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Abstract

Magnetic refrigeration is considered to be a future technology which does not use
a fluorocarbon working fluid and has an energy saving potential. Although the im-
provement of magnetic refrigeration has been realized, there are no commercial devices
available. The discovery of big MCE material is required. Meanwhile, the cooling
system design, especially the important part regenerator, should be optimized. This
thesis is focusing on the optimization of regenerator from geometry design and multi-
layered regenerator ways. One and two dimensional models have been developed. The
created models have been used to analysis the regenerator. Three most popular regen-
erators have been compared with Entropy generation minimization (EGM) method
which is used to optimize the real devices and processes. The results present that flat
plate regenerator has the best performance in the three regenerators. However, it is
still required to be improved in the future for the limited heat transfer surface. The
analysis of multi-layered regenerator presents a problem that even same total MCE
generated by magnetic material will lead to a different performance for the different
selection and arrangement of magnetic material. The most popular multi-layered re-
generator is Iso-entropy change regenerator. However, according to the theoretical
speculation, an idea entropy curve regenerator exists. A single material regenerator,
Iso-entropy change regenerator and idea entropy curve regenerator have been com-
pared. The results show that the idea entropy curve regenerator has a potential to be
the most efficient one. The concept of idea entropy curve regenerator will be analyzed
experimentally.
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Chapter 1

Introduction

Refrigeration is very important for our life and health. Applications including re-

frigerator, air conditioning, cooling system for vehicle, and plant fridges etc. Based

on the conventional refrigeration technology, 30 % electricity has been consumed.

While, magnetic refrigeration (MR) is considered to be a future technology for its en-

ergy saving potential. The efficiency of magnetic refrigeration can theoretically reach

30%-60% of Carnot cycle, whereas the efficiency of vapor compression refrigeration is

only 5%-10% of Carnot cycle [24]. MR makes use of the magnetocaloric effect (MCE).

It is an environmentally attractive alternative to vapor compression refrigeration as it

does not use a fluorocarbon working fluid. Therefore, it exhibits no Ozone Depletion

Potential (ODP). Also Global Warming Potential (GWP) is usually very small for a

definition of these broadly accepted measures [16]. Moreover, the magnetic refrigera-

tion system can be design to be more compact, because of the higher entropy density

of magnetic material compared with that of refrigerant gas.

1.1 Background

In 1881, Magnetocaloric effect (MCE) discovered by Warburg in iron. Debye (1926) [6]

and Giauque (1927) [9] proposed to use reversible temperature change in paramag-

netic salts to obtain low temperatures by adiabatic demagnetization) [10]. The first

experiments to realize this idea were in 1930s. This cooling technology was first

17



Figure 1-1: First room-temperature magnetic heat pump designed by G. V. Brown [3]

demonstrated experimentally by chemist Nobel Laureate William F. Giauque and

his colleague D. P. MacDougall in 1933 for cryogenic purposes when they reached

0.25 K[] . This technology was used in low temperature. Applications include Adia-

batic Demagnetization Refrigerator (ADR) and nuclear demagnetization refrigeration

(NDR) etc. In 1975, a breakthrough with Brown‘s work. He built the first near room

temperature magnetic heat pump which is showed in Figure 1-1. It used Gd plates as

the magnetic material and 7 tesla magnetic field getting 14 K temperature rise under

adiabatic condition [3].

In 1983, Barclay suggested the active magnetic regenerator (AMR) refrigeration

cycle, which is based on the Brayton cycle [2]. In this cycle the magnetic material

serves not only as a refrigerant but also as a regenerator. It makes the larger temper-

ature span can be realized. In 1992, Chen et al. concluded that a regenerative cycle

is more efficient than the Carnot, Ericsson or Stirling cycles.

In 1997, two key developments enhanced the feasibility for producing a magnetic

refrigerator for near room temperature commercial use. First, Prof.Pecharsky and

Gschneidner have reported the discovery of the so-called ”giant” Magnet caloric ef-

fect (MCE) [14]. It was observed in Gd alloys, most notably Gd5Si2Ge2 which has

50% higher entropy change than just Gd. Secondly, Prof. Karl A. Gschneidner,

Jr. built the Ames Laboratory /Astronautics proof-of-principle refrigerator system

18



Figure 1-2: Rotary magnetic refrigerator built by Astronautics Corporation of Amer-
ica [25]

showed that magnetic refrigeration was competitive with conventional gas compres-

sion cooling. The system used the Gd spheres and Ericcson cycle systems that had

lasted 1500 hours as of mid-1998, and had run maintenance free [4]. These develop-

ments attracted interest from scientists and companies worldwide who started devel-

oping new kinds of room temperature materials and magnetic refrigerator designs.

Lots of refrigeration systems had been built which used superconducting magnet and

operate in low frequency. Until 2001, the worlds first rotary magnetic refrigerator with

permanent magnets built by Zimm and his collaborators at the Astronautics Corpora-

tion of America [25]. Figure 1-2 showed this system. A higher frequency of operation

4Hz, 1.5T permanent magnets and the rotary magnetic refrigerator principle had

been used. It marked the transition between the first and the second generation of

room temperature magnetic refrigeration and heat pump technologies. After that,

the numbers of patents per year for room temperature magnetic refrigeration grow

up dramatically.

1.2 Problem description

Comparing to conventional refrigeration technology, magnetic refrigeration is a more

complex technology. It relies on the MCE and uses solid material as a refrigerant

.Water or other water based on liquids are the heat transfer fluid which will change

heat between inside system and outside environment. Although the improvement of

19



Figure 1-3: Magnetic materials used near room temperature

magnetic refrigeration has been realized, there are no commercial devices available.

Main problems lie in:

1.2.1 Large MCE and cheap material in a wild operation

temperature

The magnetic materials are mainly Gd, GdSiGe alloys, MnAs-like materials, perovskite-

like materials which can be seen in Figure 1-3. The MCE of these materials is no

more a few degrees in a magnetic field of one tesla [24]. In a wild operation tem-

perature span like 40 kelvin for room temperature, MCE decrease very quickly when

the temperature deviates curie temperature which can be seen in Figure1-41-5. The

large MCE material in a wild operation temperature is required. What more is, these

rare earth materials are very expensive which do not meet the requirement of com-

mercialization. Once cheap and high performance magnetic materials are found, the

breakthrough of magnetic refrigeration will be achieved.

1.2.2 Excellent heat transfer of regenerator and heat ex-

changer

Currently the lab devices have shown poor efficiency, largely due to viscous losses,

thermal conductivity losses, heat exchanger losses and ineffective hydraulic design

20



Figure 1-4: Magnetocaloric effect of Gd for a 0-2 T applied field change [21]

Figure 1-5: Giant magnetic material Gd5Ge2Si2 with a narrow operational tempera-
ture span
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etc. Theoretically, there is still space for the improvement of MR device design. One

of the key points is the optimization of regenerator which includes the mechanical de-

sign, structural design (porous media, flat plates, wire-screens, and so on), multilayer

regenerator design etc. Moreover, the selection of heat transfer fluid also should be

considered. Water or water based on fluid is wildly used. However water has a huge

heat capacity which is a negative effect for the performance. In conclusion, the work

done by the magnetic material should be used as efficient as it can be.

1.2.3 Low cost, compact and strong permanent magnet

For low temperature applications, 5 to 7 Tesla superconductor magnets have been

used which are expensive and structure-complicate. It is not impractical to use it in

a commercial room temperature MR system. Neodymium magnets (NdFeB) which

are the strongest type of permanent magnet made have been used wildly in recently

years in MR lab devices. However, it is too expensive and only produces no more

than 1.5 Tesla. The supply of magnetic field is also a problem need to be solved.

1.2.4 Multidisciplinary nature of MR research

It is crucial to underline the multidisciplinary nature of MR research. MR research

needs the cooperation in the fields of fundamental physics, mechanical and material

engineering, even computer science. Mechanical scientists have to understand the

phenomenal of heat transfer, fluid dynamics, and how does the entropy change of

magnetic material will influence the cooling efficiency. Then, they can optimize the

heat transfer and discuss with the material experts what the idea magnetic material

is. Solid physicist or material experts will focus on the discovery of large MCE mate-

rial and also they want to know the feedback of magnet-caloric material performance

in cooling device. Moreover computer experts can help build a more complex model

which can be accurately and quickly simulate the materials as well as the opera-

tion of the cooling system. Although there are some difficulties in interdisciplinary

cooperation, good cooperation may lead to great breakthroughs.
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1.3 Motivation and Objective

As we mentioned in chapter 1-2-2, theoretically, there is still requirement for the

improvement of MR device design. In order to improve the MR device, it is crucial

to deeply understand the physical phenomenon of heat transfer, fluid dynamics and

minimize the mechanical losses.Thus, a reliable numerical model is required. It can

analyze the complicated parameters (frequency, mass flow rate et.) and also help

to predict the performance of MR system. Until now, the 1-dimensional numerical

model is used in many investigators such as Engelbrecht et al. [5] and Viallet, D

[13].It based on the determination of the convective heat transfer coefficient between

magnetic material and heat transfer fluid and the friction factor to specify the pressure

drop in the fluid due to viscosity. However, considering the unignorable factors in

previous studies, heat transfer between the regenerator and outside air in room MR

system must be taken account into the practical model. And to eliminate the use of

heat transfer and pressure drop correlations, the velocity, pressure and temperature

field must to be solved simultaneously. In doing so, a 2-dimentional model close to

reality is needed to be modeled.

To minimize the mechanical losses and efficiently make use of MCE, it is crucial to

optimize the most important part regenerator of for room temperature MR system.

We consider using two main optimization ways for the regenerator. One is the multi-

layered regenerator which can realize a big MCE in a wild temperature span with

several magnetic materials carefully layer on the regenerator. Another is the geometry

design of regenerator. A good geometry design will reduce the heat losses and improve

the efficiency.

Until now, the geometry have been limited to flat plate and packed sphere design.

In recent years, the micro-channel regenerator is also considered to be a potential can-

didate regenerator design for the high rate of heat and mass transfer. However, it is

not clear that which can be the most efficient in three kinds of regenerators. Few pa-

pers actually focus on it, both from theoretical and experimental point of review. The

comparing and numerically analyze of the three regenerators, parallel-plate, packed-
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bed and Micro-channel regenerator, haven’t been discussed. This thesis will compare

and discuss the detail of heat process in three regenerators numerically. Based on the

discussion of comparison, the suggestions of optimized regenerator geometries design

for magnetic refrigeration systems will be given.

Another problem we mentioned in chapter 1-2-1 is that we have not found a idea

material which has a big MCE in a wild operation temperature span. The MCE ma-

terial we used even has a big MCE at curie temperature. However, the MCE decrease

very quickly when the temperature deviates curie temperature. Thus, Recently years,

multi-layered regenerator is becoming a hot topic and showed a potential to improve

the performance [8] [9] [12]. It is considered that several materials will be carefully

layered on the regenerator which can realize a big MCE in a wild temperature span.

However, very few papers [16] actually discussed the thermodynamic requirement of

multi-layer regenerator. which is crucial for the correct selection and arrangement of

the materials used. The investigation of multi-layered regenerator is required from

both experimental and simulation point of view. This thesis will perform an analyze

of thermodynamic requirement and optimize the multi-layered way. Once the opti-

mization way is found, real materials can be selected and arranged in the regenerator

to best fit it.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. In the next chapter the principles

of MCE, and thermal cycle are introduced. Thermal cycle includes Ericson, Bryton

and AMR cycle. Chapter 3 constructs models of the AMR system and shows the

parameter simulation results in room temperature. Chapter 4 and 5 contains the two

main optimization ways of regenerator, geometry and multi-layer design. Its main

purpose is to enhance the heat transfer insider regenerator and maximize the work

from MCE material. Chapter 6 is a outlines conclusions and future work.
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Chapter 2

Fundamental of Magnetic

Refrigeration system

In this chapter the main terms and conceptions about Magnetic refrigeration system

are introduced. The thermodynamic approaches and the main cycles are considered.

2.1 Magnetocaloric effect (MCE)

The magnetocaloric effect (MCE) is a magneto thermodynamic phenomenon in which

a reversible change in temperature of a suitable material is caused by exposing the

material to a changing magnetic field . This is also known by low temperature physi-

Figure 2-1: Magnetocaloric effect
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cists as adiabaticdemagnetization, due to the application of the process specifically to

create a temperature drop. In that part of the overall refrigeration process, a decrease

in the strength of an externally applied magnetic field allows the magnetic domains

of a chosen (magnetocaloric) material to become disoriented from the magnetic field

which is also showed in Figure 2-1. by the agitating action of the thermal energy

(phonons) present in the material. If the material is isolated so that no energy is

allowed to (re)migrate into the material during this time, i.e., an adiabatic process,

the temperature drops as the domains absorb the thermal energy to perform their

reorientation. The randomization of the domains occurs in a similar fashion to the

randomization at the curie temperature, except that magnetic dipoles overcome a de-

creasing external magnetic field while energy remains constant, instead of magnetic

domains being disrupted from internalferromagnetism as energy is added.

2.2 General thermodynamic approach of magnetic

refrigeration

The main terms and conceptions about the thermodynamic approach of cyclic mag-

netic refrigeration processes are presented. The main objective of this part is to yield

a theoretical basis for an optimal design of new magnetic refrigeration and heat pump

devices. The thermodynamics of magnetic refrigeration is introduced by the first law

of thermodynamics1:

dQ = dU + dW (2.1)

where dU is the infinitesimal change of the internal energy. dQ is a small amount

of heat added to or removed from the considered system, or created by a magnetic

internal source (magnetocaloric effect). dW denotes the differential of the work per-

formed on the system, or extracted from it. To obtain the specific (volumetric) energy

equation , the work in the magnetic material, a equation is considered as follow (a
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more detailed derivation is found in Landau and Lifshitz):

dw = −
−→
Hd
−→
B (2.2)

Reversibly performed or extracted work leads to this alteration of the specific

energy of the magnetic system (specimen and surrounding magnetic field to infinity).

The induction dB is a combination of stress dH and order parameter dM and defined

by:

B = µ0(
−→
H +

−→
M) (2.3)

with the magnetic permeability 0 of the vacuum. This equation is inserted into

Equation 2.2 to become:

dw = −µ0
−→
Hd
−→
M − µ0

2
d(
−→
H2) (2.4)

In Equation 2.4 the first term describes the specific energy in the specimen and

the second, which can be written by introducing a potential:

φ =
1

2

−→
H2 (2.5)

denotes the specific energy in the magnetic field. dH defines a conservative field

with the potential f. It then follows that:]

dw = −µ0
−→
Hd
−→
M − µ0dφ (2.6)

At this stage the last term is often neglected with the argument that it does not

apply in cyclic processes.

We now consider the differential of the redefined internal energy µ1(s,m):

dµ1 = dq + dw1 = (
∂µ1

∂s
)mds+ (

∂µ1

∂m
)sdm (2.7)
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Because the volume is also constant, it is written:

(
∂µ1

∂s
)m = (

∂µ1

∂s
)(mv) = (

∂µ1

∂s
)v = T (2.8)

It is known from the conventional thermodynamics of gas compression that the

derivative of the internal energy in terms of the entropy is identical to the temperature,

and this is therefore not proven here. Comparing Equation 2.7 and taking equation

2.8 into consideration, it follows that:

dq = Tds (2.9)

a well-known relation for reversible processes. By inserting Equation 2.9 into

Equation 2.7, it follows for the specific internal energy:

dµ1 = Tds− µ0

−→
Hd
−→
M (2.10)

Using this relationship between entropy, internal energy, and magnetic work, it

becomes possible to apply all of the typical thermodynamic results and identities that

are ordinarily used in the context of a pure compressible substance to a magnetocaloric

material.

Magnetic refrigerator completes cooling by magnetic material through magnetic

refrigeration cycle. In general a magnetic refrigeration cycle consists of magnetization

and demagnetization in which heat is expelled and absorbed respectively, and two

other benign middle processes.

2.3 Thermal cycle

The basic cycles for magnetic refrigeration are magnetic Carnot cycle, magnetic Stir-

ling cycle, magnetic Ericsson cycle and magnetic Brayton cycle, among which the

magnetic Ericsson and Brayton cycles are applicable for room temperature magnetic

refrigeration for the Ericsson and Brayton cycles employ a regenerator to achieve a
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large temperature span and are easy to operate. In order to understand magnetic

refrigeration deeper, some concepts necessary are introduced. According to the first

law of thermodynamics, in a idea refrigeration cycle, the relationship between the

heat Qh rejected to hot exchanger (at temperature Th), the heat absorbed from cold

exchanger (at temperature Tc), the input work Wi as follows:

Qc = Qh −Wi (2.11)

Qh ,Qc ,Wi are related to heat rejection Q̇h , cooling capacity Q̇c and work rate

Ẇiin refrigerator as follows:

Q̇h = Qhν (2.12)

Q̇c = Qcν (2.13)

Ẇi = Wiν (2.14)

where ν is the operation frequency of the regenerator. For isothermal reversible

heat transfer, the corresponding entropy change at hot ( ∆Sh ) and cold (∆Sc ) ends

can be determined as follows:

∆Sh =
Qh

Th
(2.15)

∆Sc =
Qc

Tc
(2.16)

The second law of thermodynamics requires that

∆Sh + ∆Sc ≥ 0 (2.17)

The coefficient of performance (COP) is determined by the ratio between cooling

capacity Q̇c and power input Ẇi . In an ideal cycle, the COP is the Carnot value:

COPcarnol =
Tc

Th − Tc
(2.18)
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Figure 2-2: Magnetic refrigeration cycle

2.3.1 Ericsson and Brayton cycle

Figure 2-2 (a) illustrates magnetic Ericsson cycle which consists of two isothermal

processes/ stages and two isofield processes. 1. Isothermal magnetization process I

[(A-B in Figure 2-2(a)] When magnetic field increases from H0 to H1, the heat trans-

ferred from magnetic material to heat transfer fluid, makes the upper fluid increase

in temperature. 2. Isofield cooling process II [B-C in Figure 2-2 (a)] In constant mag-

netic field of H1, heat transfer fluid moves downward to bottom and hence heat Qbc

which transferred from magnetic material to heat transfer fluid. Then a temperature

gradient is set up in the regenerator. 3. Isothermal demagnetization process III [C-D

in Figure 2-2(a)] When magnetic field decreases from H1 to H0, the magnetic material

absorbs heat Qcd from the lower heat transfer fluid. After that, the fluid decreases in

temperature. 4. Isofield heating process IV [D-A in Figure 2-2(a)] In the field of H0,

heat transfer fluid moves upward to the top and absorbs heat Qda. According to the

second law constraint, to make the Ericsson cycle possess the efficiency of magnetic

Carnot cycle, it is required that the heat transferred in two isofield processes Qbc,

Qda are equal each other. For an ideal Ericsson cycle, parallel TS curves are optimal,

that keeps constant in the cooling temperature range. However, the current single

magnetic materials cannot meet the requirement; so perfect regeneration of Ericsson

cycle can only be realized by composite materials.

Magnetic Brayton cycle consists of two adiabatic processes and two isofield pro-

cesses as shown in Figure 2-2 (b). In this cycle magnetization is accomplished adia-
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batically, in contrast to the Ericsson cycle. The magnetic refrigerant cycles between

the magnetic field of H0 and H1, and the temperature of high and low temperature

heat source Th and Tc, respectively. During the isofield cooling process F-A (con-

stant magnetic field of H1), magnetized material is set in thermal contact with the

hot exchanger and is cooled back to the temperature Th (point F in Figure 2-2(b)).

Further cooling from Th to Tc is accomplished with the help of a regenerator (form

F to B in Figure 2-2 (b)). In total process A-B, it expels heat of the area of AB14

as Figure 2-2 (b) indicates. During the isofield heating process C-D (constant mag-

netic field H0), magnetic refrigerant absorbs heat of the area of DC14. No heat flows

from and out of the magnetic refrigerant in the adiabatic magnetization process D-A

and the adiabatic demagnetization B-C process. Qc, Qh, Wi in Brayton cycle are

reprensented by areas 1CE3, 2FA4,and ABCD, respectively. It should be noted that

Brayton cycle is characterized by less refrigeration capacity and lager heat rejection

in conparison with Ericcson cycle. But in real process, the differences between real

Ericsson and Bryton cycles are small for deviation from true isothermal and adiabatic

magnetization ( [5]).

There is one more magnetic refrigeration cycle - active magnetic regenerator re-

frigeration (AMR) cycle, which is based on the Bryton cycle. In AMR cycle, magnetic

material serves not only as a refrigerant but also as a regenerator. This cycle will be

discussed more thoroughly below.

2.3.2 AMR cycle

In AMR magnetic material serves not only as a refrigerant providing temperature

change as a result of adiabatic magnetization or demagenetization, but also as a

regenerator for heat transfer fluid. One of the first constructions of magnetic refriger-

ator using AMR principle was suggested by van Geuns (1968). Figure 2-3 illustrates

a schematic of an AMR. A typical AMR should include the following parts: a mag-

net, regenerator bed with magnetic material, hot and cold heat exchangers, and a

displacer or other device providing heat transfer fluid flow back and forth through

the regenerator bed.
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Figure 2-3: A schematic drawing of an AMR

Magntic brayton cycle (Figure 2-4) is the most basic one used in AMR cycle,

which consists of two adiabatic processes and two constant magnetic field processes.

The four steps in this cycle which are showed in Figure 2-5 are described as follows:

1) Process 1 to 2 is an adiabatic magnetization: The magnetic material is placed

in adiabatic condition, and the heat transfer fluid doesnt flow. After magnetization,

the temperature is up to (T + ∆Tad) due to the MCE.

2) Process 2 to 3 is fluid flowing from cold to hot at B=Bmax. The fluid rejects

heat to hot exchanger. Then, the temperature of magnetic material is back to T.

3) Process 3 to 4 is an adiabatic demagnetization. The magnetic material is

in another adiabatic condition where the magnet filed changes from Bmax ¿0 to

Bmin=0, and the fluid doesnt flow. After demagnetization, the temperature is down

to (T −∆Tad).

4) Process 4 to 1 is fluid flowing from hot to cold at B = Bmin. Pushing the fluid

back from hot end to cold end, makes the temperature back to T, absorbing heat

from cold exchanger.
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Figure 2-4: Entropy-temperature diagram for a one-short

Figure 2-5: AMR cycle
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Chapter 3

Modeling AMR

3.1 Two dimension porous media model

In order to deeply understand the physical phenomenon and predict the performance

of AMR, a reliable numerical model is required. Until now, the 1-dimentional (1D)

numerical model is used in many investigators such as Engelbrecht et al [7]. It based

on the determination of the convective heat transfer coefficient between solid and

fluid and the friction factor to specify the pressure drop in the fluid due to viscosity.

However, considering the unignorable factors in previous studies, heat transfer be-

tween the regenerator and outside air in room AMR must be taken account into the

practical model. Therefore, we extended the One dimention model to Two dimention

model by introducing the convection with air and conduction in y-axis regenerator.

3.1.1 Two dimensional assumption

The model in Figure 3-1 accounts consists of 5 parts, which include the flow of the

heat transfer fluid, the MCE of the regenerator material, the heat transfer between

the fluid and the solid, the heat transfer between the regenerator and the outside

environment, the heat exchange with hot and cold reservoir. The fluid and the solid

are incompressible. The properties of the fluid and the solid, such as density, ther-

mal conductivity, viscosity, heat capacity, are constant and evaluated by the initial
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Figure 3-1: Two dimention porous media model of AMR

temperature Tini. The fluid flows in x-axis, and there is a mass flow rate distribution

in y-axis. The pressure drop in the fluid is due to viscosity, according to convert the

pressure gradient to a friction factor. The friction factor can be evaluated by equation

3.13. The magnetocaloric effect (MCE) is taken into account by the inclusion of a

source term in the energy equation for the magnetic solid. A mean field modeling is

used to calculate the adiabatic temperature change of the used magnetic material. If

dispersion in the regenerator acts to mix the fluid along the bed, then the conduction

of fluid can be added to solid and treated as an axial conduction term. The total

axial conduction is evaluated by equation 3.8.Axial conduction is taken into account

in both x axial and y axial. The heat exchange between the fluid and the reservoir

is ideal; the fluid leaves the reservoir and enters the regenerator at the temperature

of the associated reservoir. An insulation layer is used to reduce the convective heat

transfer between the regenerator and the outside environment, and the convective

heat transfer coefficient air is evaluated by equation 3.12.

3.1.2 Governing equations and boundary conditions

The fluid and magnetic material are modeling respectively. The fluid equation and

the solid equation are coupled by means of the first convective term, which is the heat
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transfer between the fluid and the solid.

ρfCf
∂Tf
∂t
Ac(y) = −ṁf (y, t)Cf

∂Tf
∂x

+ heffAsAc(y)(Tr − Tf )+

| fṁ3(y,t)

2ρf 2Ac
2(y)dh

|+ hairAc(y
∗)ε(Tf

∗ − Tair)
(3.1)

(1− ε)ρrCr ∂Tr∂t Ac(y) = keffAc(y)(1− ε)∇2Tf + heffAsAc(y)(Tf − Tr)+

(1− ε)ρrTr ∂S∂B
∂B
∂t
Ac(y) + (1− ε)hairAc(y∗)(Tr∗ − Tair)

(3.2)

The spatial boundary equations and control equations: Hot to cold(0 < t ≤ τ1)

Tf (x = 0, y, t) = Th,

∂Tf
∂x

(x = Lx, y, t) = 0,

∂Tr
∂y

(x, y = 0, t) = 0,

∂Tr
∂y

(x, y = ly, t) = 0,

ṁf (y, t) = ṁf ,

∂S
∂B

= 0.

(3.3)

Magnetization(τ1 < t ≤ τ2)

∂Tf
∂x

(x = 0, y, t) = Th,

∂Tf
∂x

(x = Lx, y, t) = 0,

∂Tr
∂y

(x, y = 0, t) = 0,

∂Tr
∂y

(x, y = ly, t) = 0,

ṁf (y, t) = 0,

∂S
∂B

= −3.7.

(3.4)
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Cold to Hot(τ2 < t ≤ τ3)

Tf (x = Lx, y, t) = Tl,

∂Tf
∂x

(x = Lx, y, t) = 0,

∂Tr
∂y

(x = 0, y, t) = 0,

∂Tr
∂y

(x, y = ly, t) = 0,

ṁf (y, t) = ṁf ,

∂S
∂B

= 0.

(3.5)

Demagnetization(τ3 < t ≤ τ4)

∂Tf
∂x

(x = 0, y, t) = Th,

∂Tf
∂x

(x = Lx, y, t) = 0,

∂Tr
∂y

(x, y = 0, t) = 0,

∂Tr
∂y

(x, y = ly, t) = 0,

ṁf (y, t) = 0,

∂S
∂B

= 3.7.

(3.6)

3.1.3 Reference parameters to the governing equations

Wakao and kague [23]suggest the following empirical correlation for Nusselt number

in a packed sphere bed.

Nu = 2 + 1.1Re0.6Pr
1
3 ,

Re = dhṁ(y,t)
Ac(y)µf

,

P r =
Cf

µfkf
.

(3.7)

The effective thermal conductivity of the solid is evaluated by equation 3.8

keff = kstatic + kfD
d (3.8)

Dd was suggested by kaviany [13] in equation 3.9

Dd = ε
3

4
RePr (3.9)
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kstastic, the static conductivity, is evaluated by means of the correlation given by

krupiczka (1967).

kstastic = kfkr
kf

0.28−0.757logε−0.057log kr
kf (3.10)

The heat transfer coefficient between the fluid and solid has been modified to

heff for reducing the entropy generation which will be generated by the temperature

difference between the center and the surface of the magnetic material.

Bi = dhh
kr
,

h =
kfNu

dh
,

heff = h
1+Bi

5

.

(3.11)

The heat transfer coefficient between the regenerator and air has been modified

to which is evaluated by equation 3.12 [18].

hair =
1

1
hw

+ dx
ki

(3.12)

The friction factor of a packed bed of spheres is suggested by Rohsenow (1998) in

equation 3.13.

f = 300
(1− ε)3

ε3Re
+ 3.75

1− ε
ε3

(3.13)

The hydraulic diameter Dh is given by

Dh =
2ε

3(1− ε)
dp (3.14)

Porosity is ε .Heat transfer surface area As (per volume):

As = 6
1− ε
dp

(3.15)

The partial B respecting to t in the MCE term can be evaluated by equation 3.14.

∂B

∂t
=
Bmax −Bmin

τ2 − τ1
(3.16)
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Table 3.1: The grids used for the simulation

Length of regenerator Width of regenerator Cycle time NXxNYxNT
115mm 15mm 4s 115x30x800

The cooling capacity Qin is evaluated as the ratio between the energy exchanged

by the fluid and the cold reservoir during the hot to cold flow and the cycle time,

according to equation 3.17.

Qin =
1

τ

∫ τ1

0

ṁ(y, t)Cf (Tf (x = 0, y, t)− Th)dt (3.17)

3.1.4 The numerical simulation

The solution of the 2-D model is to provide the temperature filed of both the fluid

and the solid. The numerical discretization is based on the Finite Differential Method

(FDM) and the temporal integration is marched fully explicit. The enthalpy transfer

term, due to the fluid flow is implemented following the up-wind scheme (parankar

1980). This ensures that the thermal energy of the up-wind cell influences the enthalpy

transfer term. The initial condition of the fluid and the solid is set to be a linear

temperature distribution by forcing a ∆Tspan between the hot end and the cold end.

Table 3.1shows the grids used for the simulation.NX denotes the number of elements

in the x-direction and NY denotes the number of elements in the y-direction. An

element size is 1mm x 0.5mm.∆t is 5 × 10−3. The process is completed when the

iteration tolerance of Tr and Tf is less than 10−3.

3.1.5 Results and discussion

The cooling capacity of the three kinds of models is compared at the same condition.

Only the hot reservoir temperature TH or the cold reservoir temperature TL is varied,

other parameters are kept constant (see Table 3.2 ).

The cooling capacity of the 3 kinds of models is compared at the same condition.

Only the hot reservoir temperature TH or the cold reservoir temperature TL is varied,
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Table 3.2: Summary of numerical modeling given parameters

magnetic material Gd
Fluid water and ethanol mixture
Total material mass 0.16kg
Regenerator size 20.312cm3

conduction coefficient of the insulation layer 00.19w/mk
Convection coefficient of air 22w/m2k
frequency 0.25
Aspect ratio 7
Mass flow rate 0.0168kg/s
Porosity of matrix 0.356
Thiness of the insulation layer 6mm
Enviroment temperature 292K

other parameters are kept constant. First, TH is varied from 277K to 313K, and TL

is kept constant at 273K.

Figure 3-2 shows that all of the cooling capacity in 3 models decreases when

TH rises. The trends of change are the same. The difference of the cooling capacity

between Qin and Qin1D is caused by the air convection. So the cooling capacity=(Qin-

Qin1D) is the air convection loss (CVL). The difference of the ∆cooling capacity

between Qin1D and Qin2D is caused by the conduction of y-axis. So the ∆cooling

capacity =(Qin1D −Qin2D)is the y-axis conduction loss (CDL). Figure 3-3 shows the

percentage of the loss in cooling capacity. When TH rises, both the air convection loss

and the conduction loss of y-axis reduce. If the temperature of air is lower than that

of fluid, air can help to cooling the fluid instead of resulting loss. This is the reason

why the high temperature TH becomes higher, the percentage of the loss in cooling

capacity reduces. The conduction loss of y- axis is similar to the air convection loss.

The sum of CVL and CDL, i.e.,Tol, can reach to 22% of the cooling capacity, when

the TH is 277K and the ∆Tspan is 4K. When the ∆Tspan is 40K and TH is 313K, the

total loss decreases down to 12% of the cooling capacity.

Figure 3-4 shows the 3 models with TL dependence and TH kept constant at 313K.

The cooling capacity increases when TL rises in 3models.The largest cooling capacity

is at TL =303K in Qin2D model. It is appeared that TL is higher than environment
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Figure 3-2: Cooling capacity vs TH (TH is from 277K to 313K). TL is 273K. The
cycle frequency and the magnetic material mass are kept constant. Tair is 292K.Qin

is the cooling capacity of 1-D model without considering the air convection. Qin1D is
the cooling capacity of 1-D model with considering the air convection. Qin2D is the
cooling capacity of 2-D model with considering the air convection and the conduction
in y-axis.

Tair, then convection with air can help to reduce the temperature of cold end which

will be absorb heat from cold reservoir. When TL is about 285K, the influence of

air convection can be ignorable. This means that when TH is higher enough and TL

is lower than Tair, a proper ∆Tspan exists in which the influence of air convection

can be ignorable. Figure 3-5 shows that the percentage of loss in cooling capacity

.The ratio of CVL to total thermal loss and CDLs is roughly the same. When the

low temperature TL becomes higher and higher, even over the air temperature, air

can help to cooling the fluid. At this time, the percentage of loss will be minus.

After comparing the 3 kinds of model, what is known is that the influence of air

convection and conduction of y axial is not small enough to be ignored. Moreover, the

calculation time of the 2-D model is less than 10 minutes. It is reasonable to analyze
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Figure 3-3: The percentage of loss in cooling capacity (CC) vs TH . TL is 273K.
TH is varied from 274K to 313K. Tair is 292K. There are 3 kinds of loss, convection
loss (CVL), conduction loss of y axial (CDL), and the sum of convection loss and
conduction loss of y axial (Tol).

many different configurations and operating conditions. So the Qin2D model would be

proper to predicting the performance of room AMR considering the ignorable factor

in practice.

3.1.6 Conclusions

A time independent, 2-dimension porous media model was developed for predicting

the room AMRR. The 2-D model and the previous 1-D model were compared. It is

concluded that the system can lose 22% of cooling capacity caused by air con-vection

and the conduction loss in y-axis. The ratio between convection loss and conduction

loss was roughly same. Thus, our 2-D model will predict the room AMR for including

the influence of air convection and conduction of y-axis.
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Figure 3-4: Cooling capacity vs TL (TL is from 273K to 303K). TH is 313K. Tair is
292K.

3.2 Investigation of Two dimension porous media

and flat plate models by FVM

The results generated by the 1-D model, although valuable, show discrepancies with

experimental data, but the differences are mainly caused by the use of the heat trans-

fer correlation. To eliminate the use of heat transfer and pressure drop correlations,

the velocity, pressure and tem- perature field must to be solved simultaneously. In

doing so, a 2-dimension porous media model close to reality has been modeled. The

2-D model is based on the two-dimensional Navier-Stokes equations for the fluid flow

around the discrete particles which are alternatively heated and cooled during mag-

netization and demagnetization. The adopted numerical solution is explained and

typical results are presented and analyzed.
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Figure 3-5: The percentage of loss in cooling capacity vs TL. TL is from 273K to
303K .TH is 313K.Tair is 292K.

3.2.1 Governing Equations and boundary condition

Two dimensional incompressible N-S equations based on laminar assumption.

Fluid zone

Continuum Equation:
∂µ

∂x
+

∂ν

∂y
= 0 (3.18)

Momentum equation:

∂u

∂t
+ u

∂u

∂x
+ ν

∂u

∂y
= − 1

ρf

∂p

∂x
+ µ∂2u

∂x2
+

∂2u

∂y2
 (3.19)

Energy equation:

∂Tf

∂t
+ u

∂Tf

∂x
+ ν

∂Tf

∂y
= k∂2Tf

∂x2
+

∂2Tf

∂y2
 (3.20)
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Figure 3-6: 2-D model boundary conditions

u, ν, p and Tf are basic values for solution, which mean velocity components, pressure

and temperature of the fluid.

Solid Zone

Energy equation:

ρsCp
∂Tr
∂t

= k∂2Tf
∂x2

+
∂2Tf
∂y2

 + St (3.21)

Tris the temperature in the solid zone, S is the source term, in this research, it

can be used to demonstrate the magnetic effect. Figure 3-6 shows the boundary

conditions.

3.2.2 Numerical Method

The finite volume method(FVM) is used in this research, and the solid and fluid zone

are discretized by using triangular unstructured mesh respectively(in Figure 3-7).

The schemetic of discretization is showed in Table 3.2. In the fluid zone, the variable

separation solver is adopted, in which the pressure is uncoupled with velocity by using

SIMPLEC method(Semi-Implicit Pressure Linked Equation Consistent), firstly, the
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Figure 3-7: Schemetic of mesh

Table 3.3: The scheme for discretization

Pressure Second-order central scheme
Convective term in fluid zone Second-order central scheme
Diffusion term in fluid and solid zone Second-order central scheme
Unsteady term Second-order central scheme

momentum equations are solved in the cell-based grid, then the pressure field is

corrected by using pressure-correction equation, which is educed from continuum

equation, and the velocity components are corrected by using pressure correction

value, after that, the energy equation are solved to obtain temperature. In the solid

zone, the heat conductive equation is solved, and the source term is activated, when

the magnetic field is acting:

St =
ρsCp∆Ts(H,Tc)

δt
(3.22)

3.2.3 Results and discussion

In order to optimize AMR applications, we considered the same conditions that the

AMR device developed in the laboratory and varied the model inputs, velocity and

frequency, especially modeling the influence of velocity to the heat transfer rate from

practical to fluid and pressure loss.Table 3.4shows the reference numerical parameters

which are used in the simulation. Figure 3-8 shows the temperature field for the heat
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Table 3.4: Reference values of the numerical parameters

magnetic material Gd
Fluid water and ethanol mixture
Total material mass 0.16kg
Regenerator size 20.312cm3

Mean particle size 50µm
Porosity of matrix 0.356
Bmax 1.2T
Bmin 0T
∆Ts 2K
TH 313K
TL 293K

transfer course under different Inlet velocity. After magnetizing, the fluid flow from

cold end to hot end (in the graph is from left to right). We found that heat transfer in

high Inlet velocity (0.025m/s) is already in stable state at stable state at 0.3 second,

while the heat transfer in low Inlet velocity (0.005m/s) still in an unstable state. It

implies that high velocity can fast heat transfer. Figure 3-9 and Figure 3-10 shows

the velocity field while the inlet velocity is 0.001m/s. The fastest x- velocity appears

in the gap between the particles and can be 10 times of the inlet velocity in Figure

3-9. The y-velocity can be minus for the reverse circulation flow rate in Figure 3-10.

The velocity is changed from 0.007m/s to 0.025m/s and the results are shown in

Figure 3-12. Figure 3-12 left is the heat transfer rate from particle to fluid. It is

observed that a higher velocity results in a higher heat transfer rate. Figure 3-12

right illustrates the pressure loss. The pressure loss has a positive correlation to the

velocity, which is similar to the heat transfer rate. Since a higher velocity will result

in a higher transfer rate as well as a higher pressure loss, an optimized velocity can

be found for the best energy efficiency.

Figure 3-11 shows the correlation of velocity and COP, cooling capacity. When the

frequency is 0.25 and the velocity is from 0.006m/s to 0.014m/s, the COP has a peak

value near 6.94 for COP and cooling capacity with respect to operation frequency.

When the frequency is varied from 0.25 to 1.45 Hz, the COP has a peak value near
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Figure 3-8: Temperature field for the heat transfer course under different Inlet veloc-
ity.

7.4. The cooling capacity increases quickly when the operation frequency is higher.

A high operation frequency is required for the high cooling capacity.

After comparison, we found that high velocity can make the heat transfer rate

higher for the different regenerator geometries (Figure 3-11). So a high operation

frequency is needed to improve the cooling capacity. In the high velocity field, the

flat plate model is better than the porous media model for the improved pressure

drop (Figure 3-13), which means improvement in the COP of AMR can be expected.

3.2.4 Conclusions

A transient 2-dimensional porous media model of a reciprocating AMR has been

constructed and solved numerically. The coupled effects of the temperature and

velocity fields have been taken into account. The magneto-caloric effect is also taken

into account by the inclusion of a source term in the energy equation for magnetic

solid. The fluid flow through the interstitial channels formed by the magnetic particles

is modeled by the two dimensional incompressible N-S equations based on laminar

assumption. In particular, detailed model results regarding heat transfer and pressure

drop show that an optimized velocity can be found for the energy efficiency. The effect

of changing the operating cycle frequency shows that there is a maximum COP for a
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Figure 3-9: X-velocity field. Inlet velocity is 0.001m/s.

given T span. A high operation frequency is required for a high cooling capacity.
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Figure 3-10: Y-velocity field. Inlet velocity is 0.001m/s.

Figure 3-11: Velocity vs COP and cooling capacity.

Figure 3-12: Comparison of heat transfer rate in 2 kinds of models.
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Figure 3-13: Comparison of pressure drop result in 2 different kinds of models.
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Chapter 4

Optimization of regenerator by

Geometry design

4.1 Introduction of regenerator

Regenerator is not just a material container where magnetic material generates and

absorbs heat, but also a flow path. Figure 4-1 left showed the typical one stage com-

pressor refrigeration system. After replacing the compressor, we can get a schematic

of AMR system. In AMR system, there are four key parts: regenerator, motor, mag-

net, cold and heat exchanger. The most important part is regenerator. Figure 4-2

shows one type of regenerator, packed sphere regenerator. Inside the regenerator,

heat transfer fluid change heat with magnetic material and then flow out changing

heat with outside environment. The mechanical losses, due to pressure drop, axes

conductivity, heat transfer between material and fluid, happen inside it. To improve

the performance of AMR system, regenerator should be enhanced to let the heat

generated by magnetic material be used as efficient as possible.
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Figure 4-1: Left is a one stage typical compressor refrigeration system. Right is a
schematic of AMR system.

Figure 4-2: Left is a one stage typical compressor refrigeration system. Right is a
schematic of AMR system.
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Figure 4-3: Potential geometry design.

4.1.1 Potential regenerators

4.2 Motivation

To commercialize MR technology, two major regenerator optimization methods have

been considered. One is to utilize the multi-layered regenerator, which can realize a

big MCE over a wide temperature span by layering several magnetic materials care-

fully on top of the regenerator. Another method is to improve the geometry design

of the regenerator. So far the choices of geometry have been limited to flat plate and

packed sphere design, and few papers focus on discussion of geometry design either

from theoretical or experimental perspectives. Barclay(1984) [1] used a simple algo-

rithm to simulate and compare Four types of regenerator which is showed in Figure

4-3[1]. Besides the aforementioned two popular designs, he also suggested micro-

channel and perforated plate stack geometries can be candidates to reduce the longi-

tudinal conduction loss in the bed. However, the accuracy of the numerical results is

limited by the simplicity of the simulation. Recently, K.Engelbrecht et al.(2010) also

55



did experimental and numerical studies on passive regenerator geometries [8]. They

tested 18 aluminum plates, including flat plate, corrugated plate and dimpled plate

regenerators, and determined the optimum type of plates regenerator has 0.2 mm-0.3

mm plate thickness. Tura compared packed sphere and micro-channel regenerator

experimentally and suggested spheres act as a more effective regenerator [21]. Jaka-

Tusek(2013) experimentally analyzed both parallel-plate and packed sphere AMRs

and concluded that parallel-plate AMRs provide the most efficient heat transfer and

other types of ordered structures with non-uniform porosity decreases [22]. How-

ever, comparison and numerical analysis of the parallel-plate, packed sphere and

micro-channel regenerators has not been discussed yet. The goal of this chapter is to

compare and discuss the details of heat process in three regenerators numerically.

4.3 Governing equations and boundary conditions

One dimentional AMR models have been constructed. The models like other All

numerical models of the AMR are based on a mathematical model describing heat

transfer in a solid matrix structure, the MCE in the solid due to the changing mag-

netic field, and the coupling to the convective heat transfer of a fluid. The fluid

and magnetic material are modeling respectively.MCE is taken into account by the

inclusion of a source term in the energy equation for the magnetic solid. A mean field

modeling is used to calculate the adiabatic temperature change of the used magnetic

material. Dispersion in the regenerator acts to mix the fluid along the bed, and the

conduction of fluid can be added to solid and treated as an axial conduction term.

The heat exchange between the fluid and the reservoir is ideal; the fluid leaves the

reservoir and enters the regenerator at the temperature of the associated reservoir.

The properties of the fluid and the solid, such as density, thermal conductivity, vis-

cosity, heat capacity, are constant and evaluated by the initial temperature Tini.The
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governing equations and boundary conditions are given as follow:

ρfCf
∂Tf
∂t
Ac(y) = −ṁf (y, t)Cf

∂Tf
∂x

+ heffAsAc(y)(Tr − Tf )+

| fṁ
3(y,t)

2ρf 2Ac
2dh
|

(4.1)

(1− ε)ρrCr ∂Tr∂t Ac = keffAc(1− ε)∇2Tf + heffAsAc(Tf − Tr)+

(1− ε)ρrTr ∂S∂B
∂B
∂t
Ac

(4.2)

Hot to cold

Tf (x = 0) = Th,

∂Tf
∂x

(x = Lx) = 0
(4.3)

Cold to Hot

Tf (x = Lx) = Tl,

∂Tf
∂x

(x = 0) = 0
(4.4)

The three models,packed sphere,flat plate and micro-channel regenerator, have the

same governing equations and boundary conditions. However part of the reference

parameters are different in equations.

4.4 Parameters in modeling

Main parameters in packed sphere regenerator

Main parameters in packed sphere regenerator are showed in Chapter 3.1.3.

Main parameters in flat plate regenerator

The hydraulic diameter Dh is given by

Dh =
ε

1− ε
dp (4.5)
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Figure 4-4: Schametic of Micro-channel regenerator.

For more turbulent-like fluid flow, the Nusselt number (Nu) is suggested by Tura[3]which

is defined by Reynolds Number (Re):

Nu = 8.235 (4.6)

For Laminar flow, the friction factor is given by

f =
64

Re
(4.7)

Porosity is ε .Heat transfer surface area As (per volume):

As = 2
1− ε
dp

(4.8)

Main parameters in Micro-channel regenerator

The shchameic of Micro-channel regenerator is showed in Figure 4-4 The hydraulic

diameter Dh is given by

Dh =
2cb

c+ b
(4.9)

For more turbulent-like fluid flow, the Nusselt number (Nu) is suggested by Tura[3]which

is defined by Reynolds Number (Re):

Nu = 0.48 + 0.18Re1.3 (4.10)
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For Laminar flow, the friction factor is given by

f =
16

Re
(4.11)

Porosity is ε .Heat transfer surface area As (per volume):

As =
2(b+ c)

(2a+ bc)
(1− ε) (4.12)

Correlation between b and a:

b =
2ε

1− 2ε
a (4.13)

To help define the effect of the aspect ratio, Z has been defined as:

z =
min(b, c)

max(b, c)
(4.14)

According to the XF Peng (1996) [15], the experiments demonstrated the laminar

friction factor or flow resistance reaches a minimum value as z is 0.5.

The common parameters are as follow: Number of Transfer Unites (NTU) is:

NTU =
heffAs
ṁCf

(4.15)

Figure of Merit (FOM) is defined by the rejection heat Qout, refrigeration load Qin

and power required :

FOM =
Qout −Qin

ẇ + (Qout −Qin)
(4.16)

4.5 Entropy generation minimization

Entropy generation minimization (EGM) is also known as thermodynamic optimiza-

tion in engineering. It is the method of optimization of real devices and processes

based on the most basic concepts of heat transfer, fluid mechanics and thermodynam-

ics. In AMR systems, the irreversibility related to: heat and fluid flow in regenerator;

pump inefficiency; the magnetization system; the process of magnetization and var-
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Figure 4-5: Schametic of EGM.

ious heat leaks. Heat transfer between the fluid and the magnetocaloric material is

the major loss mechanism in AMR systems. In order to maximize AMR performance,

it is critical to understand heat transfer processes and minimize the entropy genera-

tion though heat and fluid flow in the regenerator. In this paper, we use the EGM

method to optimize the regenerator design. The total entropy generation Ṡgen , which

is due to irreversible processes though heat and fluid flow in the regenerator, can be

considered in 3 parts (Figure 4-5) [1].

The total entropy generation Ṡgen is the sum of the three items:

Ṡgen = Ṡgen,ht + Ṡgen,vd + Ṡgen,ac (4.17)

The entropy generation due to finite heat transfer between the heat transfer fluid

and magnetic material Ṡgen,ht is:

Ṡgen,ht =
QR

Ntu+ 1
 1

Tcold
− 1

Thot
 (4.18)

where

QR = ṁfCp(Th − Tc) (4.19)
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The entropy generation due to viscous dissipation of the flow energy Ṡgen,ac is:

Ṡgen,ac =
KeffAc
L

(Thot − Tcold)2

TcoldThot
(4.20)

The entropy generation due to axial thermal conductivity of the regenerator ma-

terial Ṡgen,vd is:

Ṡgen,vd =
Vf∆P

Thot
(4.21)

The required work Ẇ is:

Ẇ = (Qout −Qin) + ThṠgen (4.22)

The coefficient of performance COP can be caculated as:

COP =
Qin

Ẇ
(4.23)

4.6 Comparison of packed sphere and flat plate

regenerator

4.6.1 Results and discussion

Table 4.1 summarizes the given parameters. At lower frequencies the cooling capacity

will be lower, and at higher frequencies eddy current and hysteresis losses generate

heat in the regenerator. Consider the situation above, 0.25, 0.5, 1.0 Hz have been

chosen based on the experimental AMRs for comparing 2 models. Since the material

mass is kept constant, increased porosity will result in increased regenerator volume,

requiring a large magnet. A randomly porosity 0.365 which is used in experimental

AMR, is fixed. The aspect ratio is limited in 2, 7, 14 for 2 models. Figure 4-6, 4-7,

4-8 shows the entropy generation corresponding to the different plate thickness at

frequency 0.25Hz, 0.5Hz, 1Hz in the flat plate model. It is observed that increased

plate thickness increases entropy generation especially in high frequency. We can get
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Table 4.1: Reference values of the numerical parameters

magnetic material Gd frequency 0.25, 0.5, 1
Fluid water and ethanol mixture Aspect ratio 2,7,14
Total material mass 0.16kg particle size 100− 800µm
Regenerator size 20.312cm3 Porosity of matrix 0.356
Bmax 1.2T Plate thickness 60− 700µm
Bmin 0T ∆Ts 2K
TH 307K TL 277K

Figure 4-6: Entropy generation corresponding to the different plate thickness at fre-
quency 0.25Hz, 0.5Hz, 1Hz and ascpet ratio 2 in the flat plate model.

the minimization entropy generation around 0.1mm. High frequency can result in

a high entropy generation, but when the Aspect ratio is 14, the difference entropy

generation in difference frequency is very small. It is also can be seen in Figure 4-9,

4-10, 4-11 which shows the entropy generation corresponding to the different sphere

size at frequency 0.25Hz, 0.5Hz, 1Hz in the porous media model.The minimization

entropy generation can be achieved around 0.3mm sphere size, frequency 0.25Hz,

aspect ratio 14. Figure 4-12,4-13,4-14,4-15,4-16 and 4-17 showed the cooling ca-

pacity in two models.Figure 4-18,4-19, 4-20, 4-21,4-22 and 4-23 showed the coefficient
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Figure 4-7: Entropy generation corresponding to the different plate thickness at fre-
quency 0.25Hz, 0.5Hz, 1Hz and ascpet ratio 7 in the flat plate model.

Figure 4-8: Entropy generation corresponding to the different plate thickness at fre-
quency 0.25Hz, 0.5Hz, 1Hz and ascpet ratio 14 in the flat plate model.
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Figure 4-9: Entropy generation corresponding to the different particle size at fre-
quency 0.25Hz, 0.5Hz, 1Hz and ascpet ratio 2 in the porous media model.

Figure 4-10: Entropy generation corresponding to the different particle size at fre-
quency 0.25Hz, 0.5Hz, 1Hz and ascpet ratio 7 in the porous media model.
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Figure 4-11: Entropy generation corresponding to the different particle size at fre-
quency 0.25Hz, 0.5Hz, 1Hz and ascpet ratio 14 in the porous media model.

of performance (COP) in two models. In the figures, increased frequency can get

an increased cooling capacity and small aspect ratio can get more cooling capacity

for the more mass flow rate which is resulted by bigger across surface. The biggest

cooling capacity of flat plate model is bigger than that of porous media model. An

optimized flat plate thickness and sphere size can be found for the best COP. The

optimized thickness is almost the same under different frequency. It is also found that

COP decrease but cooling capacity significantly increase for the increased frequency

both in flat plate model and porous media model. Decreased COP can be explained

by the figures which are showing the entropy generation of the models. Increased

frequency will increase the total entropy generation. When the thickness is bigger

than optimized point, increased thickness will significant increase the heat transfer

generation entropy for the decreased heat transfer surface. In porous media model,

the optimized sphere size will be around 0.2mm to 0.3mm. On the other hand, 0.1mm

to 0.2mm thickness plate will be more efficient. Comparing the two models, flat plate

model can get a smaller entropy generation and achieve a higher cooling capacity.
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Figure 4-12: Cooling capacity corresponding to the different plate thickness at fre-
quency 0.25Hz, 0.5Hz, 1Hz and ascpet ratio 2 in the flat plate model.

Figure 4-13: Cooling capacity corresponding to the different plate thickness at fre-
quency 0.25Hz, 0.5Hz, 1Hz and ascpet ratio 7 in the flat plate model.
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Figure 4-14: Cooling capacity corresponding to the different plate thickness at fre-
quency 0.25Hz, 0.5Hz, 1Hz and ascpet ratio 14 in the flat plate model.

Figure 4-15: Cooling capacity corresponding to the different particle size at frequency
0.25Hz, 0.5Hz, 1Hz and ascpet ratio 2 in the porous media model.
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Figure 4-16: Cooling capacity corresponding to the different particle size at frequency
0.25Hz, 0.5Hz, 1Hz and ascpet ratio 7 in the porous media model.

Figure 4-17: Cooling capacity corresponding to the different particle size at frequency
0.25Hz, 0.5Hz, 1Hz and ascpet ratio 14 in the porous media model.

68



Figure 4-18: COP corresponding to the different plate thickness at frequency 0.25Hz,
0.5Hz, 1Hz and ascpet ratio 2 in the flat plate model.

Figure 4-19: COP corresponding to the different plate thickness at frequency 0.25Hz,
0.5Hz, 1Hz and ascpet ratio 7 in the flat plate model.
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Figure 4-20: COP corresponding to the different plate thickness at frequency 0.25Hz,
0.5Hz, 1Hz and ascpet ratio 14 in the flat plate model.

Figure 4-21: COP corresponding to the different particle size at frequency 0.25Hz,
0.5Hz, 1Hz and ascpet ratio 2 in the porous media model.
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Figure 4-22: COP corresponding to the different particle size at frequency 0.25Hz,
0.5Hz, 1Hz and ascpet ratio 7 in the porous media model.

4.6.2 Conclusions

Since the heat transfer mechanism in the AMR is same as that in the ordinary thermal

regenerator except for the steps of application and removal magnet, EGM which is

widely used in heat exchanger optimum, can be considered to optimum geometry

and dimensions of regenerator. The 1 dimension flat plat model and porous media

model have been constructed and compared with entropy generation, cooling capacity,

coefficient of performance by changing plate thickness and sphere size at frequency

0.25Hz, 0.5Hz, 1, aspect ratio 2, 7, 14. The result shows that the optimized sphere

size will be around 0.2mm to 0.3mm. On the other hand, 0.1mm to 0.2mm thickness

plate will be more efficient. Compared the 2 models, flat plate model can get a smaller

entropy generation and achieve a higher cooling capacity.
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Figure 4-23: COP corresponding to the different particle size at frequency 0.25Hz,
0.5Hz, 1Hz and ascpet ratio 14 in the porous media model.

4.7 Comparison of packed sphere and flat plate

regenerator keeping As as constant

4.7.1 Results and discussion

The packed sphere model is favored by lower cost and simplicity of construction.

If the fabrication problem for flat plate can be solved and plate can be made very

thin, we want to know which regenerator can provide a better performance. The

performance of the two regenerators have been compared while they have the same

heat transfer surface area.

Figure 4-24, 4-25, 4-26,and 4-27 show the entropy generation corresponding to

the different sphere size and plate thickness at frequency 1Hz in both flat plate re-

generator and packed sphere regenerator. It is found that increased sphere size and

plate thickness will increase entropy, especially in packed sphere regenerator. Total

entropy generation in packed sphere regenerator is 4 to 6 times of that in flat plate

regenerator. In flat plate regenerator, Entropy generation except due to axial ther-

mal conductivity of the regenerator material is smaller than that of packed sphere
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Figure 4-24: Total Entropy generation corresponding to the different plate thickness
and sphere size and at frequency 1Hz in both flat plate regenerator and packed sphere
regenerator.

regenerator. Entropy generation mainly caused by Finite heat transfer between ma-

terial and fluid. Entropy generation due to viscous dissipation of the flow energy is

significant increased when the sphere size is becoming smaller. Cooling capacity

and coefficient corresponding to the different sphere size and plate thickness at fre-

quency 1Hz in both flat plate regenerator and packed sphere regenerator are showed

in Figure 4-28 4-29. In Figure 4-28, flat plate regenerator can get 10% to 30% more

cooling capacity than that of packed sphere generator. In Figure 4-29 COP of flat

plate regenerator can be 30% higher than that of Packed sphere regenerator. Flat

plate regenerator has a potential to make AMR more powerful and efficient.

4.7.2 Conclusions

We have successfully compared the two regenerators when they have the same heat

transfer surface area and found that flat plate regenerator has a potential to make

AMR more powerful and efficient. It can get 10% 30% more cooling capacity and

30% higher COP than that of Packed sphere regenerator.The high performance and
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Figure 4-25: Entropy generation due to finite heat transfer corresponding to the
different plate thickness and sphere size and at frequency 1Hz in both flat plate
regenerator and packed sphere regenerator.

Figure 4-26: Entropy generation due to axial thermal conductivity of the regener-
ator material corresponding to the different plate thickness and sphere size and at
frequency 1Hz in both flat plate regenerator and packed sphere regenerator.
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Figure 4-27: Due to viscous dissipation of the flow energy corresponding to the differ-
ent plate thickness and sphere size and at frequency 1Hz in both flat plate regenerator
and packed sphere regenerator.

less entropy generation makes it a promising candidate for AMR system.

4.8 Comparison of Micro-channel, porous media

and flat plate regenerator

4.8.1 Results and discussion

Table 4.2 presents the given parameters in numerical modeling. Considering MR

relies on MCE, and the mass of Gd can significantly influence the performance of the

cooling system, the models have been compared with the same Gd mass. According to

previous calculation , frequency is set to 1 Hz which is widely used in prototype AMR

to achieve a good performance. Since the material mass is kept constant, different

porosity will result in different regenerator volume. The porosity value is fixed to

0.365, which is the biggest porosity used in experimental packed sphere AMR so far.

The aspect ratio is set to7 based on an experimental result.
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Figure 4-28: Cooling capacity corresponding to the different plate thickness and
sphere size and at frequency 1Hz in both flat plate regenerator and packed sphere
regenerator.

Figure 4-29: COP corresponding to the different plate thickness and sphere size and
at frequency 1Hz in both flat plate regenerator and packed sphere regenerator.
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Table 4.2: Summary of numerical modeling given parameters

magnetic material Gd frequency 1
Fluid water and ethanol mixture Aspect ratio 7
Total material mass 0.16kg Mass flow rate 0.007kg/s
Regenerator size 20.312cm3 Porosity of matrix 0.356
Bmax 1.2T TH 307K
Bmin 0T TL 267K

Figure 4-30, 4-31 and 4-32 shows the variation of cooling capacity and NTU in

three regenerators as a function of plate thickness. For the flat plate regenerator

in Figure 4-30, the cooling capacity increases as the plate thickness decreases. The

maximum cooling capacity is 13.7 W when plate thickness is 0.05mm and NTU is

about 1400. When plate thickness increased to 0.1 mm, NTU decreased to about 600

and cooling capacity reduced slightly. For packed sphere regenerator in Figure 4-31,

maximum cooling capacity is 12.75 W when particle size is 0.3 mm and NTU is 168.

For the micro-channel regenerator in Figure 4-32, cooling capacity increases rapidly

when width of micro-channel c decrease from 0.3 mm to 0.03 mm. The maximum

cooling capacity is 13 W when c is 0.03mm and NTU is about 230. By comparing

the cooling capacity of the three different models, flat plate regenerator can generate

5% more cooling capacity than the micro-channel regenerator and 7% more cooling

capacity than the packed sphere regenerator.

Figure 4-33, 4-34 and 4-35 show the variation of COP and FOM in 3 regenerators.

In all regenerators, an optimized COP and FOM can be obtained. For flat plate

regenerator in Figure 4-33, the maximum COP and FOM are 2.92 and 0.43 when

plate thickness is 0.15mm.For packed sphere regenerator in Figure 4-34, the maximum

COP is 3.06 when particle size is 0.3mm and FOM is 0.53 when particle size is 0.2mm.

For micro-channel regenerator in Figure 4-35, the maximum COP and FOM are 1.43

and 0.22 when c is 0.1mm. Depending on these data, packed sphere and flat plat

regenerator have almost the same maximum COP, and the entropy loss of packed

sphere regenerator is less than other two models for the bigger FOM.

Figure 4-36, 4-37, 4-38 analyzed the variation of total Entropy Generation (Stotal),
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Figure 4-30: Variation of Cooling capacity and NTU in 0.05 mm 0.3 mm plate thick-
ness.

Figure 4-31: Variation of Cooling capacity and NTU in 0.1 mm 0.7 mm particle size
packed sphere regenerator.
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Figure 4-32: Variation of Cooling capacity and NTU in 0.01 mm 0.3 mm width of
micro-channel regenerator.

Figure 4-33: Variation of COP and FOM in 0.05 mm 0.3 mm plate thickness.
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Figure 4-34: Variation of COP and FOM in 0.1 mm 0.7 mm particle size packed
sphere regenerator.

Figure 4-35: Variation of COP and FOM in 0.01 mm 0.3 mm width of micro-channel
regenerator.
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Figure 4-36: Variation of Total EG, EG due to heat transfer and EG due to pressure
drop in 0.05 mm 0.3 mm plate thickness.

Entropy Generation (EG) due to heat transfer (Sht) and EG due to pressure drop

(Svd) in three regenerators. EG due to axial dissipation is very small and thus

negligible. There is a balance point where the combination of Sht and SvdS is smallest.

Micro-channel regenerator produces the biggest EG of the three regenerators. By

comparing 3 regenerators with both cooling capacity and COP, packed sphere and

flat plate regenerator should be more favorable. In the modeling, packed sphere

regenerator has been modeled as uniform, and therefore, the pressure drop is much

smaller than that of real device operation. So the experimental COP should be smaller

than the simulation result. Flat plate regenerator has the potential to have a more

efficient performance because of its uniform geometry.

The low efficiency of the flat plate regenerator is partly due to limited heat transfer

surface area. Figure 4-39, 4-40 shows the comparison of performance between the

existing and idea flat plate regenerator when the plate thickness is from 0.2 to 0.4

mm. The heat transfer surface of idea one is 10 times bigger than that of existing

one. Cooling capacity in Figure 4-39 has been improved from 8% to 80% . COP in

Figure 4-40 has increased from 100% to 300% and the maximum COP is 4.82 which

has been improved 65% and can reach 73% COPCarnot.
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Figure 4-37: Variation of Total EG, EG due to heat transfer and EG due to pressure
drop in 0.1 mm 0.7 mm particle size packed sphere regenerator.

Figure 4-38: Variation of Total EG, EG due to heat transfer and EG due to pressure
drop in 0.01 mm 0.3 mm width of micro-channel regenerator.
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Figure 4-39: Variation of cooling capacity in 0.2 mm 0.4 mm plate thickness flat plate
regenerator for different heat transfer surface area.

Figure 4-40: Variation of COP in 0.2 mm 0.4 mm plate thickness flat plate regenerator
for different heat transfer surface area.
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4.8.2 Conclusions

Based on the discussion above, the difference of maximum cooling capacity among

three regenerators is not significant. By comparing both cooling capacity and COP,

micro-channel is not recommended to be the prototype AMR system due to its big

entropy generation and small COP even without considering the inlet and outlet re-

generator loss. Packed sphere regenerator geometry shows good performance which

is very close to flat plate regenerator. However, the experimental result might be

smaller for the non-uniform porosity case, which has a larger loss due to its in ho-

mogeneity. Flat plate regenerator has a potential to be even more efficient, which

is also suggested by JakaTusek [19]. After expanding the limited heat transfer sur-

face by 10 times, COP can be improved by 65%. Our group will further improve it

experimentally with a new technology to increase heat transfer surface area.
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Chapter 5

Idea MCE for Optimum AMR

Regenerator

AMR is considered to be a device that could be used to produce efficient and compact

cooling over a broad range of temperatures. The heart part of AMR is the regen-

erator which exploits the magnetocaloric effect (MCE). The MCE is the property

exhibited by some materials whereby the magnetic field change will cause the heat

entropy change. By using such a material in a regenerator as a refrigerant working

with heat transfer fluid together, AMR is a new challenge comparing to the tradi-

tional refrigeration technology.To understand AMR, the MCE is a key parameter

to maximize the cooling performance and suitable temperature span. Maximize the

cooling performance is a fundamental question since the AMR was created. The idea

of multi-layered regenerator has been proposed in order to strengthen the MCE in a

board temperature span. However it is still a problem that how to select and arrange

materials in a multi-layered regenerator. In this chapter,to increase our understand-

ing of AMR thermodynamics, we investigated the function of MCE, the influence of

the entropy change and operational temperature span to performance. We believe

that finding an idea MCE is a necessary step for muliti-layered regenerator to select

and arrange materials.
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Figure 5-1: MPMS measure magnetization equipment

5.1 Experimental measurement of magnetization

Before the investigation of MCE to performance, experiments to measure magneti-

zation were performed to obtain the entropy change curves of the materials. MPMS

measure magnetization equipment has been used which is showed in Figure 5-1. Equa-

tion 5-1 has been used to Obtain the entropy curves of the materials from magnetiza-

tion. Measurements were carried out on sphere Gadolinium (Gd), which is commonly

used in room-temperature magnetic refrigeration, with a magnetic field of 1T5T. The

parameters of Gd used for measurement are showed in Table . The results are showed

in Figure 5-2. The dependences on the temperature and on the magnetic field for Gd

as well as the existence of the Curie temperature in the neighborhood of 295K were

confirmed.

S =

∫ H

0

∂M

∂T
H (5.1)
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Figure 5-2: Entropy curve of Particle Gd in 1 Tesla

Figure 5-3: Three hypothetical multi-layer regenerators

5.2 Influence of Entropy change and operational

temperature span to performance

Entropy change with the temperature variation shows the MCE of material. In order

to investigate the influence of entropy change and operational temperature span to

performance, three hypothetical multi-layered regenerators have been constructed

(Figure 5-3). The green regenerator arranged by materials of 1∆S entropy change in

40K temperature span. The red regenerator arranged by materials of 1∆S entropy

change in 20K temperature span. The blue regenerator arranged by materials of

0.5∆S entropy change in 20K temperature span.

Heat generated by material, which is also the MCE of material, can be calculated
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Table 5.1: Giving parameters in the comparison of hypothetical regenerators

frequency 1 Hz
Fluid water and ethanol mixture
Total material mass 0.16kg
magnetic field 1T
Thigh in δT40K 313K
Tlow in δT40K 273K
Thigh in δT20K 293K
Thigh in δT20K 273K

by a well known relation as follow:

Q = ∆S∆T (5.2)

Based on Equation 5.2

Q1 = 2Q2 = 4Q3 (5.3)

Q1 is the heat generated by the green regenerator. Q2 is the heat generated by the

red regenerator. Q3 is the heat generated by the blue regenerator.

5.2.1 Results and discussion

Three regenerators will be compared in one dimensional packed media modeling.In

three regenerators, the data of material character excepting MCE are based on sphere

Gd. Q2, the MCE in the red regenerator, equals to the MCE of sphere Gd in the

magnetic field of one Tesla in the exactly same fixed operation temperature span.

Other giving parameters in the comparison simulation are giving in Table 5.1.

In Figure 5-4, the red and blue regenerator are in the same operational temper-

ature span. The MCE of the green regenerator is the twice of the red one. And

the refrigeration performance of the green regenerator showed more than twice bigger

than that of the blue one. It is implied that increase entropy change will greatly

improve the performance. In Figure 5-5, the red and green regenerator have the same

entropy change. And the operatioal temperature span of the green regenerator is twice
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Figure 5-4: The refrigeration performance comparison between the green and red
regenerator

of the red one. The comparison results showed that enlarge the operational temper-

ature span will decrease the performance. And twice lager temperature span has not

reduced half performance. However,Enlarge the operational temperature span dose

not reduce the performance in Figure 5-6. Even the green regenerator is operationed

in 40K but also has double entropy change comparing to the blue regenerator. The

reults showed that the green regenerator has a better performance. It is implied that

Increasing the entropy change can enlarge the operational temperature span. When

the operational temperature span is twice larger, it is not required to use double

entropy change magnetic material to reach the same cooling performance.

5.2.2 Conclusions

In order to investigate the influence of entropy change and operational temperature

span to performance, three hypothetical multi-layered regenerators have been con-

structed and compared. It is implied that increasing entropy change will greatly

improve the performance and enlarge the operational temperature span.
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Figure 5-5: The refrigeration performance comparison between the red and blue re-
generator

Figure 5-6: The refrigeration performance comparison between the green and blue
regenerator
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5.3 Optimization of MCE

5.3.1 Themordynamic requirements

An early themordynamic requirements analysis of the AMR regenerator have been

proposed by Cross et al [5].The analysis are based on the entropy generation mini-

mization.They found the relation of temperature change in material and operational

temperature when keeping the entropy flow as constant.Further analysis was per-

formed by Hall et al [11].He suggested that no unique idea MCE exists for the AMR.

This parprograph is to investigate idealized AMR regenerator behavior. The heat

generated by entropy change and operational temperature can be caculated by Equa-

tion 5-2. According to the first law of the thermodynamics for a reversible system,

the relation of heat generated in hot end Qh and cold end Qc can be caculated as

follow:

Qh = Qc +W (5.4)

By inserting Equation 5.2 in to Equation 5.4, it follows for the ratio of heat in cold

and hot end:
Qh

Qc

=
Th∆Sh
Tc∆Sc

(5.5)

Setting W=0 which means no work has been done from outside,no heat generated by

material itself flow from hot to cold end.Then, the relation of entropy change in hot

and cold end is:
∆Sc
∆Sh

=
Th
Tc

(5.6)

This relation effectively sets the required entropy change ratio between hot and cold

end and sets the optimum T-S profile of the material across the entire temperature

range.
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Figure 5-7: Iso-entropy change regenerator

Figure 5-8: Idea entropy change regenerator

5.3.2 Comparison of Single, Iso-entropy change, Idea entropy

change regenerator

In order to prove this optimum T-S profile will improve the performance of AMR

system. Three types of regenerators will be compared in this paragraph. One is the

Gd regenerator which is the most wildly used single regenerator in room tempera-

ture. Another is the Iso-entropy change regenerator which is based on the idea MCE

proposed by Cross et al [5] (Figure 5-7).The third one is the idea entropy change

regenerator where the entropy change ratio is based on Equation 5.6.(Figure 5-8)

Simulation conditions: 1, Three regenerators will be compared in one dimensional

packed media modeling. 2, The single regenerator is based on a real material spherical

Gd in the magnetic field of one Tesla. 3, The data of material character excepting

MCE are all based on sphere Gd in three regenerators. 4, The MCE are kept as a
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Table 5.2: Summary of numerical modeling given parameters

magnetic material Gd frequency 1
Fluid water and ethanol mixture Aspect ratio 7
Total material mass 0.16kg Mass flow rate 0.007kg/s
Regenerator size 20.312cm3 Porosity of matrix 0.356
Bmax 1T Bmin 0T

Figure 5-9: Comparison of Single, Iso-entropy curve, Idea entropy curve multi-layered
regenerator in cooling capasity in porous media model

constant which are shown in Figure 1, 2, 3 as the red area. 5, Keeping the operation

temperature span as constant (Tc=263K, Th=303K). 6, All the other parameters are

shown in Table 5.2.

5.3.3 Results and discussion

Both in Figure 5-9 and 5-10, the idea entropy change regenerator showed the best per-

formance. In figure 5-9, the cooling capacity of the idea entropy change regenerator is

about double of the single regenerator and 1.5 times of the iso-entropy change regen-

erator. In figure 5-10, the maximization COP of the idea entropy change regenerator

is about double of the single one. The minimization COP of the idea entropy change

regenerator is about four times of the single one. The COP of the idea entropy change
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Figure 5-10: Comparison of Single, Iso-entropy curve, Idea entropy curve multi-
layered regenerator in COP in porous media model

regenerator can be 1.5 times of the iso-entropy change one. The optimum T-S profile

of the material should be used to selet and arrange the magnetic material which will

greatly improve the performance.

5.3.4 Conclusions

In order to deeply understand the thermodynamics of AMR, we examine the influenc

of MCE (entopy change,operational temperature span) to the performance and the

heat balance in an idealized AMR regenerator. An idea MCE which based on the

optimum T-S profile for the case of constant heat generated across the regenerator has

been proposed.For proving this idea, Single, Iso-entropy change, Idea entropy change

regenerator have been compared by one dimentional model. The results showed that

the idea entropy change regenerator has a much better performance that other two

types regenerators. We believe that this idea MCE will be a guide to select and

arrange magnetic material.
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Figure 5-11: Entropy change (δS) depending on Temperature

5.4 Schematic of multi-layer regenerator

The best case for the selection of magnetic material is to use a material which satisfy

special requirements of the the optimum T-S profile. However, this idea material

has not been found yet. Figure 5-11 shows the temperature dependences of entropy

changes for materials with different Curie temperatures. Each material has a large

entropy change at curie temperature and the entropy will change with the variation of

the temperature.Hashimoto et al [12] suggested using multi-layer magnetic material

comprising layers of different magnetic materials in necessary proportion and arranged

in necessary order determined by their ordering temperature. A schematic diagram of

layering is shown in Figure 5-12. The schematic of Tishin [20] et al for the first time

used the multi-layer regenerator idea using Gd-Tb,Gd-Dy and Tb-Dy. The multi-

layer regenerator showed a better performance than the single one. Recently years,

the most famours research group about the multi-layer regenerator is the group in

Canada. Rowe et al [19] [17]used 2 and 3 materials for the packed media regenerator

in room AMR. Figure 5-13 is the schematic diagram from single material regenerator

to multi-layer regenerator in packed media regenerator.The partical will be separated

by mesh inside the regenerator. However, their results showed that the cooling of the

multi-layer regenrators are not always better than the single one. In the near future,

the new multi-layer regenerator based on the idea MCE caculated in this chapter will
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Figure 5-12: Schematic diagram of multi-layer regenerator

Figure 5-13: Arrangement of different magnetic material in paked sphere regenerator

be constructed and compared with the single material regenertor experimantly.
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Chapter 6

Conclusions

In order to commercialize the magnetic refrigeration techonology in room tempera-

ture, the magnetic material and system design have to be both improved. In this

thesis, we investigated the optimum regenerator which is the heart part in AMR

system both from these tow points. The optimization of regenerator geometry is

to improve the cooling system design.The investigation of Idea MCE is in order to

select and arrange magnetic material efficiently.The purpose of this thesis is to find

the idealized AMR regenerator.The knowledge of fundamental physics, mechanical

engineering and computer science for builting complex modeling have been used.

In the part of regenerator geometry design, the entropy generation minimization

method has been used to compare the different geometry regenerators and minimize

the entropy generation generated during the AMR cycle. The following conclusions

can be drawn:

1,The first porous media 2-dimensional and micro-channel model have been con-

structed which have been used to analyze the heat process of the regenerators. The

2-D model and the previous 1-D model were compared. It is concluded that the loss

caused by air convection and the conduction loss in y-axis can not be ingnored. The 2-

dimention porous media model can better predict the performance of cooling system.

2,Influence of Frequency, Aspect ratio, Heat transfer surface have been analyzed in

flat plate, porous media and micro-channel regenerator.It is found that high velocity

can make the heat transfer rate higher for the different regenerator geometries. Thus,
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a high operation frequency is needed to improve the cooling capacity. In high velocity

field, flat plate model is better than porous media model for the better heat transfer

to pressure drop ratio. 3,Entropy generation minimization method has been used to

optimize the real devices and processes.Indeed this method is showing a good way to

deeply understand the thermodynamic process during the cycle. 3,Flat plate regen-

erator is suggested for the potential regenerator.Micro-channel is not recommended

to be the prototype AMR system due to its big entropy generation and small COP

even without considering the inlet and outlet regenerator loss. Packed sphere regen-

erator geometry shows good performance which is very close to flat plate regenerator.

However, the experimental result might be smaller for the non-uniform porosity case,

which has a larger loss due to its in homogeneity. 4,Increase heat transfer surface

area with a new technology is numerically proved to be a good method to signifi-

cantly improve the cooling performance. The realization of this idea is considered to

use a new nano-techonology to achieve. Further more investigation is needed.

In the part of idea MCE for AMR regenerator, the thermodynamic requirement

has been performed.The optimum T-S profile of the material for the idea MCE has

been used to construct a new multi-layered regenerator. Different types of regen-

erators and single regenerator have been compared. The following conclusions can

be draw: 1, The influence of entropy change and operational temperature span have

been examed. It is implied that increasing entropy change will greatly improve the

performance and enlarge the operational temperature span. 2, An idea MCE which

based on the optimum T-S profile for the case of constant heat generated across the

regenerator has been proposed.For proving this idea, Single, Iso-entropy change, Idea

entropy change regenerator have been compared by one dimentional model. The re-

sults showed that the idea entropy change regenerator has a much better performance

that other two types regenerators. 3,The idea MCE will be a guide to select and ar-

range magnetic material.The new multi-layer regenerator based on the idea MCE

need to be constructed experimantly.

These results indicate that the exited regenerator design and single regenerator

are not efficient.The new technology and idea have to be considered.The idea MCE
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regenerator presented is a good instrument to design a prototype of a multi-layered

regenetor.
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	fill_11: 
	2K: 
	TH: 
	313K: 
	TL: 
	293K: 
	Gd_4: 
	frequency_3: 
	1: 
	Fluid_4: 
	Aspect ratio_3: 
	7_2: 
	016kg_4: 
	20312cm 3_4: 
	0356_4: 
	Bmax_3: 
	12T_3: 
	TH_3: 
	307K_2: 
	Bmin_3: 
	0T_3: 
	TL_3: 
	267K: 
	frequency_4: 
	1 Hz: 
	Fluid_5: 
	016kg_5: 
	1T: 
	313K_2: 
	273K: 
	293K_2: 
	273K_2: 
	Gd_5: 
	frequency_5: 
	1_2: 
	Fluid_6: 
	Aspect ratio_4: 
	7_3: 
	016kg_6: 
	20312cm 3_5: 
	0356_5: 
	Bmax_4: 
	1T_2: 
	Bmin_4: 
	0T_4: 


