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Abstract

In previous studies of flapping flight aerodynamics, the interaction between the surrounding environment

such as gust response or takeoff/landing, was not usually considered. Also, the knowledge on the wing

deformation during flapping, which has recently been attracting attention for its potential benefit in the

efficient generation of aerodynamic forces, is far from complete. In the present study, the integrated

flapping flight simulator is utilized for elucidating the aerodynamic force generation mechanisms in such

complex situations.

First, a rigid body dynamics (RBD) solver with six degrees-of-freedom (6 DoF) was developed. By

the loose coupling of the solver with an existing computational fluid dynamics (CFD) solver for flapping

flight, it can now be possible to see the position or attitude changes in response to the perturbation,

or to achieve a controlled flight with a controller. A newly-proposed stabilization mechanism named

flapping counter torque (FCT) was tested as an example, showed considerable coupling between the

DoF. Secondly, to examine the effect of ground on the flapping flight, a fruit fly hovering was tested.

It was shown the body is effectively on the high pressure air cushion on the ground, which is originally

generated by the downwash due to flapping, and body is earning more than 7% of the total vertical force.

Thirdly, the influence of ground and leg thrust in addition to the aerodynamic forces on the takeoff of

a butterfly was investigated with the aid of three high speed cameras to the RBD & CFD solvers. As a

result, it was understood that the leg thrust force has the largest impact, seconded by aerodynamic forces,

whereas the ground has almost no effect in the specific case of the escape, quick takeoff. Finally, the wing

deformation of a hummingbird during hovering in a natural situation was explored. The four high speed

video cameras and the following examination showed for the first time that the hummingbird wings is

indeed compliant at least as the same as or more than the insects wings. The numerical simulation to

compare the performance of real deforming wing and an ideal flat-plate wing revealed that the real wing

outperforms both in the magnitude of the aerodynamic force and the force-to-power ratio.

It can be concluded that the flyers in the natural world perform flapping flights efficiently and robustly,

by making the most of the interactions between the surrounding environments.
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Chapter 1

General introduction

Similarly in the other research areas, numerical simulation has advantages and disadvantages as a tool of

investigation of flapping flight. One of the most prominent features of using computational fluid dynamics

(CFD) in flapping flight is the acquisition of the three-dimensional flow fields, from which one can directly

obtain the aerodynamic forces and torques without any noises which usually contaminate the measured

values in (physical) experiments. In experiments, obtaining the three-dimensional and/or time-resolved

flow structure with particle image velocimetry (PIV) or other methods is still not quite easy, although

there are several attempts (Liu et al., 2013, also see Bomphrey, 2011 for review). On the other hand,

CFD strongly depends on the boundary conditions, i.e. wing kinematics, wing shape, etc.

The first three-dimensional CFD study was published in fifteen years ago (Liu et al., 1998). Since

then, although there have been numbers studies using two-dimensional numerical simulation with either

Naveir-Stokes or quasi-steady blade element methods, the number of researchers in 3D CFD has not

been increased that much, probably partly due to the difficulties accompanied with treating a complex

three-dimensional wing kinematics. Therefore, the flight conditions studied so far are mainly restricted to

merely two: hovering or forward flight. The former includes hawkmoth (Liu et al., 1998; Aono et al., 2009;

Nakata et al., 2011; Zheng et al., 2013a), fruit fly (Sun and Tang, 2002b,a; Ramamurti and Sandberg,

2007; Aono et al., 2008), honeybee (Liu and Aono, 2009), dragonfly (Sun and Lan, 2004; Young et al.,

2008; Hamamoto et al., 2013), or thrips (Liu and Aono, 2009); the latter includes desert locust (Young

et al., 2009), butterfly (Zheng et al., 2013b), dragonfly (Wang and Sun, 2005), or beetle (Le et al., 2013),

among others. Most of these studies are tethered flight, i. e. no whole-body motion included. Also,

most of them does not consider wing deformation or wing camber, rather, the wings have usually been

treated as flat, rigid, non-deforming plate (although some of the aforementioned studies do treat the wing

deformation).

One of the current trends being explored in the experimental flapping flight researchers is the expand-
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1. General introduction

ing the flight envelope from just a hovering or simple forward flight to the other flight mode, such as

takeoff (Tobalske, 2004), turning, or even backward flight (Sapir and Dudley, 2012). The environmental

conditions are sometimes also not simple. For instance, flight in low (Chai and Dudley, 1996; Altshuler

and Dudley, 2003; Altshuler et al., 2004) or high (Altshuler et al., 2001) density gases, flight with added

weight (Chai, 1997; Chai and Millard, 1997; Dillon and Dudley, 2004; Mountcastle and Combes, 2013), or

even flight in the rain (Ortega-Jiménez and Dudley, 2012) have been tested. This has a strong attraction

to the biology community, whose main focuses are usually the animal behavior, ecology, or sometimes

evolution (Hedrick, 2011).

Another direction being pursued is the detailed model design. It has been know that, quite roughly

speaking, that when the Reynolds number is low, the angle of attack is large, and the flow is rather highly

unsteady, there would very likely be the dominance of leading-edge vortex in terms of aerodynamic forces.

Otherwise, conventional aerodynamics for fixed- or rotary-wing aerodynamics would be able to explain

most of the lift generation. So the recent trends in the study of the aerodynamics of flapping flight has

been departing from qualitative (why or how an animal can fly) to quantitative (how much energy is used

or how well it can generate lift or thrust) ones. When tackling such issues, the simplified wing models do

not always sufficient and usually requiring the consideration of wing deformation. These lines attract of

particular interest from the aerospace engineering community, because people want to know the design

criteria of how to build efficient and effective flapping-wing machines.

In the present paper, I ambitiously pursue the both trends. In Chapter 2, a recent concept in the

flight stability problem, termed flapping counter torque (FCT, Hedrick et al., 2009) acting on a hovering

fruit fly is tested via CFD with the aid of a newly-developed simplified flight dynamics solver. This is the

one of the attempts to depart from the ordinary hovering. In Chapter 3, the same fruit fly model is placed

close to the ground surface. Although the flight mode is a simple tethered hovering, an interference of

the ground to the fly, so-called ground effect, is observed. In Chapter 4, in addition to ground effect,

jumping off of the ground in takeoff is investigated. The ground reaction force at takeoff is commonly

termed as leg thrust, and one of the objectives is to estimate this leg thrust via experiment and numerical

simulation. Because a swallowtail butterfly is used as the specimen, the significant wing deformation is

also needed to be considered. In Chapter 5, a hovering hummingbird is photo recorded and the flow field

around the wing is numerically solved. The wing of hummingbird is usually referred to as rigid even by

the biomechanics researchers. Although it is true that the wing is less compliant compared to the wings

of larger birds which have well movable joints, I show the wing of hummingbird is not as rigid as it might

seem, and the wing deformation cannot be neglected in the estimation of aerodynamic performance.
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Chapter 2

Flapping flight with whole-body

motion: flapping counter torque

2.1 Introduction

To date, in order to obtain time course of the aerodynamic forces, stable hovering or steady forward flight

has been the main subjects, where either a robotic flapper or numerical simulation was used. Sometimes

the inverse dynamics is also used for a real insect in such flight conditions. It does not seem to be there

is a large number of aerodynamic force measurement or computation on the other flight sequences such

as takeoff or turning, where there is a translational and/or a rotational acceleration of the body, which

would significantly affect the generation of aerodynamic forces or torques. There exists at least one set

of experimental (Fry et al., 2003) and numerical (Ramamurti and Sandberg, 2007) efforts for turning

flight where both the wing kinematics and body motion are prescribed. For stability or control analysis,

however, equations of motion must be solved (Wu et al., 2009). For this purpose, we have developed a

coupled solver of fluid dynamics and simplified flight dynamics for a rigid body (Maeda et al., 2010).

In this chapter I show the free flight simulation of a fruit fly with initial yawing angular velocity. It

has been reported there is an auto-stabilizing mechanism against rotational motion of a flapping flyer

termed as flapping counter torque (FCT), which is summarized in a Commentary by Hedrick (Hedrick,

2011). The objectives of the current chapter are twofold. One is the confirmation of the flapping counter

torque with a Navier-Stokes solver instead of simple blade-element model. So far there has been no

report of such a numerical simulation. The high-accuracy numerical simulation of FCT would promote

deeper understanding of the phenomena, together with the experimental simulations (Cheng et al., 2010;

Dickson et al., 2010). Another aim is to test the effect of 6 degrees of freedom (6 DoF) to the yaw
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dynamics. The previous studies treated only 1 DoF turning but there could be coupling between other

axes, consideration of which would be necessary for the realistic situations.

I carried out an FCT simulation with similar setup to the previous experimental study (Hedrick et al.,

2009) using a coupled solver of computational fluid dynamics (CFD) and simplified rigid body dynamics

(sRBD) solver. The results of the computation are rather surprising. The deceleration due to flapping

counter torque is clearly confirmed, but the decay of angular velocity is faster than either blade-element

estimation or experimental observation. The 6 DoF simulation also resulted in quicker halt but with roll

and pitch disturbance. One explanation for this situation is the inclusion of active control during the

voluntary turning in order to stabilize roll and pitch.

2.2 Methods

The numerical simulation was carried out with coupling two solvers, fluid dynamics solver and simplified

flight dynamics solver. The details of these solvers are described in the appendices A and B, respectively.

2.2.1 Modeling the fruit fly with flapping counter torque (FCT)

A fruit fly model is used for the FCT computation. The parameters for the model are presented in Table

2.1. The fruit fly (Drosophila melanogaster) model is basically the same as that used in Aono et al.

(Aono et al., 2008). A body and two wings are assumed to be rigid and no deformation is considered.

In order to see the effect of the deceleration due to the symmetric flapping motion combined with the

rotational motion, or Flapping Counter Torque (FCT), we applied an initial angular velocity to the fruit

fly. To exclude the effect of impulsive large aerodynamic forces/torques at the beginning of the flow field

computation, the fruit fly is given the constant angular velocity of 1,600 deg/s around z-axis (vertical

axis) in the inertial frame during the initial one wingbeat cycle (-1 ≤ t/T ≤ 0, Fig. blue solid line in

2.2C). During this forced rotation period, only the fluid dynamics is solved and flight dynamics solver is

disabled. At t/T = 0.0, the fly is released, when the flight dynamics is activated. The computation is

run until t/T = 4.0. Note the z-axis of inertial frame coincides with the z-axis of stroke plane frame in

Hedrick et al. since the stroke plane angle is zero in the both studies.

2.2.2 Effect of wing kinematics

Four simulation cases are performed. In the first case, a 1 degrees-of-freedom (DoF) computation is done

where only the rotational motion around z-axis of inertial frame is allowed after the release. The hovering

wing kinematics is shown in the Fig. 2.1 and is the same as that used in Aono et al. (Aono et al., 2008).

Therefore, this story behind this simulation is such as: a fly in a stable hover is affected by an idealized
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Table 2.1. Model parameters. Moment of inertia is the wingbeat cycle-averaged value in the body
frame.

Reynolds number, Re 139
Reduced frequency, k 0.210
Wing length, R (mm) 2.39 a

Mean chord length, cm (mm) 0.80 a

Reference velocity, Uref (m/s) 2.61
Wingbeat frequency, f (Hz) 218
Wingbeat amplitude, Φ (deg) 143
Density of air, ρ (kg/m3) 1.225
Kinematic viscosity of air, ν (m2/s) 1.5× 10−5

Stroke plane angle, χ (deg) 0
Body angle, β (deg) 50 a

Total mass, M (mg) 0.96
Body mass, mb (mg) 0.9504
Wing mass (two wings), mw (mg) 0.0096
Moment of inertia (x’-direction), J ′x′ (N·ms2) 1.11×10−13

Moment of inertia (y’-direction), J ′y′ (N·ms2) 5.12×10−13

Moment of inertia (z’-direction), J ′z′ (N·ms2) 5.11×10−13

aHedrick et al., 2009.

Figure 2.1. Fruit fly model. Grid system (A). Close up view of fruit fly grid (B) where blue spheres
indicate outer boundaries of each block. Wing kinematics (C) and the definitions of the wing and body
angles, as well as the illustration of the body frame (D). Note the feathering angle is defined so that it
corresponds to (90 - αgeo) when the elevation angle is zero, where αgeo is geometrical angle of attack.
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gust so that it obtains a pure yawing rotation, but it still does not notice it is rotating because of the

sensory delay, and continuing the same symmetric kinematics as hovering. According to Hedrick and

colleagues, the fly must stop its rotation without actively changing the wing kinematics asymmetrically.

In another case, a 6 DoF flight dynamics is allowed after the release, instead of 1 DoF. The other two

cases are 1 DoF computations but the wings do not flap: in one case the feathering angle is 0 deg (i.e.

geometrical angle of attack is 90 deg) and in the other the feathering angle is -90 deg (i.e. geometrical

angle of attack is 0 deg). The overall conditions of the simulations are similar to those in Hedrick et al.

Major differences in our computation are twofold. One is that the full 3D Navier-Stokes equations are

solved in my study, compared to the quasi-steady blade element method in theirs. Therefore more precise

aerodynamic forces and torques are expected. The other is that in one case 6 DoF rigid body dynamics

is computed with fully coupled with the flow solver, from which coupling effect could be observed.

2.3 Results

The result of fruit fly simulation is summarized in Figs. 2.2 and 2.3. Note in Fig 2.3 the dotted lines

correspond to the 1 DoF simulation results and the solid lines to the 6 DoF simulation results. History

of aerodynamic torque around z-axis of inertial frame (Naz) is shown in Fig. 2.2A and B. Note when

the aerodynamic torque is negative, it acts to retard the rotation. Clearly the flapping motion enhances

the counter torque, as shown in the previous studies. The effect of the FCT is further clearer in the

history of normalized angular yaw velocity in inertial frame (Fig 2.2C). However, in our simulation the

time to reach the half the maximum (initial) angular velocity is approximately one wingbeat cycle in the

1 DoF flapping case (blue line), which is about half the value in Hedricks observation and modeling. At

this stage of the research, the reason of the discrepancy is unknown. One possible reason had been the

phase of wing kinematics, i.e. at which state do we start the flapping simulation: downstroke, upstroke

or in between. Therefore, we tested four different flapping phases including current one (starting from

downstroke), but the overall decay slope was not affected (results not shown).

In the 6 DoF case (red lines), the aerodynamic torque looks diverging (Fig. 2.2B), so is the angular

velocity (Fig. 2.2C). The angular velocity oscillates around zero, which is not observed in the 1 DoF

case. Therefore this phenomenon is likely to be arisen from the coupling effect from the other degrees of

freedom. One prominent difference between 1 DoF and 6 DoF cases is the pitching oscillation (Figs 2.3D,

E). This is the natural consequence of the large pitching aerodynamic torque (Fig 2.3B); there is a quite

similar trend in the case of 1 DoF, but any motions except for the yaw is magically canceled and do not

appear (Fig. 2.3D). Another feature of the 6 DoF simulation is the presence of the translational body

motion (Fig 2.3A). Therefore it can be presumed the strong pitching torque together with translational
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(A), aerodynamic torque in the body frame (B, C), angular velocity in the body frame (D), and body
attitude (E) are shown.
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motion is likely to be responsible for the slower reduction in the body frame yaw angular velocity and

increasing trend in the body frame rolling angular velocity.

The yaw torque and yaw angular velocity

2.3.1 Visualization of flow-field and body attitude

The visualization of the flow field and body motion at the beginning of each wingbeat period is presented

in Fig. 2.4. The white and yellow smoke-like objects are the Q-criterion iso-surface which is commonly

used for visualizing vortex.

The surface pressure contours of the 1 DoF flapping model at the first mid-downstroke after release

(t/T = 1.3) is shown in Fig. 2.5. This timing was selected because the strongest counter torque is

observed (Fig. 2.2B, blue line). The low pressure regions near the leading edges corresponds to the

leading-edge vortices (LEVs). It is evident the right wing exhibit slightly lower pressure.

2.4 Discussion

2.4.1 Flapping counter torque mechanism

Flapping counter torque was confirmed. But the surface pressure difference between right wing and

left wing surfaces in the 1 DoF computation looks very small. This is logical, however, considering the

contribution of the initial yaw angular velocity for the wing angular velocity. Fig. 2.6 shows the angular

velocities of right wing in terms of positional angle with or without FCT. The peak angular velocity

exceeds 80000 deg/s, and the absolute angular velocity is more than 16000 deg/s (ten times the initial

angular velocity of 1600 deg/s) for around 90 % of the wingbeat period.

The small aerodynamic forces in the non-flapping computations are evident from the vortices in the

flow field visualization (Fig. 2.4) because the yellow iso-surfaces in non-flapping cases are two orders of

magnitude smaller than the white iso-surfaces in the flapping cases (0.001 compared to 0.1, in dimension-

less form). Therefore, it is further clarified that flapping is the better way than the simple aero-breaking

for fruit flies.

2.4.2 Effect of phase

Three different phases of wing kinematics were tested (Fig. 2.7). The conditions are the same as the 1

DoF computation but the wing kinematics were shifted by π/2, π, and 3π/4 from the original kinematics.

However, the general decay trends are quite similar to the one in the original phase.
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(A)

(B)

(C)

(D)

(E)

(F)

Figure 2.4. Visualization of the motion and flow around the wings. (Left to right) red model, flapping
with 6 DoF dynamics; blue model, flapping with 1 DoF dynamics; green model, no flapping and wings
are perpendicular to the stroke plane; and purple model, no flapping and wings are parallel to the stroke
plane. White transparent smoke-like objects in the left two models are the iso-surfaces of Q-criterion at
0.1; the yellow ones in the right two models are those at 0.001. (A) to (F) correspond to t/T = -0.075,
0.0, 1.0, 2.0, 3.0, and 4.0, respectively. Note that in each model, insect is under forced yaw rotation to
its left during t/T ≤ 1.0 (i.e. zero degrees of freedom until B).
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(A)

Rotation

(B)

Rotation

Figure 2.5. Dorsal (A) and ventral (B) views of 1 DoF flapping model at t/T = 0.3 (first mid-
downstroke in free rotation periods), showing surface pressure contours. Note the pressure is normalized
gauge pressure and the range is different for (A) and (B).
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2.4.3 Comparison between blade element calculation

The non-dimensional decay half-life (t1/2) is the time taken for a decelerating fly to reach half the initial

angular velocity, divided by wingbeat period. The prediction of this value by my computation was slightly

less than one (Figs. 2.2 and 2.7). This is more than twice faster compared to the 2.00 ± 0.32 wingbeats

in Hedrick et al. (Table 1 in Hedrick et al., 2009). There could be several possible reasons for this

discrepancy.

Moment of inertia

Moment of inertia plays the significant role in the rotational dynamics. If the yawing moment of inertia is

smaller in my computation, the deceleration would be quicker because the angular momentum the insect

has at the time of release would be smaller. For comparison, the z-component of moment of inertia in

the stroke plane frame Jz is calculated from the values in the body frame (Table 2.1) as (eq. S37 in

Supporting Online Material for Hedrick et al., 2009):

Jz = J ′z′ cos2 β + J ′x′ sin2 β = 2.76× 10−13 (N ·m s2) (2.1)

where J ′x′ and J ′z′ are x’- and z’- components of the moment of inertia in the body frame, and β is

body angle (50 deg). This is very close to the value used in the blade element calculation (I ′zz =

2.72 × 10−13 N ·m s2, Table 1 in Hedrick et al., 2009). Thus, this should not be the reason of the

discrepancy.

Morphological, kinematical, or environmental parameters other than moment of inertia

The other morphological and kinematics parameters directly comparable are wing length R, mean chord

length cm (c in Hedrick et al., 2009), wingbeat frequency f (n in Hedrick et al., 2009), wingbeat amplitude

Φ, and mass M . However, I have chosen the same values as Hedrick et al. Wingbeat amplitude is slightly

larger but it is just around 2 percent greater (143 deg compared to 140 deg in Hedrick et al.) thus would

not explain the difference in the decay. Air density is not explicitly written in the literature but it would

probably be 1.23 kg/m3 or close.

In terms of morphology, non-dimensional third moment of area r̂3(S), which is dependent upon the

wing planform shape, may be slightly different as well, and since this variable is cubed in the blade-element

model (eq. S23 in Supporting Online Material for Hedrick et al., 2009), even the slight difference could

be amplified and potentially results in a substantial difference in the resultant decay speed. According

to Table 1 in Hedrick et al. or Table 1 in Ellington (Ellington, 1984)), the variation of r̂3(S) across the

species is roughly from 0.54 to 0.64, i.e. 0.59 ± 0.5, where 0.59 is the value for fruit fly in Hedrick et
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Figure 2.8. Comparison of aerodynamic yawing torques acting on body (magenta solid line) and two
wings combined (gray dashed line).

al. This results in r̂33(S) from 0.157 to 0.262, which correspond to 23 % decrease and +28 % increase.

However, since my wing model is also based on the real fruit fly planform (Aono et al., 2008), it is not very

likely that the r̂3(S) (and hence r̂33(S)) in my model falls in to these extremes. Therefore, the influence

of planform difference would be, if any, limited. Probably of the order of ten percent or so.

Aerodynamic torque on body

The force acting on the body is considered in my computation but neglected in Hedrick et al. However,

as mention by them, this value is quite low (Fig. 2.8) and should not cause the large discrepancy.

Wing kinematics

Wing kinematics is quite different between the studies. I have employed the realistic wing kinematics

(Aono et al., 2008) original from Fry et al. (Fry et al., 2003, 2005). Contrastingly, simple harmonic

motion and lower amplitude of feathering angle (± 45 deg compared to my ±60+ deg). This difference

in wing kinematics seems to have a quite large impact on the result.

Actually, the selection of feathering amplitude affect the FCT model. I re-calculate the FCT model

and found that their approximation of K ' 6.0 is underestimation by itself. First, obviously φ̂ in the eq.

S25 must be a typographical error and should be replaced with t̂, i.e.,

α(t̂) =
π

4
| tanh (2.2 sin (2πt̂))| (2.2)
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Figure 2.9. The relationship between feathering semi-amplitude and K (blue open diamonds) or t̂1/2
(magenta filled squares).

otherwise the history of α(t̂) looks unrealistic. Although the curve from eq. 2.2 does not actually reaches

45 deg, it looks to be true.

Then, simple calculations using Excel with time step dt̂ = 0.001 and assuming mean positional angle

being zero, I obtained K ' 7.45 (or -7.45, depending on the selection of positive direction of positional

angle), which is fairly larger than 6. The greater K means stronger aerodynamic damping. In fact,

calculating with K = 7.45 obtains non-dimensional half life t̂1/2 ' 1.58 (Fig. 2.9). Furthermore, the

kinematics in my computation is different and the feathering semi-amplitude for my model was around

60 deg. This yields slightly lower value of K ' 8.13 and t̂1/2 = 1.45 (Fig. 2.9). Hedrick et al. selected

K = 6 presumably because they wanted to use the same value for all the species other than fruit fly,

whose drag coefficients CD would possibly lower than that of fruit fly. However, this selection makes

the effectively lower the feathering semi-amplitude (around 30 deg. See Fig. 2.9) which resulted in the

increase in the angular velocity half-life by around half the wingbeat cycle from 1.5 to 2.0.

Other considerations

The selection of accurate parameter K makes the discrepancy smaller. However, there is still around

half the wingbeat difference. The possible causes include different wing kinematics (esp. feathering angle

and elevation angle), insufficient grid density, three dimensional effect, or nonlinear coupling effect in my
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2.4 Discussion 2. Flapping flight with whole-body motion: flapping counter torque

numerical simulation. All of them may alter the aerodynamic forces and hence torque, which corresponds

to the alteration of CF (force coefficient) in the model of Hedrick et al. For example, spanwise flow and

LEV (leading-edge vortex) formation and stabilization could be affected by the whole-body rotation

Lentink and Dickinson (2009), which might not have captured well in the blade-element model. Another

possible error arises from the assumption of constant location of center of pressure in the blade-element

model. It is not very clear which location they chose from Hedrick et al., 2009 but in an accompanying

paper it is the 70% wing length (Cheng et al., 2010). From the pressure contour of the current study

(Fig. 2.5) the center of pressure in my fruit fly may locate slightly nearer to the wingtip, which must be

calculated for further investigation.

2.4.4 Comparison between observation

The difference between blade-element model and the current CFD-sRDB coupled computation has partly

been explained. However, there still remains a notable difference between experimental results and my

computation. The real fruit fly takes slightly longer than 2 wingbeats to reach half the initial yaw angular

velocity (Fig. 2A of Fry et al., 2003, dark blue line in Fig. 3B of Hedrick et al., 2009). This is more than

twice the time of my computation and around 30 % longer than the blade-element calculation with more

realistic K value, therefore need some explanations.

One such explanation is the real fruit fly in a voluntary turning is not actually use the truly symmet-

rical flapping. Consider a real fruit fly in a voluntary turning, or, saccade. During the course of flight, the

fly must be keep controlling its body orientation not only yaw but roll and pitch, as well as translational

motions. Then it is not quite reasonable to suddenly stop active control and change the wing kinematics

to perfect symmetrical one, totally relying on the passive damping due to FCT. Specifically, my 6 DoF

computation shows the symmetrical wingbeat induces roll, pitch, and translational deviations. In the

real observation, however, the deviation in pitch seems to be negligible and roll is also small, but slight

changes in vertical and horizontal velocities are observed (Fig. 2A of Fry et al., 2003), whereas the wing

kinematics, especially elevation angle and feathering angle are slightly but notably different between right

and left wings, even at the onset of the yaw deceleration (’deviation’ and ’angle of attack’ in Fig. 2B of

Fry et al., 2003. Look at just after the ’Saccade’ period). The partial contribution from active control

has also been suggested from robotic fly experiment (Cheng et al., 2010), although the conclusion is

opposite with my current study: they concluded FCT is insufficient for the termination of yaw turning

and requires additional active counter torque. Therefore, it may be safer to state it requires further ex-

aminations in terms of voluntary turning. My impression is that the fly need to actively stabilize mainly

the translational motion, because flapping counter force (FCF) due to whole-body translational motion

(Cheng et al., 2010).
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2.5 Conclusion 2. Flapping flight with whole-body motion: flapping counter torque

What I want to emphasize here is the distinction between voluntary turnings and the response to

external disturbance, e.g. gust or visual stimuli. If the animal is in a symmetric hovering and then

exposed to a disturbance then at least during the duration of the latency, there is no way of executing

active control and the fly must rely on the passive, flapping counter torque. Then the fly react to the

disturbance by actively changing the wing kinematics Ristroph et al. (2010). This include two differences

against voluntary turning. One is that the insect had not been in the active yaw control. Another is that

the disturbance would very likely not a pure yaw rotation but a translational movement or combination

of translational and rotational. Therefore, we should be careful to the situation the flapping flyers are in

when discussing active/passive discussion.

2.5 Conclusion

Flapping counter torque is for the first time confirmed in the coupling of a Navier-Stokes solver and a

simplified rigid dynamics solver. The results of both 1 DoF and 6 DoF computations show substantially

faster decay in the yaw angular velocity compared to either blade-element model or observation. The

cause of the discrepancy between blade element model is partially resolved but slight deviation remains

for further study. The discrepancy against observation implies the inclusion of active control at the end

of the voluntary turning, and the distinction between a voluntary turning and the gust response was

underscored.

Future works may include the FCT simulation on the other flapping flyers such as hawkmoth (ob-

servation and robotic experiment have been done, see Hedrick and Robinson, 2010; Cheng et al., 2011),

hummingbird (Altshuler et al., 2012), or a micro air vehicle (MAV. See Sunada et al., 2010).
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Chapter 3

Flapping flight with ground effect:

fruit fly hovering

3.1 Introduction

Hovering is a miracle of insects that is observed for all sizes of flying insects. Insects fly by flapping their

wings to create lift and thrust forces simultaneously. Flapping-wing aerodynamics associated with insect

flight prominently features unsteady motions at an intermediate Reynolds number, which is normally

characterized by large-scale vortex structures, complicated flapping-wing kinematics, and flexible wing

structures (Shyy et al., 2013). One of the challenging problems in uncovering aerodynamic mechanisms

in insect flight is to answer a central question of how the complicated wake topology is generated and

how it correlates with the aerodynamic force generation.

Studies on unsteady flapping-wing aerodynamics of a single or a paired wing model in hovering and/or

forward flight have been the main subject until recently, which have been done either experimentally with

robotic insect wing models or real insect or bird wings, or computationally with numerical wing models

(Shyy et al., 2013). However, there has been little focus on the aerodynamic characteristics when an

animal is flying close to the ground, i.e. takeoff, landing, or hovering just above the ground or leaves

e.g. for feeding nectar. In the previous studies of flapping wing in ground effect, Gao & Lu used two-

dimensional numerical simulation for low Reynolds number regime (Re = 100, Gao et al., 2008; Gao and

Lu, 2008) and Truong et al. used robotic flapper for a beetles wing (Truong, Byun, Kim, Yoon and

Park, 2013; Truong, Kim, Kim, Park, Yoon and Byun, 2013). Both of the studies reported increase in

vertical force. Also, Dickinson et al. reported the augmentation of force in robotic flapper (See ref. 25 of

Dickinson et al., 1999). In these works, however, bodies of the insects were neglected.
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3.2 Methods 3. Flapping flight with ground effect: fruit fly hovering

In a rotorcraft in ground effect, there is a high-pressure region on the lower side of fuselage which

somewhat compensates the vertical drag or so-called download6,7). We therefore hypothesized that

in hovering flights in ground effect by flapping wings, bodies may play some role in the vertical force

production. To investigate the body effect, we have carried out a three-dimensional computational fluid

dynamic study on the hovering of a model fruit fly (Drosophila melanogaster) in ground effect (IGE) and

out of ground effect (OGE) where the model insect is composed of a body and two wings. Comparison

between IGE and OGE results revealed that a specific positive pressure region observed on the lower side

of the body is responsible for a pronounced increase in the vertical force in the IGE hovering.

3.2 Methods

3.2.1 Numerical model and computational conditions

The computational fluid dynamic method used in this chapter is essentially the same as that found in the

previous chapter, with marked difference that the whole body is now fixed in space. Also, the bottom

boundary condition has changed to introduce the virtual ground in the case of IGE computation.

For this this study Pbody = 0 because body is tethered and vsurf,body = 0. Also note that the force

and power are given in dimensional forms. Details of the flow solver can be found elsewhere (Liu, 2009).

The computational conditions are taken almost the same as those by Aono et al. (Aono et al., 2008)

but with some modifications with consideration of the ground. Instead of an O-O type spherical grid,

in this study we employed a Cartesian grid as the background grid, in which a body grid and two wing

grids are immersed in, as depicted in Fig. 3.1. Note that the outer boundary of the wing grid blocks are

taken closer to the wing surfaces compared to the grid in Fig. 1B in Aono et al. (Aono et al., 2008) to

ensure more accurate wing-wing interaction particularly when the wings are getting close to each other

in pronation or supination. The outer boundary of the body grid block is also taken closer to the body

surface than before, so as to avoid contacting or protruding from the ground surface. In the global grid

block, the grids are clustered to the flyer blocks (Fig. 3.1A and B). For the IGE computation, the grids

close to the bottom boundary are further clustered to the ground surface to better resolve the boundary

layer (Fig. 3.1B).

Two computations were performed: in ground effect (IGE) and out of ground effect (OGE). The

model parameters are summarized in Table 3.1. The height h of the model fly measured at wingbase

from the bottom boundary is normalized by the wing length R as h/R, which is set to 5.2 for OGE while

0.8 for IGE. For the bottom boundary in the OGE computation, zero gradient conditions are taken for

velocities and pressure to avoid any possible influence from the ground. For IGE, the bottom boundary

is treated as a solid wall with zero pressure gradient condition. For all the other outer boundaries of
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Figure 3.1. Grid systems. Global grid blocks for (A) OGE and (B) IGE computations, where h is the
height from bottom outer boundary to the wing root of a fruit fly model. Grids of a fruit fly body and
wings (C), where some portions of the outer boundaries for the body and left wing as well as a cross
section for the right wing are colored in blue.

Table 3.1. Model parameters for both OGE and IGE computations.

Reynolds number, Re 136 (= Urefcm/ν)
Reduced frequency, k 0.215
Wing length, R (mm) 2.39 a

Mean chord length, cm (mm) 0.80 b

Reference velocity, Uref (m/s) 2.55 (= 2ΦRf)
Wingbeat frequency, f (Hz) 218 a

Wingbeat amplitude, Φ (rad) 2.44 a

Density of air, ρ (kg/m3) 1.225
Kinematic viscosity of air, ν (m2/s) 1.5× 10−5 a

Stroke plane angle, χ (deg) 0 a

Body angle, β (deg) 45 a

aAono et al., 2008.
bHedrick et al., 2009.

the global grid, pressures are set to be initial (ambient) value and the zero velocity gradient conditions

are taken. At the interfaces of the local and global grid blocks, velocities and pressures are interpolated

and transferred each other (Liu, 2009). The body angle, the stroke plane angle (Table 3.1) and the wing

kinematics (Aono et al., 2008) were set to be the same in the two cases. Note that the height (h/R = 0.8)

chosen for the IGE computation is the lower limit to ensure the sufficient clearance between the body

grid outer boundary and the ground. Any further reduction in height requires a manipulation in body

angle or body shape.

The pressures p shown in the following sections are all the dimensionless gauge pressure. A gauge

pressure is the deviation from ambient pressure and this is further normalized with ρairU
2
ref(= 7.94Pa).

For example, p = 0 in the pressure contour is the same value as the ambient pressure, and p = −1.0 is

the 7.94 Pa lower than the ambient.
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3.2.2 Validation

The grid size and the number of grid points were carefully selected after a test to ensure sufficiently

qualified grids as well as a reasonable computational time. The global grid block is a cube with a side 10

times the wing length (10R). The number of grid points in i×j×k directions are: global grid, 89×97×93;

body grid, 45× 45× 9; and right and left wing grids, 49× 49× 11 each.

The influence of the grid resolution on the computational results were investigated by further intro-

ducing a fine grid system with a global grid of 161 × 141 × 127, a body grid of 61 × 61 × 9, and wing

grids of 65 × 65 × 11 each. The computations with the fine grids for both OGE and IGE conditions

were carried out up to five wingbeat cycles. While the fine grid (Fig. 3.2A, open symbols) shows slightly

greater values in vertical force compared to the coarse grid (Fig. 3.2A, filled symbols), it seems that the

values in the two grid resolutions are converging. Also the vertical force ratios between IGE and OGE

defined as (Fz,ave,IGE/Fz,ave,OGE) is almost the same (Fig. 3.2B: red filled triangles, coarse grids; green

open triangles, fine grids). From the results of the coarse grids, it is seen that achieving the minimum

stroke to stroke variation in vertical force takes a long time (ten to twenty wingbeat cycles, see the next

section). Since the finer grids are computationally more expensive, the coarse grid system was therefore

chosen for the following investigation of the forces, powers, and flow visualizations.

3.3 Results and discussion

3.3.1 Mean aerodynamic forces and power

Wingbeat cycle-averaged vertical forces are plotted in Fig. 3.2 Blue filled squares and black filled circles

represent IGE and OGE, respectively. It is seen that the vertical force in the IGE case shows larger

magnitude than the OGE case in any wingbeat cycles. Also, in both cases it is observed that the vertical

force has a strong peak in the first wingbeat cycle due to the unsteady effect. It is also seen that the

time-averaged vertical force reached a plateau by around 10 wingbeat cycles in the case of OGE. In

contrast, it took approximately twice the time in the case of IGE. Note that the vertical forces in both

OGE and IGE cases are always greater than the body weight of the model fruit fly (= 9.41 µNAono et al.

(2008)).

As shown in Table 3.2, for the 20th wingbeat cycle, the IGE case shows an 8.5% increase in the vertical

force (Fz,ave) but a slight (1.6%) decrease in the aerodynamic power (Pave) compared to the OGE case,

which results in an approximately 10% improvement in the vertical force-to-power ratio (Fz,ave/Pave).

On the other hand, the horizontal forces are more than three orders magnitude smaller than the vertical

forces in both OGE and IGE. It may be presumed that the real fruit fly likely take the advantage of
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this bonus in the Fz,ave/Pave in ground effect for e.g. a reduction in metabolic rate during hovering by

adjusting the wing kinematics, or an augmentation of the force during the early phases of takeoff.

It is seen that the vertical force generated by wings in the IGE condition was merely 6.7810-8 N larger

than in the OGE (Table 3.3), which is less than one percent improvement from OGE. This indicates

that the wings are essentially out of ground effect. In fact, in the flapping wing experiment (single wing,

without body) by Truong et al. Truong, Byun, Kim, Yoon and Park (2013), the vertical force exhibited

a prominent increase when the wing is at h/R = 0.5 or 0.6 but no significant increase at h/R = 0.72 or

above. Even though the wing shape, the wing kinematics and the Reynolds number are different from

our current study, this is very much consistent with our results at h/R = 0.8.

In the OGE case, obviously the body shows negligible influence on the overall vertical force (Table 3.4,

Fz,ave,wings). In the IGE case, however, the body generates 7.79×10−7 N more vertical force compared

to the OGE case (Table 3.4, Fz,ave,body), one order of magnitude greater than the increase found in the

wings. Thus, it is obvious that the pronounced increase in the overall vertical force is mainly due to the

body rather than the wings.

Similarly to the total horizontal forces, the horizontal forces on the body or on the wings do not show

substantial differences between OGE and IGE. Although the drag variation on each wing when in ground

effect is of some interest, it is beyond the scope of the present study. Instead, in the following sections

we will pay our attention mainly to the issues associated with the vertical forces on the body.
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Table 3.2. Comparison of aerodynamic force components and power between OGE and IGE, each
averaged for the 20th wingbeat cycle (19.0 < t/T < 20.0). The ratio of vertical force to power is also
compared.

Model Fx,ave (N) Fy,ave (N) Fz,ave (N) Pave (W) Fz,ave/Pave (N/W)

OGE -9.53×10−9 -9.70×10−12 9.91×10−6 2.39×10−5 0.415
IGE 9.50×10−8 2.27×10−10 1.08×10−5 (8.5%) 2.35×10−5 (-1.6%) 0.458 (+10%)

The values in the parentheses are the relative increases in the IGE compared to the results in the OGE.

Table 3.3. Comparison of force components generated by wings between OGE and IGE, each
averaged for the 20th wingbeat cycle. The increases in the IGE from OGE are also shown.

Model Fx,ave,wings (N) Fy,ave,wings (N) Fz,ave,wings (N)

OGE -4.29×10−8 -5.08×10−11 9.91×10−6

IGE -7.88×10−8 -5.00×10−10 9.98×10−6

IGE-OGE -3.59×10−8 5.51×10−10 6.78×10−8

3.3.2 Instantaneous aerodynamic forces and power

As depicted in Fig. 3.3C, compared to hovering out of ground effect, the fly in ground effect produces

slightly greater vertical force in the several time instances while almost no change is observed in horizontal

forces (Fig. 3.3A, B) or in the aerodynamic power of the wings (Fig. 3D). Furthermore, when separating

the force histories into the body and wings (Fig. 3.4), we find that the body in ground effect keeps

producing positive (upward) vertical force throughout the wingbeat period whereas the body out of

ground effect apparently exhibits slight positive vertical force at downstroke but negative (downward)

vertical force at late upstroke (Fig. 3.4C). On the other hand, the vertical forces due to the wings show

marginal discrepancy between IGE and OGE except for the slight increase at the early downstroke (Fig.

3.4F).

The differences in vertical force between IGE and OGE for body and wings were further quantified

separately, which are plotted in Fig. 3.5A-B. The absolute difference in the instantaneous vertical force

due to wings in ground effect (Fig. 3.5A, blue dotted line) does have a feature of time-variation but shows

a very small cycle-averaged value as shown in Table 3.3. The difference in the vertical forces in the body,

however, keeps a large positive value throughout the wingbeat period, which obviously is responsible for

Table 3.4. Comparison of force components generated by body between OGE and IGE, each averaged
for the 20th wingbeat cycle. The increases in the IGE from OGE are also shown.

Model Fx,ave,body (N) Fy,ave,body (N) Fz,ave,body (N)

OGE 3.33×10−8 4.11×10−11 -2.46×10−9

IGE 1.74×10−7 -2.72×10−10 7.77×10−7

IGE-OGE 1.40×10−7 -3.14×10−10 7.79×10−7
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3.3 Results and discussion 3. Flapping flight with ground effect: fruit fly hovering

the most of the difference in vertical forces between IGE and OGE.

Furthermore, with considering the low Reynolds number effect we evaluated the influence of inviscid

and viscous force components contributing to the vertical forces on the body and on the wings (Fig.

3.5B). For wings, obviously most of the vertical force is coming from the inviscid (pressure) component.

For body, apparently both inviscid and viscous force components maintain the positive value, although

the inviscid force component is always larger. This can be further illustrated by means of the pressure

distributions on the body surface as discussed in the following section.

3.3.3 Flow visualization and correlations with aerodynamic force augmenta-

tion

Fig. 3.6 illustrates the wingbeat cycle-averaged pressure contours on the body of IGE and OGE as well

as the difference (pIGE − pOGE) for the 20th wingbeat cycle. It is seen that a pronounced difference

lies on the ventral surface of the body as well as the tip of the abdomen, where high pressure regions

are observed; the head in IGE shows slightly lower pressures than OGE, which may also contribute to

the vertical force. Here the high pressures on the ventral side can explain the increase in Fx,ave,body,

i.e. increase in the backward force component (Tables 3.2, 3.4 and Fig. 3.4A). This unbalance in the

horizontal forces may be coped with by altering (decreasing) its body angle in the real-life situation,

even though there would be a limitation to the change of body angle because the backside of the body

may interfere with the trailing edges of the wings. In fact, the margin is about 30 degrees if the wing

kinematics is unchanged.

In Fig. 3.7 the body pressure contours are plotted at ten instances for OGE and IGE. It is seen that

the pressures on a certain region are not stable in strength but time-varying. Nevertheless, compared

to OGE the abdominal tip in IGE always shows a high-pressure region. This is corresponding to the

time-averaged pressures as shown in Fig. 3.6. Similarly, at the joints between head and thorax as well as

thorax and abdomen, relatively high-pressure regions are also observed, again showing similar tendency

as in Fig. 3.6A.

To further provide an overall image of correlations between flow fields and vertical force production in

terms of velocities and pressures we plotted pressure contours and velocity vectors around the hovering

model fruit fly in Fig. 3.8A-J. A high-pressure region can be found close to the ground throughout the

wing strokes (Fig. 3.8, transparent red surfaces and the pressure contours on the ground). At a glance,

the body seems to be effectively lifted up on this high pressure air cushion. The contacting portions with

the air cushion appear to have high pressures.

How is this high-pressure region created? Specifically, why this region is observed mainly under the
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wings and the body but not beneath the wing roots (see e.g. Fig. 3.8F or G)? We believe the downwash

is the answer. The downwashes induce by the flapping wings during down- and up-stroke (Fig. 3.8C,

H, and I, white arrows) are forced to stagnate and change their directions to horizontal while they are

approaching the ground.

This results in a significant reduction in the downward flow speed and pressure rise near the ground

surface by converting the dynamic pressure into the static pressure. It is further seen that some of the

deflected downward flows originally generated from right wing and left wing head to the center of the

body from both sides, subsequently collide each other right under the body, thereby providing another

pressure recovery. These are likely the main sources of the high pressure on the lower abdominal section,

considering that this portion always exhibits higher pressure than the other part of the body (Fig. 3.8A,

E, and J, also see Fig. 3.5A, red line). Moreover, portions of the flows at the center further form an

upward flow, resulting in a fountain of the airflow, which eventually impinges against the lower side of the

body and probably becoming an aid to the further pressure recovery. This whole process is sometimes

termed as fountain effect in the rotary wing community (Watkinson, 2004) and is essentially how a

hovercraft lift itself, but it has not been reported for the flapping wing flight before. Unlike hovercrafts,

however, as clear from the pressure footprints on the ground in Fig. 3.8, in flapping wings the horizontal
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3.4 Effect of ground clearance and body 3. Flapping flight with ground effect: fruit fly hovering

location of the downwashes fluctuate as the wings move back and forth. Nevertheless, the directions and

the intensities of velocity vectors under the ventral side of the body seem to remain rather stable (Fig.

3.8). Therefore, the above-mentioned mechanism is probably responsible for creating the time-averaged

high pressure region on the ventral side of the body (Fig. 3.6A).

It should be also noted that there found several other features in the body surface pressure contours,

although they are not directly correlated to the vertical force increase in the IGE because these features

are common in the two cases. The low pressure on the back of the body at the early-downstroke (Fig.

3.7B), high pressure on the head at supination (Fig. 3.7F), low pressure on the head just after the

supination (Fig. 3.7G), and high pressure on the back of the body at late-upstroke (Fig. 3.7J and I), all

seem to be due mainly to the direct influence from the high or low pressure regions on the wings (see Fig.

3.8B, F, G, J, and I, respectively). They possibly explain the within-wingbeat variation in Fx,body and

Fz,body (Fig. 3.4A, C). In addition, the low pressure regions on the both sides of the body (Fig. 3.7C-E,

G-I) appear presumably due to the wingroot vortices which are probably only found in the specific wing

planforms (i.e. narrow near the wingroot). The point is that these pressure regions are available in

both IGE and OGE computations and should not contribute to the overall force difference, although the

intensities of which slightly differs. This can be confirmed by the time-averaged contour difference (Fig.

3.6A, B, right models).

3.4 Effect of ground clearance and body

More trials were made, exploring the effect of ground clearance (or height or altitude, h/R) and the

existence of body on the increase in the vertical force. The result is summarized in Fig. 3.9. Open

symbols are the normal fruit fly model with body and two wings, whereas the filled symbols are the

model lacking the body, therefore there should be no fountain effect. The ’IGE model’ mentioned until

the previous section corresponds to the open orange diamond (normal model at h/R = 0.8). As mentioned

in the Method section, further decrease in the height required the adjustment of the body angle, therefore

in the red symbols (h/R = 0.7), the body angle decreased to 30 deg, which seems to be natural for an

insect because when the fly is on the ground, the body angle would be nearly zero, i.e. the body axis

is parallel to the ground. Since the bottom projection area of the body increased, the fountain effect

should be stronger. The comparative study of the same body angle (30 deg) with larger height should

be done for confirmation. Nevertheless, he increase in the vertical force at h/R = 0.7 is clearly seen even

without body (red filled triangle compared to orange filled diamond). This indicates the wings do benefit

from the ground effect, presumably due to the alteration of the circulation. Another interesting finding

is the general trend of the normal fly model against hight is similar to the theoretical model of the thrust
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3.5 Concluding remarks 3. Flapping flight with ground effect: fruit fly hovering

Figure 3.9. Diagram illustrating the relationship between the vertical force and the altitude (h/R) as
well as the effect of body. Open symbols are the normal fruit fly model (body + wings) whereas the
filled symbols are the model without body. Gray solid curve is derived from helicopter theory (Eq. 5.98
in Leishman, 2006).

(vertical force) in helicopter (Eq. 5.98 in Leishman, 2006). The coincidence may be just by chance, or

partially so, because the theoretical calculation does not include fuselage (body) of the helicopter but

only the rotor blades. Nevertheless, the good agreement of the theory with the measured data (Fig.

5.36 in Leishman, 2006) might imply the effect of fuselage may be approximated in the simple theory,

in another word, the theory may be overestimation for the pure rotor blades but somehow matches with

the whole-body force. The more extensive study on the fountain effect in the rotorcraft (especially in low

Reynolds number regime) would be necessary for further discussion.

3.5 Concluding remarks

Ground effect in a hovering fruit fly in terms of aerodynamic force and power was explored by numerical

simulation. It has been confirmed that a fly in ground effect (IGE) experiences greater vertical force

compared to out of ground effect (OGE), provided that both the wing kinematics and body attitude are

unchanged from the stable hovering at OGE. It was also found that the major contribution is from the

presence of the body. Visualization of velocities and pressures unveiled that in the IGE computation,

the wing-induced downwashes are vectored to horizontal direction due to the ground, and portions of

which merge together under the body, together forming a high pressure region on the lower ventral side

of the body. We believe that this mechanism usually termed as fountain effect in helicopter aerodynamics

(Watkinson, 2004) is the main source of the vertical force enhancement in fruit fly hovering in ground
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effect. This mechanism may be applied to the development of flapping micro air vehicles (fMAVs) with a

tailored fuselage shape to effectively and efficiently capture the high pressure air and deflected downwash

during low altitude hovering, takeoff or landing.

We showed the wings are essentially out of ground effect at h/R = 0.8, but when a real fly is flying

at h/R < 0.8, the wings may be benefited from the ground effect. However, in such a case the wing

kinematics as well as the body attitude is fairly likely different from the OGE hovering (Fontaine et al.,

2009). To provide concrete answers to these questions, we need to measure the real insects flights near

the ground with sufficient precision not only for wing kinematics but also body shapes and postures, and

carry out an extended study to clarify the influence of these parameters on the ground effect.

Also, we did not consider the force balance or moments in the present study. These cannot be ignored

in the real situation but the treatment would not be easy because of the nonlinear coupling. The slightest

changes in vertical position or body attitude would result in the increase or decrease of the intensity of

the ground effect, which would provoke the alteration of aerodynamic force or moment again. Further

investigations on this issue would provide insights into the passive stability or active control in the flapping

flight near the ground.
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Chapter 4

Flapping flight with leg thrust:

butterfly takeoff

4.1 Introduction

In this chapter, I investigate the takeoff of a butterfly. I chose this because the butterfly is interesting

in that it uses both wings and legs during the initial phase of the takeoff. If there is no wing motion

and pure jumping, there are tremendous number of works has already been done (and being done). I am

interested in the fraction of the aerodynamic force and leg thrust force, as well as the timings of them.

There have been several studies on the butterfly aerodynamics (e.g. Brodsky, 1991; Dudley, 1991;

Srygley and Thomas, 2002; Zheng et al., 2013) and at least one study dealing with the aerodynamics of

butterfly takeoff (Sunada et al., 1993) but usually leg thrust is not taken into consideration. For birds,

on the other hand, importance of leg thrust was pointed out as early as 1985 (Heppner and Anderson,

1985) and there are a few papers directly measured the leg thrust force with either with a perch (Heppner

and Anderson, 1985; Bonser, Richard and Rayner, 1996; Tobalske, 2004) or a force plate (Earls, 2000),

although I presume the use of force plate is not always a good idea because it could mistakingly measure

the force due to downwash generated by the wings just above the plate, in which case the leg thrust could

be overestimated by the positive aerodynamic pressure on the plate.

Recently a takeoff simulation of a butterfly focusing on leg thrust was published (Bimbard et al.,

2013). However, the model used in their study is rather simple: there is no wing deformation and even

no feathering angle included.

In this study, I measured the time-varying wing morphology during takeoff as well as the body motion

with the aid of coworker (Shuhei Ozawa, a former Masters student). From the high speed video images the
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4.2 Methods 4. Flapping flight with leg thrust: butterfly takeoff

three dimensional shape of the wing at each time step is reconstructed. Two additional considerations

are presented. Namely, ground effect and leg thrust. It may be predicted that both potentially have

significant effects on the butterfly takeoff trajectory. The results showed that in the particular takeoff

that concerned, the ground effect has almost negligible impact, whereas the leg thrust is producing several

times larger vertical force than the wings, making it the one of the most important factors in the early

stage of the takeoff.

4.2 Methods

4.2.1 Measurement of wing and body kinematics

A swallowtail butterfly (Papilio xuthus) was captured outside near Chiba University. The trailing edges

were damaged and right tail streamer was lost during the capture and captive process (Fig. 4.1A). The

measurement was done in the laboratory with low-light environment. When there is sunlight or artificial

light the butterfly always exhibit strong tendency to fly towards the light therefore limiting the light was

necessary. The butterfly was enclosed in a transparent box made of PMMA. Although transparency was

necessary for the following photo recording, the insect cannot see the invisible walls and collides with the

walls after the taking off, damaging the wings. Therefore the takeoff trials was unable to be repeated

more than a few times for a specimen. No paintings on the wings were made. Instead, the pattern on the

wings as well as three locations on the body were selected as the characteristic points (Fig. 4.1A, blue

dots).

Three high speed video cameras (Phantom Miro eX4, Vision Research, USA) with resolution of 800

× 600 pixels each were placed approximately orthogonal to each other for maximizing the chance that

each characteristic point is always visible by at least two cameras, which is the necessary for the three-

dimensional reconstruction. The cameras were synchronized at 1,000 Hz. Data is stored in the flash

memory in each camera and transferred to a Windows laptop PC via 100BASE-TX Ethernet. Tracking

and three dimensional reconstruction of the characteristic points were carried out using commercial

software (DIPP-Motion Pro, DITECT, Japan) as shown in Fig. 4.1C. After the photo-recording, the

butterfly was killed and the masses of the body and each wing were measured.

4.2.2 Numerical simulation

An integrated flapping flight simulator is used as in Chapter 2, where the computational fluid dynamics

(CFD) considering virtual ground and the simplified rigid body dynamics (sRBD) are coupled. The

details of the solvers can be found in Appendices A and B. In this section, let me explain the special
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4.2 Methods 4. Flapping flight with leg thrust: butterfly takeoff

Figure 4.1. Takeoff measurement and grids for numerical simulation. (A) Measurement setup. The
butterfly was placed in a acrylic box. Three synchronized high speed video cameras, together with three
strobe LED lights (two infra-red lights and one white light, not drawn) were used. A cable release was
pressed after the butterfly takes off, thereby saving the date of two seconds preceding the press. (B) The
characteristic points (C) A time slice of the reconstruction process. Body (red line) and left wing (yellow
lines) are reconstructed. (D) The overview of computation grids along with the coordinates of the inertial
frame (the origin not shown). The clustered region of the background grid moves according to the body
motion so that inner grid blocks (body and wings) are always kept inside of the clustered region. (E) The
body and wing grids along with the coordinates of the principle axes of inertia frame. The origin of the
coordinates is the total CG of the insect, which is not shown. The outer boundaries and the structure of
body (green) and wing (blue) grids are also illustrated. All the C, D and E are showing the same time
slice t/T = 0.76.
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treatments necessary for butterfly takeoff.

Modification to the simplified rigid body dynamics solver

For a single rigid body where there is no contact with the ground, the equations of motion can be written

as

MV̇ = Faero + Fgrav, (4.1)

J′Ω̇′ + Ω̃′J′Ω′ = N′aero. (4.2)

which are the same as eqs. B.1 and B.2. The terms with primes are in the body frame, defined

in Fig. 4.1. The applied force is composed of aerodynamic force Faero and gravitational force Fgrav =

[0, 0, Fgrav,z]
T ; and the applied torque around the center of mass is the aerodynamic torque N′aero. For

the present computation, they are modified as follows:

MV̇ = Faero + Fgrav + FGR + Fleg, (4.3)

J′Ω̇′ + Ω̃′J′Ω′ = N′aero + N′leg. (4.4)

where FGR = [0, 0, FGR,z]
T is ground reaction force (GRF), Fleg = [Fleg,x, 0, Fleg,z]

T is leg thrust force

vector, and N′leg = [0, N ′leg,y′ , 0]T is the leg thrust pitching torque in the body frame.

4.2.3 Butterfly model

The base wing gird is generated from the planform of the wings where ipsilateral forewing and hindwing

are combined together (Fig. 4.1A and B). The wing geometry is assumed to be symmetric and the left tail

streamer was neglected. The base wing grid is then deformed using the movement of the characteristic

points along time (Fig. 4.1E) with the aid of Toshiyuki Nakata, a former PhD student. See Nakata et

al. (Nakata et al., 2011) for the details of the method. The body is simplified as a rigid, non-deforming

body generated from the planform view (4.1A and B). The insect grids are located close to the bottom

surface of the background grid (Fig. 4.1D). No-slip boundary condition is applied to the bottom surface,

making it a virtual ground. Major parameters for these two models are presented in the Table 4.2.

One notable thing here is the x’-component of the wingbeat cycle-averaged moment of inertia, which

is the moment of inertia around the body axis. Since a body of an insect has a cylindrical shape this

value is usually very small compared to the other axes: for example, the model fruit fly in Chapter 2,
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4.2 Methods 4. Flapping flight with leg thrust: butterfly takeoff

x’-component is less than a quarter of the other axes (Table 2.1). However, for the butterfly in the

present case, it is more than half of the other axes (Table 4.2). This is the consequence of the large wing

masses-to-body mass ratio of the butterfly.

Ground reaction force

The ground reaction force (GRF) FGR was introduced. This force has the z-component in the inertial

frame only, i.e. FGR = [0, 0, FGR,z]
T . The instantaneous magnitude FGR,z for given time is defined as

FGR,z = −(Faero,z + Fgrav,z + Fleg,z) while Faero,z + Fgrav,z + Fleg,z < 0 (4.5)

where Faero, Fgrav,z, and Fleg,z are the z-components of aerodynamic force, gravitational force, and

leg thrust force (see next subsection), respectively. The ground reaction force acts to cancel out the

gravitational acceleration in the negative z-axis, preventing the butterfly model falls from the virtual

ground.

Leg thrust model

The leg thrust force Fleg and leg thrust torque N′leg are modeled as follows. First, the flight is assumed

to be bilaterally symmetric about sagittal plane therefore force has only the x- and z-components and

torque has only the y’-components:

Fleg =


Fleg,x

0

Fleg,z

 , N′leg =


0

N ′leg,y′

0

 . (4.6)

Each of force or torque component is modeled as a sinusoidal wave. Since direct measurement of the

butterfly’s leg thrust is not available, I chose a sinusoidal wave mainly because of its simplicity. Also,

from the leg thrust measurements of fruit fly (lowest row in Fig. 7A of (Card and Dickinson, 2008))

or birds (Fig. 2A of Bonser, Richard and Rayner, 1996, Fig. 8 of Earls, 2000), sinusoidal may be a

reasonable approximation.

After several preliminary trials, I have found the force is better sought using the polar coordinates, i.e.

instead of changing x- and z-components independently and arbitrary, decompose the force vector into

magnitude and angle. This is because the flight direction of the butterfly seemed to be largely dependent

upon the angle but independent of force magnitude or torque. Thus, I hereafter call this angle a launch

angle θthrust. If I arbitrary change either x- or z-component of leg thrust force, in every trial the launch

43
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angle varies, consequently finding the best combination takes a large number of trials. I therefore first find

the launch angle and then fixed it while varying force magnitude and torque. In general, force magnitude

determines how far the butterfly goes (overshoot or undershoot compared to the measured trajectory)

and pitching torque determines the history of body angle, although they are not totally independent but

in reality a slight coupling observed. The leg thrust force and torque are therefore written as

Fleg,mag = AF leg(1− cos θleg)/2 (4.7)

Fleg,x = Fleg,mag cos θthrust (4.8)

Fleg,z = Fleg,mag sin θthrust (4.9)

N ′leg,y′ = AN ′leg(1− cos θleg)/2 (4.10)

where AF leg and AN ′leg are the amplitude of leg thrust force in the inertial frame and the amplitude of

y-component of the leg thrust torque in the body frame, respectively. The function thetaleg determines

the temporal location of the leg thrust as

θleg =
2π(t̂− t̂leg,begin)

t̂leg,end − t̂leg,begin
if t̂leg,begin ≤ t̂ ≤ t̂leg,end otherwise θleg = 0. (4.11)

where t̂ is normalized time, defined as t̂ := t/T where t is time and T is wingbeat period (T := 1/f =

1/7.58 = 0.13 s). The initiation and cease timings were manually determined from high-speed video

recordings as t̂leg,begin = 0.2T and t̂leg,end = 0.42T , respectively. The amplitudes were systematically

varied to find the history of body angle and body trajectory closest to the measured data. The best

set of launch angle, force amplitude and torque amplitude are θthrust = 55 (deg), AF leg = 35 (mN)

AN ′leg = 20 × 10−6 (N·m), respectively. The force and torque profiles are shown in Fig. 4.2 where

green lines are the best curves and magenta dashed lines are the examples of the trials to later show the

influence (sensitivity) of the amplitude on body angle and trajectory.

It should be noted that from the high-speed video recordings it is evident that the legs do not simul-

taneously leave ground, therefore the selected leg thrust profile surely includes some errors. Furthermore,

in the present study the same θleg is used for both force and torque, although in reality there the timings.

Very high response pressure sensitive paint (PSP) or a super accurate sensor for the insect-scale forces

(Takahashi et al., 2013; Reinhardt and Blickhan, 2013) would be required but it is beyond the scope of

the current study.
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Figure 4.2. Profile of leg thrust force magnitude (A) and torque (B). Positive torque corresponds to
the nose up moment. Several trials are represented by magenta dashed lines: for force magnitude, AF leg

= 30 & 40 mN in A; and for torque, AN ′leg = 0, 40, & 60 ×10−6 N m in B. Green solid lines (AF leg =
35 mN in A and AN ′leg = 20 ×10−6 N m in B) represent the selected amplitudes whose resultant body
angle and trajectory best fit with those from measurement (See Figs. 4.7 and 4.5).
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Table 4.1. Three computation cases for comparison of ground effect and leg thrust. hini is height
(distance) from ground, AF leg is leg thrust force amplitude, θthrust is thrust angle for leg thrust force,
and AN ′leg is leg thrust torque amplitude.

Model
Ground effect Leg thrust

hini (mm) AF leg (mN) θthrust (deg) AN ′leg × 10−6 (N·m)

OGE-LT 100 0 N/A 0
IGE-LT 20 0 N/A 0
IGE+LT 20 35 55 20

Ground effect

The ground effect is simulated by introducing a virtual ground in the computational domain, as exactly

the same as in Chapter 3.

4.2.4 Computation cases

To test the hypothesis that both leg thrust and ground effect matter in the takeoff of butterfly, the

following three computations are performed and compared to the measured results: out of ground effect

and no leg thrust (OGE-LT); in ground effect but no leg thrust (IGE-LT); and in ground effect with leg

thrust (IGE+LT), which is the most realistic 4.1.

4.3 Results and discussion

Although the rigid body dynamics was solved for 6 DOF, no side force or rotation around roll or yaw was

observed because both the wing geometry and wing motion was assumed to be bilaterally symmetric in

the current simulation and there was no asymmetric coupling observed. Therefore, only the x- (forward-

backward) and the z- (vertical) components for forces or translational motion, and the y-component for

torque or rotational motion, will be shown in the following sections.

4.3.1 Morphological and kinematic parameters

The morphological and kinematic parameters obtained in the measurement and used for the numerical

simulation are summarized in Table 4.2. One notable parameter here is the large moment of inertia in

x’-direction (i.e. around insect’s roll axis), which is the result of large wing mass. The wing mass-to-body

mass ratio calculates to 0.18. Wingbeat frequency is as low as less than ten thus reference wingtip velocity

is just slightly over 2 m/s, which is comparable to the tiny fruit fly (See Chapter 2). However, due to

the large mean chord length for the merged forewing and hindwing the Reyonlds number is over 4,000

(compared to fruit fly’s 139).
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Table 4.2. Parameters obtained in experiment and used for numerical simulation. Moment of inertia
is in the body frame and averaged over one wingbeat cycle.

Wingbeat frequency, f (Hz) 7.58
Wingbeat amplitude, Φ (deg) 169
Density of air, ρ (kg/m3) 1.225
Kinematic viscosity of air, ν (m2/s) 1.5× 10−5

Wing length, R (mm) 53.5
Mean chord length (fore + hindwing), cm (mm) 26.8
Aspect ratio, AR 2.0
Reference velocity, Uref (m/s) 2.39
Reynolds number, Re 4280
Reduced frequency, k 0.267
Initial body angle, χini (deg) 0
Total mass, M (mg) 393
Body mass, mb (mg) 333
Wing mass (all the wings), mw (mg) 60
Moment of inertia (x’-component), J ′x′ (N·m) 4.53× 10−8

Moment of inertia (y’-component), J ′y′ (N·m) 6.43× 10−8

Moment of inertia (z’-component), J ′z′ (N·m) 6.65× 10−8

4.3.2 History of body motion

Time course of body motion as well as instantaneous wing shapes from the numerical simulation are

illustrated as snapshots in Fig. 4.3.

The IGE-LT model (red) vanishes at around half the wingbeats, because the wingtips of the model

touched the ground at t/T ' 0.47 (and was to protruding from the ground later). The real butterflies

not infrequently touches the wingtips or even large portion of leading edges to the ground but then there

will be a ground reaction force. Implementation of such contacting treatment requires additional effort

and is beyond the scope of current study, therefore the computation was halted whenever wing or body

touches the ground.

Nevertheless, it has been revealed from the difference between IGE-LT and IGE+LT models, the

ground effect alone cannot lift the butterfly up at least in this particular takeoff sequence. In fact, it is

later clarified the ground effect is negligible in this takeoff. This can be assumed from the images that

the horizontal location of the OGE-LT model and IGE-LT model are essentially the same (Fig. 4.3, right

images).

Also, the deviation from the original locations (crosshair marks) indicates IGE+LT model (green,

which was adjusted to be similar to the measurement) moves longer distance in both horizontal and

vertical compared to OGE-LT model (blue), indicating the force augmentation benefit from the leg

thrust.
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A

B

C

Figure 4.3. Snapshots of the butterfly takeoff simulation for approximately each 0.1 wingbeat cycles.
Left, lateral view from right; right, dorsal view from above. Key to colors: blue, OGE-LT; red, IGE-LT;
and green, IGE+LT. Cross hairs indicate the initial positions of the wingbase. IGE-LT model is not
drawn after t/T > 0.48 because the wingtips of which touched the ground.
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D

E

F

G

Figure 4.3. Snapshots of the butterfly takeoff simulation. (cont.)
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H
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K

Figure 4.3. Snapshots of the butterfly takeoff simulation. (cont.)
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Figure 4.4. Effect of leg thrust force amplitude AF leg (A) and leg thrust pitching torque amplitude
AN ′leg (B) on body trajectory. Green line is the same IGE+LT model as in Fig. 4.5; magenta lines are
the trials before arriving at the best result.
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Figure 4.5. Body trajectory in butterfly takeoff as the displacement from the original position in the
xz-plane in inertial frame. Black, from measurement; colored, relative motion of wingbase computed from
numerical simulations. Key to colors: blue dashed line, OGE-LT; red solid line, IGE-LT; and green solid
line, IGE+LT.
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Body trajectory

The trajectories of body points in the vertical (xz-) plane as the deviation from the original locations

are shown in Figs. 4.4 and 4.5. The movement in the y-direction is not shown because it is very small

compared to the x- or z- movement (less than 8 mm in measurement and less than 1 mm in simulation).

The measurement point is the intersection of body and wing estimated from head and tail points. The

simulation results are the corresponding points. The deviation is selected to ignore the difference in the

original height (hini) between the models.

In Fig. 4.4, the effect of leg thrust force amplitude (A) and torque amplitude (B) are illustrated where

the green lines correspond to the best fitted, IGE+LT model. It can be seen the result of the force ampli-

tude is rather unpredictable, because by lowering the force amplitude, at first the vertical displacement

increased but the final altitude is lower; on the contrary increasing the force amplitude resulted in the

reversed. Thus, there could be some non-linear coupling between leg thrust and aerodynamic forces. On

the other hand, the effect of leg thrust torque amplitude seems to be more linear. However, it is later

shown the relative impact of the torque is larger because the leg thrust torque amplitude is less than or

of equal to the magnitude of aerodynamic torque, whereas the leg thrust force amplitude is more than 9

times the body weight and more than twice the peak aerodynamic forces. Therefore it can be concluded

the trajectory is sensitive to both leg thrust force and torque.

It should be noted the torque amplitude does not have a good ability to change the distance traveled

but rather the angle between the final destination and the initial location. Therefore, in order to go

further, butterfly must kick stronger. Alternatively, butterfly might choose the lower thrust angle for

going further horizontally (results not shown). Thus there would be some freedom for the butterfly.

In the comparison between three models (Fig. 4.5), it is quite clear the no-leg thrust models (OGE-

LT, blue and IGE-LT, red) fails to reproduced the measured body trajectory (green) while the selected

combination of leg thrust force and torque as well as thrust angle resulted in a good agreement with

measurement (IGE+LT, green line). Also there is no noticeable difference between OGE-LT (blue) and

IGE-LT (red), indicating very small ground effect.

Body angle

The instantaneous body angles are shown in Figs. 4.6 and 4.7. In contrast to the body trajectory, the

effect of both leg thrust force amplitude (Fig. 4.6A) and torque (Fig. 4.6B) are both effective in changing

the body angle and it seems that both have linear effects. As mentioned above, torque amplitude cannot

contribute to the distance that much, therefore it may be reasonable to consider the force amplitude

mainly determines how far it travels and thrust angle is to the initial direction, whereas the torque
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AN ′leg (B) on history of body angle. Green line is the same IGE+LT model as in Fig. 4.7; magenta lines
are the trials before arriving at the best result.
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Figure 4.7. Body angle in butterfly takeoff. Black, from measurement; colored, relative motion of
wingbase computed from numerical simulations. Key to colors: blue dashed line, OGE-LT; red solid line,
IGE-LT; and green solid line, IGE+LT.

amplitude is a rather dependent variable to adjust the body angle.

The comparison between three model computations (Fig. 4.7) support this hypothesis. In contrast to

the body trajectory, where lack of leg thrust resulted in a total failure of takeoff (Fig. 4.5), lacking the leg

thrust resulted in what seems to be a non-fatal error (OGE-LT, blue dashed line). However, considering

the aerodynamic forces the 30 degrees difference in body angle would not be regarded as small discrepancy

and the adjustment of body angle is still important. Note the difference between OGE-LT (blue) and

IGE-LT (red) are again negligible.

Velocity and angular velocity

Velocity and angular velocity histories are shown in Fig. 4.8. From these figures it is clear that the leg

thrust forces significantly boost both forward and upward velocities (Fig. 4.8A and B, notice orange

dotted vertical lines indicating the period leg thrust is applied). Especially the vertical velocity in OGE-

LT model arrives at almost zero at the end of stroke, literally indicating failure of taking off. The pitching

angular velocity (Fig. 4.8C) illustrates the oscillatory nature in the butterfly’s flight. Noting the present

computation does consider either inertial torque due to flapping or body deformation (articulation), it
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may be understood that the oscillation of the body angle characteristics in butterflies is at least partly

due to aerodynamic torque.

4.3.3 Forces, torques and implications in the takeoff strategy

Force and torque components are summarized in 4.9. As it has been evident so far, there is only negligible

difference between OGE-LT and IGE-LT computations, indicating there is almost no ground effect in

this particular takeoff sequence.

A quite interesting event in these plots are found during the late period of leg thrust (around 0.3 <

t/T < 0.5) where the intensity of aerodynamic forces and torque are substantially reduced (green solid

lines in Fig. 4.9). Horizontal force becomes almost zero and the vertical force becomes slight negative,

while nose-up torque is relaxed. Pressure contours in this period (Fig. 4.10) illustrate striking contrast.

The low-pressure regions on the leading edges of dorsal side of the wings (corresponding to the leading-

edge vortices) in IGE+LT model (Fig. 4.10A) are greatly reduced compared to OGE-LT model (Fig.

4.10B). This is presumably caused by the rapid increase in the vertical (Fig. 4.8B) and perhaps partly

by the increase in horizontal velocity, too (Fig. 4.8A).

Fig. 4.11 shows the far-field vortex structures of the butterfly models near the end of the stroke period

(t/T = 0.802) where there is again a reduction in aerodynamics forces (Fig. 4.9). The vortex rings and

the surrounding air velocity as footprints of the forces agree with this reduction, namely, weaker jet flow

can be found in the IGE+LT model (Fig. 4.11B) compared to OGE-LT model (Fig. 4.11A).

In terms of energy economy, these reduction in useful (forward- and upward-) aerodynamic forces

accompanied with the strong leg thrust forces (more than 9 times the body weight) would surely result

in the higher metabolic cost. Nevertheless, this might have been a reasonable choice for this butterfly

because the current takeoff seems to be an escape response to the external stimuli, not a voluntary one.

Thus, there might be a trade-off between energy consumption and escape time.

Also notice that the duration of takeoff is very short compared to the remainders of the flight sequences.

Therefore, bursting energy expenditure during short period of takeoff might not affect the fuel economy

in total. Further studies on the comparison between with or without leg thrust takeoffs by recording

real insects or birds Tobalske, 2004 would be required, which would promote better understanding in the

relationship between animal behavior and takeoff biomechanics.

4.4 Conclusion

Butterfly takeoff was recorded with high-speed video cameras and its body motion as well as wing

deformation was tracked and digitized. Using a simplified leg thrust model and virtual ground, the
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Figure 4.9. Histories of forces and torques. (A) Horizontal (x-component) forces. The axis is inversed
for convenience of examination (positive is backward and negative is forward). Solid lines are aerodynamic
forces: blue, OGE-LT model; red, IGE-LT model; and green, IGE+LT model. Orange dotted line is leg
thrust force. Dark-green dashed line is the sum of aerodynamic force and leg thrust force in IGE+LT
model. (B) Vertical (z-component) forces. The same legends in (A) applies for the blue, green, red, and
orange lines. In addition, gravitational force (black) and ground reaction force (purple) are shown. The
gravitational force is exactly the same for the all the cases. The ground reaction force drawn here is
for the IGE+LT model, but almost the same for all three cases except for the very small (< 0.2 mN)
difference at the beginning of the leg thrust, thus the ground reaction forces for the other two cases
are not shown. Blue dot-dashed line and dark-green dashed line are the sum of all the vertical forces
in OGE-LT model and IGE+LT model, respectively. The counterpart for IGE-LT model is not drawn
because it is essentially the same as that of OGE-LT model. (C) Pitching (y-component) torques around
the insects total center of mass. The same legend as of (A) applies.
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A

B

Figure 4.10. Pressure contours on the butterfly’s wings and body for OGE-LT model (A) and IGE+LT
model (B), both at t/T = 0.473 (mid to late downstroke). Pressure is the normalized gauge pressure.
Left, dorsal views; right, ventral views.
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A

B

Figure 4.11. Top view of flow visualizations of OGE-LT model (A) and IGE+LT model (B), both at
t/T = 0.802 (late upstroke). White, smoke-like object is the iso-surfaces of Q-criterion at 0.05. Vectors
are the velocity field in a horizontal plane at the height of 3.6 (A) and 1.5 (B) mean chord length above
the ground, colored by absolute velocity.
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REFERENCES 4. Flapping flight with leg thrust: butterfly takeoff

relative importance of leg thrust and ground effect in butterfly takeoff was explored with a realistic

dynamically deforming wing model based on the measurement. The results shows there is no influence

from ground but a significantly large contribution from leg thrust. The rapid increase in the flight

velocity diminish the aerodynamic forces during and just after the leg thrust period but this might be

the adaptation strategy of the butterfly to the quick escape response.

In the current study the ipsilateral (i.e. being the same side of the body) forewing and the hindwing

are modeled as a merged, single wing grid. One possible future approach is to model each fore- and

hindwing separately and see if there is an influence. It was reported the hindwing is unnecessary in

the acquisition of the aerodynamic forces but improves maneuverability, by removing the hindwings of

butterflies (Jantzen and Eisner, 2008). The separate wing model may be suitable for such a forewing-only

situations. However, it must be very careful because the wing kinematics is very likely different from

the intact insect. Therefore, the framework combining the experimental and numerical methods, which

has been developed in the current study, would be mandatory in the such an investigation, and probably

flapping flight in general.
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Chapter 5

Flapping flight with wing

deformation: hummingbird hovering

5.1 Introduction

Wing deformation in flapping flight has been attracting attention from the biomechanics of animal flight

community as well as flapping aerial vehicle researchers. This is because it has been shown the wing

compliance and inherent deformation during flapping due to inertial and/or aerodynamic loads can be

beneficial in generating aerodynamic forces1). One of the best ways to elucidate such complex phenomena

is to obtain wing deformation of real animals flapping wings and construct the numerical model, thereby

enabling the comparative study between the realistic model and an idealized flat-plate model or a reduced

deformation model. There are a few such works available but to date forward flight of insect are the

majority (Young et al., 2009; Zheng et al., 2013b; Le et al., 2013) and therefore still limited in number,

species, or flight conditions. Note there are several other methods include fluid structure interaction

(FSI) (Nakata and Liu, 2012) or utilization of optimization (Zheng et al., 2013a).

Hummingbirds are known to have significant wing deformation during hovering flight (Warrick et al.,

2005; Wolf et al., 2013; Tobalske, 2010) but its impact on the generation of aerodynamic force is largely

unknown. In this study we aim at clarifying the effect of wing deformation in a hummingbird wing by

combination of experimental and numerical methods.
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5.2 Methods

5.2.1 High speed video recordings and three-dimensional wing reconstruction

Hovering flight of a hummingbird (Amazilia amazilia) feeding nectar (NEKTAR-PLUS, Nekton GmbH,

Germany) was recorded in the Tama Zoological Park (Tokyo, Japan) in November 2012. The hum-

mingbird lived in a large greenhouse (1140 m2 in area and 16 m in ceiling height) in the zoo. The air

temperature was 22 C. Four high-speed digital video cameras, composed of three FASTCAM SA3 and a

FASTCAM SA2 (Photron Ltd., Japan; courtesy Photron) were used, whose resolutions are 1024times1024

and 2048times1080 pixels, respectively. The cameras were synchronized at 2000 frames per second via

Gigabit Ethernet and the shutter speed for all the cameras was set at 1/3000 s. To improve the contrast

of the image, white background paperboards were placed. On the assumption that the wing shape and

wing kinematics of a stationary hovering hummingbird is bilaterally symmetric about the sagittal plane,

we focused on the right wing.

A custom-made calibration tool with eight metallic spheres is used for the later calibration (Fig. 5.1).

The dimension of the calibration frame is 150 mm x 120 mm x 120 mm. The image of a metallic ruler

hung from the metal wire, which usually carries the nectar feeder, was shot to provide vertical unit vector

(thus horizontal plane).

The mass of the hummingbird was measured on two days later of the day of video recordings. A

single-axis load cell, LTS-100GA, and a 12-bit AD interface, PCD-300A (Kyowa Electronic Instruments

Co., Ltd, Japan) were used with sampling rate of 1000 Hz. A ring-shaped perch was attached to the top

of the load cell and located under the nectar feeder. The averaged mass for the three events was approx.

5.4 g. Usually the bird start to drink when its body mass is approx. 5.1 g and leave the feeder at around

5.5 g.

Three-dimensional coordinates of the hummingbird right wing was reconstructed as follows. After

preliminary sampling of wingbeat frequency, wingbeat amplitude, and body angle for the whole recording

data, one wingbeat cycle from the first recording bout was selected for further study, because the cycle

featured the most reciprocating wing kinematics.

The selected cycle is composed of 65 time frames. After unsharp masked to reduce blur, each image

was imported as a background bitmap to a commercial CAD software Rhinoceros (Robert McNeel &

Associates, USA). The wing outlines (edges) and feather shafts (rachises) were manually tracked and

extracted as points for each image (Fig.5.2). The exported points were then processed with an in-house

DLT program. Because of the identity of each point is unknown except for the start and end points, a

simplex optimization was utilized to reduce error and obtain best fit curves. The reconstructed points

were then fitted with triangle elements to calculate wing surface area (Fig. 5.3).
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Figure 5.1. Calibration frame and its dimension. The numbers in purple color are the identity of the
spheres. Note the fourth image is from SA2 whose resolution is 2048times1080 pixels whereas the others
are 1024times1024 pixels.

Figure 5.2. Sample images in the three-dimensional reconstruction process. The wings are in the early
upstroke.
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Figure 5.3. Triangle surface mesh of the reconstructed wing. The wing is partitioned into three regions:
green, primary feathers; red, secondary feathers; and blue, covert feathers. Note the covert feathers are
hiding some parts of the primary or secondary feathers.

5.2.2 Numerical simulation

Single-wing flapping computations were carried out with four types of numerical wing models: a full-

fidelity, dynamically morphing wing model (hereafter termed original model) and three flat-plate wing

models. The in-house flow solver proven in various applications of insect flapping flights (Liu and Aono,

2009; Nakata et al., 2011) is used with slight modifications: instead of having three grid blocks (body

= global block plus two local wing blocks), in this study one Cartesian global grid is prepared in which

one local wing grid block is immersed (Fig. 5.4). The aerodynamic force and power are calculated via

integration over the cells on wing surface. The details of the numerical methods can be found elsewhere

(Liu, 2009).

The original wing model was created based on the reconstructed wing surface where fifth order Fourier

series was employed for temporal interpolation. The wing surface area, among other morphological

parameters, of the original wing showed significant variation during the course of wing strokes. Therefore,

for comparison, three flat models having different wing areas were prepared: flat-ave model has the wing

area of the wingbeat-cycle averaged area of the original wing model; flat-max model has the largest

wing area in the original model; flat-min model has the smallest wing area in the original model. The

wing areas of the flat models are time-invariant. The planform shapes of the flat models are based on

the original model at the pronation phase because at the moment the wing has almost no deformation.

Because the change in wing length was less than 10%, this variation was neglected in the current study

and all the flat models have the same wing lengths R derived from the time-average of the original model;

instead, the mean chord lengths were manipulated to achieve the desired areas, as illustrated in Fig. 5.5.

The variation in mean chord length leads to slight differences in the aspect ratio, Reynolds number and
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(A) (B)

(C)

Wingbase

Trailing edge

Figure 5.4. The numerical grid system, composed of a right wing model of the measured hummingbird
(A, B) and a background Cartesian grid (D). (A) The original wing model surface viewed from approxi-
mately the same angle as Fig. 5.2(E). In (B), wingtip portion of outer boundary of wing gird and cross
section are illustrated in blue. (C) Global grid block, the middle of which wing grid block is immersed
in.
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Table 5.1. Parameters obtained in experiment and used for numerical simulation.

Wingbeat frequency, f (Hz) 28.8
Wingbeat amplitude, Φ (rad) 1.80
Density of air, ρ (kg/m3) 1.171
Kinematic viscosity of air, ν (m2/s) 1.577× 10−5

Wing length, R (mm) 70.9
Reference velocity, Uref (m/s) 7.34
Stroke plane angle, β (deg) 12.2

Figure 5.5. Comparison of planforms of flat wing models. Green, average area model (flat-ave); red,
max area model (flat-max); blue, min area model (flat-min).

reduced frequency.

The wing angles necessary for actuating the flat wing models were extracted from the original model.

Stroke plane angle, positional angle, and elevation angle were derived from wingtip path, whereas for

feathering angle the wing chord at 75% wing length (i.e. 0.75R from wingbase) in the original model was

used. The resultant wing kinematics is shown in Fig. 5.10(A). For definition of the wing angles refer to

Liu & Aono (Liu and Aono, 2009).

The parameters common for all the models are summarized in Table 5.1 and the different parameters

in the different wing models are summarized in Table 5.2. In the present study, wing thickness is set as

0.002 times the mean chord length, therefore the dimensional thicknesses subtly vary among the models.

Each simulation trial was carried out from 0 to 8 wingbeat cycles (t/T ).
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Table 5.2. Comparison of the morphological parameters and the dimensionless numbers between
the different models.

Model cm (mm) Ssurf (mm2) Re k

Original 18.1 1198-1468 8420 0.223
Flat-max 20.7 1468 9640 0.255
Flat-ave 18.9 1338 8790 0.233
Flat-min 16.9 1198 7870 0.208

5.3 Results and Discussion

5.3.1 Wing morphology and kinematics

Fig. 5.6 illustrates the time course of external shapes and orientations of the wing models (gray, original

model and green, flat-ave model) for a complete wingbeat cycle. Fig. 5.7 shows the time course of four

spanwise sections (airfoils) of the original model in the wing frame. From these still images it is evident

the wing (original model) has substantial wing deformation including both twist and camber.

To further assess the dynamic wing deformation, the temporal variation of the morphological and

kinematic parameters extracted from the original wing model are presented in Fig. 5.8. Positional

angle (Fig. 5.8A, open circles) shows a symmetry in downstroke and upstroke. The mean positional

angle around which the wing oscillates is apparently around 0 deg, which shows contrast to the previous

reports (Tobalske et al., 2007; Wolf et al., 2013). Elevation angle is not particularly large or small (Fig.

5.8A, filled triangles). The ratio of downstroke and upstroke duration was approximately 1:1, which is

consistent with a report for the hovering observations on a different hummingbird species (Tobalske et al.,

2007). Wing surface area (Fig. 5.8B) shows significant variation during the strokes. The area rapidly

increases from pronation to early downstroke and continues gradual increase throughout the downstroke.

It rapidly decreases in supination, followed by a gradual decrease and eventual increase in the upstroke.

The peak-to-peak variation of wing surface area reached around 250 mm2, which is more than 20% of

the wingbeat cycle-averaged value. In contrast, wing length variation (Fig. 5.8C) is rather small, where

peak-to-peak variation is merely slightly more than 6% of the average value. Consequently, the variation

in wing surface area is presumably attributed to the spreading of individual feathers in circumferential

direction. Feathering angle variation at four spanwise locations shows the twist in ’wash-out’ trends

(Fig. 5.8D), i.e., the outer sections are more aligned to the disk of rotation (stroke plane). The half-

amplitudes during down- and upstroke do not show substantial asymmetry. It is quite interesting that

the local camber (normalized by local chord length (measured at mid-chord locations), Fig. 5.8E) shows

positive values during downstroke and negative values during upstroke. Note the positive and negative

signs correspond to dorsal and ventral sides of the wing, respectively. Thus, in the stroke plane frame,
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the wing shows convex upward against stroke plane during both strokes. A few exceptions are found in

the inner spanwise locations during upstroke, especially in the 0.2R (blue line) in late upstroke. This

is probably related to the anatomical characteristics, but in terms of aerodynamic force production,

the inner portions should have smaller impact due to smaller tangential velocity compared to the outer

part of the wing. Local cambers also exhibit slight asymmetry during down- and upstroke. In general,

cambers are greater during downstroke. Geometrical angles of attack calculated at mid-chord locations

show similar asymmetry tendency (Fig. 5.8F). The angles during downstroke are around 25 (0.8R) to

65 (0.8R) degrees, whereas during upstroke they are around 20 (0.8R) to 50 (0.8R) degrees. It should

also be noted that during angles are rather stable during downstroke but during upstroke it gradually

decreasing. These morphological (camber) and kinematic (AoA) asymmetries might be responsible to

the aerodynamic force asymmetry which has been predicted by PIV experiments and also confirmed in

the present computation (shown later).

5.3.2 Aerodynamic force and power

Comparison between the models on wingbeat averaged vertical force, power, and vertical force-to-power

ratio until 8th wingbeat is summarized in Fig. 5.9 and the numbers in the 8th cycle are listed in Table

5.3. The original wing model with prescribed deformation outperforms the other flat-plate models in

vertical force (Fig. 5.6(A)). This is not without cost, though. The original model requires greater power

(Fig. 5.6(B)). However, vertical force produced with unit power (Fv/P ) was greater in the original wing

model (Fig. 5.6(C)). Therefore it can be concluded the original, deforming wing is energetically more

efficient in generating the usable force. From the instantaneous vertical force plot (Fig. 5.10(C)), three

features can be interpreted.

Firstly, the vertical force is always positive with two or three distinct peaks in both downstroke and

upstroke. This is common in all the wing models although the number of peaks in downstroke is one

in the original model whereas two in the flat-plate models. The positive trend in the vertical force has

repeatedly been reported for insects and consistent with the estimation in the hummingbird hovering

from PIV (particle image velocimetry) measurement using circulation (Warrick et al., 2005; Wolf et al.,

2013). Our results on flat wing models clearly shows the deformation is not a mandatory factor for

generating positive vertical force in upstroke but rather a wing kinematics matters.

Secondly, greater force is generated during downstroke than during upstroke while pronation and

supination do not contribute to the vertical force. This is again common to all the wing models. Moreover,

the fraction of vertical force generated during downstroke and upstroke was approximately 7:3 in all the

models (Table 5.3), which again is consistent with the estimations in the experiments (Warrick et al.,

2005; Wolf et al., 2013). Also noted is that the vertical force during downstroke is sensitive to the area
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Figure 5.6. Time course morphology and kinematics of model wings. Gray, original model; green,
flat-ave model. Viewed from right side and slightly (15 deg) above.
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Figure 5.7. Airfoil shapes of right wing grid, illustrating twist and camber simultaneously. The wing is
in the wing frame, i.e. the right wing is seen from right wingtip, where wingbase and wingtip are aligned,
which is marked as a plus sign, and the horizontal axis (gray dashed line) is the stroke plane. The airfoils
at different spanwise locations are marked by colors: blue, 0.2R; green, 0.4R; yellow, 0.6R; and red,
0.8R. Arrows indicate the downstroke (right arrow) or upstroke (left arrow), not the exact velocity of
the particular location on the wing.
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Figure 5.7. Airfoil shapes of right wing grid. (cont.)
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Figure 5.9. Wingbeat cycle averaged vertical force (A), power (B) and vertical force-to-power ratio.
Filled black circle, original morphing wing model; open red triangle, flat-max model; open green square,
flat-ave model; open blue diamond, flat-min model.

difference but during upstroke the difference among the flat models is relatively small.

Thirdly, the discrepancy between the original model and flat-plate models is largest in the downstroke.

Specifically, the force in the flat-plate models seems to be subjected to advanced phase-shift from the

original model. The exact reason of this phase difference has not yet been investigated but it is possible

the spanwise bending plays some roles.

Instantaneous power generally follows the trend in the vertical force (Fig. 5.10(D)). One large discrep-

ancy between vertical force and power is found in the late upstroke to early downstroke. This means the

power is wasted instead of consumed for generating vertical force, which consistent with the wing posture:

feathering angle is around zero at pronation. The zero feathering angle means (in our definition) the wing

chord is perpendicular to the stroke plane and the stroke plane is almost horizontal (stroke plane angle is

less than 15 degrees). However, the wing posture alone cannot explain the discrepancy between original

and flat-plate models because they have almost the same posture at that moment (Fig. 5.6). In addition,

as stated earlier, the deformation is minimal in the original model during pronation. The visualization
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Table 5.3. Comparison of cycle-averaged vertical forces, powers, and vertical force
to power ratios between the models in the 8th wingbeat period (7.0 < t/T ≤ 8.0).
The downstroke and upstroke fraction of vertical force (Fv,DS : Fv,US) during the
8th wingbeat period is also shown.

Model Fv,ave (mN) Pave (mW) Fv,ave/Pave (N/W) Fv,DS : Fv,US (%)

Original 22.1 79.9 0.276 72:28
Flat-max 16.2 72.5 0.223 73:27
Flat-ave 15.2 63.6 0.239 70:30
Flat-min 13.7 54.4 0.251 70:30

of the surface pressure at pronation (t/T = 8.0) resolved this paradox, at least partly. In the original

model there are weak high and low pressure region on the dorsal surface (Fig. 5.11(A), upper model).

The relatively strong low pressure regions are found on the ventral surface, which should have favorable

effect because the bird is going to sweep the wing ventrally so the low pressure would help pulling the

wing to the same direction as the birds will. In stark contrast, stronger pressures are observed on the

both surfaces of the flat-ave wing model (Fig. 5.11, lower models). Both high and low pressure regions

are found in both sides, but the low pressure region on the dorsal side is not only large but is locating

away from the wingbase compared to the low pressure region on the ventral side. This should therefore

result in a torque which is against of the birds preference. The exact cause of the drastic difference in the

pressure contour between the models is unknown, but considering that both the wing shape and the wing

velocity are not significantly different between the models, aerodynamic hysteresis including wing-wake

interaction may well be involved in.

5.3.3 Near-field flow visualization

In this section, as preliminary results, some distinctive features depicted in the visualization of near-field

wake and surface pressure are presented (Fig. 5.12). At mid-downstroke (t/T = 7.24), formerly formed

leading-edge vortex (LEV) split into two (LEV1 and LEV2). In between these LEVs, a weaker contra

rotating vortex is found (marked as CRV, counter rotating vortex in Fig. 5.12(A)), which should be

corresponding to the smaller counter rotating vortex (SV) in the study by Harbig et al. (Harbig et al.,

2013a,b) As the time advances (t/T = 7.30), the LEV1 further split into two and an additional CRV

emerges (LEV3 and CRV2 in Fig. 5.12(B)). Adverse (from wingbase to wingtip) and inverse spanwise

flows are found corresponding locations of LEV and CRV, respectively (not shown). It is also apparent

that the both LEV and CRV contribute to the force generation via creating low pressure region just below

the vortices. The dual or more LEVs were previously reported in insect (Srygley and Thomas, 2002) or

insect-like flappers (Lu et al., 2006). Here I first time reported a hummingbird wing also exhibits such

vortex structures. It can be seen, however, that the existence of these flow structures are not owning
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the wing are shown. In (B), (D), (F) and (H) Q criterion iso-surfaces at Q = 20 are shown, colored with
y-component dimensionless vorticity. Note that y-direction in the Cartesian coordinates almost coincides
with wingbase to wingtip direction at these time instances. LEV stands for leading-edge vortex; CRV
stands for counter-rotating vortex.

79



5.4 Concluding remarks 5. Flapping flight with wing deformation: hummingbird hovering

to the wing deformation, because quite similar structures are found in the flat-ave model, although the

magnitudes of the wakes are smaller.

5.4 Concluding remarks

We conducted a comparative study on the wing deformation with combination of experiment and numer-

ical methods. The hummingbird wing exhibited substantial deformation during flapping. Specifically,

wing area change was around 20 %, but is not accompanied by the variation in wing length, suggesting

spreading of each feather. Also twist and resulting angle of attack, as well as camber at most of the

spanwise locations seem to be favorable. These findings not only help understanding the bird flight more

deeply, but could provide inspiration to the flapping wing flying machines (see e.g. Mahardika et al.,

2011).

In the numerical simulation it was found the realistic, dynamically morphing wing outperforms not

only in the magnitude of vertical force but more efficiently producing the force than the flat-plate models

with a set of given wing kinematics. Flow visualization revealed a characteristic dual- and triple-LEV

with counter rotating vortices in between them.

Caution should be taken, though, about the flat wing performance, because the selection of wing kine-

matics, especially feathering angle used in the present study was rather arbitrary. Although the decrease

in the feathering amplitude for the flat wings, which corresponds to the increase in the geometrical angle

of attacks during the strokes, would leads to the larger LEVs, it would also substantially increase the

power necessary for producing such LEVs. Nevertheless, further investigations would be necessary for

confidence.

The deforming wing model itself has a relatively large room, including wing-wing and wing-body

interaction (this is currently underway), leading edge sharpness, wing thickness, surface roughness, or

air-permeability. For instance, in the rotary wing experiments with a real and several model humming-

bird wings, leading edge sharpness and surface properties significantly affected to the lift-to-drag ratio

(Altshuler et al., 2004). It is possible these parameters affect in the flapping wings.
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Chapter 6

Conclusions and future tasks

6.1 Concluding remarks

In the present paper, three different natures flyers (fruit fly, butterfly, and hummingbird) spanning a

broad range of Reynolds number regime (order of magnitude from 102 to 104) in four different natural

flight situations (turning, hovering near ground, takeoff, hovering midair for feeding) have been studied

with the aid of computational fluid dynamics as well as high speed video cameras in the latter two

situations.

From auto-stabilization simulation of fruit fly (Chapter 2), significant contribution of flapping counter

torque (FCT) in yaw damping was confirmed, but the extent of which was found to be stronger than

expected from a simpler blade-element computation. This deviation has partially resolved by examining

the accurate condition of the blade-element method but not fully explained. The discrepancy between

the current numerical simulation and observation suggests the existence of active control in the end phase

of turning in the natural flight conditions, where translational degrees of freedom could lead to instability

due to flapping counter force (FCF), which was supported by the instability in the other (roll and pitch)

attitudes in the 6 DoF computation.

From ground effect simulation (Chapter 3), it was found that the body generates non-negligible

amount of useful (vertical) aerodynamic force when hovering close to ground. The force augmentation is

mainly due to the high pressure region below the body, which was confirmed via flow visualization and

pressure contour of the body. The wings, rather unexpectedly, are almost unaffected by the ground at

this height (distance from ground to wingbase is 0.8 times the wing length). The variation of the ground

effect was also performed by changing the height. The results showed the coincidence with the curve

from helicopter theory, which needs further examination.

From butterfly takeoff simulation (Chapter 4), it was found the leg thrust can reach up to 8 times
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larger vertical force compared to aerodynamic forces. In contrast, the presence of ground has almost no

effect in aerodynamic forces. This illustrates little contribution from ground in at least certain types of

rapid takeoff (escape takeoffs), i.e. if leg thrust is strong enough, there is no ground effect and possibly

vice versa. Further examination of the dependency of ground effect to leg thrust strength is already

underway as a collaboration study.

From wing deformation study of hummingbird hovering (Chapter 5), it is now clear the wings of a

hummingbird do exhibit significant deformations not in wing length but in other morphological parame-

ters. Specifically, the wing has substantial twist during flapping in the washout manner, with significant

camber (chordwise bending). Surface area exhibited 20 % peak-to-peak variation, which is the result of

spreading the feathers. A preliminary fluid dynamics simulation comparing real and flat wing models

suggests the deformation can be energetically more efficient, while providing greater aerodynamic forces.

It also confirmed the expected 70%:30% vertical force ratio during downstroke and upstroke, respectively.

The numbers obtained in the present studies might not always seem to be appealing enough at the

first glance (e.g. +8.5% lift by fruit fly body in ground effect; +16% improvement in lift/power for a

dynamically deforming wing over a flat wing in hummingbird). However, in the engineering context, 10%

improvement in TSFC (thrust specific fuel consumption) on a gas turbine engine would be regarded as a

huge leap. Also, considering the evolutionary path of the flight animals, even the slightest improvements

can be beneficial in survival. Examples for such evolutionary benefit includes the famous Darwin’s Finch

(Grant and Grant, 2008).

6.2 Future directions

Numbers of issues related to flapping flight still remain to be unraveled. The consideration of external

environments examined in this research are just a few of them. There could be several directions in the

future study of animal flapping flights.

The deeper understandings of the hot topics including wing deformation or stability & control prob-

lems are still lacking. For example, our knowledge on how exactly the flying animals are transitioning

between low and high speeds are far from complete, although there are several attempts being made (e.g.

Isogai and Kawabe, 2010).

The multi-physics or multi-scale coupling may be the next step. The former includes the consideration

of skeletomuscular system or physiological responses (e.g. visual or odor sensing, EMG recordings of

muscle activity (e.g. Biewener, 2011), or visualizing thermoregulation via infra-red video (e.g. Ward

et al., 1999; McCafferty et al., 2011), etc.) and combining them with the flapping flight models such as

the one in our groups. The latter includes the elucidation of the microstructure or air-permeability effect
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on the boundary layer of the wing surface (see e.g. Altshuler et al., 2004; Bachmann et al., 2007; Ito,

2009; Eder et al., 2010; Elimelech and Ellington, 2013; Kovalev et al., 2014) or gaps between feathers

(e.g. Inada et al., 2013).

Yet another direction is the collaboration between the slightly distant, possibly non-biomechanics

biological research fields. This includes navigation (bio-logging the long range trip or migration with

GPS and/or accelerometer, e.g. Sato et al., 2007; Watanabe et al., 2011) or evolution of flight but not

necessarily restricted to them, for example, environmental problem could also be the target. One such

example is the environmental assessment of the effect of wind turbines on the flying animals: not only

birds but bats also are killed by wind turbines recently. Engineers are trying to solve this issue by

altering wing turbine itself, but possibly biological researchers would be of great help by e.g. estimating

the maneuverability and predicting the behavior.

Other examples include sound generation by feathers (e.g. Clark et al., 2011), flying in the rain

(Ortega-Jiménez and Dudley, 2012b,a) or snow. For the latter I do not know of any experiment on

insects or birds possibly because flapping wings do not seem to suffer from snow or ice. But considering

icing is one of the most important problems in aviation (e.g. Air France Flight 447), elucidation of

anti-ice/de-ice mechanisms in animals in general may be intriguing.
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Appendix A

Fluid dynamics solver

A.1 Basic equations

The computational fluid dynamic method used in this study is a finite volume method-based Navier-Stokes

solver specified for a multi-blocked, overset-grid system, which has been validated by showing various

applications to insect flapping flights (Liu and Aono, 2009; Liu, 2005) as well as to a flapping wing micro

air vehicle (Nakata et al., 2011). The governing equations are the three-dimensional, incompressible,

unsteady Navier-Stokes equations written in strong conservation form for mass and momentum, with

artificial compressibility method applied. The governing equation in dimensionless form is:

∫
Vcv(t)

∂q

∂t̂
dV +

∂

∂t

∫
Vcv(t)

QdV +

∮
Scv(t)

(f −Qug) · ndS = 0 (A.1)
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(A.2)

Here, V (t) is an arbitrary deformable control volume; S(t) is the surface of the control volume; t

is physical time; τ is pseudo time; n is the unit outward normal vector; ug is the local velocity of the

moving cell surface; u, v, and w are velocity components in the Cartesian coordinate system x, y and z;

p is pressure; λ is the pseudo-compressibility coefficient; and Re is Reynolds number. Aerodynamic force

and aerodynamic power (time rate of work done to the surrounding air by the flyer) for each wing and

body are defined as (Liu, 2009):

Faero =


Fx

Fy

Fz

 =
N∑
i

(Fluxinvis + Fluxvis), P =
N∑
i

(Faero · vsurf,i) (A.3)

where N denotes number of the cells on the surface of the wing or the body, Fluxinvis and Fluxvis are

the inviscid and viscous fluxes, respectively, and vsurf is the velocity of the cell face on the surfaces.

To evaluate how efficiently the flyer generates forces, the vertical force divided by aerodynamic power

(both are averaged over one wingbeat cycle) is defined as vertical force-to-power ratio Fz,ave/Pave, similarly

as used by Zheng et al. (Zheng et al., 2013) on a numerical simulation of butterfly forward flight.

A.2 Modifications to the original solver

The core of the fluid dynamics solver used in the current paper is essentially the same as what Liu

developed (Liu, 2009). Nevertheless, I, with the aid of the colleagues (Naoshi Nishihashi and Gao Na),
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introduced a few modifications, which are essential for the present paper and are explained in this section.

Instead of an O-O type spherical grid, a Cartesian grid is employed as the background (global) grid

block, in which a body grid and two wing grids are immersed in. This has a few advantages over the

spherical grid: it is convenient for introducing a virtual ground surface; the uniform grid spacing around

the flyer’s grid blocks (body and wings) can be used, enabling the grids less affected by the numerical

diffusion; and there is no need of boundary connection, i. e. in an O-O grid system, one must ’connect’

the first and last grid points (or cells) to achieve periodical boundary in the i− and j− directions, which

requires additional treatment in those regions.

The Cartesian grid has the two regions: clustering region which has small, uniform grid spacing (i.

e. small cubic cells) and the non-uniform spacing region. Usually the clustered region is placed in the

middle of the domain, and the outer boundaries of any flyer blocks are immersed in this region to prevent

the loss of accuracy during the interpolation between the local (flyer’s) blocks and global (Cartesian)

block.

During the coupling computation with the simplified rigid body dynamics (sRBD) solver, the flyer grid

moves. To ensure the flyer grid blocks are always confined to the clustering region of the Cartesian grid

block, the location of the flyer’s center of mass is always tracked. When the deviation exceeds the uniform

grid spacing (i. e. length of a side of the cube in the clustering region), the Cartesian grid is re-meshed.

For example, if the clustering region in i−direction is from lth to mth cells (with uniform spacing ds)

and the movement of the flyer’s center of mass from the last re-meshing in the i−direction exceeds ds

(assuming that the direction is from lth cell to mth cells), the lth cells are removed and newer cells are

generated just outside of the mth cells. The flow variables of the new cells are interpolated from the mth

and (m+ 1)th cells. Currently the linear interpolation is used for simplicity. More rigorous methods can

be used, but since these outer boundaries of the clustering regions (in the present example, lth or mth

cells) should locate sufficiently far from the flyer’s blocks, the error due to the selection of interpolation

methods may not be as large. The similar ’watchings’ are performed in j− and k− directions.

Another notable difference between the previous solver in the source-code level is that I migrated

the code from FORTRAN 77 to Fortran 90 (with the aid from Naoshi Nishihashi). This is no minor

change, because the adoption of module structure dramatically improves the subsequent integration

of new features, which include not only rigid body dynamics & prescribed wing deformation in the

current study (the latter was developed with Toshiyuki Nakata), but wing shape-optimizaion (by Naoshi

Nishihashi), PID-control (by Gao Na), flexible dynamics solver (with Ryusuke Noda), or fluid-structure

interaction (by Toshiyuki Nakata). Therefore, migration to Fortran 90 was the inevitable foundation for

achieving the current, fruitful multi-physics flapping flight simulator.

Also several (what looks to be, at first glance) ’minor’ bugs were fixed during the migration process.

89



REFERENCES A. Fluid dynamics solver

For example, there was a slight asymmetry between right and left wings in the original code. The

difference is so small that it does not affect any results or conclusion of the previous studies for tethered

flight (e.g. Liu and Aono, 2009). However, it does have a detrimental effect when combined to dynamics

solver, because the slightest asymmetry is usually amplified via positive feedback loop. For example,

a simple hovering computation under the coupling of CFD and sRBD should result in the pitching

instability (nose-up or nose-down divergence) but with the slight asymmetry in the CFD the insect went

into the spiral mode. This was partly because the usual insect has lower moment of inertia in the roll

axis in the body frame. Therefore sensitive to the sideways asymmetry. Another correction was made

for the reproduction process of model wing grid kinematics for elevation (deviation) angle. Usually the

amplitude of elevation angle is small therefore this has a minimal effect on the aerodynamic forces. Again,

however, when it comes to free flight, the slight change in the aerodynamic torque accompanied with this

could results in the difference in e.g. pitching attitude.
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Appendix B

Simplified rigid body dynamics

solver

B.1 Basic equations of motion

Translational motion and attitude change are realized by solving the equations of motion for a rigid body.

The flapping flyer, either insect, bird, or micro air vehicle with a body and two or more wings, is assumed

to be a single rigid body. The flapping motion is not explicitly considered in the present solver. Instead,

the location of the center of mass and the amount of moment of inertia tensol must be obtained it viatime

averaging. This is why I call this a ”simplified” rigid body dynamics (sRBD) solver. The strength of this

method are the straightforward derivation and the easiness of implementation in programming.

The equations of motion of a single rigid body can be written as follows (Maeda et al., 2010):

MV̇ = Faero + Fgrav, (B.1)

J′Ω̇′ + Ω̃′J′Ω′ = N′aero. (B.2)

Eq. (B.1) is equations of translational motion and eq. (B.2) is equations of rotational motion, where

M is total mass of the flyer (body mass + wing masses), V = [Vx, Vy, Vz]
T is flight velocity at the center

of mass, F is applied (external) force, J′ = [J ′x, J
′
y, J
′
z]
T is wingbeat cycle-averaged moment of inertia of

the flyer, Ω′ = [Ω′x,Ω
′
y,Ω

′
z]
T is angular velocity, and N′ = [N ′x, N

′
y, N

′
z]
T is aerodynamic torque. Note

that the variables with primes are in the body frame, whereas those without primes are in the inertial

(global) frame. The terms with dots are time derivatives. The tilde over the angular velocity term in Eq.

(B.2) is an operator to create a 3× 3 skew symmetric matrix from a 3× 1 matrix:
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Ω̃′ =


0 −Ω′z Ω′y

Ω′z 0 −Ω′x

−Ω′y Ω′x 0

 . (B.3)

The wingbeat cycle-averaged moment of inertia tensol is defined as

J′ =


J ′xx J ′xy J ′xz

J ′yx J ′yy J ′yz

J ′zx J ′zy J ′zz

 '

J ′x 0 0

0 J ′y 0

0 0 J ′z

 . (B.4)

Here, the off-diagonal terms are approximated as zero, which can be justified because they are usually

more than one order of magnitude smaller when the body axes are selected as the body frame.

Usually the right hand sides of eqs. B.1 and B.2, the applied force and applied torque, are composed

of aerodynamic and gravitational contributions, i.e.,

F = Faero + Fgrav =


Faero,x

Faero,y

Faero,z

 +


0

0

Fgrav,z

 (B.5)

and

N′ = N′aero =


N ′aero,x′

N ′aero,y′

N ′aero,z′

 (B.6)

where Faero and Fgrav are aerodynamic and gravitational forces and N′aero aerodynamic torque. The

aerodynamic force and torque are computed in and transferred from the flow solver. The gravitational

force is Fgrav,z = −Mg where g is gravitational acceleration (on Earth surface g is set as 9.80665 or more

simply as 9.81; by reducing g one can handily perform free flight in orbit or on another celestial object).

Note by definition the sum of torques due to gravitational acceleration around center of mass become

zero. In Chapter 2 the applied forces and torque are as shown here, but in Chapter 4 there are additional

forces and torque are introduced for takeoff simulation.
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B.2 Coupling

Before solving eqs. (B.1) and (B.2), gravitational acceleration g (normally set as 9.80665 m/s2), total

mass M , and wingbeat cycle-averaged moment of inertia J′ must be given a priori. The aerodynamic

force F and aerodynamic torque N must be computed in and transferred from the flow (CFD) solver.

By solving eqs. (B.1) and (B.2), the flyer’s velocity V and angular velocity Ω′ are obtained.

For coupling with the CFD solver, the position and the attitude of the flyer are also necessary. To

obtain them, accompanying equations must be solved. The translational equation is

Ṙ = V (B.7)

and the rotational equation is

Ė =
1

2
STΩ′ (B.8)

where E = [ε0, ε1, ε2, ε3]T is a set of unit quaternion (also known as Euler parameters) and S is the

matrix

S =


−ε1 ε0 ε3 −ε2

−ε2 −ε3 ε0 ε1

−ε3 ε2 −ε1 ε0

 . (B.9)

The system of equations for time-marching are:

d

dtdyn


Rx

Ry

Rz

 =


Vx

Vy

Vz

 , (B.10)

d

dtdyn


Vx

Vy

Vz

 =


Fx

Fy

Fz

 (B.11)
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for translational motion and

d

dtdyn



ε0

ε1

ε2

ε3


=

1

2



−ε1Ω′x − ε2Ω′y − ε3Ω′z

ε0Ω′x − ε3Ω′y + ε2Ω′z

ε3Ω′x + ε0Ω′y − ε1Ω′z

−ε2Ω′x + ε1Ω′y + ε0Ω′z


, (B.12)

d

dtdyn


Ω′x

Ω′y

Ω′z

 =


[(J ′y − J ′z)Ω′yΩ′z +N ′x]/J ′x

[(J ′z − J ′x)Ω′zΩ
′
x +N ′y]/J ′y

[(J ′x − J ′y)Ω′xΩ′y +N ′z]/J
′
z

 (B.13)

for rotational motion.

The common fourth-order Runge-Kutta scheme is used for temporal integration. No iteration between

CFD and sRBD solvers was employed, because the time step in the dynamics solver dtdyn is very small

compared to the time step dt in the fluid solver (more than ten times smaller).

For flow field computation, flier grids in the inertial frame are necessary. For this purpose, a trans-

formation matrix using unit quaternions C
b→g

is used. Let the position of a grid point in the body frame

and in the inertial frame be R′grid and Rgrid, respectively. Then,

Rgrid = C
b→g

R′grid + R (B.14)

where

C
b→g

=


ε20 + ε21 − ε21 − ε23 2(ε1ε2 − ε3ε0) 2(ε1ε2 − ε3ε0)

2(ε1ε2 + ε3ε0) ε20 − ε21 + ε21 − ε23 2(ε2ε3 − ε1ε0)

2(ε1ε3 − ε2ε0) 2(ε2ε3 + ε1ε0) ε20 − ε21 − ε21 + ε23

 . (B.15)

Further details can be found in Maeda et al., 2010.
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