研究ノート

非拡大型写像に関する不動点定理と平均収束定理

青 山 耕 治

1 はじめに

本稿では、ある非拡大型写像とその不動点に関する最近の研究結果¹⁾の紹介と解説を行う.

本稿で紹介する主な結果は、ある種の非拡大性をもった非線形写像の

- 不動点定理 (定理 4.1 など),
- 平均収束定理 (定理 5.1 など),
- 定義域の不動点性と有界性に関する結果 (定理 6.1)

の三つに分類することができる. ここでは, これらの先行研究である非拡大写像に関する定理を三つ紹介する. 以下, H を実 Hilbert 空間, C を H の空でない閉凸部分集合. $T: C \to C$ を非拡大 2)写像とする.

まず、次の定理3)は、非拡大写像の不動点の存在に関するものである.

(521)

¹⁾ K. Aoyama, S. Iemoto, F. Kohsaka, and W. Takahashi (2010); K. Aoyama and F. Kohsaka (2011a,b) および K. Aoyama (2011).

²⁾ 写像 $T: C \to C$ が非拡大 (nonexpansive) であるとは、すべての $x,y \in C$ に対して、 $\|Tx - Ty\| \le \|x - y\|$ が成り立つときをいう.ここで、 $\|\cdot\|$ は H のノルムである.

³⁾ A. Pazy (1971).

定理 1.1. $\{T^n x\}$ が有界となる $x \in C$ が存在するならば, T は不動点をもつ. つまり, z = Tz となる $z \in C$ が存在する.

次の定理4)は、非線形エルゴード定理としてよく知られている.

定理 1.2. T は不動点をもつと仮定し, $x \in C$ に対して, 点列 $\{z_n\}$ を

$$z_1 = x, z_2 = \frac{x + Tx}{2}, z_3 = \frac{x + Tx + T^2x}{3}, \dots$$
 (1.1)

で定義する. このとき, $\{z_n\}$ は T の不動点に弱収束する.

次の定理⁵⁾は、非拡大写像の定義域の不動点性と有界性に関する結果である。

定理 1.3. C が非拡大写像に関して不動点性を持つ、つまり、すべての非拡大写像 $T: C \to C$ が不動点をもつならば、C は有界である.

最近, 非拡大写像とは異なる種類の写像に対しても, 定理 1.1 のような不動点定理や定理 1.2 のような平均収束定理が成り立つことが示された. 例えば、次のことが知られている.

- ● 写像 T が F. Kohsaka ら⁶⁾の意味で nonspreading のとき, 定理

 1.1 と同様な不動点定理⁷⁾や定理 1.2 と同様な平均収束定理⁸⁾が成り立つ。
- 写像 T が W. Takahashi (2010) の意味で hybrid のとき, 定理
 1.1 および定理 1.3 と同様な結果⁹⁾が, 定理 1.2 と同様な平均収束

166 (522)

⁴⁾ J.-B. Baillon (1975).

⁵⁾ W. O. Ray (1980).

⁶⁾ F. Kohsaka and W. Takahashi (2008).

⁷⁾ F. Kohsaka and W. Takahashi (2008) の Theorem 4.1 の特別な場合.

⁸⁾ Y. Kurokawa and W. Takahashi (2010).

⁹⁾ W. Takahashi (2010) の Theorem 4.3 および Theorem 5.2.

定理10)が成り立つ.

この後の第 3 節で詳しく説明する λ -hybrid 写像に関する議論によって、これらの先行研究の結果を統一的に扱うことが可能となる。そして、後で述べる定理 4.1、定理 5.1 および定理 6.1 は、本節に述べた先行研究の結果を統合したものになっている。

2 準備

以下、 $\mathbb N$ を正の整数全体の集合、 $\mathbb R$ を実数全体の集合、H を実 Hilbert 空間、C を H の空でない閉凸部分集合、 $\langle \,\cdot\,,\,\cdot\,\rangle$ を H の内積、 $\|\,\cdot\,\|$ を H のノルム、I を H 上の恒等写像とする.

写像 $T: C \to H$ の不動点の集合を、F(T) で表す。つまり、 $F(T) = \{z \in C: z = Tz\}$ である。写像 $T: C \to H$ が擬非拡大(quasinonexpansive)であるとは、F(T) が空ではなく、すべての $x \in C$ と $z \in F(T)$ に対して、 $\|Tx-z\| \leq \|x-z\|$ が成り立とうときをいう。擬非拡大写像 $T: C \to H$ の不動点集合は閉凸であることが知られている。写像 $T: C \to H$ が非拡大(nonexpansive)であるとは、すべての $x,y \in C$ に対して、 $\|Tx-Ty\| \leq \|x-y\|$ が成り立とうときをいう。写像 $T: C \to H$ が堅非拡大(firmly nonexpansive)であるとは、すべての $x,y \in C$ に対して、 $\|Tx-Ty\|^2 \leq \langle x-y,Tx-Ty \rangle$ が成り立とうときをいう。ときをいう。定義より、堅非拡大写像は非拡大であり、不動点をもつ非拡大写像は擬非拡大であることがわかる。写像 $T: C \to H$ が strictly pseudononspreading である $x,y \in C$ に対して

 $||Tx - Ty||^2$

(523)

¹⁰⁾ W. Takahashi and J.-C. Yao (2011).

¹¹⁾ M. O. Osilike and F. O. Isiogugu (2011).

$$\leq \|x - y\|^2 + 2\langle x - Tx, y - Ty \rangle + \kappa \|x - Tx - (y - Ty)\|^2$$

が成り立つときをいう。このとき、T は κ -strictly pseudononspreading であるという。0-strictly pseudononspreading 写像を、単に nonspreading 写像という。

各 $x \in H$ に対して、 $\|x-z\| = \min\{\|x-y\| : y \in C\}$ を満たす $z \in C$ がただ一つ存在する.その点 z を $P_C(x)$ と表し、 P_C を H から C の上への距離射影 (metric projection) という.距離射影 P_C は堅非 拡大であることが知られている 12).

3 λ -hybrid 写像

本節では、 λ -hybrid 写像の定義とその基本性質を扱う. 以下, H を実 Hilbert 空間, C を H の空でない部分集合とし、 λ を実数とする.

写像 $T\colon C\to H$ が λ-hybrid である $^{13)}$ とは、すべての $x,y\in C$ に対して

$$||Tx - Ty||^2 \le ||x - y||^2 + 2(1 - \lambda)\langle x - Tx, y - Ty\rangle$$
 (3.1)

が成り立つときをいう. Hilbert 空間では、すべての $x,y \in H$ に対して

$$||Tx - Ty||^2 + ||x - y||^2 + 2\langle x - Tx, y - Ty \rangle$$

= $||x - Ty||^2 + ||Tx - y||^2$

が成り立つことから,式 (3.1) は次のノルムだけの不等式

$$(2 - \lambda) \|Tx - Ty\|^{2}$$

$$\leq (1 - \lambda) (\|x - Ty\|^{2} + \|y - Tx\|^{2}) + \lambda \|x - y\|^{2}$$
 (3.2)

168 (524)

¹²⁾ 例えば、高橋渉 (2005).

¹³⁾ K. Aoyama, S. Iemoto, F. Kohsaka, and W. Takahashi (2010).

と同値であることがわかる. よって, (3.2) を定義式と考えてもよい $^{14)}$. 定義から. 次のことが容易にわかる.

- Tが 0-hybrid 写像ならば、Tは nonspreading であり、
- Tが 1/2-hybrid 写像ならば、TはW. Takahashi (2010) の意味で hybrid であり、
- T が 1-hvbrid 写像ならば、T は非拡大であり、
- $T: C \to H$ が不動点をもつ λ -hybrid 写像ならば, 擬非拡大である. よって, λ -hybrid 写像の不動点集合は閉凸である.

さらに、次のことが知られている.

- $\lambda > 1$ のとき, λ -hybrid 写像は恒等写像である. 実際, 式 (3.1) で x = y とすると, $0 \le 2(1 \lambda) \|x Tx\|^2$ で, x = Tx となる.
- T が堅非拡大写像で $0 < \lambda < 1$ ならば, T は λ -hybrid である 15).
- λ -hybrid 写像は連続とは限らない¹⁶⁾.

次の補助定理 17 は、strictly pseudononspreading 写像と λ -hybrid 写像との関係を示している。

補助定理 3.1. κ と β を $0 \le \kappa \le \beta < 1$ を満たす実数, $T: C \to H$ を不動点をもつ κ -strictly pseudononspreading 写像とし, 写像 $T_{\beta}: C \to H$ を $T_{\beta} = \beta I + (1-\beta)T$ で定義する. このとき, T_{β} は $-\beta/(1-\beta)$ -hybrid 写像である.

(525)

¹⁴⁾ 第 4 節で、Banach 空間上の λ -hybrid 写像を考える際は、式 (3.2) を定義式とする.

¹⁵⁾ K. Aoyama, S. Iemoto, F. Kohsaka, and W. Takahashi (2010) $\mathcal O$ Lemma 3.1.

¹⁶⁾ K. Aoyama, S. Iemoto, F. Kohsaka, and W. Takahashi (2010)
 $\mathcal O$ Example 3.4.

¹⁷⁾ K. Aoyama and F. Kohsaka (2011a) O Lemma 2.5.

4 不動点定理

本節では、 λ -hybrid 写像の不動点定理を述べる. 以下, H を実 Hilbert 空間. C を H の空でない閉凸部分集合、 λ を 1 以下の実数とする.

次の定理 $^{18)}$ は、第1節で紹介した不動点定理をすべて統合したものである。

定理 4.1. $T: C \to C$ を λ -hybrid 写像, $x \in C$ とし, 点列 $\{z_n\}$ を $n \in \mathbb{N}$ に対して

$$z_n = \frac{1}{n} \sum_{k=1}^n T^{k-1} x \tag{4.1}$$

で定義する. ここで, $T^0=I$ とする. このとき, $\{T^nx\}$ が有界ならば T は不動点をもち, $\{z_n\}$ の弱収積点 (weak cluster point) は T の不動点である.

定理 4.1 より, 直ちに次の系が得られる.

系 **4.2.** $T: C \to C$ を λ -hybrid 写像とする. このとき, C が有界ならば T は不動点をもつ.

次の定理 $^{19)}$ は、 λ -hybrid 写像の列に関する結果で、定理 4.1 の一般化の一つである.

定理 4.3. $\{\lambda_n\}$ を λ に収束する実数列とし、各 $n\in\mathbb{N}$ に対して $T_n\colon C\to C$ を λ_n -hybrid 写像とする。C の点列 $\{x_n\}$ と $\{z_n\}$ を、 $x_1\in C$ および各 $n\in\mathbb{N}$ に対して、 $x_{n+1}=T_nx_n$ 、 $z_n=\frac{1}{n}\sum_{k=1}^nx_k$ で定

170 (526)

K. Aoyama, S. Iemoto, F. Kohsaka, and W. Takahashi (2010) O Theorem 4.1.

¹⁹⁾ K. Aoyama and F. Kohsaka (2011a) $\mathcal O$ Theorem 3.1.

義する. さらに, $\{T_n\}$ は各点収束し, その各点収束極限を T で表す. つまり, $x \in C$ に対して $Tx = \lim_{n \to \infty} T_n x$ とする. このとき, 次が成り立つ.

- (1) T は λ -hybrid であり, $\bigcap_{n=1}^{\infty} F(T_n) \subset F(T)$ となる.
- (2) $\{x_n\}$ が有界ならば T の不動点をもち, $\{z_n\}$ の弱収積点は T の不動点である.

定理 4.3 で $T_1=T_2=\cdots$ の場合が定理 4.1 である. また, 定理 4.3 で $\lambda_n\equiv 1$ の場合, つまり, 各 T_n が非拡大写像の場合はすでに知られていた結果 20)である.

次の定理 $^{21)}$ は、Banach 空間の上の λ -hybrid 写像の不動点の存在に関する結果である。

定理 4.4. E を一様凸 (uniformly convex) $^{22)}$ な実 Banach 空間, C を E の空でない閉凸部分集合, $T\colon C\to C$ を λ -hybrid 写像 $^{23)}$ とする. このとき, $\{T^nx\}$ が有界となる $x\in C$ が存在するならば, T は不動点をもつ.

5 平均収束定理

本節では、 λ -hybrid 写像の平均収束定理を取り扱う. 以下、前節と同様に、H を実 Hilbert 空間、C を H の空でない閉凸部分集合、 λ を 1 以下の実数とする.

(527)

²⁰⁾ M. Akatsuka, K. Aovama, and W. Takahashi (2008) @ Theorem 3.2.

²¹⁾ K. Aoyama and F. Kohsaka (2011b) の主結果から直接得られる. なお, 定理 4.1 や定理 4.3 の証明では Cesàro 平均を用いているが, 定理 4.4 では Banach limit を用いている.

²²⁾ Hilbert 空間は、一様凸な Banach 空間の一例である.

²³⁾ この場合、式 (3.2) を定義式とする.

次の定理 $^{24)}$ は、第1節で紹介した平均収束定理をすべて統合したものである。

定理 5.1. $T: C \to C$ を不動点をもつ λ -hybrid 写像, P を H から F(T) の上への距離射影, $x \in C$ とし, 点列 $\{z_n\}$ を各 $n \in \mathbb{N}$ に対して $\{4.1\}$ で定義する. このとき, $\{PT^nx\}$ は強収束し, $\{z_n\}$ は $\{PT^nx\}$ の 極限に弱収束する.

次の定理 $^{25)}$ は、 λ -hybrid 写像の列に関する結果で、定理 5.1 の一般化の一つである。

定理 5.2. $\{\lambda_n\}$, $\{T_n\}$, $\{x_n\}$, $\{z_n\}$ および T は, 定理 4.3 と同じとする. さらに, $F(T) = \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$ が成り立つと仮定し, P を H から F(T) の上への距離射影とする. このとき, $\{Px_n\}$ は強収束し, $\{z_n\}$ は $\{Px_n\}$ の極限に弱収束する.

定理 5.2 で $T_1=T_2=\cdots$ の場合が定理 5.1 である。また、定理 5.2 で $\lambda_n\equiv 1$ の場合、つまり、各 T_n が非拡大写像の場合はすでに知られていた結果 26)である。

定理 5.2 および補助定理 3.1 を使うと、次の系 27)が直ちに得られる.

系 5.3. $\{\alpha_n\}$ を 0 に収束する [0,1) の数列, κ と β を $0 \le \kappa \le \beta < 1$ を満たす実数, $T: C \to C$ を不動点をもつ κ -strictly pseudononspreading 写像, P を H から F(T) の上への距離射影とする. 点列 $\{x_n\}$ と $\{z_n\}$

172 (528)

²⁴⁾ K. Aoyama, S. Iemoto, F. Kohsaka, and W. Takahashi (2010) ${\mathcal O}$ Theorem 5.2.

²⁵⁾ K. Aoyama and F. Kohsaka (2011a) O Theorem 4.1.

²⁶⁾ M. Akatsuka, K. Aoyama, and W. Takahashi (2008) Ø Theorem 3.2.

²⁷⁾ M. O. Osilike and F. O. Isiogugu (2011) © Theorem 3.1.

 $e, x_1 \in C$ および各 $n \in \mathbb{N}$ に対して

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) (\beta x_n + (1 - \beta) T x_n), \ z_n = \frac{1}{n} \sum_{k=1}^n x_k$$

で定義する. このとき, $\{Px_n\}$ は強収束し, $\{z_n\}$ は $\{Px_n\}$ の極限に弱収束する.

著者らの最近の結果 28)によって、平均の取り方をもっと一般的にしても、定理 5.2 と同様な結論が得られることがわかっている.

6 定義域の不動点性と有界性

本節においても, H を実 Hilbert 空間, C を H の空でない閉凸部分集合, λ を 1 以下の実数とする.

系 4.2 より, C が有界ならば C 上の任意の λ -hybrid 写像は不動点をもつこと $^{29)}$ がわかっている。次の定理 $^{30)}$ より, その逆も限定的に成り立つことがわかる

定理 **6.1.** $\lambda \in [0,1]$ とし, C は λ -hybrid 写像に関して不動点性をもつ, つまり, すべての λ -hybrid 写像 $T: C \to C$ が不動点をもつと仮定する. このとき, C は有界である.

定理 6.1 で $\lambda = 1$ の場合が定理 1.3 であるから, 定理 6.1 は定理 1.3 の一般化であるが, その証明は定理 1.3 から得られる次の補助定理を使うと容易である.

補助定理 6.2. C は堅非拡大写像に関して不動点性をもつ, つまり, す

(529)

²⁸⁾ K. Aoyama and F. Kohsaka (2012).

²⁹⁾ このとき, C は λ -hybrid 写像に関して不動点性をもつという.

³⁰⁾ K. Aoyama, S. Iemoto, F. Kohsaka, and W. Takahashi (2010) ${\mathcal O}$ Theorem 6.2.

べての堅非拡大写像 $T: C \to C$ が不動点をもつと仮定する. このとき, C は有界である.

第3節で述べたように、 $\lambda \in [0,1]$ のとき、すべての堅非拡大写像は λ -hybrid であるから、補助定理 6.2 より、定理 6.1 が得られる.

7 強収束定理

第 5 節の定理はすべて、不動点への弱収束定理であったが、別のアルゴリズムを用いると、次のような強収束定理 31)を得ることができる。以下、H を実 Hilbert 空間、C を H の空でない閉凸部分集合、 λ を 1 以下の実数とする。

定理 7.1. u を C の点, $\{\alpha_n\}$ を [0,1] の数列, $T: C \to C$ を不動点をもつ λ -hybrid 写像とし, $\alpha_n \to 0$ および $\sum_{n=1}^{\infty} \alpha_n = \infty$ を仮定する. 写像 $S_n: C \to C$ を、各 $n \in \mathbb{N}$ に対して

$$S_n = \frac{1}{n} \sum_{k=1}^{n} T^{k-1}$$

で定義する. ただし, $T^0=I$ とする. 点列 $\{x_n\}$ を, $x_1\in C$ および各 $n\in\mathbb{N}$ に対して

$$x_{n+1} = \alpha_n u + (1 - \alpha_n) S_n x_n \tag{7.1}$$

で定義する. このとき, $\{x_n\}$ は $P_{F(T)}(u)$ へ強収束する.

定理 7.1 と補助定理 3.1 を使うと, 直ちに次の系 $^{32)}$ が得られる.

系 7.2. u と $\{\alpha_n\}$ は定理 7.1 と同じとする. κ と β を $0 \le \kappa \le \beta < 1$ を満たす実数, $T: C \to C$ を不動点をもつ κ -strictly pseudononspreading

174 (530)

³¹⁾ K. Aoyama (2011) O Theorem 2.

³²⁾ M. O. Osilike and F. O. Isiogugu (2011) \mathcal{O} Theorem 3.2.

写像とし, $S_n: C \to C$ を各 $n \in \mathbb{N}$ に対して

$$S_n = \frac{1}{n} \sum_{k=1}^{n} (T_\beta)^{k-1}$$

で定義する. ここで, $T_{\beta} = \beta I + (1-\beta)T$, $(T_{\beta})^0 = I$ である. 点列 $\{x_n\}$ を, $x_1 \in C$ およびすべての $n \in \mathbb{N}$ に対して (7.1) で定義する. このとき, $\{x_n\}$ は $P_{F(T)}(u)$ へ強収束する.

8 おわりに

 λ -hybrid 写像およびその周辺については様々な研究が行われている³³⁾. ここでは、 λ -hybrid 写像の一般化の一つである generalized hybrid 写像を取り上げ、 λ -hybrid 写像との関係を述べる. 以下, C を実 Hilbert 空間 H の空でない部分集合、 α および β を実数とする.

写像 $T: C \to H$ が (α, β) -generalized hybrid 写像である³⁴⁾とは、すべての $x, y \in C$ に対して

$$\alpha \|Tx - Ty\|^{2} + (1 - \alpha) \|x - Ty\|^{2}$$

$$\leq \beta \|Tx - y\|^{2} + (1 - \beta) \|x - y\|^{2} \quad (8.1)$$

が成り立つときをいう. (α,β) -generalized hybrid 写像は, λ -hybrid 写像の一般化とみなすことができる. 実際, λ を実数, $T: C \to H$ を λ -hybrid 写像とするとき, (3.2) より, T は $(2-\lambda,1-\lambda)$ -generalized hybrid であることがわかる.

ところが、一部の generalized hybrid 写像は、恒等写像または、ある λ -hybrid 写像になってしまう。もう少し具体的に書くと、次のことがわ

(531)

³³⁾ Google Scholar で検索すると, K. Aoyama, S. Iemoto, F. Kohsaka, and W. Takahashi (2010) の引用数は 24 である (本稿執筆時).

³⁴⁾ P. Kocourek, W. Takahashi, and J.-C. Yao, (2010).

かっている 35).

 $T: C \to H$ を (α, β) -generalized hybrid 写像とするとき

- (1) $\alpha + \beta 1 < 0$ ならば、T は恒等写像である.
- (2) $\alpha+1-\beta>0$ ならば、ある $\lambda\in\mathbb{R}$ が存在して、T は λ -hybrid である.

さらに, T が C から C の中への generalized hybrid 写像のとき, 次が成り立つ³⁶⁾.

- $\alpha = 0$ および $\beta = 1$ ならば. T は等長である.
- $1 \beta \alpha(1 \alpha) < 0$ ならば、T は恒等写像である.

以上のことから、generalized hybrid 写像の研究においては、恒等写像や λ -hybrid 写像に帰着されない場合、つまり

$$\alpha < 0$$
 for $-\alpha + 1 \le \beta \le \alpha^2 - \alpha + 1$

または

$$\alpha \geq 2 \text{ to } \alpha + 1 \leq \beta \leq \alpha^2 - \alpha + 1$$

の場合が重要であるといえる.

参考文献

- M. Akatsuka, K. Aoyama, and W. Takahashi (2008), "Mean ergodic theorems for a sequence of nonexpansive mappings in Hilbert spaces," *Scientiae Mathematicae Japonicae* 68, 233–239.
- K. Aoyama (2011), "Halpern's iteration for a sequence of quasinonexpansive type

176 (532)

³⁵⁾ 青山耕治 (2012) の命題 6.1.

³⁶⁾ 青山耕治 (2012) の命題 6.2.

- mappings," Advances in Intelligent and Soft Computing, Springer, Berlin, pp. 387–394.
- K. Aoyama, S. Iemoto, F. Kohsaka, and W. Takahashi (2010), "Fixed point and ergodic theorems for λ -hybrid mappings in Hilbert spaces," *J. Nonlinear Convex Anal.* 11, 335–343.
- K. Aoyama and F. Kohsaka (2011a), "Fixed point and mean convergence theorems for a family of λ -hybrid mappings," *Journal of Nonlinear Analysis and Optimization* 2, 85–92.
- K. Aoyama and F. Kohsaka (2011b), "Fixed point theorem for α-nonexpansive mappings in Banach spaces," Nonlinear Anal. 74, 4387–4391.
- K. Aoyama and F. Kohsaka (2012), "Uniform mean convergence theorems for hybrid mappings in Hilbert spaces," Fixed Point Theory Appl. 2012:193, 13pp.
- J.-B. Baillon (1975), "Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert," C. R. Acad. Sci. Paris Sér. A-B 280, Aii, A1511-A1514.
- K. Goebel and W. A. Kirk (1990), "Topics in metric fixed point theory," Cambridge Studies in Advanced Mathematics 28, Cambridge University Press, Cambridge.
- P. Kocourek, W. Takahashi, and J.-C. Yao, (2010), "Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces," *Taiwanese J. Math.* 14, 2497–2511.
- F. Kohsaka and W. Takahashi (2008), "Fixed point theorems for a class of non-linear mappings related to maximal monotone operators in Banach spaces," Arch. Math. (Basel) 91, 166–177.
- Y. Kurokawa and W. Takahashi (2010), "Weak and strong convergence theorems for nonspreading mappings in Hilbert spaces," Nonlinear Anal. 73, 1562–1568.
- M. O. Osilike and F. O. Isiogugu (2011), "Weak and strong convergence theorems for nonspreading-type mappings in Hilbert spaces," *Nonlinear Anal.* 74, 1814– 1822.
- A. Pazy (1971), "Asymptotic behavior of contractions in Hilbert space," Israel J. Math. 9, 235–240.
- W. O. Ray (1980), "The fixed point property and unbounded sets in Hilbert space," Trans. Amer. Math. Soc. 258, 531–537.

(533)

非拡大型写像に関する不動点定理と平均収束定理

- W. Takahashi (2010), "Fixed point theorems for new nonlinear mappings in a Hilbert space," J. Nonlinear Convex Anal. 11, 79–88.
- W. Takahashi and J.-C. Yao (2011), "Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces," *Taiwanese J. Math.* 15, 457–472.
- 青山耕治 (2012)「ハイブリッド写像の不動点定理と平均収束定理」『京都大学数理解析研究所 講究録 (独立性と従属性の数理-代数と確率の出会v-)』京都大学数理解析研究所,第 1820 巻, 1-10 頁.

高橋渉 (2005)「非線形·凸解析学入門」横浜図書.

(2013年9月9日受理)

178 (534)