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Chapter 1 

General Introduction 

 

Carbon materials are found in various forms such as graphite, diamond, carbon 

fibers, fullerenes, graphene, and carbon nanotubes. Apart from the well-known 

graphite, carbon can build closed and open caged with honeycomb atomic 

arrangement. First such structure to be discovered was the C60 molecule by Kroto et al 

[1]. Although various carbon cages were studied, it was only in 1991, when Iijima 

observed for the first time tubular carbon structures [2]. The carbon nanotubes 

(CNTs) are consisted of up to several tens of graphitic shells (so called multi-walled 

carbon nanotube (MWCNTs)) with adjacent shell separation of ~0.34 nm, diameters 

of ~1 nm and large length/diameter ratio. Two years later, synthesis of single-walled 

nanotubes was independently reported by Iijima and Toshinari Ichihashi of NEC, and 

Donald Bethune and colleagues of the IBM Almaden Research Center in California [3, 

4]. Then in 1999, Iijima et al. developed a new type of single wall nanocarbon named 

single wall carbon nanohorn (SWCNH), which has a nanotubular and forms a unique 

assembly structure with a “Dahlia-flower-like” feature [5]. Furthermore, in 2004 

physicists at the University of Manchester and the Institute for Microelectronics 

Technology, Chernogolovka, Russia, first isolated individual graphene planes by 

using adhesive tape. They also measured electronic properties of the obtained flakes 

and showed their unique properties [6]. Nowadays, there are a number of methods of 

making CNTs such as arc-discharge, laser-ablation, and catalytic growth [7-9]. The 

synthesized CNTs are also characterization by the measurement such as Raman 

spectroscopy, electronic and optical spectroscopies for the nano-science and nano-

devices. 

Carbon nanotubes, especially SWNTs, have been termed “materials of the 21st 

century” due to their functional mechanical, electrical and optoelectronic properties, 

since they already outperform classical materials such as organic polymers and 
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semiconductors [10]. Fuelled by potentially important applications for these materials, 

carbon nanotube research has sprung to an astonishing scale in only a few years, 

opening new challenges and opportunities for chemistry of these structures. Nanotube 

research is truly multi- and interdisciplinary: engineers are developing next-

generation composites [11], electronic devices [10], and adsorbents [12] based on 

nanotubes; chemists are exploring nanotubes as containers for molecules [13] and 

ions [14] and as nanoscale reactors; biologists see nanotubes as potential shuttles for 

organ-selective drug delivery and other therapeutic and diagnostic purposes [15-17]. 

The physico-chemical nature of carbon nanotubes, which essentially can be viewed as 

fully conjugated polyaromatic macromolecules with a hollow, inert interior and 

reactive exterior and ends, drives applications in all these fields. 

  The application and research of nano-devices using CNTs have received great 

attention in the last decade. The CNTs have been attractive for various application 

fields due to their high mechanical strength, high chemical stability, high thermal and 

electrical conductivity, and large aspect ratio with naturally formed small diameters 

[18-20]. Particularly, their fascinating electrical and mechanical properties offer a new 

arena to the development of advanced engineering devices materials. 

 In order to enhance the electrical property of the SWCNTs, the study for the 

electronic structure of SWCNTs looks very important. Recently, the studies on the 

electrical properties of SWCNTs have been focused on the charge transfer interaction 

of modified SWCNTs with electron donor or acceptor molecules that allow the 

manipulation of electrical conductivity of SWCNTs [21-23]. Conventional 

modification of SWCNTs has been realized by intercalation with iodine or 

halogenides of Na, K, Rb, Cs, Ca, Cu, and Ag through gas phase doping or liquid 

phase adsorption methods [24-29]. These SWCNTs modified with metal halogenides 

always show a p-type behavior, which means that electrons always are withdrawn 

from the valence band of SWCNTs to the adsorbates and the main charge carrier in 

the SWCNTs are holes. In this study, hexaiodobenzene (HIB, C6I6) is chosen as a 

charge transfer molecule to modified the SWCNTs, because which exhibit a two-

electron oxidation that generates a di-cation (C6I6)
2+

 from HIB (C6I6) [30]. This 



 

3 

 

indicating HIB possibly act as electron donor. The detail of the effects of HIB for 

SWCNT is shown in Chapter 4. 

 More recently, researchers attempt to employ SWCNTs as the electrode materials of 

electrochemical sensors and dye-sensitized solar cells (DSCs) [31-33]. The subtle 

electronic properties confirmed that SWCNTs have the ability to promote charge 

transfer reactions when used as an electrode in electrochemical reactions. The aim of 

this work is to explore the effect of tri-iodide ions (I3
-
) on the Single-Walled Carbon 

Nanotube (SWCNTs) coated Polyethylene Terephthalate (PET) thin-films using 

electrochemical method. The detail is shown in chapter 5. 

And also, this thesis is constructed as follows: 

In Chapter 2, characterization method to catalysts and carbon nanomaterials are 

introduced. Nitrogen adsorption at 77 K, thermogravimetry, X-ray photoelectron 

spectroscopy, scanning electron microscope, transmission electron microscope, UV-

Vis-NIR spectroscopy, Raman spectroscopy, pulsed-field gradient nuclear magnetic 

resonance spectroscopy and electrochemical measurements including cyclic 

voltammetry and alternating current impedance are discussed in basic theory and 

application. Chapter 3 introduces the nanocarbon materials are excellent device 

materials used in various fields, nanocarbons like carbon nanotube, and activated 

carbon fibers are discussed in their history background, structure, synthesis method, 

properties and application. Chapter 4 presents the physical modification of SWCNTs 

with HIB molecules through liquid-phase adsorption. The electronic structure changes 

of SWCNTs were investigated by spectroscopic methods. UV-Vis-NIR absorption 

spectra analysis shows the interaction of HIB could induce a change of the electron 

density of state in SWCNTs. Both Raman and C1s XPS analyses revealed a slight 

reduction of carbon in SWCNTs upon HIB adsorption. From these results, we 

conclude that HIB can act as an electron donor for SWCNTs. Chapter 5 mainly 

discussed the surface changes of the SWCNT-PET film electrodes after 

electrochemical redox reaction. And the redox peaks difference and the charge 

transfer impedance changes by increasing SWCNTs loading on the film electrodes. 
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Chapter 6 describes the diffusion behavior of ionic liquids confined in ACF, and the 

changes of the chemical shift in ACF compare with the bulk ionic liquids.  
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Chapter 2  

Basic Theories  

 

2.1. Adsorption 

Adsorption is a process of adhere the atoms, ions, or molecules from a dissolved 

solid, liquid, or gas to a surface. Adsorption is present in many natural physical, 

biological, and chemical systems, and is widely used in industrial applications such as 

gas separations, increase storage capacity of carbide-derived carbons for tunable 

nanoporous carbon, and water purification. According to the international union of 

pure and applied chemistry (IUPAC) term, adsorption can be classified as physical 

adsorption (physisorption) and chemical adsorption (chemisorption). The physical 

adsorption is caused by van der Waals force with very weak interaction energy. The 

chemical adsorption is a chemical reaction between the adsorbate and adsorbent with 

stronger interaction energy than physical adsorption. 

2.1.1. Porosity  

Pore size is important to the function of a porous material. In the past the terms 

micropore and macropore have been applied in different ways by physical chemists 

and some other scientists. Porous materials are classified by pore size according to the 

International Union of Pure and Applied Chemistry (IUPAC) [1, 2]. As indicated, the 

pore size is generally specified as the pore width, i.e. the available distance between 

the two opposite pore walls. Three groups of pore size classification are shown in 

table 2-1. 

Micropore, the pore width is less than 2 nm, be filled in the region of low relative 

pressure, and corresponds to the strong adsorption field. The more precise 

classification would distinguish two types of micropore: ultramicropore (pore size up 

http://en.wikipedia.org/wiki/Tunable_nanoporous_carbon
http://en.wikipedia.org/wiki/Tunable_nanoporous_carbon
http://en.wikipedia.org/wiki/Water_purification
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to 0.7 nm) and supermicropore (from 0.7 nm to 2 nm). As a consequence of the 

overlapping of the opposite pores walls adsorption potential, the micropore filling 

corresponds to the enhancement of adsorption at low relative pressure region (where 

initial steep portion appears in adsorption isotherm). 

Table 2-1 The classification of pores 

Term Pore size (nm) 

Micropore Ultramicropore w < 0.7 

         Supermicopore 0.7 < w < 2 

Mesopore 2 < w < 50 

Macropore w > 50 

 

Mesopore, which pore width from 2 nm to 50 nm, corresponds to the middle part of 

isotherms. In mesopore the adsorbate condenses in a liquid-like state by capillary 

condensation and a meniscus is formed, the phenomenon in mesopores is 

characterized by a hysteresis loop typically appearing in the relative pressure higher 

than 0.4 P / P0, which adsorption and desorption branches separate each other.  

Macropore is the pore width greater than 50 nm. Adsorption in macropores is 

similar to adsorption behavior on open surfaces; the limit of 50 nm is artificial and it 

corresponds to the practical limit of the method for the size determination based on 

the analysis of the hysteresis loop. 

2.1.2. Adsorption Isotherm 

As it has been introduced in the top of this chapter, adsorption is a surface 

phenomenon which occurs when a solid surface is exposed to a gas or liquid, it is 

defined as the enrichment of material or increase in the density of the fluid in the 

vicinity of an interface. Porosity of powders and other porous solids can be 

characterized by gas adsorption studies [3, 4]. For the evaluation of the porosity of 



 

9 

 

most solid porous materials, nitrogen adsorption at 77 K is the most useful method.  

An adsorption process can be reflected by adsorption isotherm, which shows the 

relationship between the amount of gas adsorbed and the pressure or relative pressure 

at a constant temperature. The amount of the adsorbed materials (n) on the solid 

surface depends on the measuring pressure (P), temperature (T), and interaction 

potential between the gases and solid surface (E). Thus, the adsorption amount can be 

expressed as: 

                            n = f (P, T, E)                          (2-1) 

In general, for a given gas adsorbed on a particular solid maintained at a constant 

temperature T, the equation can simply to:  

ETPfn ,)(                           (2-2) 

  At a critical temperature of gas, the equation becomes: 

ETPPfn ,0 )/(                        (2-3)  

where P/P0 is the relative pressure. 

Figure 2-1 shows diagrammatic representation of adsorption isotherms classified by 

the IUPAC. The majority of physical adsorption isotherms can be grouped into six 

types
 
[5]. The brief description of the six isotherms is as follows: 
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Figure 2-1 The IUPAC classification for adsorption isotherms [5] 

TypeⅠisotherms  

TypeⅠisotherm are also called Langmuir isotherm due to the adsorption on a 

microporous solid. The potential fields from neighboring walls overlap and 

interaction energy of a solid with a gas molecule is correspondingly enhanced [6]. The 

interaction may be strong enough to bring about a complete filling of the pores at a 

quite low relative pressure. The long plateau shape of isotherm indicates monolayer 

coverage. This type of behavior implies to be typical of chemical adsorption. 

TypeⅡisotherms 

TypeⅡisotherms well known as BET-type isotherms with the s-shape are typically 

obtained in case of monolayer-multilayer adsorption on a non-porous or macroporous 

adsorbent. Point B, the beginning of the almost linear middle section of the isotherm, 

is usually considered as the turning point of completion of monolayer formation and 

beginning of the multilayer adsorption. 

Type Ⅲ isotherms 

Type Ⅲ isotherms are given by non-porous or macroporous solids, are obtained 
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when the interaction between the adsorbates and adsorbents are smaller than those of 

adsorbates. This weak interaction causes the uptake at low relative pressures are 

small; but once the molecules has been adsorbed, the interaction between adsorbates 

will promote the adsorption of further molecules. Thus, the isotherm is convex to the 

P/P0 axis over its entire range isotherms.  

Type IV isotherms 

Type Ⅳ isotherms are typical for mesoporous solids. This type of isotherms has a 

similar surface interaction with the Type Ⅱ isotherms since it follows the same path 

at the low pressure region. The most characteristic feature is the hysteresis loop, 

which is associated with capillary condensation taking place in mesopores, and the 

limiting uptake over a range of high P/P0. 

Type Ⅴ isotherms 

Type Ⅴ isotherms are given by mesoporous or microporous solids and are very 

much similar to Type Ⅲ. Type Ⅴ isotherms also exhibits a hysteresis loop, which is 

associated with the mechanism of pore filling and emptying. Comparing with Type 

Ⅳ isotherms, Type Ⅴ isotherms a initially convex to the P/P 0 axis, which is 

indicative of weak adsorbent-adsorbate interactions. 

Type Ⅵ isotherms 

Type Ⅵ isotherms are called the stepwise isotherms. In which, the sharpness of the 

steps depends on the system and the temperature, represents stepwise multilayer 

adsorption on a uniform non-porous surface. The step-height now represents the 

monolayer capacity for each adsorbed layer and, in the simplest case, remains nearly 

constant for two or three adsorbed layers. This kind of isotherms is obtained from 

stepwise multilayer adsorption on a uniform, non-porous surface, particularly by 

spherically symmetrical, non-polar adsorptives [7]. Kr adsorption on the perfect 

graphite shows such kind of stepwise isotherm. 
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2.1.3. Theories of Adsorption 

We can obtain many information from adsorption isotherms, so how to analysis the 

isotherms is essential important, and the analyze methods are also the key position of 

adsorption science. In this section, several analysis methods of adsorption isotherms 

have been provided, such as BET, αs-plot, D-R and t-plot, etc. These methods are 

quite different each other, especially micropore analysis, the different will be greater. 

2.1.3.1.  The Langmuir Equation 

The Langmuir equation initially derived from kinetic studies was based on the 

assumption that: 1) fixed number of vacant or adsorption sites are available on the 

surface of solid, 2) all the vacant sites are of equal size and shape on the surface of 

adsorbent, 3) each site can hold maximum of one gaseous molecule and a constant 

amount of heat energy is released during this process, 4) dynamic equilibrium exists 

between adsorbed gaseous molecules and the free gaseous molecules, 5) adsorption is 

monolayer.  

  The adsorption process between gas phase molecules (A), vacant surface sites (S), 

and occupied surface sites (SA), can be represented by the equation,   

                               (2-4) 

assuming that there are a fixed number of surface sites present on the surface. 

An equilibrium constant, K, can be written:                        

  
[  ]

[ ][ ]
                           (2-5) 

θ = Fraction of surface sites occupied (surface coverage) (0 <θ< 1) 

Note that: [SA] is proportional to the surface coverage of adsorbed molecules, or 

proportional to θ; [S] is proportional to the number of vacant sites, (1 -θ); [A] is 

proportional to the pressure of gas, P 

Thus it is possible to define the equilibrium constant, b: 



 

13 

 

  
 

(   ) 
                           (2-6) 

Rearranging gives the expression for surface coverage:      

  
  

    
                            (2-7) 

That is the note as the Langmuir equation. 

2.1.3.2. The Brunauer, Emmett, and Teller (BET) Adsorption Theory [2] 

 

Figure 2-2. The model of BET multilayer adsorption 

The abbreviation of Brunauer-Emmett-Teller adsorption analysis method, which 

named by the three scientists developed this method, and BET adsorption detection 

was based on the BET theory [54]. The BET theory is the most widely used procedure 

for the determination of the surface area of solid materials. It is an extended Langmuir 

model which based on that the multilayer adsorption is occurred on the solid surface. 

Figure 2-2 shows the BET multilayer model, where i and Si are the number of layers 

adsorbates and sites formed i-numbers molecular layers. 

For the first layer adsorption, when the adsorption system is equilibrium at a 

pressure (P), the velocity of adsorption and desorption is equivalent. The relationship 

is given by 

             (     ⁄ )                  (2-8) 
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where    and    are the constant,    is a molecular adsorption energy of first layer. 

These values not depend on the number of adsorbed molecules on the surface of solid 

and then the BET model assumes that the adsorption sites on the surface are 

energetically equivalent. In a similar way, i-layers at equilibrium pressure (P) 

becomes  

               (     ⁄ )                  (2-9) 

So, the number of all adsorbed molecules ( ) is given by 

  ∑   
 
                             (2-10) 

And then, the number of all sites, which is the monolayer capacity ( m), becomes 

   ∑   
 
                            (2-11) 

Here, it is assumed that the adsorption energy of molecules adsorbed above second 

layers is equivalent to liquid cohesive energy (EL). It means 

                                (2-12) 

The interaction between molecules adsorbed above second layers and the surface of 

solid is sufficiently small. Because the adsorptive molecules are adsorbed by only the 

interaction between adsorbed molecules,    and    ratios are constant which is 

denoted by 

         ⁄          ⁄⁄               (2-13) 

Additionally, x and c are denoted by 

(  ⁄ )   (    ⁄ )                     (2-14) 

(     ⁄ )   [(     )   ⁄ ]                 (2-15) 

For all of these equations, 

 

  
 

  

(   )(      )
                    (2-16) 

Where x indicates a relative pressure defined as 
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     ⁄                        (2-17) 

By (2-16), (2-17) can be rewritten as 

  
    

(    )(  (   )(   ⁄ ))
                 (2-18) 

This equation is called Langmuir equation. 

(a) BET Plot 

The BET equation can also be written as 

 

 (    )
 

 

   
 
   

   
(   ⁄ )                (2-19) 

When    ⁄  and  (    )  are plotted along the abscissa and the ordinate 

(shown as figure 2-3), the monolayer capacity (  ) and the constant (c), which is 

related to heat of adsorption, are found. Generally, the BET equation is formed at the 

rage of    ⁄  from 0.05 to 0.35, where the coverage (     ⁄ ) is from 0.5 to 1.5. 

In the case of micropore systems such as activated carbon fiber, the monolayer is 

formed at lower relative pressure than that of flattened surface. Therefore, the range 

of    ⁄  is used from 0.01 to 0.05. 

(b) Determination of the Specific Surface Area 

When we analysed an adsorption isotherm by Brunauer, Emmett and Teller (BET) 

method which is representative method of multilayer adsorption, the specific surface 

area (As) is given by 

   (      ⁄ )         [m
2
/g]             (2-20) 

where   , N,    and M are monolayer capacity (g/g), Avogadro constant 

(6.022×10
-23

), molecular cross-section area and molecular weight of adsorbed 

molecule. 

2.1.3.3 αs-Plot Method 

α s-plot method is a very effective way to determining nanoporosity which is 
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similar to the t-plot method. This method was recommended by K. S. W. Sing in 1989 

[8]. This method can be achieved by comparing a given isotherm to a standard curve, 

thus the invoking the concept of a statistical thickness t is not required. 

  Sing defined the αs value as the relative adsorption amount of a standard reference 

sample, 

   
 

    
                        (2-21) 

where A is the adsorption amount of the sample, while A0.4 is the adsorption amount at 

relative pressure P/P0=0.4.  

The standard αs-curve is obtained by plotted the normalized adsorption amount αs 

against P/P0. The αs-curve can be then used to construct a αs-plot from the isotherm of 

a sample. To estimate the specific surface area (As) of a sample, we calculate from 

using the slope (S) of the αs-plot as follows 

   [  (      )   (        )⁄ ]   (        )       (2-22) 

where the A (standard) is the specific surface area estimated by other methods such as 

BET,    is the slop of the straight line from origin to the linearity region near αs =0.5, 

as shown in Fig 2-3. Based on the slop of this line, total surface area can be obtained. 

When αs ≥ 1.0, adsorption in micropore finished, the higher region of αs can be 

considered as external surface adsorption. External surface area, micropore surface 

area and micrpore volume can be calculated from the slop and intercept of the straight 

line which αs value greater than 1. Furthermore, due to the slit-pore hypothesis, 

micropore width can be calculated according to next formula: 

  (
   

           
)                        (2-23) 

where W0 is the micropore volume, Atotal is the total surface area, and Aext is the 

external surface area.  

For solid material without pores, αs plot is a straight line pass through the origin, the slope of s. 

For the samples with micropore or mesopore, αs plot deviate from the straight line. From Figure 

2-3, shows a typical αs plot with two auxiliary line and two swings: filling sing and 
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condensation swing. Filling swing is in the lower αs region (< 0.4) originate from the 

enhance adsorption by the micropore. Because adsorption of molecule in a miltilayer 

limited by the pore width, can be enhanced by a kind of capillary condensation before 

saturated filling in micropore solid having relatively large micropore, condensation 

swing ascribe to such a capillary condensation effect just below the gradually increase 

[9]. 

The advantage of αs method is it can be utilized no matter we know the statistic 

thickness or not, and it is available for other adsorbate besides N2. In our lab, the 

reference solid used is non-porous carbon black for construction of the high resolution 

αs plot. 

 

2.1.3.4 Dubinin and Radushkevich (DR) Theory [10] 

The adsorption in micropore is caused at low pressure. Dubinin and Radushkevich 

propounded an equation to clarify the micropore volume from low pressure. The 

equation is based on Polanyi’s adsorption potential theory. 

 

Figure 2-3. αs plot 
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The adsorption potential (ε) is rewritten by a differential free energy (ΔG), 

          (   ⁄ )                    (2-24) 

If we assumed that the adsorption of molecules in micropore is pore filling but not 

stake on the pore walls, the filling ratio (θ) is given by 

     ⁄                        (2-25) 

where W is the filled volume of the micropore at relative pressure (P/P0), while W0 is 

the total volume of the micropore system. Since the filling ratio (θ) is a function of 

P/P0 as well as ε, θ can be rewritten as 

   (  ⁄ )                       (2-26) 

where β is an affinity coefficient and defined as the ratio of the adsorption potentials 

of adsorbate ( ) and a standard adsorbate (  ), 

     ⁄                         (2-27) 

Under the assumption that the pore size distribution is Gaussian, Dubinin-

Radushkevich, then formulated the ratio of micropore filling as 

     [  (  ⁄ ) ]                   (2-28) 

Where k is a constant determined by pore structure. By combining the equations (2-

26)-(2-28) then 

       [(    ⁄ )  (       ⁄ ) ]          (2-29) 

or 

       {  (   ⁄ ) [        (   ⁄ )] }⁄         (2-30) 

where       (   ⁄ )   , then 

               
 (   ⁄ )              (2-31) 

The equation (2-31) is well-known as Dubinin-Radushkevich (DR) equation. The 

linear curve can be obtained by plotting the log W against [   (   ⁄ )]  so called 
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DR-plot. The micropore volume (W0) then is determined from the intercept (log W0). 

2.2. Characterization of Nanocarbon Materials 

2.2.1. Absorption Spectroscopy 

Absorption spectroscopy refers to spectroscopic techniques that measure the 

absorption of radiation, as a function of frequency or wavelength, due to its 

interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating 

field. The intensity of the absorption varies as a function of frequency, and this 

variation is the absorption spectrum. Absorption spectroscopy is performed across the 

electromagnetic spectrum. 

Absorption spectroscopy is employed as an analytical chemistry tool to determine 

the presence of a particular substance in a sample and, in many cases, to quantify the 

amount of the substance present. Infrared and ultraviolet-visible spectroscopy is 

particularly common in analytical applications. Absorption spectroscopy is also 

employed in studies of molecular and atomic physics, astronomical spectroscopy and 

remote sensing. 

Many molecules absorb ultraviolet (UV) or visible light. The absorbance of a 

solution increases as attenuation of the beam increases. Absorbance is directly 

proportional to the path length, b, and the concentration, c, of the absorbing species. 

Beer's Law states that 

        ⁄                           (2-32) 

where I0 is the intensity of incident radiation, I is the intensity of radiation transmitted 

through the sample, and ε is a constant of proportionality, called absorptivity. 

The absorption of UV or visible radiation corresponds to the excitation of outer 

electrons. There are three types of electronic transition which can be considered; 1) 

transitions involving p, s, and n electrons; 2) transitions involving charge-transfer 

electrons; 3) transitions involving d and f electrons (not covered in this Unit). When 

an atom or molecule absorbs energy, electrons are promoted from their ground state to 

http://en.wikipedia.org/wiki/Spectroscopy
http://en.wikipedia.org/wiki/Absorption_(electromagnetic_radiation)
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Absorption_spectroscopy#Absorption_spectrum
http://en.wikipedia.org/wiki/Electromagnetic_spectrum
http://en.wikipedia.org/wiki/Chemical_analysis
http://en.wikipedia.org/wiki/Infrared_spectroscopy
http://en.wikipedia.org/wiki/Ultraviolet-visible_spectroscopy
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an excited state. In a molecule, the atoms can rotate and vibrate with respect to each 

other. These vibrations and rotations also have discrete energy levels, which can be 

considered as being packed on top of each electronic level. 

Possible electronic transitions of p, s, and n electrons are shown in figure 2-4. The 

σ → σ* transition: an electron in a bonding σ orbital is excited to the corresponding 

anti-bonding orbital. The energy required is large. For example, methane (which has 

only C-H bonds, and can only undergo σ → σ* transition) shows an absorbance 

maximum at 125 nm. Absorption maxima due to σ → σ* transition cannot be seen in 

typical UV-Vis. spectra (200-800 nm). The n → σ* transition: saturated compounds 

containing atoms with lone pairs (non-bonding electrons) are capable of n → σ* 

transition. These transitions usually need less energy than σ → σ* transition. They can 

be initiated by light whose wavelength is in the range 150 - 250 nm. The number of 

organic functional groups with n → σ* peaks in the UV region is small. The n → π* 

transition and π→ π* transition: Most absorption spectroscopy of organic compounds 

is based on transitions of n or p electrons to the π* excited state. This is because the 

absorption peaks for these transitions fall in an experimentally convenient region of 

the spectrum (200-800 nm). These transitions need an unsaturated group in the 

molecule to provide the p electrons. 

 

Figure 2-4.Tthe transition of electronic energy level 
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The optical properties are dominated by the electron transition between the pairs of 

van Hove singularities that are symmetrically located in the Fermi lever. Such 

intergap transitions denoted as S11, S22, for semiconducting nanotubes or M11 for 

metallic nanotubes are obviously important for absorption spectroscopy investigation. 

The electronic and optical properties of SWCNTs can be probes by the optical 

absorption spectroscopy. In particular, the visible-near infrared absorption spectra of 

SWCNTs show three regions; the first C → V transition for metallic SWCNTs, M11 

(400-650 nm), and the first and second C → V transitions for semiconducting 

SWCNTs, S11 (900-1600 nm) and S22 (550-900 nm), respectively [11]. 

2.2.2. Raman Spectroscopy 

Raman spectroscopy is a spectroscopic technique used to study vibrational, 

rotational, and other low-frequency modes in a system [12]. The Raman Effect was 

named after one of its discoverers, the Indian scientist Sir C. V. Raman. It is based on 

inelastic scattering, or Raman scattering, of monochromatic light, usually from a laser 

in the visible, near infrared, or near ultraviolet range. The laser light interacts with 

molecular vibrations, phonons or other excitations in the system, resulting in the 

energy of the laser photons being shifted up or down. The shift in energy gives 

information about the phonon modes in the system. 

http://en.wikipedia.org/wiki/Spectroscopy
http://en.wikipedia.org/wiki/Inelastic_scattering
http://en.wikipedia.org/wiki/Raman_scattering
http://en.wikipedia.org/wiki/Monochromatic
http://en.wikipedia.org/wiki/Laser
http://en.wikipedia.org/wiki/Visible
http://en.wikipedia.org/wiki/Infrared
http://en.wikipedia.org/wiki/Ultraviolet
http://en.wikipedia.org/wiki/Phonon
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Figure 2-5. Energy level diagram for Raman scattering 

The energy shift caused by energy transfer (E = hν) between the light and materials 

gives information about the phonon modes in the system, thus suggests the structure 

of the samples. Technically, the sauce has to provide the intense monochromatic 

radiation (usually laser). When light (frequency ν0) is exposed on materials, light 

scattering is occurred by the collision of light and materials. The light scattering 

consists of the light with ν0 (Rayleigh scattering) and a few shifted-light with ν0 ± νi 

(Raman scattering) as shown in Figure 2–5. The Rayleigh scattering is elastic and 

there is no exchange in energy. However, Raman scattering leads to emission of 

another photon with a different frequency to the incident photon [13]. 

Raman spectroscopy is used to investigate the structure of sp
2
-bonding carbon (e.g. 

graphite, carbon black), sp
3
-bonding carbon (e.g. diamond), graphite intercalation 

compound, fullerene, carbon nanotube and sp-bonding carbon. Raman spectra of the 

materials based on graphitic structure lead two strong peaks. The Raman band at 1580 

cm
-1

 (G-band) and 1380 cm
-1

 (D-band) are derived from graphite and defected 

structure, respectively. The intensity ratio of D-band to G-band called “R-value” 

indicates the graphitization grade of carbon materials. Another character was 
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observed at the low frequency region caused by the breathing vibration of the single-

walled carbon nanotubulites, as well-known the radial breathing mode (RBM). The 

nanotube diameter can be calculated by the following equation, 

     
 

 
                         (2-33) 

where parameters A (248 nm cm
-1

) and B (0 cm
-1

) are determined experimentally [14]. 

In this study, the Raman spectroscopy is used to clarify the electronic structural 

changes of single-walled carbon nanotubes. 

2.2.3. X-ray Photoelectron Spectroscopy 

X-Ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy 

for Chemical Analysis (ESCA), is an analysis technique used to obtain chemical 

information about the surfaces of solid materials. Insulators and conductors can easily 

be analyzed in surface areas from a few microns to a few millimeters across. 

XPS is based on the principle that X-rays hitting atoms generate photoelectrons. By 

measuring the number of these electrons as a function of kinetic (or binding) energy, 

an XPS spectrum is obtained. XPS is a typical example of a surface-sensitive 

technique, which can be used to measure the elemental composition, empirical 

formula, chemical state and electronic state of the elements that exist within a material. 

Irradiating a material with a beam of X-rays gives rise to the emission of electrons. 

The energy of the emitted photoelectrons can be analyzed by the electron 

spectrometer and the data presented as a graph of intensity versus electron energy - 

the X-ray induced photoelectron spectrum can be obtained. The XPS process is 

schematically represented in Figure 2-6 for the emission of an electron from the 1s 

shell of an atom.  
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Figure 2-6. Schematic representation of the XPS process 

The kinetic energy (EK) of the electron is the experimental quantity measured by 

the spectrometer, which depends on the energy hν of the primary X-ray source. The 

characteristic parameter for the electron is its binding energy. The electron binding 

energy of each of the emitted electrons can be determined by using an equation: 

                                      (2-34) 

where Ebinding is the binding energy of the electron, hv is the photon energy, and W is 

the spectrometer work function. As all three quantities on the right-hand side of the 

equation are known or measurable, it is a simple matter to calculate the binding 

energy of the electron. In addition, binding energy of the identical element with the 

identical orbital slightly changes with the condition around the observed atom. 

According to a measurement of this amount of change called chemical shift, the state 

analysis of the element is possible. In this study, we focused on the C1s peak and 

investigate the bond transformation of sp
2
, sp

3
 as well as the oxygen related functional 

groups of single-walled carbon nanotubes. Due to the adsorption treatment of 

hexaiodobenzene (HIB) on SWCNTs, the O1s and I3d peaks will be evaluated. 

2.2.4. Scanning Electron Microscopy 
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The scanning electron microscope (SEM) is scientific instrument uses a beam of 

energetic electrons to generate a variety of signals at the surface of solid specimens. 

The signals that derive from electron-sample interactions reveal information about the 

sample including external morphology (texture), chemical composition, and 

crystalline structure and orientation of materials making up the sample. In most 

applications, data are collected over a selected area of the surface of the sample, and a 

2-dimensional image is generated that displays spatial variations in these properties. 

In detail, a beam of electrons is produced at the top of the microscope by an electron 

gun. The electron beam follows a vertical path through the microscope, which is held 

within a vacuum. The beam travels through electromagnetic fields and lenses, which 

focus the beam down toward the sample. Once the beam hits the sample, electrons 

and X-rays are ejected from the sample. Detectors collect these X-rays, backscattered 

electrons, and secondary electrons and convert them into a signal that is sent to a 

screen similar to a television screen. This produces the final image. 

Due to their low energy (< 50 eV) and very near to the surface (< 10 nm), these 

electrons can be collected and detected. Any changes in topography in the sample that 

are larger than this sampling depth will change the yield of secondary electrons due to 

collection efficiencies. Electronic amplifiers are used to amplify the signals, which are 

displayed as variations in brightness on a computer monitor, and the resulting image 

is therefore a distribution map of the intensity of the signal being emitted from the 

scanned area of the specimen. The magnification of a SEM can reach to about 

500,000 times. The high spatial resolution of an SEM makes it a powerful tool to 

characterize a wide range of specimens at the nanometer to micrometer length scales. 

2.2.5. Transmission Electron Microscopy 

Different from scanning electron microscope (SEM), which doesn’t use a 

concentrated electron beam to penetrate the object, Transmission Electron 

Microscopy (TEM) uses a high-powered beam to essentially shoot electrons through 

the object. The electron beam first passes through a condenser lens in order to 

http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
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concentrate the beam on the object. Then the beam goes through the object. Some of 

the electrons pass all the way through; others hit molecules in the object and scatter. 

The modified beam then passes through an objective lens, a projector lens and onto a 

fluorescent screen where the final image is observed. Because the electron beam 

passes entirely through the object, the pattern of scatter gives the observed a 

comprehensive view of the interior of the object. TEM has the advantage over SEM 

that cellular structures of the specimen can be viewed at very high magnifications. 

TEM can examine the fine detail of a sample, even as small as a single column of 

atoms. It forms a major analysis method in a range of scientific fields, in both 

physical and biological science. 

2.2.6. Pulsed-Field Gradient-Nuclear Magnetic Resonance (PFG-NMR) 

Spectroscopy 

Nuclear Magnetic Resonance (NMR) is a versatile technique in many disciplines of 

scientific research and industries (e.g., Magnetic Resonance Imaging (MRI) for 

clinical use to visualize internal structure of the body [15-18] and NMR spectrum for 

chemical identification and analysis [19-21]. Such applications allow us to obtain a 

variety of valuable information from the analyzed samples and help us to get insight 

into the microcosmic structure of interest. Among these, one can study the dynamic of 

molecules with the pulsed-field gradient (PFG) spin echo NMR technique.  

The spin echo phenomenon in NMR was first found by Hahn in 1950 [22]. In his 

experiment, two π/2 radio frequency (rf) pulses were applied with an interval of τ. At 

the time of 2τ from the start of first π/2 rf pulse, echo signals were detected. Free 

induction decay (FID) was observed in the echo signals and the amplitudes of each 

signal were recorded. By plotting the logarithm of the maximum amplitude versus the 

value of 2τ, transverse relaxation time (T2) was measured. In 1954, Carr and Purcell 

found that the T2 values measured by Hahn’s method would be severely affected by 

molecular diffusion [23]. They developed a new pulse sequence which replaced the 

second π/2 rf pulse with a π rf pulse, by which the sign of the phase angle of spins 

were reversed. By inserting numbers of (n) π rf pulses in certain time period, the 
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effect of molecular diffusion to the mean square phase dispersion 〈  〉 (which 

reflects the coherence of spin magnetizations in transverse plane and corresponding 

echo signal amplitude) was reduced by a factor determined by 1/n
2
. However, 

although their method provided relatively reliable way to measure T2 value, the 

measurement of self-diffusion coefficient D was still not accurate. Several errors 

occurred in their calculation for D value. Also the magnetic field gradient was applied 

constantly in their experiments, which would bring lots of experimental limitations 

[24]. (E.g. decrease the duration of FID, require a large rf field amplitude, and 

difficult to define the precise diffusion time Δ.) 

A remarkable improvement to the spin echo method was made by Stejskal and 

Tanner in 1965 [25]. Since the presence of magnetic field gradient during the rf pulses 

would require a large rf field amplitude; also at the time of echo, magnetic field 

gradient would decrease the duration of FID. To circumvent such experimental 

limitations, magnetic field gradient during both the rf pulses and the time of echo 

need reduced. Thus they applied a time-dependent magnetic field gradient instead of 

steady one on the spin echo experiment. Specifically, pulsed field gradient with the 

duration of Δ was applied during each of the τ period before and after π rf pulse. The 

period between the leading edges of gradient pulses was defined as diffusion time Δ, 

in which the diffusion of molecules was measured. 

The role of gradient pulses in the diffusion experiment is to label the position of 

spins. In the isotropic diffusion, for simplicity, diffusion of molecules is measured 

only in one direction. Consider in a three-dimensional right angle coordinate system, 

in which static magnetic field B0 is oriented in the z-axis. During the gradient pulse, 

spatial-dependent magnetic field with gradient g along z-direction is superimposed, 

which would impose different angular frequency to spins along the gradient. Thus the 

cumulative phase shifts of spins in xy-plane vary, which reflect the transient positions 

of spins in the gradient field. 
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Figure 2-7. The precession of spins in the Stejskal and Tanner pulse sequence 

Figure 2-7 illustrates the precession of spins during the Stejskal and Tanner pulse 

sequence. The arrows in the coordinate system represent an ensemble of spin 

magnetic moments. (A) Initially, spins are in their equilibrium status spinning on z-

axis in the static magnetic field B0. Given that the coordinate system is rotating about 

z-axis with an angular frequency of ω0 (ω0 = -γB0, where γ is the gyromagnetic ratio 

of particles) compared to the laboratory frame of reference. Hence, the phase shifts of 

spins caused by static magnetic field B0 in such a rotating reference frame are 

compensated. (B) Assuming that the π/2 rf pulse is imposed in x-direction, spin 

magnetic moments are flipped about x-axis into the equatorial plane (xy-plane) and 

stopped in y-axis. (C) The spin magnetic moments are considered stationary in the 

rotating reference frame until the presence of first magnetic gradient pulse, which 

would cause dephasing (fan out of spin magnetic moments in xy-plane) of the spins. 

We assume that the magnetic field in the center of the sample is kept constant (B0) 

throughout the pulse sequence, thus net phase shifts of spins are symmetrical in both 
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sides of the sample, with reverse direction. (D) The following π rf pulse again flips 

spin magnetic moments about x-axis, reversing the sign of the phase angle of spins. 

(E) If the spins did not change their positions in z-direction during the period between 

two gradient pulses, the second magnetic gradient pulse would reverse the effect of 

the first one, (F) thus spin magnetic moments would refocus in the negative y-

direction at the time of 2τ and give the maximum echo signal. However, in the 

presence of diffusion, spins which have displacement in z-axis between two gradient 

pulses would not be in phase (refocusing in the negative y-direction is incomplete) at t 

= 2τ. This would result in a phase distribution of spin magnetic moments in xy-plane 

at t = 2τ. The amplitude of echo signal is hence reduced. 

 

Figure 2-8. The Stejskal and Tanner pulsed-field gradient NMR sequence 

  In PFG NMR diffusion measurements, the diffusion coefficient (D) is measured 

using the simple Hahn spin-echo-based PFG pulse sequence (i.e. the Stejskal and 

Tanner sequence) shown in figure 2-8. Since this simple sequence is based on a Hahn 

spin-echo, the echo signal (S) is attenuated by both the effects of the spin-spin 

relaxation and of diffusion. Thus, the signal intensity is given by 

 (  )   ( )   (
   

  
)     (        (    ⁄ )) 
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  (  )       (  
      (    ⁄ ))           (2-35) 

where the first section,    (
   

  
), is the attenuation due to relaxation; and the second 

section,    (        (    ⁄ )), is the attenuation due to diffusion. S(0) is the 

signal immediately after the π/2 pulse, 2τ is the total echo time, T2 is the spin-spin 

relaxation time of the species, γ is the gyromagnetic ratio of the observed unclears, g 

is the strength of the applied gradient, and δ and Δ are the duration of the gradient 

pulse and the separation between them, respectively. To remove the effects of the 

signal attenuation due to the spin-spin relaxation, we normalized the signal with 

respect to the signal obtained in the absence of the applied gradient and thereby 

defined the echo attenuation to be 

 (  )  
 (  )      (  

      (    ⁄ ))

 (  )   
 

    (        (    ⁄ ))                  (2-36) 

By inspection of equation (2-36) with reference to figure 2-8, it can be seen that to 

measure diffusion, a series of experiments are performed in which either g, δ or Δ is 

varied while keep τ constant. Then, equation (2-36) is regressed onto the experiment 

data and D is straightforwardly determined. 
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Chapter 3 

Nanocarbon Materials 

 

3.1. Background 

Previous discovery of nanocarbon in solid phase were known to be only exist in 

three allotropic forms: graphite, diamond and charcoal for a long time. In 1985, Kroto, 

Smalley, Curl and coworkers were successfully synthesized a new nanocarbon 

material which consists sixty carbon atoms called as fullerene (C60) [1]. This material 

has received great attention in many years until the emergence of carbon nanotube. In 

1991, Iijima of the NEC Laboratory elucidated the atomic structure and helical 

character of multi-wall carbon nanotubes, since then the interest in the carbon 

nanostructures was unprecedented generated [2]. Two years later, synthesis of single-

walled nanotubes was independently reported by Iijima and Toshinari Ichihashi of 

NEC, and Donald Bethune and colleagues of the IBM Almaden Research Center in 

California [3, 4]. Then in 1999, Iijima et al. developed a new type of single wall 

nanocarbon named single wall carbon nanohorns (SWCNHs), which has a 

nanotubular and forms a unique assembly structure with a “Dahlia-flower-like” 

feature [5]. Though this is just the beginning of the study of SWCNHs, it is quite 

intriguing to reveal a large possibility for novel applications such as adsorbents [6–8], 

gas sensor [9], catalyst supports [10] and carriers of drag delivery [11]. These 

discovery of nanocarbon materials newly attracted great deal of interest in nano-

science and the materials are expected not only to find out a nano-scale phenomena 

but solve the energy problem. Furthermore, in 2004 physicists at the University of 

Manchester and the Institute for Microelectronics Technology, Chernogolovka, 

Russia, first isolated individual graphene planes by using adhesive tape. They also 
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measured electronic properties of the obtained flakes and showed their unique 

properties [12]. The endeavor in carbon nanomaterials has not only broadened the 

field of scientific research, but also provided promising techniques for various 

applications. In this section a variety of nanocarbon materials will be introduced in 

history background, structure, synthesis method, properties and application. 

3.2. Single-Walled Carbon Nanotubes 

3.2.1. Structure and Chirality 

Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. The 

structure of single-walled carbon nanotubes (SWCNTs) can be seen as a seamless 

rolled graphene sheet with a cylindrical nanostructure and multiwall carbon nanotubes 

(MWCNTs) are a collection of concentric SWCNTs [13]. Most SWCNTs have a 

diameter of close to 1 nanometer, with a tube length that can be many millions of 

times longer. The cylindrical structure of SWCNTs is assigned by diameter, chiral 

angle and handedness (right-handed and left-handed) [14–16]. The diameter and 

chiral angle are among the most important and these factors are uniquely defined by 

chiral vector Ch. The chiral vector connects two crystallographically equivalent sites 

(O, A, B and B’) on a two-dimensional graphene sheet in Figure 3-1 and is given by:  

                             (   )                (3-1) 

where a1 and a2 are unit vectors of the hexagonal honeycomb lattice of the graphene 

sheet. In Figure 3-1, the chiral vector Ch corresponds to a vector OA of the nanotube 

perpendicular to the tube axis. The construction of a CNT is uniquely defined by the 

pair of integers (n, m).  

The circumferential length (L) of the CNT is given by: 

                  |  |   √ 
                      (3-2) 
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where |Ch| is the length of Ch, a is the lattice constant (a=1.44  √       ) of the 

honeycomb lattice; the C-C bond length of graphite is generally 1.42  , but, in the 

case of SWCNT, the length (1.44 ) is slightly larger than graphite due to the 

cylindrical structure. The nanotube diameter dt and the chiral angle θ are given by: 

                    

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d t
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Figure 3-1. The unrolled honeycomb lattice of a nanotube [13] 

From (3-4), it follows that the (n, 0) zigzag nanotube and the (n, n) armchair 

nanotube correspond to θ = 0° and θ = 30°, respectively. Thus the SWCNTs are 

classified to achiral or chiral types from the viewpoint of a symmetry. There are only 

two cases of achiral nanotubes; which are armchair nanotube, zigzag nanotube as 

shown in Figure 3-2 (a and b), respectively. In the (n, m) notation for chiral vectors, 

the vectors (n, n) denote armchair nanotubes and vectors (n, 0) denote zigzag 

nanotubes. Another nanotube exhibits a spiral symmetry. The nanotube with chirality 

is called chiral nanotube [(n, m)] as shown in Figure 3-2 (c). The notation of chiral 

nanotubes is generally considered only 0 < |m| < n due to the hexagonal symmetry of 

the honey comb lattice. 
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Figure 3-2. Three types of SWCNT: armchair (a), zigzag (b), and chiral (c) 

nanotubes. 

Additionally, in order to determine a unit cell of the one-dimensional lattice, it is 

necessary to define a translation vector T. The vector T is parallel to the tube axis and 

corresponds to the intersection of the vector OB. The translational vector T is defined 

to be the normal unit vector to chiral vector Ch as shown in Figure 3-1. The lattice 

vector T shown as OB is given by: 

            (      )              (3-5) 

From (3-1) and (3-5), t1 and t2 can be expressed by 

                
    

  
       

    

  
                (3-6) 

where dR is the highest common divisor of (2m+n) and (2n+m). In addition, dR can be 

expressed in term of d. Here, d is the highest common of divisor of (n, m). 

   {
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The unit lattice length (T) along the tube axis direction and the number of the 

hexagons in a unit cell (N) are expressed by: 

      √     ⁄  
     √ 

       

  
             | |  

√  

  
          (3-7) 

   
 (        )

  
                      (3-8) 

3.2.2. Production Methods of SWCNTs 

Techniques have been developed to produce nantubes in large quantities and 

commercial available. The main roots for SWCNT synthesis include arc-discharge, 

laser ablation, and chemical vapor deposition. 

Nanotubes were observed in 1991 in the carbon soot of graphite electrodes during 

an arc discharge [2]. The schematic of laser ablation method is shown in Figure 3-3(a). 

In arc-discharge, carbon atoms are evaporated by plasma of helium gas ignited by 

high currents passed through opposing carbon anode and cathode. MWCNTs can be 

obtained by controlling the growth conditions such as the pressure of inert gas in the 

discharge chamber and the arcing current. Growth of single-walled tubes needs a 

metal catalyst in the arc-discharge system [4, 17]. 

 

 

Figure 3-3. Schematic experimental setups for nanotube growth methods: (a) 

arc-discharge, (b) laser ablation, and (c) CVD [14]. 
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Laser ablation was firstly introduced by Smalley group. The method utilized 

intense laser pulses to ablate a carbon target placed in a tube-furnace heated to 1200℃. 

The carbon target contained 0.5 atomic percent of nickel and cobalt. A flow of Ar was 

passed through the growth chamber to carry the grown nanotubes downstream to be 

collected on a cold finger during the ablation [18]. The schematic of laser ablation 

method is shown in Figure 3-3(b).  

CVD is currently the best-known technology for the commercial production of 

carbon nanotubes [19]. During CVD, a substrate is prepared with metal catalyst 

particles deposited on it. The commonly used metal catalysts are nickel, cobalt, iron 

or a combination. The growth process involves heating a catalyst material to high 

temperatures in a tube furnace and flowing by a hydrocarbon gas through the tube 

reactor for a period of time. Nanotubes grow at the sites of the metal catalysts. After 

the system cool down to room temperature, the materials grown over the catalyst are 

collected. The key parameters in nanotube CVD growth are the hydrocarbons, 

catalysts and growth temperature. The schematic of laser ablation method is shown in 

Figure 3-3(c). 

Carbon nanotubes are the strongest and stiffest materials yet discovered in terms of 

tensile strength and elastic modulus respectively. SWCNTs are 100 times stronger 

than the highest grade high carbon steel commercially available. SWCNTs also have a 

tensile modulus many times higher than steel; they can be stretched over five times 

their original length with nearly 100% memory and undetectable levels of 

corresponding structural damage [20-22]. But weak shear interactions between 

adjacent shells and tubes leads to significant reductions in the effective strength of 

multi-walled carbon nanotubes and carbon nanotube bundles [23].  

Nanotubes are also expected to be very good thermal conductors along the tube, 

exhibiting a property known as “ballistic conduction”, but good insulators laterally to 

the tube axis. Measurements show that a SWCNT has a room-temperature thermal 

http://en.wikipedia.org/wiki/Thermal_conductor
http://en.wikipedia.org/wiki/Ballistic_conduction
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conductivity along its axis of about 3500 W m
-1

 K
-1

 [24]; which is much higher than 

that of copper (385 W m
-1

 K
-1

) 

The electronic structure of SWCNT can be either metallic or semiconducting, 

depending on its diameter and chirality. For a given (n, m) nanotube, if n = m, the 

nanotube is metallic; if n-m is a multiple of 3, then the nanotube is semiconducting 

with a very small band gap, otherwise the nanotube is a moderate semiconductor [25]. 

Some small diameter carbon nanotubes don’t obey this rule due to the electrical 

properties change caused by curvature effects. In theory, metallic nanotubes can carry 

an electric current density of 4 × 109 A cm
-2

, which is more than 1,000 times greater 

than those of metals such as copper [26]. 

Due to the above excellent properties, carbon nanotubes are expected to have 

different potential applications, like electrodes for electrochemical double layer 

capacitors [27], field-emission materials [28], nano-electronic devices [29], hydrogen 

storage [30], sensors [31], functional polymers [32], etc. 

3.3. Activated Carbon Fiber 

Activated carbon fibers (ACF) have excellent adsorptivity due to large specific 

surface area, pore volume, and uniform microporosity. ACF have been studied 

extensively both from fundamental and industrial aspects [33-35]. The adsorption 

property of ACF is determined by their pore width and pore-wall chemistry. The 

relationship between the pore width and adsorption characteristics has been actively 

studied
 
[36-38]. As to the pore wall chemistry, the pore-walls of ACF are partially 

oxidized or modified with other chemical substances in order to get better adsorbents 

or catalysts [39-42]. 

The production of highly effective fibrous carbon adsorbents with low diameter, 

excluding or minimizing external and intra mass transfer resistance, and exhibiting 

high adsorption rates, is a challenging task for researchers in the science and 

technology of adsorption. As the name implied, ACF are fibrous morphology, but 

http://en.wikipedia.org/wiki/Single_walled_carbon_nanotube#cite_note-Pop-48#cite_note-Pop-48
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activated carbon were generally produced with the form of granular. Activated carbon 

fiber possesses a relatively uniform porosity (mainly microporosity) in comparison 

with that of more conventional activated carbon. 

Usually speaking, industrial ACF have three kinds of cross-section forms: radial, 

random, and onion, showed in Figure 3-4 [43]. 

 

 

Figure 3-4 the cross-section of pitch-based ACF with different structure [43] 

There are several a kind of activated carbon fiber are made from cellulose, 

polyacrylonitrile (PAN), phenol resin, pitch and other organic materials, in this study, 

the ACF were prepared from petroleum-derived isotropic pitch precursors using melt-

blown spinning. 

Microporous materials are classified into crystalline and less-crystalline types. 

Activated carbon fiber (ACF) is a kind of less-crystalline carbon material which 

consisting of a three-dimensional network of 2 to 3 nm micrographitic units, the edges 

of micrographitic units are covered with functional groups and dangling bonds. Each 

micrographitic unit is formed with a stack of 3 to 4 layers of nanosized graphene 

sheets. The micrographitic unit network gives a micropore network as its reversal, 
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where micropores are suggested to be characterized as slit-shaped pores due to the 

micrographitic unit based microstructure of ACF [44, 45]. Gas adsorption is driven 

mainly by molecular potentials of micrographitic units, which are enhanced by the 

presence of two micrographitic unit surfaces surrounding the flat-shaped narrow space 

of a micropore from both sides [46]. 

ACF is the representative of microporous carbons consisting of disordered 

nanographites. Due to the excellent mechanical feature, ACF can be woven into belt 

or cloth forms, using for strengthening bridges, tunnels and buildings; due to the 

electrical feature, ACF can be used to manufacture supercapacitor, and due to the high 

surface area and pore volume, ACF can also be used as adsorbent [47, 48]. The 

morphology of ACF can eliminate the problems caused by powder or granular 

activated carbon. 
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Chapter 4 

Electron density control of SWCNT by 

liquid-phase molecular adsorption of 

hexaiodobenzene 

 

4.1. Introduction  

Since their discovery [1], single wall carbon nanotubes (SWCNT) have attracted 

considerable attention in widely diverse fields owing to their remarkable mechanical, 

thermal and electrical properties [2–4]. More recently, studies on the electrical 

properties of SWCNT have focused on the charge transfer interaction of SWCNT 

with electron donor or acceptor molecules that allow the manipulation of electrical 

conductivity of SWCNT [5–7]. Conventional modification of SWCNT has been 

realized by intercalation with iodine or halogenides of Na, K, Rb, Cs, Ca, Cu, and Ag 

through gas phase doping or liquid phase adsorption methods [8–13]. These SWCNT 

modified with metal halogenides always show a p-type behavior, which means that 

electrons are always withdrawn from the valence band of SWCNT to the adsorbates 

and the main charge carrier in the SWCNT are holes. However, this empirical rule 

was disproved by Jung et al. [14], who observed a slight down-shift of a C1s peak in 

the X-ray photoelectron spectra upon iodine intercalation, indicating that iodine can 

act as a weak electron donor for SWCNT. They also proved that the iodine has a 

partial positively charged state of I
+0.08−0.1

 by I LI-edge X-ray absorption near-edge 

structure (XANES) analysis. Hayakawa et al. [8] reported that the adsorption of 

iodine also leads to a dramatic enhancement in the conductivity of SWCNT. 

Hexaiodobenzene (HIB, C6I6) molecules exhibit a two-electron oxidation that 

generates a di-cation (C6I6)
2+

 from HIB (C6I6) [15]. In addition, (C6I6)
2+

 shows σ-

aromaticity co-existing with the conventional π-aromaticity that it shares with its 
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neutral parent [16]. Because of the unique electronic structure of HIB, in this study, 

SWCNT were modified by HIB adsorption through a liquid-phase adsorption method. 

Spectroscopic techniques, such as UV-Vis-NIR adsorption, Raman, and X-ray 

photoelectron spectroscopy, were employed to understand the electron-density 

changes of SWCNT after the HIB adsorption. Quantitative analysis of the adsorbed 

amounts was also carried out by a thermogravimetric method.  

4.2. Experimental  

4.2.1. HIB-Adsorbed SWCNTs Preparation 

Super-growth SWCNTs were synthesized by a chemical vapor deposition (CVD) 

process (Center of Advanced Carbon Materials, AIST). The SWCNTs samples were 

used without further purification because of their high carbon purity (higher than 

99.98 %) [17]. Tube caps of as-prepared SWCNTs were removed by oxidation at 773 

K under Ar and O2 mixed gases for 1 h. For the preparation of HIB-adsorbed 

SWCNTs, a typical procedure was as follows: 3 mg of SWCNT were dispersed in 50 

mL tetrahydrofuran (THF) solution by ultra-sonication using an ultrasonic cleaner 

(FU-50C, 28 kHz) at 298 K for 2 days. Afterwards, hexaiodobenzene (HIB) (2.31 mg 

and 6.36 mg) was added to the SWCNT dispersion, and the mixture was further 

dispersed by sonication for 15 mins. The samples were denoted as HIB@SWCNT-l 

and HIB@SWCNT-h, respectively.  

Then, the mixture was moved into a water bath, and kept at the temperature of 298 

K for 1 week to reach the adsorption equilibrium. After filtration, the remaining solid 

was washed with THF to remove free HIB molecules and dried under vacuum at 373 

K overnight. After the analysis, a HIB@SWCNT-h sample was further heat-treated up 

to 1273 K at a rate of 5 K min
-1

 under N2 at a flow rate of 100 cm
3
 min

-1
. This sample 

was denoted as HIB@SWCNT-HTT. 

4.2.2. Characterization 

Thermogravimetric analysis (TGA) was performed on a thermo-gravimetric 

analyzer (Shimadzu; DTG-60AH) at a heating rate of 5 K min
-1

 and N2 flow rate of 
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100 cm
3
 min

-1
. The changes in the electronic properties of SWCNTs upon HIB 

adsorption were measured through the following methods. Raman spectra of each 

sample were measured on a dried solid by Raman spectrometer (JASCO; NRS-3100) 

with the excitation wavelength of 532 nm (power 0.1 mW). X-ray photoelectron 

spectra (XPS) were measured with X-ray photoelectron spectrometer (JEOL; JPS-

9010MX) using monochromatized MgKα radiation as a photon source. The optical 

absorption spectra (UV-Vis-NIR spectrophotometer, JASCO, V-670) were measured 

on an HIB-adsorbed SWCNT solution, which was prepared by dispersing HIB-

adsorbed SWCNT in THF (20 mg L
-1

) by ultra-sonication for 24 h. High-resolution 

transmission electron microscopy (HRTEM; JEOL, JEM-2100F) was carried out by 

drop-casting dispersed solution of HIB-adsorbed SWCNT onto carbon-film-supported 

copper grids. To measure the HIB adsorption effect on the electrical conductivity of 

SWCNTs, the sheet resistance was measured using a four-point probe method [18] at 

room temperature. The SWCNTs and HIB-adsorbed SWCNT dispersions were coated 

on a polyethylene terephthalate (PET) substrate by a spray-coating method.  

4.3. Results and Discussions  

TGA provides a quantitative way to determine the thermal stability of SWCNT as 

well as the amount of HIB molecules adsorbed on SWCNTs. The TGA curves of HIB, 

SWCNT, HIB@SWCNT-l (46.2 mg L
-1

), and HIB@SWCNT-h (127.2 mg L
-1

) are 

shown in Figure 4-1. The TGA curve of SWCNT shows only 0.8% weight loss until 

800 K. This indicates the high purity and high thermal stability of SWCNT. The inset 

graph shows that the weight loss of HIB starts from 520 K, and it is complete at 850 K, 

which corresponds to the decomposition of HIB. Therefore, the weight loss ranging 

from 520 K to 850 K in the TGA curve of HIB-adsorbed SWCNT can be attributed to 

the decomposition of adsorbed HIB. In this range the weight loss is about 15.0 wt.% 

of the total mass for HIB@SWCNT-l and 18.6 wt.% for HIB@SWCNT-h, 

respectively. The amount of adsorbed HIB per gram can be calculated by the 

following equation: 

                
    
      

 
           

             
      (

  

 
)  
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where      is the mass of HIB adsorbed on SWCNTs,        is the mass of 

SWCNTs, and wt% is weight loss. By this equation, the calculated amount of 

adsorbed HIB is about 176.5 mg g
-1

 for HIB@SWCNT-l and 228.5 mg g
-1

 for 

HIB@SWCNT-h. 

 

Figure 4-1. TGA curves of HIB (inset), SWCNT, HIB-adsorbed SWCNTs with 

different HIB concentration of 46.2 mg L
-1

 and 127.2 mg L
-1

 are denoted as 

HIB@SWCNT-l and HIB@SWCNT-h, respectively. 

Figure 4-2 shows the UV-Vis-NIR absorption spectra of SWCNT, HIB@SWCNT-l, 

and HIB@SWCNT-h. The UV-Vis-NIR spectrum of SWCNT has the absorption 

bands in the range of 1200–2100 nm (S11), 700–1100 nm (S22), and 500–700 nm 

(M11), originating from the interband electronic transitions of van Hove singularities 

in semiconducting and metallic SWCNT [19]. 

The change in S11 transition after the HIB adsorption indicates the charge transfer 

between HIB and SWCNT. Furthermore, it should be noted that the intensities of 

these peaks decrease with increasing the adsorbed amount of HIB and they almost 

disappear with higher adsorption. This effect can be interpreted either as the 

withdrawal of electrons from the valence band (i.e., p-type doping) or as the injection 
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of electrons to the conductance band (i.e., n-type doping) in semiconducting SWCNT 

[10]. However, the direction of electron transfer cannot be determined only from the 

absorption spectra since it depends on the band edge alignment between SWCNT and 

the redox potential of HIB molecules. The slight decrease of peak intensity of M11 

indicates the weak interaction between metallic SWCNT and adsorbed HIB. 

 

Figure 4-2. NIR absorption spectra of SWCNT, HIB@SWCNT-l, and 

HIB@SWCNT-h dispersed in THF at room temperature. 

Figure 4-3 shows the Raman spectra of SWCNT, HIB@SWCNT-l, 

HIB@SWCNT-h, and HIB@SWCNT-HTT at the radial breathing mode (RBM) 

region. In liquid-phase adsorption, the influence of the solvent cannot be neglected. In 

order to examine the contributions of HIB or THF to the Raman spectrum, the 

spectrum of SWCNT/THF (prepared by dispersing an identical amount of SWCNT in 

THF) is also shown in Figure 4-3 (green line). The peak at 169.8 cm
-1

 shifted to the 

lower-frequency side after the adsorption of HIB: the observed shift was 3.4 cm
-1

 for 

HIB@SWCNT-l and 5.8 cm
-1

 for HIB@SWCNT-h. Further, a significant decrease in 

the intensities of all the other peaks (from 250 cm
-1

 to 300 cm
-1

 and from 100 cm
-1

 to 

150 cm
-1

) was observed: in particular, the peaks at 140 cm
-1

 disappeared completely. 

However, SWCNT/THF shows no significant change in this region. This indicates 

that the changes in the electronic density of SWCNT can be attributed to the HIB 
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adsorption but not to THF, and it is further confirmed by HIB@SWCNT-HTT. In the 

Raman spectrum of HIB@SWCNT-HTT, all peaks are restored to their original state 

after the removal of HIB molecules from SWCNT by heat-treatment. The 

disappearance of RBM peak at 140.0 cm
-1

; suggests a loss of resonance from the 

nanotubes with a diameter of 1.74 nm (at 140.0 cm
-1

, calculated by          ⁄  

    [20]) upon the adsorption of a charge transfer molecule into SWCNT. This also 

testifies to a structural deformation of the SWCNT caused by the contraction of the 

SWCNT upon crystallization of HIB inside the tubes [21]. This result provides 

evidence for the effective charge transfer between SWCNT and HIB, and also 

suggests that the effect of HIB adsorption on the electronic structure is dependent on 

the chirality of SWCNT. 

 

Figure 4-3. Raman spectra at the RBM region of SWCNT, SWCNT/THF without 

HIB addition, HIB@SWCNT-l, HIB@SWCNT-h, and HIB@SWCNT-HTT. The 

spectrum of solid HIB (dash line) is shown as a reference. 
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It should be noted that the Raman spectra of HIB-adsorbed SWCNT are shifted 

both towards higher and lower frequencies. In detail, the small blue-shifts of the peak 

at 169.8 cm
−1

 (by 3.4 cm
−1

 for HIB@SWCNT-l, and 5.8 cm
−1

 for HIB@SWCNT-h) 

should be caused by a convolution of the peak at 169.8 cm
−1

 of SWCNT and 166.4 

cm
−1

 of HIB. On the other hand, the peak at 186.4 cm
−1

 displays a red-shift upon the 

HIB adsorption, which points to the hardening of radial breathing motion of carbon 

atoms in SWCNT with a diameter of 1.29 nm [12, 22]. The origin of this shift can be 

attributed either to an increase in C–C binding energy due to the charge transfer from 

SWCNT to HIB or, probably, to the mechanical hindrance such as the hardening and 

stiffening of C–C bonds [12, 23, 24]. From the TEM images of HIB-adsorbed 

SWCNT shown in Figure 4-4, we found that HIB molecules are distributed inside the 

tubes, but the binding states and orientation of HIB molecules adsorbed on SWCNT 

are difficult to resolve, because of the limited resolution. 

 

Figure 4-4. TEM images of HIB@SWCNT. 
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Figure 4-5. XPS spectra of the binding energy of C1s (A), O1s (B), and I3d (C) of 

SWCNT (black), SWCNT/THF (green), and HIB@SWCNT-h (red). The sub-

peaks in each spectrum were obtained from peak fitting results by using 

Lorentzian/Gaussian function. 

Systematic XPS analyses were performed to understand the direction of charge 

transfer between SWCNT and HIB molecules. Figure 4-5 shows the C1s, O1s, and 

I3d XPS spectra of HIB, SWCNT, SWCNT/THF, and HIB@SWCNT-h. Peak fitting 

involving a combined Lorentzian and Gaussian function was performed to give better 

understanding on the origins of binding energies. The most intense C1s peak at 

around 284.1 eV (Figure 4-5A) is comparable to the C1s binding energy of graphite 

and is assigned to sp
2
-hybridized carbons on the tube walls. A smaller speak at around 

284.8 eV is related to sp
3
-hybridized carbons and may originate from the presence of 

defects on the tube walls [25]. The other small peaks around 285.9, 287.0, 289.5 and 
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290.8 eV are assigned to C–O, C=O, O–C=O and π–π* plasmon, respectively [26–28]. 

The sp
2
 peak shows an obvious shift by 0.3 eV towards the lower binding energy side 

(from 284.1 to 283.8 eV) upon the HIB adsorption, evidencing the charge transfer 

between SWCNT and HIB. The downshift of the binding energy, consistent with the 

shift in Fermi level toward the valence band edge, can be interpreted as evidence of 

the decrease in the electron density in the SWCNT with adsorbed HIB, indicating a 

charge transfer from SWCNT to HIB. A similar behavior was reported by Mistry et al. 

[29] for nitric-acid-treated SWCNT, and Eliseev et al. [12] for AgX doped SWCNT. 

In the O1s XPS spectra in Figure 4-5B, the slight shift in the peak position and the 

small change in the peak shape of the SWCNT upon HIB adsorption indicate that the 

charge transfer interaction takes place not only between the HIB and π-electron 

system of SWCNT, but also between the iodine of HIB and the oxygen on the 

SWCNT, which formed in the oxidation process for the removal of tube caps. 

 

Figure 4-6. The relation between sheet resistance and sheet transmittance as 

prepared. There among, black curve attributed to SWCNTs, blue curve 

attributed to HIB@SWCNT-l and red curve attributed to HIB@SWCNT-h. 
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  Moreover, from our conductivity measurement (Figure 4-6), the electrical 

conductivity of SWCNTs is effectively enhanced after HIB adsorption. For instance, 

as shown in Figure 4-6, since the area of all the prepared film are identical (1×2.5 

cm
2
) , the value of conductance will be controlled by the thickness of film and 

conductivity of the material. For the estimation of thickness of SWCNTs films, we 

used an optical absorbance at 550 nm wavelength as incident light source because 

HIB molecules have no absorption at 550 nm and SWCNTs have no specific 

absorption band at 550 nm as shown in Figure 4-7(a), and (b). The transmittance of 

three different thickness films of SWCNTs, HIB@SWCNT-l and HIB@SWCNT-h 

were measured by the optical absorbance measurement. When the transmittance of 

three films made by different material is the same, we can assume that the thickness 

of the film should be the same. In figure 4-6 (red and blue lines), indicating the 

conductivity measurement of films having different thickness, the HIB-adsorbed 

SWCNTs films show much more prominent change dependent on the film thickness 

than SWCNTs films (black line), especially HIB@SWCNT-h. 

 

Figure 4-7. UV-Vis absorption spectra of HIB (a) and SWCNT (b) dispersed in 

THF at room temperature. The absorption of HIB shows starts at 450 nm and 

the absorption of SWCNTs shows starts at 800nm. 
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4.4. Conclusions  

By using liquid-phase molecular adsorption of HIB to SWCNT, the electronic 

structure of SWCNT could be modified. The electronic structure changes of SWCNT 

were investigated by spectroscopic methods. UV-Vis-NIR absorption spectra analysis 

showed that the interaction of HIB could induce a change in the electron density of 

state in SWCNT. The disappearance of the RBM-peak at 140 cm
−1

 and an up-shift in 

the RBM-band at 186.4 cm
−1

 provide evidence for the effective charge transfer from 

SWCNT to HIB. The slight downshift of C1s XPS peak revealed a slight oxidation of 

carbon in SWCNT upon HIB adsorption. From these results, we conclude that HIB 

act as an electron acceptor for SWCNT. 
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Chapter 5 

Electrochemical analysis of iodide ions on 

the SWCNT thin films 

 

5.1. Introduction 

  Since their discovery, single-walled carbon nanotubes (SWCNTs) have attracted 

great interest both of fundamental and application fields because of their novel 

structural, mechanical and electronic properties. It has been reported that electronic 

properties of SWCNTs can be modified by intercalation using donor or acceptor 

molecules involving charge transfer interaction. For example, encapsulation of 

electron acceptor dopants such as iodine compounds (KI, polyiodine and I2) into 

SWCNTs was intensively affected the conjugated π-electron system of SWCNTs [1, 

2]. Recently, researchers attempt to employ SWCNTs as the electrode materials of 

electrochemical sensors and dye-sensitized solar cells (DSCs) [3-6]. The subtle 

electronic properties confirmed that SWCNTs have the ability to promote charge 

transfer reactions when used as an electrode in electrochemical reactions.  

  The aim of this work is to explore the effect of tri-iodide ions (I3
-
) on the Single-

Walled Carbon Nanotube (SWCNTs) coated Polyethylene Terephthalate (PET) thin-

films using electrochemical method.  

5.2. Experimental 

5.2.1. SWCNTs Thin Films Preparation 

HiPco-SWCNTs (Carbon Nano-technologies, Inc.) with an Fe impurity of 9.9 wt.% 

were used in this study with further purification, and Super-growth SWCNTs were 

synthesized by a chemical vapor deposition (CVD) process (Center of Advanced 

Carbon Materials, AIST) were used without further purification because of their high 
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carbon purity (higher than 99.98 %) [7]. SWCNTs samples of 1.0 mg were dispersed 

in 50 ml 1, 2-dichloroethane (DCE) with ultra-sonication for 3 days by ultrasonic 

cleaner. Then, the SWCNTs dispersions were spray-coated onto the PET films (figure 

5-1) with various volumes (10 ml, 15 ml, 20 ml) to form SWCNT-PET thin-films 

(actual size: 5.0 cm × 0.7 cm). The obtained SWCNT-PET thin-films were dried at 

100 
o
C under vacuum for 12h to remove the DCE. The electric contact of SWCNT-

PET thin-film was made by attaching a thin copper wire on one side of the SWCNT-

PET thin-film with silver epoxy. The Hipco-SWCNT coated PET named Hipco-PET, 

and the super-growth SWCNT coated PET named SG-PET. 

 

Figure 5-1. The image of spray-coated process and the SWCNT coated PET films 

denoted as SWCNT-PET films. 

5.2.2. Characterization 

All of the electrochemical measurements including cyclic voltammetry (CV) and 

alternating current (AC) impedance are performed in a one-compartment cell 

containing the SWCNT-PET thin-film as a working electrode, a Pt sheet as a counter 

electrode and a saturated Ag/AgCl as a reference electrode. Cyclic voltammetry is 

performed in NaCl-KI working electrolytes (0.1 mol L
-1

 NaCl + 5 mmol L
-1

 KI 

aqueous solution) with SWCNT-PET thin-film electrode at various scan rates. Charge 

transfer resistance of this cell was measured by electrochemical impedance 
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spectroscopy. The light transmittance of all films and the optical absorption spectra of 

SWCNT-PET thin-films before and after electrochemical measurements were 

measured using UV-vis-NIR spectroscopy (JASCO V-600). The electronic state 

change of SWCNTs before and after electrochemical measurements was examined 

with Raman spectroscopy (JASCO NRS-3100).  

5.3. Results and Discussion  

5.3.1. Iodide Ions on the Hipco-SWCNT Thin Films 

 

Figure 5-2. Cyclic voltammetry (CV) obtained for Hipco-PET electrode 

(T=13.56%) in 0.1 mol L
-1

 NaCl electrolyte solution containing 5 mmol L
-1

 KI at 

various scan rates (5, 3, and 1mV s
-1

). 

The cyclic voltammetry (CV) was studied at a series of scan rates (5 mV s
-1

, 3 mV 

s
-1

 and 1mV s
-1

) for Hipco-PET film with transmittance equal to 13.56% (at 550 nm). 

CV shows an anodic peak and a cathodic peak for a redox reaction (3I
- ⇋ I3

-
 + 2e

-
) in 

figure 5-2. An almost reversible couple is observed centered at 0.66 V with a peak-to-

peak separation of 0.28 V at 1 mV s
-1

. The peak-to-peak separation increases with 

increasing scan rate, indicating a quasi-reversible process likely as the result of both 

the slow electron transfer at the SWCNT surface and the slow diffusion through the 
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narrow pore. 

 

Figure 5-3. Plot for peak currents [cathodic (Ipc) and anodic (Ipa)] vs. square root 

of scan rates. 

 

Figure 5-4. Impedance spectra of a cell fabricated with Hipco-PET films working 

electrodes with various SWCNT loading at a rest potential (+0.70 V). The top 

inset shows the equivalent circuit. 

It is also found that the peak currents increase along with rising of scan rate in 

figure 5-3. Figure 5-3 shows the relationship of peak currents and scan rates. It may 

be seen that both the anodic and cathodic peak currents show a linear dependence 

with the square root of scan rates and passed almost through the origin. Such behavior 

appears in a quiescent solution in case of diffusion of an ionic species in the vicinity 

of the electrode surface, which defines the rate of the reaction. Nyquist plots of this 
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three-electrode cell with various SWCNT loading for Hipco-PET film are show in 

figure 5-4. The inset shows the equivalent circuit used to model this system, including 

the solution resistance Rsol, charge transfer resistance at the SWCNT/electrolyte 

interface RCT, double layer capacitance C, and Warburg impedance for tri-iodide ions 

diffusion. We observed that RCT increases: 0.16, 0.24, and 0.25 Ω cm
2
, whereas Rs 

decreases: 0.040, 0.020, 0.015 Ω cm
2
 with increasing SWCNT loading and decreasing 

light transmittance of 22.03, 13.56, 12.77 %, respectively. This difference is due to 

the increase in surface area of the Hipco-PET films with higher SWCNT loading. 

 

Figure 5-5. Raman spectra of Hipco-PET film at the radial breathing mode 

(RBM) region measured before and after CV measurement. 

  Figure 5-5 shows the Raman spectra of SWCNT-PET film at the radial breathing 

mode (RBM) before and after cyclic voltammetry (CV) measurement. A new peak 

appears at around 158 cm
-1

 for all Hipco-PET films after CV compare with the film 

before CV measurement. This indicates that the tri-iodide ions (I3
-
) (which were 

produced in oxidation reaction 3I
-
→I3

-
 + 2e

-
) were adsorbed onto SWCNTs surface, 

and the charge transfer interaction occurs between I3
-
 and SWCNTs. At a further 

study, we used another kind of SWCNTs (super-growth SWCNT) with larger 
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diameter (average diameter: 2.8 nm) and higher purity (> 99.98 %). As a result, the 

adsorption of I3
-
 caused a significantly higher frequency shift from 184 cm

-1
, and the 

peak at 138 cm
-1

 disappeared completely. Thus, charge transfer interaction between I3
-
 

and SWCNTs is evidenced. 

5.3.2. Iodide Ions on the SG-SWCNT Thin Films 

For iodide ions on the SG-SWCNT thin films, CV was carried out with different 

thickness of SWCNTs as denoted by transmittance measurement in same condition as 

previous CV analysis. When increase the thickness of SWCNT film (decrease of the 

transmittance), the conductivity of the electrode would be expected increase. As the 

yellow line shown in the figure 5-6, the current increase much quicker when applied 

potential compared to the thinner film as blue and red plots. In case of different scan 

rate as shown in the figure 5-6 left and right panels, when we using slow scan rate as 

1mVs
-1

, the double layer could be formed quick enough to remedy the oxidation of I
-
. 

Therefore, within three scans, the current did not change. When we using quick scan 

rate as 10mVs
-1

, I
-
 layers are reduced quickly and the double layers would be exhaust 

without remedy. Therefore, as shown in figure 5-6 right panels, a current decreasing 

reviewed among different scan.  
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Figure 5-6. Cyclic voltammetry (CV) obtained for SG-PET electrodes with 

transmittance (at 550 nm) of 10.1% (yellow line), 24.0% (blue line), and 45.0% 

(red line) in 0.1 mol L
-1

 NaCl electrolyte solution containing 5 mmol L
-1

 KI at 

different scan rates: 1mV s
-1

 for left spectra, and 10 mV min
-1

 for right spectra. 
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Figure 5-7. UV-Vis spectra for electrolyte (0.1 M NaCl + 5 mM KI aqueous 

solution) measured before and after cyclic voltammetry (CV) measurement. 

UV-Vis spectra of electrolyte solution measured before and after cyclic 

voltammetry (CV) measurement, and at the rest potential (+0.35 V and +0.70 V) 

shown as figure 5-7. Compare with the other spectra, no absorption peaks can be 

observed in the spectrum before CV, indicating the peaks at 285 nm and 350 nm 

belong to the tri-iodide ions (I3
-
). The spectrum measured at +0.35 V shows highest 

peak intensity because of the production of I3
-
 in oxidation reaction 3I

-
→I3

-
 + 2e

-
. 

Otherwise, the peak intensity of the one measured at +0.70 V is smaller than the one 

after one redox reaction, owing to the reduction of the tri-iodide ions (I3
-
). 
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Figure 5-8. Impedance spectra of a cell fabricated with SG-PET film working 

electrode measured at +0.70 V (red line) and +0.35 V (deep red line) (A), the 

expanded spectra (B), Bode phase plots (C&D) 

The charge transfer resistance (RCT) of an electrochemical reaction can be easily 

determined from the intercept of the semicircle in a Nyquist plot with the real axis 

(−Z
II
 = 0). As shown in Figure 5-8B, the RCT of red line (0.7V) is smaller than RCT of 

deep red line. Since when applied 0.7V (vs. Ag/AgCl) potential to the working 

electrode, the energy level of electron in SWCNTs are decreased which closed to the 

redox potential of I
-
/I3

-
, therefore, the electrons would inject to the working electrode 

from solution which also means the charge transfer resistance decrease. If we applied 

0.35V to the working electrode, the electron energy different between working 

electrode and solution is not favorable for charge transfer, there would be a big 

potential barrier for electron transfer. Therefore, as shown in Figure 5-8, the deep red 

line which attributed to the 0.35V applied bias have bigger RCT than the 0.7V one. 
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Figure 5-9. Impedance spectra of a cell fabricated with SG-PET films working 

electrodes with various SWCNT loading at a rest potential (+0.70 V). The 

equivalent circuit is shown on the top of the spectra. 

  When we applied same potential (0.7V) to the working electrode as shown in 

Figure 5-9, the charge transfer would be mainly depend on the conductivity of the 

electrode. Therefore, as we expected, the more SWCNTs loaded (yellow line), the 

smaller RCT achieved. 

  A plausible equivalent circuit was also provided as shown on the top of Figure 5-9. 

Thereby, the RCT1 would be denoted as the conductivity of SWCNTs films and RCT2 

would be attributed to the charge transfer barrier between electrode and solution 

interface which we explained as the electron energy levels between working electrode 

and redox potential of solution. 

However, when we applied same potential (0.35V) to the working electrode as 

shown in Figure 5-9, the charge transfer would be depend on RCT1 and RCT2 which 

make the understanding more complicated. Since both resistance would play a role 

when the electron transfer between electrode and solution. 
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As shown in Figure 5-10B, the green and red line shows reasonable trend that the 

RCT1 decrease as the increasing of the thickness of SWCNTs films. But the other two 

lines are not very understandable which may be come from the failure measurement. 

 

Figure 5-10. Impedance spectra of a cell fabricated with SG-PET films working 

electrodes with various SWCNT loading at a rest potential (+0.35 V) (A), and the 

expanded spectra (B).  

 

Figure 5-13. Raman spectra of SG-PET film at the radial breathing mode (RBM) 

region measured before and after CV measurement. 

In Raman spectra, a new peak appears at 154 cm
-1

 for all SG-PET electrodes after 
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CV measurement, indicating the tri-iodide ions (I3
-
) (which were produced by 

oxidation reaction 3I
-
→I3

-
 + 2e

-
) were adsorbed onto the SWCNT electrode surface, 

and the peak at 186 cm
-1

 shifts to a lower frequency side by 3 cm
-1

 prove that 

electronic structure of SWCNT changed because of the charge transfer interaction 

between I3
-
 and SWCNT. 

5.4. Conclusions  

  In conclusion, we have successfully realized the application of spray coated 

SWCNT on PET substrate as working electrode for tri-iodide ion (I3
-
) reduction. The 

charge transfer resistance of SWCNT-PET electrode in iodide/tri-iodide (I
-
/I3

-
) redox 

couple electrolyte can be controlled by changing SWCNTs loading. Tri-iodide ions 

can be adsorbed onto the SWCNTs by electrochemical method. The electronic 

structure of SWCNT can be modified systematically through charge transfer 

interaction. By doing systematic electrochemistry measurement, the redox potential of 

I
-
/I3

-
 was found to be around 0.7V (vs. Ag/AgCl) and preliminary impedance 

spectroscopy measurement also carried out in order to understand the charge transfer 

properities between SWCNts working electrode and KI solution.  
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Chapter 6  

Nanodynamic Analysis of Ionic Liquids 

Confined in Carbon Nanospace using an 

NMR Method 

 

In this chapter, we report pulsed-field gradient-nuclear magnetic resonance (PFG-

NMR) results of the structural and dynamical properties of the bulk ionic liquids (ILs) 

([EMIm][BF4], [BMIm][BF4], [BMIm][PF6], [HMIm][BF4], [HMIm][PF6]) and ILs 

[EMIm][BF4] confined inside activated carbon fiber (ACF) with inner diameters of 

1.1 nm for A20 and 1.0 nm for A15. The main objective of this study was to 

understand effects of the pore size and the pore filling on the structural and dynamical 

properties of the confined ILs. The rest of this chapter is structured as follows. Section 

6.1 is the introduction. Section 6.2 contains a description of the properties of materials 

have been employed in this study and our experimental methods. In order to well 

understand the diffusion behavior of the ILs confined inside nanopores, we need to 

study the dynamic properties of bulk ILs as a reference. So, this section concludes two 

components: bulk ILs and confined ILs. In Section 6.3 we present results and 

discussions of the structural and dynamic properties of the bulk ILs and confined ILs 

separately as well as section 6.2, and in Section 6.4 we summarize our main findings. 

6.1. Introduction  

  As an attractive technology for electric energy storage, supercapacitors have 

attracted great interest recently [1-8]. Also called electrical double-layer capacitors 

(EDLC) or ultracapacitors, supercapacitors store energy by forming electric double 

layers of the electrolyte within two symmetric porous carbon electrodes of high 
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surface area and opposite charges. The recent discovery of the normalized capacitance 

increase in carbide-derived carbon (CDC) microporous structures at the pore size is 

smaller than 1 nm [9, 10], has given rise to a great deal of technological activity to 

refine potential devices [11] and fundamental research to uncover the underlying 

molecular phenomena [12-15].  

Nanopores have a great potential for use in drug delivery, nano-fluidic transistors, 

DNA translocation, catalysis, sensors for chemical agents, nanobatteries, 

supercapacitors, templates for nanoparticle self-assembly as well as in fundamental 

research [16-20]. These applications require in-depth understanding of the motion of 

molecules or charge carriers inside the pores. On the other hand, molecular diffusion 

in a unidimensional channel is very different from that of isotropic diffusion in the 

bulk system. For example, the melting points and the thermal decomposition 

temperature of several ILs have been reported to increase by more than 200 °C when 

confined inside multi-walled carbon nanotubes (MWCNTs) [21, 22]. In contrast, 

when confined inside nanoporous silica [23], ILs can exhibit similar mobility as the 

bulk phases, and their melting points decrease significantly [24, 25]. Therefore, 

diffusion in nanopores very interesting and it is very important to study in-depth. 

6.2. Experimental: 

6.2.1. Preparation of Bulk ILs Samples 

  ILs containing three different types of methylimidazolium-based cations (1-ethyl-, 

1-butyl- and 1-hexyl-3-methylimidazolium; [EMIm], [BMIm] and [HMIm]) and two 

types of anions (tetrafluoroborate [BF4] and hexafluorophosphate [PF6]) were used 

without further treatment. All of these ILs were purchased from Fluka except 

[HMIm][BF4] (Aldrich). The details about the physical properties of these ILs are 

shown in table 6-1.  

Samples were prepared by adding ILs and deuterated water (D2O) into the standard 

5 mm NMR tubes with a series concentration of ILs (percentage by volume) between 

100% and 10%. The total volume of each mixture was 0.8 ml. After loading the 
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samples, the NMR tubes were sealed by caps to avoid changes in the water content. 

All diffusion measurements were performed at 298 K after sample equilibration.  

Table 6-1. Physical properties of methylimidazolium-based ILs: 

 M /g mol
-1

 Tm /K Tb /K Td /K ρ /g ml
-1

 Purity  

[EMIm][BF4] 197.97 288 > 623 664[26] 1.294
a
 ≥ 97.0% 

[BMIm][BF4] 226.02 202 561 698[27] 1.21
b
 ≥ 97.0% 

[BMIm][PF6] 284.18 283[27]  706[27] 1.38
b
 ≥ 98.5% 

[HMIm][BF4] 254.08    1.149
b
 ≥ 98.5% 

[HMIm][PF6] 312.04    1.419
b
 ≥ 99.0% 

a 
The density at 25 

o
C.  

b 
The density at 20 

o
C. 

Proton pulse-field gradient nuclear magnetic resonance (PFG-NMR) diffusion 

studies were carried out at 298 K on a Bruker DSX-400 MHz spectroscopy with a 

Diff 30 field gradient probe. Diffusion data were obtained from dependencies of the 

intensity of the PFG NMR signal (A) on the amplitude of the magnetic field gradients 

(g). The signal intensity was determined by integrating the area under selected line(s) 

of the frequency-domain NMR spectra recorded by the PFG NMR stimulated echo 

pulse sequence. Different lines in such spectra can correspond to different species. 

Hence, diffusion data for a chosen type of species in a sample can be obtained by 

selecting an appropriate line in the spectrum for data processing. For the NMR lines 

exhibiting no significant overlap with the lines of other types of ions or molecules in a 

sample the diffusivity (D) was determined from the measured attenuation of the PFG 

NMR signal (Ψ ≡ A(g)/A(g = 0)) corresponding to this line using
 
[28, 29] : 

             ((    )  (    ⁄ ))                (6-1) 

where γ is the gyromagnetic ratio of the nuclei, which is 2.675 × 10
8
 rad T

-1
 s

-1
 for a 

proton; δ denotes the effective duration for rectangular gradient pulses; g is the 

amplitude of the magnetic gradients; and Δ is the separation between the gradient 

pulses. 
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lnΨ versus [(-γδg)
2
(Δ-δ/3)] can be plotted to give a straight line with a gradient of D. 

If the plot shows two distinct slopes, then the data is analyzed with two different 

diffusion coefficients.  

The hydrodynamic radii (Rh) can then be obtained from the Stokes-Einstein 

equation (eq. 6-2), assuming that the aggregates are spherical and non-interacting. 

                 
   

    ⁄                         (6-2) 

where kB is the Boltzmann constant, T is the absolute temperature, and η is the 

viscosity of the solvent mixture. 

  Viscosity of the ILs was measured with a viscometer (m-VPOC) at 298 K. 

6.2.2. Preparation of Confined ILs Samples 

  Pitch-based activated carbon fibers (ACF-A20, -A15, AD’ALL Co. Ltd.) were used 

in an agate mortar. Pore structures were characterized based on the N2 adsorption 

isotherm at 77 K. Details of those analyses are shown in table 6-2. The SEM images 

of ACF-A20 are shown in figure 6-1. 

Table 6-2. Physical properties of ACF: 

 A20 A15 

SBET (P/P0 = 0.05～0.30)  /m
2
 g

-1 
1740 1430 

S(αs)  /m
2
 g

-1
 1750 1400 

Slit pore with (αs)  /nm 1.1 1.0 

Micropore volume (DR)  /ml g
-1 

0.63  

Total pore volume (αs)  / ml g
-1

 0.97 0.67 

 

250 mg of grinded ACF samples were evacuated at 393 K for 2 h using a vacuum 

line, and then mixed with 150 μl and 100μl ILs [EMIm][BF4] for A20, 90μl for A15, 

respectively. The mixtures were sealed into glass tubes under vacuum, then were 

heated up to 600 K and keep it for 12 h in an electric-furnace as shown in scheme 6-1. 
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Figure 6-1. SEM images of ACF-A20. 

 

Schem 6-1. The method of samples preparation 

Activated carbon fiber (ACF) 250 mg 

1) Drying ACF under vacuum (<1×10
-4

 mbar) at 393 K for 2 h (remove 

the water in the ACF nanopores). 

2) Transfer the ILs to the ACF side. 

3) Cut and seal the tube. 

4) Put the tube into an electric-furnace, heating the samples up to 600 K 

for 12 h. 

5) Transfer the sample into an NMR tube in ambient. 

  ILs- ACF  
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  Thermo-gravimetric analysis (TGA) was performed on a thermo-gravimetric 

analyzer (Shimadzu; DTG-60AH) at a heating rate of 5 K min
-1

 and N2 flow rate of 

100 cm
3
 min

-1
 to determine the adsorbed amounts of ILs inside the ACF. Proton PFG-

NMR diffusion studies were carried out at 298 K on a Bruker DSX-400 MHz 

spectroscopy. 

6.3. Results and Discussions 

6.3.1. Bulk Ionic Liquids 

 

Figure 6-2. 
1
H NMR spectra of imidazolium based ionic liquids at 298 K. 

Figure 6-2 shows the 
1
H 1D-NMR spectra of bulk pure [EMIm][BF4], 

[BMIm][BF4], [BMIm][PF6], [HMIm][BF4], and [HMIm][PF6]. The numbers (1 ~ 8) 

in figure 6-2 correspond to the skeleton atoms for the cation in the inset of figure 6-2. 

In these spectra, all peaks are assigned to the cations because there is no proton 

existence in the anions. The peaks at the low frequency region around 0 ~ 3.8 ppm are 
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originate from the protons of the ethyl chain for [EMIm]
+
, butyl chain for [BMIm]

+
, 

and hexyl chain for [HMIm]
+
, while the peak around 4.0 ppm belongs to the protons 

of the methyl group attached to the imidazolium ring. The peaks at downfield 7 ~ 9 

ppm can be assigned to the protons of the imidazolium ring. There is no water signal 

appears in these spectra. This is because the ionic liquids we used in this study is high 

purity with the water percentage is low than 0.05 %. It is seen in figure 6-2 that the 

chemical shift of the protons on the imidazolium ring (H2, H4, H5) show a 

significantly downfield shift with increasing length of the alkyl chain for the same 

anion, and upfield shift with increasing the size of the anion (as shown in table 6-3). 

However, there are no significantly shifts were observed for the peaks attributed to the 

alkyl chain, indicates the protons on the imidazolium ring interacts more closely with 

the anions. We also observed that the shift of H2 is obviously larger than H4 and H5, 

indicates H2 interacts more strongly than H4 and H5. 

Table 6-3. Chemical shifts of respective protons in cations.  

ppm 2 4 5 7 6 8 9～11 12 

EMImBF4 8.28 7.21 7.15 3.90 3.58 1.12   

BMImBF4 8.39 7.31 7.25 3.94 3.66 1.55 1.00 0.55 

BMImPF6 8.16 7.15 7.11 3.88 3.62 1.55 1.01 0.56 

HMImBF4 8.51 7.40 7.33 4.00 3.73 1.66 1.02 0.58 

HMImPF6 8.24 7.23 7.18 3.95 3.68 1.64 1.06 0.61 

 

  It has been confirmed that various properties of ILs such as intensity, polarity, 

solubility, viscosity and conductivity depend on the water content [30-32]. Therefore, 

a detailed understanding of the dynamic behavior of ILs-water mixtures is important. 

In this study we use deuterated water (D2O) replaced H2O to avoid the intensity effect 

on the proton NMR spectrum, and we expect the D2O effect might be different. The 

1
H NMR spectra of [EMIm][BF4] and [BMIm][BF4] in D2O are shown in figure 6-3. 

Compare with the pure ILs (figure 6-3a), when a small amount of D2O is added into 
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ILs (figure 6-3b), the chemical shift of cation peaks were observed to shift downfield. 

All singles are located at the downfield compared to the pure ILs even increase the 

water concentration up to 90%. As we all known, the formation of hydrogen bond 

makes the proton signal shift downfield. This result suggests that an addition of D2O 

into ILs increases the number of hydrogen bond owing to the formation of new 

hydrogen bond between water and cation or inion, results in perceptible deshielding 

effect on all protons in the cations. This factor should be lead to a downfield shift for 

those protons.  

On the other hand, the chemical shifts of all proton signals due to the cations shift 

upfield with increasing water concentration (figure 6-3 b-g). When a small amount of 

water was added to ILs, the hydrogen bond interaction cation-water and anion-water 

are formed results in downfield shift for all protons in cations. However, with the 

further addition of water, the cation separated from the anion and was surrounded by 

water molecules. At the same time, water prefers to form hydrogen bond with water 

rather than cation. Therefore, such changes in the chemical shift can be attributed to a 

decrease in the extent of hydrogen bond between water and cations with increasing 

water concentration (or decreasing ILs concentration) [33].  

 

Figure 6-3. 
1
H NMR spectra of [EMIm][BF4] (A) and [BMIm][BF4] (B) in D2O 

with varies ILs concentration (percentage by volume) at 298 K: (a) 100%, (b) 

90%, (c) 80%, (d)70%, (e) 50%, (f) 30%, and (g) 10%. 



 

81 

 

The PFG-NMR method is noninvasive and makes it possible to independently 

measure the self-diffusion coefficient of each ionic species in the system under the 

study, provided that the components contain NMR sensitive nuclei [34]. Figure 6-4 

shows the 
1
H PFG-NMR attenuation curves of 3-methylimidazolium based ionic 

liquids (ILs) with Δ was fixed at 500 ms and δ was 2 ms. The lines marked as circle 

are raw data, while the solid lines are the fitting data. Each set of the result shows 

good linear relationship, and the self-diffusion coefficient can be obtained from the 

slope of each set of plots and equation 6-1.  

Figure 6-4. 
1
H PFG-NMR attenuation curves of pure imidazolium based ionic 

liquids at 298 K. 

The relationship between diffusion coefficient (D) and molecular mass is shown in 

figure 6-5. It is seen that the diffusion coefficient of bulk ILs decreases with 

increasing the molecular mass for the same anion (D[EMIm]+ > D[BMIm]+ > D[HMIm]+). 

That is because the [EMIm]
+
 cation is smaller and is expected to diffuse more quickly 

through the liquid than the larger [HMIm]
+
 cation with its long alkyl chain which 

should restrict its mobility and reduce free space among the ions. 
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Figure 6-5. The diffusion coefficients of imidazolium based ionic liquids for 

[EMIm][BF4] (red), [BMIm][BF4] (green), [HMIm][BF4] (black), [BMIm][PF6] 

(pink), and [HMIm][PF6] (blue). The relationship can be clearly shown from the 

fitting data (solid lines). 

  Figure 6-6 shows examples of the PFG-NMR attenuation curves measured for ILs 

[EMIm][BF4], [BMIm][BF4], and [HMIm][BF4] in D2O. All of the samples have a 

same anion [BF4]
-
, and all attenuation curves were fitted to a single diffusion 

coefficient. The linearly attenuation curves meaning that the ILs is either all 

solubilized or is in fast exchange between the aqueous solution. Figure 6-6 also shows 

that the diffusion coefficient decreases with increasing ILs concentration.  

The plots of diffusion coefficient and ILs molar concentration are shown in figure 

6-7. It shows a general trend that the dynamics slows down as the concentration 

increases for all species. This may be ascribed to the increasing of the viscosity with 

increasing concentration. A similarly result was reported by Nakakoshi et al. for the 

dynamic study of [BMIm][Br] [35]. In this paper, they assume that [BMIm]
 
cation 

contains both hydrophobic and hydrophilic moieties. They also suggest that, at higher 

molar fractions χILs>0.015 (about 0.75 M for [BMIm][Br]), the cations and anions are 

completely dissociated and move independently may be caused by the repulsion from 

cations and attraction from anions. Therefore, we suggest that the addition of water 

weaken the hydrogen bonding interaction between cation and anion, results in the 
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increasing of cation diffusion coefficient in this concentration we studied.  

 

Figure 6-6. 
1
H PFG-NMR attenuation curves of the solutions of ILs in D2O with 

a range of concentrations (by volume) from 10% to 100% for [EMIm][BF4] (A) 

and [BMIm][BF4] (B), 87% to 100% for [HMIm][BF4] (C). 
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Figure 6-7. Diffusion coefficients of [EMIm][BF4] (red), [BMIm][BF4] (pink) and 

[HMIm][BF4] (blue) in D2O as a function of the concentration at 298 K. 

Table 6-4. Aggregation data determined using PFG-NMR for pure ILs and the 

solutions of [EMIm][BF4] in D2O at 298 K 

solutions D(×10
-11

) m
2
 s

-1
 Rh (Å) η (cP) 

Pure [EMIm][BF4] 5.206 1.1 34.04 

70% 34.20 1.7 3.80 

50% 48.37 1.8 2.50 

30% 65.58 1.8 1.87 

10% 62.97 2.8 1.23 

Pure [BMIm][BF4] 1.902 1.1 107.7 

Pure [BMIm][PF6] 0.938 0.9 250.5 

Pure [HMIm][BF4] 0.867 1.3 196.0 

Pure [HMIm][PF6] 0.460 1.0 469.9 

 

Table 6-4 shows the 
1
H self-diffusion coefficient values, D, for the cations in ILs, 

[EMIm][BF4], [EMIm][BF4], [EMIm][BF4], [EMIm][BF4], and [EMIm][BF4] as well 

as the diffusion data arising from dilution of [EMIm][BF4] in D2O. The diffusion 

constant increases with decreasing of viscosity as well as decreasing of ILs 

concentration for [EMIm][BF4]/D2O solutions. So we suggest that D values arise from 
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the relatively large measured viscosities of these ILs. 

6.3.2. Confined Ionic Liquids 

  In this section, effects of the diffusion time of [EMIm][BF4], amount of adsorbed 

[EMIm][BF4], and pore size of ACF were studied to understand the structural and 

dynamic properties of ILs confined inside slit-like graphitic pores. 

6.3.2.1. Effect of the Diffusion Time of [EMIm][BF4] 

 

Figure 6-8. TGA thermograms of A20-35.0% 

The amount of confined [EMIm][BF4] was calculated by a thermogravimetric 

analysis (TGA) measurement. Figure 6-8 shows the TGA results of confined 

[EMIm][BF4] inside ACF-A20. It can be seen that there is an initial loss of weight at a 

temperature below 350 K. This is attributed to the removal of physically adsorbed 

water. The TGA thermograms shows a main weight loss of [EMIm][BF4] at around 

650 K which very close to the decomposition temperature 664 K [26], indicating the 

weight loss of this region are from the decomposition of the strongly bonded 
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[EMIm][BF4] confined inside ACF, and the shoulder in the range of 450-600 K 

should be attributed to the removal of weakly bonded or free [EMIm][BF4] confined 

inside ACF. The weight loss in the range of 450-800 K is about 35.0%, so we named 

this sample as A20-35.0%.  

 

Figure 6-9. 
1
H NMR spectra of confined [EMIm][BF4] inside A20 (red line), bulk 

[EMIm][BF4] (black line) and shift upfield by 6 ppm (yellow line) at 298 K. 

  Figure 6-9 shows the 
1
H NMR spectra of confined [EMIm][BF4] (A20-35.0%). 

Compare with the bulk [EMIm][BF4] (black line), there is only one single peak 

centered at around 0 ppm caused by the overlapping of all proton signals. The peak of 

confined [EMIm][BF4] may be separated to two parts in the range of 10 - 0 ppm and -

10 - 0 ppm, respectively. Here we suggest that the left part might be come from the 

confined water or the free [EMIm][BF4] molecules, and the right part is attributed to 

the confined [EMIm][BF4]. 
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Figure 6-10. 
1
H NMR spectra of sample A20-35.0% (left side) from the diffusion 

measurement and the attenuation curves (right side) with varies gradient pulse 

duration (δ) and diffusion time (Δ). 

In this section, we studied the effects of the parameters which can effect on the 

diffusion coefficients D, such as different gradient pulse duration (δ), diffusion time 

(Δ). Figure 6-10 (left) shows the 
1
H NMR spectra of sample A20-35.0% from the 2D 

diffusion measurement with different parameter settings. The sample was measured 

four times defined as 1
st
, 2

nd
, 3

rd
, and 4

th
 as show in figure 6-10. The detailed 

measurement set-ups are given in Table 6-5. The smooth peaks were obtained from 

multi-peak fitting. From the results as shown, different gradient pulse duration (δ), 

diffusion time (Δ) and the number of scans (ns) were found have distinguished effect 

on 
1
H chemical shift and the signal-to-noise ratio. In the case of δ or Δ, the effects 

were mainly seen as the changing of position and shape of peaks. We assume δ or Δ 

effects could be attributed to the different dynamic state of adsorbed ILs molecules in 
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the nanospace such as adsorbed orientation, adsorbed condition (completed, close or 

sequestered attached), or pore size; in case of scan times (ns), the main effects are the 

increase of signal-to-noise. Figure 6-10 right side shows the attenuation curves of 

A20-35.0% with four times measurements. All results show a single component 

reflect on the attenuation curve is a linearly decay, indicates all pieces have a similar 

diffusion velocity measured under a specific diffusion time. 

  As we discussed in the DTG analysis (figure 6-8), the weight loss in the range of 

450-600 K reflects to the free or weakly bonded [EMIm][BF4], and the weight loss in 

the range of 600-800 K reflects to the strongly bonded [EMIm][BF4]. Therefore, we 

suggest that the left proton signals of the second time measurement is attributed to the 

weakly bonded [EMIm][BF4] with a smaller diffusion coefficient. In contrast, the 

right proton signals is attributed to the strongly bonded [EMIm][BF4] diffuses faster 

than the left one. 

Table 6-5. Parameters of the diffusion measurement 

Sample name= 1st  2nd  3rd 4th  

GRADIENT PULSE DURATION (delta) (ms)= 1 1 2 5 

DIFFUSION TIME (DELTA) (ms))= 170 100 100 10 

DELAY BETWEEN THE 2 FIRST PULSES (tau)= 2.516 2.516 3.535 6.545 

REPETITION TIME (D1) (ms)= 5000 1000 1000 1000 

MAXXIMUN GRADIENT VALUE [G/cm]= 827.5 1000 1000 1000 

GRADIENT START VALUE [G/cm]= 6.19 6.19 6.19 6.19 

NUMBER OF GRADIENT STEPS= 32 4 16 8 

NUMBER OF SCANS= 1024 10000 3072 5000 

Td= 512 512 512 512 

rg= 1024 1024 1024 1024 

sw= 100 50 50 30 

6.3.2.2. Effect of the Amount of Confined [EMIm][BF4] 

  The amount of confined [EMIm][BF4] was calculated by a thermogravimetric 

analysis (TGA) measurement. Figure 6-11A shows the TGA results of raw ACF-A20, 



 

89 

 

confined ILs [EMIm][BF4] inside A20 with a range of adsorbed amounts from 1.7% 

to 26.2% (by weight loss). All of these samples were made by the method was 

described in experimental section. To make definite identification, we carried out 

differential thermogravimetric analysis (DTGA) as given in figure 6-11B. It can be 

seen that there is an initial loss of weight at a temperature below 350 K. This is 

attributed to the removal of physically adsorbed water. The DTGA thermograms of 

A20-26.2% and A20-23.2% show a main weight loss of [EMIm][BF4] around 650 K 

which very close to the decomposition temperature 664 K, indicating the weight loss 

of this region are from the decomposition of the strongly bounded [EMIm][BF4] 

confined inside ACF, and the shoulder in the range of 450-600 K should be attributed 

to the removal of weakly bounded or free [EMIm][BF4] confined inside ACF. 

Similarly, the weight loss of lower adsorbed samples A20-3.1% and A20-1.7% in the 

range of 450-600 K indicates the removal of weakly bounded or free [EMIm][BF4].  

 

Figure 6-11. TGA thermograms of (A) A20, and A20-[EMIm][BF4] with a range 

of adsorbed amounts from 1.7% to 26.2%, and DTG thermograms of those 

samples (B). 
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Figure 6-12. 
1
H NMR spectra of confined [EMIm][BF4] inside ACF-A20 with a 

range of adsorbed amount measured at 298 K. 

Figure 6-12 shows the 
1
H NMR spectra of confined [EMIm][BF4] inside ACF-A20 

with a range of adsorbed amount 1.7% - 26.2% (by the weight loss of TGA 

measurement). Compares the 
1
H NMR spectrum of [EMIm][BF4] (see fig. 6-2), there 

is only one single peak centered at around 1ppm for the lowest adsorbed sample A20-

1.7% indicates there are quite a few of water exist in the pores or on outside surface of 

ACF. When more [EMIm][BF4] was adsorbed, there are some small peaks appear in a 

range of -10 - 0 ppm as a shoulder of the main peak. The intensity of these small 

peaks increases with increasing the amount of adsorbed [EMIm][BF4], indicates the 

signals of this region (-10 - 0 ppm) are attributed to the confined [EMIm][BF4]. This 

result is corresponding to the DTG analysis. 
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Figure 6-13. 
1
H NMR spectra (the smooth one) and the one from diffusion 

measurement (noisy one) (A), the attenuation curves (B) for A20-26.2%, and 
1
H 

NMR spectra (C), the attenuation curves (D) for A20-23.2%. 

  Two samples of confined [EMIm][BF4] were measured to understand the effect of 

the adsorbed amount on the dynamic property. In figure 6-13, left side shows the 
1
H 

NMR spectra (smooth line) and the singles from the diffusion measurements of (A) 

A20-26.2%, and (C) A20-23.3%; the right side shows the attenuation curves of (B) 

A20-26.2%, and (D) A20-23.3%. The detailed measurement set-ups are given in 

Table 6-6. Both of the samples show a similar attenuation curve contents two 

components. The faster one is observed at a scale of 10
-11

 m
2
 s

-1
, and the slower one is 

observed at 10
-12

 m
2
 s

-1
. Compare with the bulk [EMIm][BF4], we can consider the 

faster one is attributed to the confined water or free [EMIm][BF4] because it is very 

close to the value of the bulk [EMIm][BF4], and the slower one is attributed to the 
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confined [EMIm][BF4] inside ACF-A20. It’s also can be seen that, the diffusion 

coefficient increases with increasing the amount of adsorbed [EMIm][BF4] indicates 

the confined ILs moves faster with a higher adsorption or higher pore filling. 

Table 6-6. Parameters of the diffusion measurement 

Sample name= A20-26.2% A20-23.2% 

GRADIENT PULSE DURATION (delta) (ms)= 1 1 

DIFFUSION TIME (DELTA) (ms))= 60 60 

DELAY BETWEEN THE 2 FIRST PULSES (tau)= 2.545 2.545 

REPETITION TIME (D1) (ms)= 1000 1000 

MAXXIMUN GRADIENT VALUE [G/cm]= 1038.32 1038.32 

GRADIENT START VALUE [G/cm]= 6.43 6.43 

NUMBER OF GRADIENT STEPS= 16 16 

NUMBER OF SCANS= 4000 4000 

Td= 512 512 

rg= 4096 8192 

sw= 50 50 

6.3.2.3. Effect of Slit Pore Size of ACF 

  In this section, slit pore size effect was studied perform on two adsorbents with 

different slit pore size (1.1 nm for A20, 1.0 nm for A15). The amounts of confined 

[EMIm][BF4] were determined by TGA measurement, 23.2% for confined 

[EMIm][BF4] in A20 and 22.5% in A15 (by weight loss). The samples are named as 

A20-23.2%, A15-22.5% and A10-22.5%, respectively, and the amount of the 

confined [EMIm][BF4] almost the same (as shown in figure 6-14A). From the DTG 

curve we observed that sample A15-22.5% and A10-22.5% only show the strongly 

bonded [EMIm][BF4]. That is because only micropores existed in A15 and A10 

makes those samples have a very high pore loading at the weight loss of 22.5%.  
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Figure 6-14. TGA thermograms of the confined [EMIm][BF4] and DTG 

thermograms of those samples (B). 

 

Figure 6-15. 1H NMR spectra of confined [EMIm][BF4] (A), and attenuation 

curves of A20-23.2% (B), and A15-22.5% (C). 
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  In this section, we aim to study the pore size effect on the confined [EMIm][BF4]. 

Figure 6-15 shows the diffusion results of [EMIm][BF4] confined in two sizes of slit-

pores (1.1 nm for A20 and 1.0 nm fore A15). Both the two samples show a similar 

attenuation curve contents two components. The faster one is observed at a scale of 

10
-11

 m
2
 s

-1
, and the slower one is observed at 10

-12
 m

2
 s

-1
 for sample A20-23.2% and 

10
-13

 m
2
 s

-1
 for sample A15-22.5%. As we described in the last section, the faster one 

is attributed to the confined water or free [EMIm][BF4], and the slower one is 

attributed to the confined [EMIm][BF4] inside nanopores. The diffusion coefficient 

due from A20-23.5% was observed three times faster than A15-22.5%. This may be 

caused by the different structure of confined [EMIm][BF4] in 1.1 nm nanopores 

compares with the 1.0 nm nanopores. The structure of confined [EMIm][BF4] in 1.0 

nm pores can be consider as a single file distribution (as shown in figure 6-16), while 

in 1.1 nm pores, this changes to zigzag distribution of cations and similarly for anions. 

 

Figure 6-16. Images of the confined [EMIm][BF4] structure in A20 (left) and A15 

(right) with different slit-pore size. 
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6.4. Conclusions 

We studied the effects of the amount of confined [EMIm][BF4], slit pore size of 

ACF, and the diffusion time of [EMIm][BF4] on structural and dynamical properties 

of the confined IL [EMIm][BF4]. Our results can be summarized as followers, the 

increase of the diffusion coefficients D by increasing the amount of confined 

[EMIm][BF4] caused by the higher adsorption which make the structure of confined 

[EMIm][BF4] certainly close to the liquid-like structure as well as confined in larger 

pores. D also increase with decreasing diffusion time Δ, that is caused by the 

different dynamic state of confined ILs molecules in nanospace such as adsorbed 

orientation, and adsorbed condition (completed, close or sequestered attached). All 

of the results indicate that variables such as pore size, pore loading, and pore 

morphology have a profound influence on the structural and dynamical properties of 

the confined [EMIm][BF4].  
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General Conclusions 

 

In this work, the electronic property of single-walled carbon nanotubes (SWCNTs) 

was studied by encapsulation the guess molecules or ions. The electronic structure of 

modified SWCNTs was examined by means of absorption spectroscopy, Raman 

spectroscopy, high resolution electron microscopy (HR-TEM) with high sensitivity, 

porosity analysis methods.  

 The diffusion behavior of ionic liquids in nanospace of activated carbon fibers was 

also investigated. The examination was carried out by an pulsed-field gradient-nuclear 

magnetic resonance (PFG-NMR) method. 

In chapter 4, a study of electronically modified SWCNT with hexaiodobenzen (HIB) 

was carried out to understand the charge transfer interaction between the wall of the 

SWCNTs and adsorbed molecules. The TEM image shows the adsorbed molecules 

almost exist in the internal of SWCNTs. The disappearance of the absorption signals 

and the chemical shift Raman and XPS peaks indicate the existence of week charge 

transfer between SWCNT and adsorbed HIB molecules. 

In chapter 5, the electrochemical property of SWCNTs-coated PET film is studied 

by cyclic voltammetry and alternating current (AC) impendence methods. As the 

results of cyclic voltammetry, a pair of well-defined redox waves of I3
-
/I

-
 is obtained. 

The peak-to-peak separation increases with increasing scan rate, indicating a quasi-

reversible process likely as the result of both the slow electron transfer at the SWCNT 

surface and the slow diffusion through the narrow pore. It is also found that both the 

anodic and cathodic peak currents show a linear dependence with the square root of 

scan rates. Such behavior appears in a quiescent solution in case of diffusion of an 

ionic species in the vicinity of the electrode surface, which defines the rate of the 

reaction. In the case of AC impendence, we have successfully realized the application 

of spray coated SWCNTs on PET substrate as an electrodes for tri-iodide reduction in 

DSSCs. The charge transfer resistance of SWCNT-PET electrode in I3
-
/I

- 
redox couple 

electrolyte can be controlled by changing SWCNTs loading.  
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In chapter 6 reports the results of PFG-NMR diffusion study of imidazolium-based 

ionic liquids and the structure and dynamic properties of the IL [EMIm][BF4] 

confined inside a nanoporous carbon materials, ACF. Our results indicate that 

variables such as pore size, pore loading, and pore morphology have a profound 

influence on the structural and dynamical properties of confined ILs. 
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