
千葉大学学位申請論文 

 

 

 

Depressive-like behavior in adrenocorticotropic hormone-treated rats blocked by 

memantine 

（副腎皮質刺激ホルモン処置ラットにおけるうつ様行動に対するメマンチンの阻害

作用） 

 

 

 

 

 

 

 

 

千葉大学大学院医学薬学府 

環境健康科学専攻 神経科学 

（主任 橋本 謙二 教授） 

鴇田 兼一 

 

 



 

Table of contents 

 

Abstract ..................................................................................................................................... 1 

Abbreviation list: ...................................................................................................................... 2 

1. Introduction .......................................................................................................................... 3 

2. Materials and methods......................................................................................................... 7 

2.1. Animals ............................................................................................................................... 7 

2.2. Drugs ................................................................................................................................... 7 

2.3. Measurement of amino acids in brain regions.................................................................. 7 

2.4. Forced swimming test ......................................................................................................... 9 

2.5. Locomotor activity ............................................................................................................ 10 

2.6. Statistical analysis ............................................................................................................ 10 

3. Results ................................................................................................................................. 11 

4. Discussion ............................................................................................................................ 16 

Index ........................................................................................................................................ 24 

Acknowledgments ................................................................................................................... 25 

Reference ................................................................................................................................. 26 

 

 



1 

 

Abstract 

Hyperactivity of the hypothalamic pituitary-adrenal (HPA) axis plays a role in the 

pathophysiology of major depressive disorder (MDD). Recent studies suggest the role of the 

glutamatergic system in the pathophysiology of MDD, and N-methyl-D-aspartate (NMDA) 

receptor antagonists have shown antidepressant effects in both preclinical and clinical studies. 

However, little is known about the role of adrenocorticotropic hormone (ACTH) specifically 

in the glutamatergic response to HPA axis activation. Glutamate is an NMDA receptor agonist, 

and glycine and D-serine act as co-agonists. Here, we measured brain concentrations of these 

amino acids in rats given repeated administration of ACTH (100 μg/rat/day, sc, for 14 days). 

Further, we also evaluated behavioral effects of ketamine and memantine, non-competitive 

NMDA antagonists, on immobility time in the forced swimming test and on locomotor 

activity in ACTH-treated rats. Compared with control rats, glutamine, glycine, L-serine, and 

D-serine levels were increased in the hippocampus of ACTH-treated rats; glutamate, 

glutamine, glycine, L-serine, and D-serine were increased in the cerebellum; and glutamine and 

glycine were increased in the frontal cortex and striatum, all with statistical significance. 

Remarkably, these increases in agonists and co-agonists might have lead to the augmentation 

of NMDA receptor activity. ACTH treatment increased immobility time in the forced 

swimming test and decreased locomotor activity in rats. Ketamine (20 mg/kg, ip) did not 

show any effects in these behavioral tests in ACTH-treated rats. On the contrary, memantine 

(10 mg/kg, ip) significantly decreased immobility time in the forced swimming test and 

increased locomotor activity in ACTH-treated rats. These results suggest that depressive-like 

behaviors by chronic ACTH treatment could be blocked by memantine but not ketamine. 
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Abbreviation list: 

MDD, Major depressive disorder; HPA, hypothalamic pituitary-adrenal; CRH, corticotrophin 

releasing hormone; ACTH, adrenocorticotropic hormone; 5-HT, 5-hydroxytryptamine; CNS, 

central nervous system; EAATs, excitatory amino acid transporters; NMDA, 

N-methyl-D-aspartate; TFA, trifluoroacetic acid; HPLC, high performance liquid 

chromatography; ANOVA, one way analysis of variance; GFAP, Glial fibrillary acidic protein; 

TRH, thyrotropin-releasing hormone; WKY, Wistar Kyoto; SD, Sprague-Dawley; BN, 

Brown-Norway; MRI, Magnetic resonance imaging; SSRI, selective serotonin reuptake 

inhibitor. 
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1. Introduction 

Major depressive disorder (MDD), also called major depression, is a chronic recurring 

illness (Kessler and Wang, 2008, Lopez and Mathers, 2006), between one- and two-thirds of 

patients do not respond to the first antidepressant prescribed, and treatment-resistant 

depression represents an area of substantial unmet medical need (Little, 2009, Shelton et al., 

2010). One factor thought to play a role in the symptoms of depression is environmental 

stress-induced hyperactivity of the hypothalamic pituitary-adrenal (HPA) axis (Gillespie and 

Nemeroff, 2005, Mello et al., 2003, Swaab et al., 2005). Stress initiates the release of 

corticotropin-releasing hormone (CRH), followed by that of adrenocorticotropic hormone 

(ACTH), and induces changes in the serotonergic system which involve an increase in the 

expression of 5-hydroxytryptamine (5-HT) 2A receptors (Arango et al., 1990, Arora and 

Meltzer, 1989, Leonard, 2005, Mann et al., 1986, Pandey et al., 2002). Chronic ACTH 

treatment increases the expression of 5-HT2A receptor mRNA in the frontal cortex in rats 

(Kitamura et al., 2008). Moreover, chronic treatment with ACTH disturbs the antidepressant 

effects of the tricyclic antidepressants 

3-(5,6-dihydrobenzo[b][1]benzazepin-11-yl)-N,N-dimethylpropan-1-amine (imipramine) and 

3-(5,6-dihydrobenzo[b][1]benzazepin-11-yl)-N-methylpropan-1-amine (desipramine) 

(Kitamura et al., 2002). ACTH-treated rats might exhibit a severe depressive state, in which 

the response to tricyclic antidepressants is impaired. 
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L-glutamic acid (glutamate) is accepted as the major excitatory neurotransmitter in the 

central nervous system (CNS), and glutamine synthesis from glutamate and ammonia occurs 

Fig. 1. Major functional components for glutamatergic neurons and potential targets 

of glutamatergic agents exerting antidepressant-like actions. 
Glutaminase hydrolyzes glutamine to glutamate and ammonia in presynaptic neurons. 

Glutamate is released into the synaptic cleft and stimulates glutamate receptors (kainate 

receptors, NMDA receptors, AMPA receptors, and mGluRs) in postsynapses, presynapses, 

and glial cells. Glutamate is taken up by EAATs on glial cells. Glutamine synthetase 

converts glutamate and ammonia to glutamine, which is transported to presynaptic 

neurons. Glutamatergic agents are considered to act on the numbered targets in the Figure 

as follows targets: (1) NMDA receptor antagonists (ketamine, NR2B subunit antagonists, 

memantine, magnesium, and zinc); (2) positive modulators of AMPA; (3) group I mGluR 

antagonists, group II mGluR antagonists and agonists, and group III mGluR agonists; (4) 

EAAT2 enhancer (ceftriaxone); (5) possible indirect NMDA receptor modulator 

(minocycline); and (6) possible inhibitor of glutamate release, antagonist of NMDA, 

AMPA, and kainate receptors, and potentiator of glutamate uptake (riluzole). AMPA R, 

α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor; NMDA R, 

N-methyl-D-aspartate receptor; mGluR, metabotropic glutamate receptor; EAAT, 

excitatory amino acid transporter; Gln, glutamine; Glu, glutamate; BDNF, brain-derived 

neurotrophic factor; Ca2+, calcium ion. 
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exclusively in glial cells (Hashimoto, 2009, 2011, Tokita et al., 2012) (Fig. 1). Glutamine 

plays major roles in nitrogen and carbon homeostasis, and in the detoxification of ammonia, 

in addition to acting as a precursor for the synthesis of glutamate in specialized excitatory 

neurons (Hashimoto, 2009, 2011, Tokita et al., 2012) (Fig. 1). Glutamate released from 

presynaptic neurons can interact with postsynaptic glutamate receptors, including 

N-methyl-D-aspartate (NMDA) receptors. The released glutamate is taken up by the 

surrounding glial cells via excitatory amino acid transporters (EAATs), converted to 

glutamine, transported back to the presynaptic neurons, and reconverted to glutamate 

(Hashimoto, 2009, 2011, Tokita et al., 2012) (Fig. 1). There is growing evidence that 

glutamate levels are altered in blood, cerebrospinal fluid, and brain of patients with MDD 

(Auer et al., 2000, Block et al., 2009, Hashimoto, 2009, 2011, Hashimoto et al., 2007, Hasler 

et al., 2007, Sanacora et al., 2004, Tokita et al., 2012). Glutamate released from presynaptic 

neurons can interact with postsynaptic glutamate receptors such as NMDA receptors. The 

NMDA receptor has modulatory sites on its subunits (Hashimoto et al., 2005b, Martineau et 

al., 2006). Glycine is converted to L-serine by serine hydroxymethyltransferase, and L-serine 

is converted to D-serine by serine racemase (Hashimoto et al., 2005b, Martineau et al., 2006). 

Endogenous glycine and D-serine act as co-agonists on the glycine binding site on the NMDA 

receptor and co-activate NMDA receptors along with glutamate (Chen et al., 2003, Hashimoto 

et al., 2005b, Martineau et al., 2006, Yang and Svensson, 2008). The change of glycine and 

D-serine levels in plasma and brain of patients with MDD has been investigated in a few 

studies, but no unified view has been obtained (Hashimoto et al., 2007, Mitani et al., 2006, 

Sumiyoshi et al., 2004). 

Several clinical studies have reported that NMDA receptor antagonists showed rapid 

and/or sustained antidepressant effects in patients with treatment-resistant MDD (Berman et 

al., 2000, Preskorn et al., 2008, Zarate et al., 2006). In preclinical animal models, NMDA 



6 

 

receptor antagonists have been shown to exert antidepressant-like effects (Eby and Eby, 2010, 

Machado-Vieira et al., 2009, Nowak et al., 2005, Paul and Skolnick, 2003, Skolnick et al., 

2009, Szewczyk et al., 2008, Tokita et al., 2012). A non-competitive NMDA receptor 

antagonist, 2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one (ketamine), decreased the 

immobility time in the forced swim test in rats (Engin et al., 2009; Garcia et al., 2008a; Garcia 

et al., 2008b; Li et al., 2010; Yilmaz et al., 2002) and mice (da Silva et al., 2010; Maeng et al., 

2008; Rosa et al., 2003). Another non-competitive NMDA receptor antagonist, 

3,5-dimethyladamantan-1-amine (memantine), also decreased immobility time in the forced 

swimming test, which is widely used for the screening of antidepressants, in rats and mice 

(Almeida et al., 2006, Moryl et al., 1993, Reus et al., 2010, Rogoz et al., 2002). Although 

confirmation of the antidepressant effects of NMDA receptor antagonists requires further 

investigation, direct targeting of NMDA receptor complexes may bring about rapid and 

relatively sustained antidepressant effects (Zarate et al., 2010, Zarate et al., 2006). 

Here, we determined the concentrations of amino acids (glutamate, glutamine, glycine, 

L-serine, and D-serine) in the frontal cortex, hippocampus, striatum, and cerebellum of rats 

receiving repeated administration of ACTH. Moreover, we also evaluated behavioral effects 

of ketamine and memantine on immobility time in the forced swimming test and on 

locomotor activity in ACTH-treated rats. 
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2. Materials and methods 

2.1. Animals 

Male Wistar rats (Japan SLC, Inc., Hamamatsu, Shizuoka, Japan) were used for all 

experiments at age 9 weeks. The numbers of animals per group were set to have the sufficient 

statistical power of 80%. All animals were given food and water ad libitum. They were 

housed in an air-conditioned room at a temperature of 23±2 °C and humidity of 55±10% 

under a 12:12-h light/dark cycle, with lights on at 7:30 a.m. Rats were acclimated to the 

environment for 1 week before the experiments began. All animal experimental procedures 

were approved by the Institutional Animal Care and Use Committee of Astellas Pharma Inc. 

The Tsukuba Research Center of Astellas Pharma Inc. has been awarded Accreditation Status 

by AAALAC International. 

2.2. Drugs 

Synthesized adrenocorticotropic hormone (Cortrosyn® Z, tetracosactide acetate, ACTH 

(1-24)) was purchased as a suspension in vials from Daiichi Sankyo Co., Ltd, Tokyo, Japan. 

Imipramine hydrochloride was purchased from Sigma-Aldrich Co. LLC., St. Louis, MO, 

USA. Ketamine hydrochloride (ketalar®) was purchased from Daiichi Sankyo Co., Ltd, 

Tokyo, Japan. Memantine hydrochloride was purchased from Tocris Bioscience, Bristol, UK. 

Study rats received subcutaneous injection of ACTH suspension at 100 μg in a volume of 200 

μL per day for 14 days. Control rats received saline instead of ACTH. Imipramine, ketamine, 

and memantine were dissolved in saline and intraperitoneally injected at 5 mL/kg body weight. 

Imipramine was administered at 15 mg/kg, ketamine was administered at 20 mg/kg, and 

memantine was administered at 10 mg/kg. 

2.3. Measurement of amino acids in brain regions 

One day after the last administration of ACTH, rats were anaesthetized with 2% 

isoflurane and then euthanized by exsanguination. The brain was removed and the frontal 
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cortex, hippocampus, striatum, and cerebellum were dissected on ice. Tissues were frozen in 

liquid nitrogen and stored at -80 °C until measurement. 

Tissues were homogenized in 1.5 mL of methanol (HPLC grade) on ice. The 

homogenates were centrifuged at 3000g for 6 min at 4 °C, and 20 μL of supernatant was 

evaporated to dryness at 40 °C. To the residue, 20 μL of H2O (HPLC grade), 20 μL of 0.1 M 

borate buffer (pH 8.0), and 60 μL of 50 mM 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F; 

Tokyo Kasei Kogyo Co., Ltd., Tokyo, Japan) in CH3CN (HPLC grade) were added. The 

reaction mixture was then heated to 60 °C for 2 min, and immediately supplemented with 100 

μL of H2O/acetonitrile (90/10) containing 0.1% trifluoroacetic acid (TFA) to stop the reaction. 

Total D- and L-serine levels were measured using a column-switching high performance 

liquid chromatography (HPLC) system (Shimadzu Corporation, Kyoto, Japan), as previously 

reported (Fukushima et al., 2004, Hashimoto et al., 2007, Horio et al., 2011, Yamada et al., 

2005). Glycine, glutamine, and glutamate were measured using an HPLC system with 

fluorescence detection as previously reported (Hashimoto et al., 2005a, Horio et al., 2011). A 

20 μL aliquot of the resulting solution was injected into the HPLC system. A reversed-phase 

ODS column (TSKgel ODS-80Ts (Tosoh Corporation, Tokyo, Japan) as Column 1) was used 

for the separation and quantification of total D- and L-serine, and the gradient elution of the 

mobile phase was maintained at a constant flow rate of 0.8 mL/min. Mobile phase 1a 

consisted of H2O/acetonitrile (90/10) containing 0.1% TFA, and phases 1b and 1c of H2O/ 

acetonitrile (10/90) containing 0.1% TFA and acetonitrile, respectively. The time program for 

gradient elution was as follows: 0–25 min 1a:1b:1c =92:8:0, 25–25.1 min linear gradient from 

8% 1b to 100% 1b, 25.1–35 min 1a:1b:1c =0:100:0, 35–35.1 min linear gradient from 0% 1c 

to 100% 1c, 35.1–40 min 1a:1b:1c =0:0:100, 40–40.1 min linear gradient from 0% 1b to 8% 

1b, and 40.1–60 min 1a:1b:1c =92:8:0. The chiral column (Column 2) used for the separation 

and quantification of D- and L-serine with NBD-F consisted of two Sumichiral OA-2500 



9 

 

columns (S) (Sumika Chemical Analysis Service Ltd., Osaka, Japan), which were connected 

in tandem. The mobile phase was 15 mM citric acid in methanol. Flow rate was isocratically 

pumped at 1.0 mL/min, and column temperature was maintained at 35 °C for all columns. 

Fluorescence detection was performed at 530 nm with an excitation wavelength of 470 nm. 

Glycine, glutamine, and glutamate were determined using a reversed-phase ODS column 

(TSKgel ODS-80Ts, Tosoh Corporation, Tokyo, Japan). The gradient elution of the mobile 

phase was kept at a constant flow rate of 0.8 mL/min. The time program for gradient elution 

was programmed as follows: 0–50.5 min 1a:1b:1c =95:5:0, 50.5–55.5 min 1a:1b:1c =0:100:0, 

and 55.5–57 min, 1a:1b:1c =0:0:100. All column temperatures were maintained at 35 °C. 

Fluorescence detection was performed at 530 nm with an excitation wavelength of 470 nm. 

2.4. Forced swimming test 

The forced swimming test was performed according to Porsolt’s method (Castagne et 

al., 2011). A rat was placed in an opaque cylinder (20 cm diameter, 40 cm height) containing 

water (25 cm height, at 24±1 ºC) equipped with a coil current detector near the water surface 

around the cylinder (MicroAct®, Neuroscience, Inc., Tokyo, Japan). The coil current 

generated by the movement of magnets attached to both forepaws of a rat was detected as 

activity of the rat in seeking to escape from the water in the cylinder. The coil currents were 

sampled and analyzed according to the following parameters. The range of amplified and 

transformed voltage was set from 0.05 V to 2.5 V. The range of frequency was set from 7 Hz 

to 15 Hz. The criterion for the splitting of events was set to over 0.2 s. The criterion of a valid 

event was set to over 0.35 s. In the pre-test session, rats were forced to swim for 15 min one 

day after the last administration of ACTH in the case of repeatedly ACTH-treated rats. 

Imipramine, ketamine, and memantine were administered at 15 min after the end of this 

swimming. In the test session, imipramine and ketamine were administered 5 h and 30 min 

before the test, or memantine was administered 2 h before the test. Rats were forced to swim 
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at 24.5 h after the pre-test for 5 min. Immobility time in the test session was obtained as the 

total time (300 s) minus the time in which the rat sought to escape from the water. 

2.5. Locomotor activity 

Activity of a rat was measured in a plastic cage (20.5 cm width, 37.5 cm depth, 20.3 cm 

height) equipped with a passive infrared sensor placed on the board over it (Supermex, 

Muromachi Kikai Co., Ltd., Tokyo, Japan). The movement of the rat was counted with pulse 

data obtained from the sensor as locomotor activity. Rats were evaluated one day after the last 

administration of ACTH. They were placed in plastic cages and their activities were measured 

for 30 min during exposure to the novel environment, beginning 30 min after the 

administration of imipramine and ketamine, or 2 h after that of memantine. 

2.6. Statistical analysis 

All results are expressed as the mean ± SE. Statistical analysis was conducted using 

two-way analysis of variance (ANOVA) followed by post hoc Bonferroni's multiple 

comparison test for evaluation of the effect of imipramine, ketamine, and memantine with or 

without ACTH treatment on immobility time in the forced swimming test and on locomotor 

activity. Student’s t test was used to evaluate the effect of ACTH on levels of amino acids in 

brain regions. P<0.05 was considered statistically significant. All statistical analyses were 

conducted using Prism 5 (GraphPad Software, Inc., La Jolla, CA, USA) and the PASW 

Statitics 20 (formerly SPSS Statistics; SPSS, Tokyo, Japan). 
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3. Results 

Amino acid levels were determined in brain regions of ACTH-treated rats (Table 1). Levels of 

glutamine (t=8.887, P<0.0001), glycine (t=6.194, P=0.0001), L-serine (t=4.374, P=0.0014), 

and D-serine (t=2.585, P=0.0272) were increased in the hippocampus of ACTH-treated rats 

compared to control rats (Table 1). In the cerebellum, glutamate (t=4.687, P=0.0009), 

glutamine (t=6.606, P<0.0001), glycine (t=5.967, P=0.0001), L-serine (t=8.802, P<0.0001), 

and D-serine (t=6.326, P<0.0001) were increased (Table 1). In addition, glutamine and glycine 

were increased in the frontal cortex and striatum (glutamine in frontal cortex: t=5.599, 

P=0.0002, glycine in the frontal cortex: t=4.042, P=0.0024, glutamine in the striatum: t=5.631, 

P=0.0002, glycine in striatum: t=3.604, P=0.0048) (Table 1). Glutamate/glutamine ratios were 

decreased in the frontal cortex (t=3.870, P=0.0031), hippocampus (t=8.415, P<0.0001), and 

striatum (t=6.453, P<0.0001) of ACTH-treated rats (Table 1).  
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Table 1.  Effect of repeated ACTH administration (100 μg/rat/day, sc, 14 days) on levels of glutamate, glutamine, glycine, L-serine, and D-serine  

(nmol/ mg tissue) in the frontal cortex, hippocampus, striatum, and cerebellum in rats 

   Glutamate  Glutamine  Glycine  L-serine  D-serine  Glutamate 

             /Glutamine (ratio) 

Frontal cortex 

 Control  8.922 ± 0.556 3.784 ± 0.227 0.557 ± 0.034 0.5128 ± 0.0273 0.2031 ± 0.0112 2.362 ± 0.077 

 ACTH  10.186 ± 0.169 5.222 ± 0.121*** 0.704 ± 0.014** 0.5675 ± 0.0072 0.2055 ± 0.0026 1.958 ± 0.070** 

Hippocampus 

 Control  6.999 ± 0.070 3.429 ± 0.048 0.556 ± 0.008 0.4910 ± 0.0115 0.1806 ± 0.0055 2.043 ± 0.034 

 ACTH  7.235 ± 0.114 4.349 ± 0.092*** 0.647 ± 0.012*** 0.5493 ± 0.0068** 0.1958 ± 0.0020* 1.666 ± 0.029*** 

Striatum 

 Control  7.391 ± 0.155 4.245 ± 0.164 0.481 ± 0.015 0.5100 ± 0.0152 0.1961 ± 0.0051 1.749 ± 0.046 

 ACTH  7.279 ± 0.149 5.313 ± 0.095*** 0.567 ± 0.018** 0.5480 ± 0.0164 0.1963 ± 0.0060 1.372 ± 0.036*** 

Cerebellum 

 Control  5.296 ± 0.096 3.157 ± 0.058 0.406 ± 0.009 0.3723 ± 0.0093 0.0039 ± 0.0000 1.678 ± 0.021 

 ACTH  5.837 ± 0.065*** 3.614 ± 0.038*** 0.475 ± 0.007*** 0.4877 ± 0.0093*** 0.0047 ± 0.0001*** 1.617 ± 0.030 

Data are expressed as the mean ± SE. Six animals were used for each group. *p<0.05, **p<0.01, ***p<0.001 compared to control group 

(Student’s t test). ACTH: adrenocorticotropic hormone 
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The effects of imipramine, ketamine, and memantine with or without ACTH treatment 

were evaluated in the forced swimming test. A two-way ANOVA revealed the effect of ACTH 

[F(1, 64)= 89.40; p<0.0001], drugs [F(3, 64)= 26.27; p<0.0001], and interaction between 

drugs and ACTH [F(3, 64)= 6.618; p=0.0006]. Post hoc analysis showed that acute 

imipramine treatment significantly (P<0.0001) decreased immobility time in the control 

groups (Fig. 2). Acute ketamine treatment significantly (P<0.0001) decreased immobility time 

in the control groups (Fig. 2). Acute memantine treatment significantly (P<0.0001) decreased 

immobility time in the control groups (Fig. 2). Repeated ACTH treatment significantly 

(P<0.01) increased immobility time compared to the vehicle control group (Fig. 2). However 

no change was seen with imipramine treatment in the ACTH-treated groups (P>0.05) (Fig. 2). 

No change was also seen with ketamine treatment in the ACTH-treated groups (P>0.05) (Fig. 

2). Memantine treatment significantly (P<0.001) decreased immobility time in the 

ACTH-treated groups (Fig. 2). 
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The effects of imipramine, ketamine, and memantine with or without ACTH treatment 

on locomotor activity were evaluated. A two-way ANOVA revealed no effect of ACTH [F(1, 

88)= 0.2193; p=0.6407] but drugs [F(3, 88)= 22.58; p<0.0001], and interaction between drugs 

and ACTH [F(3, 88)= 26.27; p<0.0001]. Post hoc analysis showed that acute imipramine 

treatment significantly (P<0.0001) decreased locomotor activity in the control groups (Fig. 3). 

Acute ketamine treatment significantly (P<0.0001) decreased locomotor activity in the control 

groups (Fig. 3). Acute memantine treatment significantly (P<0.001) decreased locomotor 

Fig. 2. Effects of imipramine, ketamine, and memantine with or without ACTH 

treatment on immobility time in the forced swimming test in rats 

ACTH (100 μg/rat/day, sc) was injected for 14 days. The following day the forced 

swimming test was performed. Imipramine (15 mg/kg, ip) and ketamine (20 mg/kg, ip) 

were administered 15 min after the end of swimming in the pre-test session, 5 h before the 

test session, and 30 min before the test session. Memantine (10 mg/kg, ip) was 

administered 15 min after the end of swimming in the pre-test session and 2 h before the 

test session. Data are expressed as the mean ± SE. Eighteen animals were used for each 

vehicle group in control and ACTH treatment, and six animals were used for each other 

group. **p<0.01, ***p<0.001; statistically significant by Two-way ANOVA followed by 

post-hoc test. NS: not significant. ACTH: adrenocorticotropic hormone. Veh: vehicle. Imi: 

imipramine. Ket: ketamine. Mem: memantine. 
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activity in the control groups (Fig. 3). ACTH treatment significantly (P<0.0001) decreased 

locomotor activity compared to the vehicle control group (Fig. 3). Imipramine treatment 

significantly (P<0.01) decreased locomotor activity in the ACTH-treated groups (Fig. 3). 

However no change was seen with ketamine treatment in the ACTH-treated groups (P>0.05) 

(Fig. 3). Memantine treatment significantly (P<0.0001) increased locomotor activity in the 

ACTH-treated groups (Fig. 3). 

 

  

Fig. 3. Effects of imipramine, ketamine, and memantine with or without ACTH 

treatment on locomotor activity in rats 

ACTH (100 μg/rat/day, sc) was injected for 14 days. The following day locomotor activity 

was measured. Imipramine (15 mg/kg, ip) and ketamine (20 mg/kg, ip) were administered 

30 min before the test. Memantine (10 mg/kg, ip) was administered 2 h before the test. 

Data are expressed as the mean ± SE. Twenty four animals were used for each vehicle 

group in control and ACTH treatment, and eight animals were used for each other group. 

**p<0.01, ***p<0.001; statistically significant by Two-way ANOVA followed by post-hoc 

test. ACTH: adrenocorticotropic hormone. Veh: vehicle. Imi: imipramine. Ket: ketamine. 

Mem: memantine. 
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4. Discussion 

In this study, we found that glutamate levels were increased in the cerebellum of 

ACTH-treated rats, that glycine was increased in the frontal cortex, hippocampus, and 

cerebellum of these rats, and that D-serine was increased in the hippocampus and cerebellum. 

ACTH treatment increased immobility time in the forced swimming test and decreased 

locomotor activity in rats. Ketamine did not show any effects in these behavioral tests in 

ACTH-treated rats. On the contrary, memantine decreased immobility time in the forced 

swimming test and increased locomotor activity in ACTH-treated rats. These findings suggest 

that chronic ACTH treatment might change the glutamatergic response blocked by memantine 

but not ketamine. 

Little is known about the role of ACTH specifically in the glutamatergic response to 

HPA axis activation. A major finding of our present study is that repeated ACTH treatment 

affected amino acid levels in rat brain since these amino acids are known to affect the 

neurotransmission via the NMDA receptor (Hashimoto et al., 2007). Glutamate was increased 

in the cerebellum (Table 1). Glycine was increased in the frontal cortex, hippocampus, 

striatum, and cerebellum of ACTH-treated rats (Table 1). D-serine was increased in the 

hippocampus and cerebellum of rats treated with ACTH (Table 1). These elevations of 

glutamate, glycine, and D-serine are thought to augment the activities of NMDA receptors 

through their agonist or co-agonist activities. The melanocortin receptor subtypes that ACTH 

binds to are rarely expressed in brain (Millington, 2006). Further investigation is necessary to 

clarify the mechanism through that ACTH treatment affected these amino acid levels in brain. 

Glutamine is a precursor for the synthesis of glutamate in specialized excitatory 

neurons (Hashimoto, 2009, Hashimoto et al., 2005b) (Fig. 1). Released glutamate is taken up 

by glia, where it is converted to glutamine by glutamine synthetase, transported back to the 

presynaptic neuron, and reconverted to glutamate by glutaminase (Hashimoto, 2009, 
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Hashimoto et al., 2005b) (Fig. 1). Thus, the glutamate-glutamine cycle plays a role in 

neuron-glia communication in the synapse (Hashimoto, 2009, Hashimoto et al., 2005b) (Fig. 

1). The pathophysiology of MDD likely involves abnormalities in glutamate-glutamine 

cycling in the brain (Hashimoto, 2009, Valentine and Sanacora, 2009). Chronic ACTH 

treatment induced an increase in glutamine and decrease in the ratio of glutamate/glutamine in 

the frontal cortex, hippocampus, and striatum (Table 1). The glutamate-glutamine cycle 

between neurons and glia cells could have been changed by repeated ACTH treatment. 

Especially increasing glutamine level might be caused by some kind of glial change, which 

warrants further investigation about the effect of ACTH treatment on glia. Glial fibrillary 

acidic protein (GFAP), a specific marker for astrocytes, was reduced in cerebellum of patients 

with MDD (Fatemi et al., 2004). The expression levels of glutamine synthetase were 

decreased or unchanged in some brain regions of MDD patients (Beasley et al., 2006, 

Choudary et al., 2005, Karolewicz et al., 2009, Miguel-Hidalgo et al., 2010). The role of glia 

cells in the pathophysiology of MDD should be studied more. 

Repeated treatment with ACTH induced significant increases in immobility time in the 

forced swimming test (Fig. 2). Kitamura and colleagues reported that ACTH treatment for 14 

days did not affect immobility time in the rat forced swimming test (Kitamura et al., 2002). 

The reason for this discrepancy between our present data and Kitamura’s data is unclear, but 

may involve differences in breeding conditions during ACTH treatment or in experimental 

procedures in the forced swimming test. The ACTH-induced increases in immobility time 

might have been at least in part due to decreases in locomotor activity (Fig. 3). Acute 

administration of ACTH dose-dependently decreased locomotor activity in rats pre-treated 

with dexamethasone (Reddy and Kulkarni, 1998). In contrast, intracerebroventricular 

administration of prepro-thyrotropin releasing hormone (TRH) 178-199, a peptide with 

ACTH release-inhibiting properties, induced an increase in locomotor activity in rats 
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(McGivern et al., 1997). Wistar Kyoto (WKY) rats, a line derived from Wistar rats, are a 

genetic animal model that exhibits depressive behaviors (Malkesman and Weller, 2009). 

WKY lines exhibited significantly longer immobility time in the forced swimming test and 

higher levels of plasma ACTH than a control line of Wistar rats (Malkesman et al., 2006). 

Among WKY, Lewis, and Sprague-Dawley (SD) rats, acute immobilization stress-induced 

increase in plasma ACTH was most enhanced in WKY rats (Pardon et al., 2002). This strain 

also exhibited the lowest level of locomotor activity among the three in a novel open-field 

environment (Pardon et al., 2002), and showed reduced locomotor activity in a novel 

environment and high ACTH levels in plasma compared to Brown-Norway (BN) rats 

regardless of age (Tizabi et al., 1992). Furthermore, prepubertal WKY rats exhibited higher 

levels of anxiety behavior, such as freezing behavior, than controls (Malkesman et al., 2005). 

These findings may indicate that low locomotor activity is observed in certain exacerbated 

depressive conditions and connected to disturbance of the HPA axis. Given the difficulty in 

discriminating depressive or anxiety behavior from generalized motor impairment, the present 

results point to the possibility that the chronic activation of the HPA axis induced by repeated 

ACTH treatment produces the depressive-like state and/or motoric change in rats. 

The cerebellum is responsible for motor coordination. All amino acids measured in the 

present study were increased in the cerebellum of rats treated by ACTH (Table 1). Chronic 

ACTH treatment might modify motoric function in the cerebellum. Magnetic resonance 

imaging (MRI) studies reported that structural deficits in the cerebellum were associated with 

depressive symptoms (Escalona et al., 1993, Lin et al., 2012, Liu et al., 2010, Pillay et al., 

1997). Notably, the volume of cerebellum was decreased in the MDD patients who had not 

responded to the treatment with 

N-methyl-3-phenyl-3-[4-(trifluoromethyl)phenoxy]propan-1-amine (fluoxetine), a selective 

serotonin reuptake inhibitor (SSRI) (Pillay et al., 1997). GFAP was reduced in the cerebellum 
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of patients with MDD (Fatemi et al., 2004). Focusing on the role of the cerebellum may 

become important in characterizing the pathophysiology of refractory MDD. 

We evaluated the effects of imipramine on immobility time in the forced swimming test 

and on locomotor activity to confirm that an antidepressant works in our behavioral models. 

In control rats, imipramine decreased immobility time in the forced swimming test (Fig. 2), 

and also decreased locomotor activity (Fig. 3). A number of experiments have shown that 

imipramine decreases locomotor activity in rodents (Diniz et al., 2011, Hughes and Pither, 

1987, Martin et al., 1982, Meltzer and Fox, 1971, Teixeira et al., 2000). At least, the 

imipramine-induced decrease in immobility time did not stem from any increase in locomotor 

activity. Therefore, the decreased immobility time is considered to be due to its antidepressant 

effect. In ACTH-treated rats, imipramine did not show any change in the forced swimming 

test (Fig. 2) while imipramine decreased locomotor activity (Fig. 3). The motoric modification 

by imipramine is thought to have insignificant impact on the immobility time in the forced 

swimming test. Repeated ACTH treatment for 14 days negated the antidepressant effect of 

imipramine, as was also reported by Kitamura and colleagues (Kitamura et al., 2002, 

Kitamura et al., 2008). Acute imipramine treatment reduced immobility time in the forced 

swimming test in BN and SD rats but not in WKY rats (Lahmame et al., 1997). ACTH-treated 

rats appear to resemble WKY rats in some respects, including a poor response to imipramine. 

The levels of amino acids were altered in brain regions of ACTH-treated rats (Table 1). 

However, further exploration is needed to elucidate a link between changing amino acid levels 

and masking the antidepressant effect of imipramine. 

Ketamine decreased the immobility time in the forced swim test in control rats as is the 

case with results in several laboratories (Engin et al., 2009; Garcia et al., 2008a; Garcia et al., 

2008b; Li et al., 2010; Yilmaz et al., 2002) (Fig. 2), and decreased locomotor activity (Fig. 3). 

Ketamine was thought to exert its antidepressant-like effect despite its motoric effects. 
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However, ketamine did not affect immobility time in the forced swimming test in rats after 

chronic ACTH treatment just as imipramine did not (Fig. 2). The antidepressant-like effect of 

ketamine seems to have disappeared like that of imipramine. No effect of ketamine was also 

seen on locomotor activity in ACTH-treated rats although imipramine even show the 

decreasing effect on locomotor activity after ACTH-treatment (Fig. 3). Chronic ACTH 

treatment might strongly inhibit the behavioral effects of ketamine, however the reason is 

unknown. 

Consistent with previous observations (Moryl et al., 1993, Reus et al., 2010, Rogoz et 

al., 2002), we found that memantine decreased immobility time in the forced swimming test 

in control rats (Fig. 2), and decreased locomotor activity (Fig. 3). The motoric effect of 

memantine appears to be limited on immobility time in the forced swimming test in control 

rats. Namely, memantine demonstrated its antidepressant-like effect in control rats as well as 

imipramine did. Additionally, memantine showed the decreasing effect on immobility time in 

the forced swimming test in rats treated with ACTH for 14 days where imipramine did not 

(Fig. 2). However, memantine showed the increasing effect on locomotor activity in 

ACTH-treated rats (Fig. 3). The memantine-induced activity might reflect the decreasing 

effect on immobility time in the forced swimming test. Memantine countered the increase in 

immobility time (Fig. 2) and the decrease in locomotor activity (Fig. 3) induced by 

ACTH-treatment. Remarkably, memantine increased locomotor activity in ACTH-treated rats 

while decreasing it in the control rats (Fig. 3). The likely explanation is that memantine 

improved the motoric disturbance via inhibiting NMDA receptor activation enhanced by 

increase in levels of agonists and co-agonists for NMDA receptors. That is to say, NMDA 

receptors have relevant to the motoric disturbance induced by repeated ACTH treatment. 

Recently, memantine administration showed the increase in locomotor activity in the 

7-methoxy-1-methyl-3,4-dihydro-2H-pyrido[3,4-b]indole (harmaline)-treated rats, which are 
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thought to be a model of transient action tremor with locomotor activity decreased (Iseri et al., 

2011). Furthermore, memantine prevented the harmaline-induced neurodegeneration in the 

cerebellum. Memantine can improve the locomotor deficits via blocking the injury in 

cerebellum. In the cerebellum, both of agonists and co-agonists for NMDA receptors were 

increased (Table 1). These findings indicate that activating NMDA receptors in the cerebellum 

may account for the locomotor deficit in ACTH-treated rats.  

 

 

 

 

Two NMDA receptor antagonists acted differently in ACTH-treated rats in spite of the 

same effect in control rats. Memantine counteracted the effects of ACTH in the forced 

swimming test and locomotor activity (Table 2). Conversely, the effects of ketamine were 

cancelled by ACTH treatment (Table 2). Memantine and ketamine can bind at the deep site of 

NMDA receptors however memantine, but not ketamine, can bind at the superficial site 

(Kotermanski et al., 2009). Memantine is a strong voltage-dependent antagonist but ketamine 

is a less voltage-dependent one (Gilling et al., 2009). A randomized, double-blind, 

 

Control rats ACTH-treated rats 

Immobility time Activity Immobility time Activity 

ACTH n/a n/a ↑ ↓ 

Imipramine ↓ ↓ ↔ ↓ 

Ketamine ↓ ↓ ↔ ↔ 

Memantine ↓ ↓ ↓ ↑ 

n/a: not applicable. 

Table 2.  Summary of behavioral effects of imipramine, ketamine, and memantine 

with or without ACTH treatment 
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placebo-controlled, three-way crossover trial in healthy male volunteers showed that ketamine 

significantly increased serum prolactin and cortisol levels, whereas memantine and placebo 

did not affect hormone levels (Hergovich et al., 2001). Cold water swim stress reduced the 

antiseizure efficacies of MK-801 and memantine without affecting phencyclidine and 

ketamine in mice (Deutsch et al., 1997). Adaptive changes in the NMDA receptor complex is 

considered to occur in response to exposure to stress, however stress does not result in a 

simple reduction in the number of activated or open channels, but rather may alter their size or 

charge characteristics (Deutsch et al., 1997). Thus, memantine and ketamine have different 

properties about the binding with NMDA receptors, effects on hormone levels, and antiseizure 

effects in a stressful situation. In the present study, ACTH treatment might plasticize NMDA 

receptors, to which memantine but not ketamine could interact. However, further investigation 

is necessary. 

The cerebellum regulates mood and emotion other than balance and motor control 

(Baldacara et al., 2008, Konarski et al., 2005, Schmahmann et al., 2007). Co-agonists were 

also increased in hippocampus and frontal cortex of ACTH-treated rats (Table 1). It is of 

interest whether ACTH-treated rats have affective abnormality. We have tried to evaluate 

anhedonia-like behavior with the sucrose preference test in ACTH-treated rats. However, we 

failed to measure sucrose preference because ACTH-treated rats showed increase in the total 

consumption of water and sucrose solution (data not shown). Other good methods would be 

demanded to evaluate affective behavior in ACTH-treated rats. Importantly, the low response 

rate to existing antidepressants is an area of unmet medical need (Little, 2009, Shelton et al., 

2010). Given the interest in functional proteins related to glutamate signal transduction as 

potential targets for a new generation of antidepressants (Hashimoto, 2009, 2011, Tokita et al., 

2012), ACTH-treated animals may be useful to assess glutamatergic effects of other types of 

compounds with possibly higher efficacy than existing antidepressants. 
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In summary, this study showed that glutamate levels were increased in the cerebellum 

of ACTH-treated rats, that glycine was increased in the frontal cortex, hippocampus, and 

cerebellum of these rats, and that D-serine was increased in the hippocampus and cerebellum. 

ACTH treatment increased immobility time in the forced swimming test and decreased 

locomotor activity in rats. Ketamine did not show any effects in these behavioral tests in 

ACTH-treated rats. On the contrary, memantine decreased immobility time in the forced 

swimming test and increased locomotor activity in ACTH-treated rats. Taken together, these 

findings suggest that chronic ACTH treatment alters the glutamatergic neurotransmission in 

rat brain, and that depressive-behaviors after chronic ACTH treatment could be blocked by 

memantine but not ketamine. 
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