病態における心,ならびに,末梢循環力学的 数値と,その治療による変化

千葉大学医学部第二内科学教室(指導 斎藤十六教授)

橘 正

MASATOSHI TACHIBANA

敏

(昭和33年3月20日受付)

次

目

本文中に使用した略号

- I. は し が き
- Ⅱ. 実験方法
- Ⅲ. 観察方法
- Ⅳ. 実験成績
 - A. 心, ならびに, 末梢循環力学的数値の 尋常範囲
 - B. 弁膜症における心, ならびに, 末梢循環力学的数値

小 括

- C. 各種高血圧症における心, ならびに, 末梢循環力学的数値の検討
 - 1. 本態性高血圧症
 - (1) Keith-Wagener の分類による 場合
 - (2) Wezler 法による場合
 - (3) 高血圧性諸疾患の合併いかんに よる心,ならびに,末梢循環力 学的数値の検討
 - (4) 血圧高による心,ならびに,末 梢循環力学的数値の比較検討
 - (a) 縮 期 圧
 - (b) 弛 期 圧
 - (c) Noradrenaline の静脈内注射
 - (5) 各種降圧剤による本態性高血圧 症の心,ならびに,末梢循環力 学的数値の変化
 - (a) 1-Hydrazinophthalazine

- (b) Pentapyrrolidinium
- (c) Reserpine
- (d) 降圧剤長期使用例にかんする 心,ならびに,末梢循環力学 的数値の検討
- 2. 腎性高血圧症における心, ならびに, 末梢循環力学的数値
- 3. 慢性肺性心における心, ならびに, 末梢循環力学的数値
- 4. 小 括
- D. 心冠疾患の心, ならびに, 末梢循環力 学的数値の検討
 - 1. 心冠疾患における心, ならびに, 末梢脈管力学的数値
 - 2. 脈管活性剤の使用, ならびに, 低酸 素試験の心, および, 末梢循環力学 におよぼす影響
 - (1) Amyl nitrite
 - (2) Choline Theophyllinate
 - (3) Lacarnol "forte"
 - (4) 低酸素試験

3. 小 括

- A. 基礎疾患別の心・脈管力学について
- B. 心不全, とくに, うつ血性心不全について

VI. ま と め 参考文献, 附 図

本論文, ならびに, 附図に用いた略語

ECG: 心電曲線 (Electrocardiogram)

UFZ: 心变形期 ("Umformungszeit")

DAZ: 心昇圧期 ("Druckanstiegszeit")

ASZ: 心緊張期 ("Anspannungszeit")

ATZ: 心駆出期 ("Austreibungszeit")

VS: 心拍量 (Stroke Volume)

Vm: 分時送血量 (Minute Volume)

W: 全末梢抵抗 (Peripheral Resistance)

E': 容積弹性率 (Volume Elasticity)

PR: 心拍数 (Pulse Rate)

BP: 血圧 (Blood Pressure)

Pm: 平均血圧 (Mean Pressure)

KW: Keith Wagener's Classification

C. S.: Cycle Second

 σ : $^{1}/_{1000}$ Second

Es: 期外収縮 (Extrasystole)

Ms: 僧帽弁口狭窄症 (Mitral Stenosis)

Mi: 僧帽弁閉鎖不全症 (Mitral Insufficiency)

As: 大動脈弁口狭窄症 (Aortic Stenosis)

Ai: 大動脈弁閉鎖不全症 (Aortic Insufficien-

cy)

Apresoline: 1-Hydrazinophthalazine

Ansolysen: Pentaprrolidinum Nucleton: リボ核酸分解物 Serpasil: Reserpine

Theocoline: Choline Theophyllinate

I. はしがき

心の各拍における時間的関係は、心弁膜症の心力 学に重大に影響する。Wiggers(24)は、これを、とく に Mi と Ms について示した。 いちじるしい Mi が あつても、血液は、だいたい、ふつうどおりに、大 動脈に送り出される。そのさい、閉じた大動脈弁は 左室内の血液に、不全の僧帽弁よりも、もつと大き な抵抗と対峙する。Wiggers は、模型、および、動 物実験で、心室が収縮のはじまりより大動脈弁の開 くまでに要する時間を短かくすることにより、すな わち、ASZ の短縮により、左房内への逆流量を減ら すことができることを示した。左室の収縮力がよわ ると、すなわち、圧上昇がゆるやかになり、より平 坦に経過すると,不全弁を通じて逆流する血量が増 える。Mi の心力学的に有効の度は、それゆえ、器 質的な弁変化の程度ばかりでなく, 左室の緊張時間 ASZ の長さ、それゆえ、左室の機能によるところが 大きい。心が衝撃的に収縮すれば、弁膜がなくて も,一定方向の血流は,ある程度,維持できる。大 動脈弁膜症においても、左室の収縮時間は変化し え, それによつて, この弁膜欠陥の害作用はすくな くなりうる。Mi においては、ASZ ののびは、逆流 を増すが、Aiでは、 弛期ののびが、 逆流をます。 こ のさいにも,「ふり子」血量は心筋能力が低下する と、増える。心弁膜症の結果としておこる負荷を、 圧負荷(5)(7)の増しと、容量負荷(5)(7)の増しとにわけ る。負荷の種類がちがうと、心の反応もちがう。圧 負荷の増しは、大動脈、肺動脈、僧帽弁膜に、先天 性、または、後天性に狭窄を生じると、おこる。大 動脈峡部狭窄も、このうちにはいる。流血障害のた め、流血はおそくなり、それゆえ、狭窄個所から上 流にうつ血がおこる。縮期圧の上昇により、狭窄を 通しての流血速度は速くなり、これによつて、狭窄: はある程度まで代償される。すなわち、狭窄にもか ムわらず、必要な分時拍出量は減らないですむ。こ

の圧負荷の増しにたいして、心は、どのように反応 するか。とり出された心は、弛期における筋線維の のびがいちじるしくなることによつて、圧負荷の増 しに対抗する。Frank(8)は、とり出したカエルの心 の容量・圧反応が、はじめの大きさ・緊張に依存す ることを示した。弛期における圧亢進の増すととも に、心容量は、より大きくなり、同時に、作業能 は、ある点まで高まることをも示めし、さらに、ひ ろがると、作業能は、ふたたび、もとに戻る。それ ゆえ、圧負荷の増しは、弛期における心室圧の亢進 と容量の増しとなつてくる。縮期においては、高ま つた負荷のはじまりにおいて、 駆血の完全性がさが る。それゆえ、縮期において増える残留血量によつ て,必須な駆血に達する。負荷が高まるとともに, 残留血量は、さらに増える。心は大きくなる。反対 に、生理的負荷のもとでは、わずかに残留血量をと ゞめるにすぎない。弁膜症のために、増す圧負荷に たいする適用は、短時間の実験から結論しえない。 もちろん, 大切な暗示をうることはできるが慢性 に増した圧負荷の結果として、大して拡大しない筋 性肥大が生じる。肥大はまず、第一に、高まつた要 求にたいする健康な筋の応答をなす。Linzbach は、これを"harmonisch"といった。すなわち、 筋線維の太さの増しにたいする毛細管のはたらきが 充分であるといつた。器官のはたらきは、そのまう 維持されている。この生理的な肥大は、それゆえ、 流血障害の危険を生じない。拡大なしの筋性肥大 は、臨床的にも、あるいわ、X線学的に証明できる ような心の大きさの増しをおこさない。心の大きさ の尋常の動揺範囲は、あまりにもいちじるしい。そ れゆえ, たゞ数 mm にも足りない壁の肥厚が, 尋常 を超えていると結論しにく」する。それゆえ、慢性 腎炎などによつて, 圧負荷が増えても, 心は小さい こともありうることを理解できる。これらは、Volhard, Zdansky, および, Sarre が述べている。 また, 肺動脈弁口狭窄症においても, 肺動脈硬化症 においても、右室の拡大の ない ことも ありう る。 Kirch は流出路がのびるといつた。この変形は、 しばしば、X線学的だけに知ることができる。たゞ し、心が至適に充えいされるとき、すなわち、臥位 でしらべるときだけである。右室ののびは、立位で は、一部失われる。一つの心室の筋性肥大において も、まず、はじめは、充えい圧がふつうでありう る。のみならず、心拍数が増えている最中でも、充 えい圧はあがらない。それゆえ、肥大した心筋は尋

常の弛緩能を示す。臨床的には、つぎの所見がわかっている。代償性の As なら、肺うつ血の兆候はなく、同様に、代償性の Ms なら、肝腫大も、末梢浮腫もない。また、負荷しても、おこらない。これらのうつ血症状があれば、すでに、心筋不全がある。心筋が代償性なら、充えい圧の亢進なしに、その機能をいとなむことができる。それゆえ、健康者は、最大の負荷の間でも、肺水腫をおこさない。大循環にうつ血兆候はおこらない。この充えい圧の亢進のないことは、心臓カテーテルの時にも、多くの人たちによつて知られている。右室における圧は、右心カテーテルのときに、直接、測れる。右房については、P.C. 圧から想像する。

II. 実験方法

さきに、教室の稲垣⁽¹⁴⁾の発表した Wezler 法⁽²⁵⁾ の当教室変法⁽¹⁹⁾と同時に、Schulz⁽²⁰⁾のはじめた Holldack(10)-Blumberger 法(1)を実施した。すなわ. ち, Luisada⁽¹⁷⁾の記載する stethoscopic microphone に準じた 特性をもつクリスタルマイクロフ ォンに開放型直径 2.5 cm の chestpeace をつけ, 被検者の僧帽弁口聴診部、または、胸骨上にゴムバ ンドで固定した。そして3段増巾 C-R 結合型 (CE W Co.) で、周波数が30 c.s. から1000 c.s. まで 高くなるにつれて、やゝさがる周波数特性をもつ増 巾器を通して、心音曲線を頸,ならびに、大腿動脈 波・ECG (第 II 誘導) と同時に記録した。このさ い, 1000 c.s. まで特性の平坦なバイブレターをも つオッシログラフを用い, 8 m/sec. の速度で流し た。記録のさい、被検者には、尋常の呼吸で呼気が おわり吸気にうつるときかるく呼吸を止めさせ、そ の最初の2波形について、つぎのように計測した。 ECG の Q 棘, これを欠くときは R 棘のはじめか ら, 第I心音の "Tonsegment" のはじまり (こ れを、われわれは、ECG のQ棘、または、R棘の 後にあり、こまかい "Vorschwingung" につゞく 最初の大きなさがりと定めた)までを、心変形期 "Umformungszeit" (UFZ) とする。第 I 心音 "Tonsegment" のはじまりから頸動脈波の立ちあ がりまでの時間から、第Ⅱ心音のはじまりと頸動脈 波切痕との間の時差をさし引いたものを心昇圧期 "Druckanstiegszeit" (DAZ) & L, UFZ & DAZ の和を心緊張期 "Anspannungszeit" (ASZ) とす る。さらに、頸動脈波の立ちあがりから切痕までの 時間を心駆出期 "Austreibungszeit" (ATZ) と

し $^{(12)}$, 必要により Q-II 音, Q-T 時間を計測した。時間の計測は少数第4位まで行い,記載は第3位まで行つた。単位には $\sigma(^{1}/_{1000}$ 秒)を用いた。

III. 観察方法

本態性高血圧症 50 例, 弁膜症 7 例, 腎性高血圧症 8 例, 慢性肺性心 2 例, 心冠疾患 27 例, 全身代謝障 害にともなつておこつた心筋衰弱 1 例, 計 95 例について, 治療前と, これに各種の治療を行い, 臨床的に好転をみた時点において上記の観察をした。なお, テスト量の各種降圧剤, 降圧剤の・長期 使用, Noradrenaline, 脈管活性剤, 低酸素試験による心, ならびに, 末梢循環因子の変化を, それらの影響がもつともよく現れた時点において観察した。

IV. 実験成績

A. 心,ならびに、末梢循環力学的数値の尋常範 囲

健常者,ならびに、心・脈管が健全と思われる30 例について観察したところ、UFZ は 34~75 σ 、平 均 (63 ± 10.5) σ。DAZ は 13~63 σ, 平均 (38 ± 12.6) σ 。ASZ は 84~111 σ ,平均 (98 ± 7.5) σ 。 ATZ は 253~314 σ, 平均 (285 ± 17.7) σ。ATZ/ ASZ⁽²¹⁾2.4~3.6, 平均 (2.9 ± 0.3) であつた (表 1)。以上の成績と稲垣が発表した Wezler 法の尋 常値から、各数値の尋常域を以下のように定めた。 心拍量 "Schlagvolum" (Vs) は 50~90 cc, 分時送 血量 "Minutenvolum" (Vm) は 3.5~6.51/min, 全末梢抵抗 "Periphere Widerstand" (W) は 1200~1700 dyne cm⁻⁵, 容積弾性率 "Volumelatizitätskoeffizient (E') /t 1500~2200 dyne cm⁻⁵, UFZ 1 40~75 σ, DAZ 1 15~50 σ, ASZ 1 85~ 110 σ , ATZ it 255 \sim 310 σ , ATZ/ASZ it 2.4 \sim 3.6。以上の値は心拍数 Pulse Rate (PR) が50~ 80 のものであるが、PR が 49 以下、または、81 以 上の健常例 11 例では, UFZ 64 σ, DAZ 38 σ, ASZ 102 σ, ATZ 274 σ, ATZ/ASZ は 2.7 であった。

症例: M. S. 26 □ 健常例 (附図1)

心身,とくに,循環系にまつたく異常を認めない 当数室員の記録である。UFZ は 57 σ ,DAZ は 50 σ ,ASZ は 107 σ ,ATZ は 288 σ ,Vs は 67.9 cc, Vm は 4.5 l/min,W は 1618 dyne cm⁻⁵,E' は 1802 dyne cm⁻⁵,BP は 116/70 mm Hg,PR は 66 であつた。

Table 1. Normal Value

* .						Tai	ne i. i	vormai v	aiue			
v Ло.	Class of Age	Nam	ie .	Age	Sex	"UFZ" σ	"DAZ" σ	"ASZ"	"ATZ" · σ	"ATZ/ASZ"	BP.	PR
1	10~19	Ι.,	Α.	17		34	63	97	266	2.7	126/86	72
2		A. 1	Η.	22		61	44	105	295	2.8	120/59	74
3		Т. 1	K.	23	\bigcirc	74	21	95	303	3.2	100/59	77
4		Н. ′	Т.	24		72	19	91	262	2.8	128/78	75
5		M. I	Η.	26		57.	50	107	288	2.6	116/70	66
6	20	I.'	Τ.	26		71	13	84	304	3.6	111/50	62
7	, ₹	Н. ′	T.	26	\bigcirc	64	28	92	299	3.2	103/58	66
8	29	S.	S.	27		42	47	89	253	2.8	141/67	70
9		K.]	D.	27		64	43	107	268	2.5	110/68	75
10		N. `	Υ.	28		60	38	98	292	2.9	119/58	63
11		H. I	M.	28		53	32	85	290	3.4	120/62	65
12		K. '	Υ.	29		51	44	95	291	3.0	114/62	66
13		Т.	Υ.	30		62	40	102	285	2.7	128/73	69
14		, Т. ′	Т.	30		65	40	106	283	2.6	100/63	64
15	30	N. 3	K.	32		64	44	108	287	2.6	121/69	55
16	. }	K. 3	K.	32		44	44	. 88	266	3.0	- 134/76	61
17	39	K. '	\mathbf{T} .	32		67	30	97	256	2.6	146/79	71
18		Ι. Ι	Η.	34		75	27	102	303	2.9	111/63	60
19		Ι.	E.	34	0 -	72	23	95	283	2.9	130/68	77
20		T. 3	Н.	44		72	22	94	306	3.2	120/70	65
21		Ο.	U.	46		70	27	97	272	2.8	111/73	65
22	40	K. '	Т.	46		63	43	106	291	2.7	140/72	65
23	· {	Υ.	S.	46	\circ	56	48	104	310	2.9	107/58	66
24	49	H. 1	K.	48		61	37	99	256	2.5	137/88	79
25		Η.	Т.	48	\circ	75	15	90	280	3.1	102/54	60
26		O. 3	K.	49		61	49	111	275	2.4	121/70	65
27	50	N. 3	Κ.	51		57	48	106	269	2.5	131/89	65
28	٠,	Κ.	R.	52		46	50	96	275	2.8	118/88	58
29	59	W.	Т.	52		61	42	103	314	3.0	102/60	63
30	60~69	M.	s.	63		62	41	103	300	2.9	130/73	. 57
	Av	erage	e:	UF2	Ζ 61 σ	DAZ	37 σ	A SZ 9 8 σ	ATZ	284 σ AT	Z/ASZ 2.9	

B. 弁膜症における心, ならびに, 末梢脈管力学 的数値

表2aは、代償不全におちいつている僧帽弁膜症4例の心・末梢脈管力学的数値を示す。1例の僧帽弁口狭窄症(Ms)では、UFZ、ならびに、ASZの延長と、ATZの短縮を見た。他の3例の僧帽弁口狭窄・閉鎖不全症では、UFZの延長が1例、DAZの延長が2例あり、ASZは全例で延長していた。ATZの短縮は1例、ATZ/ASZの減少は2例に見られた。連合弁切開術 Commissurotomy (詳細は協研者木下(15)が述べる)をうけた Ms、ジギタリス

化された僧帽弁口狭窄・閉鎖不全症が、代償を回復すると、延長していた ASZ は短縮して尋常化し、短縮していた ATZ も尋常化する。ATZ/ASZ も増して尋常に近づく。

症例: S. K. 22 (附図2)

臨床診断 僧帽弁口狭窄症

主訴は、体動時のどうきと息ぎれ。昭和30年11月ごろから、徐々に、上記症状が現れた。その後、さらに、せき・たんが加わるようになつた。昭和31年5月にかぜをひき、そのさい、息ぎれがひどく、起坐呼吸を営むほどとなつた。しかし、これは、か

No.	Name	Age	Sex	Diagnosis	Compensation .	UFZ σ	DAZ σ	σ	$rac{ATZ}{\sigma}$	ATZ/ASZ	Vs cc	Vm l/min	W dyne cm ⁻⁵	$\mathrm{E'} \\ \mathrm{dyne} \\ \mathrm{cm}^{-5}$	BP. mm Hg	PR.	VP. mmH ₂ O
1	S. K.	22	0	Ms	Relative Decompensation	83	43	126	232	1.8	72.0	6.5	1098	1219	105/72	89.8	90
2	K. Y.	31		Msi	Decompensation	70	54	124	296	2.4	66.0	3.7	2050	1855	117/71	55.5	95
3	S. T.	15		Msi	Relative Decompensation	93	24	117	267	2.3	62.7	4.3	1453	1612	98/60	69.2	110
. 4	К. Ү.	23	0	Mis	Decompensation	57	59	116	214	1.8	68.5	6.5	1085	1559	108/68	103.4	185

Table 2b. After Treatment

No.	Name .	Age	Sex	Diag- nosis	Treatment	Compensation	$_{\sigma}^{\mathrm{UFZ}}$	DAZ	ASZ σ	ATZ σ	ATZ/ASZ	Vs cc	Vm 1/min	$egin{array}{c} W \ dyne \ cm^{-5} \end{array}$	E' dyne cm ⁻⁵	BP. mm Hg	PR.	$rac{ ext{VP.}}{ ext{mm}}$
1	S.K.	22	0	Ms	Digicorin Fraction	Relative Decompensation	99	24	123	247	2,0	57.2	4.7	1463	1487	102/70	81.9	170
				1120	"fort" 3 tab. pro. die, then commissurotomy	Relative Compensation	63	50	113	261	2.3	47.5	4.1	1766	2127	110/72	86.6	-
2	К. Ү.	31	П	Msi	- <u></u>	Relative Compensation	72	38	110	286	2.6	71.4	4.6	1668	1713	120/74	65.0	85
		0.		1,201	Cedilanid 0.4 mg i. v. pro die	Compensation	46	59	105	278	2.7	71.4	4.2	1653	1937	112/60	58.1	70
3	S. T.	15		Msi	Digicorin Fraction "forte" 4 tab. pro die	Relative Compensation	87	16	103	250	2.4	64.1	5.9	1069	1453	97/62	85.3	125
4	К. Ү.	23		Mis	Pulv.'folia digitalis Takeda A 0.15 g pro die	Relative Decompensation	79	19	98	214	2.2	78.6	7.9	830	1657	107/58	100.8	180

ぜがなおるとともにおさまつた。同年7月入院。10月9日にカテーテルを実施し、僧帽弁口面積はGorlin 法で $0.67~\rm cm^2$ であつた。 図は昭和32年1月31日、すなわち、Commissurotomy 実施の前日に記録したもので、UFZ は $83~\sigma$ 、DAZ は $43~\sigma$ 、ASZ は $126~\sigma$ 、ATZ は $232~\sigma$ 、Vs は $72~\rm cc$ 、Vm は $6.5~\rm l/min$ 、W は $1098~\rm dyne~cm^{-5}$ 、ATZ/ASZ は 1.8、BP は $105/89.8~\rm mm$ Hg。PR は $89.8~\rm cb$ つた。

症例: K. Y. 31 □ (附図3)

臨床診断 僧帽弁口狭窄閉鎖不全症

主訴は、歩行時、および、夜間の息ぎれ。筋肉ロイマに罹患した己往歴がある。入院のやく 1 年前から上記症状が現れた。入院 1 カ月前、かぜをひき、症状が増悪して入院。入院時、心は左右にいちじるしく拡大、心尖で前収縮期、ならびに、拡張期雑音をきいた。肺の理学的所見は 尋常、 肺活量は 2600 cc であった。 静脈圧(左正中静脈)は 110 mm H_2O ,肝は 2 横指に触れた。脛骨稜には浮腫があった。図は入院当日の記録で、UFZ は 70 σ ,DAZ は 54 σ ,ASZ は 124 σ ,ATZ は 296 σ ,ATZ/ASZ は 2.4 τ ,Vs は 66 cc,Vm は 3.7 1/min,W は 2050 dyne cm⁻⁵,E' は 1855 dyne cm⁻⁵,BP は 117/71,PR は 55.5 であつた。

表3aに示すように、ほとんど、代償を保つてい る大動脈弁膜症の No. 2 では, UFZ は 延長し, DAZ は負性, ASZ は高度に短縮, ATZ は高度に延 長, ATZ/ASZ は増している。他の2例にはかるい 代償不全が起つていたが、大動脈弁閉鎖不全症(Ai) の No. 1 では、DAZ と ASZ が短縮して いるほか には、心力学的数値に著変がない。これらに Digitalis 剤を用いると、代償の回復とともに、UFZは 延び、DAZ は零に近づき、ASZ の短縮していた No. 1 と 2 では増加の傾向, No. 3 は尋常値のま \ 不変, ATZ は不変か, やゝ増加の傾向, ATZ/ASZ も尋常化の傾向をとる。なお、僧帽弁膜症4例で は、末梢脈管力学数値が、すべて、有意の変化を示 さなかつた。大動脈弁膜症では、拍出量の増大と, W, ならびに、E'の減少を2例に見た。No.3で は、E'の増加と、拍出量の減少が見られた。これら の弁膜症, ならびに, 以下で述べる諸疾患におい て, 不正拍を呈する場合については, 協研者木下の 論文(15)(16)を参照。

症例: U. M. 20 □ (附図4) 臨床診断 大動脈弁閉鎖不全狭窄症

VP . mm H_2O	180	110	85		VP. mm	H_2O	110	100	150
			0		PR.		73.2	68.5	58.6
PR	101.7	83.6	80.0		BP.	mm Hg	,		
BP. mm Hg	171/42	111/53	117/57		1		1037 152/44	1057 163/45.5	1936 128/60
E' dyne cm ⁻⁵ n	1163 1	981 1	3302 1		$^{ m Vm}$ $^{ m W}$ $^{ m E'}$	cm ⁻	103	i	193
	283 11				W	cm_	383	411	5.4 1417
${ m W} \\ { m dyne} \\ { m n} \\ { m cm}^{-5}$		497	1633		Vm	1/min	20.4	20.3	5.4
Vm c	29.9	13.4	4.3		Vs	ပ္ပ	278.9	295.8 20.3	92.1
Vs	294.9	157.2	48.3		ASZ				 #
ASZ	7	4	2.8		ATZ/	ď	3.2	11.5	3.4
ATZ/ASZ	3.7	16.4	2	ıtion	ATZ	Q	287	357	309
ATZ o	286	346	277	After Medication	UFZ DAZ ASZ ATZ ATZIASZ	Q	68	31	92
ASZ o	78	21	86	\fter]	DAZ	Q	9	-47	31
$\frac{\mathrm{DAZ}}{\sigma}$	11	- 54	09	7	UFZ	0	83	28	61
UFZ	. 29	75	38	Table 3b.	tion		tion	tion	tion
				Tab	Compensation	•	Compensation	compensation	compensation
		satio			Con				
Compensation	ion	Relative Decompensation	ion				Cedilanid 0.4 mg i. v. pro die, Choline Theophyllinate 200 mg i. v. pro die	2 U.M. 20 \square Ais "forte" 0.05 g pro die	3 H. H. 66 \square Ais "forte" folia digitalis "forte" 0.12 g pro die
mper	Decompensation	Dece	Decompensation		ment		mg i. The	di g p	di g p
ŭ	comp	lative	comp		Treatment		holine holine 200 mg	folia 0.0	folia 0.12
	De	Re	De				edilar ie, Cl nate 2	ulv. forte'	ulv. forte'
Diag- nosis	Ai	Ais	Ais		iag-	osis	Ai d	Ais	Ais P
Sex					ex D	Ħ	, 	7	7
Age	54	20	99		Age S)	54	20	99
lame.	1 M. Y. 54	U. M. 20	H. H. 66		No. Name Age Sex Diag-	. •	1 M. Y. 54 \square Ai	J. M.	I. H.
No. Name Age Sex Diag-	1 N	2	3 1		No. N		1 7	2 [3 F

主訴はどうきと息ぎれ。生来、健康であつたが、 昭和29年2月ごろから、中等度の作業でどうきが 現れるようになつた。ときに、胸部から頭にかけ て、しめつけられるような痛みが起ることもあつた が、そのま 4 働いていた。昭和30年3月ごろより 上記症状が増強し入院。脈拍は緊張が強く、速い。 心尖拍動は第6肋間で左前腋窩線, 擡起性で, か つ、広範にふれる。心濁音界は左が前腋窩線まで拡 大。心失,ならびに,第4肋間胸骨左縁で,縮期,お よび、弛期性雑音がきかれる。その最強点は大動脈 弁口聴取部である。第2大動脈音はいちじるしく亢 進している。肺は理学的に異常所見を認めないが、 肝は1横指半に腫脹している。血清梅毒反応は陰 性。UFZ は 78 σ , DAZ は -47σ , ASZ は 31 σ , ATZ t\$ 357 σ , Vs t\$ 296 cc, Vm t\$ 20.3 1/min, W 12 411 dyne cm⁻⁵, E' 12 1057 dyne cm⁻⁵, BP は 163/45.5 mm Hg (Sanborn のマフメーター使 用), PR は 68.5, ATZ/ASZ は 11.5, VP は 100 $mm H_2O$ であった。

(小括) 軽い代償不全を呈する Ms では、ASZ がわずかに延長、ATZ はや 知知病、それゆえ、ATZ /ASZ はや 小さくなつていたが、代償の回復とともに、これらいずれもが尋常化した。軽い代償不全状態にある、Ms に Mi の加わつた 2 例では、ASZ がわずかに延長し、ATZ は尋常、ATZ/ASZ は尋常域の下界にあつたが、代償の回復する につれ、

ASZ は尋常化した。Mi の度がより大きい弁僧帽膜 症は、ASZ の延長、ATZ の短縮を示し、この例は 治療にたいして不応であつた。たゞし、心力学で は、ASZ の尋常化を見た。軽い代償不全のある大 動脈弁膜症の2例では、ASZ が短縮、ATZ は延長、 ないし、不変であつた。以上は、いずれも、Blumberger (4)(3)(6)の述べたところに一致する。しかし, いちじるしい代償不全を呈していた1例の大動脈弁 膜症では、見かけ上、心、ならびに、末梢脈管力学 的数値ともに、すべて尋常値を示していた。Digitalis 剤を用いて代償の回復した Ai, または, Ai の 度がより大きい大動脈弁膜症では、UFZ が延び、 DAZ の絶対値は小さくなり, 短縮していた ASZ は 延びる。また、不変、ないし、延長していた ATZ は、ほとんど変化せず、ATZ/ASZ は尋常値に近づ く。

C. 諸種の高血圧症における心、ならびに、末梢 循環力学的数値の検討

1. 本態性高血圧症

(1) Keith-Wagener の分類による場合

眼底変化だけを考慮した K-W の分類にしたがい (Keith-Wagener-Barker の分類ではない $^{(23)}$), 各級別に本態性高血圧症を検討すると,KW I, ならびに,KW I \sim II 型 $(14\,\text{例})$ では,UFZ の延長が2 例,DAZ は6 例で延長,他は尋常。ASZ は5 例で延長,ATZ は8 例で延長,1 例で短縮してい

Table 4. Essential Hypertension (K. W. I, I~II)

No.	Name	Α	ge (Sex	(W.B.)	$_{\sigma}^{\mathrm{UFZ}}$	DAZ σ	$\operatorname{ASZ}_{\sigma}$		ATZ/AŠZ	Vs cc	Vm 1/min	W dyne cm ⁻⁵	${\rm E'} \over {\rm dyne} \over {\rm cm}^{-5}$	BP.		Pm. mm Hg
1	A. A	. 4	24	<u> </u>	W + E	2′ 40	46	86	218	2.5	52.8				192/102		
2	N. S	:	30		W + E	50	62	102	310	3.0	76.2	4.3	2084	2305	146/80	56.8	113
3	S.S	. ;	32		M	77	53	130	324	2.4	128.1	7.6	1755	2014	216/119	59.6	168
4	Н. Т	. ;	34		W + E	C' 61	30	91	315	3.5	49.5	3.5	2699	3115	149/91	71.7	120
5	Y. S	. 4	46	\circ	Ε'	64	43	107	292	2.7	79.4	5.1	1635	2278	140/72	65.1	106
6	I.W	. '	48		W + E	' 60	36	96	336	3.5	72.7	4.0	2759	2774	177/101	55.2	139
7	A. R	. !	53		E'	61	64	125	227	1.8	69.0	4.9	1869	3084	156/76	71.7	116
8	К. Т	. !	57		\mathbf{M}	66	55	121	318	2.6	105.3	5.5	1949	2130	172/95	52.0	134
1	Y. S	. :	36	0	W + E	2′ 94	70	164	280	1.7	70.8	4.4	2409	3155	176/92	62.7	134
2	S.R	. '	43		W + E	69	26	95	314	3.5	61.3	3.9	2001	2821	131/66	64.1	. 99
3	O. K		46		W + E	c' 69	63	132	261	1.9	81.2	4.6	2837	2456	202/127	57.1	165
4	Т. А	. 4	49		W + E	73	31	104	315	3.0	76.4	4.0	2467	2859	165/83	52.6	124
5	Y. H	. !	50	\circ	W + E	73	32	105	315	3.0	75.4	4.7	2217	2222	162/99	62.5	131
6	О. Т		54		M	56	37	93	307	3.3	112.3	6.5	1690	2084	182/94	58.0	138

Pm: Mean Arterial Blood Pressure PR: Pulse Rate per Minute

E': Total Vascular Elastic Resistance Dyne cm⁻⁵

Table 5. Essential Hypertension (K. W. II)

No.	Name	Age		Diag- nosis (W.B.)	$\overline{\mathrm{UFZ}}$	DAZ	ASZ σ	ATZ	ATZ/ASZ	, Vs cc	Vm 1/min	W dyne cm ⁻⁵	E' dyne cm ⁻⁵	BP. mmHg	PR.	Pm. mm Hg
1	N. Y.	38		W + E'	59	57	116	262	2.2	49.0	3.4	2927	2495	150/104	70.7	127
2	M. H.	40		W + E'	67	51	117	326	2.7	70.0	3.3	3163	2882	170/94	47.5	132
3	M. K.	41		W + M	66	82	148	319	2.1	111.1	5.9	2317	1914	200/120	49.5	160
4	T. S.	43		\mathbf{w}	73	60	133	305	2.3	98.4	5.5	2134	2135	189/110	56.6	149
5	N. T.	43		\mathbf{M}	63	30	93	296	3.1	106.8	6.5	1542	1718	161/92	61.5	127
. 6	S. M.	45		W + E'	35	. 87	122	216	1.8	52.9	3.9	2590	2490	152/98	72.8	125
7	Н. Т.	48		M + E'	64	43	107	297	2.8	113.9	8.2	1288	2381	184/82	72.3	133
8	Y. T.	54		W + E'	60	43	103	241	2.3	70.0	6.3	1949	4921	220/90	90.3	155
. 9	I.I.	55		W + E'	74	61	135	246	1.8	44.0	3.1	3188	3989	158/92	71.0	125
10	A. H.	60		W + E'	75	53	128	278	2.1	73.0	5.0	2080	2802	171/94	69.6	132
11	I.N.	60		\mathbf{M}	68	44	112	336	3.0	151.5	9.5	1210	1966	200/88	62.7	144
12	T. T.	60	\circ	W + E'	85	58	143	284	1.9	65.5	4.6	2650	3450	195/110	70.3	153
13	A. T.	60		M + E'	68	41	109	340	3.1	140.8	8.8	1915	2493	276/144	62.2	210
14	W.K.	61		M + E'	73	70	143	323	2.2	109.3	6.1	1916	2310	195/97	56.3	146
15	S. N.	62		W + E'	77	53	130	326	2.4	60.5	3.2	3536	3295	184/109	54.4	147
16	O. T.	62	\circ	M	68	26	94	331	3.5	111.5	7.2	1381	2169	172/81	65.2	126
17	N.R.	63		E'+W	65	71	136	316	2.3	82.0	5.1	1980	3145	177/80	62.8	128
18	K. I.	64		W + E'	64	71	135	280	2.1	52.6	3.5	2919	4294	172/87	67.0	129
19	O. M.	67		W + E' + M	85	46	131	330	2.5	107.7	5.4	2277	2641	210/103	50.7	157
20	S. T.	68	0	E'	48	7 5	123	281	2.3	86.0	6.2	1675	2657	175/89	73.0	132
21	S. T.	69		W + E'	43	47	90	305	3.3	70.8	4.9	2760	3377	214/124	69.0	169

Table 6. Essential Hypertension (K. W. II~III, III, III~IV)

							• •		-							
·	ame	ge	X	Wezler	UFZ	DAZ	ASZ	ATZ	ATZ/ASZ	۷s	Vm	W dyne	E' dyne	BP.		Pm. mm
$^{\circ}$	Za	Ag	Se	1,02101	σ	σ	σ	σ		сс	1/mln	cm^{-5}	cm^{-5}	mmHg		Hg
1	K.G.	44		M+W+E'	82	13	95	304	3.2	93.3	6.3	1842	2507	191/103	68.3	147
2	T.M.	47	\circ	W + E'	82	51	133	307	2.3	77.1	4.9	2866	3726	230/122	63.5	176
3	S.H.	53		M+W	75	85	160	278	1.7	100.2	5.0	1826	1434	144/90	50.8	117
1	S.G.	19		M	65	39	104	283	2.7	164.7	11.1	862	1436	157/68	67.3	113
2	H.T.	38		W + E'	76	59	135	265	2.0	60.6	3.4	3961	2986	203/135	56.1	169
3	S.M.	53		W+E'	73	46	119	329	2.7	78.0	3.8	3052	2727	186/106	48.9	146
4	N.A.	58		W+E'	27	100	127	272	2.2	78.6	5.0	2631	2807	208/125	64.0	166
5	H.Y.	74		$W+E^{\prime}$	94	36	130	295	2.3	71.7	3.5	2756	3117	163/79	48.9	121
1	K.K.	54	0	M+W+E' Malignant Hyperten- sion	76	42	118	283	2.4	105.6	6.4	2394	2846	251/138	61.2	195

た。なお、これらの例を Wezler 法で分類すると (以下いずれも2数挿入法を採用), M 型3 例, W 型 6 例, E' 型7 例となつた。21 例の KW II 型の群で は、UFZ の延長が4 例,短縮が1 例。DAZ の延長 が13 例,残りの8 例は尋常。ASZ の延長が15 例, 残りの6 例は尋常。ATZ は延長9 例,短縮3 例,尋 常9 例である。M 型9 例, W 型16 例, E' 型16 で あつた。KW $\Pi \sim \Pi$ 型以上の 9 例の 5 ち,UFZ の延長が 6 例,短縮が 1 例,尋常の 4 のが 2 例。DAZ の延長が 4 例,短縮が 1 例,尋常の 4 のが 4 例。ASZ の延長が 7 例,尋常の 4 のが 2 例。ATZ の延長が 1 例,尋常の 4 のが 2 例。ATZ の延長が 1 例,尋常の 4 のが 4 例であった。なお,M 型は 4 例,W 型は 4 例,E' 型は 5 例であった。

					Table	e 7.	Esse	ential	Hyp	ertension,	W T	ype (V	V. B.)			
No.	Nam	ie .	Age	Sex	KW	$\frac{\mathrm{UFZ}}{\sigma}$	DAZ σ	ASZ σ	ATZ	ATZ/ASZ	Vs	Vm 1/min	W dyne	E' dyne cm ⁻⁵	BP. mmHg	PR.
	H. '	—	34	<u>·</u>	I	61	30	91	315	3.5	49.5	3.5	2699	3115	149/91	71.7
2	I. V				1	60	36	96	336	3.5	72.7	4.0	2757	2779	149/91 $177/101$	55.2
3				Û	I ~Ⅱ		70	164	280	1.7	70.8	4.4	2409	3155	176/92	62.7
4	0. I				I ~∏		63	132	261	1.9	81.2	4.6	2837	2456	202/127	57.1
5	T				I ~ II		31	104	315	3.0	76.4	4.0	2467	2859	165/83	52.6
6	Y. 1				I~II		32	105	315	3.0	75.4	4.7	2217	2222	162/99	62.5
7	N.				п	59	57	116	262	2.2	49.0	3.4	2927	2495	150/104	70.7
8	M. 1				\mathbf{I}	67	51	117	326	2.7	70.1	3.3	3163	2882	170/94	47.5
9	Т.			0	П	73	60	133	305	2.3	98.4	5.5	2134	2135	189/110	65.6
10	S. I				Π	35	87	122	216	1.8	52.9	3.9	2590	2490	152/98	72.8
11	Ι.				Π.	74	61	135	246	1.8	44.0	3.1	3188	3989	158/92	71.0
12	A. 1	Η.	60		Π	75	53	128	278	2.1	73.0	5.0	2080	2802	171/94	69.6
13	Т.	Τ.	60	\circ	Π	85	58 ⁻	143	284	1.9	65.5	4.6	2650	3450	195/110	70.3
14	S. 3	N.	62		Π	77	53	130	326	2.4	60.5	3.2	3536	3295	184/109	54.4
15	K.	Ι.	64		П	64	71	135	280	2.1	52.6	3.5	2919	4294	172/87	67.0
16	O. I	M.	67		Π	85	46	131	330	2.5	107.7	5.4	2277	2641	210/103	50.7
17	S.	Τ.	69.		Π	43	47	90	305	3.3	70.8	4.9	2760	3377	214/124	69.0
18	Т. І	M.	47	\bigcirc	∏~™	82	51	133	307	2.3	77.1	4.9	2866	3726	230/122	63.5
19	H. '	Τ.	38		\mathbf{III}	76	59	135	265	2.0	60.6	3.4	3961	2986	203/135	56.1
20	S. I	M.	53		Ш	73	46	119	329	2.7	78.0	3.8	3052	2727	186/106	48.9
21	N	Α.	58		Ш	27	100	127	272	2.2	78.6	5.0	2631	2807	208/125	64.0
22	Η.	Υ.	74		Ш	94	36	130	295	2.3	71.7	3.5	2756	3117	163/79	48.9
23	K. 1	K.	54	\bigcirc	III~IV	76	42	118	283	2.4	105.6	6.4	2394	2846	261/138	61.2
24	K. '	Τ.	52		×	74	46	120	238	1.9	47.4	3.5	3021	2864	156/105	72.9
. 25	W. 1	Η.	59		×	76	38	114	260	2.3	72.2	5.1	2104	2504	170/102	71.4
				×:	_		_			ation could						
-				- in the second	Table	8.	Esse	ential	Нур	ertension,	M '	Гуре (Adam'e and a desired	
No.	Nan	ne .	Age	Sex	KW	$_{\sigma}^{\mathrm{UF}Z}$	DAZ	σ	ATZ	ATZ/ASZ	Vs cc	Vm 1/min	W dyne cm ⁻⁵	E' dyne cm ⁻⁵	BP. mm Hg	PR.
1	S.	S.	32		I	77	53	130	324	2.4	128.1	7.6	1755	2014	216/119	59.6
	O. '				I~II		37	93	307	3.3	112.3	6.5	1690	2084	182/94	58.0
3					п	63	30	93	296	3.1	106.8	6.5	1542	1718	161/92	61.5
4					П	64	43	107	297	2.8	113.9	8.2	1288	2381	184/82	72.8
5	Α. '				\mathbf{II}	68	41	109	340	3.1	140.8	8.8	1915	2493	276/144	62.2
6	I. 3	N.	60		Π	68	44	112	336		151.5		1210	1966	200/88	62.7
7	W . 3	K.	61		$\mathbf{\Pi}$	73	70	143	323		109.3	6.1	1916	2310	195/97	56.3
8	Ο. ΄	Т.	62		Π	68	26	94	331		111.5	7.2	1381	2169	172/81	65.2
9	Κ. (G.	44		Ⅱ~ Ⅲ	82	13	95	304	3.2	93.3	6.3	1842	2507	191/103	68.3
10	S. I	Η.	53		Ⅱ~Ⅲ	75	85	160	278	1.7	100.2	5.0	1826	1434	144/90	50.8
11	S. (G.	19		ш	65	39	104	283	2.7	164.7	11.1	862	1436	157/68	67.3
12	K. 3	K.	54	0	111~1V	76	42	118	283	2.4	105.6	6.4	2394	2846	251/138	61.2
13	Ι. Ι	K.	50		×	78	29	107	313	2.9	105.6	5.7	1671	1813	156/84	54.2
14	O. 1	K.	50		×	57	42	99	259	2.5	102.0	8.7	1439	2218	183/100	84.9

16 Z. K. 62 □ × 59 21 x: Ophthalmoscopic examination could not be performed.

80 290

1.9 127.3

3.6

6.9 1706 1796 192/106 54.7

87.1 6.6 1918 2989 208/110 75.8

15 W. T. 54 \bigcirc \times 83 59 142 275

Table 9. Essential Hypertension, E' Type (W. B.)

									<i>J</i> 1	,						
No.	Name	е.	Age	Sex	ĸw	$\overline{\mathrm{UF}Z}$	${\displaystyle egin{array}{c} { m DAZ} \ \sigma \end{array}}$	\mathop{ASZ}_{σ}	ATZ	ATZ/ASZ	Vs cc	Vm I/min	W dyne cm ⁻⁵	E' dyne cm ⁻⁵	BP.	PR.
1	A. A	١.	24	0	ı.	40	46	86	218	2,5	52.8	6.0	1947	4532	192/102	114
2	Н. Т	٦.	34		1.	61	30	91	315	3.5	49.5	3.5	2699	3115	149/91	71.7
3	I.W	7.	48		I	60	36	96	336	3.5	72.7	4.0	2757	2779	177/101	55.2
4	A. R	₹.	53		I	61	64	125	227	1.8	69.0	4.9	1868	3084	156/76	71.7
5	Y. S	.	36		I~Ⅱ	94	70	164	280	1.7	70.8	4.4	2409	3155	176/92	62.7
6	S. R	₹.	43		I~II	69	26	95	314	3.5	61.3	3.9	2001	2821	131/66	64.1
7	T. A	١.	49		I~Π.	73	31	104	315	3.0	76.4	4.0	2467	2859	165/83	52.6
. 8	M. H	I.	40		П.	67	51	117	326	2.7	70.1	3.3	3163	2882	170/94	47.5
9	Y. 1	٦.	54		Π	60	43	103	241	2.3	82.0	5.1	1980	3145	177/80	62.8
10	Ι. Ι	[.	55	\Box	$\mathbf{n}.$	74	61	135	264	1.8	44.0	3.1	3188	3989	158/92	71.0
11	A. F	ł.	60		Π .	75	53	128	278	2.1	73.0	5.0	2080	2802	171/94	69.6
12	т. Т	۲.	60	0	Π .	85	58	143	284	1.9	65.5	5.6	2650	3450	195/110	70.3
13	S. N	J.	62		П.	77	53	130	326	2.4	60.5	3.2	3536	3295	184/109	54.4
14	N. B	₹.	63	\circ	Π	65	71	136	316	2.3	82.0	5.1	1980	3145	177/80	62.8
15	K. I	[.	64		$\Pi_{\bullet \circ}$	64	71	135	280	2.1	52.6	3.5	2919	4294	172/87	67.0
16	O. M	1.	67		п.	85	46	131	330	2.5	107.7	5.4	2277	2641	210/103	50.7
17	S. 7	۲.	68		П	48	75	123	281	2.3	86.0	6.2	1675	2657	175/89	65.2
18	S. I	Γ.	69		п.	43	47	90	305	3.3	70.8	4.9	2760	3377	214/124	69.0
19	K. 6	ì.	44		∏~™	82	13	95	304	3.2	93.3	6.3	1842	2507	191/103	68.3
20	T. N	1.	47	\circ	п~ш•	82	51	133	307	2.3	77.1	4.9	2866	3726	230/122	63.5
21	Н. Т	Γ.	38		III.	76	59	135	265	2.0	60.6	3.4	3961	2986	203/135	56.1
22	S. M	1.	53		Ш.	73	46	119	329	2.7	78.0	3.8	3052	2727	186/106	48.9
23	N. A	١.	58		Ш.	27	100	127	272	2.2	78.6	5.0	2631	2807	208/125	64.0
24	H. Y	ζ.	74		III.	94	36	130	295	2.3	71.7	3.5	2756	3117	163/79	48.9
25	K. K	ζ.	54	0	m~w.	° 76	42	118	283	2.4	105.6	6.4	2394	2846	251/138	61.2
26	К. Т	۲.	52		\times^{ullet}	74	46	120	238	1.9	47.4	3.5	3021	2864	156/105	72.9
27	W. F	I.	59		\times^{\bullet}	76	38	114	260	2.3	72.2	5.1	2104	2504	170/102	71.4
28	Z. K	۲.	62		×°	59	21	80	290	3.6	87.1	6.6	1918	2989	208/110	75.8
						• w	ith "	W" t	ype	° with	"M"	type				

(2) Wezler 法による場合

本態性高血圧症 50 例を末梢脈管力学分析法で、M, W, E'型にわけ、2 数挿入法を採用して検討した。W型 (2000 dyne cm⁻⁵以上のものをとつた) 25 例 (表 7) では、UFZ の延長を 10 例に見た。そして、KW I ~II 型以下では 2/6 に、KW II 型では 4/11 に、KW II ~III 型以上では 5/8 に見た。 UFZ の短縮が 2 例。DAZ の延長が 14 例で、KW I ~II 型では 2/6 に、II 型では 9/11 に、II~III 型以上では 3/8 に見た。ASZ の延長は 20 例。KW I~II型では 2/6、II 型では 10/11、KW II~III型以上では 全例に見、残りの 5 例は尋常値を示した。ATZ の延長は 8 例,短縮は 3 例。尋常値以下の ATZ/ASZを示すものは 15 例,残りは尋常。Vs の尋常値以下のものが 4 例,尋常値以上のものが 3 例。E' は 1 例

を除いて、みな高値であつた。 M型 (Vs が 90 cc 以上、または、Vm が 6.5 1/min 以上) 16 例 (表 8) では、UFZ の延長が 5 例、残りの 11 例 は 尋常。 DAZ の延長したものが 4 例、短縮が 1 例。ASZ の延長が 6 例,短縮が 1 例。ATZ の延長が 6 例,短縮的 1 例。ATZ の延長が 6 例,短縮的 1 例。ATZ の延長が 6 例,短縮的 1 例で、要常のものが多い。 DAZ の延長が 13 例,短縮が 1 例で、尋常のものが多い。 DAZ の延長が 13 例,短縮が 1 例。ASZ は 19 例で延長,KW I~II型以下では 2/7,KW II型では 9/11,II~III型以上では 8/10。ASZ の短縮は 1 例。ATZ は 9 例で延長,5 例で短縮。ATZ/ASZ は 15 例で小さかつた。Vs,Vm は 6 例で減少,2 例で増加しており,W の大きいものを 21 例に見た。

Table 10. Hypertensive Cardiac Disease

No.	Name	Age	Sex	ECG	Urine Pro- tein RBC	other complication	UFZ σ	DAZ σ	ASZ σ	ATZ σ	Vs cc	Vm 1/min	W dyne cm ⁻⁵	$^{\mathrm{E'}}_{\mathrm{dyne}}$	BP. mm Hg	PR.
1	т. S.	43	0	1-strain	(+) (-)		73	60	132	305	48.4	5.5	2134	2135	189/110	56.6
2	N. A.	58		1-hypert.	(-) (-)		27	100	126	272	78.6	5.0	2631	2807	208/125	64.0
3	S. S.	32		1-strain	(-)	<u></u>	77	53	130	324	128.1	7.6	1755	2014	216/119	59.6
4	N. T.	43		1-strain	(-) (-)	·	63	30	93	. 296	106.8	6.5	1542	1718	161/92	61.5
5	Н. Т.	48		1-strain	(-) (-)	<u> </u>	64	43	107	297	113.9	8.2	1288	2381	184/82	72.3
6	A. R.	53		1-strain	(-) (-)	· —	61	64	125	227	69.0	4.9	1869	3084	156/76	71.7
7	Н. Ÿ.	74		1-strain Myocardia Infarction	al (-) (-)		94	36	130	295	71.7	3.5	2756	3117	163/79	48.9
8	Т. Т.	60	\circ	1-strain	(+) (-)		85	58	143	284	65.5	4.6	2650	3450	195/110	70.3
9	I. I.	55		Myocardial damage	(-) (-)		74	61	135	246	44.0	3.1	3188	3989	158/92	71.0
10	W. T.	. 54	\circ	1-strain	(+) (-)	_	83	59	142	275	127.3	6.9	1706	1796	192/106	54.7
11	O. K.	46		1-strain	(-)	·	69	63	132	261	81.2	4.6	2837	2456	202/127	57.1
12	A. H.	60		1-hypert.	(+) (+)	_	75	53	128	278	73.0	5.0	2080	2802	171/94	69.6
13	к к	54	0	Myocardial Damage	(#) (#)	<u> </u>	76	42	118	283	105.6	6.4	2394	2846	251/138	61.2
14	S. M.	45		1-strain	(#) (#)		35	87	122	216	52.9	3.9	2590	2490	152/98	72.8
15	Н. Т.	38		Sagital Hypert.	(#) (#)	Subarachinoid. Bleeding	76	59	135	265	60.6	3.4	3961	2986	203/135	56.1
16	T. M.	47	0	1-strain	(+) (+)		82	51	133	307	77.1	4.9	2866	3726	230/122	63.5
17	A. K.	60		ECG examination	(#) (#)	<u> </u>	68	41	109	340	140.8	8.8	1915	2493	276/144	62.2
18	S. G.	19		could not be	(#) (#)	· <u>-</u> ·	65	39	104	283	164.7	11.1	862	1436	157/68	67.3
19	S. T.	68	0)	perfomed	(-) (-)	Hypertensive Encephalopathia	48	75	123	281	86.0	6.2	1675	2657	214/124	69.0

Hypert.: Hypertrophy

RBC: Erythrocyte

									J	able	11.		пу	per	tens	sive	Ca	iraiac	Dis	eas	е							•	
No.	Name	Age	Sex	A	bnorm ECG	al		ine tein	S	Abno	rm. ent	co	othe mpl tio	lica-	. 1	$_{\sigma}^{\mathrm{UFZ}}$		DAZ	AS		ATZ σ	V		Vm /min	W dyne cm		ne	BP. mm Hg	PR.
1	N. I.	38			(-)		(-	-)		(-)					59		57	11	6	262	49	.0	3.4	2927	249	 95	150/104	70.7
2	I . W.	48			(-)			-)		(-						60		36	9	6 -	336	72	.7	4.0	2759	277	'9	177/101	55.2
3	K. I.	64			(-)		(-	-)		(-						64		71	13	5	280	52	.6	3.5	2919	429	14	172/87	67.0
4	Т. А.	49			(-)		(-	–)		(-						73		31	10	4	315	76	.3	4.0	2467	285	9	165/83	52.6
5	S.R.	43			(-)		(-	-)		(-) .					69		26	9	5	314	61	.3	3.9	2001	282	1	131/66	64.1
6	Y. H.	50	\circ		(-)		(-	-)		(-)) .					73		32	10	5	315	75	.4	4.7	2217	222	2	162/99	62.5
7	K. T.	57			(-)		(-	-) '		()		_			66		55	12	1 -	318	105	.3	5.5	1949	213	0	172/95	52.0
8	М. Н.	40			(-)		(-	-)		(-))					67		51	11	8	326	70	.1	3.3	3163	288	32	170/94	47.5
9	M. K.	41	\circ		(-)		(-	-)		(_			66		82	14	8	319	111	.1	5.9	2317	191	4	200/120	49.5
10	K. G.	44			(-)		(-	-),		(-						82		13	9	5	304	93	.3	6.3	1842	250	7	191/103	68.3
11	O. M.	67			(-)	2	(-	-)		(-))					85		46	13	1	330	107	.7	5.4	2277	264	1	210/103	50.7
12	T. K.	62			(-)		(-	-)		(-)					59		21	. 8	0 .	290	87.	.2	6.6	1918	298	9.	208/110	75.8
13	O. K.	50			(-)		(-	-)		(-)					64		35	9	9	266	94	.4	7.7	1300	228	2	183/100	84.9
14	Ο· Т.	54			(-)	•	(-	-)		(-1))		_			56		37	9	3	307	112	.3	6.5	1690	208	4	182/94	58.0
15	S. T.	69			(-)		(-	-)		(-) '					43		47	9	1 .	305	70	.8	4.9	2760	336	7	214/124	69.0
16	Н. Т.	34			()		(-	-)		(-))		_		•	61		30	9	1	315	49	.5	3.5	2699	311	5	149/91	71.7
17	O. T.	62	\circ		(-)		(-	-)		(-))					68		26	9	4	331	111.	5	7.2	1381	216	9	172/81	65.2
18	N. S.	30			(-)		(-	-)		(-))					50		52	10	2	310	76.	2	4.3	2084	230	5	146/80	56.8
19	W. K.	61	. 🗆		(-)		(-	-)		(-) ,					73		70	14	3	323	109.	3	6.1	1916	231	0	195/97	56.3
161 ~ 180 mm Hg	短縮は 4 例。 心拍量の減少 は 4 例。 M 型は 3 例, W 型 は 7 回 F/ 担は 7 回たもし	この延	の延長は1例。DAZの延長は長は6例。ASZの延長は	12 例中,	12, 13, 14) (a) 縮期圧: 160 mm	木相脈官刀字的数値の比較検討(表	学的、ならびに、)血圧高によ	は12例, E/型は11例であった。	た。M型は9例,W	長が11例,他は尋常値を示す。心拍量の減少は3例	<i>b</i> ; 1	が1例。ASZの延長が7	延長が7例,	例で,短縮例	いものでは、UFZ の延長が	1、尿に異常所	8例, W型は11例, E/型は13例に見られた。ECG,	宿か3例。1		長が13例、短縮例はない。 ASZ の延長が15例、短縮	7例にあり。D.	た (表 10, 11)。 合併症の まろ難では TIF7 の 節 長	五	の、 それぞれ 19 例でしい た、心、なのので、 未指版	のある本態性高血圧症と, これらに異常所見のないも	ECG, および, 尿に所見	心、ならびに、末梢脈管力学的数値の検討	正性諸疾患 おいかんによ
			•										-														٠		

			Table	≥ 12 a	. Es	sential	Hyper	tension	Sp	: ~ 160)		•
No.	BP.	Name	Age	Sex	$_{\sigma}^{\mathrm{UF}Z}$	DAZ	σ	ATZ	Vs cc	Vm 1/min	W dyne cm ⁻⁵	E' dyne cm ⁻⁵	PR.
1	131/66	S. R.	43		69	26	95	314	61.3	3.9	2001	2821	64.1
. 2	131/00 $140/72$	Y. S.		<u>ا</u>	64	43	107	292	79.4	5.1	1635	2278	65.1
3	140/12 $144/90$	S. H.			75	85	160	278	100.2	5.0	1826	1434	50.8
4	146/80	N. S.			50	52	102	310	76.2	4.3	2084	2305	56.8
5	149/91	Н. Т.			61	30	91	315	49.5	3.5	2699	3115	71.7
6	150/104	N. Y.			59	57	116	262	49.0	3.4	2927	2495	70.7
7	152/98	S. M.			35	87	122	216	52.9	3.9	2590	2490	72.8
8	156/76	A. R.			61	64	125	227	69.0	4,9	1869	3084	71.7
9	156/84	I. K.			78	29	107	313	105.6	5.7	1671	1813	54.2
10	156/105	К. Т.	52		74	46	120	238	47.4	3.5	3021	2864	72.9
11	157/68	S. G.			65	39	104	283	164.7	11.1	862	1436	67.3
12	158/92	I. I.			74	61	135	246	44.0	3.1	3188	3989	71.0
12	136/ 92					ΟŢ	133	240				3909	71.0
	the same and the same		Table	12 b		A			S	p: 161			
No.	BP.	Name	Age	Sex	UFZ	DAZ	ASZ	ATZ	$\mathbf{V}\mathbf{s}$	Vm	W dyne	E' dyne	PR.
					σ	σ	σ	σ	сс	1/min		cm^{-5}	
1	161/92	N. T.	43		63	30	93	296	106.8	6.5	1542	1718	61.5
2	162/99	Y. H.	50	\circ	73	32	105	315	75.4	4.7	2217	2222	62.5
. 3	163/79	H. Y.	74		94	36	130	295	71.7	3.5	2756	3117	48.9
4	165/83	Т. А.	49		73	31	104	315	76.4	4.0	2467	2859	52.6
5	170/94	M. H.	40		67	51	117	326	70.1	3.3	3163	2882	47.5
6	170/102	W. H.	59		76	38	114	260	72.2	5.1	2104	2504	71.4
7	171/94	A. H.	60		75	53	128	278	73.0	5.0	2080	2802	69.6
8	172/95	К. Т.	57		66	55	121	318	105.3	5.5	1949	2130	52.0
9	172/87	K. I.	64		64	71	135	280	70.8	4.4	2409	3155	62.7
10	172/81	O. T.	62		68	26	94	331	111.5	7.2	1381	2169	65.2
11	175/89	S. T.	68	\circ	48	75	123	281	86.0	6.2	1675	2657	73.0
12	176/92	Y. S.	36	\circ	94	70	164	280	52.6	3.5	2919	4294	67.0
13	177/101	I. W.	48		60	36	96	336	72.7	4.0	2757	2779	55.2
14	177/80	N. R.	63	0	65	71	136	316	82.0	5.1	1980	3145	62.8
		Ta	ıble 1	.2 c.	Esse	ntial H	yperte	nsion	Sp:	181~2	00		
					UFZ	DAZ	ASZ	ATZ	Vs	Vm	W	Ε'	
No.	BP.	Name	Age	Sex.	σ	σ	σ	σ	cc	1/min	$ m dyne \ cm^{-5}$	dyne cm ⁻⁵	PR.
1	182/94	О. Т.		——————————————————————————————————————					112.3	6.5	1690	2084	58.0
2	182/94	O. I.	54 50		56 57	37	93 99	307 259	102.0	8.7	1439	2218	84.9
3	184/109	S. N.				42			60.5	3.2	3536	3295	54.4
3 4	184/82	э. N. Н. Т.	62		77	53	130	326	113.9	8.2	1288	2381	72.3
			48		64	43	107	297			3052	2727	48.9
5	186/106	S. M.	53		73	46	119	329	78.0	3.8			
6	189/110	T. S.	43	0	73	60	133	305	98.4	5.5	2134	2135	56.6
7	191/103	K. G.	44		82 .	13	95	304	93.3	6.3	1842	2507	68.7 54.7
-8	192/106	W. T.	54	0	83	59	142	275	127.3	6.9	1706	1796	54.7
9	192/102	A. A.	24	0	40	46	86	218	52.8	6.0	1947	4532 3450	114.0
10	195/110	Т. Т.	60	0	85	58	143	284	65.5	4.6	2650	3450	70.3
11	195/97	W. K.	61		73	70	143	323	109.3	6.1	1916	2310	56.3
12	200/88	I.N.	60		68	44	112	336	151.5	9.5	1210	1966	62.7
13	200/120	M. K.	41	\bigcirc	66	82	148	319	111.1	5.9	2317	1914	49.5

Table 12 d.

Sp: 201∼

No.	BP.	Name	Àge	Sex	UFZ	DAZ	ASZ	ATZ	Vs	Vm	W dvne	E' dyne	PR.
					σ	σ	σ	σ	cc	1/min	cm ⁻⁵	cm ⁻⁵	
1	202/127	O. K.	46		69	63	132	261	81.2	4.6	2837	2456	57.1
2,.	203/135	H. T.	38		76	59	135	265	60.6	3.4	3961	2986	56.1
3	208/110	G. K.	62		59	21	80	290	87.1	6.6	1918	2989	75.8
4	208/125	N. A.	58		27	100	127	272	78.6	5.0	2631	2807	64.0
5	210/103	O. M.	67		85	46	131	330	107.7	5.4	2277	2641	50.7
6	214/124	S. T.	69		43	47	90	305	70.8	4.9	2760	3377	69.0
7	216/119	S. S.	32		77	53	130	324	128.1	7.6	1755	2014	59.6
8	220/90	Y. T.	54		60	43	103	241	70.0	6.3	1949	4921	90.3
9	230/122	Т. М.	47		82	51	133	307	77.1	4.9	2866	3726	63.5
10	251/138	K. K.	54	0	76	42	118	283	105.6	6.4	2394	2846	61.2
11	276/144	А. Т.	60		68	41	109	340	140.8	8.8	1915	2493	62.2

Table 13 a.

Dp: ~90

									-				
No.	BP.	Name	Age	Sex	UFZ	DAZ	ASZ	ATZ	Vs	Vm	W dyne	E' dyne	PR.
					σ	σ	σ	σ	cc	1/min	cm^{-5}	cm^{-5}	
1	131/66	S. R.	43		69	26	95	314	61.3	3.9	2001	2821	64.1
2	157/68	S.G.	19		65	39	104	283	164.7	11.1	862	1436	67.3
3	140/72	Y. S.	46	0	64	43	107	292	79.4	5.1	1635	2278	65.1
4	156/76	A.R.	53		61	64	125	227	69.0	4.9	1869	3084	71.7
5	163/79	H. Y.	74		94 •	36	130	295	71.7	3.5	2756	3117	121.0
6	177/80	N. R.	63	0	65	71	136	316	82.0	5.1	1980	3145	62.8
7	146/80	N. S.	30		50	52	102	310	76.2	4.3	2084	2305	56.8
. 8	172/81	O. T.	62		68	26	94	331	111.5	7.2	1381	2169	65.2
9	184/82	Н. Т.	48		64	43	107	297	113.9	8.2	1288	2381	72.3
10	165/83	T. A.	49		73	31	104	315	76.4	4.0	2467	2859	52.6
11	156/84	I. K.	50		78	29	107	313	105.6	5.7	1671	1813	54.2
12	172/87	K. I.	64	. \square	64	71	135	280	52.6	3.5	2919	4294	67.0
13	200/88	I. N.	60		68	44	112	336	151.5	9.5	1210	1966	62.7
14	175/89	S. T.	45		35	87	122	216	52.9	3.9	2590	2490	72.8
15	144/90	S. H.	53		75	85	160	278	100.2	5.0	1826	1434	50.8
16	220/90	Y. T.	54		60	43	103	241	70.0	6.3	1949	4921	90.3

14 例中, UFZ の延長は 3 例。DAZ の延長は 7 例。ASZ の延長は 9 例。ATZ の延長は 7 例。心拍量の減少は 1 例。M型は 3 例。W型は 9 例。E′型は 10 例であつた。181~200 mm Hg の 13 例中,UFZ の延長は 4 例。DAZ の延長が 6 例,短縮が 1 例。ASZ は 8 例で延長。ATZ の延長は 5 例,短縮が 1 例。心拍量の減少は 1 例。M型は 9 例。W型は 5 例。E′型は 5 例であつた。縮期圧 200 mm Hg 以上の 11 例では,UFZ が 5 例で延長, 1 例で短縮。DAZ は 5 例で延長。ASZ は 7 例で延長, 1 例で短縮。ATZ は 3 例で延長,1 例で短縮。M型は 5 例。ATZ は 3 例で延長,1 例で短縮。M型は 5 例。W型は 7 例。E′型は 10 例であつた。

(b) 弛期圧: 90 mm Hg 以下の 15 例では, UFZ の延長は 2 例, 短縮が 1 例。DAZ の延長が 6 例。ASZ の延長が 7 例。ATZ の延長は 6 例, 短縮が 3 例。M 型が 6 例。W 型が 6 例。E′型は 8 例であった。弛期圧 91~110 mm Hg の 25 例では, UFZ が 6 例で延長, 短縮は 1 例。DAZ は 12 例で延長, 1 例で短縮。ASZ は 16 例で延長, 1 例で短縮。ATZ は 9 例で延長, 4 例で短縮。心拍量の減少は 6 例。M 型は 10 例。W 型は 16 例。E′型は 17 例であった。弛期圧が 111 mm Hg 以上の 9 例では, UFZ の延長は 4 例, 短縮は 1 例。DAZ の延長は 6 例。ASZ の延長は 7 例。ATZ の延長は 4 例, 短縮例は

Table 13 b.

Dp: 91~110

No.	BP.	Name	Age	Sex	$_{\sigma}^{\mathrm{UFZ}}$	$_{\sigma}^{\mathrm{DAZ}}$	$\operatorname{ASZ}_{\sigma}$	$ATZ \sigma$	Vs cc	Vm 1/min	W dyne cm ⁻⁵	${ m E'} \ { m dyne} \ { m cm}^{-5}$	PR.
1	149/91	Н. Т.	34	П	61	30	91	315	49.5	3.5	2699	3115	71.7
2	176/92	Y. S.			94	70	164	280	70.8	4.4	2409	3155	62.7
3	158/92	I. I.			74	61	135	246	44.0	3.1	3188	3989	71.0
4	161/92	N. T.	43		63	30	93	296	106.8	6.5	1542	1718	61.5
5	182/94	О. Т.	54		56	37	93	307	112.3	6.5	1690	2084	58.0
6	171/94	A. H.	60		75	53	128	278	73.0	5.0	2080	2802	69.6
7	170/94	M. H.	40		67	51	117	326	70.1	3.3	3163	2882	47.5
8	172/95	К. Т.	57		66	55	121	318	105.3	5.5	1949	2130	52.0
9	195/97	W. K.	61		73	70	143	323	109.3	6.1	1916	2310	56.3
10	152/98	S. M.	45		35	87	122	216	52.9	3.9	2590	2490	72.8
11	162/99	Y. H.	50	\circ	73	32	105	315	75.4	4.7	2217	2222	62.5
12	183/100	O. K.	50		57	42	99	259	102.0	8.7	1439	2218	84.9
13	177/101	I. W.	48		60	36	96	336	72.7	4.0	2757	2779	55.2
14	170/102	W. H.	59		76	38	114	260	72.2	5.1	2104	2504	71.4
15	192/102	A. A.	24	\circ	40	46	86	218	52.8	6.0	1947	4532	114.0
16	210/103	O. M.	67		85	46	131	330	107.4	5.4	2277	2641	50.7
17	191/103	K. G.	44		82	13	95	304	93.3	6.3	1842	2507	68.3
18	150/104	N. Y.	38		54	57	111	262	49.0	3.4	2927	2495	70.7
19	156/105	К. Т.	52		74	46	120	238	47.4	3.5	3021	2864	72.9
20	192/106	W. T.	54	\circ	83	59	142	275	127.3	6.9	1706	1796	54.7
21	186/106	S. M.	53		73	46	119	329	78.0	3.8	3052	2727	48.9
22	184/109	S. N.	62		77	53	130	326	60.5	3.2	3536	3295	54.4
23	208/110	G. K.	62		59	21	80	290	. 87.1	6.6	1918	2989	75.8
24	189/110	T. S.	43	\circ	73	60	133	305	98.4	5.5	2134	2135	56.6
25	195/110	Т. Т.	60	\circ	85	58	143	284	65.5	4.6	2650	3450	70.3

Table 13 c.

Dp: 111∼

No.	BP.	Name	Age	Sex	UFZ	DAZ	ASZ	ATZ	Vs	Vm	W dvne	E' done	PR.
					σ	σ	σ	σ	cc	1/min	cm ⁻⁵	cm ^{÷5}	
1	216/119	S. S.	32		77	53	130	324	128.1	7.6	1755	2014	59.6
2	200/120	M. K.	41	\circ	66	82	148	319	111.1	5.9	2317	1914	49.5
3	230/122	T. M.	47	\circ	82	51	133	307	77.1	4.9	2866	3726	63.5
4	214/124	S. T.	69		43	47	90	305	70.8	4.9	2760	3377	69.0
5	208/125	N. A.	58		27	100	127	272	78.6	5.0	2631	2807	64.0
6	202/120	M. K.	41	\circ	66	82	148	319	111.1	5.9	2317	1914	49.5
7	203/135	Н. Т.	38		76	59	135	265	60.6	3.4	3961	2986	56.1
8	251/138	K. K.	54	\circ	76	42	118	283	105.6	6.4	2394	2846	61.2
. 9	276/144	А. Т.	60		68	41	109	340	140.8	8.8	1915	2493	62.2

ない。M 型は5 例。心拍量の減少した もの1 例。W 型は7 例。E' 型は6 例であつた。

(iii) Noradrenaline の静脈内注射

Noradrenaline (三共) 30γ を、やく 30 秒間に 静脈内へ注射すると、心拍数は や Δ 増す。 DAZ、

ASZ は、平均動脈圧の上昇にともない、初期には 尋常範囲の増し、ついで、この範囲をこえて延び る。このさい UFZ はほとんど 変らず、ATZ も不 変、心拍量は減る。また、W はいちじるしく増し、 E' も増す。

Table 14. Nor-Adrenaline "SANKYO" Test (30 γ intravenous injection)

	Time		DAZ			ATZ/ASZ			Vs	Vm	W dyne				PR.
		<u>σ</u>	σ	σ	σ		σ	σ	cc	1/min	cm 3	cm 3	mm Hg	Hg	
	Before	74	40	115	310	2.6	425	407	52.8	.	2451	2465	123/74	98.5	60.7
Nor-	7″ later	73	43	116	310	2.6	427	406	44.1	_	2254	2471	121/80	100.5	60.6
Adrenaline	12"	69	53	122	298	2.4	421	417	45.0		2963	2126	121/85	103.0	61.6
"SANKYO" 30 7	19″	76	46	123	311	2.5	434	422	25.0	_	5697	2994	122,2/94	108.1	60.6
i. v. i.	23.5″	63	45	109	312	2.8	421	421	26.7	-	4223	2259	124.7/102	113.3	60.3
for 30"	28.5"	71	45	116	310	2.6	426	416	17.3		8895	2913	125/106	115.5	59.9
	31.5″	67	54	122	307	2.5	430	431	23.4		6497	2176	125.2/106	115.6	60.7
	37″	49	82	131	296	2.2	428	406	17.4		8980	2940	133.5/114.2	123.8	63.2
	40"	76	66	142	307	2.1	450	450	23.1		7267	2636	148/125.1	136.5	64.5
	54''	73	60	133	287	2.1	421	405	14.2	· <u></u>	12478	3930	166/145	155.5	70.0

- (5) 各種の降圧剤による本態性高血圧症の心, ならびに,末梢脈管力学的数値の変化
- (a) 1-Hydrazinophthalazine (Apresoline) 表 15 は、Apresoline の筋肉注射前と、注射後 2 時間で観察して得られた諸循環力学的数値を示す。 試験前に Apresoline を長期服用していた No. 5 では、緊張亢進型末梢脈管力学反応を見るが、他の例では、緊張低下型末梢脈管力学反応、すなわち、Vs、Vm の増しと、W、E'の減りを見る。UFZ は No. 5 で延長するが、他の例では不変か、わずかに短縮。ASZ は No. 5 では不変、その他はいずれも短縮。ATZ も全例で短縮するが、ASZ の短縮の方が ATZ のそれよりいちじるしい。心拍数は No. 5 で不変、他の例では増す。

(b) Pentapyrrolidinium (Ansolysen)

表 16a は、降圧効果のもつともいちじるしい 40 分と、注射前の心・脈管力学的数値を示す。降圧効果の見られた No. 1 では、緊張低下型末梢脈管力学反応を、また、降圧効果のいちじるしくなかった No. 2, 3 では、緊張亢進型末梢脈管力学反応を呈する。 UFZ は全例で延長していたが、注射後、No. 1, 2 は、さらに延長、No. 3 は短縮した。 DAZ は、No. 1 では、延長していたものが尋常化し、例2では延長のまゝ不変。No. 3 では尋常範囲から延長した。ASZ は全例延長していたが、No. 1 では不変、No. 2, 3 では、さらに、延長の傾向をとつた。ATZ は全例、短縮する傾向にある。すなわち、心力学は圧反応に傾く。

(c) Reserpine (Serpasil)

表16 bは、急性実験から推定した、最有効時点に、もつとも近いと思われる時点と、注射前の心・

脈管力学的数値を示す。No. 1, 3では,緊張低下型 末梢脈管力学反応を, No. 2では,緊張亢進型末梢 脈管力学反応を見る。UFZ は No. 1, 2 で不変, No. 3で短縮。DAZ は, No. 1で,延長していた ものがさらに延長, No. 2では不変, No. 3では短 縮。ASZ は No. 1で延長, No. 2で不変, No. 3で 短縮。ATZ は No. 1で,延長していたものが,さ らに延長し, No. 2, 3では短縮を示す。心拍数は, 全例で,や 1減る。

(d) 以上は諸降圧剤の急性使用成績であるが, 長期使用にさいして、臨床的に治療効果の明らかで なかつた5例の心,ならびに、末梢脈管力学的数値 の変動を,表17aに示す。No. 1, 2, 4で, UFZ は 短縮, DAZ は延長。No. 3,5では、いずれも不変。 ASZ は全例で不変。No. 1, 2 では,延長していた ATZ が尋常化。No. 3, 5 では、尋常域内で短縮。 末梢では、No. 1, 2, 5 で、緊張亢進型末梢脈管力 学反応を, No. 3, 4 で, 緊張低下型末梢脈管力学反 応を見た。表 17bは、降圧剤使用により、降圧効果 を認めた6例の心・脈管力学的数値の変動を示す。 No. 1, 2, 6 では, 延びていた UFZ が短縮し, No. 3では尋常域内で不変, No. 4 では, 尋常域内で短 縮。DAZ は No. 2, 1 では, 延長していたものが尋 常化, No. 3では, 尋常域内で不変, No. 4, 6は延 長したましで不変。ASZ は, No. 3 では, 尋常域内 で不変、他の例では、延長していたものが尋常化し た。ATZは、No. 1, 3, 5で、延長していたものが 尋常化, No. 2, 4, 6 では, 尋常域内で延長, ない し,不変である。末梢循環では, No. 1,5 で増して いた Vs, Vm が尋常化,他は尋常域内の増減にと ゞまり, W, E'は, No. 1, 4 で尋常域内の変化,

Essential Hypertension 1-H. P. Z. ("Apresoline") Test

										_	•								بن
No.	Name	Age	Sex	KW	Complication	Adminis- tration	Time	BP. mmHg	UFZ σ	DAZ σ	\mathop{ASZ}_{σ}	$rac{ ext{ATZ}}{\sigma}$	ATZ/ASZ	Vs cc	Vm 1/min	W dyne cm ⁻⁵	E' dyne cm ⁻⁵	PR.	, H
	0 0	00				20 mg	Before	192/112	76	47	123	309	2.5	111.1	6.3	1940	1915	56.3	
1	S. S.	32		1		i. m. i.	60′	167/85	75	32	107	258	2.4	135.0	11.7	. 859	1616	86.9	
	0.34	10			Hypertensive	15 mg	Before	201/119	98	57	155	282	1.8	76.2	4.4	2198	2864	58.1	
2	O. M.	46	4 🔲	I ~Ⅱ	Cardiac Disease	i. m. i.	40′	177/103	95	31	126	266	2.1	94.8	7.0	1510	2076	73.9	
	N T C	20		T	,	30 mg	Before	189/99	70	55	125	326	2.6	114.9	6.2	1859	2083	53.8	
3	N. S.	30		1	-	i. m. i.	45′	139/63	59	16	75	277	3.7	101.1	8.1	990	2000	80.5	
	37 TT			* II		15 mg	Before	131/99	69	29	98	253	2.8	27.7	2.5	3633	3074	91.2	_
4	Y. H.	50	0	I ~∏		i. m. i.	40′	133/85	69	1 .	70	233	3.3	49.8	5.5	1569	2563	111.2	来
	TY /D			TT TT	Hypertensive Cardiac Disease	15 mg	Before	224/138	80	47	127	266	2.1	91.0	6.0	2411	2515	65.7	N
5	Н. Т.	38		п~ш	Meningeal Bleeding	i. m. i.	80′	183/122	91	37	128	250	2.0	68.9	4.6	2650	2356	66.7	4
					Hypertensive Cardiac Disease	15 mg	Before	230/122	82	51	133	307	2.3	77.1	4.9	2866	2866	63.5	H
6	T. M.	47	0	II~III	Hypertensive Renal Disease	i. m. i.	60′	178/102	77	33	110	282	2.6	77.3	5.9	1879	1879	76.9	光

Table 16 a. Essential Hypertension C₅ ("Ansolysen") Test

No.	Name	Age	Sex	ĸw	Complication	Adminis- tration	Time	BP. mm Hg	$egin{array}{c} ext{UFZ} \ ext{σ} \end{array}$	DAZ σ	ASZ σ	ATZ σ	ATZ/ASZ	Vs cc	Vm 1/min	dyne	E' dyne cm ⁻⁵	PR.
1	M. K.	42	0	п		4 mg i. m. i.	Before 40'	203/105 156/106	88 105	57 41	145 146	320 285	2.2 2.0	66.7 47.7	3.2 3.5	3811 2972	3911 2671	48.4 73.7
2	O. K.	46		I~II	Hypertensive Cardiac Disease	6 mg i. m. i.	Before 40'	251/133 228/127	93 103	73 76	166 179	283 272	1.7 1.5	127.7 107.2	7.8 7.3	1970 1937	2458 2531	60.9 68.0
3	O. M.	67		П		3 mg i. m. i.	Before 40'	217/101 197/104	92 83	39 59	131 142	365 345	2.8 2.4	140.7 89.1	6.9 4.9	1852 2475	2193 2777	48.7 54.4

第34巻

T-11- 10 L	17	T T	\mathbf{r}	~	(44C) :1122 M4
Table 16 b.	esseniiai	Dypertension	ĸ		("Serprsil") Test
- do 10 10 0.		ary por volidation		~.	C DOLPIOL) LOGO

No.	Name	Age	Sex	KW	Complication	Adminis- tration	Time	BP. mm Hg	UFZ σ	DAZ	ASZ	ATZ σ	ATZ/ASZ	Vs cc	Vm 1/min	W dyne cm ⁻⁵	E' dyne cm ⁻⁵	PR.
1	N. S.	30		I		1.5 mg i. m. i.	Before 120'	146/80 139/72	50 54	52 68	102 122	310 320	3.0 2.6	76.2 96.4	4.3 5.0	2084 1683	2304 1849	56.8 52.1
2	Т. М.	47	0	п~ш	Hypertensive Cardiac Disease Hypertensive Renal Disease	1 mg i. m. i.	Before 105'	207/101 185/100	83 81	40 40	123 121	290 283	2.4	89.3 74.1	6.0 4.7	2039 2425	3156 3051	67.5 63.4
3	А. Т.	60		П	Hypertensive Cardiac Disease	1 mg i. m. i.	Before 200'	276/144 218/108	68 59	41 28	109 87	340 312	3.1 3.6	140.8 151.9	8.8 8.3	1915 1567	2493 1927	62.2 54.6

Table 17 a. Cases with little virtue in hypotensive drugs

No.	Name	Age	Sex	ĸw	Complication	Drugs pr	o die	BP. mm Hg	Symptoms	Į	JFZ σ	DAZ	ASZ σ	ATZ	ATZ/ASZ	Vs cc	Vm	W dyne o n cm ⁻⁵ o		
1	S.R.	11	П	I ~II		Phenobark	oital 0.1 g	131/66	Stiffness in the Neo Headache	ck	66	25	91	314	3.5	61.3	3.9		2821	
	O.R.	**	لسا	111		Serpasil	0.1 m g	137/70	Fullness in the Hea	ad	59	36	95	285	3.0	56.9	3.7	2261	3134	64.5
2	Y.H.	50		т П	Climacteric	Before		162/99	Fullness in the Hea	ad	73	32	105	315	3.0	84.3	5.3	1983	1988	62.3
4	1.11.	.50	,	1~11	Disturbance (Phenobarb g, Prehorn	ital 0.08 non 20U	138/88	Fullness in the Hea		68	41	109	291	2.6	51.9	3.5	2590	2564	67.1
3	O.K.	16	· []	т - т	Hypertensive Cardiac	Before		201/119	Fullness in the Heat Tinnitus		98	57	155	282	1.8	76.2	4.4	2198	2864	58.1
	O.K.	40	·LJ	1~п	Disease	Nucleton '	'Daigo'' 4 cc	193/123	Fullness in the Hea Sense of Constriction	ad on	103	54	157	273	1.7	85.3	5.5	2276	2182	64.9
					Cararac	Apresoline	350 mg	203/135	(-)		76	59	135	265	2.0	60.6	3.4	3961	2986	56.1
4	н.т.	38		Ш	Disease (Subarachinod. Bleeding	Ansolysen Apresoline	50 mg : 400 mg	205/128	(-)		59	74	133	260	2.0	94.6	6.0	2244	2166	63.1
5	K.K.	54		III~IV	Malignant	Phenobarb	ital 0.1g	255/148	(—)		79	61	140	260	1.9	105.1	7.6	2095	2707	72.8
	IX.IX.	J4	O	m~1v	Hypertension	Reserpin 1 Apresoline	mg 110mg	251/138	Edema in the Face Vomiting		81	57	138	250	1.8	92,3	6.1	2336	2968	66.2

Table 17 b. Cases with favourable effect on hypotensive drugs

n Drugs pro die BP. Symptoms UFZ DAZ ASZ AND

No.	Name Age	Sex	KW	Complication	Drugs pro die	BP. mm Hg		UFZ σ	$\begin{array}{c} \mathrm{DAZ} \\ \sigma \end{array}$	\mathop{ASZ}_{σ}	$\frac{\Delta TZ}{\sigma}$	ATZ/ASZ	Vs cc	Vm 1/min	dyne	dyne cm ⁻⁵	PR.
. 1	S.S. 32		I	·	Before	216/119	Stiffness in the Shoulder, Dizziness	77	53	130	324	2.5	128.1	7.6	1755	2014	59.6
_	0.0. 32	ا ا	.		Serpasil 0.5 mg Apresoline 30 mg	144/78	Fullness in the Head Nasal Congestion	65	40	105	263	2.5	93.7	6.5	1367	1874	69.2
				7. 4**4 1	Before	176/92	(-)	94	70	164	280	1.7	70.8	4.4	2409	3155	62.7
2	Y.S. 36	0	Ι	Mitral- Insufficiency	Serpasil 0.2 mg Ansolysen 20 mg Pulv. folia digi- talis 0.07 g	158/64	(-)	85	37	122	304	2.5	89.4	4.9	1800	2796	55.0
3	T.A. 49	г	I∼II		Before	165/83	Insomnia	73	31	104	315	3.0	76.3	4.0	2467	2859	52.6
3	1.A. 49	ليا	т~п.		Serpasil 0.8 mg	128/70	Insomnia	69	34	103	294	2.9	76.2	3.9	1992	2023	52.0
4	N.I. 38	П	п		Before	161/95	Stiffness in the Shoulder, General Discomfort		59	123	254	2.1	74.7	5.0	2051	2349	66.7
*	14.1. 50				Serpasil 0.4 mg Apresoline 40 mg	119/75	()	41	61	102	284	2.8	65.7	3.4	2277	1782	51.8
5	S.T. 68	0		Hypertensive Encephalo-	Before	196/87	Fullness in the Head Stiffness in the shoul- der			113	316	2.8	127.0	8.2	1362	2282	65.0
J	3.1. 00			pathia	DHK "Takeda" 0.5 mg	173/89	Fullness in the Head	76	17	93	257	2.8	84.8	6.4	1625	2635	75.9
6	T.M. 47			Hypertensive Cardiac Disease	Before	230/122	Fullness in the Head	. 82	51	133	307	2.3	77.1	4.9	2866	3726	63.5
,	1.211. 11	لسا		Hypertensive Renal Disease	Serpasil 0.9 mg Apresline 90 mg	200/98	Nasal Congestion	54	53	108	303	2.8	88.9	6.2	1921	3060	69.7

Table 18 a. Nephrogenic Hypertension

No.	Name Age	Sex	Diagnosis	WB	Compensation	UFZ	DAZ	ASZ	ATZ	ATZ/ASZ	Vs	Vm	W dyne		BP.	PR.
						σ	σ	σ	σ		cc	l/min	cm ⁻⁵	cm ⁻⁵	mm Hg	
1	M. H. 49		Cyste of the Kidney	M+E'	Decomp.	48	62	110	223	2.0	108.8	9.8	1278	3009	218/95	89.9
2	M. K. 48	. 0	Preuremia	W + E'	Decomp.	72	25	97	196	2.0	52.0	6.2	1941	3272	182/118	118.6
3	O. Y. 15	0	Acute Renal Insufficiency	W+E'	Decomp.	85	37	122	198	1.6	34.9	3.8	3955	3736	210/161	106.9
4	M. K. 25	\circ	Subacute Nephritis	W	Comp.	62	55	117	236	2.0	55.9	4.8	1918	2188	138/92	85.6
. 5	Y. K. 27		Subacute Nephritis	W+E'	Comp.	49	54	103	250	2.4	53.9	3.9	2895	2699	167/113	72.6
6	S. T. 40		Acute Nephritis	W+E'	Decomp.	85	45	130	142	1.1	8.4	1.0	8358	5727	116/98	122.2
7	K. T. 30		Chronic Nephritis	W+E'	Comp.	54	72	126	282	2.2	53.5	3.3	2750	2435	139/90	62.4
8	T. K. 35		Chronic Nephritis	W+E'	Comp.	64	51	115	280	2.4	42.8	2.7	3146	3416	131/76	63.4

Table 18b. after Medication

No.	Name	Age	Sex	Diagnosis	Drugs pro	die	Compensation	UFZ σ		ASZ	ATZ σ	ATZ/ASZ	Vs cc	Vm 1/min	W dyne cm ⁻⁵	E' dyne cm ⁻⁵	BP. mm Hg	PR.
1	M. H.	49		Cyste of the Kidney	Strophosid	0.25 mg	Comp.	34	69	103	272	2.6	156.2	9.1	1351	2129	219/94	58.0
2	M. K.	48	\circ	Preuremia	Neodigitalis	0.8 mg	Comp.	62	40	102	217	2.1	85.9	7.5	1255	2851	214/122	87.5
3	O. Y.	15	0	Acute Renal Insufficiency	Neodigitalis	1.2 mg	Relative Decomp.	66	40	106	196	1.9	41.3	4.8	2909	4062	208/145	117.4
4	M. K.	25	\circ	Subacute Nephritis	Apresoline	$60\mathrm{mg}$	Relative Decomp.	56	80	136	234	1.7	48.5	4.0	2827	2744	167/117	82.6
5	Y. K.	27		Subacute Nephritis	Apresoline	130 mg	Relative Decomp.	61	52	113	213	1.9	75.9	7.6	1611	2452	189/119	100.5
6	S.T.	40		Acute Nephritis	Cedilanid	$0.5~\mathrm{mg}$	Comp.	59	51	110	218	1.9	41.5	3.1	2389	3270	119/68	75.6

Comp.: Compensation Decomp.: Decompensation

No. 5では E'の増加, No. 2, 3, 6では、増大して いた W が尋常化。E'も減つて尋常化の傾向を示す。

2. 腎性高血圧症における心, ならびに, 末梢脈 管力学的数值(表18)

腎性高血圧症8例のうち、UFZの延長していた ものが2例。DAZ の延長が5例。ASZ の延長が5 例。ATZ は、慢性腎炎を除いた全例で短縮した。 ATZ/ASZ は, No. 5, 8 を除いた全例で減少。心拍 量の減少は4例で、急、および、慢性腎炎に見られ、 嚢胞腎の1例は M 型を示した。E' は No. 4 を除 く全例で, W は No. 1, 2, 4 を除く全例で増大し た。表18bは、これらに、Digitalis 剤, ならびに、 Apresoline を使用したさいの各循環力学的数値を 示す。UFZ は例1で短縮しているほか、いずれも 短縮の傾向を示す。DAZ は No. 1, 2 で延長の傾向 を示し,他は不変である。ASZ は, Apresoline (少 量) 使用にもかゝわらず病状の悪化した亜急性腎炎 の2例 (No. 4, 5) で延長する傾向を示すほか, No. 3,6 で尋常化, No. 1,2 では,尋常範囲内で不 変であった。ATZ は No. 1 で尋常化, No. 3, 4 で は不変, No. 5では、さらに短縮、他は延長する傾 向にあった。 ATZ/ASZ は No. 4,5 で減少したほ か, No. 1 で尋常化, 他も尋常化の傾 向 を 示 す。 Vs, Vm は, No. 1, 2, 5でM型, No. 3, 4, 6で減 る 少した。W は No. 3, 4, 6 で増大, E' は No. 1 を 除く全例で増大している。以上は、動脈性高血圧に ついての観察所見であるが, つぎに, 肺性高血圧症 を述べる。

3. 慢性肺性心における心, ならびに, 末梢循環 力学的数值

2例ともに代償不全に陥つていた。UFZ, DAZ, および, ASZ は, No. 1 では 尋常, No. 2 では延 長。ATZ は2例ともに短縮。ATZ/ASZ も2例と もに減少している。末梢循環では、No. 1は、低血 圧性調節緊張低下型の末梢脈管力学を, No. 2 は, W + E' の末梢脈管力学を示す。表 19 b は、これ ら2例に、それぞれ、Choline Theophyllinate (Theocoline), Digicorin fraction を用い, 比較 的代償状態にはいつたときに観察し、得た各数値を 示す。No. 1 では、ASZ が尋常のまゝ不変。短縮し ている ATZ は、やゝ延び、ATZ/ASZ は尋常化。 M 型も軽くなり、W は尋常化の傾向を示し、E' は 尋常化した。No. 2 では,なお, UFZ, DAZ, およ び、ASZ の延長と、ATZ の短縮、したがつて、 ATZ/ASZ の減少を見るが、これらの値は、いずれ

	!	0		Í	1	I ==	<u>,0</u>		1 .	
	atura- on	Ven.9	32.5	54.1		uratio	Ven.9	59.9	.661	1.0±
	O ₂ S. ti	Art.%	65.7	89.7		O ₂ Sat	Art.%	87.2	6 98	7.00
	VC. MBC O ₂ Satura-	1/min Art.% Ven.%	22.0	47.7		VC. MBC O ₂ Saturation	cc 1/min Art.% Ven.%	37.7	35.7	7.00
	VC.	သ	1671	2359		VC.	ပ္ပ	2146	2005	6607
	VP. mm	H_2O	190	180		VP. m.m	H_2O	130	78	*
	PR.		91.7	88.6		PR.		6.96	0.10	04.0
	BP.	mm Hg	96/51	149/97		BP.	cm-5 mm Hg	116/68	9164 195/01	16 / C71
			1375 9			E′ dvne	cm^{-5}	1799	9161	7104
onale	E,	5 cm ⁻⁵		2975	uc	W lyne	cm-5	1061	0.457	
Pulm	W dvne	cm_	772	2382	dicatio	Vm	/min	6.9	c, R	
c Cor	$V_{\mathbf{m}}$	$1/\min \text{ cm}^{-5}$	7.6	4.1	after Medication	Ns	cc 1	71.0	71 ×	
Chronic Cor Pulmonale	Vs	ပ္ပ	82.3	46.5	aft	$_{\sigma}^{\mathrm{ATZ}}$	ATZ/ASZ	241	226	
	$_{\sigma}^{\mathrm{ATZ}}$	ASZ	234 3	208 .4	19 b.	$\mathop{\mathrm{ASZ}}_{\sigma}$	ATZ/	98 2.5	138	1.6
Table 19a.	$\mathop{\mathrm{ASZ}}_{\sigma}$	ATZ/	104 234 2.3	146 1.	Table 19b.	DAZ	Q	27	ני	S
Tab	DAZ	Q	37	56		UFZ	Q	71	20	
	UFZ DAZ $ASZ ATZ$	Q	29	06		Symp-	toms			
			General Lasstitude	yspnea		Compen-Symp- UFZ DAZ ASZ ATZ Vs Vm W E'	sation		Relative	comp.
i	No. Name Age Sex Compen- Symptoms	sation	1 E.K. 53 \square Decomp. General	2 K. Y. 54 \square Decomp. Dyspnea		Drugs pro die		Digicorin fraction "Takeda" 2 mg 1 E. K. Choline Theophyllinate "Eizai" 200 mg	Choline Theophylli-	Digicorin fraction "Takeda" AD-1 1.2mg
	Age Sex)	53.	54				Digicorin fraction "Takeda" 2 mg Choline Theophyl nate "Eizai" 2001	Choline T nate "Eiz	Digicorin "Takeda"
	Name .		Е.К.	K. Y.		No. Name		н. Ж.	A 74	. T
	No.		-	2		Z	· ·		c	7
								• .		

も,使用前より尋常化の傾向を示す。末梢循環では,静脈圧の尋常化を見たが,各循環力学的数値には,有意の変化を見ない。このさい,肺機能も好転していない。

症例: E. K. 53 □ (附図5) 臨床診断 慢性肺性心

主訴は息ぎれと全身倦怠。やく5年前より、歩行 時の息ぎれ、および、夜間性呼吸困難が出没し、入 院5カ月前より、全身に浮腫が現れた。家庭医の治 療により浮腫は消褪したが、全身倦怠、および、息 ぎれがとれず入院した。30年前,軍隊でやく2年間 にわたつてラッパ手を務めた後、年に一度は喘息発 作に悩まされていた。この脈波の記録当日にも、鼻 尖, 口唇にチアノーゼがあり, 胸骨左縁で第4肋間 に最強点のある拡張期性雑音を聴取、両側前下野に 沢山の湿性ラ音が聴かれた。また、肝は2横指に触 れ、やゝ硬かつた。図の上段の記録では、UFZは 71 σ , DAZ tt 27 σ , ASZ tt 98 σ , ATZ tt 241 σ , Vs 12 71 cc, Vm 12 6.9 1/min., W 12 1061 dyne cm⁻⁵, E' 1799 dyne cm⁻⁵, BP 115.5/67.5mm Hg, PR は 96.9 である。下段は、これに Theocoline 200 mg 静脈注射後4分の記録で, UFZ は 76 σ , DAZ it 28 σ , ASZ it 104 σ , ATZ it 221 σ , Vs /t 78.5 cc, Vm /t 6.1 1/min., W /t 1136 dyne cm⁻⁵, E' /t 1575 dyne cm⁻⁵, BP /t 110.5/64, PR は78.1となつた。

4. 小 括

KW I~I-II 型では、DAZ、ASZ の延長した ものがやく半数を占める。KW II型でも、だいた い, 同様のことがいえる。KW Ⅱ-Ⅲ型, または, それ以上になると、UFZの延長が目立つてくる。ま た, ASZ の延長が多く, DAZ の延長もやく半数に みられる。しかし、ATZ の延長は減つてくる。W 型高血圧では, 2/5 に UFZ の延長が見られ, KW の度がす」むにつれ、延長例が増す。やく半数に、 DAZ の延長を見、KW II 型では過半数を占める。 大部分が ASZ の延長を示し、KW II 型以上では、 ほとんど全例に見られる。ATZの延長はやく1/3 に, 短縮は 1/8 におこる。 E' 型では, ASZ の延長 が、ことに、KW II 型以上の大部分にみられ、ATZ も 1/3 に延長し、 1/5 に 短縮する(18)。 M型では、 UFZ, ASZ, ATZ の延長が、おのおの3/8, DAZ の延長が 1/4 に見られるが、純 M 型と E' の加わつ た M型との間には有意の差がない。ECG、または、 尿に所見のある群では、ない群に比して、UFZ、

DAZ, ASZ の延長が多く(やく2倍), 後者では, ATZ の延長が目立つ。縮期圧の高さによる分類で は、有意の差がない。弛期圧の高さで分けると、弛 期圧の高くなるほど、UFZ, DAZ, ASZ は延長す る傾向にあるが、ATZには有意の差がない。Noradrenaline を静注すると、心力学は圧反応を示す。 このように縮期前性の心室一大動脈圧差が急に高ま つたさいの圧負荷にたいする一次反応には、DAZ, ASZは延長するが、心内に残留血量が増して二 次反応を生じると、DAZ、ASZ はふたたび短くな る。Apresoline は緊張低下型末梢脈管力学反応を 示し, UFZ, DAZ, ASZ, および, ATZ はともに 短縮する傾向にあるが、前2者では DAZ、後2者 では ASZ の短縮の度が強い。Ansolysen は末梢脈 管力学にたいして,一定の作用傾向を示さないが, 心力学にたいしては、圧反応をきたす場合が多い。 Serpasil は末梢脈管にたいして、緊張低下性には たらくことが多いが、心力学にたいしては一定の作 用傾向を示さない。降圧剤を慢性に使用して臨床効 果を見ない例では、たとえ、末梢脈管力学に有意の 変化を認めても、心力学には有意の差を生じない (たとえば, 表 17 a No. 4)。これにたいし, 臨床的 に効があつたものでは、心・末梢ともに圧反応(大 部分の症例が呈している)、または、容量反応がとれ ている。腎性高血圧症では、DAZ, および, ASZ の 延長しているものが過半数を占め、とくに、慢性腎 炎を除いた全例で ATZ がいちじるしく短縮してい るのが目立つ。この傾向は、心が代償不全に陥つて いる症例に強く, ひどい圧負荷のもとにある心筋の 衰弱を示すと考えられる。これらが、Digitalis 剤 の使用によつて、心の代償が回復してくるにつれ て、わずかながら尋常化する傾向にある。慢性肺性 心2例のうち、1例は低血圧性調節緊張低下型末梢 脈管力学を,1例はW+E'型末梢脈管力学を示し, 心力学はともに圧反応を示す。これらは、Digitalis 剤, および, Theocoline の使用によつて, わずか ながら尋常化の傾向をとる。

症例: O. K. 46 □ (附図 6) 臨床診断 高血圧性心疾患 (KW I-II型)

主訴は耳鳴りと肩こり。昭和26年以来,耳鳴りと 頭重が現れた。昭和27年3月,突然,左半身のシ ビレ感と軽い歩行障害が起つた。このさい,血圧は 220 mm Hgで,瀉血をうけた。以後,頭重がつゞ き,肩こりも加わつて来たので,昭和31年11月入 院した。図の上段は入院当時の記録で,UFZ は98 σ , DAZ は 57 σ , ASZ は 155 σ , ATZ は 282 σ , Vs は 76.2 cc, Vm は 4.4 1/min., W は 2198 dyne cm⁻⁵, E′ は 2864 dyne cm⁻⁵, BP は 201/119 mm Hg, PR は 58.1 である。下段はそれに Apresoline 15 mg 筋肉注射後 40 分の 記録 で,UFZ は 95 σ , DAZ は 31 σ , ASZ は 126 σ , ATZ は 266 σ , Vs は 94.8 cc, Vm は 7 1/min., W は 1510 dyne cm⁻⁵, E′ は 2076 dyne cm⁻⁵, BP は 177/103 mm Hg, PR は 73.9 である。

- D. 心冠疾患の心, ならびに, 末梢脈管力学的数値の検討
- 1. 心冠疾患における心, ならびに, 末梢脈管力 学的数値 (表 20)

狭心症(Ai を含む)、ないし、心冠硬化症 14 例では、UFZ が延長したもの 1 例、短縮したもの 1 例。DAZ が延長したもの 3 例,短縮したもの 1 例(Ai)。ASZ が延長したもの 3 例,短縮したもの 2 例(Ai)。ATZ が延長したもの 4 例,短縮したもの 2 例である。M型は 9 例,W型はなく,E′型は 5 例であつた。高血圧性心疾患,または,高血圧性脳疾患 7 例の患者では,UFZ の延長が 3 例。DAZ の延長が 5 例。ASZ の延長が 6 例。ATZ の短縮が 1 例。M型は 3 例。W型は 4 例。E′型は 4 例であつた。心硬塞 6 例では,UFZ の延長が 2 例。DAZ の延長は 4 例。ASZ の延長は 5 例。ATZ の短縮は 2 例で,その他は尋常値を示した。慢性腸炎による全身衰弱の

Table 20. Coronary Heart Disease

	rable 20. Coronary recars Disease													
Name	Age	Sex	Diagnosis	UFZ	DAZ _o	$\mathop{\mathrm{ASZ}}_{\sigma}$	$\mathop{\mathrm{ATZ}}_{\sigma}$	ATZ/ASZ	Vs cc	Vm 1/min	W dyne cm ⁻⁵	E^{\prime} dyne cm^{-5}	BP. mm Hg	PR.
N.T.	57		Angina pect.	70	36	106	301	2.8	110.8	5.6	1191	1344	116/60	50.5
O.K.	50		Angina pect.	64	35	99	266	2.7	94.4	7.7	1300	2282	165/84	81.3
I.E.	69		Angina pect.	96	44	140	279	1.9	80.4	5.4	1577	1852	136/80	67.2
T.S.	36		Angina pect. + Ais	53	18	71	365	5.1	471.4	26.0	431	925	223/59	55.3
U.M.	20		Angina pect. + Ai	65	-39	26	300	11.5	256.3	23.4	407	1183	178/64	92.5
H.H.	66	Ċ	Subacute pulmonary Edema	38	60	98	277	2.8	48.2	4.3	1633	3302	117/57	88.0
A.R.	54		Angina pect. KW I	61	64	125	227	1.8	69.0	7.7	1869	3084	156/76	71.0
О.Т.	54		Angina pect. KW I-II	56	37	93	307	3.3	112.3	6.5	1690	2084	182/94	58.0
H.T.	62		Angina pect. KW II	64	43	107	297	2.7	113.4	8.2	1288	2381	184/82	72.3
A.T.	60		Angina pect. KW II	68	41	109	340	3.1	140.8	8.8	1915	2493	276/144	62.2
Y.T.	54		Angina pect.	60	44	104	241	2.3	70.0	6.3	1949	4921	200/90	90.3
Y.N.	64		Coronary Sclerosis	64	39	103	282	2.7	82.8	5.9	1621	2311	130/88	69.2
S.K.	50	\bigcirc	Coronary Sclerosis	71	53	124	329	2.7	85.3	5.2	1944	2961	175/80	61.0
О.Т.	62	0	Coronary Sclerosis KW II	68	26	94	331	3.5	111.5	7.2	1381	2169	172/81	65.2
S.T.	68	\bigcirc	HEP KW II	48	75	123	281	2.8	86.0	6.2	1675	2657	175/89	75.9
W.H.	59		HCD	76	38	114	260	2.3	72.2	5.1	2104	2504	170/102	69.5
W.T.	54	\circ	HCD	83	59	142	275	1.9	127.3	6.9	1706	1796	192/106	51.5
Ι.Ι.	55		HCD KW II	74	61	135	246	1.8	44.0	3.1	3188	3989	158/92	71.0
N.T.	43		HCD KW II-III	63	30	93	296	2.3	71.7	6.5	1542	1718	161/92	61.5
S.H.	53		НСО КW П−Ш	75	85	160	278	1.9	100.8	5.6	2516	1434	144/90	50.8
H.T.	38		HCD KW II-III	54	86	140	259	1.9	103.7	5.7	2532	2513	233/135	55.9
N.S.	57		Inferction	58	58	116	265	2.2	48.1	3.3	2516	2322	130/88	69.2
Y.A.	69	0	Infarction	54	47	101	241	2.3	40.7	3.4	2090	2218	108/74	85.3
D.T.	62		Apical Infarction	94	66	160	250	1.6	98.8	5.8	1257	1023	110/72	58.5
I.S.	53		Infarction	54	60	114	270	2.3	51.6	4.2	1884	2782	128/74	28.8
H.K.	74		Apical Infarction	94	36	130	295	2.3	71.7	3.5	2756	3117	163/79	48.9
M.R.	59	0	Infarction	69	62	131	263	2.0	35.8	2.4	3995	3417	145/99	68.1
	Ψ,													

HCD: Hypertensive Cardiac Disease HEP: Hypertensive Encephalopathy

	. .			/ASZ	· :		itt		п	cm_2	cm_5	Hg		in	Serum	7
UFZ	DAZ	ASZ _{\sigma}	ATZ	ATZ,	Q_{-1}	QT	Baze	Vs	Vm 1/mi	W dyne	E^{\prime} dyne	BP.	PR.	Tota prote g/dl	Na mEq	K mEq
99	69	168	238	1.4	406	385	1.20	12.6	1.0	5013	2969	70/56	80.1	4.18	150	4.0

はなはだしい 1 例では、UFZ、DAZ、ASZ はいずれも尋常範囲をこえてながい。ATZ は尋常の下界を下廻つていた。Vs、Vm は少ない。たゞし、近年の傾向は、このさいに "Energetische Insuffizienz (Hegglin⁽¹¹⁾)" がどのように 関係するか を問題にしている。それについては、協研者木下の報告がある。

症例: H. K. 74 □ (附図7の1) 臨床診断 心尖硬塞

主訴は発作性の胸部校扼感。昭和24年12月中旬,左胸部に校扼感が現れ,同時に上肢にシビレ感をともなつた。翌年3月まで臥床安静,起きると発作が起る程度であつた。しだいに,発作が弱まり,昭和27年以降は,まつたく発作を見なくなつた。昭和31年12月に,左眼網膜出血がおこり,内科的精査をもとめて昭和32年2月に入院した。図(ECG は第II誘導)は入院当時の記録で,UFZ は94 σ , DAZ は36 σ , ASZ は130 σ , ATZ は295 σ , ATZ/ASZ は2.3,Vs は71.7 cc,Vm は3.5 1/min.,Wは2756 dyne cm $^{-5}$, E' は3117 dyne cm $^{-5}$, BP は 163/79

mm Hg, PR は 48.9。心は左にやゝ大きく,静脈圧は 75 mm H $_2$ O であつた。なお,当時の ECG をつぎに示す (附図 7 の 2)。

2. 脈管活性剤 vasoactive substances の使用, ならびに, 低酸素試験の心, および, 末梢脈管力学的因子におよぼす影響

(1) Amyl nitrite (表 22)

No. 1では、心拍数の増しが少なく、最高作用時点は $40 \sim 60$ 秒にあると思われる。この時点において、Vs、および、Vm の減りと、W、E'、および、血圧のいちじるしい低下を見たが、静脈圧は不変であつた。 UFZ は延長。 DAZ は短縮。 ASZ も短縮したが、ATZ の短縮の度の方がいちじるしい。 No. 2 では、心拍数の増しが著明である。 $30 \sim 40$ 秒の点を見ると、末梢循環には変化を見ないが、 UFZ はや 1 短縮、DAZ はいちじるしく短縮している。また、ASZ の短縮は、ATZ の短縮を上廻つている。

(2) Choline Theophyllinate (Theocoline) (表 23)

心拍量が減つたもの2例,増したもの2例,不変

Table 22. Amylnitrite Test

No.	Name	Age	Sex	Diagnosis	Time	$_{\sigma}^{\mathrm{UFZ}}$	$\mathop{\mathrm{DAZ}}_{\sigma}$	ASZ o	ATZ o	ATZ/ASZ	BP. mm Hg	PR.	Vs cc	Vm 1/min	$^{ m W}$ dyne cm $^{+5}$	$\dot{\mathrm{E}}'$ dyne cm ⁻⁵	MVE. m/sec.	SW. g. m.
					Be- fore	80	32	112	332	2.9	176/77	63.6	152.9	9.7	1032	1722	0.99	269.6
				Essential	15″	83	31	114	336	2.8	162/71	63.6	164.8	10.4	882	1468	1.11	270.3
-	TT m	40	_	Hyper-	29"	88	26	114	304	2.6	107/52	65.0	134.9	8.7	718	1084	1.22	155.2
1	H.T.	48	Ш	tension	40″	86	20	106	310	2.9	100/51	69.6	114.3	7.9	752	1140	1.09	123.5
				KW II	49''	89	20	109	299	2.7	104/52	68.2	119.2	8.1	764	1160	1.11	133.9
				1111	59″	82	36	118	284	2.4	128/62	68.4	125.6	8.5	881	1397	1.07	169.6
					85″	81	49	130	326	2.5	175/83	65.1	149.3	9.7	1059	1639	1.02	269.9
				Essential	Be- fore	104	38	141	258	1.8	163/85	85.3	56.1	4.8	2067	3698	0.60	95.3
	X 7. O	0.0	_	Hyper-	15″	94	-5	89	251	2.8	100/49	93.3	28.0	2.6	2260	4933	0.35	28.3
2	Y.S.	36	\bigcirc	tension	30″	97	15	112	240	2.1	132/74	105.3	44.9	4.7	1739	3434	0.53	63.5
				KW I	38″	101	27	128	232	1.8	153/90	100.5	44.7	4.5	2159	3747	0.51	74.5
					54''	95	43	138	251	1.8	177/101	85.5	61.9	5.3	2097	3266	0.62	117.8
				MVE:	Mea	an Ve	elocit	y	SW:	Str	oke Wo	rk (le	eft ve	ntric	le)			

5.5 2319 2029

4.3 2800 2234

73.4

63.1

140

120

なもの3例。Wの減少1例, 増大1例, 他の5例で は不変。E'の増しは2例,減りは3例,他は不変。 UFZ の延長は3例,他は不変。DAZ の短縮は5 例,他は不変。ASZ は延長したもの1例,短縮した もの3例,他は不変。ATZは短縮が5例,延長が1 例,不変が1例ある。

> sion Hyperten-

Disease

4 H.T. 38 □ sive Cardiac

Be-

fore 20'

77

47

33

124

246

2.0 189/133 75.5

127 241 1.9 178/125 68.6

(3) Lacarnol "forte" (Hoechst) (表24) 心拍量を減らす傾向がある。Wは減つたもの2 例, 増したもの2例, E'は2例で不変, 2例で増し た。UFZ は No. 4 では延び, No. 1 では短縮, 他 は不変。DAZ は No. 1, 4 ともに 短縮し, 他は不 変。ASZ は No. 1 で短縮, No. 3 で延長, 他は不

				Table 23. Choline Teophyllinate Test (2									00 mg	i. v.	-			
No.	Name	Age	Sex	Diagnosis	Time	UFZ	Q	$\frac{\mathrm{DAZ}}{\sigma}$	$\mathop{\mathrm{ASZ}}_{\sigma}$	$\mathop{\rm ATZ}_{\sigma}$	ATZ/ASZ	Vs	Vm 1/min	W dyne cm ⁻⁵	E' dyne cm $^{-5}$	BP.	811	PR.
1	E.K.	53	'n	Chronic	Be- for e	7	1	27	98	241	2.5	71.0	6.9	1061	1799	116/	68	96.9
1	E.IX.	JJ	Ш	Cor Pulmonale	4′	.7	6	28	104	221	2.1	78.5	6.1	1136	1575	111/	64	78.1
2	H.H.	66	ГΊ	Subacute	Be- fore		4	62	106	298	2.8	78.2	6.2	1345	2789	146/	64	79.3
2	11.11.	00	. []	Pulmonary Edema	5′	5	5	46	101	272	2.7	68.4	5.5	1388	2799	132/	60	80.5
3	O.K.	27		Mitral	Be- fore		4	36	110	245	2.2	46.4	4.1	1723	2291	109/	69	88.7
	U.K.	31	0	Stenoinsu- fficiency	15′	7	8	15	93	256	2.8	37.5	3.3	2250	2557	111/	75	88.1
_	0.0	20		Essential	Be- for e		2	47	119	261	2.2	91.3	6.5	1619	2040	166/	96	70.8
4	S.S.	32		Hyper- tension	3′	7	9	24	102	227	2.2	123.8	11.6	920	1719	174/	94	93.9
_	m 4	40		Essential	Be- fore	7	6	21	97	294	3.0	67.9	4.1	2300	2587	150/	84	59.7
5	T.A.	49	LJ	Hyper- tension	2′ 30	″ 9	0	26	116	274	2.4	73.2	4.6	2129	2690	160/	86	62.9
c	c p	4.4		Essential	Be- fore	כ	6	26	82	277	3.4	63.6	4.4	1964	2427	138/	80	69.7
6	S.R.	44		Hyper- tension	2′	5	2	12	64	251	3.9	58.8	4.5	1904	2758	137/	76	76.2
7	Y.H.	EO		Essential	Be- fore		8	30	98	251	2.6	84.9	7.0	1188	1879	134/	74	82.3
7	1.П.	30	\cup	Hyper- tention	11′	7	1	20	91	253	2.7	96.2	7.7	1002	1465	123/	70	80.3
				\mathbf{T}	able 2	4.	La	ıcarı	no1 ''	forte	" (1	0 cc i.	v. i	.)				
(Asserted	<u>, (5-4)</u>				/ed	·				SZ		a n .				n_5	n_5	0
No.	Name	Age	Sex	Diagnosis	Observ Point	9.10	DAZ	ASZ	σ ATZ	o. ATZ/A		or. mm Hg	PR.	Vs cc	Vm 1/min	W lyne cm F'	lyne cm	$_{ m mmH_2O}$
				Apical Infa- rction with		94	66	16	0 25	50 1.0	6 1	10/72	58.5	100.09	5.9	1241 1	010	
1	D.S.	62	Ш	Anginal Complaints		81	59	14	0 26	60 1.5	8 1	04/72	53.9	83.91	4.5	1167 1	014	_
-				Angina	Be- fore	 65	36	10	1 30)5 3.	0 1	72/100	68.2	109.2	7.5	1458 1	754	105
2	O.K.	50				65	34	9	9 31	.3 3.5	2 1'	77/97	66.5	125.5	8.4	1319 1	695	110
				Pectoris	25′	68	41	10				70/93	66.9	124.5	8.3	1263 1	645	100
				Angina pectoris	Be-	93	33	12	6 27	2 2.	2 2	10/100	77.5	83.1	6.4	1920 3	520	95
3	Y.T.	54		Essential Hyperten-	TOLE	94	38	13	2 27	4 2.		96/108		58.4	4.6	2627 4	006	130

Hypoxic Test (10% O₂ Inhalation) Table 25.

No.	Name	Age Sex	Diagnosis	Observed Point	$\operatorname{UFZ}_{\sigma}$	DAZ o	ASZ _o	$\mathop{\rm ATZ}_{\sigma}$	Vs cc	Vm 1/min	$^{ m W}$ dyne cm $^{ ext{-5}}$	E^{\prime} lyne cm ⁻⁵	BP. mm Hg	PR.	O ₂ -Satura- tion %	RR.
			Essential	Be- fore	59	36	95	285	56.9			-	137/70		92	17.5
1	S.R.	44 □	Hypertension KW I-II	3′	61	26	87	275	52.7	3.6	2226	2624	125/73	67.3	73	17.5
	•		KW I-II	7′	66	18	84	274	53.6	3.6	2079	2682	120/66	66.6	66	17.5
	,		Coronary	Be- fore	66	31	97	280	102.4	8.0	1264	2260	170/83	87	94.5	20
2	O.K.	49 □		3′	65	17	82	283	117.7	9.4	1060	2169	173/77	96	88.0	15
			Sclerosis	7′	62	21	83	278	91.1	7.5	1295	2716	168/75	93	83.0	17.5
		a de la constanta de la consta	Cancer of the Stomach complicated	Be- fore	69	10	79	321	53.1	3.0	2756	3554	139/68	56.7	98.3	15
- 3	S.S.	54 □	Anginal	.31	75	15	90	283	59.5	3.8	2107	2725	129/68	63.0	91.0	15
			Attack due to Coronary Sclerosis	7/1	61	13	74	296	61.0	4.0	1890	2702	125/63	65.0	86.8	15
			Essential Hypertension	Be- fore	65	38	103	271	82.5	5.0	1800	3032	143/80	60.1	92.5	15
4	A.R.	53 🗆	with Coronary	3′	81	20	101	250	67.4	5.3	1867	2525	155/91	77.9	72.5	15
			Sclerosis	7′	69	22	91	244	98.2	8.7	1186	2384	173/85	88.4	67.5	15
				F	RR.:	Res	pirato	ory R	ate							

(4) 低酸素試験(表25)

さきに、渡辺昌平(26)らが報告した、第1点、第2 点で観察した。Vm, Vsは,不変にとゞまつた No. 1を除いて, すべて増す。Wは第1, ないし, 2点 のいずれかで、全例低下する。E'は低下するものが 3例, 増大するものが1例。UFZ, ことに, 3分に おける UFZ は延長する傾向にある。DAZ は3例 で短縮。ASZ, ATZ はともに全例で短縮する。

3. 小 括

狭心症、ならびに、心冠硬化症では、圧反応を示 すものは少ない。また、末梢循環では Vs, Vm の 増しているものが多い。高血圧性心疾患、ならび に、大部分の心硬塞例では、圧反応型心力学を見 る。脈管活性剤のうち、Amyl nitrite は、末梢循 環にたいしては緊張低下性にはたらき、このさい、 心力学は、おもに、圧反応を示す。Theocoline は DAZ を短縮させるが、ASZ を変えず、ときに短縮 させる。ATZも短縮する傾向にある。すなわち、 圧反応を示す。末梢脈管力学には、一定の作用傾向 を示さない。Lacarnol "forte" は、末梢循環にた いしては,症例により,緊張亢進性にも,緊張低下 性にもはたらき、心にたいしても一定の作用傾向を 示さない、心筋にとつて不利と思われる低酸素試験 は、末梢では緊張低下性に作用するが、心力学では

変。ATZ は No. 1 で延長, 他は不変にとゞまつた。 一定の作用傾向を示さない。慢性腸炎による全身衰 弱のはなはだしい1例では、緊張亢進型末梢脈管力 学(低血圧性調節)と,圧反応型心力学を見た。

a) 基礎疾患別の心・脈管力学について

As の tardus の特長は、脈拍が小さいゆえ、わ からず、また、脈拍の振巾が、ほとんど、尋常どお りでも、知ることができない場合もある。Tardus の特長は、すでに、Wezler-Böger のいうよう、末 梢に向うにしたがつて、はつきりしなくなる。大動 脈の近くの動脈、たとえば、頸動脈、鎖骨下動脈に みとめられ, 撓骨動脈では, はつきりせず, または, Tardus の特長がなくなることもある。As の頸動 脈波の変形だけについて述べる。ゆつくり曲線のあ がること。上行脚に隆起のおこること。脈波の頂上 に、または、上行脚にジエット性心雑音による振動 が伝わつて、分岐のできること。Wezler のいうよ うに、脈波の頂上がおそく出ること、などで特長 で、しばしば、脈拍振巾も減る。下行脚における切 れこみが小さく、ときに、不明になることもある。 不明となること――これは、今日まで、あまり、注 意されなかつたが、切れこみが、弁閉鎖に関連し、 Asにおける心弁膜のはたらきの完全性が、悪くな ることを考えれば、すぐ説明できる。頸動脈脈波の

と ECG, 心音を同時にとると, 心力学の時間的経 過がわかる。これを、心弁膜症に使う。Asでは、 ASZ はふつうか、不全があれば延び、ATZ は不全 がなくとものびる (Blumberger(3)(4), Holldack (10))。不正拍があり、とくに、Es や、弛期を短かく する収縮があるとき,心雑音の消えることがある。 もちろん, これに相当して, 頸動脈一, 鎖骨下動脈 脈拍曲線にも変化がおこる。しかるに、弛期がきわ めて長いか、Es 後の収縮で心充えいの増え、拍出 量の増すとき、より大きくなつた圧のおこりかたの もとで駆血され、第1音はより高くなり、脈波図も よりはつきり書ける。心収縮に大小のあるときに生 じる現象の差は、こゝでも、不全の有無におけると 同様で、Scherf、Boyd⁽²²⁾は心衰弱で As の雑音の よわくなるか、消えることを述べた。完全でなくと も,機械的交互拍のときにも,これが現れる。大動 脈弁が閉鎖不全をおこすと、心と大動脈の間を、血 液が行つたり、 戻つたりする。 これは、 大動脈に送 り出された血液の一部は、弛期における左室と大動 脈の圧差による。こうして左室は、 弛期に 2 方向か ら血液をうける (左房と大動脈)。 それゆえ, つぎ の縮期には、決定的にふえた充えいをもち、かつ、 大動脈へ、開けつばなしの連絡をもつことになる。 それゆえ、左室の圧は高まり、心はその内容を大動 脈へ送る。これは、心の収縮型式に根本的な変化を きたすこと」なる。なんとなれば、等長性収縮は、 他の状態で急に圧があがる場合と同様、左室によつ ては, 実行されなくなる。 充えい が 大 きくな るか ら, 左室は拡大する。しかし, 大動脈は多くの血液 をうける。大動脈が大きな拍出量をうけとるに,充 分な空間をもたなければ,血液は,ただちに,動脈 系へ伝わる。これにより、動脈系はふくれる。風洞 **系は拡大する。ことに、のびる。これが左室の全駆** 血期を、いつも、増させることになる。そして、一 定の平衡に達するまで, ふり子形の血量は, たえず 増える。それゆえ、左室の容量作業は Ai のさい、 ほとんどいつも, ふつうの場合のそれより数倍も多 くなる。心室充えいの大きくなることは、それ自 身、充えいの対策となる含みをもつ。すなわち、心 筋線維の緊張が大きくなると, 収縮が加速され, 心 室の収縮力がたかまる。そのほか、充えいの増しは 肥大をおこす。加速により肥大した左室は、その内 容を,拡大した抵抗の減つた脈管床へ送り出す。そ れにもからず、心は、やはり、大きい拍出量の

変化に診断的価値をみとめる人もある。頸動脈脈拍 送り出しに多くの時間をかける。そ れ ゆ え,ATZ は延びる。しかも、As のときよりいちじるしい。 縮期前性心室圧の比較的高いこと、および、心室圧 の亢進が加速されることなどが、ASZ を短かくす る。ときには、測れないほど小さくなりうる。心力 学の変化から,大動脈弁閉鎖不全時の脈波の特長が 説明できる。頸動脈一、鎖骨下動脈曲線の特長は、 急で, 高くあがること, いゝかえると, 脈波の頂点 が早期にでき,下行脚に,切り込みがなくなること である。切り込みのなくなることは,弁のないこと を意味し、または、弁の閉鎖能が完全にないことを 示す。Ai が不完全なら、すなわち、弁の閉鎖が遅 れ、そして、送り出された血量が部分的に逆流した のち、それでもなお、一過性に弁縁がふれるほどな らば、下行脚に深い切れ込みがおこる。しかし、こ ういう場合より、切れ込みが不明となり、または、 ごく軽度に曲線のまがる程度になることの方が多 い。かような曲線は、重症でなくとも、機能的にも おこりうる。たとえば、大動脈弁心内膜炎に、しば しばみる。かようなとき、むしろ、切れ込みが失わ れる。これが、経過とともに変化する。Aiにおけ る頸動脈一,鎖骨下動脈波の頂上が二つのいたゞき をもつことがある。その間が深い鞍部を示す。これ は、Asによるとする考えは、確かに、まちがいで ある。Asにおこることもあるが、しかし、それは 同時に、Ai のあるときにかぎる。Ai の脈波曲線の 下行脚に, さらに, 第3の曲線隆起を見ることがあ る。これは、おそらく、"stehende Wellen"によ つて生じるのであろう。これは、動静脈吻合・動脈 管の開存にもおこり、左→右吻合がいちじるしく、 左室の拍出量のきわめて大きいときに現れる。Ai における大腿動脈曲線の上昇脚に一つ、または、二 つの棘を見る。これが上昇曲線をかなり乱すことが ある。この兆候は、拍出量のいちじるしく大きい兆 候で、おそらく、急にひろげられたのちに、動脈が 収縮することによるのであろう。不正拍時にしらべ ると、長い弛期のあとだけにおこる、弛期が短かい あとなら不明、または、消える。頸動脈一、およ び、鎖骨下動脈々拍曲線を記録すると、とくに、精 確に、連合性大動脈弁膜症をきめることができる。 このさい、階段的な上昇をし、ゆるやかな上昇をす る脈波がでる。伝わる心雑音の振動により脈波曲線 はこまかくふるえる。脈拍の頂上が遅れる。これは Asのより確かな兆候である。脈波振巾の大きくな ること、切り込みがなくなるか、不明になること、

曲線の急なさがりは、いずれも、Ai のより確かな 兆候である。心力学から、連合性の診断もできる。 同時に、As が、または、Ai が優越しているかどう かもわかる。Ai が優越しているなら、ASZ は短か い。これに反して、Asでは、代償性なら尋常どお りで、非代償性なら、大てい、ASZは延びる。 ATZ は双方とも延びるが、Ai が優越すれば、それ だけ、ATZはいちじるしく延びる。Ai では拍出量 も増え、同時に、As があれば、それだけ増えかた が制限される。大動脈弁と、僧帽弁の連合性弁膜症 について、簡単にいうと、ASZ に変化があれば、 それだけ、僧帽弁の関与を、ATZに変化があれば、 それだけ、大動脈弁の関与を考えるべきがある。心 内膜炎における弁の変化のおこりかたをしらべるに は、心力学的検査が都合がよい。これらの変化は、 他の臨床的検査法をもつてしてはむずかしい。純粋 の Ai に、As が加われば、ASZ はいつも長くな り、また、As に Ai が加われば、ASZ が短かくな り, また, 連合性大動脈弁膜症でも, 純粋な As の それより,短かくなる。

b) 心不全, とくに, うつ血性心不全について 高血圧症が完全代償を保つているときには、ASZ も、ATZも、尋常である。代償不全のときには、 まず、ASZ が延び、それから、ATZ が延びる。そ して、ついに、心は、縮期において上昇してゆく大 動脈圧にたいして、ついに、勝つことができなくな り,心拍量は減り,ATZ は短かくなる。Holldack (10)は、高血圧症の DAZ が平均して延びていること を見た。わたくしは、DAZ の延びのほかに、UFZ の延びている例を相当数見た。これは、Hensler (13), Blumberger(2)の所見と一致する。Hensler は、高血圧症にかんするかぎり、ASZの変化を、 たゞちに、心筋衰弱のあらわれとすることはできな いといつた。しかし、わたくしは、これに賛成しな い。むしろ、うつ血性心不全においては、DAZ ば かりでなく、一定条件のもとでは、UFZ も延びる であろうと考える。理論的にいえば、風洞系の弾性 変化は、ASZ を直接変化させないし、また、弾性の 減りは、ATZに、より直接的に影響し、E'型では 延長を期待しえよう。たゞし、風洞系の弾性を変化 させうる実態には、附加的な諸条件が多い(動脈硬 化性心筋線維化, その他)。それゆえ, 期待どおりの 数値はえられなかつたとも考える。ASZ の延びは、 W 型にくらべると、E' 型では少数例にしかおこら ない。病態、ことに、臨床では、純粋な型で一次的

心作用を見ることができない。ヒトの病態では、観察条件が複雑すぎる。一次的作用(木下論文(15)(16)参照)は、きわめて、急激に、二次作用においわれてしまう。こうしたことからして、末梢の循環因子の変化が、心の力学にはたらく一次作用の決定を模型のようには表現しないと考える。

VI. ま と め

Wezler 法の当教室変法と、Holldack-Blumberger 法とを同時に用いて、各種心・脈管疾患の治療前後における、また、低酸素試験・テスト量の各種降圧剤・脈管活性剤、および、Noradrenalineを使用したさいの、心、ならびに、末梢脈管力学の変化を把握しようとこゝろみた。

- 1. Luisada の記載する Stethoscopic microphone に準じた特性をもつクリスタルマイクロフォンを用いて心音を採取した。これを、頸、ならびに、大腿動脈波・ECG (第 Π 誘導) と同時に、オッシログラフで記録し、その Polygraph について、計測を行つた。
- 2. 健常 30 例からえられた心力学的数値の尋常 範囲は、UFZ が 34~75 σ 、DAZ が 13~63 σ 、ASZ が 84~110 σ 、ATZ が 253~314 σ 、ATZ/ASZ が 2.4~3.6 であつた。
- 3. 僧帽弁膜症では、代償不全がとれるにしたがつて、延長していた ASZ、および、短縮していた ATZ は尋常化の傾向を示す。非代償時の閉鎖不全の強い大動脈弁膜症では、ASZ が短縮し、ATZ は延長、ないし、不変である。代償が回復すると、ASZ が延びて尋常値に近づき、大きい ATZ/ASZ 値も尋常化する傾向にある。
- 4. Keith-Wagener I-II 型以下の本態性高血圧においては、DAZ、および、ASZ の延長したものが、やく半数を占める。KW II-III 型以上になると、ASZ のいちじるしい増しとともに、UFZ の延長が目立つ。たゞし、ATZ の延長例は少ない。W型高血圧症では、KW の度のすゝむにつれて、DAZ、UFZ、ならびに、ASZ の延長が多く見られる。E′型でも、W型と同様の傾向がある。たゞし、ASZ 延長の頻度はより低い。M型では、UFZ、ASZ、および、ATZ の延長しているものが多い。ECG、または、尿に所見のあるものでは、UFZ、DAZ、および、ASZ の延長が多く、所見のないものでは、ATZ の延長が目立つ。縮期圧の高さによる分類には有意の差を見ない。しかし、弛期圧が高くなるにつれ

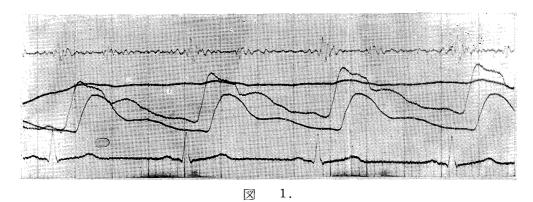
て、UFZ、DAZ、および、ASZ は延長する傾向を 示す。

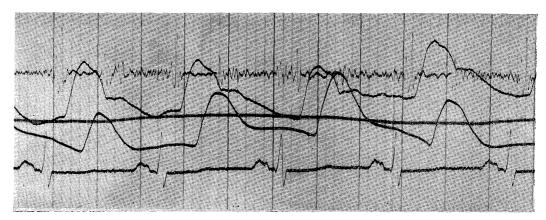
- 5. Noradrenaline 静脈注射時の心力学は,圧反応を呈す。Apresoline は,緊張低下型末梢脈管力学反応を示し,このさい,心の力学的数値は,容量反応を示す。Ansolysen は,末梢循環にたいしては,一定の作用傾向を示さないが,心力学では,圧負荷の傾向を示す場合が多い。Serpasil は,緊張低下型の末梢脈管力学反応を示す場合が多い。たゞし,心力学的数値には,一定の傾向を見ない。降圧剤を慢性に使つて,臨床効果を認めなかつた例では,たとえ,末梢循環に有意の変化があつても,心力学的関係には有意の差を見なかつた。これにたいし,臨床的に効のあつたものでは,心・末梢ともに圧,または,容量負荷がとれた。
- 6. 腎性高血圧症では、DAZ、および、ASZ の延 長が目立つ。さらに、慢性腎炎を除いた 全 例で、 ATZ がいちじるしく短縮している。この傾向は、 代償不全がとれてくると、尋常化の傾向を示す。
- 7. 慢性肺性心 2 例のうち, 1 例は低血圧性調節緊張低下末梢脈管力学を, 1 例は W+E' 型末梢脈管力学を示し,心力学は,ともに圧反応を示す。これらの変化は,Digitalis 剤,ならびに,Theocolineの使用で,僅かながら尋常化の傾向をとる。
- 8. 心硬塞の大部分、および、高血圧性心疾患では圧反応を示すものが多いが、狭心症、ならびに、 冠硬化症ではかよる傾向が少ない。
- 9. Amyl nitrite は、末梢には緊張低下性にはたらく。心力学は圧反応を示す。Theocoline、ならびに、Lacarnol "forte"は、心・末梢脈管力学に一定の変化傾向を示さない。低酸素試験は末梢では、緊張低下性に作用するが、心力学では、一定の傾向を示さない。

10. 慢性腸炎によりいちじるしい全身衰弱を呈していた例では、UFZ、DAZ、および、ASZ が、いずれも延長し、ATZ は尋常以下の値を示した。Vs、Vm も少なかつた。

稿を終るにあたり、終始、御懇篤な御指導と 厳正な御校閲を賜わつた恩師斎藤十六教授に厚 く御礼申上げます。また、御援助下さつた稲垣 義明博士をはじめ教室の協研者諸兄に感謝しま す。

本論文の要旨は,第21回循環器学会総会(昭32,4)で発表した。


文 献


- 1) Blumberger, Kj.: Arch. Kreisl.forsch., 6, 203, 1940.
- Blumberger, Kj.: Verh. dtsch. Ges. kreisl.forsch., 14, 237, 1941.
- 3) Blumberger, Kj.: Verh. dtsch. Ges. Kreisl.forsch., 15, 118, 1949.
- 4) Blumberger, Kj.: Verh. dtsch. Ges. Kreisl.forsch., 16, 121, 1950.
- 5) Blumberger, Kj., Meyer, B.: Arch. Kreisl.forsch., 16, 277, 1950.
- 6) Blumberger, Kj., Kemmer, G., Linke,H.: Verh. dtsch. Ges. Kreisl.forsch.,21, 328, 1955.
- 7) Blumberger, Kj.: Verh. dtsch. Ges. Kreisl.forsch., 22, 79, 1956.
- 8) Frank, O.: Z. Biol., 32, 370, 1895.
- 9) 古川英政·志鎌重知·徳政義和: 日本循環器学 会誌, **20**, 10, 590, 昭32.
- 10) **Holldack, K.:** Dtsch. klin. Med., **198,** 71, 1950.
- 11) **Hegglin, R.:** Schweiz. med. Wschr., **83,** 1103, 1953.
- 12) Hochrein, M.: Herzkrankheiten, Band I, Dresden u. Leipzig, Theodor Steinkopf., 1941.
- 13) Hensler, L.: Cardiologia, 27, 257, 1955.
- 14) 稲垣義明: 日内会誌, 45, 1175, 昭32.
- 15) 木下安弘: 千葉医会誌, 34, 1, 昭33.
- 16) 木下安弘·橘 正敏·高橋 懋·桑山八郎·浪川 素· 稲垣義明: 第21回日本循環器学会総会,昭32.
- 17) Luisada, A. A.: The Heart Beat; Paul B. Hoeber, New York, 1953.
- 18) Reindell, H. u. Klepzig, H.: Verh. dtsch. Ges. Kreisl.forsch., 15, 122, 1949.
- 19) 斎藤十六: 最新医学, 10, 1951, 昭30.
- 20) Schultz, H.: Z. Kreisl.forsch., 29, 425, 1937.
- 21) Siedek, H. u. Tomek, S.: Cardiologia; 17, 334, 1950.
- 22) Scherf, D. u. Boyd, L. J.: Klinik und Therapie der Herzkrankheiten und Gefässerkrankungen; Wien, Springer Verlag, 1955.
- 23) 徳政義和・中村和之・川並節夫・稲垣義明・井原

第 1 号 橘:病態における心,ならびに,末梢循環力学的数値と,その治療による変化 -159

博: 日内会誌, 44, 4, 320, 昭30.

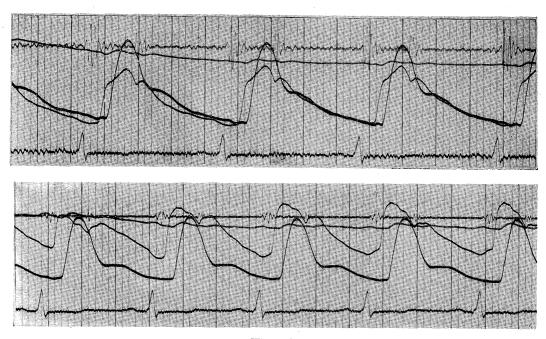
- 24) Wiggers, C. J.: Circulatory Dynamics; New York, Grune Stratton Inc., 1952.
- 25) Wezler, K.: Verh. dtsch. Ges. Kreisl.forsch., 15, 18, 1949.
- 26) 渡辺昌平·小林康郎·富井信明·浪川 素·木下安 弘·橘 正敏·長谷川正博·川辺兼美·植松 哲· 山內弘久·石川和夫: 日本航空医学心理学会第 2 回総会, 昭31.




Z 2.



図 3.


☒ 4.

図

5.

☒ 6.

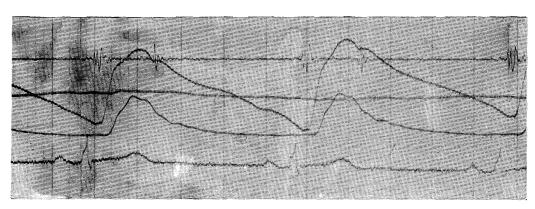


図 7 の 1.

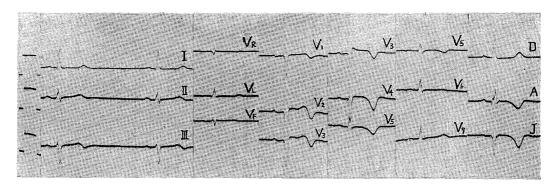


図 7 の 2.