簡易循環機能検査における脈拍。および、 動脈血圧の意義にかんする研究

千葉大学医学部第二内科学教室(指導 斎藤十六教授)

飯 鳥 常 TSUNEKI IIJIMA

(昭和34年11月24日受付)

第1部,脈拍,および,動脈血圧の体位変動, ならびに、運動負荷による変動

次

I. は し が き

Ⅲ. 実験材料, および, 実験方法

A. 実 験 材 料

B. 実 験 方 法

Ⅲ. 実験成績

- A. 検査項目別統計について
- B. 項目間の相関について
 - 1. 心肺係数 (Schneider's Index) と

各項目との相関

2. その他の項目間の相関

Ⅳ. 考

- A. 徐拍と機械的心効率について
 - B. 体位変換による脈拍, および, 血圧の 変動について
- V. ま ٤

I. は し が き

循環の適応能力を調べる方法としては、すでに、 Crampton's Test(11), Schneider's Test(61), Tuttle's Pulse-Ratio Test. (70), Harvard's Step Test (27), Turner's prolonged Standing Test(69), to 1 び, これらの変法がある。また, やや, この目的に 相違するところはあるが、福田の疲労判定法(18), Schellong's Test(63), および, これらの変法なども 循環器の適応能力の優劣を判別するために使われて

これらの方法を利用して,集団的に,体力劣弱者 の"ふるいわけ"をしようとするには、信頼度が高 いこと以外に、方法が簡易であること, なるべく特 別の複雑な装置・操作を必要としないことなども、 附帯条件となる。

この意味で, Schneider (1920年)(61)の古典的な Step Testと、Postural Test を組み合わせた方法 は、比較的良く前記の諸条件を満足させる。 それゆ え,世界各国の軍隊でも広く採用され,わが国でも 旧陸軍は Point Test とよび、その Index を心肺 り、33年4月から6月にわたつて検査した。 係数と名づけて利用した。本テストには、すでに、

多くの批判があり、信頼度にたいする評価について も、観察者によつて、かなりの相違がある(67)。わ たくしは、Index だけでなく、本テストに含まれ る, それぞれの検査項目と, 項目間の相関々係を統 計的に調べ, さらに, 本テストの基磁的資料である Schneider の成績(62), および, 富田教授らの追試 成績(68)と比較し、この方面から本テストの信頼限 界を明らかにし、同時に、健康人の脈拍、および、 血圧にかんする生理的変動についても、補遺しよう とした。

II. 実験材料, および, 実験方法

A. 実験材料: 被検者として陸上自衛官, やく, 500 名を A·B 2 群にわけた。

- 1. A群; 400 名 (18~30 才, 平均年令 22.1 才)。 この群は、下志津部隊 1800 名のうちから 無作為に 抽出したもので、32年6月から33年3月にわたつ て検査した。
- 2. B群; 114名 (18~29才, 平均年令 21.9才)。 この群は,駐屯地駅伝競走にえらばれた隊員からな
- B. 実験方法; 両群ともに, Schneider の原法を

脈拍数と、運動後脈拍数の算出法がちがうため、分の最頻値と平均値の差は 2.11 におよぶが、Aでは、 時脈拍数の不一致がおこるので、両者の差が ± 2 拍 わずか 0.34 に過ぎず、また、分時 90 拍以上の例は、 をもつて脈拍回復時間とした。

III. 実験成績

A. 検査項目別統計について (表 1, 2)

A群の人員構成は、Schneider が 2000 例の飛行 士について行つたものと同じような構成と考えられ るので、統計値については、できるだけ、両者を比 較しながら検討した。

- 1. 臥位時の脈拍数 (表 1.3. 図 1)
- a. A群 (Aと略);変域 42~90,範囲 48,最頻 值 66, 平均值 65.66±0.44, 標準偏差 8.82
- 值 63, 平均值 63.30±0.67, 標準偏差 6,76

第1表 心肺係数と脈拍の項目別統計(A,B群)

~									<u>, , , , , , , , , , , , , , , , , , , </u>
	2 分	A	君羊 (400	8)	В	群 (114.	<u>4)</u>
項	1	~	1	6	v	Μ		6	ひ
_ ′	, 肺保製	11.96	± 0.12	257	21.5	12'89 ±	021	221	17.2
	臥位 脈拍	65 66	± 044	8.82	134	63.30 ±	0.63	6.76	10.7
胀	立位脉拍	74.87	± 0,52	1047	140	7245 ±	077	8.22	113
	立位增加	-8.94	± 033	667		8.68 ±	0.49	5.25	
	頁荷後 脈拍	9199	1 0 5 3	10.62	115	8675 ±	1.00	10.65	123
拍	夏荷 後增加	15.98	± 037	730		14 b3 ±	055	590	
L	回復時间	5625	± 110	2193	428	5553±	214	22.81	412
M	= 算纤平	均(5 = 1	車筆 偏	1差,	ν =	变兵	1.保第	ر

第2表 血圧の項目別統計(A,B群)

	<u>.</u>	T	A) 詳 (400%	名)	B 君 (1147	٤)
項	月	_	М	б	Υ	М	6	~
縮	臥	位	121.79±0.60	11.95	9.8	12241±081	8.65	7.1
排	汇	値	111871062	12.45	11.1	71.19±0.94	10.08	14.2
Æ	体位变	勤	-8.69 ± 0.52			-435±065	6.93	
弛	臥	笙	68.49 ± 075	14.90	21.8	71.19±094	10.08	14.2
期	ÌĹ	红	6444±0.79			72.28±0.78		
Æ	体位变)de	-3.33 ± 0.69	13.70		+ 1. 54 ± 0.9 4	10.06	
朓	臥	位	52.74±0.70	13.97	26.5	5 /. 14 ± /. 1 1	11.86	23.4
	Ì	肛	47.44±0.60	1202	25.3	4 6.8 3 ± 0.9 7	10.31	22.0
JE.	体位变	勉	-6.29 ± 0.5 6	11.13		~5.40±1.08	11.49	
7	臥 '	征	85.91±0.53	10.68	125	87.76± 1.00	10.67	122
妇	ÌĽ	仙	79.96 1 054	10.87	13.6	82.85±1.15	12.27	148
圧	体位变	動	-5561062	1233		-508±121	12.86	

平均血压 = 驰期压 + 分胀压, 体位1563度到11配位于基准

検討:

i. A と Schneider の成績 (Sと略) をくらべ ると、Aが最頻値で6拍、平均値でやく8.5拍少く、 変域と標準偏差も少いので, その分布曲線は, Sよ り左へ偏移し、かつ、急である。この差は、人種と 体格の相違によるばかりでなく,極端な頻拍例数の

忠実に実施した。ただし、回復時間の決定は、立位 多少にも大きく影響されると考える。すなわち、S Sで8.5%, これにたいして、Aではわずか1.5%で ある。meylan (44) は 40~80 拍を "良い"健康の示 標としたが、これを用いると、Aでは94.8%が、S では71.5%が該当することとなる。

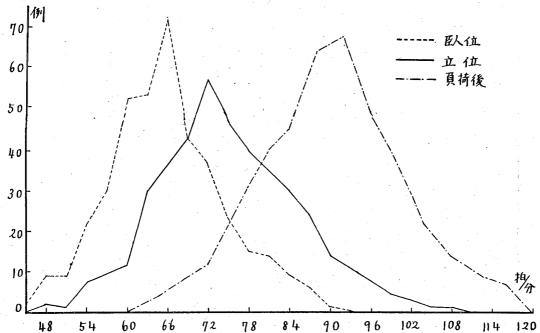
> ii. AとBをくらべると、Bが平均値でやく3拍 - 少く,変域が徐拍側へ片より,標準偏差も小さい。

iii. 健康人の臥位尋常脈拍数については、被検者 の人種・年令・体格, および, 季節などの変動要因 がちがうので、そのままで、Sと比較することはで きない。たとえば,小田教授(46)は,成人の尋常脈 拍数は分時60~70が生理的範囲で, 臥位64, 坐位 b. B群 (Bと略); 変域 42~84, 範囲 42, 最頻 68, および, 立位 72 であるという。耐久力を必要と する運動家には、徐拍が多く、これは循環機能の機

第3表 脈拍の統計(その1)

194	K 拍	飯島	Schneider	订爲抽出醉
	14	(400131)	2000例発行士	200例(精查)
平:	均年令	22.1 ± 0.13	248 ± 005	
	变 塆	42~ 90	42~117	48~ 102
	最頻最徐差	48	75 (60)	- 54
臥	最頻值	66	72	72
	平均值	65.66 I 0.44	74.11 = 0.15	75.0 ± 0.47
	標 準偏差	8.82	10.22	
H	60 以下	31. 5%	10.5%	75 %
	70 以下	76.3%	35.9 %	31.0%
位	80 以下	94.8%	71.5%	670%
	90 以上	1.5%	8.5 %	110%
	100 以上	0	1.05 %	
	变 域	48~108	51~147	63~126
ì	最頻最餘差	60	96 (69)	63
"	最頻值	72	90	90
l	平均值	74.87±0.52	91.99±0.19	90.1110.55
ľ	標準偏差	10.47	12,56	
1	50~ 90	94.3 %	50.7%	55.5 %
往	80 XF	67.8 %	15.4%	18.0 %
7"	100 XI	1.25%	24.6%	16.0%
1	130 以上	O	4份(02%)	/ 0

()内。教字は極端例を除すて大場合


械的効率がすぐれていることを示すといわ れてきた(6)。本テストの成績も,また,こ れらの記述と一致する。

2. 立位時の脈拍数 (表 1.3. 図 1)

- a. A群 (Aと略);変域 48~108, 範囲 60, 最頻 值72, 平均值74.87±0.52, 標準偏差10.47
- b. B群 (Bと略); 変域 54~93, 範囲 49, 最頻 值72, 平均值72.45±0.52, 標準偏差8.22

検討:

i. AとS (Schneider の成績の略) をくらべる

と、両者の差は臥位脈拍数よりいちじるしく、変域・最頻値・平均値、および、標準偏差について、いずれもAがSより少い。しかし、臥位脈拍数とちがい最頻値と平均値の差はAがSより大きく、したがつて、Aの分布曲線における頻拍側は、Sのそれにくらべてなだらかである。Meylan(44) は50~90 拍を"良い"健康の示標としたが、これにしたがえば、Aでは94.3%が、Sでは50.7%が該当することとなる。

ii. AとBをくらべると、Bが平均値で2拍少く、変域は徐拍側へ片より、標準偏差も小さい。しかし最頻値が等しいのに、平均値はBの方が小さいので、Bでは頻拍例が少いわけである。

3. 立位による脈拍増加(立・臥脈拍差)(表1,4,図2A,3)

a. A群 (Aと略);変域-3~+33, 平均値 8.94 ±0.33, 標準偏差 6.67, 分布曲線の 右側がなだらか である。

b. B群 (Bと略); 変域 0~+21, 平均値 8.68± 0.52, 標準偏差 5.25

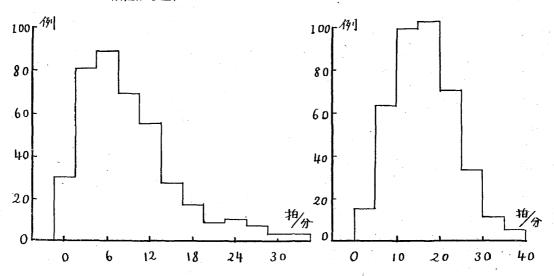
検討:

i. $A \ge S$ (Schneider の成績の略)をくらべると、Aが変域、および、平均値で、はるかに少ない。充分安静をとらせて、注意深く、臥位脈拍を測ると、立位脈拍が臥位脈拍より少なくなることは、きわめて稀で $^{(50)}$ 、Aでわずかに、2 例 (0.5%) 認められただけである。Meylan $^{(44)}$ は +16 拍をもつて健常の

限界値とし、小田教授 $^{(46)}$ は +20 拍を用いたが、これらにしたがうと、A では 86%、B では 92% が健常群に該当することとなる。

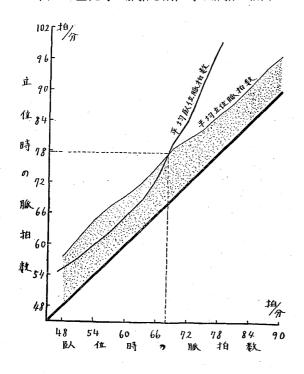
ii. AとBをくらべると、Bの変域はせまいが、 平均値には統計的な有意差がない(危険率5%)。 それゆえ、これだけでは、AB 間に優劣をつけることができない。

iii. Schnoider は 2,000 例の相関図から,立位脈 拍数を基線にとつた場合の立位脈拍増加の平均値 が,前者の大きくなるほど大で,逆に,臥位脈拍数 を基線にとつた場合には,前者が大きくなるほど小 となること,さらに,この2つの系列のうち,一方 が増せば,他方の系列が相対的に,かつ,直線的に


第4表 脈拍の統計(その2)

31					
A	w.	拍	飯島	Schneidern	無作爲抽出群
1	^	14	(400134)	2000例张行士	200例(精查)
立	芰	填	- 3a + 33	-15~ ±57	-3~±36
位	¥	均值	8.94 ± 0.33	17.9 ± 2	14.9 ± 0.4
账		≤ 0	7.5 %	3.3 %	3.0%
拍	3 0	拍汉上	1.5 %	12.6 %	2.1 %
增	40	拍火上	0	1.3 %	0
加	50	拍火	0	0.3 %	0
頁花	觩	平均值	91.99 ± 0.53	10242±0.20	102.20 I 0.19
胀	钕	標準偏差	10.62	12.97	12.10
員だ	讨後	平均值	15.98	10.43	12.1
1	拍	≤ 0	1.0%	10.45%	5.5%
		最大値	39	48	36
3.4	2012	25拍汉上	12.25%	44 %	5.0
立臥	位礼	阅修教	0.747±0.033	0.666 ± 0.008	0.729 ±0.022
剪荷	炎 - 宜/	叶明诗教	0.705 ± 0.033	0.789±0.00b	0.801±0.005

図2. 体位変換、および、運動負荷による脈拍増加の分布


A 臥位から立位へ

B 立位と運動負荷後

減る関係にあるといつた。しかし、これは、傾向的にいえるだけであり、ことに、Aでは、かような傾向すら、判然としなかつた。すなわち、臥位脈拍数を基線にとつた立位脈拍の増加にかんする平均値線は、臥位脈拍の変域 $48 \sim 90$ にわたつて、やく 9 拍の差で、ほば水平に走つており、また、立位脈拍数を基線にとつた立位脈拍増加にかんする平均値線は、上方にむかつてゆるやかな凸を示す緩曲線を描いている。いいかえると、一応、両系列の相対的相反性は認められるが、A群程度の比較的せまい臥位

図3. 立位時の脈拍と臥位時の脈拍の相関

脈拍の変域内では、Schneider が 2,000 例群相関図から認めたほどの明らかな規則性を見出しえなかつた。しかし、臥位脈拍の変域が頻拍側へ拡大すればするほど、この傾向がはつきりするだろうとは予想しうる。このことは、臥位脈拍と立位脈拍の増加との相関係数が -0.127 ± 0.05 で、統計的に有意でないことからしても、明らかであろう。

4. 運動負荷後の脈拍数 (表 1, 4, 図 1)

a. A群 (Aと略):変域 64~128,平均値 91.99 ±0.53,標準偏差 10.62

b. B群 (Bと略):変域 64~108, 平均値 86.95 ±1.06, 標準偏差 10.65

検討:

i. AとS (Schneider の成績の略) をくらべる と, 臥位, および, 立位脈拍数より平均値の差が小 さくなつているが, これは, つぎに述べる負荷後に おける脈拍増加の差による。標準偏差は両者ともに 臥位<立位<負荷後となつているが、標準偏差が大 きいほど, 測定誤差が同じならば, 異常者の発見が 容易となる利点はある。しかし、脈拍に影響をおよ ぼす因子が増し, これを一定の条件に保つことが困 難であればあるほど、測定誤差も増すので、標準偏 差の大きさだけが、方法論上の優劣を決めるものと はなり得ない。とくに、運動負荷後の脈拍数は、短 時間にいちじるしく変化するので、各例でとに、正 確に,同じ時期に,同じ位置で,同じ程度の休息を 与えた状態で測定しなければならない。これは、実 際上、かなり大きい困難をともなう。しかし、臥位 および、立位脈拍数をもつてするテストの欠点であ

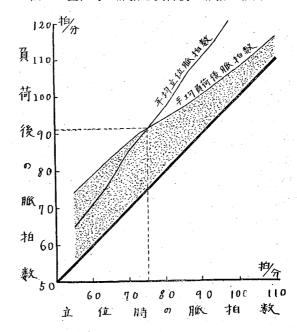
る精神的影響を除去,ないし,軽減しうる意味から すれば,3者とも,独自の特徴と価値をもつと思わ れる。

ii. AとBをくらべると,立位脈拍数よりも平均値の差が大きい。それゆえ,見かけ上,この点だけで考えれば,負荷後の脈拍に注目する方が,立位脈拍のそれよりも,優劣の判断にまさつているともいえる。

5. 負荷後の脈拍増加 (表 1, 4, 図 2 B, 4)

a. A群 (Aと略):変域 0~+39, 平均値 15.98 ±0.37, 標準偏差 7.30

b. B群 (Bと略): 変域 0~+29, 平均値 14.36 ±0.59, 標準偏差 5.90


検討:

i. AとS (Schneider の成績の略)をくらべると、Aの方が平均値でやく5.5 拍多いのに、変域はむしろ、せまく、とくに、負荷によつて脈拍が変化しないか、かえつて、減る例が、Sの10.5%にたいし、Aではわずか1.0%にすぎなかつた。しかし、Flack & Boudler (17) が要注意の閾値とした+25拍以上が、Sの4.4%にたいし、Aでは12.3%に達した。このAとSの平均値の大きな相違は、両者間の身体機能の優劣によるものではなく、被検者の体格差を無視して、同一の運動条件を用いたため、労作の強さにいちじるしい差を生じたためではないかと思われる。

また、Schneider は、立位脈拍数と負荷後脈拍数 とのあいだにも、臥位脈拍数と立位脈拍数のあいだ に存在した相対的相反性を見いだした。 すなわち, 負荷後の脈拍数を基線にとると, 負荷後の脈拍増加 の平均は, 前者が大きいほど大きくなり, 逆に, 立 位の脈拍数を基線にとると, 負荷後の脈拍増加の平 均は、前者が大きいほど小さい。したがつて、この 2つの系列では、原則的に、一方の系列が増せば、 他の系列が相対的に減るといえる。A群の成績も, やはり、この傾向をはつきり現わしており、また、立 位脈拍数と負荷後の脈拍増加の相関係数が -0.301 ±0.05で、推計的にも有意であることからも認めら れよう。このため、逆に、相関係数では、立位脈拍 数と負荷後の脈拍数の +0.705 ±0.05 にたいし、 臥 位脈拍数と立位脈拍数は +0.747 ±0.05 で, かえつ て,後者が高い相関を示している。

ii. AとBをくらべると, Aの最大値が +39 であるのに, Bはわずかに +29 で, 平均値と標準偏差がともに, Bの方が少ない。まえに述べたように, 立

図 4. 立位時の脈拍と負荷後の脈拍の相関

位脈拍数と負荷後の脈拍数は、ある程度まで、相反的である。しかるに、BがAより、立位脈拍数につき、平均値でやく2.4 拍少ないのであるから、 負荷後の脈拍の増しは、Bの方が多いはずである。ただし、A、B間に優劣はないとする。それゆえ、単なる平均値差よりも、実質的にはより大きい差が存在するといえる。

6. 脈拍の回復時間 (表 1)

a. A群(Aと略): 平均値 56.25 ±1.10 秒, 標準 偏差 21.93 秒

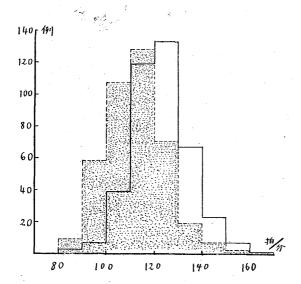
b. B群(Bと略): 平均値 55.53 ±2.28 秒, 標準 偏差 22.81 秒

検討:

方法は、運動負荷直後から15秒間隔で、15秒間の計測値を4倍して、分時に換算し、これと、20秒間における計測値を3倍した立位の脈拍数とを比較する。それゆえ、回復時間としては、30秒、60秒、90秒……と、30秒ごとの数値しかえられず、測定誤差が大きくなるおそれが充分ある。同じ運動負荷条件を用いながら、Flack & Boudler(17) は30秒を、Schneider(62) は120秒を要注意の閾値としているのも、かような点に大きく左右される。しかしAの成績からすれば、要注意の閾値を90秒にすることが妥当であろう。また、A・B間にも、平均値、および、標準偏差はともに有意差を示さず(5%の危険率)、結局、Schneiderの原法では、回復時間が肉体的の優劣を現わす基準にはなりにくいことを思わせる。

7. 臥位時の縮期圧 (表 2.5. 図 5)

a. A群 (Aと略): 変域 90~153 mmHg, 平均値 121.79 ±0.60 mmHg, 標準偏差 11.95 mmHg


b. B群 (Bと略): 変域 86~148 mmHg, 平均値 122.41 ±0.81 mmHg, 標準偏差 8.65 mmHg 検討:

i. $A \geq S$ (Schneider の成績の略)をくらべると、変域、および、標準偏差にほとんど差はないが、平均値ではAがSよりやや高い。これは、血圧の低い例(100 mmHg以下)がA に多かつたためである。

第 5	麦	縮	期	Æ	\mathcal{O}	統	計
201	- 22	ΨILI	251	/-J	~	100	н,

*	缩	押	圧	飯	焦)	(400131)	Schneide	7 (2.0001)
	变		琪	90	~ 1	53 mm113	86~1	24 ww Hd
臥	平	均	值	121	79 ±	0.60 Mig	117.98±	0.15 mm!
	標	準備	角差	11.5	75 m	m 11g	9.98 2	nm Hg
位	10	0 mm	19:以下		2.5	%	6.1	%
	146	mm+8	以上		7. 5	%	1.4	
	变		竣			8 mm Hg		
ì		均		111.	87 ±	0.62 num H3	120.261.	0.18 mmH8
	標	準備	吊差	12.	45 1	m m Hg	11.78	mmHz
红	100	mm H	9以下	1	5.2	%	5.0	
	140	mm H	火上		2.5		3. 9	5 %
工队	100	m n Hg	汉下.		15	%	2.2	5 %
年に	140	2 MAR.	沙人上		1.28	5 %	10	
体		:					+40~-	32 ^{mm H3}
位に	平	均	値	- 8.	69±0	2.52 ^{mm Hg}		
ţ	標	净相	吊差	1	0.38	mmHz		
3	Ì	11	队位		6.5		55.50	5 %
变動	4	11.0	7977 Hg		8 0	% .	17.90	5 %
¥,0	立,	すく	臥位	7	5 5	%	26.5	0 %

体位による変動は臥位が基準

ii. AとBをくらべると、変域、および、平均値にほとんど差はないが、標準偏差ではBがAより小さいので、B群の方がA群よりも血圧の高・低例が少なく、分布曲線が急である。

8. 立位時の縮期圧 (表 2.5. 図 5)

a. A群 (Aと略): 変域 84~148 mmHg, 平均値 111.87 ±0.62 mmHg, 標準偏差 12.45 mmHg

b. B群 (Bと略): 変域 88~152 mmHg, 平均値 117.41 ±1.04 mmHg, 標準偏差 11.10 mmHg 検討:

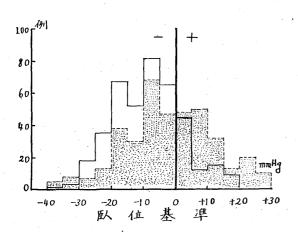
i. AとS (Schneider の成績の略)をくらべると、標準偏差にほとんど差はないが、平均値ではAがSよりもかなり低く、変域も血圧の低いがわでは一致しているのに、血圧の高いがわではAがやく20mmHg もせまくなつている。これは、臥位時とは逆に、血圧の低い例(100mmHg以下)がAに多く、血圧の高い例(140mmHg以上)がSに多いためである。したがつて、臥位時でも立位時でも、同じように血圧が低い、または、高い例は、SとAでほとんど差がなくなつている。

ii. AとBをくらべると、変域、および、標準偏差にほとんざ差はないが、平均値ではBがAよりかなり大きい。これは、あとで述べるように、Bの方が、Aよりも、体位による縮期圧の変動が小さいためである。

9. 体位による縮期圧の変動 (表 2, 5, 図 6)

a. A群 (Aと略): 変域 +18~-38 mmHg, 平 均値 -8.69 ±0.52 mmHg, 標準偏差 10.38 mmHg

b. B群 (Bと略): 変域 +15~-23 mmHg, 平 均値 -4.35 ±0.65 mmHg, 標準偏差 6.93 mmHg 検討:


i. $A \geq S$ (Schneider の成績の略)をくらべると、平均値でやく 10 mmHg の差がある。これは、 臥位から立位えの自動的な体位変換にともなう縮期圧の変動が、Sではやく $^2/_8$ 上昇することとなり、 やく $^1/_8$ が下降することとなつているのにたいして、 Aではこの関係がまつたく逆になり、上昇するものが $^1/_4$ で、下降するものが $^3/_4$ におよぶ ためである。

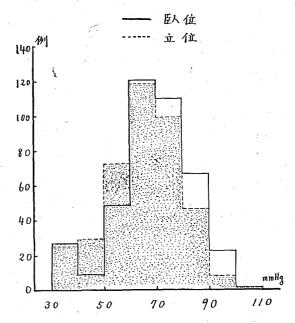
ii. AとBをくらべると、Bは低下するがわがいちじるしくせまくなり、平均値で、低下度がやく4mmHg減り、標準偏差が小さく、分布曲線がAより急で、かつ、(十)のがわへ移つている。しかし、体位変換にともなつて、縮期圧がさがる一般的傾向には変りがない。

iii. 能動的な体位変換による縮期圧の変動につい

図6. 体位による血圧変動の分布 (立位一臥位)

- 縮期圧 弛期圧

ては、Erlanger & Hooker(14) 以来多くの観察が行 われてきたが、観察者によつて報告がまちまちであ る。すなわち、Lee(45)、Sewall(64)、Schellong(68) らは (Schneider と同じように),立位時に上昇す る傾向を認めたが、mortensen (45), Cotton, Rapport and Lewis(10) らは, 逆に, 立位時にさがる傾 向を見た。かようなちがいは、体位による縮期圧変 動が、年令・季節・日差・疲労・環境温度、および 検査時の精神因子などに、たやすく左右されるばか りではなく、転位の速さ、および、そのさいの自発 運動のありかた (たとえば, "いきばり"による腹 圧の変化など) などのような、複雑な影響が加わる ためであると思われる。とくに Schneider の原法 などは、縮期圧の回復過程の終りでろを、連続的な 血圧測定によつてきめないで,脈拍の安定値を間接 的な指標とし、起立後2分、ないし、3分での1点 時測定だけをしている。それゆえ, これを, そのま ま安定した立位血圧とみなすことには疑いがある。


10. 臥位時の弛期圧 (表 2, 6, 図 7)

- a. A群 (Aと略):変域32~112 mmHg, 平均 值 68.49±0.75 mmHg,標準偏差 14.90 mmHg
- b. B群 (Bと略):変域 46~104 mmHg, 平均 值 71.19±0.94 mmHg, 標準偏差 10,08 mmHg 検討:
- i. Schneider は, 弛期圧として Swan の第4 点を用いたのにたいし、わたくしは、原則として, 第5点をとり、第5点がいちじるしく低いか、また は,延長しているときだけに (30 mmHg 以下),第 値 64.44±0.79 mmHg,標準偏差 15.70 mmHg

第6表 弛期圧の統計

	` <u> </u>	
弛期压	飯 島 (400例)	Schneider (2000
变 垓`	32~112 maring	38~106 mm Hg
臥甲均值	68.49± 0.75 many	71.63 ± 0.13 mm/s
標準偏差	14.90 mm 49	2.38 mm Hg.
位 50mm H3以下	8.0 % (32 191)	5 131
100mm Hg以上	0.75% (3191)	1 191
萝 1或	3.4~ 103 mm Hg	42~110mmH3
正平均值	64.44 ± 0.79 mm 19	79.7±0.14 months
標準偏差	15.70 mm 43	9.07 mm Hg
位 50mm #9 以下	13.5 % (54471)	1 131
100mm Hg :从上	0.5% (2例)	12 131
体变 玻	+24~-32 man Hg	
世平均值	-3.33 ± 0.69 71 71	
₹ 標準偏差	13.70 mm Hg	
3 立位〉臥位		
動 ≤± 1.0 mm Hg	11.25 %	
立位人臥位	48.35 %	/ .

図7. 弛期圧の分布

4点を弛期圧とした。それゆえ、変域、および、標 準偏差はともかく、他の統計値については、AとS (Schneider の成績の略)をそのままでくらべると, 誤解するおそれがある。しかし、弛期圧の低い例 (50 mmHg 以下) が、Sの 0.25% にたいし、A で は、8.0%におよぶため、Aの方が平均値でやく3 mmHg 低く, かつ, 標準偏差が 6.5 mmHg 大きい のは、たんに、弛期圧のとりかたがちがうためだけ によるものではないと考える。

11. 立位時の弛期圧 (表 2, 6, 図 7)

a. A群 (Aと略): 変域 34~103 mmHg, 平均

b. B群 (Bと略): 変域 52~98 mmHg, 平均値 72.28±0.78 mmHg, 標準偏差 10.28 mmHg

検討:

i. $A \geq S$ (Schneider の成績の略)をくらべると、 弛期圧の高い例 (100 mmHg以上)の率に差はない(ともに、やく0.5%)。しかるに、 弛期圧の低い例が、S = 0.05%にたいして、Aでは13.5%を占めるため、Aの方が、平均値でやく15 mmHg低く、かつ、標準偏差がやく6.6 mmHg 大きい。これは、たんに弛期圧のとりかたがちがうためだけによるのではないと思われる。

ii. AとBをくらべると、平均値の差は臥位時よりも大きいが、Bの方が変域と標準偏差が小さいのは、臥位時と同じで、標本の分布が平均値附近でより密であることを示す。

12. 体位による弛期圧の変動 (表 2.6. 図 6)

a. A群 (Aと略): 変域 +24~-32 mmHg, 平 均値 -3.33 ±0.69 mmHg, 標準偏差 13.70 mmHg

b. B群 (Bと略): 変域 +18~-20 mmHg, 平 均値 +1.54 ±0.94 mmHg, 標準偏差 10.06 mmHg 検討:

i. A & B & c らべる & c 、平均値でやく 5 mmHg の差があり、B の方が変動は少なく、かつ、その方向は逆である。また、変域では、縮期圧 & c に、低下側がいちじるしく狭くなり、標準偏差が小さいこととともに、分布曲線がA より急で、かつ、(+) のがわへ移つている。また、平均血圧(弛期圧 $+ \frac{1}{3}$ 脈圧)を用いても、体位による変動はB がA よりも小さい傾向にある。

ii. $A \cdot B$ ともに、縮期圧にくらべて変動が小さく、とくに、Bでは上昇する傾向さえある。それゆえ、脈圧は、ともに、臥位から立位への体位変換によって減る傾向にある。ただし、その程度は、 $A \cdot B$ 間に有意の差がなかつた(図 8, 9)。

iii. 能動的な体位変換による弛期圧の変動についても、縮期圧と同じように、多数の観察が行われてきたが、縮期圧の場合と異なり、ほとんどの観察者が、不変か、上昇する傾向を認め、この点では一致している。しかし、わたくしの成績は、Aでわずかながら、むしろ、減る傾向を示した。これは、縮期圧の変動について検討したように、Schneiderの原法が、一点時だけの測定値を用いるために生じた差であろうと思われる。体力のすぐれていると考えられるB群が上昇する傾向を示したのは、A・B両群の血圧回復過程の遅速によると思われる。したがつ

図8. 脈圧の分布 — **臥位** ------ 立 往

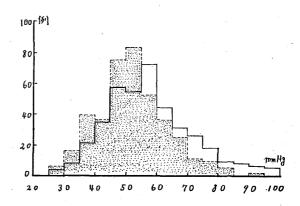
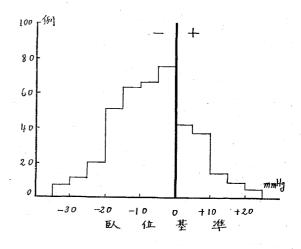



図 9. 体位による脈圧変動の分布 (立位一臥位)

て、A 群でも、血圧の回復過程を、Schellong's $Test^{(63)}$ の第1 部のように、くりかえし測定して、その安定値をとれば、B 群の成績に近くなると思われる。

B. 項目間の相関について (表 7, 8)

1. 心肺係数 (Schneider's Index) と他項目 との相関

心肺係数との相関が ±0.5 を起えるものは, 臥位, および, 立位の脈拍数と体位による縮期圧変動との 3 項目だけであつて, 立位の脈拍増加と回復時間は 相関が低く, 負荷後の脈拍増加は統計的に有意な相 関を示さない。これから, すでに富田教授 (68) らが 指摘したように, 心肺係数は各検査項目とのあいだに, 一義的な相関をもたず, とくに, 臥位, および 立位の脈拍数と体位による縮期圧変動とが, 過大に評価されている傾向にある。前項で述べたように,

第7表 S	Schneider's	Test	の心肺係数	上	項目	間の相関係数
-------	-------------	------	-------	---	----	--------

					<u> </u>								
1 1	1	喇	項	121			A	K		拍		体位缩期	
"	7	^1	山风	ㅂ	臥	征	ì	位	立位增加	真有後增加	回復腩	压燛動	心肺体状
	胀	辶	,	位	+ 0.	747			信賴限:				
飯	ADC X	立(立 增	加	<u>•</u> a	127	† 0.1						
島	16	頁荷	検賞	自加	• 0.	118	- a:	301	-0393		表中。日	りは有意	でないも
51									<u>•0115</u>			のを示す	
400	体	位網	期圧多	支動	<u>• 0</u>	046	• 0. €	086	0.103	+0161	+0.028		
131	N	,肺	係	教	- 0.	5.71	- O.E	60	-0281	0.024	-0294	10517	
\vee	頁	荷後	胀柱	枚	+ a	643	+ 0.	05	+0301	+ 0.3 5	+ 0.294	\$0041	-0656
富	脈	江				771							
щ	7,41	亡人	立地	7 112	- 0.	129	t Q (02		_			
加藤	拍	負荷	线t	曾加	-Q	105	- 0.	256	-0298				
281									-0302				~
281 181	体	位編:	朋庄	奧動	- O.	143	+ 0.0	03	-0205	-0.193	† 0.1 46		
\Box	心	肺	倸	枚	- a	719	- 0.8	346	-0321	-0013	+ 0.00b	+ 0370	

安静時の脈拍数が鍛練者で少なく、身体的劣弱者に 多いことは、一般に認められている。ただし、安静 時においても、実際問題として、精神的影響はおこ りうるから、これをあまり重視すると、精神的影響 による変動のために、判断を誤まるおそれがある。 また、体位による縮期圧変動との相関が他の項目に くらべて過大であるのは、Schneider がこの項目に 与えた評点区分が、尋常血圧の変動にたいしてこま かすぎるためもあると考えられ、これらが心肺係数 の信頼を低下させる一因と思われる。

2. その他の項目間の相関

- a. 臥位の脈拍数と立位の脈拍増加の相関は統計的に有意でないから、本テスト採点表のように、臥位の脈拍数の小区分でとに、立位の脈拍増加を評点する意味は大きくないようである。すなわち、立位の脈拍増加は独立評価してさしつかえないと思われる。
- b. 立位の脈拍数と負荷後の脈拍増加とは逆相関 が認められるので、立位の脈拍数の小区分でとに評 点することは有意義であると思われる。
- c. 負荷後の脈拍数は、本テストの採点項目に採用されていないが、体位による縮期圧の変動を除く 全項目との相関が、比較的平均して高く、かつ、精神的影響を受けにくい利点もあり、標準偏差も中等 度で判別に便であるゆえ、評点項目としてとりあげ る価値は充分あると思われる。
- d. 回復時間は,負荷後の脈拍増加と相関が認められるだけで,心肺係数をはじめ,他の項目とは,統計的にほとんど有意な相関がないので,測定技術上の困難をもあわせて考えれば,原法のまま存続させることは,無意味のように思われる。とくに,回復時間と負荷後の脈拍増加には,かなり高い順相関

があり、しかも、負荷後の脈拍増加と立位時の脈拍数とは、かなりの逆相関的傾向にあるので、Schneiderの評点法にしたがうと、立位時の脈拍数が大きければ、それだけ、負荷後の脈拍増加は小さく回復時間は短かくなり、立位時の脈拍数と回復時間の評点が相反する結果となる。これは、Schneiderが、絶対価だけを用いて、脈拍の回復率をとらないところに問題があると思われる。

e. 体位による縮期圧の変動は

他のいずれの項目とも有意の相関を示さない。このことは、縮期圧の変動を規定する因子が複雑で、たとえ、脈拍を規定する因子と共通のものがあつてもその影響が他の因子のためにかくされて、脈拍数とは全く独立に変化する結果になるためと思われる。とくに、縮期圧、および、弛期圧の変動について検討したように、体位変換後の1点時測定の血圧値だけをとりあげるため、測定値の信頼度と意味づけに疑問がある。それゆえ、原法のままで、体力の強弱に関連する変化に、一定の方向をみとめようとすることは意味がすくないと思われる。

- f. 臥位時と立位時の縮期圧,および,弛期圧とそれぞれの変化との相関は、ともに、立位による上昇傾向にたいして、臥位では負の、立位では正の中等度の相関がある。これは、臥位と立位の脈圧にかなり高い正の相関があることともに、体位による変化を、いずれも尋常血圧高におこうとする Homeostasis⁽⁵⁷⁾ のあらわれであると思われる。
- g. 体位による脈圧の変動と立位による脈拍増加のあいだにみられる中等度の負の相関は,脈拍数と脈圧,または,その修正値との積が,すくなくとも健康人では,心送血量を概算する簡易法として利用できる (Erlanger & Hooker (14), Liljestrand & Zande (37)) ことを思わせる。

第8表 各種血圧値間の相関係数

												1.1
基	準	頂	目	相	阒	項	目	相阅	係數	備	考]
臥	絲	钥	胚	体	繒	期	Æ	- 0.3	92		加強何にナガーか]
往	弛	期	压	往上	弛	期	圧	- 0.4	42		•]
止		期		变	縮	朔	圧	+ 04	34			1
位	弛	期	压•	動	弛	娴	圧	+ 0,4	27			1
臥	位	脈	Æ	Ù	位	脈	压	+ 0.6	29			1
体化	主朋	〈庄:美	動	ù. 4	T NK	拍片	加	- 04	61	服圧の主傾向にた	値による増加 いしてナガーガ	

IV. 考 案

A. 徐脈(拍)と機械的心効率

Bainbridge⁽³⁾は,一定の徐脈(拍)が機械的心効 率の良さを意味するといつた。すなわち、安静時の ように,心への静脈血性流入が小さければ,脈拍数 の増加は心の弛期性容量を減らし, そのため拍動あ たりエネルギーの消費もすくなくてすむが、このよ うに、拍動あたりの酸素消費が減つても、脈拍数の 増加による酸素消費の増しを相殺するほどには大き くならないので,結局,分時酸素消費量はふえる。し たがつて、安静時のように、心送血量、いいかえれ ば,心の分時仕事量(力学的平均血圧がほぼ一定と して)が定常的で、しかも、静脈血性流入が小さけれ ば、頻脈(拍)は機械的心効率を低め、非経済的と なる。しかるに、鍛練者や体力のすぐれたものは、 骨格筋の発達に応じて、心筋もまた良く発達して強 くなり,安静時においてすら,未鍛練者や体力劣弱 のものよりも,心の収縮力は増し,駆血量はふえ, 脈拍はあまり多くなくてすみ,機械的心効率が良い てとを示す。また、鍛練そのものが、とくに、心の 迷走神経緊張を強めるゆえ (Athlet-Vagotonie), これらも相乗的に作用して, 鍛練者は徐脈(拍)に 傾むくようになる。しかし,心を支配している自律 神経は、情緒の変化、環境温度、日差変動などの複 雑な要因によつて大きく左右されるゆえ、かならず しも、検査時に、その人の最良の機械的心効率を維 持する脈拍数を示しているとは、期待できないこと もあろう。また、鍛練度以外の影響因子の効果を消 去しうるような、かつ、簡単に実施しうるような測 定方法はすくないので,安静時の徐脈(拍)が機械 的心効率の良さを示すことを, 一おう, 認めるにし ても, 逆に, 安静時の脈拍数を, ただちに体力評価 の良い指標とすることはできない。したがつて,安 静時の臥位, および, 立位の脈拍数を過大に評価し ている心肺係数は,体力の指標としての信頼性に欠 ける場合もありうる。しかし、はげしい持続的な労 作時のように,心への静脈血性流入が増し,心が弛 期間において、ほとんど生理的限界まで拡張し、そ の駆血量も限界にまで達するほどになれば、心送血 量は脈拍数に比例するようになる。しかも, 運動の あいだに達しうる最大分時脈拍数は、鍛練者である と否とを問わず, 160 を越えることは稀である⁽³⁾。 かように、最大分時脈拍数は、ほぼ、一定している ゆえ,最大心送血量は,駆血量を増す心の能力,す

なわち,心の収縮力に比例する。逆に,同じ心送血 量を維持するためには、心の収縮力の大きいものほ ど, 駆血量が大きいので, 分時脈拍数はすくなくて すむ。しかも、運動のあいだには、脈拍にたいする 自律神経性影響はすくなくなり, 分時脈拍数は, ほ とんど、機械的心効率の良否に左右されるようにな るので、運動負荷中の脈拍数は、機械的心効率の良 否に比例し、かつ、肉体的作業能力は、非常に大き くヒトの心送血量によつて決定されるから,強い心 は、強い肉体の端的な現われとみなされ、労作中の 脈拍数は体力の評価の良い指標となる。ただし、労 作の大きさが、心の自律神経性影響を減小させるだ けの強さでないときは、やはり、安静時と同じ誤り を犯すおそれがある。一般に,心の迷走神経緊張が 消失すれば、分時脈拍数は 100~110 (4) に達するの で、労作強度は、すくなくとも、多くの人でこれ以 上の分時脈拍数を必要とするだけの強さであること が必要である。しかし、労作中の脈拍数の測定には 特別な装置を要するゆえ,集団的なふるいわけ検査 には, ふつう, 労作終了直後の脈拍数から労作中の 脈拍数を推測し、これによつて、体力評価の指標を えている。この点については、Cotton & Dill (9), Lythagoe & Pereira(39), 猪飼教授(23)などの研究 があり、一般には労作後5~15秒間の脈拍数をとる ことをすすめている。 さらに、 労作の程度が軽い場 合には誤差が増すと述べている。

Schneider's Test の負荷は比較的軽度であるから,負荷後の脈拍数には自律神経をはじめ,いろいろの心外性因子が,充分,影響しうる。それだけに測定誤差は大きくなるおそれがある。

安静時の立位における脈拍数にも、心外性因子の影響は強い。それゆえ、この脈拍数を基準にして、 負荷後の脈拍数を評点することは、負荷直後の脈拍 数を体力評価の指標とする方式の価値を減らすおそれが、多分にあると思われる。

B. 体位変換による脈拍, および, 血圧の変動

体位変換による脈拍、および、血圧の変動についての臨床的基礎は Schellong $^{(53)}$ によつて明らかにされた。起立により、分時送血量は不変か、やや増す傾向にあり (+3% Schellong & Heinemeister)、この送血量を維持し、かつ、起立によつて、重力のため血液が下方に移動することを代償するため、複雑な調節機序が働く。Schellong は、このさい、二つの形式があるとした。第1は、細動脈域における血圧の降下に拮抗するため、細動脈の口径が狭くな

り, 第2は皮膚・筋肉, および, 肝・脾などの貯蔵 血液が、細動脈の口径が狭くなるため、流血路へ放 出され,心への帰流を促進して心送血量を保ち,ひ いては、細動脈域の血圧をさげないように働く。ま た、起立時に働く筋肉の緊張も、心への帰流を促進 する。これらの調節機序の綜合は,縮期圧を,わず かな上昇か,ないし,不変, さらには 5~10 mmHg, このとき, 弛期圧は不変か, わずかに上昇, ない し、低下する。しかるに、立位時の脈拍増加とその 程度は、主として自律神経(とくに迷走神経の抑制 いかん)によつて支配され、起立時の循環調節に は、すくなくとも、直接的な大きい意義を持たない。 このことは、頸静脈洞、および、大動脈神経の減荷 反射による頻拍時に, しばしば, 弛期が短縮し, 左 室の充えい不足を生じ、心拍量が減り、機械的心効 率がさがつても, なお, 分時心送血量にはいちじる 件を同一にすれば、立位時の心拍数は、ふつう、心 の自律神経緊張が不安定なほど多くなる。一般に, 若年者の立位時における頻拍は, 老年者のそれより いちじるしいが, これは, 若年者の自律神経緊張が より不安定なためともいわれている(41)。また、とき に,立位時に徐拍がおこり,このとき,弛期圧がい ちじるしくさがることもある。これは、虚脱の前駆 期を意味し,悪いしるしである。

Schneider は評点項目として、循環調節の良否を 立位による頻拍度で表わそうとした。しかし、以上 のように, 立位による頻拍は, 心外性因子によつて かようにいちじるしく左右される。また、氏は、臥 位の脈拍数の小区分でとに細かく Scoring したが, いずれも、その価値については大きな疑問があり、 かような疑点をふくむ心肺係数の信頼度は、それだ け低下することになるといえよう。

そこで, 起立による循環調節の経過を判断するに は、縮期、および、弛期圧の変動をより重視すべき である。起立によつて心送血量が, あまり, 変化し なければ、立位によつて分時脈拍数が多少増加して も,血圧には,あまり,変化がないこと,その反面 において, 弛期圧の変動から末梢の細動脈の収縮度 を,縮期圧,および,脈圧の変動から心送血量の大 きさを, ある程度, 推測できるからである(29)(59)。 立位による縮期圧の低下が 15 mmHg までならば, 心送血量はそれほど減らない。縮期圧とともで、弛 期圧がさがるのは、循環調節にきわめて大切な、末

梢脈管抵抗の高まることができないのを意味する場 合もある(13)(60)。それゆえ、 弛期圧の低下による脈 圧の増加は、場合によつて、重大な調節障害をあら わすこともある。血圧高の変化から、Dexter(12)は、 動脈壁の硬化度を、ある程度推測できるといい、教 室の勝呂(28)は、それを、くわしく、吟味した。

しかし、体位による血圧変動から、ただちに、循 最高 15 mmHg 以内の低下にとどまらせる。また、 環調節の良否、ないし、体力の評価ができるという わけではない。まえに、脈拍数が、自律神経緊張の 安定度によつて, きわめて大きく左右されると述べ たが、血圧も、また、心、そのものの機能よりも、 末梢脈管抵抗を大きく左右する脈管運動神経を通じ て, 自律神経緊張の安定度の影響を強くうける(58)。 Mark (40) は、自律神経緊張は年長者ほど安定であ るといつた。しかるに、体力は、一般に、若年者は 年長者にまさるから, 起立時における循環調節のあ りかたいかんだけで体力を評価することはできな しい変化がおこらないことからも明らかである。条 い。ただ、この観察でとり扱つたように、同一年令 層だけを対象とすれば、体力の優秀な群は体力の劣 弱な群よりも、起立時の循環調節が良いと推測しう るけれども, なお, 慎重にいえば, 体力の優秀な群 には, 比較的, 自律神経緊張の安定したものが多く ふくまれていることをも示す。それゆえ,ただちに, これでもつて, 循環能力の良否をうんぬんし,また, 逆に, これを, 労作時における循環能力の良否や, さては, 体力の優劣判断に用いることは, よほど, 慎重でなければならないと思われる。

> 結局、起立時の脈拍と血圧の変動からは、自律神 経緊張の安定状態は,ある程度,判断できても,大 きな条件をつけることなしに, これを, 循環能力そ のもの, さらには, 体力までへの評価に用いること は不当である。Schneider がおこなつた評点項目に は、体位による弛期圧の変動が無視されており、縮 期圧の変動だけがとりあげられている。かつ、その 変動値を細分して Scoring したことにも, 大した 意味をもたない理由を説明した。

> なお,運動負荷(労作)後の脈拍の回復時間につ いては、第2部に述べる。

V. ま ے め

健康な陸上自衛官, やく, 600 名を体力普通群 (A 群) 400 名, 優秀群 (B群) 114 名にわけて Schneider's Test をおこない, つぎの結果をえた。

- A. 健康人の脈拍, および, 血圧について
- 1. 臥位、および、立位の脈拍数の生理的変動は、

日本人についての従来の発表と,ほぼ,一致する成 績をえた。

- 2. 健康人では、臥位の脈拍数が立位の脈拍数より多いことは、ごく、まれである。
- 3. 臥位の脈拍と立位の脈拍とのあいだには、判 きりした相対的相反性は見られなかつたが、その傾 向があるとはいえる。
- 4. A・B 両群の差が、もつともいちじるしくあら われたのは、負荷後の脈拍数であつた。
- 5. 立位の脈拍と負荷後の脈拍には、比較的はつきりした、相対的相反性がみとめられた。
- 6. 血圧では、脈拍で見られたほどは、A・B 両 群のあいだに差がなかつた。
- 7. 体位による血圧高の変動は、弛期圧よりも縮期圧にいちじるしく、やく2分後の1点時測定では、低下する傾向が強い。なお、弛期圧の変動はわずかであるゆえ、脈圧は立位で減少する傾向がみられた。

図 10. 平均血圧の分布 — 以 位 ----- 立 位

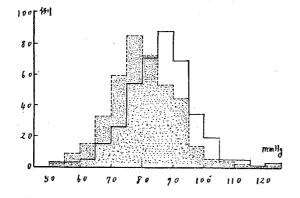
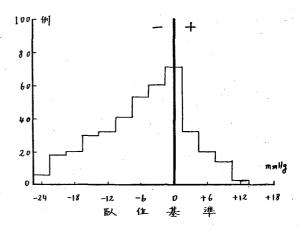



図 11. 体位による平均血圧変動の分布 (立位一臥位)

なお,平均血圧にかんしても,一般に,立位では低下する (図 10,11)。

B. Schneider's Test の信頼性について

- 1. この Test にふくまれる6つの検査項目にかんしては、原則的に、A・B群で、Schneider が述べたと同じ傾向を示したが、負荷後の脈拍数以外の項目には、いちじるしい差は見られなかつた。それゆえ、わたくしが観察した、A群とB群程度の体力差を、これらの検査成績から判別することはむずかしいと思われる。
- 2. mass-Score である心肺係数は、各検査項目とのあいだの相関がまちまちで、とくに、心外性因子の影響をうけやすい臥位、および、立位の脈拍数ならびに、測定誤差を考えると、規定の評点が細かすぎると思われる体位による縮期圧の変動が、過大に評価されている傾向がある。それゆえ、心肺係数を、そのままの形で、体力の優劣判断に用いることが不当であることを明らかにした。

第2部 2,3の循環機能検査の体力評価上の意義

B

目

- I. は し が き
- Ⅱ. 被検者,および,検査方法
 - A. 一般的な体力検査
 - B. 簡易循環機能検査
 - 1. "腕立て伏せ"負荷法(自衛隊法)
 - 2. Harvard's Step Test (Slow Form)
 - 3. Schneider's Test
- Ⅲ. 検 査 成 績
 - A. 一般的な体力検査の成績

次

- B. 簡易循環機能検査の成績
 - 1. "腕立て伏せ"負荷法について
 - 2. Harvard's Step Test について
 - 3. Schneider's Test について
 - 4. 走力と簡易循環機能検査の成績との 相関
 - 5. 小 括
- Ⅳ. 考 案
- V. ま と め

I. は し が き

"体力"とは、心身の諸能力を綜合した概念であるから、使う人、また、使われる場所によつてちがう内容を持つことが多いので、ここでは、運動能力、または、肉体的作業能力(労作能力)を意味するものとする。

体力評価の方法については、すでに、莫大な業績があり、それらにもとづくいろいろな規準のもとに体力検査が行なわれている。しかし、個人の体力的な優劣を判断する綜合的評価法には、大まかな規準すら確立されていない。その理由には、本質的な3つのことが考えられる。

a. 労作能力の評価は、個人の肉体的な適性の度を知る尺度として利用される目的を持つ。しかし、肉体的な適性も相対的な概念であつて、その個人、もしくは、ある特定の集団が要求する労作内容によって大いに左右される。それゆえ、検査項目の選択、および、重点のおきかたに、一定のわくがきめにくい。

b. 労作能力は、肉体的な機能だけに左右されるのではなく、精神的機能も強く影響し、たがいに複雑に干渉しあう。それゆえ、実施にあたつては、検査がわが重要と認める機能について、その検査法が簡単で、かつ、信頼度が高いものを選ぶことになり、ここに、検者の主観が大きくはいる。

c. 体力は元来,量的な表示ではあるが,これが 意味する心身の全体的な量の表現には絶対的な基準 がない。たとえば,体力の要素を作る体格や機能な どを,部分的,かつ,個々には計測しえても,これ らを綜合的に評価するさいに,それぞれの計量値を 等価換算することについて大きな問題がある。した がつて,個々の計測値から,体力全体を表出しよう としても,厳重な意味での量的なとり扱いは困難で ある。すなわち,その表示は絶対的なものではな く規約的,ないし,慣例的なものにならざるをえな い。

そこで、わたくしは、量的なとり扱いがある程度 できるように、体力の一面を示す持続的な労作能力、 すなわち、耐久力を主題的にとり扱い、これを対象 として、体力を評価するさい、簡易循環機能検査が どのような意義をもつかを研究した。

II. 被検者, および, 検査方法

A. 一般的な体力検査

まず,母集団の一般的な体力的特性の有無を調べる目的で,健康な陸上自衛官600名を被検者に選び体格,筋力,簡易な運動能力,および,単純な呼吸循環機能の4つの基本的検査項目について,つぎの19項目を測定した。被検者の平均年令は23.7才で,18~31才に及ぶ。

1. 体格

a. 身長; 陸上自衛隊身体検査実施要領の方法に よる。

b. 坐高;同上

c. 体重;同上

d. 胸囲;同上

e. 上腕囲(左右); 伸展位, 同時に"きき腕" を註に書いた。

2. 筋 力

a. 握力 (左右); K.Y.S. dynamometer による。

b. 肩腕力 (押·引);同上

C. 背筋力;同上

3. 運動能力

a. 100 m 疾走: 秒時計で所要時間を計時 (0.1 秒まで) する。

b. 1500 m 疾走; 所要時間を1秒ごとに読みあげる。

c. 投力:ソフトボール, 距離 m

d. 懸垂:回数

e. 搬送力: 50 kg の土のう, 距離 50 m, 0.1 秒 まで計時する。

f. 走巾跳: 踏み切つた地点から計測, 単位 cm

g. 垂直跳力; leap-meter を用いた。

4. 呼吸循環機能

a. 肺活量; K. Y. S. rotary-Spirometer による。3回実施, 最高値をとる。

b. 息とらえ時間;坐位で防毒マスクを使う。深 吸気位で計時する。

c. 血圧; 坐居で聴診法による。弛期圧は Swan の第5点をとる。

d. 脈拍;安静立位で1分間計測する。

B. 簡易循環機能検査

1. "腕立て伏せ"負荷法(54)(自衛隊法)

a. 被検者;一般的な体力検査を実施したもの全員

b. 検査方法;"腕立て伏せ"4挙動1回を,1 砂1挙動,4秒で1回のわりで連続20回実施し,負 荷終了後15秒経過してから,その後の1分間の脈 拍数を測る。

2. Harvard's Step Test⁽²⁷⁾ (Slow Form)

a. 被検者;一般的な体力検査を実施したものの うちから 96 名を無作為に抽出した。

b. 検査方法; 原法どおり実施した。すなわち, 高さ 20 imch (やく 51 cm) の踏め台に, 毎分 30 回 の速さで, 5 分間昇降させる。 Step の方法は Schneider's Test⁽⁶¹⁾ と同じ不全型で, 負荷終了後は坐 位をとらせ, 終了時から 1~1.5 分, 2~2.5 分, およ び, 4~4.5 分の 3 回 30 秒間の脈拍を 測り, つぎの 式によつて得点を求めた。

3. Schneider's Test

- a. 被検者;一般的な体力検査を実施したものの うちから 98 名を無作為に抽出した
 - b. 検査方法;第I部でのべたとおり。

なお,耐久力の量的基準をうる目的で, Harvard's Step Test, または, Schneider's Test の実施者 194 名に 10,000 m 競走を追加した。

III. 検 査 成 績

A. 一般的な体力検査の成績

1. 体格について (表 1)

体力は、もともと機能的量の概念であるけれども身体機能と体格とのあいだには、古くから、密接な相関が推測されている。また、生体の機能は時々刻々に変化するので、現行の機能学的方法では、しばしば、部分的機能の瞬間的状態だけをとらえることになる。しかるに、形態的な測定は、直接的な体力の量的表示にならないが、機能学的方法ではうかがいえない面を補足する意味で大切である。なかでも個体を構成する組織・臓器の平衡のとれた発育の表示として、身体の比例的関係が重要である。それゆえ、比体重・比胸囲・Verveck 指数(比体重+比胸囲)、および、Cruse 指数(胸囲²/身長)を算出した。

- a. 身長・体重・胸囲を、昭和32年度国民栄養調査成績⁽³²⁾とくらべると、全体としてややすぐれているが、そのちがいは、いちじるしくない。また、浦田⁽⁷¹⁾の健康大学生を対象とした成績ともよく一致する。
- b. 体格, および, 栄養指数は, 身体の比例的発育の表示を目的とするので, 長径発育の代表値であ

第1表 形態的測定項目の統計

項	E E	М	б	ν
身	長	164.140	4.92°	3. <i>0</i>
体	重	5952*1	5.28 kg	8.9
相勾	周	8 6.52°m	3,55°m	4.1
JE 1	本重_	35.95	2.62	
比片	夕 囲	\$2.51	230	
Verved	(指数	8 8.48	4.35	
Cruse	指教	4530	367	
<u> </u>	. 左	2 6.95 cm	1.72°	6.4
脫	左	2 6.05°	1. 6 1 om	6.2
田	右+左	53.02°m	3.12°m	5.9
相闽	項目	γ		0
身	比体重	+ 0.23 65	a3090 ~	0.1611
4	比胸目	-03201	0.3887~	0.2841
長	Verveck	-00223		
下		+ 0.0213		
Verveck		+07873		
上腕曲	Verveck	+06248	0.6704 ~	- 0.5749
(平均)	Cruse	+09784	0.9815 ~	- 0.9748
上腕围(右)	上腔囲(左)	+0.7293	0.7639	0.6904

个 r r 標本相 阅係 数 / D r r r 相 用 係 數

る身長に影響されることは好ましくない。そこで、身長と指数の相関を調べると、比体重では中等度の順相関が、比胸囲では中等度の逆相関がみられたが、Verveck および Cruse 指数とは相関がみられなかった。したがつて、のちの2者は、絶対値をそのまま用いて体格の大小を判断しうる利点をもつ。

- C. Verveck 指数と Cruse 指数のあいだには, 当然, きわめて高い相関がみられた。
- d. 上腕囲 (左右の平均); 八木(74)(75)は栄養指数 としての価値のあることを述べ、これと Vervek, および、Cruse 指数とは、いずれも高い相関にありとくに、Verveck 指数は、栄養の良否を加味した全体的な体格指数としてすぐれたところをもつといえよう。

2. 筋力について (表2)

筋力の測定には2つの方向がある。一つは,ある特定の筋群の瞬間的最大能力をみることであり,他は,筋の持久能力を知ろうとすることにある。後者を知るため,いろいろの ergograph が考案されているが,持続的な全身の労作能力を主題とするときには,ある特定筋群の持久能よりも,全身の筋肉活動の効率,および,最大仕事量を明らかにしようとすることが大切である。しかし,わたくしの職場においては,これの実地は,ほとんど不可能であるから,循環機能の良否から間接的に推測する方法がとられている。これについては別に述べるとし,ここでは,瞬間的労作能力の表示として,握力・肩腕力,および,背筋力の3つを選んだ。

第2表 筋力測定項目の統計

	項	fl	М	6	ν
	4屋	五	49.11	6.72	137
	カ	左	4630	6.70	145
	肩腕	押	4905	7.09	14.5
	カ	31	40.99	761	17.4
	背角	<i>b</i> 1	16364	21.64	13.2
	相阅	項目	γ		9
į	握力(右)	握力(左)	+ 0.7 8 8 8	0.8166	~07572
	肩腕力(押)	肩腕力(引)	+02678	0.3394 ~	0.1941
	握力 (右)	上腕囲(在)	+ 0.3445	0.4114~	02735

握力は"右利き"のみを対象とした

- a. 平均値と標準偏差を丸山⁽⁴³⁾および 労研値⁽⁵⁵⁾ とくらべると, 明らかにすぐれているが, 浦田⁽⁷¹⁾の 成績とはだいたい一致する。
- b. 握力の左右の相関は、きわめて高いので、健康人では、いずれか一方の"きき腕"だけについて測定すれば充分であろう。
- C. 肩腕力の"押"と"引"の相関が低いが、これはとり扱いの不慣れのため、筋と骨格、および、dynamometer とのあいだの力の伝達効率が一定にたもてなかつたので、練習効果や要領の良否に影響されたためであると考える。
- d. 筋力相互間の相関については、すでに、奥山 (47) が高い相関をえているので省いた。したがつて、筋力の代表値としては、どれをとつてもよいのであるが、肩腕力は前述の理由で不適当であり、握力はあまりにも局所的に過ぎるので、わたくしは、背筋力が代表値としてふさわしいと考えた。
- e. "きき腕"の握力とその上腕囲との相関は意外に低く、栄養指数としての上腕囲が、同時に、筋力の大小を示すものとはならない。

3. 運動能力について (表 3)

特殊な競技などにたいする適性を問題とせず、一般的な運動能力をみるために、特殊化された技術、または、特殊な細筋の Skill などによつて影響されない単純な測定項目だけをえらんだ。

第3表 運動能力測定項目の統計

運動能力	М	6	ひ
100 m	1446"	0.85	5.9
搬送力	13.48"	1.78	13.2
投力	53.93 ²⁰	8.58 ^m	16.0
懸 垒	11.17	3,44	30.8
差直跳力	48.71 em	7.030	14.5
走中跳	4.47°	0.40	9.0
1500m	5 43	30.7 "	9.0
相阐项目	γ		2
100m 1500m	+ 0.35 79	0.4247	~0.2882

- a. 同一の測定項目については, 浦田 ⁽⁷⁴⁾ の成績 とよく一致する。
- b. 100 m と 1500 m 疾走の所要時間の相関は意外に低く、この2つの運動能力を規制する因子のあいだには、種類のちがいと、重要度の差が、かなり大きな役を演じると思われる。

4. 呼吸循環機能について (表 4)

持続的な全身的労作能力は,個々の骨格筋の能力よりも,労作によつて高まる全身の物質代謝を円滑に進行させる呼吸循環機能の良否に依存する⁽⁴⁹⁾(既述,MAの2)。集団検査では簡単な臨床生理学的な方法しか用いられないので,肺活量・息こらえ時間・坐位での血圧測定,および,立位での脈拍数の4つを選んだ。

第4表 呼吸・循環機能測定項目の統計

呼吸循	環核	紋能	Μ	6	マ
		星	3.89	0.51	13.1
电2	9 3	_	68.95	14.64	21.2
血压	縮	朝	120.70	42.75	13.1
(生位)	弛	期	74.40	12.89	17.3
(L	胀	丘	47.52	12.32	259
立位	胀	拍	76.91档	10.58 16	138
相剣	項	目	γ		0
肺	自心	らえ	+ 0.19 35	02617	~ 0.1171
洁	主任	脈拍	100074		
	如。	宿期	+ 0.0657		
量	压	电期	-0.0362		
息	立位	脈拍	100536		
i h	血	宿期	+0.0318		
之	压	池期	-0.0009		
正位	血	_	+01078	0.1836-	-00298
账拍	压	き期	+0.1349	0.2112	0.0576
胂	身	F	+0.4660	0.5251 ^	-0.4024
活	生	髙)	+ 0.4 0 5 1	04685 ~	0.3376
量	体	荲	+ 0.4318	04933	-0.3659
玉	胸	囲	+ 0.3440		

- a. 検査項目のうち、わたくしのあげる立位での脈拍数は、いままでの報告にくらべてやや大きい (46)。 これは、この職場における集団検査では、測定前に、充分な安静をとらせることができなかつたことにもよると思われる。
- b. 検査項目間の相関は、肺活量と息こらえ時間 とのあいだに、ごくわずかの相関があつただけで、 ほかには全く相関がない。
- c. 肺活量は、身長・体重、および、胸囲とかなり高い相関をもつので、絶対値だけで優劣を判断することはできない。

5. 体格指数と主要機能との相関 (表 5)

体格と機能との相関については, すでに, 鈴木(65),

石井⁽²⁶⁾ らの研究があるが、わたくしは、体格の代表値として数的なとり扱いに便な Verveck、および、Cruse 指数について、主要な機能検査項目との相関を調べた。

第5表 体格と機能との相関係数

	体格	Ver	veck	(- u s e
機	能	7~	P	γ	P
	00 m	-0.0509		-01584	0.2340~0.0816
1	500 m	+00053		+0.0136	
胂	活量	-00271		+03040	0.3735 ~ 0.2313
			02252~0.0723	-00023	
血	縮期	+00717		t 0.030b	
压	弛期	10.0134		10.0013	
		-0.0626		-0.0293	

a. Cruse 指数が、肺活量と有意に相関する一方、 Verveck 拍数には、かような傾向がない。その理由は、Cruse 指数の方が身長(長径)と胸囲(横径)だけから算出され、胸部内臓容積の大きな部分を占める肺の状態を、間接的に、表わす指標として、すぐれているからだと思われる。

b. Cruse 指数と 100 m 疾走所要時間とのあいだには、わずかながらも相関があつた。これと、前述の Cruse 指数と肺活量との有意の相関、および、後述の肺活量と 100 m 疾走所要時間との有意の相関から、100 m 疾走が、疾走中、ほとんど呼吸停止に近い状態にあり、この間、肺換気が小さいので、その所要時間は、相対的な肺活量の大小に左右されるのではないかと思われる。

6. 走力と主要機能との相関(表 6)

100 m 疾走は,瞬間的な呼吸・循環機能の適応いかんを,1500 m 疾走は,比較的持続的な呼吸・循環機能の適応いかんを,間接的ながら示すと考えられる。それゆえ,これらと単純な呼吸循環機能検査との相関を調べた。

a. 両者とも息こらえ時間, および, 血圧高とはほとんど相関がない。

b. 両者とも肺活量、および、立位の脈拍数との相関は低いけれども、相関の大きさは、ちようど、逆になつている。これは、さきの両者間の相関度が意外に低かつたこととともに、この両者の能力を規制する因子の種類と重要度に共通性が乏しいことを思わせる。

7. 小 括

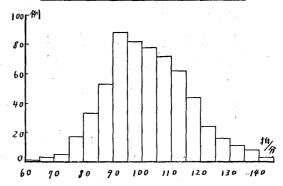
a. 一般的な体力検査成績については、母集団と して選んだ健康な陸上自衛官は、一般に、同年令層 の平均国民体位よりややすぐれている。しかし、そ

第6表 走力と機能測定項目との相関係数

	走力	10	0 m	15	00 m
機	能	γ	P	T	P
胂	活量	-0.1429	0.2186~ 0.0652	-0.1161	0.1929 ~ 0.0386
		+0.0245		-0.0803	0.1575 ~ 0.0021
血	縮期	-0.0599		+0.0819	0.1688~ 0.0136
_		+0.0450		+ 0.1 020	0.1785~0.0236
<i>p</i> .	胀压	-00548		-0.0276	
立付	1 脈拍	+0.1242	0.2032~ 0.0465	+ 0.24 54	0.3175~01704

の差はとくにいちじるしいとはいえない。それゆえ この研究でえられた成績を、一般論をいうときに用 いても、大きな誤まりをおかすおそれはすくないと 考える。

b. この研究でとりあげた検査項目だけに限れば、体格・筋力・運動能力、および、呼吸循環能力の4つの基本的検査項目群は、群内の項目間にかなり高い相関があつたけれども、群相互間の相関は、ほとんどすべての組み合せで、相関がないか、あつてもごくわずかである。それゆえ、体力を綜合的に判断するためには、いずれの群も欠くことができない。


B. 簡易循環機能検査の成績

1. "腕立て伏せ"負荷法(自衛隊法)について (図1,表7)

a. 図1は、"腕立て伏せ"負荷後脈拍数の度数 分布を示す。中央値は算術平均より小さく、分布曲 線は頻脈側がなだらかである。表示したように、自 衛隊で使用している現行評点は、各評点に含まれる

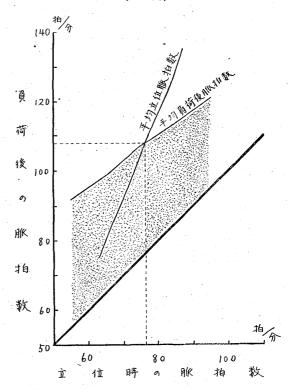
図1. "腕立て伏せ"負荷後の脈拍の分布

	(600例)								
現行評貞 (自衛隊使用)				訂 (400.0					
脈拍教師義例教 %									
80 XF				80以下					
81~100	4	256	42.6	81~95	普通上位	174	20.0		
				96~110					
111~120	2	106	17.6	111~125	普通	130	21.7		
121~140	1	60	100	126以上	省弱	39	6.5		
]4] 以上	0	3	0,5						

第5号 飯島: 簡易循環機能検査における脈拍、および、動脈血圧の意義にかんする研究 —2077—

割り合いに統一性がなく、相対的な測定値としての評価は意義に乏しいので、こころみに、この試料にもとづいた標準偏差による5 分法($M+1.5\sigma$ 以上、 $M+0.5\sigma\sim M+1.5\sigma$ 、 $M-0.5\sigma\sim M+0.5\sigma$ 、 $M-1.5\sigma$ 以下:Mは算術平均を、 σ は標準偏差を表わす。)による判定を対比させてみた。

b. 本法は、測定の実際にあたつて、一般的検査の立位の脈拍数を測定したのち、ただちに"腕立て伏せ"負荷をおこなつたので、負荷の前後で、脈拍数と他の一般的な検査項目との相関にどのくらいの変動が生じるか、また、負荷前後の脈拍数にどのくらいの相関があるかを調べることができた(表7)。


第7表 "腕立て伏せ"負荷前・後の脈拍 数と他の測定項目との相関係数 (600 例)

_			
相	阕項目	7	ρ
頁	Verveck	-0.0626	
荷	Cruse	-0.0293	
前	100m	+0.1242	02032~ 00465
Î	1500m	102454	03175~ 01704
住時	息こらえ	+0.0536	
账	肺治量	+0.0657	
拍牧	血縮期	+0.1078	0.1836~ 0.0298
20	压视期	+0.1349	0.2112~ 0.0576
	Verveck	-0.0242	
頁	Cruse	+0.0287	
	100 m	+0.05.82	
荷	1500 m	10.4306	0.4922~ 0.3645
	息こうえ	10.0076	
梭	肺液量	+0.0190	
	血縮期	+01965	02706~ 0.1201
	压弛期	+01952	02693~ 0.1187
更前	前 夏荷後	+ 0.4 9 2,8	0.5511 ~ 0.4301

i. 体格指数, 100 m 疾走所要時間, 息こらえ時間, および, 肺活量とは, いずれも, ほとんど有意の相関をもたない。しかし, 1,500 m 疾走と血圧高とは相関があり, かつ, 負荷後の方が明らかに高くなつている。1,500 m 疾走との相間値からは, 負荷後脈拍数の方が負荷前脈拍数(安静立位時の脈拍数)よりも, 持続的労作能力の表示として, すぐれていると思われ, 血圧高との相関値のちがいからは, Herxheimer (19), Federici (15) らの「鍛練は一般に血圧をさげる傾向にあり,運動家の安静時血圧値は, あきらかに, 一般の平均値より低い。」という成績を支持するように思われる。

ii. 負荷前後の脈拍数の相関は中等度であり、これは、相関図(図2)から明らかなように、立位時

図 2. "腕立て伏せ"負荷前・後の脈拍の相関 (600 例)

の脈拍数が頻数であるほど、負荷後の脈拍増加はすくなく、逆に、負荷後の脈拍数が頻数であるほど、 負荷後の脈拍増加は大きく、この両系列が相対的な 相反関係にあることを示している。

2. Harvard's Step Test (Slow Form) について (図 3)

図3は Harvard's Step Test の得点分布を示す。 図中に、原法の判定基準による例数と%を表示した。 体力"ふつう"のものが88%(うち上位46%,下位42%)、劣弱のものが6%,佳良、および、優秀のものが6%で、統一性のすぐれた評価基準であるといえよう。

3. Schneider's Test について (図 4, 5)

図4は第1部で述べた400名について、図5は体力検査とともに行つた98名についての心肺係数の分布を示す。図中に、アメリカ空軍が採用した判定基準による例数と%を表示した。しかし、この基準は、下位に密で上位が粗に過ぎるように思われ、統一性に乏しい。

4. 走力と簡易循環機能検査との相関 (表 8)

3つの簡易循環機能検査のうち、Harvard's Step Test と Schneider's Test とは同一人について実施しなかつたので、相互の比較はできなかつた。しかし、"腕立て伏せ"負荷法は全員に実施したので、

図 3. Harvard's Step Test の得点の分布 (96例)

得矣	評	語	例数	%	母示
54 以下	劣	弱弱	Ь	64	\ggg
55 ~ b4	普通	下位	40	41.6	
b5~79	普通	上位	44	45.7	
80 ~ 89	良	43	5	5.3	
90 以上	傻	秀	1	/ .0	

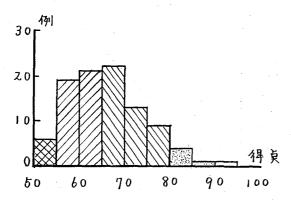
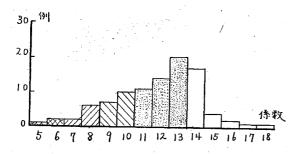
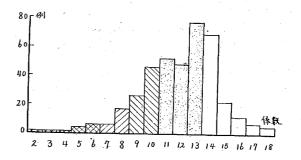



図 4. Schneider's Index (心肺係数) の分布 `(98例)


心肺係数	評語	例款	%	四六
14~ 18	優	25	25.5	
11 ~ 13	良	45	49.5	
9~10	्न	1:7	F7-4	
7~8	疑	8	8. Z	
6 以下	不可	3	3.0	

これと前2者の成績とを比較した。すなわち、Harvard's Step Test とは高い一致がみられたが, Schneider's Test とはほとんど 関連性がみとめら れなかつた。そこで、この3者がそれぞれ持つてい る体力判定上の意義の相違を知ることを目的とし て, こころみに, 100 m, 1.500 m, 10,000 m 走行所 要時間を,いろいろの全身的労作の量的基準にとり, これと3者の成績の相関を調べた。

図 5. Schneider's Index (心肺係数) の分布 (400 例)

心肺係数	評 語	例数	%	學
14~ 18	優	115	290	
11~ 13	良	117	44 0	
9~ 10	ল	72	18.0	
7~ 8	疑	23	5.8	
6 12 7	不可	13	32	綴

第8表 走力と簡易循環機能検査の相関係数

相関		頂	. a	Υ	例教
ル 腕立7伏せ ⁹	走		100	+ 0.0582	600
頁荷後 脈拍教	i i	L	1.5 00	+ 0.4306	600
R 17 1X III C 14 C	ħ	1	0.000	+ 0.4 2 6 2	194
Harvards Step-	走		1.00	- 0.02b	96
Testの得気	1		1500	- 0.231	96
	カ	1	0.000	-0.481	96
SchneidorsTest	走		100	- 0.046	98
心肺牙数			1500	-0.102	98
	ή	_1	0.000	-0.096	98

関を示さない。 このことから、 すでに検討したと同 じように、100 m 疾走は、むしろ、循環機能以外の 因子により強く規制されているのではあるまいか。

b. 1,500 m, および 10,000 m 走行所要時間:心 肺係数とは有意の相関がなかつたが、"腕立て伏せ" 負荷後の脈拍数, および, Harvard's Step Test の 得点とは中等度の相関をもち, しかも, 相関の程度 は、ちようど、両者では逆関係になつている。すな わち, 1500 m では"腕立て伏せ"負荷後の脈拍数 がより高い相関をもつのにたいし、10,000 m では, かえつて, Harvard's Step Test の方がより高い 相関を示す。

5. 小 括

例数がすくないので、この成績だけから、3つの 循環機能検査の優劣を決めることはできない。しか し、すでに第1部で検討したように、Schneider's Test は、検査項目のとりあげかたと、各項目の Scoring の等価換算に合理性を欠くためとによつ て, 6つの Score の mass-score である心肺係数 a. 100 m 疾走所要時間とは3 者とも、有意の相 は、かえつて、各項目がもつている体力評価上の意

義を減殺しているといえる。それゆえ、これをその 力としての体力評価法としては、意義がすくないと 思われる。

これにくらべると、"腕立て伏せ"負荷法と Harvard's Step Test とは、方法が簡易であり、比較 的信頼度が高いことから,集団体力検査に用いるに は良い方法であろう。

また、これらの両者にみられた共通性は、つぎに 述べる4つの理由によると思われる。

a. 負荷前の脈拍数を判定要素にとりあげていな いてと。

安静時の脈拍数は、自律神経を主とする心・脈管 外因子の影響をうけやすいので, これによる判断の 誤りを避ける意味があるといえよう。

b. 判定要素として脈拍だけを用いること。

血圧の動態は,循環機能の良否を判断するうえで 大切であるが、Schneiden's Test のように、体位 による縮期圧の変動だけをとりあげたのでは、複雑 な循環調節機構の良否を云々することができない。 まして, Schneider がこれに与えた Scoring は, 血圧の測定誤差範囲に入つてしまうほどの細かさ で、ますます、Mass-score である心肺係数の信頼 性を簿くしている。

そこで"腕立て伏せ"負荷法と Harvard's Step Test が、ともに、血圧を判定要素にとりあげてい ないのは、ともかく、積極的な意味では大きい欠点 であり、消極的には、血圧のとりあげかたの誤りか ら生じる混乱を避けている利点もあるといえよう。

c. 負荷運動が、かなり、強度であること。

どちらも負荷終了直後の脈拍数を測定しないの で,運動負荷中の脈拍数は不明であるが,ともに, 自律神経(とくに迷走神経)の影響が軽減される分 時 110 拍以(4)上におよんでいることは明らかであ る。このため、情緒の変化や生理的な自律神経の不 安定によつて、循環機能の判断を誤ることが避けら れる利点がある。

d. 脈拍の回復率を考慮に入れたこと。

"腕立て伏せ"負荷法では、負荷後15秒の間をお いて、その後の1分間の脈拍を測るので、負荷直後 の脈拍数が頻数であつても,回復率の良いものは良 い成績を示す。負荷直後の脈拍数が比較的すくない ものでも、回復率の悪いものには悪い成績が与えら れる。この関係は、Harvard's Step Test でも同 じである。このことは、徐拍が機械的心効率の良い

ことを意味する一般原則に,一見,矛盾するように ままで用いたのでは、すくなくとも、持続的労作能 思われるが、労作強度は、被検者の体重や"慣れ" の影響をうけるので,同一の負荷法を用いても,被 検者ごとに、ある程度、労作強度は相違するから、 回復率の良否による補正を考えたこれらの方法は. 測定誤差の大きい負荷直後の脈拍数だけからの判定 より, すぐれているといえよう。

IV. 老

A. 簡易循環機能検査の必要性と方法論

1. 簡易循環機能検査の必要性

体力, または, 軍陣医学での循環機能検査の目的 は,まず,第一に,至適,および,最大循環能力の 計量を通じて, その人の肉体的労作の限界と, 労作 による障害を防ぐことであり、第2には、循環機能 に現われた特徴的な変化の計測を通じて, 体力, な いし、被鍛練状態を知ろうとすることにある。そこ で,ある循環機能検査の方法を確立するためには, 多くの,健康でよく鍛練された青年,未鍛練者や循 環調節不全者、および、老人や器質的な心疾患患者 などについて、一定の規定をもつ肉体的な負荷を与 え, その前後の循環機能を調べることが必要である (56)。逆に、既存の循環機能検査の追試や批判を試み るときにも、やはり、同じ道程を踏まなければなら ない。

もとより, 臨床的には, 心の絶対的最大労作能力 を計量する方法はない。実際には、瞬間的な循環能 力の計量だけで満足しなければならない。この瞬間 的な循環能力を計量する方法に、特別な技術と装置 により、個別的に"せんさい"な循環能力の測定を 目的とする臨床生理学的な方法と,体力,または, 軍陣医学での実地の応用を目的とする簡易法とがあ る。また、簡易法のなかでも、技術的にもつとも単 純なものは、判定要素として脈拍と血圧だけをとり あげている。

2. 簡易循環機能検査の種類と判定要素

循環機能の良否を判断するための多くの測的要素 のうちで、簡易で、しかも、比較的循環機能をうか がいうるものは、脈拍と血圧である。X線学的の変 化や、ECG の変化は、生理的な循環では、小数の 特殊例の発見しか期待しえない。すなわち、被鍛練 状態や体力的強弱の判断には役立ちにくい。そこで 現在実地に適用されている大部分の簡易法は脈拍と 血圧だけを判定要素とする。判定方法としては、こ の研究でとりあげたもの以外に, つぎのような方法

もある。

静止的検査には Schellong の第1部⁽⁶³⁾, Turner ⁽⁶⁹⁾らの方法があり、力学的(運動負荷)検査には Lorentz⁽³⁸⁾, Maritinet & Paehon⁽⁴²⁾らの膝屈伸検査, および, Schellong⁽⁶³⁾の第Ⅱ部, Bergman⁽⁵⁾ (Harvard's Step Ttst の簡易法), Prokop⁽⁴⁸⁾, Koster & vam Ham⁽³³⁾, Fingerhuth⁽¹⁶⁾らの Step Test 群がある。なお、いろいろの負荷を用いた混合法には Leotounou⁽³⁶⁾のものがあり、さらに、脈拍と血圧以外の判定要素を用いる簡易法には、Albrach⁽¹⁾の最大肺加圧検査、Aunwerdt⁽²⁾, Klippel ⁽³⁰⁾のおこなつた負荷後の息こらえ検査、および、力学的検査に ECG を併用した Schellong⁽⁶³⁾の第3部、Reiner⁽⁵³⁾, Raurentius & Klopffleisch⁽⁵¹⁾, Kussmaul⁽³⁴⁾らの方法もある。

3. 判定要素としての脈拍と血圧の意義

安静時の臥位と立位、および、体位変換時の脈拍 と血圧の意義については、すでに第一部の考案で述 べたから、ここでは強い運動負荷時の脈拍と血圧に 限定する。

尋常な健康人の運動負荷による脈拍と血圧の変化を一口にいえば、脈拍は促進し、縮期圧は上昇し、 弛期圧は不定であるが、弛期圧の変化する巾は縮期 圧のそれよりもいちじるしくないといえる。しかし もちろん、この変動量でただちに循環機能の良否を 推量することはできない。たとえば、負荷による縮 期圧上昇の絶対値だけでは、その人の循環機能についてなにもいえない。ただし、代償不全におちいつた心疾患患者では、ときに縮期圧がさがる。ただし、 このような患者は、理学的検査だけで発見でき、かつ、通常、強い負荷には耐えられないから、実際的な意味はすくない。

これにくらべると、脈拍を左右する因子の分析は 比較的容易で、かつ、その変化方向は比較的一定し ている。負荷停止後も血圧にくらべて変化の持続が 長いので(負荷停止後5~10~15秒の脈拍が、ほば 負荷中の脈拍に等しいことは第1部でのべた)、簡 易法として利用しうる判定要素である。

負荷による脈拍の生理学的な変動は,脈拍数がふえるにしたがつて,心の縮期持続は短縮し,心拍出量が同じなら,縮期圧は上昇し,弛期圧は下降し,脈圧はふえる。さらに,負荷がますます増して,心拍出量が,その人の生理的限界に達すると,負荷の増しに平行してふえるべき心送血量を維持するために,脈拍はますます頻数となる。そこで,必要とする

心送血量が同じであると仮定すれば、鍛練をつんだ人の心は壁が厚く、拍出量は大きく、脈拍は徐脈にかたむく。逆に、未鍛練の人の心は壁が簿く、拍出量が小さく、脈拍は頻数にかたむく。そこで、負荷がある大きさ以上ならば、自律神経による影響の軽減とあいまつて、ある程度脈拍から鍛練度を推測することができる。とくに同一人については、同一の負荷による必要な心送血量は、だいたい一定しているから、鍛練による心筋の肥厚は、迷走神経緊張の増大とともに⁽³⁾、脈拍の減少としてあらわれ、鍛練期間前後の脈拍の差は、鍛練度の良い指標となる。

つぎに、脈拍の負荷後回復時間のもつ意義につい て述べる。負荷中の脈拍の増加は、需要の増した全 身の臓器・組織への酸素を供給するために生じる心 送血量の増大に適応する。ただし、この脈拍の増加 は負荷後も一定時間つづく。回復時間は,他の条件 を同一にして, 負荷後の脈拍が負荷前の脈拍にもど るまでの時間を測定すれば, えられるが, この時間 の長短を採用しうる理由は, つぎの生理学的事実に もとづく。すなわち、負荷停止後も、なお、つづい てみられる脈拍の増しは, 負荷中に生じた酸素負債 を解消するための目的を持つ。そこで,同一負荷条 件のもとでは, 負荷中に生じる酸素負債の大小は, 直接,負荷中の心送血量(脈拍数×拍出量,ただし, 脈拍は強い負荷のもとでは、分時やく160と一定し ているので,心送血量の大小は拍出量の大小に,ほ ぼ、平行する)の大小によつてきまる。したがつて 心送血量が大きい(強い負荷では、拍出量と同意義 となる) ほど、酸素負債は小さくなる。ところで酸 素負債が同じなら、これを解消するために必要な心 送血量も同じであるから(換気条件は一定とする), 心送血量が大きいほど解消力はすぐれることにな る。それゆえ、ますます、心送血量を大きくする能 力(強い負荷のもとでは、拍出量と同意義になる) が回復時間の長短を支配することになる。この回復 時間を、脈拍と血圧のどちらで追求してもよいので あるが, 負荷停止後の変動は, 脈拍の方に, より長 くつづくので、測定が簡単、かつ、測定誤差の少い 脈拍が好んで用いられる。

そこで、脈拍にくらべて血圧が、なぜ判定要素に しにくいかを調べるため、縮期圧、弛期圧、脈圧を 表現因子とし、心・脈管因子を影響因子として、複 雑な両者間の関係を、Schellong (63) にしたがつて 分析した。

健康人が運動負荷によつて生じる心・脈管因子の

一般的な変動は、心送血量と拍出量の増加、末梢脈管抵抗の減少、脈管容積弾性率の増大、および、脈拍の増加にともなう心の縮期持続の短縮である。これらの心・脈管因子の変動が、表現因子におよばす変動の一般的傾向はつぎのとおりである(72)。すなわち、心送血量と拍出量の増加により、縮期圧と弛期圧はともに上昇するが、縮期圧の上昇度がより強いため、脈圧は増大する。末梢脈管抵抗の減少により、縮期圧と弛期圧はともに低下する。脈管容積弾性率の上昇により、縮期圧は上昇し、弛期圧は下降するので、脈圧は増大する。縮期持続の血圧におよばす作用は、すでに述べたとおりである。

しかし、これらの作用は、すべて、その心・脈管 因子以外の因子が同一条件にあると仮定した場合の 相対的傾向を示すもので、判定要素が、脈拍と血圧 だけであるような検査では、これらの因子の複雑な 凾数である血圧の変動だけしかえられない。しかも 負荷にともなう循環機能の変動はきわめて速くすぎ 去つてしまい, とくに, 血圧の変動は激しい⁽²⁴⁾。 かつ,長時間の強い負荷の場合ですら,わずか15分 以内で、おおむね、回復してしまうゆえ、測定条件 がいちぢるしく制約される。また,負荷直後では, 負荷中に静脈血が心へさかんに帰流することを助け ていた運動筋のポンプ作用が止まるゆえ、瞬間的に 血圧、とくに、縮期圧は低下するから、停止直後の 血圧ですら,負荷中の血圧の忠実な映像とはならな い。したがつて、血圧の一点時測定値からは、循環 機能について、なにもいえないことになり、どうし ても, 血圧の回復過程を追求する経時的測定が必要 になると考えられる。なお、血圧の回復時間のもつ 意義については、脈拍の項で述べたとおりである。 しかし、この条件は、簡易化の期待に反するから、 相反する要求をどう調整すべきかの観点からして も, 血圧を判定要素にする検査法に優劣の差が生じ ると思われる。

4. 簡易循環機能検査による成績の読みかた

簡易循環機能検査の成績から、その人の循環機能を推定するには、つぎの事項に注意すべきである。

- a. 検査成績は、心・脈管機能を直接に表わすものではなく、呼吸器系・自律神経、および、内分泌系・骨格筋の鍛練度などの影響をうける。たとえばStep Test の場合、階段昇降に似た動作の訓練をうけているものは、心・脈管機能いかんとは別に"慣れ"による効果が検査成績を良くする。
 - b. 検査成績から、ただちに、その人の心の余力

を推測できない。たとえば、心弁膜症患者のような病的な場合でも、脈拍だけを判定要素とする場合には、逐次的鍛練その他によつて、心迷走神経緊張が充分あるならば、比較的良い成績を示すこともある。したがつて、事前に、一般的な身体検査をすべきである。

- c. 検査成績は、心そのものの機能いかんによると同時に、末梢循環の状態によつても、強く左右されるゆえ、脈管系の不安定性をも考慮すべきである。とくに、若年者を対象とするときには、このことが重要となる。
- d. 検査そのものは、急速負荷時の瞬間的な循環能力を測定することになるので、一回の検査成績が不良であつても、一過性な循環調節不全によることもあるから(たとえば、疲労など)、全般的に見て不審があれば、テストの繰り返しが必要となる。

B. 物理的心・脈管力学的分析法を体力医学,または,軍陣医学え利用する可能性について

現在, 体力医学, または, 軍陣医学で用いられて いる簡易循環機能検査の大部分は、いずれも、経験 的な大数処理統計にもとづいて規則化された方法で あり、ほとんど、心・脈管系の力学的な意味づけは 行なわれていない。そのため、簡易法の成績と臨床 生理学的な方法による成績とから引き出される結論 が、いちじるしく、ちがうこともある。簡易化によ つて, 事実の根本がゆがめられて示されるならば, 簡易法は本来の目的を失う。わたくしは、Schneider's Test の吟味において、このおそれのあるこ とを述べた。心と脈管は,いつも,同時性に,かつ, 相互的に働き合うが(31), 現在の簡易法では, これを 分析して調べうる方法はほとんどない。すでに述べ たように、末梢循環調節の不安定なもの、とくに、 若年者では,成績が不良であるからといつて,ただ ちに、その人の循環能力を判断することは危険であ る(20)。たとえば、負荷後、経時的に追跡をせずに、 血圧を判定要素とする簡易法は、信頼性がすくなく かつ、判断の混乱をまねくことがある。

そこで、これらの簡易法のもつ欠点をおぎない、その信頼度を高める方針が大切となる。その一つとして、多数例について、現行の簡易法と、臨床生理学的な心・脈管力学的分析法(たとえば、Blumberger⁽⁷⁾、Holldack⁽²¹⁾、Wezler⁽⁷⁸⁾、Broemser-Ranke ⁽⁸⁾、Reindell⁽⁵²⁾ などの法、または、Fick-Cournand 法でコントロールした当教室変法⁽²⁵⁾、さらには、Knipping 学派の心肺機能検査法⁽²²⁾⁽³⁵⁾⁽⁶⁶⁾ など)と

を,同一人に,同一条件で実施して,簡易法が採用している判定要素の変動と,その評価基準を,心・脈管力学的に吟味することである。また,他の方針もある。たとえば,経験的に,循環能力の優秀なものと劣弱なもの,たとえば,第1線で活躍しているスポーツマンと,終日,坐業などに従事している人の多数について,各種の負荷を加え,その前後の循環動態を追求し,心・脈管の動態および心脈管以外の諸因子の作用を読みとることなども,必要であろう。

V. ま と め

持続的な肉体的労作能力としての"体力"を評価する方法として用いられる,3つの簡易循環機能検査法("腕立て伏せ"負荷法,Harvard's Step Test,Schneider's Test)の成績と,"体力"の量的基準として用いた100 m,1.500 m,10,000 m 疾走所要時間との相関から,つぎの結果をえた。

- 1. Schneider's Test は、測定項目が多い割りには、かえつて、Index の信頼度が低く、集団的体力検査に用いる循環機能検査の簡易法としては、他の二者に劣るといえる。
- 2. 労作負荷後の脈拍の回復率が,循環の適応能力の良否の良い指標であることがわかる。
- 3. Schneider's Test の信頼度が低いのは、検査項目のとりあげかたと、各項目の評点の等価換算に合理性がなく、また、負荷の強さが小さすぎることによると思われる。この観点だけからいえば、他の二者の負荷は、適当であるといえる。
- 4. Schneider's Test だけが、判定要素として血圧をとりあげているが、その取り扱いが適当でないので、かえつて、Index の信頼度を低める結果となつている。しかし、血圧は、循環の適応能力を知るためには、欠くことのできない要素であるから、物理的心・脈管力学的分析法によつて裏付けられた血圧を判定要素にふくむ、簡易で、しかも、信頼度の高い、新しい循環機能検査法の出現が期待される。

稿を終るにあたり、終始、御懇篤な御指導と 厳正な御校閲を賜わつた恩師斎藤十六教授に厚 く御礼申し上げます。また、研究の便宜をお計 らい下さつた、陸上自衛隊金原衛生監、および 下志津駐とん地菊池司令ほかの諸官に篤く謝意 を表します。

本論文の要旨は、第21回近畿生理学談話会

(昭和34年10月) および,第13回日本体力医 学会総会(昭和34年10月)で報告した。

文 献

- 1. Albrach, E.: Zit. nach (49) 1951, 1953.
- 2. Aunwerdt, I.: Zit. nach (49) 1951.
- 3. Bainbridge, F. A.: Physiology of Muscular Exercise, New York, London, Green & Co. 1919.
- Bainbridge, F. A.: J. Physiol. 48, 332, 1914, 50, 65, 1915.
- 5. Bergman: Zit. nach (49) 1952.
- Beth-Bergmann: Handb. d. norm. u. path. Physiol. 7, 2 Teil, Kisch, B. S. 1161, Kaufmann, F. S. 1303 u. 1414.
- 7. Blumberger, K.: Verh. dtsch. Ges. Kreislforsch., 16, 21, 1950.
- 8. Broemser ph, u. O. F. Ranke: Z. Kreislforsch., 25, 11, 1933.
- Cotton, F. S. & C. B. Dill: Am. J. Physiol.
 III, 554~556, 1935.
- 10. Cotton, Rapport & Dewis: cit. from (61) 1917.
- 11. Crampton, N. Y.: cit. from (62) 1915.
- 12. Dexter, L.: Factors Regulating Blood Pressure, J. Macy Foundation, S. 57, 1950.
- 13. Duesberg, R. & W. Schroeder: Pathophysiologie u. Klinik d. Kollapszustaende Leibzig, s. 80, 1944.
- 14. Erlanger & Hooker: cit. from (62) 1904.
- 15. Federici, P. C.: Arch. Path. Chir. Med., 32, 192, 1955.
- Fingerhuth, M.: Zit. nach Huber, H. Sport
 u. Kreislauf Berlin, 1947.
- 17. Flack & Boudler: Rept. Air Med. Investigations Committee London, No.2, 12, 1918.
- 18. 福田・長島・畠山: 循環の生理 92, 生理学講 座 WII-2, 創元社, 1950, (昭 25)
- 19. Herxheimer, H.: Die Dauerwirkung harter Muskelarbeit auf Qrgane u. Funktion; Bethe-Bergmann, Hdb. norm. u. path. Physiol. 15, I Teil, 1930.
- Hochrein, M. & I. Schleicher: Herz-Kreis lauferkrankungen Dauerstadt, 2, S. 1200, 1959.

- Holldack, K.: Dtsch. Klin. Med., 198, 71,
 1951; Atlas u. Kurzgefasstes Lehrbuch d.
 Phonokardiographie, Stuttgart, 1956.
- 22. Hollmann, W.: Der Arbeit-und Trainingseingluss auf Kreislauf u. Atmung Darmstadt, 1959.
- 23. 猪飼・山川: 民族衛生, 23, 1, 39~43, 1955.
- 24. Imhof, P., A. Huerlimann & B. Steinmann: Cardiologia 31, 272, 1957.
- 25. 稲垣義明: 日内会誌, 45, 1161, 昭 32.
- 26. **石井雄二**: 適性検査ハントブック, 労研, 東京 P. 56, 1953.
- 27. Johnson, R. E., L. Brouha, & R. C. Parling: Zit. nach (49) 1912.
- 28. 勝呂 清: 千葉医会誌, 33, 312, 昭 32.
- 29. 木川田隆一: 千葉医会誌, 35, 1369, 昭 34.
- 30. Klippel: Zit. nach (49) 1955.
- 31. Koch, E.B.: Zbl. inn. Med., 56, 1, 1933.
- 32. **国民栄養調査**,昭和32年度: 厚生省·大臣官 房統計調査部,東京,昭34.
- 33. Koster, L. u. E. van Ham: Zit.nach (49) 1951.
- Kussmaul, A: München Med. Wschr., 48, 237, 1941.
- 35. Landen, H. C.: Die Funktionelle Beurteilung des Lungen u. Herzkranken Darmstadt, 1955.
- 36, Leotounov, S. P.: Zit. nach (49) 1956.
- Lijestrand, G. & E. Zander: Z. Exp. Med.
 59, 105, 1928.
- 38. Lorentz, F. H.: Die Sportaerzteuntersuchung, Leibzig, Berlin, 1936.
- Lythegoe, R. J. & T. R. Pereira: Proc. Roy. Soc. London. 98, 468, 1925.
- Mark, R. E.: Klinik u. Therapie d. Autonomen-neavensystem; Z. exper. Med., 83, 580, 1932.
- 41. Mark, R. E.: Sportaerztetagerung, Leibzig. VEB-Vlg. Volk u. Gesundheit, Berln, 1954.
- 42. Martinet-Paehon.: Zit. nach (49) 1956.
- 43. 丸山: 教育心理研究工, 2,517~533,1927.
- 44. Meylan: cit., from (62) 1913.
- 45. Mortensen & Lee: cit. from Stroud, W. D.; The Diagnosis and Treatment of Car-

- diovascular Disease, Philadelphia 2, 1940.
- 46. **小田(俊)**: 運動の生理と臨床,診断と治療社, 東京 P. 80, 1955.
- 47. 奥山: 労働科学研究, 11, 1934.
- 48. Prokop, L.: Sportmedizin 5, 10, 1954.
- 49. Prokop, L. & L. Slapark: Sport u. Kreislauf, Wien-Bonn-Bern, 1958.
- Raab, W.: Hormonal and Neurogenic Cardiovascular Disordors, Baltimore P. 327. 330, 1953.
- 51. Raurentius, P. & F. Klopffleisch: Muen chen Med. Wschr., 87, 1045, 1940.
- Reindell, H.: Dtsch. Arch. Klin. Med., 182, 485, 1938.
- 53. Reiner, K.: Muenchen Med. Wschr., 87, 1305, 1940.
- 54. 陸上自衛隊体力検査実施規則,昭32.
- 55. **労研:** 適性検査ハンドブック, 東京, P 87~ 93, 1953.
- 56. Rushman, R. F.: Cardiac Diagnosis, Philadelphia & London, P. 55, 161, 1955.
- 57. 斎藤十六: 頸動脈球および 洞神経, 東京, P. 184, 昭 25.
- 58. **斎藤十六**: 頸動脈球および 洞神経, 東京, P. 127, 158, 昭 25.
- 59. 斎藤十六: 日本の医学の 1959 年, 4;390,613, 1959. (昭 34)
- 60. **斎藤十六**: 寿命学研究会年報, **2**, 192, 1957. (昭 32)
- 61. Schneider, E. C.: J. A. M. A., 74, 1507, 1920.
- Schneider, E. C. & D. Truesdell: Am. J. Physiol. 61, 429, 1922.
- 63. Schellong, F.: Regulationspruefung des Kreislaufs, Vlg., Steinkopf, Dresden u. Leibzig, 1938.
- 64. Sewall: Am.J. M. Sci. 158, 789, 1919.
- 65. 鈴木(慎): 労働科学研究, 16, 287, 1939.
- 66. 謝 照光: 千葉医会誌, 33, 373, 昭 32.
- 67. Taylor, C. L.: Am. Rev. Physiol. 2, 599, 1945.
- 68. 富田·加藤: 労働科学研究, 16, 477, 1939.
- Turner, A. H., M. G. Newton & F. W. Hayms: Am. J. Physiol., 94, 507, 1930.
- 70. Tuttle, W. W. & E. P. Salit: Am. Heart

J. 29, 594, 1945.

forsch., 15, 18, 1949.

71. 浦田正治: 体力学研究, 3, 84, 1958.

74. 八木高次: 労働科学研究, 8, 4, 1931, (昭 6)

72. 渡辺和夫: 千葉医会誌, 34, 354, 昭 33.

75. 八木高次: 労働科学研究 7, 2, 4, 1930, (昭 5)

73. Wezler, K.: Verh. dtsch. Ges. Kreisl-