 においても手作業と同様に地表面に対してセンサヘッドの地上距離・姿勢制御をすること が必要であると考えられる.しかし,地雷探知ロボットの中で地表面を認識し,センサヘ ッドを地上距離・姿勢ともに制御できるロボットは少なく,地表面に対してセンサヘッド を制御するロボットにおいてもセンサヘッドの制御と探知性能の関係を定量的に言及した 報告は著者の知る限りない.

また,ステレオビジョンベースの作業用マニピュレータの研究^{たとえば[86]}は現在も盛んに行われているが,地雷探知における倣い作業の特徴として,比較的面積の大きな地雷探知センサと地表面との接触回避を目標仕様とした軌道生成が必要となる点が挙げられる.

1.4 研究の目的

本研究では地雷探知作業のロボット化を目的として,地雷探知ロボットのための MF Arm, CMD の課題について 2 つの研究を行った.それぞれについて以下に示す.

1. 作業者がMFArmの目標軌道を直感的に指示可能なユーザーインターフェースと振動 モードの励起を抑制しつつ,その目標軌道にエンドエフェクタを追従させる制御機能 を有するマスタスレーブシステムを構築し、軌道追従制御実験により有効性を実証する.

 センサヘッドの地表面に対する地上距離・姿勢制御機構を有する金属探知機を構築し、
 3-D ステレオビジョンカメラによる地表面情報を利用することで地表面との接触を回 避可能な軌道の生成と良好な軌道追従制御を実証する.さらに、地雷探知実験により センサヘッドの地上距離・姿勢制御の地雷探知性能に対する有効性を実証する.

1.5 論文の構成

本論文は第1章の緒言に続いて,第2章では MF Arm をスレーブアームとしたマスタス レーブシステムの構成について述べる.第3章では MF Arm のモデリングと未来目標軌道 を利用した離散時間入力端周波数整形予見スライディングモード制御系と未来目標軌道を 利用しない離散時間規範モデル追従形入力端周波数整形スライディングモード制御系の設 計方法を提案,定式化し,軌道追従制御実験により有効性を考察する.第4章ではマスタ スレーブシステムにおける未来目標軌道の予測法とその未来目標軌道を利用した離散時間 入力端周波数整形予見スライディングモード制御系を提案,定式化し,マスタスレーブ制 御実験により有効性を考察する.第5章ではセンサヘッドの地表面に対する地上距離・姿 勢制御機構を有する CMDを提案し,3-Dステレオビジョンカメラによる地表面情報を利用 した地表面との接触回避を行う軌道生成方法と軌道追従制御性能について述べる.さらに, 地雷探知実験によりセンサヘッドの地上距離・姿勢制御の地雷探知性能に対する有効性を 考察する.第6章は結言である.

第2章 マスタスレーブシステムの構成

MF Arm は障害物除去作業と地雷露呈作業を目的として開発された.地雷探知ロボットへの搭載,極限環境での作業を考慮し,小型高出力,耐環境性,保守性の面で優れている油 圧駆動を採用している.

一般的な産業用ロボットの軌道追従制御ではあらかじめエンドエフェクタの移動すべき 軌道が入力されており、正確な軌道追従を繰り返し行っている.しかし、本研究で対象と している地雷探知・除去作業では地表面の凹凸など、作業条件が一定ではないことから、 MF Arm に搭載されたエンドエフェクタの目標軌道をあらかじめ入力することは困難であ る.また、地雷探知ロボットが作業を行う前に、画像センサ、距離センサなどによって地 表面を認識し、その結果から目標軌道を自動生成するには開発しなければならない課題が 多い.そのため、作業者が作業環境を判断し、エンドエフェクタの目標軌道を入力するこ とが必要となるが、作業者が目標軌道の座標値を直接入力することは不可能である.これ らのことから、MF Arm の操作システムとして、通常の油圧マニピュレータのような各関節 独立の操作ではなく、作業者がエンドエフェクタの目標軌道を直感的に指示可能なユーザ ーインターフェースとその目標軌道にエンドエフェクタを追従させる制御機能を有するマ スタスレーブシステムを構築する.ここで、安価なシステムを構成するためにアクチュエ ータの無いマスタアームを用いたユニラテラルマスタスレーブシステムとする.本章では マスタスレーブシステムの構成について述べる.

2.1 MF Arm

2.1.1 マニピュレータ

MF Arm の外観図を Fig. 2.1, 主要諸元を Table 2.1, 概観図および座標系を Fig. 2.2 に示す. MF Arm はマニピュレータ部に6自由度を有し, エンドエフェクタとして油圧駆動2指グリ ッパ, 電動ドリル, 電磁石, 高圧エアジェットを搭載し, Link 6 をツールチェンジャとして 動作させ, 使用目的に合わせてエンドエフェクタを選択する. ここで, マニピュレータ先 端に搭載される重量が大きいことでマニピュレータ各関節の姿勢変化により慣性モーメン ト等のパラメータ変動が大きく生じてしまう.

また,地雷処理の作業範囲として前方 1m,左右 2m の方形範囲が求められた. Link 5 は 油圧配管,電気配線を内蔵したスィーベルジョイント方式による水平回転機構とし,±180° の回転を可能とした.そのため、ツールチェンジャ(Link 6)も水平に±180[°]回転可能となり、 要求される作業範囲を広範囲で確保できる.ここで、Fig. 2.2 に示すようにマニピュレータ 先端の*XY*平面との角度を姿勢角度 θ_{y} と定義し、 $\theta_{y} = 0^{°}$ のグリッパモード作業範囲をFig. 2.3、 $\theta_{y} = 110^{°}$ のドリルモード作業範囲をFig. 2.4 に示す.

Fig. 2.1 MF Arm

Item	Value	Remarks
Length [mm]	2112	Gripper mode
Width [mm]	307	Gripper mode
Height [mm]	1536	Gripper mode
Weight [kg]	210	

Table 2.1 Specifications of MF Arm

(c) Top view Fig. 2.2 Configuration of MF Arm

2.1.2 エンドエフェクタ

MF Arm は Fig. 2.5 に示す様々なエンドエフェクタを搭載し,必要に応じて,ツールチェ ンジャにより使い分ける.エンドエフェクタの機能を以下に挙げる.

- 地表面に散在するある程度の大きさの岩石等を把持し,除去を行う2指独立駆動可能 な油圧駆動グリッパ(グリッパは着脱が容易な構造であり、用途に合わせた形状のも のが装着可能)
- 2. 地表面に散在する薬莢等の金属片を除去する電磁石
- 3. 固化した硬い土壌を掘削する電動ドリル
- 4. 地表面の砂利や砂等を除去する高圧エアジェット

グリッパは ON-OFF 制御弁と片ロッド式シリンダを用い,開閉の機能のみを有する.電磁石,電動ドリル,高圧エアジェットはスイッチの ON/OFF のみで作動させる.本節ではエンドエフェクタについて詳細に述べる.

(a) Drill and air jet(b) Gripper and electromagnetFig. 2.5 End effectors

油圧駆動グリッパ

探知作業の障害となる岩石などを除去するための装置として,油圧駆動 2 指グリッパを 搭載している.グリッパの仕様を Table 2.2 に示す.グリッパの油圧回路は Fig. 2.6, Table 2.3 に示すように、2 位置 2 ポート形電磁制御弁と片ロッド式シリンダで構成される. 搭載性に 優れた小型の制御弁ユニットを採用し、グリッパの油圧回路は Link 6 のボックス内に全て 収納された.動作原理は 2 位置 2 ポート形電磁制御弁でブリッジ回路を構成し、たとえば、 SOL 1 と SOL 4 を同時に ON に、SOL 2 と SOL 3 を OFF にするとシリンダストロークが伸 びる方向へ動作する.逆に,SOL2とSOL3を同時にONに,SOL1とSOL4をOFFにす るとシリンダストロークが縮む方向へ動作する.2位置2ポート形電磁制御弁はON,OFF 駆動しかできず,比例制御弁やサーボ弁のように流量制御することはできない.そこで, 本研究ではグリッパに持たせる機能を一定流量による開閉機能に限定した.

. ...

.

- - --

Table 2.2 Specifications of gripper		
Item	Value	
Grasping force [N]	100	
Width of grasping object [mm]	0~200	
DOF	1×2	
Absolute encoder	2	

Fig. 2.6 Hydraulic circuit of gripper

1	
Item	Value
Manufacturer	Fine Sinter Co., Ltd.
(MODEL)	(SVU 4-D24-12-35)
Mass [kg]	1.8
MAX pressure [MPa]	6
Relief pressure [MPa]	3.5

Table 2.3 Specifications of solenoid controlled valve

電動ドリル

探知された地雷は地表面から露呈し,目視可能とする必要がある.地表面が砂利や砂等 であった場合,後述する高圧エアジェットによって地雷上部の砂利を吹き飛ばし,露呈可 能であるが,固い土壌ではエアジェットだけでは露呈はできない.そこで,エアジェット で露呈できるように本装置で地雷周辺の土壌を掘削する.ドリルの仕様を Table 2.4 に示す.

Table 2.4 Specifications of drill			
Item Value			
Manufacturer	Hitachi Koki Co., Ltd.		
(MODEL)	(DH 24PC)		
Voltage [V]	AC100		
Current [A]	6.5		
Power consumption [W]	620		
Device size [mm]	318(W) × 185(H) × 73(D)		
Weight [kg]	2.4		

電磁石

地雷探知を金属探知機で行う場合,地表面や地中に存在する薬莢,爆弾等の破片や細か な金属片を地雷と誤認識することが多く,誤認率は 99.97%と言われている.本装置を探知 作業前に探知エリア全体に使用することで,地表面の磁気を帯びる金属片を除去し,誤認 率を下げ,地雷探知作業の効率を上げることができる.電磁石の仕様を Table 2.5 に示す. 本装置は ON/OFF 操作のみのため,電磁力は不変である.したがって,地表面と電磁石と の相対距離と電磁石の性能が大きく依存するため,マニピュレータの高精度な軌道追従性 能が重要となる.

Table 2.5 Specifications of electromagnet			
Item Value			
Manufacturer	FUJITA Co., LTD.		
(MODEL)	(FSGB-10. 22W)		
Rated voltage [V]	DC24		
Rated current [A]	1.3		
Device size [mm]	$220(W)\times 148(H)\times 100(D)$		
Weight [kg]	7.0		
Absorption force [N]	441		

高圧エアジェット

地雷上部の砂利等を吹き飛ばし、地雷を地表面に露呈させるための装置である. 高圧エ アジェットの仕様を Table 2.6 に示す. 地雷の誘爆を回避するために地表面に対しほぼ水平 に噴射する.

Table 2.6 Specifications of air jet Value Item

4

Max air pressure [MPa] Tankage $[m^3]$ 24 Number of air injection 200

2.1.3 油圧システム

MF Arm はアクチュエータとして, Link 1~4,6 と 2 指グリッパでは油圧シリンダ, Link 5 では油圧モータを採用している. 各関節部を駆動している油圧アクチュエータの諸元を Table 2.7, Table 2.8 に示す. Link 1~4.6 の油圧シリンダにはピストンがヘッドカバーに高速 で衝突するのを防ぐために、ヘッドカバー内にクッション機構が設けてある.これにより、 ストロークエンド付近ではシリンダ速度が急激に低下し、マニピュレータの保守に貢献す るが、急激なパラメータ変動による制御性能の劣化が起こるという懸念点がある.また、 Link 5 ではシングルベーン形揺動モータを採用し、歯車対を介して、±180の可動範囲を実 現している.

コンピュータ制御を可能とするために各油圧アクチュエータを電磁制御弁に接続してお り, すべての制御弁に電磁比例流量制御弁を用いている. ここで, 油圧回路図を Fig. 2.7, Table 2.9, 制御弁の諸元を Table 2.10 に示す. 制御弁は位置決め制御に適した動作不感帯の大き い(最大入力電流 0.8A に対して約 40%),安価なオーバーラップを有する比例制御弁を採用 している.サーボ弁と比較して、作動油中の異物に対する耐性が強いために作動油の管理 が行いやすく,屋外での使用に適している.しかし,動作不感帯が大きく,制御流量範囲 も 1~10l/min(シリンダストローク速度で約 0.01~0.1m/s 相当)で定格流量が大きいため、微 小動作に不適であり、スティックスリップ現象が生じやすい制御弁となっている.また、 入力電流に対する出力流量の分解能,ヒステリシス,直線性などもサーボ弁と比較して劣 っている.

油圧ポンプには可変容量型ピストンポンプを使用し、ポンプの諸元を Table 2.11 に示す. このポンプは、プレッシャコンペンセータ制御機能を内蔵し、常に回路内を設定圧力以下 に保持する特徴を有している.

	Manufacturer	Mass	Bore/Rod	Cylinder	Rated/MAX
	(MODEL)	[kg]	diameter	stroke	pressure
	(MODEL)	[Kg]	[mm]	[mm]	[MPa]
Link 1	TAIYO, LTD.	(12)	32 / 18	270	14/21
LIIIK I	(140H-8 1CB32BB270-AB-Y-X)	0.12			14 / 21
Link 2	TAIYO, LTD.	0.72	50 / 28	195	14 / 21
Link 2	(140H-8 1CA50BB195-DB-T-X)	9.73			
Link 2	TAIYO, LTD.	10.46	50 / 28	247	14 / 21
LIIIK J	(140H-8 1CA50BB247-AB-T-X)	10.40			
Link 1	TAIYO, LTD.	8.19	50 / 28	85	14 / 21
LIIIK 4	(140H-8 1CA50BB85-DB-T-X)				
Link 6	TAIYO, LTD.	4.07	50 / 22	270	3.5 / 5
	(35H-3 1CB50B270-AB)	4.97			
Gripper	JPN Co., Ltd.	0.48	15 / 10	18	14 / 21
	(S • PM-1CA15x18)	0.40	13/10		

Table 2.7 Specifications of hydraulic cylinder

Table 2.8 Specifications of hydraulic motor					
Manufacturer Mass Oscillating Rated / MA			Rated / MAX		
	(MODEL)	[kg]	angle [deg]	pressure [MPa]	
Lin1- 6	TAIYO, LTD.	10.2	270	7 / 10 5	
LIIK J	(70RV100S-270)	10.2	270	7710.5	

Table 2.9 Specifications of hydraulic circuit

No	Device	MODEL	Domoniza	
INO.		(DAIKIN INDUSTRIES, LTD)	Kelliarks	
\bigcirc	Hydraulic pump unit	V15A 2RX-95	9 MPa, 20 l/min	
2	Solenoid controlled valve	KSO-G02-66CP-30-77	ON-OFF valve	
3	Proportional valve	HMP-G02-44C11-10-PE		
4	Proportional valve	HMP-G02-2C11-10-EE		
5	Counter balance valve	MQC-02A-2-55		
6	Counter balance valve	MQC-02B-2-55		
\bigcirc	Pilot operated check valve	MPD-02W-20-55		
8	Relief valve	MR-02P-3-55	14 MPa	
9	Reducing valve	MG-02P-03-55	4 MPa	
10	Reducing valve	MG-02P-1-55	7 MPa	
1	Bypass block	BH-02-55		

Table 2.10Specifications of proportional valve		oportional valve
	Link 1~4,6	Link 5
Manufacturer	DAIKIN INDUSTRIES, LTD	DAIKIN INDUSTRIES, LTD
(MODEL)	(HMP-G02-44C11-10-PE)	(HMP-G02-2C11-10-EE)
Flow range [l/min]	1~10	1~10
MAX Pressure[MPa]	21	21
Dead zone [A]	$0.0 \sim 0.3 \pm 0.1$	$0.0 \sim 0.3 \pm 0.1$
Oil temperature [°C]	-15~70	-15~70
Hysteresis	Less than 10% of MAX flow	Less than 10% of MAX flow
Resolution	Less than 10% of MAX flow	Less than 10% of MAX flow
Mass [kg]	2.0	2.0

_	Table 2.11	Specifications of hydraulic pump	
	Item	Value	Remarks
_	Manufacturer	DAIKIN INDUSTRIES,LTD	
	(MODEL)	(V15A 2RX-95)	
	Discharge rate [cm ³ /rev]	14.8	
	MAX pressure [MPa]	14	
	Flow range [l/min]	4.5~21.4	1450 r/min
_	Oil tank [l]	60	

2.1.4 センサ

各関節の位置計測は Link 1 ではシリンダストロークをリニアポテンショメータ,他の関節では関節角度をアブソリュートエンコーダで計測している.アブソリュートエンコーダはデジタルセンサであり、ポテンショメータと異なり、アナログノイズの影響を受けないことから、高精度な計測が可能である.位置センサの諸元を Table 2.12 に示す.

	Table 2.12	Specifications of position sensor		
	Device	MODEL	Remarks	
Link 1	Linconnotantiamata	MIDORI PRECISIONS CO., LTD.	10 kΩ	
LINK I	Linear potentiomete	(LP-300F-15)		
Link 2~6, Gripper		TAMAGAWA SEIKI CO., LTD.	17bit	
	Absolute encoder	(TS5667N171)		

2.1.5 制御システム

制御システムは作業者が操作する Host PC, MF Arm を制御する Target PC, および各イン ターフェースボードによって構成されている.制御システムの構成図を Fig. 2.8, 各インタ ーフェースボードの仕様を Table 2.13 に示す.

制御システム開発には MATLAB/Simulink の xPC Target を利用している. xPC Target は汎 用の x86 系 PC 上にて Simulink で作成されたモデルをリアルタイムに実行するラピッドプロ トタイピング環境である.システム開発は Simulink 上で行い, RS232C を介した Host-Target 間通信を行うことで,プログラムを実装後も Host PC から Target PC の操作が可能であり, 作業者のコマンド入力は Host PC 上から行うことができる.システム開発において,この xPC Target は非常に有効なツールであると考えるが,将来的には組み込みシステムの開発を 行う必要がある. Target PC には AMPRO 製の PC/104 バス形式のシングルボードコンピュー タ(以下,SBC)を用いている. PC/104 バス形式の SBC はサイズがコンパクトでありインタ ーフェースユニット内でスペースを取らないこと,xPC Target が使用可能なこと,耐環境性 に優れていることなどから採用した.ここで,Table 2.14 に SBC の主な仕様を示す.

MF Arm の動作概要を述べる. 各関節のアブソリュートエンコーダまたはボテンショメー タから検出された位置情報はエンコーダボード, A/D ボードによって計算機に取り込まれ, シリンダストローク変位へと変換される. そして, アクチュエータの動作方向とバルブコ ントローラに印加するべき電圧値を計算し, D/A ボードから指令電圧を出力する. 指令電圧 はバルブコントローラに入力され, 制御弁の駆動電流を変化させる. 駆動電流により制御 弁内のスプール位置が変化することでアクチュエータへの流量を制御し, 各関節を駆動さ せる. ここで, 採用したバルブコントローラの仕様を Table 2.15 に示す.

Fig. 2.8 Control system

Table 2.13	Specifications of interface board			
Manufacturer	Tyme	Channels	Resolution	
(MODEL)	Type	Channels		
Diamond Systems Corporation	A/D	32ch	16-bit	
(DIAMOND-MM-32-AT)	DO	24ch	-	
Diamond Systems Corporation	D/A	16ch	12-bit	
(RUBY-MM-1612)	DI	24ch	-	
TAMAGAWA SEIKI CO., LTD.	Aberbar over		17 hit	
(SmartAbs Board AUA5021)	Absolute encodel	och	17-011	

	Table 2.14	Specificat	tions of SBC						
	Specifications								
	400 MHz ULV Celelon Prosessor								
	Up to 256 MB SDRAM								
	PC/104-Plus interface								
Two RS232 Serial Ports, one with RS485 capability									
Floppy, ECP/EPP Parallel port									
USB, IRDA, PS/2 Keyboard/Mouse ports									
10/100BaseT Ethernet interface									
AGP 4 x video with 32MB UMA frame buffer									
	90 x 96 mm ; PC/104-Puls form-factor compatible								
	-40 to +85 AC extended temperature option								
	Table 2.15Specifications of valve controller								
	Manufacturer	Amp gain	Input voltage	Output current					
	(MODEL)	[A/V]	range [V]	range [A]					
Link 1~6	HAWE Hydraulik SE	0.16	5.0~5.0	0 8~0 8					
Link $1 \sim 6$	(EV22K 2-12/24)	0.10	-5.0* - 5.0	-0.00.0					

2.1.6 運動学

本節では MF Arm の運動学について述べる.手先の作用点を点 W, ベース座標系の原点 を点 O とし, 座標系を Fig. 2.9, 各リンクの長さを Table 2.16 に示す.また,各 Link j (j = 1, 2, …, 6)において,関節角度 $\theta_j = 0^\circ$ のときのシリンダストローク h_{jo} を基準としたシリンダ ストローク変位を h_j と定義し,各関節角度 θ_j とシリンダストローク変位 h_j の可動範囲を Table 2.17 に示す.

Fig. 2.9 Coordinate of MF Arm

Table 2	.16	Parameters of Links		
	Length[m]	Remarks		
l_0	0.200			
l_1	0.600			
l_2	0.800			
l_3	0.660			
l_4	0.140			
l_5	0.845			
l_6	0.240	Gripper mode		
l_6	-0.600	Drill mode		
l_7	0.390	Gripper mode		
l_7	0.250	Drill mode		

	Table 2.17	Ranges of Links		
	Range[deg]	Range[m]		
Link 1	-60≤ <i>θ</i> 1≤60	$-0.1303 \le h_1 \le 0.1292$		
Link 2	-57.8≤ <i>θ</i> ₂≤2.9	-0.0098≤h2≤0.1873		
Link 3	4.7≤ <i>θ</i> ₃≤111.7	$0.0075 \le h_3 \le 0.2483$		
Link 4	-51.0≤ <i>θ</i> ₄≤-0.5	-0.0847≤ <i>h</i> 4≤-0.0008		
Link 5	-180≤ <i>θ</i> ₅≤180	-		
Link 6	-25.2≤ <i>θ</i> 6≤150.7	-0.0528≤h ₆ ≤0.2148		

関節幾何学

マニピュレータ先端部の位置制御,軌道追従制御において,Link 5 を除く各関節では関節 角度によりシリンダストローク変位を計算し,ストローク制御を行う.Fig.2.10,Fig.2.11 に各関節の模式図を示す.各関節(Link 5 を除く)ではシリンダの直線運動から回転運動に変 換されており,シリンダストロークと関節角度は比例関係にはならない.以下では各関節 において,幾何学的関係からシリンダストロークと関節角度の関係式を示す.また,各パ ラメータを Table 2.18 に示す.

Link 1

$$h_{1} = \sqrt{l_{13}^{2} + l_{14}^{2} - 2l_{13}l_{14}\cos(\psi_{1} + \theta_{1})} - h_{1o}$$
(2.1)

$$\theta_{1} = -\psi_{1} + \arccos\left(\frac{l_{13}^{2} + l_{14}^{2} - (h_{1} + h_{1o})^{2}}{2l_{13}l_{14}}\right)$$
(2.2)

Link 2

$$h_2 = \sqrt{l_{23}^2 + l_{24}^2 - 2l_{23}l_{24}\sin\left(\alpha_2 + \beta_2 + \theta_2\right)} - h_{2o}$$
(2.3)

$$\theta_2 = -\alpha_2 - \beta_2 + \arcsin\left(\frac{l_{23}^2 + l_{24}^2 - (h_2 + h_{2o})^2}{2l_{23}l_{24}}\right)$$
(2.4)

Link 3

$$h_3 = \sqrt{l_{33}^2 + l_{34}^2 - 2l_{33}l_{34}\cos(-\alpha_3 + \beta_3 + \theta_3)} - h_{3o}$$
(2.5)

$$\theta_3 = \alpha_3 - \beta_3 + \arccos\left(\frac{l_{33}^2 + l_{34}^2 - (h_3 + h_{3o})^2}{2l_{33}l_{34}}\right)$$
(2.6)

Link 4

$$h_4 = \sqrt{l_{43}^2 + l_{44}^2 - 2l_{43}l_{44}\cos\left(-\alpha_4 + \gamma_{41} + \gamma_{42} + \theta_4\right)} - h_{4o}$$
(2.7)

$$\theta_4 = \alpha_4 - \gamma_{41} - \gamma_{42} + \arccos\left(\frac{l_{43}^2 + l_{44}^2 - (h_4 + h_{4o})^2}{2l_{43}l_{44}}\right)$$
(2.8)

Link 6

$$h_6 = \sqrt{l_{63}^2 + L_{63}^2 + 2l_{63}L_{63}\cos\left(\alpha_{61} + \gamma_{61} + \gamma_{62}\right)} - h_{6o}$$
(2.9)

ただし,

 $L_{61} = \sqrt{l_{64}^2 + L_{64}^2 - 2l_{64}L_{64}\sin(\alpha_{62} - \theta_6)}$ (2.10)

$$L_{63} = \sqrt{l_{61}^2 + l_{62}^2}, \qquad L_{64} = \sqrt{l_{66}^2 + l_{67}^2}$$
(2.11)

$$\gamma_{61} = -\arctan\left(\frac{-L_{64}\cos(\theta_6 - \alpha_{62})}{l_{64} + L_{64}\sin(\theta_6 - \alpha_{62})}\right)$$
(2.12)

$$\gamma_{62} = \arccos\left(\frac{l_{63}^2 - l_{65}^2 + L_{61}^2}{2l_{63}L_{61}}\right)$$
(2.13)

また,

$$\theta_6 = \alpha_{62} + \beta_{63} + \beta_{64} - \frac{\pi}{2} \tag{2.14}$$

ただし,

$$L_{62} = \sqrt{l_{63}^2 + l_{64}^2 + 2l_{63}l_{64}\cos(\alpha_{61} + \psi_6)}$$
(2.15)

$$\beta_{63} = \arccos\left(\frac{-l_{63}^2 + l_{64}^2 + L_{62}^2}{2l_{64}L_{62}}\right)$$
(2.16)

$$\beta_{64} = \arccos\left(\frac{-l_{65}^2 + L_{62}^2 + L_{64}^2}{2L_{62}L_{64}}\right)$$
(2.17)

$$\psi_6 = \arccos\left(\frac{l_{63}^2 + L_{63}^2 - (h_6 + h_{6o})^2}{2l_{63}L_{63}}\right)$$
(2.18)

Fig. 2.10 Geometry of Link 1-4

Fig. 2.11 Geometry of Link 6

_	Table 2.18Parameters of geometry							
		Length[m]		Length[m]		Length[m]		Angle[rad]
Link 1	h_{1o}	0.6744	l_{11}	0.673	l_{12}	0.107	₩ı	$\arctan\left(l_{11}/l_{12}\right)$
	<i>l</i> ₁₃	$\sqrt{l_{11}^2 + l_{12}^2}$	l_{14}	0.150				
Link 2	h_{2o}	0.4959	l_{21}	0.090	<i>l</i> ₂₂	0.565	α_2	$\arctan\left(l_{21}/l_{22}\right)$
	<i>l</i> ₂₃	0.200	l_{24}	$\sqrt{l_{21}^2 + l_{22}^2}$	<i>l</i> ₂₅	0.035	β_2	$23/180\pi$
Link 3	h_{3o}	0.5471	<i>l</i> ₃₁	0.087	<i>l</i> ₃₂	0.670	α ₃	$\arctan\left(l_{31}/l_{32}\right)$
	<i>l</i> ₃₃	0.150	<i>l</i> ₃₄	$\sqrt{l_{31}^2 + l_{32}^2}$	<i>l</i> ₃₅	0.130	β_3	7/36 <i>π</i>
Link 4	h_{4o}	0.5550	l_{41}	0.086	<i>l</i> ₄₂	0.529	$lpha_4$	$\arctan\left(l_{41}/l_{42}\right)$
	<i>l</i> ₄₃	$\sqrt{l_{41}^2 + l_{42}^2}$	l_{44}	0.100	<i>l</i> ₄₅	0.131	% 41	$11/36\pi$
							<i>Y</i> 42	$5/18\pi$
Link 6	h_{6o}	0.5539	l_{61}	0.070	l_{62}	0.619	A 61	$\arctan\left(l_{61}/l_{62}\right)$
	<i>l</i> ₆₃	0.165	l_{64}	0.087	l_{65}	0.158	<i>α</i> ₆₂	$\arctan\left(l_{67} / l_{66}\right)$
	l_{66}	0.105	<i>l</i> ₆₇	0.006	l_{68}	0.139		

順運動学

順運動学とはマニピュレータの各関節角度からマニピュレータの手先の位置と姿勢を算 出する運動学である. Fig. 2.9 に示すように各関節上に座標系 Σ_1 , Σ_2 , …, Σ_6 をとり, 各関節 角度を θ_i (j = 1, 2, ..., 6)とし, 各関節角度による座標変換行列を $A_1, A_2, ..., A_6$ とすると以下 のようになる. ここで, 右上の添字は座標系を示している.

$$A_j = A_{sj} A_{dj}$$
 $(j = 1, 2, \dots, 6)$ (2.19)

$$A_{sj} = \begin{bmatrix} C_{sj} & r_j^{(j-1)} \\ 0 & 1 \end{bmatrix}$$
(2.20)

$$A_{dj} = \begin{bmatrix} C_{dj} & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta_j & -\sin \theta_j & 0 & 0\\ \sin \theta_j & \cos \theta_j & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.21)

ただし,

$$A_{s1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & l_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad A_{s2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad A_{s3} = \begin{bmatrix} 1 & 0 & 0 & l_2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$
$$A_{s4} = \begin{bmatrix} 1 & 0 & 0 & l_3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad A_{s5} = \begin{bmatrix} 1 & 0 & 0 & l_4 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad A_{s6} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & -l_5 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

 $\Sigma_6 上の手先の作用点 W の位置を r_w^{(6)}, 姿勢を E_w^{(6)} = \left[e_{wx}^{(6)}, e_{wy}^{(6)}, e_{wz}^{(6)} \right] とすると、ベース座標系で$

の手先の作用点 W の位置を $r_w = [x_w, y_w, z_w]^r$, 姿勢を $E_w = [e_{wx}, e_{wy}, e_{wz}]$ は次式で示される.

$$\begin{bmatrix} r_w \\ 1 \end{bmatrix} = A_1 A_2 A_3 A_4 A_5 A_6 \begin{bmatrix} r_w^{(6)} \\ 1 \end{bmatrix}$$

$$E_{-} = C_1 C_2 C_2 C_4 C_5 C_4 C_5 C_6 E_6^{(6)}$$
(2.22)

$$E_{w} = C_{1}C_{2}C_{3}C_{4}C_{5}C_{6}E_{w}$$

$$C_{j} = C_{sj}C_{dj} \qquad (j = 1, 2, \dots, 6)$$
(2.23)

ただし,

	l_6]		0	0	-1
$r_{w}^{(6)} =$	$-l_7$,	$E_{w}^{(6)} =$	-1	0	0
	0			0	1	0

また,後述する逆運動学のために座標系Σ1 での XY 平面とマニピュレータ先端の作用点 W

の姿勢ベクトル $e_{wv}^{(1)}$ との角度を姿勢角度 $\theta_{v}^{(1)}$ と定義し、以下のようになる.

$$\theta_{y}^{(1)} = \text{ATAN2}\left(S_{y}^{(1)}, C_{y}^{(1)}\right)$$
 (2.24)

ただし,

$$C_{y}^{(1)} = e_{1z}^{(1)} \cdot e_{wz}^{(1)}, \qquad S_{y}^{(1)} = \left(e_{1z}^{(1)} \times e_{wz}^{(1)}\right) \cdot e_{wy}^{(1)}$$
(2.25)

特異点解析

特異点とは手先の特定方向の運動学的自由度が縮退する点であり、特異点近傍の運動で は高速な関節角速度を必要とする場合がある.よって、特異点を把握しておくことは運動 学上重要となる.本節では MF Arm の特異点を導出する.関節角度の集合を $\Theta = [\theta_1, \theta_2, \theta_3, \theta_4]$ $\theta_{5}, \theta_{6}]^{T}$ とし、ヤコビ行列を $J(\Theta)$ とすると、

(2.26) $\det J(\Theta) = 0$

となる姿勢⊙が特異姿勢である.ここで、ヤコビ行列の求め方について述べる.ヤコビ行列 は以下に示すように関節角速度から手先の速度、角速度を求める変換行列である、手先の 速度 v_w はベース座標系での手先の作用点Wの位置 $r_w = [x_w, y_w, z_w]^T$ を時間微分することによ り次式のようになる.

$$v_{w} = \dot{r}_{w} = \begin{bmatrix} \dot{x}_{w} \\ \dot{y}_{w} \\ \dot{z}_{w} \end{bmatrix} = \begin{bmatrix} \frac{\partial x_{w}}{\partial \theta_{1}} & \frac{\partial x_{w}}{\partial \theta_{2}} & \frac{\partial x_{w}}{\partial \theta_{3}} & \frac{\partial x_{w}}{\partial \theta_{4}} & \frac{\partial x_{w}}{\partial \theta_{5}} & \frac{\partial x_{w}}{\partial \theta_{6}} \\ \frac{\partial y_{w}}{\partial \theta_{1}} & \frac{\partial y_{w}}{\partial \theta_{2}} & \frac{\partial y_{w}}{\partial \theta_{3}} & \frac{\partial y_{w}}{\partial \theta_{4}} & \frac{\partial y_{w}}{\partial \theta_{5}} & \frac{\partial y_{w}}{\partial \theta_{6}} \\ \frac{\partial z_{w}}{\partial \theta_{1}} & \frac{\partial z_{w}}{\partial \theta_{2}} & \frac{\partial z_{w}}{\partial \theta_{3}} & \frac{\partial z_{w}}{\partial \theta_{4}} & \frac{\partial z_{w}}{\partial \theta_{5}} & \frac{\partial z_{w}}{\partial \theta_{6}} \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3} \\ \dot{\theta}_{4} \\ \dot{\theta}_{5} \\ \dot{\theta}_{6} \end{bmatrix}$$
(2.27)

また,手先の角速度 $\Omega_w = [\omega_{wx}, \omega_{wy}, \omega_{wz}]^T$ は次式のようになる.

_

_ _ _ _ _

$$\Omega_{w} = C_{1} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{1} \end{bmatrix} + C_{1}C_{2} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{2} \end{bmatrix} + \dots + C_{1}C_{2}C_{3}C_{4}C_{5}C_{6} \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_{6} \end{bmatrix} \\
= \begin{bmatrix} 0 & -s_{1} & -s_{1} & -s_{1} & c_{1}s_{234} & -c_{1}c_{234}s_{5} - s_{1}c_{5} \\ 0 & c_{1} & c_{1} & s_{1}s_{234} & -s_{1}c_{234}s_{5} + c_{1}c_{5} \\ 1 & 0 & 0 & 0 & c_{234} & s_{234}s_{5} \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3} \\ \dot{\theta}_{4} \\ \dot{\theta}_{5} \\ \dot{\theta}_{6} \end{bmatrix}$$
(2.28)

ただし, $\sin \theta_i = s_i$, $\cos \theta_i = c_i$, $\sin(\theta_i + \theta_i + \theta_k) = s_{iik}$, $\cos(\theta_i + \theta_i + \theta_k) = c_{iik}$ と略記した. よって, ヤ コビ行列 J(Θ)は次式のようになる.

$$\begin{bmatrix} v_{w} \\ \Omega_{w} \end{bmatrix} = J\left(\Theta\right) \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3} \\ \dot{\theta}_{4} \\ \dot{\theta}_{5} \\ \dot{\theta}_{6} \end{bmatrix} = \begin{bmatrix} \frac{\partial x_{w}}{\partial \theta_{1}} & \frac{\partial x_{w}}{\partial \theta_{2}} & \frac{\partial x_{w}}{\partial \theta_{3}} & \frac{\partial x_{w}}{\partial \theta_{4}} & \frac{\partial x_{w}}{\partial \theta_{5}} & \frac{\partial x_{w}}{\partial \theta_{6}} \\ \frac{\partial y_{w}}{\partial \theta_{1}} & \frac{\partial y_{w}}{\partial \theta_{2}} & \frac{\partial y_{w}}{\partial \theta_{3}} & \frac{\partial y_{w}}{\partial \theta_{4}} & \frac{\partial y_{w}}{\partial \theta_{5}} & \frac{\partial y_{w}}{\partial \theta_{6}} \\ \frac{\partial z_{w}}{\partial \theta_{1}} & \frac{\partial z_{w}}{\partial \theta_{2}} & \frac{\partial z_{w}}{\partial \theta_{3}} & \frac{\partial z_{w}}{\partial \theta_{4}} & \frac{\partial z_{w}}{\partial \theta_{5}} & \frac{\partial z_{w}}{\partial \theta_{6}} \\ 0 & -s_{1} & -s_{1} & -s_{1} & c_{1}s_{234} & -c_{1}c_{234}s_{5} - s_{1}c_{5} \\ 0 & c_{1} & c_{1} & c_{1} & s_{1}s_{234} & -s_{1}c_{234}s_{5} + c_{1}c_{5} \\ 1 & 0 & 0 & 0 & c_{234} & s_{234}s_{5} \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3} \\ \dot{\theta}_{4} \\ \dot{\theta}_{5} \\ \dot{\theta}_{6} \end{bmatrix}$$

$$(2.29)$$

本マニピュレータにおいて式(2.26)を解いて、特異姿勢となる条件を導くと、以下の3条件となる.

1.
$$l_2 \cos \theta_2 + l_3 \cos \left(\theta_2 + \theta_3\right) + l_4 \cos \left(\theta_2 + \theta_3 + \theta_4\right) - l_5 \sin \left(\theta_2 + \theta_3 + \theta_4\right) = 0$$

(2.30)

 $2. \qquad \theta_3 = 0$

3. $\theta_5 = 0, \pm \pi$

条件2は可動範囲外であるが,条件1,3は可動範囲内であるため特異姿勢を考慮した逆運動学の解法が必要となる.

逆運動学

逆運動学とはマニピュレータの手先の作用点の位置と姿勢からマニピュレータの各関節 角度を算出する運動学である.一般的な 6 自由度のマニピュレータでは逆運動学を解析的 に一意に解くことが可能であるが, MF Arm では作業動作中は β=0,±180°に固定しており, 座標系Σ1に対して,2次元4リンクの冗長マニピュレータとなり,常に特異姿勢での逆運動 学を解く必要がある.そのため,速度の逆運動学を用いて,位置の逆運動学解を得ること とする.本節では MF Arm の位置と姿勢の目標値から,各関節のシリンダストローク目標 値を生成する方法について述べる.

MF Arm の関節角の集合を $\Theta = [\Theta, \Theta, \Theta, \Theta]^T$, シリンダストロークの集合を $H = [h_2, h_3, h_4, h_6]^T$ と定義する. MF Arm は 2 次元 4 リンクの冗長マニピュレータとなるため, ヤコビ行列 を用いた逆運動学を解くにはヤコビ行列の擬似逆行列が必要となる. ここで, 2 次元 4 リン クマニピュレータと考えたときの関節角度, シリンダストロークについての各ヤコビ行列 を $J_1^{(1)}(\Theta), J_2^{(1)}(H)$ とし, シリンダストローク速度から手先の速度, 角速度を求める新たなヤ コビ行列を $J^{(1)}(H)$ と定義する. 手先の作用点 W の座標系 Σ_1 での位置を $r_w^{(1)} = \left[x_w^{(1)}, y_w^{(1)}, z_w^{(1)} \right]^T$, XY 平面と姿勢ベクトル $e_{w}^{(1)}$ との角度を姿勢角度 $\theta_v^{(1)}$ とすると, ヤコビ行列 $J^{(1)}$ は次式のように

なる.
$$\begin{bmatrix} \dot{x}_{w}^{(1)} \\ \dot{z}_{w}^{(1)} \\ \dot{\theta}_{y}^{(1)} \end{bmatrix} = J^{(1)} \begin{bmatrix} \dot{h}_{2} \\ \dot{h}_{3} \\ \dot{h}_{4} \\ \dot{h}_{6} \end{bmatrix} = J^{(1)} J^{(1)}_{2} \begin{bmatrix} \dot{h}_{2} \\ \dot{h}_{3} \\ \dot{h}_{4} \\ \dot{h}_{6} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial x^{(1)}_{w}}{\partial \theta_{2}} & \frac{\partial x^{(1)}_{w}}{\partial \theta_{3}} & \frac{\partial x^{(1)}_{w}}{\partial \theta_{4}} & \frac{\partial x^{(1)}_{w}}{\partial \theta_{6}} \\ \frac{\partial z^{(1)}_{w}}{\partial \theta_{2}} & \frac{\partial z^{(1)}_{w}}{\partial \theta_{3}} & \frac{\partial z^{(1)}_{w}}{\partial \theta_{4}} & \frac{\partial z^{(1)}_{w}}{\partial \theta_{6}} \\ \frac{\partial \theta^{(1)}_{y}}{\partial \theta_{2}} & \frac{\partial \theta^{(1)}_{y}}{\partial \theta_{3}} & \frac{\partial \theta^{(1)}_{y}}{\partial \theta_{4}} & \frac{\partial \theta^{(1)}_{y}}{\partial \theta_{6}} \end{bmatrix} \begin{bmatrix} \frac{\partial \theta_{2}}{\partial h_{2}} & 0 & 0 & 0 \\ 0 & \frac{\partial \theta_{3}}{\partial h_{3}} & 0 & 0 \\ 0 & 0 & \frac{\partial \theta_{4}}{\partial h_{4}} & 0 \\ 0 & 0 & 0 & \frac{\partial \theta_{4}}{\partial h_{4}} \end{bmatrix} \begin{bmatrix} \dot{h}_{2} \\ \dot{h}_{3} \\ \dot{h}_{4} \\ \dot{h}_{6} \end{bmatrix}$$

$$(2.31)$$

新たなヤコビ行列 $J^{(1)}$ の擬似逆行列 $J^{(1)+}$ は次式のようになる.

$$J^{(1)_{+}} = J^{(1)T} \left[J^{(1)} J^{(1)T} \right]^{-1}$$
(2.32)

このヤコビ行列 $J^{(1)}$ を用いたシリンダストローク目標値の生成方法を以下に示す.ベース座 標系でのスレーブアーム手先の作用点の位置目標値を $r_{wref} = [x_{wref}, y_{wref}, z_{wref}]^T$, 姿勢の目標値 を $E_{wref} = [e_{wxref}, e_{wyref}, e_{wzref}]$, 座標系 Σ_1 での手先の作用点の位置目標値を $r_{wref}^{(1)} = [x_{wref}^{(1)}, y_{wref}^{(1)}, z_{wref}^{(1)}]^T$, 姿勢目標値を $E_{wref}^{(1)} = [e_{wxref}^{(1)}, e_{wyref}^{(1)}, e_{wzref}^{(1)}]$ と定義する. 各関節角度の目 標値を $\theta_{ref}(j=1,2,...,6)$ とすると, 各座標系の原点で構成される平面の向きは θ_{ref} によって 決定されるので,以下のようになる.

$$\theta_{1ref} = \begin{cases} \arctan \frac{y_{wref}}{x_{wref}} & \left(x_{wref} \neq 0\right) \\ \theta_{1} & \left(x_{wref} = 0\right) \end{cases}$$
(2.33)

 $\mathcal{L} \supset \zeta, \\ \begin{bmatrix} r_{wref}^{(1)} \\ 1 \end{bmatrix} = A_1 \left(\theta_{1ref} \right)^{-1} \begin{bmatrix} r_{wref} \\ 1 \end{bmatrix}$ (2.34)

$$E_{wref}^{(1)} = C_1 \left(\theta_{1ref}\right)^{-1} E_{wref}$$
(2.35)

以下では必要に応じて,各変数にサンプリングステップの概念を(*k*)のように明示する.ただし,特に明示の無い場合には現在のステップ*k*を示すこととする.座標系 Σ_1 での手先の作用点の位置目標値の変化量 $\Delta' r_{wref}^{(1)}(k) = \left[\Delta' x_{wref}^{(1)}(k), \Delta' y_{wref}^{(1)}(k), \Delta' z_{wref}^{(1)}(k)\right]^T$,姿勢角度目標値の変化量 $\Delta' \theta_{wref}^{(1)}(k)$ は以下のようになる.

$$\Delta' r_{wref}^{(1)}(k) = \begin{bmatrix} \Delta' x_{wref}^{(1)}(k) \\ \Delta' y_{wref}^{(1)}(k) \\ \Delta' z_{wref}^{(1)}(k) \end{bmatrix} = r_{wref}^{(1)}(k) - r_{wref}^{(1)}(k-1)$$
(2.36)

$$\Delta' \theta_{yref}^{(1)}\left(k\right) = \operatorname{ATAN2}\left(\Delta S_{yref}^{(1)}\left(k\right), \Delta C_{yref}^{(1)}\left(k\right)\right)$$
(2.37)

ただし,

$$\Delta C_{yref}^{(1)}(k) = e_{wzref}^{(1)}(k-1) \cdot e_{wzref}^{(1)}(k), \quad \Delta S_{yref}^{(1)}(k) = \left(e_{wzref}^{(1)}(k-1) \times e_{wzref}^{(1)}(k)\right) \cdot e_{wyref}^{(1)}(k-1)$$
(2.38)

また,目標値が過剰に大きくなるのを抑制するために最大速度 v_{max} ,最大角速度 ω_{max} を定義 し制限を与える.よって,目標値生成に用いる位置目標値の変化量 $\Delta x_{wref}^{(1)}$, $\Delta z_{wref}^{(1)}$,角度目標 値の変化量 $\Delta \theta_{yref}^{(1)}$ は以下のようになる.

$$\Delta x_{wref}^{(1)} = \begin{cases} \frac{T_s v_{max} \Delta' x_{wref}^{(1)}}{\sqrt{\left(\Delta' x_{wref}^{(1)}\right)^2 + \left(\Delta' z_{wref}^{(1)}\right)^2}} & \left(\sqrt{\left(\Delta' x_{wref}^{(1)}\right)^2 + \left(\Delta' z_{wref}^{(1)}\right)^2} \ge T_s v_{max}\right) \\ \Delta' x_{wref}^{(1)} & \left(\sqrt{\left(\Delta' x_{wref}^{(1)}\right)^2 + \left(\Delta' z_{wref}^{(1)}\right)^2} < T_s v_{max}\right) \\ \Delta z_{wref}^{(1)} = \begin{cases} \frac{T_s v_{max} \Delta' z_{wref}^{(1)}}{\sqrt{\left(\Delta' x_{wref}^{(1)}\right)^2 + \left(\Delta' z_{wref}^{(1)}\right)^2}} & \left(\sqrt{\left(\Delta' x_{wref}^{(1)}\right)^2 + \left(\Delta' z_{wref}^{(1)}\right)^2} \ge T_s v_{max}\right) \\ \Delta' z_{wref}^{(1)} & \left(\sqrt{\left(\Delta' x_{wref}^{(1)}\right)^2 + \left(\Delta' z_{wref}^{(1)}\right)^2} \le T_s v_{max}\right) \\ \Delta' z_{wref}^{(1)} & \left(\sqrt{\left(\Delta' x_{wref}^{(1)}\right)^2 + \left(\Delta' z_{wref}^{(1)}\right)^2} \le T_s v_{max}\right) \\ \Delta \theta_{yref}^{(1)} = \begin{cases} \frac{T_s \omega_{max} \Delta' \theta_{yref}^{(1)}}{\left|\Delta' \theta_{yref}^{(1)}\right|} & \left(\left|\Delta' \theta_{yref}^{(1)}\right| \ge T_s \omega_{max}\right) \\ \Delta' \theta_{yref}^{(1)} & \left(\left|\Delta' \theta_{yref}^{(1)}\right| < T_s \omega_{max}\right) \end{cases}$$
(2.41)

ただし, T_sはサンプリング時間である.

求めるシリンダストローク目標値を $H_{ref}(k) = [h_{2ref}(k), h_{3ref}(k), h_{4ref}(k), h_{6ref}(k)]^{T}$, シリンダス トローク目標値の変化量を $\Delta H_{ref}(k) = [\Delta h_{2ref}(k), \Delta h_{3ref}(k), \Delta h_{4ref}(k), \Delta h_{6ref}(k)]^{T}$ と定義し,以下の 計算をする.

$$\Delta H_{ref}(k) = J^{(1)} \left(H_{ref}(k-1) \right)^{+} \begin{bmatrix} \Delta x_{wref}^{(1)}(k) \\ \Delta z_{wref}^{(1)}(k) \\ \Delta \theta_{yref}^{(1)}(k) \end{bmatrix} + T_{s} k_{jac} \left(I_{jac} - J^{(1)} \left(H_{ref}(k-1) \right)^{+} \cdot J^{(1)} \left(H_{ref}(k-1) \right) \right) \frac{\partial V}{\partial H} \left(H_{ref}(k-1) \right)$$
(2.42)

ここで, kjac はスカラ定数, Ijac は(4×4)の単位行列と定義する. また, V(H)はマニピュレータ

の冗長性を利用した評価関数であり、 k_{jac} を負数(正数)に定義することで評価関数 V(H)を小さく(大きく)する目標値 H_{ref} を生成できる.本研究では k_{jac} を負数とし、シリンダストローク目標値 H_{ref} が可動範囲内になるように評価関数 V(H)を以下のように定義する.

$$V(H) = \sum_{j} \left[\frac{1}{\left(h_{jmax} + h_{mar} - h_{j}\right)^{2}} + \frac{1}{\left(h_{j} + h_{mar} - h_{j\min}\right)^{2}} \right]$$
(2.43)

ただし、各シリンダストローク h_j (j = 2, 3, 4, 6)の最大値を h_{jmax} ,最小値を h_{jmin} ,スカラ乗数 を h_{mar} とする.

以上より、シリンダストローク目標値 *H*_{ref}(*k*)は以下のようになる.ただし、各シリンダストロークの可動範囲内で決定する.

$$H_{ref}\left(k\right) = H_{ref}\left(k-1\right) + \Delta H_{ref}\left(k\right) \tag{2.44}$$

ここで、サンプリング時間と実験的に決定した各設計パラメータを Table 2.19 に示す.

Table 2.19	Parameters of inverse kinematics

T_s [s]	h_{mar} [m]	<i>k_{jac}</i>	v _{max} [m/s]	@max [rad/s]
0.01	0.04 (Link 3,4,6)	0.0001	10	50
0.01	0.03 (Link 2)	-0.0001	10	$\frac{1}{9}^{n}$

逆運動学の解析的解法

本節では参考として、 $\theta_5 \neq 0$, ±180°での逆運動学の解析的解法について述べる. ベース座 標系での手先の作用点の位置 r_w と姿勢 E_w より関節座標系の原点 J_6 の位置ベクトル $r_6 = [x_6, y_6, z_6]^T$ は以下のようになる.

$$r_6 = r_w + l_6 e_{wz} - l_7 e_{wx} \tag{2.45}$$

各座標系の原点 O, J₁, J₂, J₃, J₄, J₅, J₆は同一垂直平面内にある. この平面の向きはθ によって 決定されるので,以下のようになる.

$$\theta_1 = \arctan \frac{y_6}{x_6} \qquad (x_6 \neq 0) \tag{2.46}$$

ただし、 $x_6 = 0$ の場合には θ_1 は任意である.ここで、

$$e_{2z} = e_{3z} = e_{4z} = \begin{bmatrix} -\sin\theta_1 \\ \cos\theta_1 \\ 0 \end{bmatrix}$$
(2.47)

となる.また、姿勢 Ewより、以下の式が成り立つ.

$$e_{6x} = -e_{wz}, \qquad e_{6y} = -e_{wx}, \qquad e_{5y} = e_{6z} = e_{wy}$$
 (2.48)

ここで、座標系 Σ_5 でのZ軸方向ベクトル e'_{s_z} を以下のように定義する.

$$e'_{5z} = \frac{e_{4z} \times e_{5y}}{|e_{4z} \times e_{5y}|}$$
(2.49)

よって, 6,6は以下のようになる.

$$\theta_5 = \pm \text{ATAN2}(S_5, C_5), \quad \theta_6 = \pm \text{ATAN2}(S_6, C_6) \quad (複合任意)$$
ただし,
(2.50)

$$C_{5} = e_{4z} \cdot e_{5y}, \qquad S_{5} = \left(e_{4z} \times e_{5y}\right) \cdot e_{5z}'$$
(2.51)

$$C_6 = e'_{5z} \cdot e_{6x}, \qquad S_6 = \left(e'_{5z} \times e_{6x}\right) \cdot e_{6z}$$

$$(2.52)$$

ここで, e5zは以下のようになる.

$$e_{5z} = \begin{cases} \frac{e_{4z} \times e_{5y}}{|e_{4z} \times e_{5y}|} & (\theta_5 \ge 0) \\ -\frac{e_{4z} \times e_{5y}}{|e_{4z} \times e_{5y}|} & (\theta_5 < 0) \end{cases}$$

$$(2.53)$$

次に関節座標系の原点 J₄, J₅の位置ベクトル r₄, r₅は以下のようになる.

$$r_5 = r_6 + l_5 e_{5z} \tag{2.54}$$

$$r_4 = r_5 - l_4 e_{4x} \tag{2.55}$$

ただし,

$$e_{4x} = \frac{e_{4z} \times e_{5z}}{|e_{4z} \times e_{5z}|}$$
(2.56)

また, J_2 から J_4 への位置ベクトル $\overline{J_2J_4}$ は以下のようになる.

$$\overline{\mathbf{J}_{2}\mathbf{J}_{4}} = \begin{bmatrix} x_{24} \\ y_{24} \\ z_{24} \end{bmatrix} = r_{4} - r_{2}$$
(2.57)

ただし,

$$r_2 = \begin{bmatrix} 0\\0\\l_0+l_1 \end{bmatrix}$$
(2.58)

以上より,
$$\left|\overline{J_{2}J_{4}}\right| \leq l_{2} + l_{3}$$
を満たすとき, 三角形 $J_{2}J_{3}J_{4}$ が確定し, θ_{2} , θ_{3} は以下のようになる.

$$\theta_2 = -(\alpha + \beta), \quad \theta_3 = \beta + \gamma$$
 (2.59)

ただし,

$$\alpha = \text{ATAN2}\left(z_{24}, \sqrt{x_{24}^2 + y_{24}^2}\right)$$
(2.60)

$$\beta = \arccos \frac{l_2^2 + \left|\overline{J_2 J_4}\right|^2 - l_3^2}{2l_2 \left|\overline{J_2 J_4}\right|}$$
(2.61)

$$\gamma = \arccos \frac{l_3^2 + \left|\overline{J_2 J_4}\right|^2 - l_2^2}{2l_3 \left|\overline{J_2 J_4}\right|}$$
(2.62)

関節座標系の原点 J₃の位置ベクトル r₃は以下のようになる.

 $r_3 = r_2 + l_2 e_{2x} \tag{2.63}$

ただし,

$$e_{2x} = C_1 C_2 \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
(2.64)

よって,

$$e_{3x} = \frac{r_4 - r_3}{|r_4 - r_3|} \tag{2.65}$$

 $\theta_4 = \operatorname{ATAN2}(S_4, C_4) \tag{2.66}$

ただし,

$$C_4 = e_{3x} \cdot e_{4x}, \qquad S_4 = (e_{3x} \times e_{4x}) \cdot e_{4z}$$
(2.67)

以上より、4通りの逆運動学解を解析的に求められる.

2.2 マスタアーム

2.2.1 マニピュレータ

マスタアームは2次元平面内で非冗長な6自由度マニピュレータであり, MF Arm とは異 構造となっている.マスタアームの外観図をFig. 2.12,座標系をFig. 2.13,主要諸元をTable 2.20 に示す.ここで,マスタアームにはアクチュエータは無く,ポテンショメータにより 各関節角度を計測する.

Fig. 2.12 Master Arm

Fig. 2.13 Coordinate of Master Arm

Table 2.2	20 Parame	ters of l	Master Arm
	Range[deg]		Length[m]
Link 1_m	$-90 \le \theta_{1m} \le 160$	l_{0m}	0.034
Link 2_m	-115≤ <i>⊕</i> 2 <i>m</i> ≤60	l_{1m}	0.175
Link 3 _m	-48≤ <i>θ</i> _{3m} ≤62	l_{2m}	0.406
Link 4_m	-146≤ <i>θ</i> 4 <i>m</i> ≤180	l_{3m}	0.448
Link 5 _m	-52≤ <i>θ</i> ₅ <i>m</i> ≤250	l_{4m}	0.086
Link 6 _m	-170≤ <i>θ</i> _{6m} ≤170	l_{5m}	0.157
		l_{6m}	0.058
		l_{7m}	0.110

2.2.2 順運動学

マスタアームについて、Fig. 2.13 に示すように各関節上に座標系 Σ_{1m} , Σ_{2m} , …, Σ_{6m} をとり、 各関節角度を θ_{jm} (j = 1, 2, ..., 6)とし、各関節角度による座標変換行列を A_{1m} , A_{2m} , …, A_{6m} と すると以下のようになる.

$$A_{jm} = A_{sjm} A_{djm} \qquad (j = 1, 2, \cdots, 6)$$
(2.68)

$$A_{sjm} = \begin{bmatrix} C_{sjm} & r_{jm}^{(j-1)m} \\ 0 & 1 \end{bmatrix}$$
(2.69)

$$A_{djm} = \begin{bmatrix} C_{djm} & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta_{jm} & -\sin \theta_{jm} & 0 & 0\\ \sin \theta_{jm} & \cos \theta_{jm} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.70)

ただし,

$$\begin{split} A_{s1m} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & l_{0m} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_{s2m} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & l_{1m} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_{s3m} = \begin{bmatrix} 0 & -1 & 0 & l_{2m} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \\ A_{s4m} = \begin{bmatrix} 0 & 0 & -1 & l_{3m} \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_{s5m} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & -l_{4m} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_{s6m} = \begin{bmatrix} 0 & 0 & 1 & l_{5m} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \end{split}$$

 Σ_{6m} 上の手先の作用点 W_m の位置と姿勢を $r_{wm}^{(6m)}$, $E_{wm}^{(6m)} = \left[e_{wmx}^{(6m)}, e_{wmy}^{(6m)}, e_{wmz}^{(6m)} \right]$, マスタ座標系での

マスタアーム手先の作用点 W_mの位置を $r_{wm}^{(m)} = \left[x_{wm}^{(m)}, y_{wm}^{(m)}, z_{wm}^{(m)} \right]^T$, 姿勢を $E_{wm}^{(m)} = \left[e_{wxm}^{(m)}, e_{wym}^{(m)}, e_{wzm}^{(m)} \right]$ とすると次式で示される.

$$\begin{bmatrix} r_{wm}^{(m)} \\ 1 \end{bmatrix} = A_{1m} A_{2m} A_{3m} A_{4m} A_{5m} A_{6m} \begin{bmatrix} r_{wm}^{(6m)} \\ 1 \end{bmatrix}$$
(2.71)

$$E_{wm}^{(m)} = \begin{bmatrix} e_{wxm}^{(m)}, e_{wym}^{(m)}, e_{wzmx}^{(m)} \end{bmatrix} = \begin{bmatrix} e_{wxmx}^{(m)} & e_{wymx}^{(m)} & e_{wzmx}^{(m)} \\ e_{wxmy}^{(m)} & e_{wymy}^{(m)} & e_{wzmy}^{(m)} \\ e_{wxmy}^{(m)} & e_{wymy}^{(m)} & e_{wzmz}^{(m)} \end{bmatrix} = C_{1m}C_{2m}C_{3m}C_{4m}C_{5m}C_{6m}E_{wm}^{(6m)}$$

$$C_{jm} = C_{sjm}C_{djm} \qquad (j = 1, 2, \dots, 6)$$

$$(2.72)$$

ただし,

$$r_{wm}^{(6m)} = \begin{bmatrix} l_{6m} \\ 0 \\ -l_{7m} \end{bmatrix}, \qquad E_{wm}^{(6m)} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

2.3 マスタスレーブシステム

2.3.1 スレーブアーム目標値の生成

本マスタスレーブシステムでは前節に示したマスタアームの順運動学を用いて決定され たマスタ座標系でのマスタアーム手先の作用点 W_m の位置 $r_{wm}^{(m)} = \left[x_{wm}^{(m)}, y_{wm}^{(m)}, z_{wm}^{(m)} \right]^T$, 姿勢 $E_{wm}^{(m)}$ を 用いて, スレーブアーム手先の作用点 W の位置と姿勢の目標値を生成する.

マスタアーム各関節変位を $\theta_{jm} = 0$ (j = 1, 2, ..., 6)としたときのマスタアームの姿勢を基本 姿勢と定義し、マスタ座標系において基本姿勢でのマスタアーム手先の作用点 W_m の位置を $r_{wmo}^{(m)} = \left[x_{wmo}^{(m)}, y_{wmo}^{(m)}, z_{wmo}^{(m)}\right]^T$ と定義し、ベース座標系でのスレーブアーム手先の作用点 Wの位置 目標値 $r_{wref} = \left[x_{wref}, y_{wref}, z_{wref}\right]^T$ を以下のように決定する.

$$\begin{bmatrix} x_{wref} \\ y_{wref} \\ z_{wref} \end{bmatrix} = \begin{bmatrix} x_{wo} \\ y_{wo} \\ z_{wo} \end{bmatrix} + k_{sc} \begin{bmatrix} x_{wm}^{(m)} - x_{wmo}^{(m)} \\ y_{wm}^{(m)} - y_{wmo}^{(m)} \\ z_{wm}^{(m)} - z_{wmo}^{(m)} \end{bmatrix}$$
(2.73)

ただし, $\begin{bmatrix} x_{wo}, y_{wo}, z_{wo} \end{bmatrix}^T$ はスレーブアームの基準位置とし, k_{sc} はスカラ定数とする.また, ベース座標系でのスレーブアーム手先の作用点 W の姿勢目標値 $E_{wref} = [e_{wxref}, e_{wyref}, e_{wzref}]$ は以 下のように決定する.

$$e_{wvrf} = \begin{cases} \left[sgn(e_{wm}^{(m)}) \sqrt{1 - e_{wmm}^{(m)-2}} cos\left(\arctan\left(\frac{y_{wrf}}{x_{wrf}}\right) \right) \right] \\ sgn(e_{wmr}^{(m)}) \sqrt{1 - e_{wmm}^{(m)-2}} sin\left(\arctan\left(\frac{y_{wrf}}{x_{wrf}}\right) \right) \\ e_{wmr}^{(m)} \\ \end{bmatrix} & (\theta_{5} = 0) \end{cases}$$

$$e_{wvrf} = \begin{cases} \left[-sgn(e_{wmr}^{(m)}) \sqrt{1 - e_{wmr}^{(m)-2}} cos\left(\arctan\left(\frac{y_{wrf}}{x_{wrf}}\right) \right) \right] \\ -sgn(e_{wmr}^{(m)}) \sqrt{1 - e_{wmr}^{(m)-2}} sin\left(\arctan\left(\frac{y_{wrf}}{x_{wrf}}\right) \right) \\ e_{wmr}^{(m)} \\ \end{bmatrix} & (\theta_{5} = \pm \pi) \end{cases}$$

$$e_{wyrf} = \begin{cases} \left[-sin\left(\arctan\left(\frac{y_{wrf}}{x_{wrf}}\right) \right) \\ cos\left(\arctan\left(\frac{y_{wrf}}{x_{wrf}}\right) \right) \\ 0 \\ \end{bmatrix} & (\theta_{5} = 0) \\ cos\left(\arctan\left(\frac{y_{wrf}}{x_{wrf}}\right) \right) \\ 0 \\ \end{bmatrix} & (\theta_{5} = \pm \pi) \end{cases}$$

$$(2.75)$$

$$e_{wzref} = e_{wxref} \times e_{wyref}$$

(2.76)

ここで、xwref=0のときはスレーブアーム手先の作用点の位置と姿勢を目標値とする.

また, MF Arm には作業内容に応じてグリッパモードとドリルモードの二つの作業モード が存在する.以上に示した式はグリッパモード時の目標値であり、ドリルモード時におい ては以下に示す計算を追加する.

$$\begin{cases} e_{wxref} = -e'_{wzref} \\ e_{wyref} = e'_{wyref} \\ e_{wzref} = e'_{wxref} \end{cases}$$
(2.77)

ただし,式(2.74)~(2.76)により求めた姿勢の目標値を $E'_{wref} = [e'_{wxref}, e'_{wyref}, e'_{wzref}]$ とする.以上より,マスタスレーブシステムでのスレーブアーム手先の位置と姿勢の目標値が求められる.ここで,各設計パラメータを Table 2.21 に示す.

Table 2.21	Parameters of reference value			
	k_{sc}	$x_{wo}[m]$	$y_{wo}[m]$	$z_{wo}[m]$
Gripper mode	1.2	1.786	0	-0.236
Drill mode	1.2	1.869	0	-0.032

2.3.2 制御システム

外界で作業を行う MF Arm をスレーブアームとし,前述したマスタアームを用いたマス タスレーブシステムを構成する.以下では制御システムの概要を述べる.作業者がマスタ アームを直接操作し,マスタアーム関節のポテンショメータ出力を Target PC の A/D ボード より計算機に取り込み,運動学により MF Arm の各シリンダストローク目標値を算出し, MF Arm のバルブコントローラに D/A ボードから指令電圧を出力するユニラテラルマスタ スレーブシステムを構成する.制御システムの構成図を Fig. 2.14 に示す.ここで,各信号 における通信遅れは無視できる程小さいシステム構成となっている.

Fig. 2.14 Control system of master slave system

第3章 MFArmの制御系設計

本章では油圧マニピュレータの軌道追従性能向上のための制御系設計について述べる. 油圧駆動型多関節マニピュレータの軌道追従制御では油圧系の応答遅れやスティックスリ ップ現象、片ロッドシリンダ受圧面の非対称性、オーバーラップを有する比例電磁制御弁 の不感帯、マニピュレータの姿勢変動による非線形外乱が問題となる。これらの問題に対 し、スライディングモード制御と外乱オブザーバを併用した研究[49][50][51]が盛んであり、そ の優位性が実証されている. 目標値等の未来情報が予め設定されている機械システムの軌 道追従制御において、未来目標値を積極的に利用する最適予見制御とスライディングモー ド制御を融合した制御法の研究^{[12][56]}も行われており、軌道追従性能を大幅に向上できるこ とが実証されている.また、未来情報を利用できないシステムに対しては制御系全体の特 性を規範モデルの特性に一致させる制御法であるモデル規範型適応制御とスライディング モード制御を併用することで制御性能を向上できることが実証されている^{[13][60][61]}.しかし、 一般的に振動モードを無視してモデリングしたシステムに対して、スライディングモード 制御系を実装する場合、無視した振動モードを励起してしまう可能性がある.この問題に 対して,周波数整形スライディングモード制御の研究があり,伊藤ら^[65]は制御入力端に低 域通過フィルタを付加するという簡便な方法で振動モードの励起を抑制している. さらに 近年では実システムの制御系設計はコンピュータを用いて実現されることが多く、離散時 間系での制御系設計が望まれている.

以上の背景より本研究では未来目標値利用の有無により 2 通りの制御系設計を行う.ま ず,マスタスレーブシステムの軌道追従制御性能と作業効率の向上を目的として,未来目 標値を積極的に利用した予見スライディングモード制御に制御系を複雑にせずとも振動モ ードの励起抑制に効果的な入力端周波数整形フィルタを付加した離散時間入力端周波数整 形予見スライディングモード制御系(以下, PSMC+PF)の設計法を提案し,機械構造物とし ての振動モードが制御帯域に存在する MF Arm を用いた軌道追従制御実験により有効性を 実証する.次に未来目標値を用いずに軌道追従性能を向上させることのできる規範モデル 追従形スライディングモード制御に入力端周波数整形フィルタを付加した離散時間規範モ デル追従形入力端周波数整形スライディングモード制御系(以下, RSMC+PF)の設計法を提 案し,同様に MF Arm を用いた軌道追従制御実験により有効性を実証する.

3.1 モデリング

MF Arm では最大入力電流(-0.8A~0.8A)に対して,入力不感帯が約40%(-0.3A~0.3A)と非 線形特性の大きなオーバーラップを有する電磁比例流量制御弁を採用している.本制御弁 の制御流量範囲は1~10l/min(シリンダストローク速度で約0.01~0.1m/s相当)と比較的大き く,シリンダ低速動作時にスティックスリップ現象が生じやすい.また,バルブコントロ ーラは制御入力に比例した駆動電流を出力する特性を有しているが,制御弁における入力 不感帯の影響を緩和するために制御入力の正負に応じたオフセット電流 *Iom*, *Iop*を駆動電流 には印加している.オフセット電流 *Iom*, *Iop*と実験から求めた各関節での制御入力不感帯 *vm* ~*vp* を Table 3.1 に示す.

MF Arm では関節間の干渉は小さいと仮定し,各関節独立に単入出力系(SISO 系)の線形モ デルとしてモデリング,および制御系設計を行う.油圧マニピュレータの場合,油圧系・ 機械系から構成されており,厳密な多入出力系(MIMO 系)のモデルを導出すると高次のモデ ルとなり,未知パラメータの同定,制御系設計が困難となるため,実機実装を目的とした 場合,必ずしも適切な方法とはいえない.また,油圧アクチュエータに対して,SISO 系の 線形モデルとスライディングモード制御系との組み合わせにより良好な制御性能が得られ ることも多数報告^{[12][13][49][50][51]}されている.

モデリング方法について述べる. 各関節において, Fig. 3.1 に示すように制御入力 U(s)を 入力, 基本姿勢からのシリンダストローク変位 Y(s)を出力と定義する. 各関節の伝達関数 P(s)を次式に示すような 2 次系+むだ時間システムと仮定し, 比例制御による閉ループ系で の Step 応答実験の結果を周波数解析し, 開ループ系 P(s)のパラメータ同定を行う.

$$P(s) = \frac{b}{s(s+a)} \cdot e^{-T_d s}$$
(3.1)

ここで、*T_a* は油圧システムによるむだ時間であり、モデリング、制御系設計、シミュレーション時には1次のPadé 近似によりモデルに取り入れている. Step 応答実験結果について、 Fig. 3.2~Fig. 3.6 の(a)にシリンダストローク変位 *y*(*k*)と制御入力 *u*(*k*)、(b)に *P*(*s*)の同定結果 を示す.また、同定結果の検証として、比例制御ゲインを変更した Step 応答実験結果との 比較を Fig. 3.7 に示す. Fig. 3.7 より実験結果とシミュレーション結果ではむだ時間と立上り 特性は概ね一致しているが実験結果では入力が不感帯に入った後もシリンダストロークは ほぼ定常的な外乱を受けて変動し続けている.これは制御弁のスプールが完全に閉じるこ となく、シリンダ側に流量漏れが生じていると考えられる.以上より得られた各関節の伝 達関数 *P*(*s*)のパラメータを Table 3.1 に示す.

次に MF Arm に機械構造物としての振動モードが存在することを打撃試験と各関節での Chirp 応答実験の結果より示す.まず,打撃試験について述べる.Fig. 3.8~Fig. 3.10(a)に示 す状態にて油圧ポンプを停止し,制御弁を閉じて Link 6 を下向きに打撃した.打撃(0.5s)前 後での Link 2,3,4,6 のシリンダストロークの変位を Fig. 3.8~Fig. 3.10(b)に示す.Fig. 3.8~Fig. 3.10(b)より,各関節には打撃後に約3.0Hzの振動が生じていることがわかる.制御弁を閉じ ているため,ストローク変位の絶対値は小さいが機械構造物としての振動モードが約3.0Hz に存在することがわかる.次に Charp 応答実験結果(目標軌道周波数:0~50Hz)について,Fig. 3.11~Fig. 3.15(a)に軌道追従制御をした関節のシリンダストローク変位 y(k),(b)に制御入力 u(k),(c),(e)に非制御関節のシリンダストローク変位 y(k)の平均値に対する変化量,(d),(f) に制御関節の制御入力 u(k)を入力,非制御関節のシリンダストローク変位 y(k)を出力とした ときのパワースペクトル解析結果を示す.Fig. 3.11~Fig. 3.15(d),(f)より,Link 1を除いた Link 2, 3, 4, 6 で打撃試験と同様に約3.0Hzの振動モードが存在していることがわかる.以上 より,この振動モードが存在する周波数帯(約3.0Hz)の制御入力を抑制する制御系は振動モ ードの励起を抑制し,軌道追従性能向上に有効であると考えられる.

	а	b	$T_d[s]$	$I_{om}[A]$	$I_{op}[A]$	$v_m[V]$	$v_p[V]$
Link 1	40	1.202	0.14	-0.315	0.360	-0.7	0.7
Link 2	60	0.839	0.14	-0.344	0.352	-0.7	0.7
Link 3	80	1.729	0.15	-0.352	0.384	-0.7	0.7
Link 4	100	2.522	0.20	-0.332	0.374	-0.7	0.7
Link 6	70	1.500	0.14	-0.360	0.312	-0.7	0.7

Table 3.1 Parameters of plant

Fig. 3.1 Block diagram of modeling system

2

-1

-2

0

10

Input [V] 0

Phase [deg] -200 -300 -200 -300 40 Time [s] 20 30 50 60 70 80 10 10⁰ 10¹ 10² Frequency [rad/s] (b) Bode plot of P(s)Response (a)

Fig. 3.4 Step response of Link 3 (K_p =50)

Fig. 3.6 Step response of Link 6 (K_p =50)

Fig. 3.7 Validation of modeling

(a) Impact point (b) Outputs of links Fig. 3.8 Result of impact testing (X=1.0m)

(a) Impact point

Fig. 3.9 Result of impact testing (X=1.5m)

Fig. 3.10 Result of impact testing (X=2.0m)

3.2 PSMC+PF の制御系設計と軌道追従制御実験

3.2.1 制御系設計

制御対象における振動モードの抑制を目的として,入力端周波数整形フィルタを付加した離散時間入力端周波数整形予見スライディングモード制御系の設計法を提案する.ここで,本制御対象は関節角度以外に直接計測可能な状態量がないために VSS 外乱オブザーバにより推定状態量_{*x*}(*k*)を得ることとした.ここで,^は推定値を示す記号である.

次に外乱補償について述べる.油圧マニピュレータでは電気駆動マニピュレータと比較 して,動作速度が遅く,モデルパラメータや重力外乱の変動は制御系のサンプリング時間 と比較して十分に遅いために一定値と仮定できる.よって,外乱オブザーバによる推定外 乱 *â*(*k*)を制御入力に加えて未知外乱を相殺することが可能である.一方,入力不感帯によ る外乱は制御入力に応じて変化するため一定値と仮定できず,外乱オブザーバでの補償が 困難となる.ただし,実験により適当な最大値を見積もることが比較的容易であり,有界 性を満たすと仮定できる.また,直接制御入力に印加される外乱であり,マッチング条件^[80] を満足する.よって,スライディングモード制御系のロバスト性で補償可能と考えている.

制御対象

モデリングした伝達関数 P(s)を状態方程式表現すると次式のようになる.

$$\dot{x}(t) = Ax(t) + B\{u(t) + d(t)\}$$

$$y(t) = Cx(t) + D\{u(t) + d(t)\}$$
(3.2)

ここで,

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -\frac{2a}{T_d} & -\left(\frac{2}{T_d} + a\right) \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0 \\ b \end{bmatrix}, \quad C = \begin{bmatrix} \frac{2}{T_d} & -1 & 0 \\ b \end{bmatrix}, \quad D = 0$$
(3.3)

ただし、 $x \in R^{l \times l}$, $u, y, d \in R^{m \times l}$ で、本システムではl = 3, m = 1である.また、t は時間変数 を示す.ここで、各関節の姿勢変動による慣性モーメント、重力外乱の変動や油圧系に関 する非線形特性によりモデルパラメータ a、b には不確かさが存在する.式(3.3)より、モデ ルパラメータ a、b の不確かさは式変形を行うことで外乱 d(t)に含めることができる.サン プリング時間 T_s で離散化した制御対象の状態方程式を次式に示す.

$$x(k+1) = \Phi x(k) + \Gamma \left\{ u(k) + d(k) \right\}$$

$$y(k) = \Psi x(k)$$

$$(3.4)$$

入力端周波数整形フィルタの設計

入力端周波数整形フィルタを次式のように設計する.

$$\begin{array}{l} x_{f}\left(k+1\right) = \Phi_{f}x_{f}\left(k\right) + \Gamma_{f}u_{s}\left(k\right) \\ u_{f}\left(k\right) = \Psi_{f}x_{f}\left(k\right) + \Lambda_{f}u_{s}\left(k\right) \end{array}$$

$$(3.5)$$

ただし、フィルタの状態量を $x_f(k)$ 、スライディングモード制御器からの制御入力を $u_s(k)$ と 定義し、 $x_f \in R^{f\times 1}$ 、 $u_f, u_s \in R^{m\times 1}$ で本システムではf=2とした.ここで、制御入力 $u_f(k)$ に重畳 する外乱に対してマッチング条件が成立するためには直達項 $\Lambda_f \neq 0$ とする必要がある.制御 対象への制御入力u(k)は式(3.6)のように定義する.

$$u(k) = u_f(k)$$
(3.6)

ただし、システム制約により制御入力 u(k)は±5V で飽和する.

予見制御と切換超平面及び等価制御入力の設計

誤差信号
$$e(k)$$
を次式のように定義する.ただし、目標値を $r(k) \in R^{m \times 1}$ と定義する.
 $e(k) = r(k) - y(k)$ (3.7)

制御対象に 1 形サーボ系を構成し、次式に示す入力端周波数整形フィルタの状態量も含めた拡大系を構成する. なお、 Δ は1階差分を示す記号(たとえば、 $\Delta u(k+1) = u(k+1) - u(k)$)である.

$$x_{o}(k+1) = \Phi_{o}x_{o}(k) + \Gamma_{o}\Delta u_{s}(k) + \Gamma_{do}\Delta d(k) + \Gamma_{r}\Delta r(k+1)$$

$$(3.8)$$

$$\hbar \tau \tilde{\tau} \tilde{\tau} \tilde{\iota},$$

$$x_{o}(k) = \begin{bmatrix} e(k) \\ \Delta x(k) \\ \Delta x_{f}(k) \end{bmatrix}, \quad \Phi_{o} = \begin{bmatrix} I & -\Psi\Phi & -\Psi\Gamma\Psi_{f} \\ 0 & \Phi & \Gamma\Psi_{f} \\ 0 & 0 & \Phi_{f} \end{bmatrix}, \quad \Gamma_{o} = \begin{bmatrix} -\Psi\Gamma\Lambda_{f} \\ \Gamma\Lambda_{f} \\ \Gamma_{f} \end{bmatrix}, \quad \Gamma_{do} = \begin{bmatrix} -\Psi\Gamma \\ \Gamma \\ 0 \end{bmatrix}, \quad \Gamma_{r} = \begin{bmatrix} I \\ 0 \\ 0 \end{bmatrix}$$
(3.9)

ここで, *n*_rステップ未来までの目標値が既知であるとし, 次式に示す未来目標値を状態量に 含んだ拡大系を用いて切換超平面の設計を行う.

$$x_a(k+1) = \Phi_a x_a(k) + \Gamma_a \Delta u_s(k) + \Gamma_d \Delta d(k)$$
(3.10)

$$x_{a}\left(k\right) = \begin{bmatrix} x_{o}\left(k\right) \\ x_{r}\left(k\right) \end{bmatrix}, \quad \Phi_{a} = \begin{bmatrix} \Phi_{o} & \Gamma_{pr} \\ 0 & \Phi_{r} \end{bmatrix}, \quad \Gamma_{a} = \begin{bmatrix} \Gamma_{o} \\ 0 \end{bmatrix}, \quad \Gamma_{d} = \begin{bmatrix} \Gamma_{do} \\ 0 \end{bmatrix}$$
(3.11)

$$x_{r}(k) = \begin{bmatrix} \Delta r(k+1) \\ \Delta r(k+2) \\ \vdots \\ \Delta r(k+n_{r}) \end{bmatrix}, \quad \Phi_{r} = \begin{bmatrix} 0 & I & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \vdots & & \ddots & I \\ 0 & \cdots & \cdots & 0 \end{bmatrix}, \quad \Gamma_{pr} = \begin{bmatrix} \Gamma_{r} & 0 & \cdots & 0 \end{bmatrix}$$
(3.12)

公称なシステム $\Delta d(k) = 0$ に対して、切換関数 $\sigma(k) \in R^{m \times 1}$ を次式のように定義すると、式(3.14)

が成り立つ.

$$\sigma(k) = Sx_a(k) \tag{3.13}$$

$$\Delta\sigma(k+1) = \sigma(k+1) - \sigma(k)$$

= $S\{(\Phi_a - I)x_a(k) + \Gamma_a \Delta u_s(k)\}$ (3.14)

システムの状態が超平面に拘束され、スライディングモードが生じる時、

$$\sigma(k) = \sigma(k+1) = \sigma(k+2) = \cdots$$
(3.15)

が成立し、m 個の拘束が生じ、システムは $f+l+n_r$ 次元に低次元化される.以下の議論では 行列 $S\Gamma_a$ 、 $S\Gamma_d$ は正則行列になると仮定し、等価制御入力 $\Delta u_{eq}(k)$ は次のようになる.

$$\Delta u_{eq}\left(k\right) = -\left(S\Gamma_{a}\right)^{-1}S\left(\Phi_{a}-I\right)x_{a}\left(k\right)$$
(3.16)

よって、このΔueg(k)を式(3.10)に代入すると、等価制御系は次式のようになる.

$$x_a(k+1) = \left\{ \Phi_a - \Gamma_a \left(S \Gamma_a \right)^{-1} S \left(\Phi_a - I \right) \right\} x_a(k)$$
(3.17)

ここで、切換超平面 S はこのシステムが安定となるように選ばなくてはいけない.本研究 では超平面の設計法にシステムの不変零点を利用する方法を用いる.すなわち、(Φ_a, Γ_a, S) からなるシステムの不変零点を複素平面上の単位円内に設置する方法である.具体的には 次式に示す二次形式評価関数を定義し、

$$J = \sum_{k=-n_r+1}^{\infty} \left\{ x_a^T(k) Q_a x_a(k) + \Delta u_s^T(k) R_a \Delta u_s(k) \right\}$$
(3.18)

離散時間系での最適制御理論を適用して,超平面 S は次式により求める.

$$S = \left(\Gamma_a^T P_a \Gamma_a + R_a\right)^{-1} \Gamma_a^T P_a \Phi_a \tag{3.19}$$

ただし、 P_a は任意の正定な Q_a , R_a に対する次式に示す離散時間系でのRiccati 方程式の正定 解である.

$$\Phi_a^T P_a \Phi_a - P_a - \Phi_a^T P_a \Gamma_a \left(\Gamma_a^T P_a \Gamma_a + R_a\right)^{-1} \Gamma_a^T P_a \Phi_a + Q_a = 0$$
(3.20)

この超平面 *S*により式(3.17)の等価制御系の固有値は複素平面上で*f* + *l* + *n*_r 個の単位円内の 極と *m* 個の単位円上の極に配置される.

離散時間 VSS 外乱オブザーバの設計

スライディングモード制御は一般に全状態フィードバックを必要とするため,計測不可能な状態量をオブザーバにより推定する必要がある.本研究では定常外乱,非線形特性を 有する油圧システムを制御対象にしているため,ロバスト性を有する離散時間 VSS 外乱オ ブザーバを用いることとした.オブザーバシステムでは実システムに存在する実験的に求 めた固定の不感帯(v_m~v_p)を考慮し,不感帯通過後の制御入力 u_{ob}(k)を考える.システムの 状態方程式は次式で表される.

$$x(k+1) = \Phi x(k) + \Gamma \left(u_{ob}(k) + d(k) \right)$$

$$y(k) = \Psi x(k)$$

$$(3.21)$$

ここで,式(3.21)の外乱 *d*(*k*)のダイナミクスを *d*(*k*+1) = *d*(*k*)と近似し,システムの状態に含め, 状態量を

$$x_{ob}\left(k\right) = \begin{bmatrix} x(k) \\ d(k) \end{bmatrix}$$
(3.22)

とすると次式の拡大系が構成される.

$$\begin{aligned} x_{ob}\left(k+1\right) &= \widetilde{\Phi}x_{ob}\left(k\right) + \widetilde{\Gamma}u_{ob}\left(k\right) \\ y\left(k\right) &= \widetilde{\Psi}x_{ob}\left(k\right) \end{aligned}$$

$$(3.23)$$

ただし,

$$\widetilde{\Phi} = \begin{bmatrix} \Phi & \Gamma \\ 0 & 1 \end{bmatrix}, \ \widetilde{\Gamma} = \begin{bmatrix} \Gamma \\ 0 \end{bmatrix}, \ \widetilde{\Psi} = \begin{bmatrix} \Psi & 0 \end{bmatrix}$$
(3.24)

よって、この拡大系に対してオブザーバを構成すれば、計測不可能な状態量と未知外乱が 推定できる.また、式(3.23)に示すシステムは可観測であるため、ある行列 L_{ob} により次式 の Φ_{ob} の固有値を複素平面上の単位円内に配置できる.

$$\Phi_{ob} = \widetilde{\Phi} - L_{ob} \widetilde{\Psi}$$
(3.25)

ここでは、*L*_{ob}の設計にシステムの双対性を利用し、離散時間系での最適制御理論を適用した.これより離散時間 VSS 外乱オブザーバは次式のようになる^[69].

$$\hat{x}_{ob}(k+1) = \Phi_{ob}\hat{x}_{ob}(k) + \tilde{\Gamma}u_{ob}(k) + L_{ob}y(k) + M(\bar{y})$$
(3.26)

ただし,

$$\overline{y}(k) = y(k) - \hat{y}(k) = y(k) - \widetilde{\Psi} \hat{x}_{ob}(k)$$
 (3.27)

$$M\left(\overline{y}\right) = -\widetilde{\Gamma} \frac{\overline{y}(k)}{\left\|\overline{y}(k)\right\| + \gamma_{ob}} \rho_{ob}$$
(3.28)

スライディングモードコントローラの設計

スライディングモード制御系の制御入力は式(3.16)で与えられる線形状態フィードバック 制御項 *u_{eq}(k)*と非線形制御項 *u_{nl}(k)*の二つの独立した項から構成されている. さらに本研究で は前述の外乱オブザーバによる推定外乱 *d̂*(*k*)を制御入力に加えて未知外乱を相殺するので 制御入力は以下のようになる.

$$\Delta u_s(k) = \Delta u_{eq}(k) + \Delta u_{nl}(k) \tag{3.29}$$

$$\Delta u_{nl}(k) = -\left(S\Gamma_{a}\right)^{-1} \left(\eta \sigma(k) + S\Gamma_{d}\left[\beta(k) \operatorname{sgn}\left\{\sigma(k)\right\} + \Delta \hat{d}(k)\right]\right)$$
(3.30)

$$0 < \eta < 1, \quad \left\| \Delta e_d\left(k\right) \right\| \le \beta\left(k\right) \tag{3.31}$$

ただし、 $\Delta e_d(k)(=\Delta d(k) - \Delta_d(k))$ は推定外乱誤差の一階差分値とする.

次に、 $0 < \eta < 1$ の範囲のとき、システムの状態が有限時間に $\sigma(k) = 0$ を含むスライディン グモード領域 Wに到達することを証明する.ここで、リアプノフ関数を次式に定義すると、

$$V(k) = \frac{1}{2}\sigma^{2}(k)$$
(3.32)

スライディングモードの存在条件は次式となる.

$$V(k+1) < V(k) \tag{3.33}$$

この不等式を満たすとき閉ループ系は広範囲で漸近安定となる.ここで,式(3.14)の両辺を 二乗すると,

$$\sigma^{2}(k+1) = \sigma^{2}(k) + 2\sigma(k)\Delta\sigma(k+1) + \Delta\sigma^{2}(k+1)$$
(3.34)

制御が次式を満たすと式(3.34)から不等式(3.33)が成立する.

$$2\sigma(k)\Delta\sigma(k+1) + \Delta\sigma^2(k+1) < 0 \tag{3.35}$$

また、式(3.10), (3.13)より,

$$\sigma(k+1) = Sx_a(k+1)$$

$$= S\{\Phi_a x_a(k) + \Gamma_a \Delta u_s(k) + \Gamma_d \Delta d(k)\}$$

$$= \sigma(k) + S\Gamma_a \Delta u_{nl}(k) + S\Gamma_d \Delta d(k)$$
(3.36)

式(3.30), (3.36)より,

$$\Delta \sigma(k+1) = S\Gamma_a \Delta u_a(k) + S\Gamma_a \Delta d(k)$$

= $-\eta \sigma(k) - S\Gamma_a \left[\beta(k) - \Delta e_a(k) \operatorname{sgn} \{ \sigma(k) \} \right] \operatorname{sgn} \{ \sigma(k) \}$ (3.37)

$$2\sigma(k)\Delta\sigma(k+1) + \Delta\sigma^{2}(k+1) = (\eta^{2} - 2\eta)\sigma^{2}(k) + S\Gamma_{d}[\beta(k) - \Delta e_{d}(k)\operatorname{sgn}\{\sigma(k)\}](2(\eta - 1)\|\sigma(k)\| + S\Gamma_{d}[\beta(k) - \Delta e_{d}(k)\operatorname{sgn}\{\sigma(k)\}])$$
(3.38)

式(3.31), (3.38)より,式(3.35)を満たす条件は次式となる.

$$2(\eta-1) \|\sigma(k)\| + S\Gamma_{d} \left[\beta(k) - \Delta e_{d}(k) \operatorname{sgn}\left\{\sigma(k)\right\}\right] < 0$$

$$\|\sigma(k)\| > \frac{S\Gamma_{d} \left[\beta(k) - \Delta e_{d}(k) \operatorname{sgn}\left\{\sigma(k)\right\}\right]}{2(1-\eta)}$$
(3.39)

ここで、式(3.31)より、次式が成立する.

$$0 \le S\Gamma_d \Big[\beta(k) - \Delta e_d(k) \operatorname{sgn} \{ \sigma(k) \} \Big] \le 2\beta(k) S\Gamma_d$$
(3.40)

式(3.39), (3.40)より, システムの状態は有限時間に $\sigma(k) = 0$ を含むスライディングモード領域 Wに到達する. 領域 Wを以下に示す.

$$W = \left\{ \sigma(k); \left\| \sigma(k) \right\| \le \sigma_w(k) = \frac{\beta(k) S \Gamma_d}{(1-\eta)} \right\}$$
(3.41)

スライディングモード領域 W に到達した状態は準スライディングモードとなり、システム出力にチャタリングを生じる.ここで、チャタリング抑制のために領域 W に状態が存在するとき、δを用いた平滑関数を導入し、非線形制御入力を以下のようにする.

$$\Delta u_{nl}(k) = -\left(S\Gamma_{a}\right)^{-1} \left[\eta\sigma(k) + S\Gamma_{d}\left\{\beta(k)\frac{\sigma(k)}{\|\sigma(k)\| + \delta} + \Delta\hat{d}(k)\right\}\right]$$
(3.42)

以上より,離散時間入力端周波数整形予見スライディングモード制御系のブロック線図は Fig. 3.16 となる.

Fig. 3.16 Block diagram of PSMC+PF

3.2.2 シミュレーション

PSMC+PF の軌道追従性能をシミュレーションで検証する. 次節で述べる実験, ミュレー ションともにサンプリング時間 T_sは 10ms とし,以下に示す離散時間予見スライディングモ ード制御系(以下, PSMC),離散時間入力端周波数整形予見 LQI 制御系(以下, PLQI+PF), 離散時間入力端周波数整形スライディングモード制御系(以下, SMC+PF)との比較を行う.

外乱オブザーバの効果検証

各制御法では比較のために同一の離散時間 VSS 外乱オブザーバを用いることとする.こ こではまず,離散時間 VSS 外乱オブザーバの効果を検証するために離散時間線形外乱オブ ザーバ,離散時間線形オブザーバとの比較を行う.ここで,離散時間線形外乱オブザーバ は式(3.28)に示す離散時間 VSS 外乱オブザーバの非線形入力を導入しないオブザーバシス テムであり,離散時間線形オブザーバはさらに外乱 *d*(*k*)をシステムの状態量に含めないオブ ザーバシステムである.Link 3 に対して各オブザーバを設計し,設計したオブザーバのパラ メータを Table 3.2 に示す.

Fig. 3.7(c)に示した Link 3 のステップ応答シミュレーションにて 10s に 0.1V の定常外乱を 制御対象の入力端に印加した結果を Fig. 3.17(a)に出力y(k)とオブザーバによる推定出力 ŷ(k) との誤差, (b)に定常外乱 d(k)とオブザーバによる推定外乱 â(k)を示す. Fig. 3.17(a)より,外 乱オブザーバでは出力推定誤差が 0 に収束していることがわかる. これは定常外乱を状態 量に含めて考慮した効果である. 次に Fig. 3.17(b)より, VSS 外乱オブザーバでは線形外乱 オブザーバと比較して定常外乱の収束速度が向上していることがわかる. 以上より,定常 外乱が生じる制御対象に対して,離散時間 VSS 外乱オブザーバは推定出力誤差が 0 に収束 し,推定外乱の収束も速いために有効である.

Link 3
Linear observer: $L_{ob} = [0.0746, 0.0000433, -0.0288]^T$
Linear dist. observer: $L_{ob} = [0.0848, 0.1195, -0.0243, 78.7]^T$
VSS dist. observer: $\rho_{ob}=0.6, \gamma_{ob}=0.0004, L_{ob}=[0.0848, 0.1195, -0.0243, 78.7]^T$

制御系設計

まず、PSMC の設計法について述べる. PSMC は前述した PSMC+PF において周波数整形 フィルタを導入しない制御法とする. すなわち、 $u_f(k) = u_s(k)$ 、 $\Phi_f = \Psi_f = \Gamma_f = 0$ 、 $\Lambda_f = I$ として 制御系設計する. 次に PLQI+PF の設計法について述べる. PLQI+PF の制御入力 u(k)は状態 フィードバック入力と外乱補償入力を用いて以下のようにする. また、周波数成形フィル タは PSMC+PF と同一とする.

$$\begin{aligned} u(k) &= u_f(k) - \hat{d}(k) \\ \Delta u_s(k) &= -K_{la} x_a(k) \end{aligned}$$

$$(3.43)$$

次に SMC+PF の設計法について述べる. SMC+PF は前述した PSMC+PF において未来目標 値を状態量として導入しない制御法とする.ここで,各制御法における切換超平面 *S*,状態 フィードバックゲイン *K*_{lq} は式(3.19), (3.20)に示す離散時間系での最適制御理論を適用し求 める.各制御法を可能な限り公平に評価するために次式に示す同一の二次形式評価関数を 用いた.

$$J = \sum_{k=-n_r+1}^{\infty} \left\{ x_a^T \left(k \right) \begin{bmatrix} Q_o & 0\\ 0 & 0 \end{bmatrix} x_a \left(k \right) + \Delta u_s^T \left(k \right) R_a \Delta u_s \left(k \right) \right\}$$
(3.44)

ただし、 $Q_o(k) \in \mathbb{R}^{(l+m) \times (l+m)}$ とする.

入力端周波数整形フィルタを設計する.本制御対象には約3.0Hzの振動モードが存在する. よって,以下に示す2次の楕円ディジタルフィルタを設計し,各関節で同一のフィルタを 用いる.

$$\Phi_f = \begin{bmatrix} 0.880 & -0.121 \\ 0.121 & 0.992 \end{bmatrix}, \Gamma_f = \begin{bmatrix} 0.018 \\ 0.001 \end{bmatrix}, \Psi_f = \begin{bmatrix} -3.064 & 3.069 \end{bmatrix}, \Lambda_f = 0.533$$
(3.45)

ここで, Fig. 3.18 にフィルタのボード線図を示す. Fig. 3.18 より, 振動モードが存在する周 波数帯と高域でのゲインが小さいため, 振動モードとチャタリングの抑制が期待できる. ここで, スライディングモード制御系の設計によってはフィルタで抑制している周波数帯 のゲイン特性を回復してしまう可能性もある.よって,シミュレーションにより振動モー ド周波数帯での制御入力のゲインが抑制されていることを確認している.

予見ステップについては式(3.44)を解析的に求め, Fig. 3.19 に予見ステップが 0 の場合に 対する各予見ステップ数での評価関数値の相対値を示している. これより予見補償により 評価関数が大幅に低減することがわかる. なお, 評価関数の変化が小さくなる予見ステッ プ数 *n*,=70 を各制御法で用いることとした.

また, η, β(k), δの値はシミュレーションによりロバスト性とチャタリング抑制の観点でチ ューニングを行い,各制御法で同一とした.シミュレーションや実験に用いる各制御法に おける設計パラメータを Table 3.3 に示す.

Fig. 3.19 Performance index value

Table 3.3 Parameters of control system				
Link 2				
$Q_o = \text{diag}(200, 1, 1, 1), R_a = 1, n_r = 70, \eta = 0.2, \beta = 0.1, \delta = 0.04$				
PSMC+PF: σ _W =0.0096, PSMC: σ _W =0.0079				
Observer: $\rho_{ob}=0.2, \gamma_{ob}=0.0004, L_{ob}=[0.0709, 0.0154, -0.0327, 15.5]^T$				
Link 3				
$Q_o = \text{diag}(50, 1, 1, 1), R_a = 1, n_r = 70, \eta = 0.15, \beta = 0.1, \delta = 0.04$				
PSMC+PF: σ _W =0.0078, PSMC: σ _W =0.0065				
Observer: ρ_{ob} =0.2, γ_{ob} =0.0004, L_{ob} =[0.0769, 0.0269, -0.0285, 16.6] ^T				
Link 6				
$Q_o = \text{diag}(100, 1, 1, 1), R_a = 1, n_r = 70, \eta = 0.15, \beta = 0.1, \delta = 0.04$				
PSMC+PF: σ _W =0.0094, PSMC: σ _W =0.0077				
Observer: ρ_{ob} =0.2, γ_{ob} =0.0004, L_{ob} =[0.0703, 0.0075, -0.0296, 4.91] ^T				

シミュレーション

不感帯,むだ時間,振動モードが存在する制御対象に対する提案手法(PSMC+PF)の有効 性をランプ目標値応答のシミュレーションで検証する.ここで,振動モードは正弦波外乱(周 波数 2.5Hz,振幅 0.4V)を t = 11~13s に制御入力に印加することで表現する.各関節で同等 の結果を得られたために,以下では Link 3 でのシミュレーションについて述べ,Fig. 3.20 に結果を示す.Fig. 3.20 の(a),(b)には目標軌道 r(k),各制御法での出力 y(k),(c),(d)には制御 入力 u(k),(e),(f)には切換関数 σ(k),(g)には出力 y(k)のパワースペクトル密度(以下,PSD), (h)には制御入力 u(k)の PSD を示す.Fig. 3.20(a),(b)より,予見制御系 PLQI+PF, PSMC, PSMC+PF では SMC+PF と比較して,軌道追従性能が大幅に向上していることがわかる.ま た,スライディングモード制御系 PSMC,PSMC+PF では線形制御系 PLQI+PF と比較して, 動作開始時の応答遅れと追従誤差が低減されている.さらに PSMC+PF では外乱による振動 も抑制されている.これは(c),(d),(h)より,振動モードが存在する周波数帯での制御入力ゲ インを抑制し,振動モードの励起を抑制した結果である.また,(e),(f)より,切換関数値は スライディングモード領域へ到達している.本制御対象のように振動モードの抑制が課題 となる場合に提案手法が有効であることがわかる.

Fig. 3.20 Simulation result: Link 3

3.2.3 実験

円軌道(半径 0.2m, 周期 15s)追従制御実験により提案手法(PSMC+PF), PSMC, PLQI+PF の軌道追従性能を比較検討する.ここで,各制御パラメータはシミュレーションと同一と する.各関節の目標軌道はオンラインで逆運動学より導出し,マニピュレータ先端の実応 答は各関節角度から運動学より導出している.

Fig. 3.21 にマニピュレータ先端の目標軌道と実応答, Table 3.4 に *t* = 20~35s でのマニピ ュレータ先端軌道, 各関節シリンダストローク変位の目標軌道に対する二乗平均平方根誤 差を示す.また,各関節での実験結果を Fig. 3.22~Fig. 3.24 に示す. Fig. 3.21, Table 3.4 より, PSMC+PF ではマニピュレータ先端軌道, 各関節シリンダストローク変位とも誤差が最小と なっている.また, Fig. 3.22~Fig. 3.24(a), (b)の応答結果より PSMC では生じている振動的 な応答が PSMC+PF では抑制されていることがわかる.これは, Fig. 3.22~Fig. 3.24(h)の制 御入力の PSD より, PSMC+PF では振動モードが存在する周波数帯(約 3.0Hz)での制御入力 が抑制されている効果である.さらに Fig. 3.22~Fig. 3.24(a), (b)より, PSMC+PF では PLQI+PF と比較して, 目標軌道への応答遅れが小さく, スライディングモード制御の高い ロバスト性を有していることがわかる.

以上より,提案手法(PSMC+PF)では入力端周波数整形による振動モードの抑制効果とス ライディングモード制御の高いロバスト性を有していることが実証された.

3.2.4 結言

油圧マニピュレータの軌道追従制御性能向上を目的とし,振動モードの励起を抑制する 入力端周波数整形フィルタを付加した離散時間入力端周波数整形予見スライディングモー ド制御系の設計法を提案,定式化した.また,高精度な軌道追従が困難とされる多関節型 油圧マニピュレータに対するベンチマーク実験によって,提案手法は振動モードの励起と 応答遅れを抑制し,高精度な軌道追従性能を有することを実証した.

62

Fig. 3.21 Experimental result

	PLQI+PF	PSMC	PSMC+PF
Position [m]	0.01344	0.01321	0.00627
Link 2 [m]	0.00066	0.00068	0.00054
Link 3 [m]	0.00100	0.00098	0.00078
Link 6 [m]	0.00063	0.00030	0.00030

Table 3.4 RMS error of experiment

Fig. 3.22 Experimental result: Link 2

Fig. 3.23 Experimental result: Link 3

Fig. 3.24 Experimental result: Link 6

3.3 RSMC+PFの制御系設計と軌道追従制御実験

3.3.1 制御系設計

制御対象における振動モード抑制を目的として、制御入力の入力端に周波数整形フィル タを付加した離散時間規範モデル追従形入力端周波数整形スライディングモード制御系の 設計法を提案する.規範モデル追従形制御系は望ましい動特性をあらかじめ規範モデルで 決定し、この規範モデルに一致するように制御対象の動特性を修正する制御法である.規 範モデルへの位置目標値を r(k)とし、規範モデルの状態量 x_m(k)と制御対象の状態量 x(k)との 状態誤差を e(k)とする.ここで、本制御対象では位置の出力以外に直接計測可能な状態量が ないため、オブザーバにより推定状態量_x(k)を得る.推定状態量が実際の制御対象の状態量 に一致し、状態誤差 e(k)を 0 にできれば、制御対象の出力 y(k)を規範モデルの出力 y_m(k)に追 従させることができる.

次に外乱補償について述べる.油圧マニピュレータでは電気駆動マニピュレータと比較 して,動作速度が遅く,モデルパラメータや重力外乱の変動は制御系のサンプリング時間 と比較して十分に遅いために一定値と仮定できる.よって,外乱オブザーバによる推定外 乱 *â*(*k*)を制御入力に加えて未知外乱を相殺することが可能である.一方,入力不感帯によ る外乱は制御入力に応じて変化するため一定値と仮定できず,外乱オブザーバでの補償が 困難となる.ただし,実験により適当な最大値を見積もることが比較的容易であり,有界 性を満たすと仮定できる.また,直接制御入力に印加される外乱であり,マッチング条件 を満足する.よって,スライディングモード制御系のロバスト性で補償可能と考えている.

規範モデルの設計

前節で述べた PSMC+PF の設計法と同様にサンプリング時間 T_sで離散化した制御対象の 状態方程式を式(3.46),規範モデルを式(3.47)に示す.

$$x(k+1) = \Phi x(k) + \Gamma \left\{ u(k) + d(k) \right\}$$

$$y(k) = \Psi x(k)$$

$$(3.46)$$

$$x_m(k+1) = \Phi_m x_m(k) + \Gamma_m r(k)$$

$$y_m(k) = \Psi_m x_m(k)$$
(3.47)

このとき、 x_m 、 Φ_m 、 Γ_m 、 Ψ_m の次元はおのおの制御対象の状態方程式に等しく、 $\Psi = \Psi_m$ と する.状態誤差 e(k)を式(3.48)のように定義すると誤差方程式は式(3.49)のようになる. $e(k) = x_m(k) - x(k)$ (3.48)

$$e(k+1) = x_m(k+1) - x(k+1)$$

= $\Phi_m e(k) + (\Phi_m - \Phi)x(k) + \Gamma_m r(k) - \Gamma\{u(k) + d(k)\}$ (3.49)

ここで,式(3.50)に示すモデルマッチング条件を満たすように規範モデルを設計すると,誤 差方程式は式(3.51)のようになる.

$$\Phi_m - \Phi = \Gamma K_1, \quad \Gamma_m = \Gamma K_2 \tag{3.50}$$

$$e(k+1) = \Phi_m e(k) + \Gamma\{K_1 x(k) + K_2 r(k) - u(k) - d(k)\}$$
(3.51)

具体的な K_1, K_2 は Γ の擬似逆行列 Γ ⁺を用いて,

$$K_{1} = \Gamma^{+} (\Phi_{m} - \Phi), \ K_{2} = \left\{ \Psi_{m} (I - \Phi_{m})^{-1} \Gamma \right\}^{-1}$$
(3.52)

とすると時間を無限大としたときに式(3.47)において、 $y_m(k) = r(k)$ となる.

本制御法の制御入力 u(k)は入力端周波数整形フィルタを介した制御入力 u_f(k)と制御対象 に直接入力される制御入力 u_m(k)を用いて式(3.53), (3.54)のように定義する.

$$u(k) = u_f(k) + u_m(k)$$
(3.53)

$$u_m(k) = K_1 x(k) + K_2 r(k)$$
(3.54)

ただし、システム制約により制御入力 *u*(*k*)は±5V で飽和する.式(3.51)、(3.53)、(3.54)より、 規範モデルと実システムとの状態誤差 *e*(*k*)の誤差方程式は次式のようになる.

$$e(k+1) = \Phi_m e(k) - \Gamma \left\{ u_f(k) + d(k) \right\}$$
(3.55)

入力端周波数整形フィルタの設計

制御入力 u(k)を生成するために入力端周波数整形フィルタを次式のように設計する.

$$x_{f}(k+1) = \Phi_{f}x_{f}(k) + \Gamma_{f}u_{s}(k)$$

$$u_{f}(k) = \Psi_{f}x_{f}(k) + \Lambda_{f}u_{s}(k)$$
(3.56)

ただし、フィルタの状態量を $x_f(k)$ 、スライディングモード制御器からの制御入力を $u_s(k)$ と 定義し、 $x_f \in R^{f\times 1}$ 、 $u_f, u_s \in R^{m\times 1}$ で本システムではf=2とした.ここで、制御入力 $u_f(k)$ に重畳 する外乱に対してマッチング条件が成立するためには直達項 $\Lambda_f \neq 0$ とする必要がある.

切換超平面と等価制御入力の設計

出力誤差 $e_y(k)$ を式(3.57),出力誤差 $e_y(k)$ の積分値z(k)を式(3.58)のように定義する.ただし、z(0) = 0とする.

$$e_{y}(k) = y_{m}(k) - y(k)$$
 (3.57)

$$z(k+1) = z(k) + T_s \Psi e(k)$$
(3.58)

制御対象に 1 形サーボ系を構成し、次式に示す入力端周波数整形フィルタの状態量も含

めた拡大系を用いて切換超平面の設計を行う.

$$x_a(k+1) = \Phi_a x_a(k) + \Gamma_a u_s(k) + \Gamma_d d(k)$$

$$(3.59)$$

$$\forall z \not \in \mathbb{U},$$

$$x_{a}(k) = \begin{bmatrix} z(k) \\ e(k) \\ x_{f}(k) \end{bmatrix}, \quad \Phi_{a} = \begin{bmatrix} I & T_{s}\Psi & 0 \\ 0 & \Phi_{m} & -\Gamma\Psi_{f} \\ 0 & 0 & \Phi_{f} \end{bmatrix}, \quad \Gamma_{a} = \begin{bmatrix} 0 \\ -\Gamma\Lambda_{f} \\ \Gamma_{f} \end{bmatrix}, \quad \Gamma_{d} = \begin{bmatrix} 0 \\ -\Gamma \\ 0 \end{bmatrix}$$
(3.60)

公称なシステム d(k) = 0 に対して、切換関数 $\sigma(k) \in R^{m \times 1}$ を式(3.61)のように定義すると、式 (3.62)が成り立つ.

$$\sigma(k) = Sx_a(k) \tag{3.61}$$

$$\Delta \sigma(k+1) = \sigma(k+1) - \sigma(k)$$

= S{($\Phi_a - I$) $x_a(k) + \Gamma_a u_s(k)$ } (3.62)

システムの状態が超平面に拘束され、スライディングモードが生じる時、

$$\sigma(k) = \sigma(k+1) = \sigma(k+2) = \cdots$$
(3.63)

が成立し、m 個の拘束が生じ、システムはf + l次元に低次元化される.以下の議論では行列 $S\Gamma_a$ 、 $S\Gamma_d$ は正則行列になると仮定し、等価制御入力 $u_{eq}(k)$ は次式のようになる.

$$u_{eq}(k) = -(S\Gamma_a)^{-1} S(\Phi_a - I) x_a(k)$$
(3.64)

よって、この ueg(k)を式(3.59)に代入すると、等価制御系は次式のようになる.

$$x_a(k+1) = \left\{ \Phi_a - \Gamma_a \left(S \Gamma_a \right)^{-1} S(\Phi_a - I) \right\} x_a(k)$$
(3.65)

ここで、切換超平面 S はこのシステムが安定となるように選ばなくてはいけない.本研 究では超平面の設計法にシステムの不変零点を利用する方法を用いる.すなわち、(Φ_a, Γ_a, S) からなるシステムの不変零点を複素平面上の単位円内に設置する方法である.具体的には 次式に示す二次形式評価関数を定義し、

$$J = \sum_{k=1}^{\infty} \left\{ x_a^T(k) Q_a x_a(k) + u_s^T(k) R_a u_s(k) \right\}$$
(3.66)

離散時間系での最適制御理論を適用して、超平面 S は次式により求める.

1

$$S = \left(\Gamma_a^T P_a \Gamma_a + R_a\right)^{-1} \Gamma_a^T P_a \Phi_a \tag{3.67}$$

ただし、 P_a は任意の正定な Q_a 、 R_a に対する以下に示す離散時間系でのRiccati 方程式の正定解である.

$$\Phi_a^T P_a \Phi_a - P_a - \Phi_a^T P_a \Gamma_a \left(\Gamma_a^T P_a \Gamma_a + R_a \right)^{-1} \Gamma_a^T P_a \Phi_a + Q_a = 0$$
(3.68)

この超平面*S*により式(3.65)の等価制御系の固有値は複素平面上で*f*+*l*個の単位円内の極 と *m* 個の単位円上の極に配置される.

離散時間 VSS 外乱オブザーバの設計

スライディングモード制御は一般に全状態フィードバックを必要とするため、計測不可 能な状態量をオブザーバにより推定する必要がある.本研究ではモデルパラメータや重力 外乱が変動する油圧システムを制御対象にしているため、ロバスト性を有する離散時間 VSS 外乱オブザーバを用いることとした.設計法は前節の PSMC+PF での設計法と同一のため、 ここでは省略する.

スライディングモードコントローラの設計

スライディングモード制御系は変動状態フィードバックゲインをもつ閉ループ系として 考えることができる.そのため、制御入力は式(3.64)で与えられる線形状態フィードバック 制御項 *u_{eq}(k)と非線形制御項 u_{nl}(k)の二つの独立した項から構成されている.さらに本研究で* は前述の外乱オブザーバにより推定された推定外乱*^(k)*を制御入力に加えて未知外乱を相 殺するので制御入力は以下のようになる.

$$u_{s}(k) = u_{eq}(k) + u_{nl}(k)$$
(3.69)

$$u_{nl}(k) = -\left(S\Gamma_{a}\right)^{-1} \left(\eta\sigma(k) + S\Gamma_{d}\left[\beta(k)\operatorname{sgn}\left\{\sigma(k)\right\} + \hat{d}(k)\right]\right)$$
(3.70)

$$0 < \eta < 1, \quad \left\| \boldsymbol{e}_{\boldsymbol{d}} \left(\boldsymbol{k} \right) \right\| \le \beta\left(\boldsymbol{k} \right) \tag{3.71}$$

ただし, $e_d(k)(=\Delta d(k) - \Delta_d(k))$ は推定外乱誤差とする.

次に、 $0 < \eta < 1$ の範囲のとき、システムの状態が有限時間に $\sigma(k) = 0$ を含むスライディン グモード領域 Wに到達することを証明する.ここで、リアプノフ関数を次式で定義すると、

$$V(k) = \frac{1}{2}\sigma^2(k) \tag{3.72}$$

スライディングモードの存在条件は次式となる.

$$V(k+1) < V(k) \tag{3.73}$$

この不等式を満たすとき閉ループ系は広範囲で漸近安定となる.ここで,式(3.62)の両辺を 二乗すると,

$$\sigma^{2}(k+1) = \sigma^{2}(k) + 2\sigma(k)\Delta\sigma(k+1) + \Delta\sigma^{2}(k+1)$$
(3.74)

制御が次式を満たすと式(3.74)から不等式(3.73)が成立する.

$$2\sigma(k)\Delta\sigma(k+1) + \Delta\sigma^2(k+1) < 0 \tag{3.75}$$

また、式(3.59), (3.61)より,

$$\sigma(k+1) = Sx_a(k+1)$$

$$= S\{\Phi_a x_a(k) + \Gamma_a u_s(k) + \Gamma_d d(k)\}$$

$$= \sigma(k) + S\Gamma_a u_{nl}(k) + S\Gamma_d d(k)$$
(3.76)

式(3.70), (3.76)より,

$$\Delta \sigma(k+1) = S\Gamma_a u_d(k) + S\Gamma_d d(k)$$

= $-\eta \sigma(k) - S\Gamma_d \left[\beta(k) - e_d(k) \operatorname{sgn} \{\sigma(k)\} \right] \operatorname{sgn} \{\sigma(k)\}$ (3.77)

よって, 次式が得られる.

$$2\sigma(k)\Delta\sigma(k+1) + \Delta\sigma^{2}(k+1) = (\eta^{2} - 2\eta)\sigma^{2}(k) + S\Gamma_{d}\left[\beta(k) - e_{d}(k)\operatorname{sgn}\{\sigma(k)\}\right] (2(\eta - 1)\|\sigma(k)\| + S\Gamma_{d}\left[\beta(k) - e_{d}(k)\operatorname{sgn}\{\sigma(k)\}\right]$$

$$(3.78)$$

式(3.71), (3.78)より,式(3.75)を満たす条件は次式となる.

$$2(\eta-1) \|\sigma(k)\| + S\Gamma_d \left[\beta(k) - e_d(k) \operatorname{sgn}\left\{\sigma(k)\right\}\right] < 0$$

$$\|\sigma(k)\| > \frac{S\Gamma_d \left[\beta(k) - e_d(k) \operatorname{sgn}\left\{\sigma(k)\right\}\right]}{2(1-\eta)}$$
(3.79)

ここで,式(3.71)より,次式が成立する.

$$0 \le S\Gamma_d \left[\beta(k) - e_d(k) \operatorname{sgn} \left\{ \sigma(k) \right\} \right] \le 2\beta(k) S\Gamma_d$$
(3.80)

式(3.79), (3.80)より, システムの状態は有限時間に $\sigma(k) = 0$ を含むスライディングモード領域 Wに到達する. 領域 Wを以下に示す.

$$W = \left\{ \sigma(k); \left\| \sigma(k) \right\| \le \sigma_w(k) = \frac{\beta(k)S\Gamma_d}{(1-\eta)} \right\}$$
(3.81)

以上より,離散時間規範モデル追従形入力端周波数整形スライディングモード制御系の ブロック線図は Fig. 3.25 となる.

Fig. 3.25 Block diagram of RSMC+PF

3.3.2 シミュレーション

RSMC+PF の軌道追従性能をシミュレーションで検証する.次節で述べる実験,シミュレーションともにサンプリング時間 *T*_sは 10ms とし,以下に示す離散時間規範モデル追従形ス ライディングモード制御系(以下, RSMC),離散時間規範モデル追従形 LQI 制御系(以下,

RLQI)との比較を行う.ここで、比較のために各制御法で同一の規範モデル、外乱オブザーバを用いることとする.

制御系設計

まず, RSMC の設計法について述べる. RSMC は前述した RSMC+PF において周波数整 形フィルタを導入しない制御法とする. すなわち, $u_f(k) = u_s(k)$, $\Phi_f = \Psi_f = \Gamma_f = 0$, $\Lambda_f = I$ とし て制御系設計する. 次に RLQI の設計法について述べる. 前述した RSMC と同様に周波数 整形フィルタを導入しない制御法とし, $u_f(k) = u_s(k)$, $\Phi_f = \Psi_f = \Gamma_f = 0$, $\Lambda_f = I$ として制御系設 計する. RLQI の制御入力 u(k)は状態フィードバック入力と外乱補償入力を用いて以下のよ うにする.

$$\begin{array}{c} u(k) = u_{s}(k) + u_{m}(k) - \hat{d}(k) \\ u_{s}(k) = -K_{lq}x_{a}(k) \end{array}$$
(3.82)

ただし, *u_m(k)*は式(3.54)と同一とする.ここで,各制御法における切換超平面 *S*,状態フィードバックゲイン *K_{lq}*は式(3.67), (3.68)に示す離散時間系での最適制御理論を適用し求める. 各制御法を可能な限り公平に評価するために次式に示す同一の二次形式評価関数を用いた.

$$J = \sum_{k=1}^{\infty} \left\{ x_a^T \left(k \right) \begin{bmatrix} Q_o & 0\\ 0 & 0 \end{bmatrix} x_a \left(k \right) + u_s^T \left(k \right) R_a u_s \left(k \right) \right\}$$
(3.83)

ただし、 $Q_o(k) \in \mathbb{R}^{(l+m) \times (l+m)}$ とする.

次に規範モデルの設計について述べる.規範モデル *P_m(s)*は次式に示す3次の二項係数標 準形で与えた.二項係数標準形は出力がオーバーシュートしないという特徴があり,作業 者の意図よりオーバーシュートした目標軌道が生成されないため有効である.この伝達関 数表現された規範モデルを状態方程式表現したモデルを制御系設計に用いる.

$$P_m(s) = \frac{\omega_m^3}{s^3 + 3\omega_m s^2 + 3\omega_m^2 s + \omega_m^3}$$
(3.84)

本研究ではシミュレーションを通じて、制御入力の飽和が生じないこととむだ時間特性 の改善を考慮して、*om*を決定した.ここで、式(3.50)、式(3.52)より、式(3.85)を満たすとき モデルフォロイングを完全に実現する.しかし、厳密には擬似逆行列を用いているために 一般に困難な場合が多い.よって,式(3.85)を極力満たすように規範モデルを設計している.

$$(\Phi_m - \Phi) = \Gamma \Gamma^+ (\Phi_m - \Phi) \tag{3.85}$$

次に入力端周波数整形フィルタを設計する.本制御対象には約3.0Hzの振動モードが存在 する.よって,次式に示す2次の楕円ディジタルフィルタを設計し,各関節で同一のフィ ルタを用いる.

$$\Phi_f = \begin{bmatrix} 0.819 & -0.186\\ 0.186 & 0.981 \end{bmatrix}, \quad \Gamma_f = \begin{bmatrix} 0.104\\ 0.011 \end{bmatrix}, \quad \Psi_f = \begin{bmatrix} -0.727 & 0.852 \end{bmatrix}, \quad \Lambda_f = 0.521$$
(3.86)

ここで, Fig. 3.26 にフィルタのボード線図を示す. Fig. 3.26 より, 振動モードが存在する帯

域と高域でのゲインが小さいため、振動モードとチャタリングの抑制を期待できる.ここ で、スライディングモード制御系の設計によってはフィルタで抑制している周波数帯のゲ イン特性を回復してしまう可能性もある.よって、シミュレーションにより振動モード周 波数帯での制御入力のゲインが抑制されていることを確認している.

また, η, β(k)の値はシミュレーションによりロバスト性とチャタリング抑制の観点でチュ ーニングを行い,各制御法で同一とした.シミュレーションや実験に用いる各制御法にお ける設計パラメータを Table 3.5 に示す.

Fig. 3.26 Bode plot of pre-filter

Table 3.5 Parameters of control system				
Link 2				
$R_a=1, Q_a=\text{diag}(10^5, 1, 1, 1), \beta=0.5, \omega_m=3.2$				
RSMC+PF: η =0.6, S=[-299.4, -1747, -256.4, -18.11, 0.2789, 0.9157], σ_w =0.1704				
RSMC: η=0.6(Sim.), 0.4(Exp.), S=[-299.3, -1613, -216.4, -14.53], σ _w =0.1373				
RLQI: <i>K</i> _{lq} =[-299.3, -1613, -216.4, -14.53]				
Observer: ρ_{ob} =0.4, γ_{ob} =0.0001, L_{ob} =[0.107, 0.299, -0.00383, 257] ^T				
Link 3				
$R_a=1, Q_a=\text{diag}(10^5, 1, 1, 1), \beta=0.5, \omega_m=3.8$				
RSMC+PF: η =0.6, S=[-297.0, -3047, -376.5, -22.89, 0.2956, 1.060], σ_w =0.2008				
RSMC: η=0.6(Sim.), 0.2(Exp.), S=[-296.9, -2797, -310.7, -17.84], σ _w =0.1574				
RLQI: <i>K</i> _{lq} =[-296.9, -2797, -310.7, -17.84]				
Observer: $\rho_{ob}=0.4$, $\gamma_{ob}=0.0001$, $L_{ob}=[0.0540, 0.126, -0.00845, 135]^T$				
Link 6				
$R_a=1, Q_a=\text{diag}(10^6, 1, 1, 1), \beta=0.5, \omega_m=3.5$				
RSMC+PF: η =0.6, S=[-904.0, -7204, -729.5, -40.11, 0.2827, 1.742], σ_w =0.3693				
RSMC: η =0.6(Sim.), 0.2(Exp.), S=[-903.4, -6427, -548.6, -27.26], σ_w =0.2537				
RLQI: <i>K</i> _{<i>lq</i>} =[-903.4, -6427, -548.6, -27.26]				
Observer: ρ_{ob} =0.4, γ_{ob} =0.0001, L_{ob} =[0.0581, 0.144, -0.00605, 145] ^T				

シミュレーション

不感帯, むだ時間, 振動モードが存在する制御対象に対する提案手法(RSMC+PF)の有効 性を Step 目標値応答のシミュレーションにより検証する. ここで, 振動モードは正弦波外 乱(周波数 2.5Hz, 振幅 0.4V)を t = 11~14s に制御入力に印加することで表現する. 各関節で 同等の結果を得られたために,以下ではLink 3 でのシミュレーションについて述べ, Fig. 3.27 に結果を示す. Fig. 3.27 の(a), (b)には目標軌道 r(k), 規範モデル出力 y_m(k), 各制御法での出 力y(k), (c), (d)には制御入力 u(k), (e), (f)には切換関数 σ(k), (g)には制御入力 u(k)の PSD を 示す. Fig. 3.27(a), (b)より, スライディングモード制御系 RSMC, RSMC+PF では線形制御系 RLQI と比較して, 追従誤差が低減されている. さらに RSMC+PF では外乱による振動も抑 制されている. これは(c), (d), (g)より, 振動モードが存在する周波数帯での制御入力ゲイン を抑制し, 振動モードの励起を抑制した結果である. また, (e), (f)より, 切換関数値はスラ イディングモード領域へ到達している. 本制御対象のように振動モードの抑制が課題とな る場合に提案手法が有効であることがわかる.

Fig. 3.27 Simulation result: Link 3

3.3.3 実験

Step 目標値応答実験に提案手法(RSMC+PF)と RSMC, RLQI を適用して,軌道追従性能を 比較検討する.ここで,各制御パラメータは Table 3.5 に示すようにシミュレーションと同 ーとするが,RSMC では大きなチャタリングを生じてしまったためにηの値のみを小さくし ている.マニピュレータ先端目標値の Step 幅は X 軸方向に 0.3m であり,各関節の目標軌道 はオンラインで逆運動学より導出し,マニピュレータ先端の実応答は各関節角度から運動 学より導出している.

Fig. 3.28(a)にマニピュレータ先端の目標軌道,規範モデル出力,実応答,(b)に規範モデル 出力と実応答との位置誤差,(c)にマニピュレータ先端の姿勢角度,Table 3.6 にt = 19~24s でのマニピュレータ先端の位置,姿勢角度,各関節シリンダストローク変位の規範モデル 出力に対する二乗平均平方根誤差を示す.また,各関節での実験結果をFig. 3.29~Fig. 3.31 に示す.Table 3.6 の二乗平均平方根誤差より,線形制御系である RLQI+PF と比較して, RSMC+PF, RSMC において,位置誤差,姿勢角度誤差共に小さく抑えられている.これはス ライディングモード制御系でのロバスト制御性能の効果である.Fig. 3.29~Fig. 3.31(a),(b) の応答結果より,RSMC ではLink 2,3 において振動的な応答となっている.RSMC で生じ ている振動的な応答は振動モードによるものであり,RSMC+PF ではこの振動モードが抑制 されていることがわかる.これは,Fig. 3.29~Fig. 3.31(g)より,RSMC+PF では振動モード が存在する周波数帯域(約 3.0Hz)での制御入力が抑制されている効果である.

以上より,提案手法(RSMC+PF)では入力端周波数整形による振動モードの抑制効果とス ライディングモード制御の高いロバスト性を有していることが実証された.

3.3.4 結言

油圧マニピュレータの軌道追従制御性能向上を目的とし,振動モードを抑制する入力端 周波数整形フィルタを付加した離散時間規範モデル追従形入力端周波数整形スライディン グモード制御系の設計方法を提案,定式化した.また,高精度な軌道追従が困難とされる 多関節型油圧マニピュレータに対するベンチマーク実験によって,提案手法は振動モード の励起を抑制し,高精度な軌道追従性能を有することを実証した.

Fig. 3.28 Experimental result of step response

	RLQI	RSMC	RSMC+PF
Position [m]	0.03234	0.02769	0.01036
Attitude [rad]	0.02341	0.02064	0.01556
Link 2 [m]	0.00334	0.00122	0.00097
Link 3 [m]	0.00478	0.00189	0.00137
Link 6 [m]	0.00112	0.00044	0.00054

Table 3.6 RMS error of experiment

Fig. 3.29 Experimental result: Link 2

Fig. 3.30 Experimental result: Link 3

Fig. 3.31 Experimental result: Link 6

第4章 マスタスレーブシステムのPSMC+PF 適用と作業性能評価

本章では第2章で述べた Fig. 4.1 に示すマスタスレーブシステムの作業性能向上のための 制御系設計について述べる.油圧マニピュレータでは油圧系の応答遅れやスティックスリ ップ現象,機械構造物としての振動モード等により高精度な軌道追従制御が困難となる. そこで,マスタスレーブシステムにおける未来目標軌道の予測法とその未来目標軌道を利 用した PSMC+PF を提案し,マスタスレーブ制御実験により,これら現象を抑制することで 軌道追従制御性能と作業効率が向上することを実証する.ここで,遠隔操作ロボットの作 業効率,作業性能の向上に関して,視覚や触覚の予測ディスプレイの研究^{[67][68]}はあるが, 予測ディスプレイを必要とせずに作業効率を向上させる研究はほとんど行われていない. システムを安価に構成するためにも予測ディスプレイ無しで作業効率を向上させる技術は 重要となる.

Fig. 4.1 Master slave system

4.1 PSMC+PF の適用方法

4.1.1 未来目標軌道の予測法

マスタスレーブシステムに PSMC+PF を適用するためには未来目標軌道の予測が必須と なる.本節ではマスタスレーブシステムにおける未来目標軌道の予測法について述べる. マスタスレーブシステムでは操作者によるマスタアームの動作に応じてスレーブアーム手 先の作用点の目標軌道が生成される.本研究では現在までのスレーブアーム手先の作用点 の目標軌道より最小二乗法を用いて,未来目標軌道の予測を行う.ここではスレーブアー ム手先の作用点の位置目標値 xwre(k)について述べ,位置目標値 ywre(k), zwre(k),姿勢角度目

標値 $\theta_{vref}^{(1)}(k)$ については同様に予測することとする.

現在のサンプリングステップをn=0とする新たなサンプリングステップ集合N(n)をN(n) = n と定義し、 n_{LSM} -1 ステップ前から現在までの n_{LSM} 個の位置目標値 $x_{wref}(k-n_{LSM}+1) \sim x_{wref}(k)$ を最小二乗法により次式に示す直線に当てはめる.

$$x_{wref}(k+n) = a(k)N(n) + b(k)$$

$$(4.1)$$

ただし,

$$\begin{bmatrix} a(k) \\ b(k) \end{bmatrix} = \begin{bmatrix} \sum_{n=-n_{LSM}+1}^{0} N^{2}(n) & \sum_{n=-n_{LSM}+1}^{0} N(n) \\ \sum_{n=-n_{LSM}+1}^{0} N(n) & \sum_{n=-n_{LSM}+1}^{0} 1 \end{bmatrix}^{-1} \begin{bmatrix} \sum_{n=-n_{LSM}+1}^{0} N(n) x_{wref}(k+n) \\ \sum_{n=-n_{LSM}+1}^{0} x_{wref}(k+n) \end{bmatrix}$$
(4.2)

式(4.1)より, nrステップ後の未来目標軌道は次式のように予測可能である.

$$\hat{x}_{wref}(k+n_r) = a(k)N(n_r) + b(k)$$
(4.3)

4.1.2 未来目標軌道の逆運動学

前節で予測した n_r ステップ後のスレーブアーム手先の作用点の未来位置目標値 $\hat{r}_{wref}(k+n_r) = [\hat{x}_{wref}(k+n_r), \hat{y}_{wref}(k+n_r), \hat{z}_{wref}(k+n_r)]^T$, 座標系 Σ_1 での未来姿勢角度目標値 $\hat{\theta}_{yref}^{(1)}(k+n_r)$ より, 逆運動学を用いて各関節のシリンダストローク未来目標値 $\hat{H}_{ref}(k+n_r)$ を 導出する方法について述べる. スレーブアーム各関節角度の未来目標値を $\hat{\theta}_{jref}(k+n_r)$ (j=1, 2, …, 6)とすると, スレーブアーム各座標系の原点で構成される平面の向きは $\hat{\theta}_{lref}(k+n_r)$ に よって決定されるので、以下のようになる.

$$\hat{\theta}_{lref}\left(k+n_{r}\right) = \begin{cases} \arctan\frac{\hat{y}_{wref}\left(k+n_{r}\right)}{\hat{x}_{wref}\left(k+n_{r}\right)} & \left(\hat{x}_{wref}\left(k+n_{r}\right)\neq0\right)\\ \theta_{1}\left(k\right) & \left(\hat{x}_{wref}\left(k+n_{r}\right)=0\right) \end{cases}$$

$$(4.4)$$

よって,

$$\begin{bmatrix} \hat{r}_{wref}^{(1)}\left(k+n_{r}\right) \\ 1 \end{bmatrix} = A_{1}\left(\hat{\theta}_{1ref}\left(k+n_{r}\right)\right)^{-1} \begin{bmatrix} \hat{r}_{wref}\left(k+n_{r}\right) \\ 1 \end{bmatrix}$$

$$(4.5)$$

現在から n_r ステップ後の座標系 Σ_1 での手先の作用点の位置目標値の変化量 $\Delta r_{wrefp}^{(1)}(k) = \left[\Delta x_{wrefp}^{(1)}(k), \Delta y_{wrefp}^{(1)}(k), \Delta z_{wrefp}^{(1)}(k)\right]^T$, 姿勢角度目標値の変化量 $\Delta \theta_{yrefp}^{(1)}(k)$ は以下のよう になる.

$$\Delta r_{wrefp}^{(1)}\left(k\right) = \begin{bmatrix} \Delta x_{wrefp}^{(1)}\left(k\right) \\ \Delta y_{wrefp}^{(1)}\left(k\right) \\ \Delta z_{wrefp}^{(1)}\left(k\right) \end{bmatrix} = \hat{r}_{wref}^{(1)}\left(k+n_{r}\right) - r_{wref}^{(1)}\left(k\right)$$
(4.6)

$$\Delta \theta_{yrefp}^{(1)}\left(k\right) = \hat{\theta}_{wref}^{(1)}\left(k+n_r\right) - \theta_{wref}^{(1)}\left(k\right) \tag{4.7}$$

求める各関節のシリンダストローク未来目標値を $\hat{H}_{ref}(k+n_r)$ = $\left[\hat{h}_{2ref}(k+n_r),\hat{h}_{3ref}(k+n_r),\hat{h}_{4ref}(k+n_r),\hat{h}_{6ref}(k+n_r)\right]^T$,シリンダストローク未来目標値の変化

量を $\Delta H_{refp}(k) = \left[\Delta h_{2refp}(k), \Delta h_{3refp}(k), \Delta h_{4refp}(k), \Delta h_{6refp}(k)\right]^{T}$ と定義し、以下の計算をする.

$$\Delta H_{refp}(k) = J^{(1)}(H_{ref}(k))^{+} \begin{bmatrix} \Delta x_{wrefp}^{(1)}(k) \\ \Delta z_{wrefp}^{(1)}(k) \\ \Delta \theta_{yrefp}^{(1)}(k) \end{bmatrix} + T_{s}n_{r}k_{jac}(I_{jac} - J^{(1)}(H_{ref}(k))^{+} \cdot J^{(1)}(H_{ref}(k))) \frac{\partial V}{\partial H}(H_{ref}(k))$$
(4.8)

以上より、シリンダストロークの未来目標値 $\hat{H}_{ref}(k+n_r)$ は以下のようになる.ただし、 各シリンダストロークの可動範囲内で決定する.

$$\hat{H}_{ref}\left(k+n_{r}\right) = H_{ref}\left(k\right) + \Delta H_{refp}\left(k\right)$$
(4.9)

以上より、各関節における PSMC+PF の未来目標値 xr(k)を次式のようにする.

$$x_{r}\left(k\right) = \begin{bmatrix} \Delta r\left(k+1\right) \\ \Delta r\left(k+2\right) \\ \vdots \\ \Delta r\left(k+n_{r}\right) \end{bmatrix} = \begin{bmatrix} \frac{\hat{h}_{jref}\left(k+n_{r}\right) - h_{jref}\left(k\right)}{n_{r}} \\ \frac{\hat{h}_{jref}\left(k+n_{r}\right) - h_{jref}\left(k\right)}{n_{r}} \\ \vdots \\ \frac{\hat{h}_{jref}\left(k+n_{r}\right) - h_{jref}\left(k\right)}{n_{r}} \end{bmatrix}$$
(4.10)

ここで、各設計パラメータは第2章と同一とする.

次に最小二乗法ステップ数 *nLSM*, 予見ステップ数 *nr*の最適値をマスタスレーブ制御実験 でのスレーブアーム先端の目標軌道の実データから上記方法で未来目標値を予測し次式に 示す予測誤差 *er*(*k*)の二乗平均平方根誤差より決定する.

 $e_{r}\left(k\right) = \left\|\hat{r}_{wref}\left(k\right) - r_{wref}\left(k\right)\right\|$

(4.11)

予測値の二乗平均平方根誤差を Table 4.1 に示す. Table 4.1 より予測誤差 0.05m 以下で予見 ステップ数最大となる予測誤差最小の(*nLSM*, *nr*) = (10, 30)を本システムでは採用した.

•					
		Preview step number n_r			
		20	30	40	50
Least-square method <i>n_{LSM}</i>	5	0.030 m	0.050 m	0.073 m	0.100 m
	10	0.023 m	0.041 m	0.064 m	0.090 m
	15	0.025 m	0.044 m	0.068 m	0.095 m
	20	0.028 m	0.048 m	0.073 m	0.100 m

Table 4.1 RMS error of prediction

4.2 マスタスレーブ制御実験

4.2.1 制御系設計

PSMC+PFのマスタスレーブ制御性能を実験により検証する.次節で述べる実験のサンプ リング時間 *T*_sは 10ms とし,以下に示す離散時間 LQI 制御系(以下,LQI)との比較を行う. まず,PSMC+PFの設計法について述べる.PSMC+PFは3.2節で述べた方法により設計する. ただし,予見ステップ数 *n*_rは前節より *n*_r=30 とした.また,外乱オブザーバ,周波数整形 フィルタも 3.2 節と同一とする.次に LQI の設計法について述べる.第3章と同様にサンプ リング時間 *T*_sで離散化した制御対象の状態方程式を次式に示す.

$$x(k+1) = \Phi x(k) + \Gamma \left\{ u(k) + d(k) \right\}$$

$$y(k) = \Psi x(k)$$

$$(4.12)$$

制御対象に次式に示す1形サーボ系を構成し、1形サーボ系に基づいた制御系設計を行う. $x_a(k+1) = \Phi_a x_a(k) + \Gamma_a \Delta u_s(k)$ (4.13)

ただし,

$$x_{o}(k) = \begin{bmatrix} e(k) \\ \Delta x(k) \end{bmatrix}, \quad \Phi_{o} = \begin{bmatrix} I & -\Psi\Phi \\ 0 & \Phi \end{bmatrix}, \quad \Gamma_{a} = \begin{bmatrix} -\Psi\Gamma \\ \Gamma \end{bmatrix}$$
(4.14)

LQIの制御入力u(k)は状態フィードバック入力と外乱補償入力を用いて以下のようにする.

$$\begin{aligned} u(k) &= u_s(k) - \hat{d}(k) \\ \Delta u_s(k) &= -K_{lq} x_a(k) \end{aligned}$$

$$(4.15)$$

ここで,各制御法における切換超平面 *S*,状態フィードバックゲイン *K*_{lq} は離散時間系での 最適制御理論を適用し求める.各制御法を可能な限り公平に評価するために次式に示す同 一の二次形式評価関数を用いた.

$$J = \sum_{k=-n_r+1}^{\infty} \left\{ x_a^T \left(k \right) \begin{bmatrix} Q_o & 0\\ 0 & 0 \end{bmatrix} x_a \left(k \right) + \Delta u_s^T \left(k \right) R_a \Delta u_s \left(k \right) \right\}$$
(4.16)

ただし、 $Q_o(k) \in R^{(l+m) \times (l+m)}$ とする.実験に用いる各制御法における設計パラメータを Table 4.2に示す.ここで,各制御法では同一の離散時間 VSS 外乱オブザーバを用いることとする.

Table 4.2 Parameters of control system				
Link 1				
$Q_o = \text{diag}(500, 1, 1, 1), R_a = 1$				
PSMC+PF: <i>n</i> _{<i>r</i>} =30, <i>η</i> =0.15, <i>β</i> =0.1, <i>δ</i> =0.04, <i>σ</i> _{<i>W</i>} =0.0187				
LQI: K_{lq} =[-21.1, 12200, 682, 11.2]				
Observer: ρ_{ob} =0.2, γ_{ob} =0.0004, L_{ob} =[0.0599, 0.0232, -0.0321, 12.9] ^T				
Link 2				
$Q_o = \text{diag}(500, 1, 1, 1), R_a = 1$				
PSMC+PF: n_r =30, η =0.2, β =0.1, δ =0.04, σ_W =0.0125				
LQI: <i>K</i> _{<i>lq</i>} =[-21.5, 12600, 731, 9.24]				
Observer: $\rho_{ob}=0.2, \gamma_{ob}=0.0004, L_{ob}=[0.0709, 0.0154, -0.0327, 15.5]^T$				
Link 3				
$Q_o = \text{diag}(200, 1, 1, 1), R_a = 1$				
PSMC+PF: n_r =30, η =0.15, β =0.1, δ =0.04, σ_W =0.0117				
LQI: <i>K</i> _{<i>lq</i>} =[-13.6, 7580, 437, 4.45]				
Observer: $\rho_{ob}=0.2, \gamma_{ob}=0.0004, L_{ob}=[0.0769, 0.0269, -0.0285, 16.6]^T$				
Link 4				
$Q_o = \text{diag}(250, 1, 1, 1), R_a = 1$				
PSMC+PF: n_r =30, η =0.15, β =0.05, δ =0.04, σ_W =0.0068				
LQI: <i>K</i> _{<i>lq</i>} =[-15.1, 16500, 1020, 8.76]				
Observer: $\rho_{ob}=0.2, \gamma_{ob}=0.0004, L_{ob}=[0.0406, 0.00875, -0.0127, 8.79]^T$				
Link 6				
$Q_o = \text{diag}(300, 1, 1, 1), R_a = 1$				
PSMC+PF: <i>n</i> _{<i>r</i>} =30, η=0.15, β=0.1, δ=0.04, σ _W =0.0131				
LQI: <i>K</i> _{<i>lq</i>} =[-16.6, 9150, 505, 5.63]				
Observer: ρ_{ob} =0.2, γ_{ob} =0.0004, L_{ob} =[0.0716, 0.0234, -0.0293, 15.5] ^T				

4.2.2 実験

模擬地雷(直径 10cm)の除去作業(グリッパによって模擬地雷を把持した後,収集地点に除 去する作業)を対象としたマスタスレーブ制御実験により提案手法(PSMC+PF),LQIの作業 性能を比較検討する.ここで,スレーブアーム先端の目標軌道は操作者がマスタアームを 用いて指示し,未来目標軌道は前述した予測法により導出する.Fig. 4.2~Fig. 4.8 に1回の 障害物除去作業におけるマスタスレーブ制御実験の結果を示す.Fig. 4.2 にスレーブアーム 先端の目標軌道と実応答,Fig. 4.3(a), (b), (c)にスレーブアーム先端の目標軌道,予測した未 来目標軌道,実応答の各成分,(d)に目標軌道と実応答との位置誤差,(e)にスレーブアーム 先端の姿勢角度の目標軌道,予測した未来目標軌道,実応答を示す.また,各関節の実験結 果を Fig. 4.4~Fig. 4.8 に示す.

Fig. 4.3 より PSMC+PF では作業時間が短縮され,目標軌道に対する応答遅れも低減され ていることがわかる.Fig. 4.5~Fig. 4.7(a), (b)より,Link 2, 3,4 で LQI では生じているステ ィックスリップ現象が PSMC+PF では抑制されている.また,(g)より,PSMC+PF では振動 モードの励起が抑制されている.これは,(h)より,PSMC+PF では振動モードの存在する周 波数帯(約3.0Hz)での制御入力が抑制されている効果である.さらに Fig. 4.4~Fig. 4.8(a),(b), (e)より,PSMC+PF では LQI と比較して,目標軌道への応答遅れと軌道追従誤差が低減され ており,スライディングモード制御の高いロバスト性を有していることがわかる.また,(g) より,予測した未来目標値には高周波振動が含まれているが各シリンダストローク出力に は大きな影響を与えていないことが確認できる.

次にマスタスレーブシステムの作業性能評価を行う. 各 9 回の障害物除去作業における スレーブアーム先端の実応答の目標軌道に対する二乗平均平方根誤差と作業時間を比較検 証した結果を Fig. 4.9 に示す. Fig. 4.9 より, PSMC+PF では LQI と比較して, 軌道追従性能, 作業効率ともに向上されていることがわかる. 以上より, マスタスレーブシステムに提案 手法(PSMC+PF)を適用することで, 油圧系の応答遅れやスティックスリップ現象, 機械系 振動モードを抑制し, 軌道追従制御性能と作業効率が向上されることが実証された.

4.3 結言

マスタスレーブシステムの作業性能向上を目的として、マスタスレーブシステムにおけ る未来目標軌道の予測法とその未来目標軌道を利用した離散時間入力端周波数整形予見ス ライディングモード制御系を提案し、マスタスレーブ制御実験により、油圧系の応答遅れ やスティックスリップ現象、機械構造物としての振動モードを抑制することで軌道追従制 御性能と作業効率が向上することを実証した.

87

Fig. 4.2 Trajectory of master slave control

Fig. 4.3 Experimental result of master-slave control

Fig. 4.4 Experimental result: Link 1

Fig. 4.5 Experimental result: Link 2

Fig. 4.6 Experimental result: Link 3

Fig. 4.7 Experimental result: Link 4

Fig. 4.8 Experimental result: Link 6

第5章 制御型金属探知機の軌道追従制 御および探知性能に関する考察

5.1 緒言

全世界には数多くの地雷が埋設されており、人道的地雷探知・除去が地球規模の緊急課題となっている.生活域での安全確保が目的である人道的地雷探知・除去には100%に近い探知・除去率が求められており、現在でも危険ではあるが信頼性の高い手作業により行われている.

世界各地で研究開発されている地雷探知ロボットには地雷探知センサとして金属探知機 が搭載されていることが多い^{[6][7][81][82]}.これは金属探知機が手作業による地雷探知・除去作 業においても多く活躍しており,信頼性の面でも最も評価されているからである.金属探 知機の地雷探知性能はセンサヘッドと対象地雷との距離に大きく依存するためにセンサヘ ッドを地表面に接近させ,倣うように走査することが望ましく,ロボットによる地雷探知 作業においても手作業と同様に地表面に対してセンサヘッドの地上距離・姿勢制御をする ことが必要であると予想される.しかし,地雷探知ロボットの中で地表面を認識し,セン サヘッドを地上距離・姿勢ともに制御できるロボットは少ない.また,地表面に対してセ ンサヘッドを制御するロボットにおいてもセンサヘッドの制御と探知性能の関係を定量的 に言及した報告は著者の知る限りない.

以上の背景より,著者らは金属探知機に3自由度の制御機構を取付けた CMD を独自の機構として開発した. CMD は3-D ステレオビジョンカメラを用いることで高速な3-D マッピング^{[83][84][85]}と軌道生成およびセンサヘッドを地表面に正確に倣い,走査することが可能である.ここで,ステレオビジョンベースの作業用マニピュレータの研究^{たとえば[86]}は現在も盛んに行われているが,地雷探知における倣い作業の特徴として,比較的面積の大きな地雷探知センサと地表面との接触回避を目標仕様とした軌道生成が必要となる点が挙げられる. さらに CMD を用いた探知実験によりロボットによる地雷探知作業におけるセンサヘッドの地上距離・姿勢制御の地雷探知性能に対する有効性と重要性を極力,定量的に評価するように努めた.

実地雷原で多く利用されている金属探知機にはオーストラリアの MineLab.社,オースト リアの Shiebel 社,イタリアの Ceia 社^[87]などの製品があり,今回, CMD では Ceia 社の金属 探知機(MIL-D1)を使用することとした. MIL-D1 はアフガニスタンでの地雷探知・除去 作業に最も多く使用されており,あらゆる地質に対しても自動で校正と補正をすることが できる.また,検知地点に関しては対象物通過の前後で出力の周波数が変化するために正 確な位置の特定に有効である.

5.2 制御対象

CMD の外観を Fig. 5.1 に示す. CMD のシステムは Fig. 5.2 に示すように, CMD 本体, 2 台の PC, 3-D ステレオビジョンカメラ, XY ステージで構成され, PC とのインターフェー スは CMD 本体と金属探知機出力ではアナログ信号通信, 3-D ステレオビジョンカメラでは IEEE1394, XY ステージでは RS-232C となっている.

CMD は Fig. 5.3 に示すようにボールジョイント部 *P*_bを共通にした 2 つの 4 節リンクとボ ールねじによる送り機構で構成される 3 自由度を有し,各機構は DC モータで駆動されるね じ軸とボールねじによる直動運動を行う. この直動関節 Link 1, Link 2, Link 3 のストロー クを DC モータにより制御することでそれぞれセンサヘッドのピッチ,ロール方向の回転運 動,上下方向の並進運動を行う. ここで,地雷探知エリア地表面に平行に *X*_b軸, *Y*_b軸, 鉛 直上向きに *Z*_b軸,探知開始点を原点とする右手座標系をベース座標系 {*O*_b} と定義し,ピ ッチ,ロール方向の回転とはそれぞれ *X*_b, *Y*_b軸回りの回転と定義する.

センサヘッドが水平で $l_3=0$ の状態を基本姿勢と定義するとセンサヘッドの位置と姿勢角 度は各リンクに取り付けられたエンコーダより計測される Link 1, Link 2, Link 3 の基本姿 勢からのストローク l_1 , l_2 , l_3 より幾何学的に算出することができる. 算出方法については 次章で述べる.

CMD は連結点 P_aで XY ステージに搭載され,連結点 P_aは XY ステージに固定された上下方向に動かない点とする. CMD と XY ステージの同期を取ることにより 3-D ビジョン情報から生成された目標軌道にセンサヘッドを追従することが可能である.また,センサヘッドから半径 600mm 以内に金属部品の無い構造となっており,自己による金属探知機への干渉を回避した. CMD の主な諸元を Table 5.1 に示す.

97

Fig. 5.1 Overview of CMD system

Fig. 5.2 Architecture of CMD system

Fig. 5.3 Configuration of CMD

Item	Value	Remarks
Length [mm]	1500	Basic position
Width [mm]	282	
Weight [kg]	10	
Degree of freedom	3	
Stroke speed (max) [mm/s]	100	Link 3
Stroke width [mm]	180	Link 3
Angular velocity (max) [deg/s]	10	Pitch, Roll
Angle range [deg]	±15	Pitch, Roll
Length of <i>l</i> ₄ [mm]	835	
Length of l_5 [mm]	80	

Table 5.1 Specification of CMD

5.3 運動学解析

ボールジョイント部 P_b には溝があり,直動関節 Link 1, Link 2の運動は鉛直平面内に拘 束されるため、センサヘッドのピッチ、ロール方向の姿勢角度 θ_s , θ_y ,姿勢ベクトル X_s , Y_s と各直動関節の基本姿勢からのストローク l_1 , l_2 は Fig. 5.4 に示すようになる.運動学解析 により姿勢角度から各直動関節のストロークを算出する逆運動学は以下のようになる.

$$l_1 = \sqrt{l_4^2 + 2l_5^2 - 2l_5L\sin(\theta_x + \arctan\frac{l_5}{l_4})} - l_4$$
(5.1)

$$l_2 = \sqrt{l_4^2 + 2l_5^2 + 2l_5L\sin(\theta_y - \arctan\frac{l_5}{l_4})} - l_4$$
(5.2)

また,順運動学は以下のようになる.

$$\theta_x = -\arctan\frac{l_5}{l_4} + \arctan\frac{-l_1^2 - 2l_1l_4 + 2l_5^2}{2l_5L}$$
(5.3)

$$\theta_{y} = \arctan \frac{l_{5}}{l_{4}} + \arctan \frac{l_{2}^{2} + 2l_{2}l_{4} - 2l_{5}^{2}}{2l_{5}L}$$
(5.4)

ただし、 l_4 、 l_5 はリンクの長さであり、 $L = \sqrt{l_4^2 + l_5^2}$ と定義する.また、センサヘッドの姿勢 ベクトル X_s 、 Y_s は姿勢角度 θ_x 、 θ_y より $X_s = [\cos\theta_y, 0, -\sin\theta_y]^T$ 、 $Y_s = [0, \cos\theta_x, \sin\theta_x]^T$ と定義する.

Fig. 5.4 Geometry of CMD
5.4 ビジョンによるデータ取得方法

本研究で用いるステレオビジョンカメラ^[88]は平行ステレオ方式であり,同一の焦点距離*f*をもつ2台のカメラが距離*B*だけ離れて平行に置かれている.なお,ステレオビジョンカメラの仕様をTable 5.2に示す.ここで,Fig. 5.5に示すように左カメラの光学中心を原点,光軸を*Z*_c軸,左画像の横軸,縦軸に平行に*X*_c軸,*Y*_c軸をとる座標系をカメラ座標系 {*O*_c}と定義する.

ステレオビジョンカメラにより取得した左画像と右画像においてテンプレートマッチン グにより2つの画像間の対応点探索を行い,3次元空間中の点Pのカメラ座標[*x_c*, *y_c*, *z_c*]^{*T*}を 左右画像上の対応点*p*,*p*'から以下のように決定する.

$$x_{c} = \frac{x_{l}B}{x_{l} - x_{r}}, y_{c} = \frac{y_{l}B}{x_{l} - x_{r}}, z_{c} = \frac{fB}{x_{l} - x_{r}}$$
(5.5)

ここで,対応点 p, p'の左右画像上での位置を(x_l, y_l), (x_r, y_r)とする.

以上より、カメラ座標系での地形情報を取得し、座標変換によりベース座標系での地形の高さ情報 *f_a*(*X_b*, *Y_b*)を生成する.ここで、例として対象とする探知エリアの写真を Fig. 5.6、得られる 3 次元地形マップを Fig. 5.7 に示す.

ruble 5.2 Specifications of stereovision camera			
Item	Value		
Device size [mm]	160(W)×40(H)×50(D)		
Weight [g]	372		
Baseline [mm]	120		
Focal length [mm]	6		
Pixels	320(H)×240(V)		
View angle [deg]	50		

Table 5.2 Specifications of stereovision camera

Fig. 5.5 Principle of stereo vision

Fig. 5.6 Detection area

Fig. 5.7 3-D mapping

5.5 3-D ビジョン情報による目標軌道生成

本研究では 3-D ビジョン情報により目標軌道生成を行う.ステレオビジョンカメラにより得られたベース座標系での地形の高さ情報 $f_a(X_b, Y_b)$ を格子間隔 d_g で標本化した格子上の地形情報 $f(n_1, n_2)$ を以下のように表す.ただし, n_1 , n_2 は整数とする.

 $f(n_1, n_2) = f'_a(n_1d_g, n_2d_g)$ (5.6) ここで、高さ情報 $f'_a(n_1d_g, n_2d_g)$ は、 $f_a(X_b, Y_b)$ において、格子点 (n_1d_g, n_2d_g) の近傍の高さ情報を 平均した値とする.以下の目標軌道生成では格子上の地形情報 $f(n_1, n_2)$ を用いることとする.

Fig. 5.8に地雷探知エリア($l_x \times l_x$)に対するCMDとXYステージの連結点 P_a の軌道を示す. 連結点 P_a は X_b 軸方向に速度 v_x ,送り量 l_x , Y_b 軸方向に速度 v_y ,送り量 y_d で各軸に平行に等 速度運動を行う.ここで、連結点 P_a の速度は地表面に応じて変化させるべきであるがXY ステージの性能上、等速運動に限定した.

以下では,連結点 P_aが通過する各格子点でのセンサヘッドの位置と姿勢角度を求め,線 形補間により地上距離・姿勢制御を実現する目標軌道を生成する.目標仕様は以下のよう になる.

- 1. センサヘッド底面が地表面に対して近似的に平行を保つ.
- 2. センサヘッド底面と地表面との接触を回避する.

Fig. 5.8 Trajectory of XY-stage

5.5.1 姿勢角度の決定

地形情報より,目標仕様 1 を満足するセンサヘッドのピッチ,ロール方向の目標姿勢角 度 θ_x , θ_y は地表面の傾きとして求めることができる.目標姿勢角度は格子点(n_1 , n_2)での地表 面の X_b 軸方向の傾きを最小二乗法により求め,その傾きをロール方向の目標姿勢角度 θ_y と すると次式のようになる.

$$\theta_{y} = \frac{n_{s} \sum_{i=1}^{n_{s}} x_{i} z_{i} - \sum_{i=1}^{n_{s}} x_{i} \sum_{i=1}^{n_{s}} z_{i}}{n_{s} \sum_{i=1}^{n_{s}} x_{i}^{2} - \left(\sum_{i=1}^{n_{s}} x_{i}\right)^{2}}$$

$$\begin{cases} n_{s} = (2k_{s} + 1) \\ x_{i} = n_{1} - k_{s} + i \\ z_{i} = f(n_{1} - k_{s} + i, n_{2}) \end{cases}$$
(5.7)
$$(5.7)$$

 θ_x についても同様に導出する. k_s は傾き決定係数と定義する.ただし,目標姿勢角度は機構 による可動範囲と以下に示す連結点 P_a の X_b , Y_b 各軸方向への移動速度 v_x , v_y を考慮した格 子点間での限界姿勢変動角 θ_{dx} , θ_{dy} の制約の中で決定する.ここで, ω_{MAX} は最大角速度を示 す.

$$\theta_{dx} = \pm \frac{\omega_{MAX} d_g}{v_x}, \theta_{dy} = \pm \frac{\omega_{MAX} d_g}{v_y}$$
(5.9)

5.5.2 Link 3 のストロークの決定

求めた姿勢角度より,目標仕様 2 を満足する Link 3 のストローク l_3 を求める.連結点 P_a の位置が $P_a = [n_1 d_g, n_2 d_g, P_{az}]^T$ となるとき,CMD のボールジョイント中心 P_b の位置は $P_b = [n_1 d_g, n_2 d_g, P_{az} - d_z - l_3]^T$ となる.ただし,連結点 P_a の固定された高さを P_{az} ,連結点 P_a からボー ルジョイント中心 P_b までの基本姿勢での距離を d_z とする.ここで,各格子点上でセンサへ ッド底面の中心 S の位置 S は姿勢ベクトル X_s , Y_s を用いて以下のようになる.

$$\boldsymbol{S} = l_s \frac{\boldsymbol{Y}_s \times \boldsymbol{X}_s}{\left|\boldsymbol{Y}_s \times \boldsymbol{X}_s\right|} + \boldsymbol{P}_b \tag{5.10}$$

ただし, *l*_sはボールジョイント中心 *P*_bからセンサヘッド底面の中心 *S* までの長さと定義する.このとき,センサヘッド底面のすべての点が近傍の格子上地形情報よりある一定の安全余裕 *l_{mar}*以上の高度を保つ最大の *l*₃を決定する.ただし,*l*₅は機構による可動範囲の制約の中で決定する.

5.5.3 Link 3 のストロークの再決定

本軌道生成は地雷原を対象としているので、生成される目標軌道は各リンクの応答に遅れが生じてもセンサヘッドと地表面との接触を回避する軌道でなくてはならない.よって、

既に決定された Link 3 のストローク ムを安全性を考慮して再決定する.

XY ステージの軌道が通過する *i* 番目の格子点上での連結点 P_a の位置を $P_a(i) = [n_1(i)d_g, n_2(i)d_g, P_{az}]^T$, センサヘッドのピッチ, ロール方向の姿勢角度を $\theta_n(i)$, $\theta_n(i)$, Link 3 のストロ ークを $l_3(i)$ とする.

本研究での地雷探知作業において、CMD は以下の3つの動作を同時に行う.

- 1. センサヘッドの姿勢変動
- 2. センサヘッドの上下動作
- 3. XY ステージによる Xb, Yb 軸方向の動作

ここで、この3つの動作に遅れが生じた場合の安全対策として Link 3 のストローク $l_3(i)$ を再決定する. ただし、この3つの動作は次の格子点に進むべき時間 d_g/v_x 、 d_g/v_y までには完了するものと仮定する.

Fig. 5.9 に示すようにセンサヘッドの姿勢角度が *i* 番目の格子点上での目標状態で連結点 P_a が $P_a(i-1)$, $P_a(i+1)$ にある場合においても、センサヘッド底面のすべての点が、近傍の格子上地形情報よりある一定の安全余裕 l_{mar} 以上の高度を保つ最大の $l_3(i)$ を再決定する. これより、応答の遅れによる地表面への接触を回避することができる. ただし、 $l_3(i)$ は、機構による可動範囲と以下に示す連結点 P_a の X_b , Y_b 各軸方向への移動速度 v_x , v_y を考慮した格子点間での限界ストローク量 l_{dx} , l_{dy} の制約の中で決定する. ここで、 v_{MAX} は Link 3 の最大ストローク速度とする.

$$l_{dx} = \frac{v_{MAX} d_g}{v_x}, l_{dy} = \frac{v_{MAX} d_g}{v_y}$$
(5.11)

以上より求めた連結点 *P*_aの通過する各格子点での目標値を線形補間することで地雷探知 に用いる目標軌道を生成する.本軌道生成アルゴリズムでは以下に示す地形条件において, 目標仕様を満足することができる.

- X_b軸, Y_b軸方向の傾斜がそれぞれ, CMD の機構的な可動範囲±θ_{yMAX}, ±θ_{xMAX}内の地 表面
- 2. 半径 D_s+2d_g以上,深度 l_{ds}, l_{dv}以内の円柱形状

ただし、センサヘッド姿勢角度の機構による可動範囲を± θ_{MAX} 、± θ_{YMAX} 、センサヘッド直径 D_s とする. 生成したセンサヘッド底面中心の目標軌道の例を Fig. 5.10 に示す.

Fig. 5.10 Trajectory generation

5.6 軌道追従制御実験

Fig. 5.11 に示すような探知エリア(600mm×40mm)に対して CMD の軌道追従実験を行う. 本実験ではステレオビジョンカメラにより探知エリアの 3-D ビジョン情報を取得し目標軌 道生成を行う.生成された軌道の有効性とともに軌道へのセンサヘッドの地上距離・姿勢 制御の追従性を考察する.ここで,CMD の各モータドライバへの制御入力は各 Link のスト ロークが目標軌道に追従するフィードバック制御系を構築した PID 制御法により生成する. ただし,制御サンプリング周波数は 50Hz とし,PID 補償器の各ゲインを Table 5.3,軌道生 成における各パラメータは Table 5.4 に示す.

Fig. 5.11 Detection area for experiment

	Р	Ι	D
Link 1	1.5	2.5	0.01
Link 2	3.0	12.0	0.1
Link 3	3.0	12.0	0.1

Table 5.4 Parameters of trajectory generation

V _x	v_y	<i>Y</i> d	l _{mar}	d_g	<i>k</i> _s
50 mm/s	10 mm/s	40 mm	10 mm	10 mm	10

5.6.1 実験結果

軌道追従制御実験において,生成されたセンサヘッド底面中心の目標軌道と実験での軌 道を Fig. 5.12,センサヘッド底面と地表面との鉛直方向での最短距離の時間変化を Fig. 5.13 に示す.また,実験開始から4秒間における Link 1, Link 2, Link 3のストロークの目標軌 道と実験での軌道をそれぞれ Fig. 5.14 に示す.

5.6.2 考察

Fig. 5.12 より、生成された目標軌道にセンサヘッドが良く追従していることがわかる. さらに、Fig. 5.13 より、探知作業中にセンサヘッドがおおよそ安全余裕 *lmar* 以上の距離を保っており、目標仕様であるセンサヘッド底面と地表面との接触を回避する軌道を実現している. 本実験では安全余裕を *lmar* = 10mm と定義したが妥当であることがわかる. ここで、Fig. 5.13 のセンサヘッド底面と地表面との最短距離が振動的であるのは、格子状の離散的な地表面の位置情報と比較しているからであり、距離が大きくなっているところでは、軌道生成において、5.5.3 節で示す安全対策を行っており、安全性の高い目標軌道となっているからである. また、各リンクについても Fig. 5.14 に示されるようにそれぞれ、オーバーシュートと応答遅れの小さい優れた追従性能である. 軌道生成法の中で各格子点での目標値に追従する動作は連結点 *Pa*が次の格子点に進むべき時間 *dg/vx、dg/vy*までに完了することを条件として仮定したが、その仮定を十分に満たす応答速度であり、目標軌道生成法の有効性を示すことができた.

Fig. 5.12 Trajectory of sensor head

Fig. 5.13 Gap between sensor head and ground surface

Fig. 5.14 Trajectory responses of links

5.7 地雷埋設位置推定方法

地雷探知ロボットによる探知作業において重要なことに地雷探知センサのデータによる 埋設位置の推定がある.今回,CMDに搭載されている金属探知機には対象物通過の前後で 出力の周波数に変化が生じる性質がある.この性質を用いて,対象地雷がセンサヘッド底 面中心よりも X_b軸方向に存在するときには出力信号を負の値,-X_b軸方向に存在するときに は正の値となるように信号処理を行う.処理された金属探知機出力による地雷埋設位置の 推定を行う.

本章では1個の地雷が埋設されている探知エリアに限定した埋設位置の推定方法を示す. 本研究では Fig. 5.8 に示すように X_b軸方向にセンサヘッドを N 回走査していく. *i* 番目の X_b軸方向の走査で得られた金属探知機の出力から埋設候補位置[x_i, y_i]と金属反応の強さ m_i を決定する. すべての走査終了後に各埋設候補位置と金属反応の強さから埋設地雷の推定 位置を以下のように決定する.

$$[x, y] = \left[\frac{\sum_{i=1}^{N} m_i x_i}{\sum_{i=1}^{N} m_i}, \frac{\sum_{i=1}^{N} m_i y_i}{\sum_{i=1}^{N} m_i}\right]$$
(5.12)

ここで、*i*番目の走査により得られた金属探知機のデータが X_b 軸方向に増加して $V_d[V]$ また は- $V_d[V]$ を通過する時のセンサヘッド底面中心の位置を探索し、これらの中点を埋設候補位 置[x_i, y_i]とする。通過点が 1 点の時にはその点を候補位置とし、通過点がない場合には候補 位置は存在せず、金属反応の強さ $m_i = 0$ とする。Fig. 5.15 に示すように金属反応の強さ m_i は候補位置近傍における最大値と最小値の差とする。また、本研究では $V_d = 0.2V$ とし、N = l_y/y_d +1 となる。

Fig. 5.15 Definitions of the candidate position (i^{th} scanning)

5.8 地雷探知実験

Fig. 5.11 に示す砂地の探知エリア($l_x \times l_y$)に様々な凹凸を施し、CMD による地雷探知実験 を行う.金属探知機から得られたデータより埋設地雷の位置推定を行い、センサヘッドを 地上距離・姿勢制御することの地雷探知性能に対する有効性を検証する.ここで、制御方 法は 5.6 節の軌道追従制御実験と同様とする.

5.8.1 実験条件

地上距離・姿勢制御の地雷探知性能に対する有効性を検証するために以下の3種類の目 標軌道を定義し比較実験を行う. Case 1 はセンサヘッドを水平に固定し探知エリア地表面の 最高点から安全余裕 *l_{mar}*の高度に固定した目標軌道, Case 2 はセンサヘッドを水平に固定し 提案する手法により生成した地上距離のみ制御する目標軌道, Case 3 は地上距離・姿勢制御 を行う提案する目標軌道と定義する.

対象地雷は Fig. 5.16(a)に示す世界中で最も埋設数の多いプラスチック製対人地雷 PMN2(*φ*125mm × 54mm)とし,埋設深度は Fig. 5.16(b)に示すように地表面から地雷上面まで の距離と定義する.埋設位置はベース座標系で[*X_b*, *Y_b*] = [300mm, 300mm]とする.

探知エリア地表面に関する条件として平坦な地表面を Area A, 地雷埋設位置が斜面であ る地表面を Area B, 二つの山の谷部である地表面を Area C と定義する.また,地表面の粗 さはセンサヘッドが正確に倣うことのできる程度の凹凸を基準として表すこととする.格 子上地形情報 *f*(*n*₁, *n*₂)を原曲面,原曲面からカットオフ波長が 40*d*_g[mm]の低域通過フィルタ によって得られる曲面を平均曲面 *W*(*n*₁, *n*₂)として以下のように地表面の二乗平均平方根粗 さ*R*_sを定義する.

$$R_{s} = \sqrt{\frac{1}{(l_{x}/d_{g}+1)(l_{y}/d_{g}+1)} \sum_{n_{1}=0}^{l_{x}/d_{g}} \sum_{n_{2}=0}^{l_{y}/d_{g}} R^{2}(n_{1},n_{2})}$$
(5.13)

ここで、 l_x/d_g 、 l_y/d_g は整数になるようにし、粗さ曲面 $R(n_1, n_2)$ は以下のように定義する. $R(n_1, n_2) = f(n_1, n_2) - W(n_1, n_2)$ (5.14)

本実験では探知エリア範囲を $l_x = 600$ mm, $l_y = 600$ mm とし,各パラメータは Table 5.4 と同 ーとする. 探知エリアの地表面高さを Fig. 5.17~Fig. 5.19 に示し,二乗平均平方根粗さ R_s と埋設深度を Table 5.5 に示す.

Fig. 5.18 3-D mapping of Area B

Fig. 5.19 3-D mapping of Area C

Detection Area	Roughness(RMS) [mm]	Depth [mm]
Area A ₁	8.5	50
Area A ₂	8.9	120
Area B ₁	9.2	120
Area B ₂	10.7	120
Area C ₁	10.4	120
Area C ₂	11.5	120

Table 5.5 Specifications of detection area

5.8.2 実験結果

各探知エリアにおける地雷探知実験の結果を Fig. 5.20~Fig. 5.25 に示す. Fig. 5.20~Fig. 5.25 はセンサヘッド底面中心の軌道上に信号処理を施した金属探知機の出力をプロットした図である.出力の値が正の(色の淡い)部分では金属物体は-*X*_b軸方向に存在することを示し,負の(色の濃い)部分では *X*_b軸方向に存在することを示す.出力の絶対値は大きいほど金属物体との相対距離が近いことを示す.

また,各探知エリアにおいて5.7節で述べた方法により推定された地雷の埋設位置をTable 5.6 に示す. ここで, NaN は地雷埋設位置の推定が不可能な場合を示す. さらに地上距離・ 姿勢制御の有効性を示すために金属探知機出力の絶対値を探知時間で積分した値を Table 5.7 に示す. ただし, それぞれの探知エリアにおいて, Case 3 での積分値を100 とした相対 値を示すこととした.

5.8.3 考察

地雷探知実験結果から考察を行う.地雷の埋設深度の浅い Area A₁ を除く探知エリアにおいて,地上距離・姿勢ともに制御を行わない Case 1 では金属反応が小さく,地雷探知ロボットにおいてセンサヘッドの地上距離制御が必要不可欠であることは明らかである.以下では Case 2 と Case 3 について考察する.

Fig. 5.20, Fig. 5.21, Fig. 5.22, Table 5.7 より,平坦な地表面や粗さの小さい斜面では Case 3 においても姿勢変動が小さく, Case 2, Case 3 における探知性能の差異は小さく, Case 2, Case 3 ともに精度良い埋設位置の推定が可能である. しかし, Fig. 5.23, Fig. 5.24, Fig. 5.25 より,地表面の粗さが大きくなるのに伴い,姿勢変化のできない Case 2 では金属反応が小さくなるのに対し, Case 3 では金属反応が明確に出力され,地雷埋設位置の推定が可能であることが示される. これは, Table 5.7 からも明らかであり,地上距離・姿勢制御の地雷探知性能に対する有効性が示される. しかし, Area C₂の結果では埋設地雷の推定位置に大きく誤差が生じている. これは,地表面が粗いために姿勢の変動角が大きくなり,センサへッド底面中心位置と実際に金属探知機が探知している領域に大きなずれが生じてしまうからであり,姿勢制御におけるデメリットである. 埋設位置推定方法とともに解決すべき課題である.

Table 5.6 Estimated position of landmine

[x, y]	Case 1	Case 2	Case 3
Area A ₁	[322.5, 315.5]	[324.1, 321.1]	[319.9, 321.4]
Area A ₂	NaN	[310.3, 252.6]	[319.1, 272.1]
Area B ₁	[337.5, 280.7]	[344.1, 259.9]	[309.3, 312.6]
Area B ₂	NaN	NaN	[263.7, 250.7]
Area C ₁	NaN	[270.7, 319.4]	[312.9, 270.3]
Area C ₂	NaN	NaN	[192.7, 310.2]

Table 5.7 Numerical integration value of metal detector

	Case 1	Case 2	Case 3
Area A ₁	92.5	97.0	100
Area A ₂	1.4	96.5	100
Area B ₁	24.0	36.1	100
Area B ₂	7.4	21.8	100
Area C ₁	7.8	14.7	100
Area C ₂	8.4	8.4	100

5.9 結言

本論文は提案する CMD の有効性について詳細に検討した.得られた結論をまとめると以下の3点となる.

- 1. 地上距離・姿勢制御機構をセンサヘッド中心に極力近付けた CMD の新しいメカニズ ムの提案
- 2. 簡便な 3-D ステレオビジョンカメラによる地表面との接触回避を行う軌道生成と良 好な軌道追従制御の実証
- 3. CMD による金属探知機センサヘッドに対する地上距離・姿勢制御の地雷探知性能に 対する有効性の実証

今後,探知エリアや埋設地雷について,様々な条件下で実験行い,地上距離・姿勢制御 の地雷探知性能に対する有効性をさらに実証する.また,他の金属探知機においても同様 に実証実験を行う.

第6章 結言

本研究では地雷探知作業のロボット化を目的として,地雷探知ロボットのための MFArm(多機能マニピュレータ), CMD(制御型金属探知機)の課題について2つの研究を行っ た.それぞれについての結言を下記に示す.

- 作業者が直感的に操作可能なユニラテラルマスタスレーブシステムを構築し、マス タスレーブシステムの作業性能向上を目的として、マスタスレーブシステムにおける 未来目標軌道の予測法とその未来目標軌道を利用した離散時間入力端周波数整形予 見スライディングモード制御系を提案し、マスタスレーブ制御実験により、油圧系の 応答遅れやスティックスリップ現象、機械構造物としての振動モードを抑制すること で軌道追従制御性能と作業効率が向上することを実証した.また、離散時間規範モデ ル追従形入力端周波数整形スライディングモード制御系を提案し、軌道追従制御実験 により未来目標軌道を利用せずに軌道追従制御性能が向上することを実証した.
- センサヘッドの地表面に対する地上距離・姿勢制御機構を有する金属探知機を構築 し、3-Dステレオビジョンカメラによる地表面情報を利用することで地表面との接触 を回避可能な軌道の生成と良好な軌道追従制御を実証した.さらに、地雷探知実験に よりセンサヘッドの地上距離・姿勢制御の地雷探知性能に対する有効性を実証した.

参考文献

- [1] 文部科学省,対人地雷探知・除去技術の研究開発: http://www.mext.go.jp/a_menu/kagaku/jirai/main9_a4.htm
- [2] Mine Action Information Center, Journal of Mine Action, James Madison University: http://maic.jmu.edu/
- [3] Humanitarian Demining, Developmental Technologies 2000-2001, DoD Humanitarian Demining R&D Program
- [4] Demining Technology Center: http://diwww.epflch/w3lami/detec/rodemine.html
- [5] 独立行政法人 新エネルギー・産業技術総合開発機構, 地中等埋設物探知・除去技術開 発: http://www.nedo.go.jp/activities/portal/p02021.html
- [6] Chesney, R. et al.: Terrain Adaptive Scanning of Conventional Mine Detectors, Proceedings of the IARP International Workshop on Robotics and Mechanical Assistance in Humanitarian Demining, 69/73 (2002-11)
- [7] Kenzo Nonami, Qingjiu Huang, Daisuke Komizo, Yoichiro Fukao, Yoshitomo Asai, Yoshinori Shiraishi, Masaki Fujimoto, Yosuke Ikedo: Development and Control of Mine Detection Robot COMET-II and COMET-III, JSME International Journal, Series C, 46-3, 881/890 (2003-9)
- [8] 深尾洋一郎, 野波健蔵: 地雷探知ロボットの軌道追従とインピーダンス制御, 日本機械 学会論文集 C 編, 69-679, 662/668 (2003-3)
- [9] 内田洋彰, 野波健蔵: 6 足歩行ロボットの姿勢制御を実現するフィードバック力指令値 生成法,日本機械学会論文集 C 編, 69-685, 2315/2322 (2003-9)
- [10] 藤本雅樹, 野波健蔵: 地中レーダを用いた特徴抽出法による地雷探知アルゴリズム, 電子情報通信学会技術研究報告 SANE, 宇宙・航空エレクトロニクス, 103-300, 35/40 (2003-9)
- [11] 浅井祥朋, 野波健蔵: 有限離散時間二次形式評価関数に基づく2自由度最適トラッキン グ制御, 日本機械学会論文集 C 編, 70-694, 1700/1707 (2004-6)
- [12] 池戸洋介, 野波健蔵: 六脚ロボット COMET-III の予見スライディングモード歩行制御, 日本機械学会論文集 C 編, 70-700, 3484/3492 (2004-12)
- [13] 菅井晴彦, 野波健蔵:油圧駆動地雷探知6脚ロボットの規範モデル追従形スライディン グモード制御,日本機械学会論文集C編,72-721,2829/2837 (2006-9)

- [14] Ranjit Kumar Barai, Kenzo Nonami: Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot, Information Sciences, 177-8, 1892/1915 (2007-4)
- [15] Ranjit Kumar Barai, Kenzo Nonami: Locomotion Control of a Hydraulically Actuated Hexapod Robot by Robust Adaptive Fuzzy Control with Self-Tuned Adaptation Gain and Dead Zone Fuzzy Pre-compensation, Journal of Intelligent and Robotic Systems, 53-1, 35/56 (2008-9)
- [16] Hiroshi Ohroku, Kenzo Nonami: Omni-directional Vision and 3D Animation Based Teleoperation of Hydraulically Actuated Hexapod Robot COMET-IV, ICGST International Journal on Automation, Robotics and Autonomous Systems, 9-1, 17/24 (2009)
- [17] Hiroshi Ohroku, Addie Irawan, Kenzo Nonami: A 3D Simulator modelling for Hydraulic-drive Hexapod walking Robot using 3D Geometric Technique with distributed Numerical Model, ICGST International Journal on Automation, Robotics and Autonomous Systems, 9-1, 31/39 (2009)
- [18] 独立行政法人 科学技術振興機構, 人道的対人地雷探知・除去技術研究開発推進事業: http://www.jst.go.jp/kisoken/jirai/
- [19] 野波健蔵: 地雷探知ロボットと無人処理車による地雷除去支援, 人道的対人地雷探知・除去技術研究開発推進事業, 研究開発課題紹介用資料 (2004-9)
- [20] 広瀬茂男: バギー車両・遠隔操作アームなどによる地雷探査除去支援システムの開発, 人道的対人地雷探知・除去技術研究開発推進事業,研究開発課題紹介用資料 (2004-9)
- [21] 福田敏男:環境適応型高性能対人地雷探知システムの研究開発,人道的対人地雷探知・除去技術研究開発推進事業,研究開発課題紹介用資料 (2004-9)
- [22] 池上友博: 地雷の探知ユニットのアクセス用機械の研究開発, 人道的対人地雷探知・除 去技術研究開発推進事業, 研究開発課題紹介用資料 (2004-9)
- [23] Kenzo Nonami, Hajime Aoyama: Research and Development of Mine Hunter Vehicle for Humanitarian Demining, Proceedings of the IARP International Workshop on Robotics and Mechanical Assistance in Humanitarian Demining, 76/81 (2005-6)
- [24] 青山元,米持浩人,石川和良,関淳也,田島茂樹,岡村三男:地雷探知ロボットシステムの開発,計測と制御,45-6,504/510 (2006-6)
- [25] 野波健蔵, 増永聖二, Daniel Waterman, 天野新吾, 邵輝, Tytus Wojtara, 湯浅亮平, 奥雅 希, 高田宣裕, 小野宏行, 延本泰一, 吉村尚秀: 地雷探知ロボットのための制御型金属 探知機および地雷露呈作業用多機能マニピュレータの開発, 計測と制御, 45-6, 511/517 (2006-6)
- [26] K. Nonami, R. Yuasa, D. Waterman, S. Amano, H. Ono: Preliminary Design and Feasibility Study of a 6-Degree of Freedom Robot for Excavation of Unexploded Landmine, Autonomous Robots, 18-3, 293/301 (2005-5)

- [27] Daniel Waterman, Kenzo Nonami, Ryohei Yuasa, Shingo Amano, Seiji Masunaga, Hiroyuki Ono: Control and Operational of a Teleoperated Hydraulic Manipulator for Landmine Prodding and Excavation, Proceedings of the IARP International Workshop on Robotics and Mechanical Assistance in Humanitarian Demining, 101/106 (2005-6)
- [28] 湯浅亮平: 地雷処理支援用油圧駆動型6軸マニピュレータのモデリングと制御,千葉大 学修士論文 (2005-2)
- [29] 天野新吾: 地雷除去支援用油圧マニピュレータのモデリングと制御, 千葉大学修士論 文 (2006-2)
- [30] Daniel Waterman: VR Interface and Sliding Mode Control of a Hydraulic Manipulator, 千葉大 学修士論文 (2006-2)
- [31] 湯浅亮平, 野波健蔵: 地雷処理支援用油圧駆動形マニピュレータの精密な状態空間モ デルとロバスト制御, 日本機械学会論文集 C 編, 72-719, 2154/2161 (2006-7)
- [32] 増永聖二: 地雷探知ロボット搭載用油圧駆動型マニピュレータのマスタ・スレーブ制御, 千葉大学修士論文 (2007-2)
- [33] 増永聖二, 野波健蔵:油圧マニピュレータの離散時間規範モデル追従形入力端周波数 整形スライディングモード制御,日本機械学会論文集 C 編, 74-742, 1459/1468 (2008-6)
- [34] 増永聖二, 野波健蔵: 油圧マニピュレータの離散時間入力端周波数整形予見スライデ ィングモード制御, 日本フルードパワーシステム学会論文集, 40-5, 94/101 (2009-9)
- [35] Daniel Waterman, Kenzo Nonami: Multirate Output Multirate Output Feedback Sliding Mode Control of a Hydraulic Manipulator End Effector, ICGST International Journal on Automation, Robotics and Autonomous Systems, 9-1, 41/49 (2009-12)
- [36] Daniel Waterman, Kenzo Nonami: Hydraulic Cylinder Velocity Tracking with Multirate Output Feedback Sliding Mode Control, Journal of System Design and Dynamics, 3-5, 717/729 (2009)
- [37] 藤本雅樹:外乱オブザーバを用いた多関節油圧マニピュレータの予見スライディング モード制御,千葉大学修士論文 (2004-2)
- [38] Tytus Wojtara, Kenzo Nonami, Hui Shao, Ryohei Yuasa, Shingo Amano, Daniel Waterman, Yasukazu Nobumoto: Hydraulic master-slave land mine clearance robot hand controlled by pulse modulation, Mechatronics, 15-5, 589/609 (2005-6)
- [39] Hui Shao, Kenzo Nonami, Tytus Wojtara, Ryohei Yuasa, Shingo Amano, Daniel Waterman: Neuro-fuzzy position control of demining tele-operation system based on RNN modeling, Robotics and Computer-Integrated Manufacturing, 22-1, 25/32 (2006-2)
- [40] 増永聖二,野波健蔵: 地雷探知ロボット搭載用制御型金属探知機の軌道追従制御および探知性能に関する考察,日本機械学会論文集 C 編, 72-721, 2853/2860 (2006-9)
- [41] Seiji Masunaga, Kenzo Nonami: Controlled Metal Detector Mounted on Mine Detection Robot, International Journal of Advanced Robotic Systems, 4-2, 237/245 (2007-6)

- [42] 横田眞一, 笹尾正典, 一柳健: 油圧ショベルのブーム, アーム系の高精度軌跡制御, 日本機械学会論文集 C 編, 62-593, 161/167 (1996-1)
- [43] 山本敏郎, 横田眞一, 田村尉: 配電作業用電気油圧マニピュレータの高精度制御(スラ イディングモード制御による 6 軸油圧マニピュレータの軌跡制御), 日本機械学会論文 集 C 編, 62-594, 577/584 (1996-2)
- [44] 佐々木芳宏,田村和人,高橋義雄:スライディングモード制御則による比例弁・油圧シ リンダ系の位置制御,日本機械学会論文集 C 編, 63-614, 3460/3466 (1997-10)
- [45] 山本敏郎, 横田眞一, 田村尉: 6 軸油圧マニピュレータのロバスト制御に関する研究(各ロバスト制御手法の実験的比較), 日本機械学会論文集 C 編, 64-620, 1312/1319 (1998-4)
- [46] 中村太郎, 佐々木芳宏, 嵯峨宣彦, 高橋義雄: 電気油圧サーボ系のロバスト制御に関す る性能評価(第1報)ロバスト性・制御入力・外乱抑圧特性に対する実験的比較, 電気学 会論文誌 D, 120-3, 423/429 (2000-3)
- [47] 中村太郎, 佐々木芳宏, 嵯峨宣彦, 高橋義雄: 電気油圧サーボ系のロバスト制御に関す る性能評価(第2報)各種パラメータ変動に対する実験的比較, 電気学会論文誌 D, 120-7, 916/921 (2000-7)
- [48] 横田眞一,小林秀基,蛭川立雄,津村淳二,江川栄治:油圧ショベルのアーム系 3 軸の ロバスト軌跡制御(外乱オブザーバによる制御の有効性の検討),日本機械学会論文集 C 編,66-648,2549/2556 (2000-8)
- [49] 佐々木芳宏,高橋義雄:外乱オブザーバを併用したスライディングモード制御による 油圧シリンダの位置制御,日本機械学会論文集 C 編, 64-623, 2550/2556 (1998-7)
- [50] 山田宏尚, 武市教児, 武藤高義: 油圧パワーショベルのスライディングモード制御, 日本機械学会論文集 C 編, 68-670, 1768/1774 (2002-6)
- [51] 伊藤和寿, 高橋秀和, 池尾茂: 水圧サーボモータシステムのロバスト制御に関する性能 評価(第2報 外乱オブザーバおよびスライディングモード制御手法による制御系設計), 日本フルードパワーシステム学会論文集, 38-2, 21/28 (2007-3)
- [52] 蘭霖,小西克信,木村理知:活線作業用高所作業車の軌道制御に関する研究(第1報,油 圧サーボ弁の線形化による起伏動作の制御),日本機械学会論文集 C 編, 70-696, 2368/2376 (2004-8)
- [53] 真田一志, 無敵幸二, 北川能: μシンセシスによる電気油圧サーボ機構の制御系設計手 法の研究, 日本機械学会論文集 C 編, 61-590, 3960/3967 (1995-10)
- [54] 杉山高洋,内田健康:電気油圧サーボ系における速度および推力のゲインスケジュー リング制御,電気学会論文誌 D, 122-11, 1051/1058 (2002-11)
- [55] 杉山高洋,内田健康: むだ時間を持つ電気油圧サーボ系のゲインスケジューリング制御,日本機械学会論文集 C 編, 70-699, 3146/3153 (2004-11)
- [56] 佐藤匡, 江上正, 土谷武士: 離散時間予見スライディングモードサーボ系とその特性, システム制御情報学会論文誌, 14-12, 582/592 (2001-12)

- [57] 佐藤匡, 江上正, 土谷武士: 予見フィードフォワード補償を用いたディジタルスライデ ィングモードサーボシステム, 電気学会論文誌 C, 123-8, 1439/1448 (2003-8)
- [58] 佐藤匡, 江上正, 土谷武士: 離散時間スライディングモード予見繰返しサーボ系の設計, システム制御情報学会論文誌, 18-9, 312/321 (2005-9)
- [59] 長島弘明, 横山誠, 愛田一雄: 離散時間インテグラルスライディングモード制御を用い たロバスト予見制御, 日本機械学会論文集 C 編, 72-721, 2877/2883 (2006-9)
- [60] 島田明, 野波健蔵, 甲斐勇, 時永偉, 井尻誠, 鈴木静一: 規範モデル追従形スライディ ングモード制御を用いた自動車空調システムのための圧縮機可変容量制御, 計測自動 制御学会論文集, 38-8, 702/709 (2002-8)
- [61] 板東賢一, 福原聡, 横田眞一: モデル規範形スライディングモード制御を応用したマス ター・スレーブ制御(マルチゾーン形クーリングプレートの温度軌跡追従制御), 日本機 械学会論文集 C 編, 70-696, 2329/2336 (2004-8)
- [62] 漆原史朗, 鎌野琢也, 由良諭, 安野卓, 鈴木茂行: モデル規範形 SMC を用いたリニア DC モータ2 自由度位置決めシステム設計法, 電気学会論文誌 D, 126-3, 276/284 (2006-3)
- [63] 伊藤貴之,野波健蔵,岩本浩祐,西村秀和: μ設計理論で周波数成形されたスライディン グモード制御による柔軟構造物のアクティブ制御,日本機械学会論文集 C 編, 62-602, 3850/3857 (1996-10)
- [64] 北村康弘, 岩渕一徳, 野波健蔵, 西村秀和, 小林信之: 弾性アームの周波数成形型スラ イディングモード位置決め制御, 日本機械学会論文集 C 編, 63-606, 431/437 (1997-2)
- [65] 伊藤貴之, 野波健蔵: スピルオーバを抑制する周波数成形型スライディングモード制御, 日本機械学会論文集 C 編, 63-611, 2308/2314 (1997-7)
- [66] 柳田秀記, 松尾智広, 松本哲和: モデル規範形入力端周波数整形スライディングモード 制御の電気油圧サーボモータへの応用, 日本フルードパワーシステム学会, 34-1, 19/26 (2003-1)
- [67] 妻木勇一, 内山勝: 力制御型遠隔宇宙ロボット操作システムにおける仮想ビームを用いた予測表示の効果, 日本機械学会論文集 C 編, 62-601, 3603/3608 (1996-9)
- [68] 黒川陽一,石橋豊:遠隔描画教示システムにおける触覚メディアの予測を用いた端末間同期方式,電子情報通信学会技術研究報告. CQ,コミュニケーションクオリティ, 107-19,65/68 (2007-4)
- [69] 野波健蔵, 仁科研一, 斉藤満: ゼロパワー磁気軸受系の離散時間スライディングモード 制御, 日本機械学会論文集 C 編, 62-595, 967/975 (1996-3)
- [70] 田宏奇, 野波健蔵, 久保田政彦: 弾性ロータ・磁気軸受系の VSS オブザーバを有する離散時間スライディングモード制御, 日本機械学会論文集 C 編, 60-569, 94/101 (1994-1)
- [71] 野波健蔵,田宏奇:ロバスト最小次元 VSS オブザーバを適用した弾性ロータ・磁気軸受系のスライディングモード制御,日本機械学会論文集 C 編, 60-571, 897/905 (1994-3)

- [72] 田宏奇, 野波健蔵: 離散時間スライディングモード制御による弾性ロータ・磁気軸受系の高速回転時特性,日本機械学会論文集 C 編, 60-580, 4142/4149 (1994-12)
- [73] 王赴国, 野波健蔵, 津田和呂, 水野浩: 熱間圧延システムの離散時間状態予測スライディングモード制御(線形到達則の適用), 日本機械学会論文集 C 編, 65-631, 985/990 (1999-3)
- [74] 板東賢一, 福原聡, 横田眞一: むだ時間を有するプロセスに対する離散時間スライディングモード制御と半導体製造用クーリングプレートへの適用, 日本機械学会論文集 C 編, 69-682, 1587/1594 (2003-6)
- [75] 古田勝久, 森貞雅博: 離散系のスライディングモードコントロール, 計測自動制御学会 論文集, 25-5, 574/578 (1989-5)
- [76] Weibing Gao, Yufu Wang, Abdollah Homaifa: Discrete-Time Variable Structure Control Systems, IEEE Transactions on Industrial Electronics, 42-2, 117/122 (1995-4)
- [77] 平田光男, 唐東豪, 野波健蔵, 小川秀明, 谷口義弘: 離散時間 2 自由度 H_∞制御によるピ エゾアクチュエータの超高速位置決め制御, 電気学会論文誌 D, 121-8, 879/886 (2001-8)
- [78] 藤本康孝, 河村篤男: 外乱オブザーバを併用したスライディングモード制御と2自由度 制御の外乱抑圧に関する考察, 電気学会論文誌 D, 114-3, 306/314 (1994-3)
- [79] 毛綱昌弘:森林作業用ナックルブームの軌跡および荷重制御に関する研究,北海道大学大学院農学研究科邦文紀要, 26-2, 155/217 (2004-12)
- [80] 野波健蔵, 田宏奇: スライディングモード制御-非線形ロバスト制御の設計理論-, コロ ナ社 (1994-9)
- [81] Baudoin, Y. et al.: Humanitarian Demining and Robotics State-of-the art, Specifications, and On-going Research Activities, Proceedings of the Third International Conference on Climbing and Walking Robots, 869/877 (2000-10)
- [82] Armada, M.A. et al.: Configuration of a legged robot for humanitarian de-mining activities, Proceedings of the IARP International Workshop on Robotics and Mechanical Assistance in Humanitarian Demining, 131/135 (2005-6)
- [83] Clark, F. et al.: Visual terrain mapping for Mars exploration, Computer Vision and Image Understanding, 105-1, 73/85 (2007-1)
- [84] Rochaa, R. et al.: Cooperative multi-robot systems: A study of vision-based 3-D mapping using information theory, Robotics and Autonomous Systems, 53-3-4, 282/311 (2005-12)
- [85] Xiao, D., et al.: Real-time integration of sensing, planning and control in robotic work-cells, Control Engineering Practice, 12-6, 653/663 (2004-6)
- [86] 加瀬裕, 丸典明, 西川敦, 宮崎文夫: ステレオ視によるマニピュレータのビジュアルサ ーボ, システム制御情報学会論文誌, 6-8, 360/367 (1993-8)
- [87] Ceia: http://www.ceia.net/
- [88] Point Grey Research Inc.: http://www.ptgrey.com/

- [89] Kenneth, M. et al.: The detection of buried landmines using probing robots, Robotics and Autonomous Systems, 23-4, 235/243 (1998-6)
- [90] Claudio, B. et al.: Ground penetrating radar and imaging metal detector for antipersonnel mine detection, Journal of Applied Geophysics, 40-1-3, 59/71 (1998-10)
- [91] Viesti, G. et al.: The detection of landmines by neutron backscattering: Exploring the limits of the technique, Applied Radiation and Isotopes, 64-6, 706/716 (2006-6)
- [92] Nicolas, V. et al.: Qualitative evaluation of computer vision algorithms in polar terrains, Robotics and Autonomous Systems, 40-2-3, 139/149 (2002-8)
- [93] 岩崎正裕, 辻内伸好, 小泉孝之, 田中雄一郎: 位置ベースステレオ視覚サーボを用いた マニピュレータの高精度位置制御法, 日本機械学会論文集 C 編, 69-681, 1323/1329 (2003-5)
- [94] Homayoun, N. et al.: Real-time motion planning of an autonomous mobile manipulator using a fuzzy adaptive Kalman filter, Robotics and Autonomous Systems, 55-2, 96/106 (2007-2)
- [95] 谷萩隆嗣: ディジタルフィルタと信号処理, コロナ社 (2001-12)
- [96] 野波健蔵, 西村秀和: MATLAB による制御理論の基礎, 東京電機大学出版局 (1998-4)
- [97] 野波健蔵, 西村秀和, 平田光男: MATLAB による制御系設計, 東京電機大学出版局 (1998-5)
- [98] 足立修一: MATLAB による制御のためのシステム同定, 東京電機大学出版局 (1996-12)
- [99] 足立修一: MATLAB によるディジタル信号とシステム,東京電機大学出版局 (2002-2)
- [100] 足立修一: MATLAB による制御のための上級システム同定, 東京電機大学出版局 (2004-3)
- [101] 小波倭文朗, 西海孝夫: 油圧制御システム, 東京電機大学出版局 (1999-11)
- [102] 市川常雄,日比昭: 機械工学基礎講座 18 油圧工学,株式会社朝倉書店 (1979-4)
- [103] 吉川恒夫: ロボット制御基礎論, コロナ社 (1988-11)
- [104] 高野政晴: 詳説 ロボットの運動学, オーム社 (2004-12)
- [105] 土谷武士, 江上正: 新版 現代制御工学, 産業図書株式会社 (2000-4)
- [106] 土谷武士, 江上正: ディジタル予見制御, 産業図書株式会社 (1992-12)

研究業績

学術雑誌等掲載論文

- 1. 増永聖二, 野波健蔵: 地雷探知ロボット搭載用制御型金属探知機の軌道追従制御および 探知性能に関する考察, 日本機械学会論文集 C 編, 72-721, 2853/2860 (2006-9)
- Seiji Masunaga, Kenzo Nonami: Controlled Metal Detector Mounted on Mine Detection Robot, International Journal of Advanced Robotic Systems, 4-2, 237/245 (2007-6)
- 3. 増永聖二, 野波健蔵:油圧マニピュレータの離散時間規範モデル追従形入力端周波数整 形スライディングモード制御,日本機械学会論文集 C 編, 74-742, 1459/1468 (2008-6)
- 4. 増永聖二, 野波健蔵:油圧マニピュレータの離散時間入力端周波数整形予見スライディ ングモード制御、日本フルードパワーシステム学会論文集, 40-5, 94/101 (2009-9)

国際・国内の学術会議での発表論文

- 1. 増永聖二, 野波健蔵, 天野新吾, Daniel Waterman, 青山元: 地雷探知ロボット(MHV)搭載 金属探知機の 3D ステレオビジョンを用いたギャップ・姿勢制御, 第 23 回日本ロボット 学会学術講演会 CD-ROM 講演論文集, 講演番号 3I11 (2005-9)
- 2. 増永聖二, 天野新吾, Daniel Waterman, 湯浅亮平, 野波健蔵, 小野宏行: 油圧駆動地雷探 知除去ロボットアームのマスタ・スレーブ制御, 第 48 回自動制御連合講演会 CD-ROM 講演論文集, 講演番号 I1-25 (2005-11)
- 3. 増永聖二, 野波健蔵, 天野新吾, Waterman Daniel, 青山元: 地雷探知ロボット MHV 搭載 金属探知機の高性能化の研究, 第6回計測自動制御学会システムインテグレーション部 門講演会 CD-ROM 講演論文集, 講演番号 1M2-5 (2005-12)
- Seiji Masunaga, Kenzo Nonami: A Consideration on Trajectory Following Control and Detection Performance of Controlled Metal Detector mounted on Mine Detection Robot, Proceedings of The 8th International Conference on Motion and Vibration Control, 173/178 (2006-8)
- 増永聖二, Daniel Waterman, 天野新吾, 野波健蔵: 地雷探知ロボット搭載用油圧マニピ ュレータのマスタ・スレーブ制御, ロボティクス・メカトロニクス講演会 2007 CD-ROM 講演論文集, 講演番号 2A2-H02 (2007-5)

関連業績

- 天野新吾,湯浅亮平,増永聖二,野波健蔵,小野宏行:地雷除去支援6軸油圧マニピュレ ータのジョイスティックによる制御,第47回自動制御連合講演会CD-ROM 講演論文集, 講演番号 313 (2004-11)
- Daniel Waterman, Kenzo Nonami, Ryohei Yuasa, Shingo Amano, Seiji Masunaga, Hiroyuki Ono: Control and Operational of a Teleoperated Hydraulic Manipulator for Landmine Prodding and Excavation, Proceedings of the IARP International Workshop on Robotics and Mechanical Assistance in Humanitarian Demining, 101/106 (2005-6)
- 3. 野波健蔵, 増永聖二, Daniel Waterman, 天野新吾, 邵輝, Tytus Wojtara, 湯浅亮平, 奥雅希, 高田宣裕, 小野宏行, 延本泰一, 吉村尚秀: 地雷探知ロボットのための制御型金属探知 機および地雷露呈作業用多機能マニピュレータの開発, 計測と制御, 45-6, 511/517 (2006-6)
- Kenzo Nonami, Seiji Masunaga, Daniel Waterman, Hajime Aoyama and Yoshihiro Takada: Mine Detection Robot and Related Technologies for Humanitarian Demining, Humanitarian Demining: Innovative Solutions and the Challenges of Technology, Book edited by: Maki K. Habib, ISBN 978-3-902613-11-0, 235/262 (2008-2), I-Tech Education and Publishing, Vienna, Austria

その他の業績

- 第6回計測自動制御学会システムインテグレーション部門講演会 ベストセッション講 演賞受賞 (2005-12)
- 2. 日本機械学会三浦賞(第 487 号)受賞 (2006-3)
- 3. 2006 年 2,3 月に独立行政法人科学技術振興機構のプロジェクト「人道的対人地雷探知・ 除去技術研究開発推進事業」の一環として、地雷探知ロボット MHV のクロアチア実地 試験に参加

謝辞

学部,修士,博士課程を通して,直接御指導下さいました野波健蔵教授に心より感謝いたします.また本研究に対し,様々な御助言を頂きました慶応義塾大学 西村秀和教授, 木更津工業高等専門学校 内田洋彰准教授,宇都宮大学 平田光男准教授,千葉大学 並 木明夫准教授,信州大学 酒井悟准教授,信州大学 鈴木智助教に心より感謝致します. また,快適な研究生活を送るにあたり,多岐にわたりお世話をして頂きました五十嵐恵美 子氏に心より感謝いたします.

千葉大学・富士重工業株式会社共同研究チームとして、大変お世話になりました富士重 工業株式会社 高田宣裕氏、宮本康彦氏、小野宏行氏、延本泰一氏、吉村尚秀氏、セイコ ー精機有限会社 岡田正伸氏に心より感謝いたします。特に宮本康彦氏、小野宏行氏、岡 田正伸氏には様々な御支援を頂き心より感謝いたします。

共に研究を進め、様々な御助言、御協力を頂きました人工システム科学専攻の皆様、特 に浅井祥朋氏、湯浅亮平氏、天野新吾氏、Daniel Waterman 氏、菅井晴彦氏、中澤大輔氏、 奥雅希氏に心より感謝いたします.

また,社会人博士課程への入学を許可して頂き,学位取得の機会を与えて頂いたトヨタ 自動車株式会社ドライブトレーン先行開発部 星野明良氏,舟橋眞氏,塩入広行氏,駒田 英明氏,池田暁彦氏,柴田寛之氏に心より感謝いたします.

最後に学生生活を支えて頂いた両親,家族,友人の皆様に心より感謝いたします.

図目次

Fig. 1.1	ARS	3
Fig. 1.2	SAMS	3
Fig. 1.3	COMET-III	4
Fig. 1.4	COMET-IV	4
Fig. 1.5	Mine Hunter Vehicle	4
Fig. 1.6	Public demonstration and mine detection test in Sakaide city, Kagawa	prefecture5
Fig. 2.1	MF Arm	9
Fig. 2.2	Configuration of MF Arm	10
Fig. 2.3	Workspace of gripper mode $(\theta_y = 0^\circ)$	11
Fig. 2.4	Workspace of drill mode ($\theta_y = 110^\circ$)	11
Fig. 2.5	End effectors	12
Fig. 2.6	Hydraulic circuit of gripper	13
Fig. 2.7	Hydraulic circuit	17
Fig. 2.8	Control system	19
Fig. 2.9	Coordinate of MF Arm	21
Fig. 2.10	Geometry of Link 1-4	24
Fig. 2.11	Geometry of Link 6	25
Fig. 2.12	Master Arm	34
Fig. 2.13	Coordinate of Master Arm	34
Fig. 2.14	Control system of master slave system	
Fig. 3.1	Block diagram of modeling system	41
Fig. 3.2	Step response of Link 1 (K_p =50)	42
Fig. 3.3	Step response of Link 2 (K_p =50)	42
Fig. 3.4	Step response of Link 3 (K_p =50)	42
Fig. 3.5	Step response of Link 4 (K_p =70)	43
Fig. 3.6	Step response of Link 6 (K_p =50)	43
Fig. 3.7	Validation of modeling	44
Fig. 3.8	Result of impact testing (X=1.0m)	45

Fig. 3.9	Result of impact testing (X=1.5m)	45
Fig. 3.10	Result of impact testing (X=2.0m)	45
Fig. 3.11	Chirp response of Link 1 (K_p =50)	46
Fig. 3.12	Chirp response of Link 2 (K_p =50)	47
Fig. 3.13	Chirp response of Link 3 (K_p =50)	
Fig. 3.14	Chirp response of Link 4 (K_p =70)	49
Fig. 3.15	Chirp response of Link 6 (K_p =50)	
Fig. 3.16	Block diagram of PSMC+PF	
Fig. 3.17	Comparison result of observer (Link 3)	
Fig. 3.18	Bode plot of pre-filter	
Fig. 3.19	Performance index value	
Fig. 3.20	Simulation result: Link 3	61
Fig. 3.21	Experimental result	63
Fig. 3.22	Experimental result: Link 2	64
Fig. 3.23	Experimental result: Link 3	65
Fig. 3.24	Experimental result: Link 6	66
Fig. 3.25	Block diagram of RSMC+PF	71
Fig. 3.26	Bode plot of pre-filter	
Fig. 3.27	Simulation result: Link 3	75
Fig. 3.28	Experimental result of step response	77
Fig. 3.29	Experimental result: Link 2	
Fig. 3.30	Experimental result: Link 3	79
Fig. 3.31	Experimental result: Link 6	80
Fig. 4.1	Master slave system	
Fig. 4.2	Trajectory of master slave control	
Fig. 4.3	Experimental result of master-slave control	
Fig. 4.4	Experimental result: Link 1	
Fig. 4.5	Experimental result: Link 2	91
Fig. 4.6	Experimental result: Link 3	
Fig. 4.7	Experimental result: Link 4	
Fig. 4.8	Experimental result: Link 6	94
Fig. 4.9	Prformance evaluation (N=9)	
Fig. 5.1	Overview of CMD system	
Fig. 5.2	Architecture of CMD system	
Fig. 5.3	Configuration of CMD	
Fig. 5.4	Geometry of CMD	

Fig. 5.5	Principle of stereo vision	
Fig. 5.6	Detection area	
Fig. 5.7	3-D mapping	
Fig. 5.8	Trajectory of XY-stage	
Fig. 5.9	Decision of <i>l</i> ₃	
Fig. 5.10	Trajectory generation	
Fig. 5.11	Detection area for experiment	
Fig. 5.12	Trajectory of sensor head	
Fig. 5.13	Gap between sensor head and ground surface	
Fig. 5.14	Trajectory responses of links	
Fig. 5.15	Definitions of the candidate position (<i>i</i> th scanning)	110
Fig. 5.16	Target mine	
Fig. 5.17	3-D mapping of Area A	
Fig. 5.18	3-D mapping of Area B	
Fig. 5.19	3-D mapping of Area C	
Fig. 5.20	Area A ₁	114
Fig. 5.21	Area A ₂	114
Fig. 5.22	Area B ₁	115
Fig. 5.23	Area B ₂	115
Fig. 5.24	Area C ₁	115
Fig. 5.25	Area C ₂	

表目次

Table 2.1	Specifications of MF Arm	9
Table 2.2	Specifications of gripper	13
Table 2.3	Specifications of solenoid controlled valve	13
Table 2.4	Specifications of drill	14
Table 2.5	Specifications of electromagnet	14
Table 2.6	Specifications of air jet	15
Table 2.7	Specifications of hydraulic cylinder	16
Table 2.8	Specifications of hydraulic motor	16
Table 2.9	Specifications of hydraulic circuit	17
Table 2.10	Specifications of proportional valve	18
Table 2.11	Specifications of hydraulic pump	18
Table 2.12	Specifications of position sensor	18
Table 2.13	Specifications of interface board	20
Table 2.14	Specifications of SBC	20
Table 2.15	Specifications of valve controller	20
Table 2.16	Parameters of Links	21
Table 2.17	Ranges of Links	22
Table 2.18	Parameters of geometry	25
Table 2.19	Parameters of inverse kinematics	31
Table 2.20	Parameters of Master Arm	35
Table 2.21	Parameters of reference value	38
Table 3.1	Parameters of plant	41
Table 3.2	Parameters of observer	57
Table 3.3	Parameters of control system	60
Table 3.4	RMS error of experiment	63
Table 3.5	Parameters of control system	73
Table 3.6	RMS error of experiment	77
Table 4.1	RMS error of prediction	84

Table 4.2	Parameters of control system	86
Table 5.1	Specification of CMD	99
Table 5.2	Specifications of stereovision camera	101
Table 5.3	Gain of PID controller	107
Table 5.4	Parameters of trajectory generation	107
Table 5.5	Specifications of detection area	113
Table 5.6	Estimated position of landmine	116
Table 5.7	Numerical integration value of metal detector	116