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PREFACE 

This PhD thesis is submitted to Chiba University in partial fulfillment for the award of a degree 

of Doctor of Philosophy (Ph.D) Food and Resource Economics. The study presents advanced 

techniques for assessment of water resources. Remote sensing is applied to study the time-series 

change caused by development in Kampala and Entebbe from Landsat (1995-2010). RapidEye 

satellite image of 2011 and field data were used to estimate the extent of Cyperus papyrus for 

Entebbe, Uganda at the Northern shore of Lake Victoria the second largest freshwater lake in 

the world. In water resource assessments, models are used in forecasting, this thesis presents 

new panel data models, the random effect and dynamic panel models were developed from a 

Cross-Country data-set of European lakes in 18 countries (1965-2009). Previous parameter 

structures are radically changed by the results of this thesis. The models were tested using 8 

Japanese lakes (2000-2009). The thesis is divided into five chapters. Chapter one introduces the 

problem and the techniques for water resource assessments. Chapter two highlights the 

environmental pressures that are faced by lakes with reference to Lake Victoria and Lake 

Naivasha. A review of remote sensing with its application in deriving lake models and 

monitoring of spatio-temporal changes in wetlands is presented in chapter three. Chapter four 

presents panel data models which will change the estimations of Chlorophyll-a after publication 

of thesis, performance of the models are tested in this section. Finally chapter five states the 

conclusions and recommendations in light of the results, suggesting possibilities of applying the 

coefficients from this study in lake management strategies and the policy issues regarding 

phosphate and nitrate fertilizers. 
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ABSTRACT 

 

The World’s lakes and reservoirs have experienced a lot of environmental pressure 

among which is the effect of phosphate and nitrogenous fertilizers a global water resource 

problem. The thesis presents two methodologies for assessment of water resources; remote 

sensing and panel data analysis. Lake Victoria the second largest freshwater lake in the 

World has undergone diverse changes in the past 50 years due to introduction of Nile perch 

and flower production which started in the 1990s. An ecologically important plant species 

Cyperus papyrus (papyrus) surrounds Lake Victoria. Remote sensing is applied to estimate 

and identify, for Entebbe and Kampala areas on the northern shore of Lake Victoria, the 

distribution of papyrus wetland and its temporal change, using RapidEye and Landsat 

satellite images for the last 15 years. Results of RapidEye reveal that in 2011, 30% of 

Entebbe area was occupied by wetland, of which 70% was papyrus-covered. Urban land use 

increased in Kampala from 17% to 64%, and from 9% to 23% for Entebbe, with relatively 

low encroachment on wetlands until the mid-2000’s. However, urban expansion in recent 

years has reached a stage to encroach wetlands. In assessment of water resources, it is 

valuable to grasp the global functional relationship between phytoplankton biomass 

(Chlorophyll-a; Chl-a), total phosphorous (TP) and total nitrogen (TN) in lake ecosystems. 

A comprehensive model was developed that explains the relationship between Chl-a, TP and 

TN in lakes under a wide range of environments. The conventional Ordinary Least Squares 

(OLS) model, random effect panel model and dynamic panel model are compared. 

Estimation based on water quality data for 396 lakes in 18 European countries from 1965-

2009 show that TP and TN are significant determinants of Chl-a in the OLS model. 

Application of the non-conventional estimation method alters this parameter structure 

radically. The inclusion of auto-regressive effects makes TN insignificant. These models 

were tested by simulating the relationship for 9 Japanese lakes to show the superior 

performance of the non-conventional dynamic model. 
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CHAPTER I 

INTRODUCTION 

_____________________________________________ 

1.1 Water and it’s Assessment 

 

The estimated volume of World’s Water is 1.4 billion km
3
, only 2.5 % is freshwater and most is 

salty (UNESCO, 2013). Lakes and reservoirs as major sources of water are under Agricultural 

related environmental pressure. Agriculture accounts for about 85 % of world’s water use 

(Pfister et al., 2011) mostly for irrigation. Plant nutrition plays a central role in Crop production 

to provide food for the increasing Global Population. Phosphate and Nitrogenous fertilizers will 

continue to be used as sources of Phosphorus and Nitrogen.  

Phosphate and Nitrogenous fertilizers are reported to have caused changes in the status 

of water resources by increasing phytoplankton biomass (e.g., Sebilo et al., 2013; Lundy et al., 

2012; Nangia et al., 2010). Chlorophyll-a is the most popular indicator of phytoplankton 

biomass (Søndergaard et al., 2011; Carvalho et al., 2009), the other being Secchi-disk 

transparency (SDT) mostly applied in remote sensing of water clarity (Olmanson et al., 2008). 

This thesis presents an application of remote sensing for monitoring spatio-temporal changes in 

land cover and advanced statistical approach for assessment of water resources. Advanced 

statistical modeling specifically panel data analysis is done by developing random and dynamic 

panel models to estimate parameters for total nitrogen and total phosphorus in influencing lake 

Chlorophyll-a.  
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Statistical models for estimating and predicting Chlorophyll-a from nutrient data have 

been presented for several years (Bachmann et al., 2012; Reckhow, 1993), with the first 

preposition of Chlorophyll-nutrient relationship made by Sakamoto in 1966. Previous authors 

have presented coefficients in chlorophyll-nutrient relationships but the common estimation 

method is Ordinary Least Squares (OLS) (e.g., Bachmann et al., 2012; Huszar et al., 2006). 

Predictive models that apply OLS ignore the station-specific effects (sampling site) and previous 

concentrations of the Chlorophyll-a. Panel data analysis estimates a chlorophyll-nutrient 

relationship where these issues are considered, random-effect model for the former and dynamic 

panel model for the latter.   

It is established in literature that phosphorus and nitrogen are the major nutrients that 

influence Chlorophyll-a in lakes (Abell et al., 2012; Lv et al., 2011; Carvalho et al., 2009; 

Brown et al., 2000). Phosphorus has higher coefficients of over 0.6 and nitrogen with an average 

of 0.4. Though fewer authors have reported higher coefficients for nitrogen than phosphorus, 

such results are notable of a single predictor variable e.g., Trevisan and Forsberg, (2007) and 

most of these relationships are modeled using OLS estimation. 

Panel data (longitudinal or cross-sectional time-series data) enables study of different 

lake stations (sampling sites) over time. Panel data analysis controls for station heterogeneity 

which changes at specific stations but not across stations. Panel data models are commonly 

developed as fixed-effects and random effects models. Since we are interested in general 

inferences, it is justifiable to use the random effect’s model. The detailed methodology for panel 

data analysis is explained by Hsiao (2007) and Oscar (N.d). Dynamic panel models are based on 

auto-regressive effects of Chlorophyll-a as a variable and other predictors to estimate its current 

concentration. The current concentration of Chlorophyll-a depends on the concentrations of 
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Chlorophyll-a in the earlier years (lags). Panel data analysis has been applied mostly in financial 

and economic studies. The major advantage of panel data analysis – random effect model and 

dynamic panel model is the ability to control station-specific effects and to incorporate previous 

lags in the regression equation.  

 

Table 1.1 Applications of panel data analysis 

Theme Scope Highlights Author(s) 

Capital structure of 

firms 

7 Central and 

Eastern 

European 

Countries (CEE) 

Cash flow is a significant 

determinant of firm 

leverage 

Mateev et al., 2013 

Fuel demand Brazil The market for ethanol is 

very dynamic and its 

demand is elastic 

compared to gasoline. 

Santoso, 2013 

CO2 emissions 12 Countries in 

the Middle East 

Energy consumption, FDI, 

GDP and trade determined 

CO2 emissions. 

Al-mulali, 2012 

Renewable energy 24 European 

Countries 

Traditional energy sources 

mainly control the rate of 

change to renewable 

energy sources.  

Marques and 

Fuinhas, 2011 

Exchange rate and 

Foreign Direct 

Investment (FDI) 

9 Asian 

Economies 

FDI increased with both 

higher value of the yen 

and exchange rate 

Takagi and Shi, 

2011 

Financial 

development 

G-7, Europe, 

East Asia and 

Latin America 

Real income per capita and 

institutional quality are the 

determinants of  Banking 

sector and capital market 

developments 

Law and 

Habibullah, 2009 

Financial factors 

for FDI 

US, UK, Japan 

and Germany 

Cointegrating relationship 

exist between FDI and real 

exchange rates 

Choi and Jeon, 

2007 
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1.2 Hypothesis 

The recent developments in Kampala and Entebbe, Uganda have altered land use 

and land cover with implications for management of Lake Victoria, determination of the 

changes are feasible using satellite images.  

 

Panel and dynamic panel models are statistically and geographically better 

performing models than the pooled Ordinary Least Squares model. 
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1.3 Objectives of the Study 

 

The objectives of the thesis are to determine the spatio-temporal changes in wetlands for 

Entebbe and Kampala areas surrounding Lake Victoria and, estimate the parameters for total 

phosphorus and total nitrogen as determinants of Chlorophyll-a in the Chl-a = f(TP,TN) 

relationship from panel data analysis and test the robustness of the models by predicting the 

level of Chlorophyll-a in other lakes. 
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CONCEPTUAL FRAMEWORK 

 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 Thesis conceptual framework  
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CHAPTER II 

 

ENVIRONMENTAL PRESSURE ON LAKES: N AND P 

FERTILIZERS 

2.1 THE CASE OF LAKE VICTORIA 

_________________________________________ 

2.1.1 Overview of Lake Victoria 

 

 Lake Victoria (Nyanza, Ukerewe, Nalubaale) the second largest freshwater lake in the 

world with a surface area of 68,800 km
2
, 400 km long and 320 km wide and its maximum and 

avearge depth of 83 meters and of 40 meters is a transboundary lake shared by three countries, 

Uganda (45%), Kenya (6%) and Tanzania (49%) (Muyodi et al., 2010). The Equator crosses the 

Northern tip of the lake near Entebbe International Airport at an altitude of 1133 meters. Lake 

Victoria has experienced three major environmental challenges, first was the introduction of 

Nile perch in 1950s, a predator which drastically reduced the population of Cichlids, endemic to 

Lake Victoria, Tanganyika and Malawi (Turner et al., 2001), though the reason was 

economically justifiable. Second, water hyacinth (Eichhornia crassipes) problem in the late 

1980`s which lasted for over a decade (Opande et al., 2004; Kateregga and Sterner, 2007).Third, 

the flower farms established in the 1990s within Entebbe area which are fertilizer intensive 

systems and expansion of some farms resulted into uitilizing Cyperus papyrus area. In this 

thesis, the distribution of papyrus in 2011 and spatio-temporal changes in wetlands around Lake 
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Victoria are estimated. A brief background to fish exports, floriculture and management of Lake 

Victoria are presented in this section. 

 

Fig. 2.1 Topographic map of East Africa showing Lake Victoria at the   

center of the countries, a section from ArcGIS online basemap 
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2.1.2 Temperature and Rainfall for Entebbe 

A 

B  

 

Fig. 2.2 Temperature and rainfall for Entebbe, Uganda 

Source: Worldweatheronline 

http://www.worldweatheronline.com/v2/weather-averages.aspx?q=EBB 
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2.1.3 Uganda Fish Exports  

 

 It is estimated that over 30 million people derive their livelihood from Lake Victoria. 

The most quantifiable economic value are exports of fish and fish products which was at 128 

million  US $ in 2010 (UEPB, 2013). In the biodiversity, Lake Victoria is home to over 700 

endemic Cichlids (Turner et al., 2001), the introduction of Nile perch (the predator) in 1950s 

significantly altered their population structure. 
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Fig. 2.3  Exports of Fish and Fish Products 

Source: UEPB 
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Fig. 2.4 Fish from Lake Victoria at Kasenyi Landing Site. 

Photograph taken during Geo-data collection in 2012. 
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2.1.4 Uganda Floriculture Industry  

 

Commercial flower production in Uganda is the leading horticultural export cluster from 

mainly roses and chrysanthemum cuttings, it was valued in 2010 to have exceeded 22 million 

US $ (UEPB, 2013). The roses are mainly exported to the Flower Auction in the Netherlands. 

Having started in 1993, peak volume of exports was achieved in 2005. The sector employs 

85,000 people and in 2010 there were 20 commercial flower farms though the number has 

reduced in the recent years. The global economic crisis of 2008 had tremedous effects on the 

sector.  

 

TANK A 

Calcium Nitrate 

EDDHA 

EDTA 

Microfeed 

 

 

 

TANK B 

Potassiumnitrate 

Potassiumsulphate 

Magnesiumsulphate 

Magnesiumnitrate 

Ammoniumnitrate 

Monopot.phosphate 

Nitric Acid 

Fosforic Acid 75% 
 

 

Fig 2.5. Fertilizers for Flower production. 

Ethylenediamine bis(2-hydroxyphenyl)acetic acid 

(EDDHA) and Ethylenediaminetetraacetic acid 

(EDTA) are chelating agents used to supply and 

correct iron deficiency.  

Source: Adapted from a Photograph taken during a  

flower farm visit in November, 2010. 
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Fig. 2.6 Roses produced in Uganda 

Source: UFEA 
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Fig. 2.7 Exports of Flowers and Cuttings, 2003-2010 

Source: UEPB  
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2.1.5 Export Share of Horticultural Crops 

 

  

Fig. 2.8 Share of horticultural exports, 2010. 

Source: UEPB 
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2.1.6 Management of Lake Victoria 

 

Lake Victoria is managed by a variety of organisations, this section introduces a few of 

those organisations. Historical and current research and management projects were described by 

Muyodi et al. (2010). Ministry of Water and Environment is the government organisation 

responsible for the general management of water resources and the environment in Uganda. The 

divisions include Directorate of Environmental Affairs, Water Development and Water 

Resource Management. 

National Environment Management Authority (NEMA) is entrusted with the role of 

public communication and implementing programs that protect the environment. NEMA 

handles Environmental Impact Assessments of projects and also issues permits for 

environmentally sound development projects.  

With its history starting in 1947 first as the East African Fisheries Research Organisation 

(EAFRO), now National Fisheries Resources Research Institute (NaFIRRI), was established by 

the National Agricultural Research Act of 2005. The institute is part of the National Agricultural 

Research Organisation (NARO). NAFFIRI programs are focused on fisheries and aquacultural 

sector development.  

Lake Victoria Environment Management Program (LVEMP) a collaborative program 

which started in 1997 with second phase expected to end in 2015, has the objectives to 

strengthen collaborations for management of Lake Victoria within East Africa and reduce 

environmental stress to Lake Victoria.  
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 Established in 2002, Lake Victoria Research (VicRes) Initiative is a multidisciplinary 

research initiative within East Africa under the Inter-University Council for East Africa 

(IUCEA). The phases of activities for the initiative started in 2003 and the current phase closing 

in 2014. The program is funded by the Swedish Government (SIDA). In management of Lake 

Victoria and associated natural resources, research funds are granted to researchers for projects 

within the Lake Victoria region in Ethnobotany, fisheries and aquaculture and natural resource 

management, as of 2012, 102 projects were funded by SIDA.  

 

Table 2.1 Summary of data for Lake Victoria from previous studies: Uganda
a)

 

Theme and Location Parameter & Group parameters  Author(s) 

Chl-a 

(μg/l) 

TN 

(μg/l) 

TP 

(μg/l) 

Temp 
o
c 

Transparency 

(m) 

 

Current and historical 

status (2009 data): 

Offshore 

5.9 

 

  25.88 

 

2.8  Sitoki et al., 

2010 

       

LVEMP 

(2000-2005):  

Station UP2 Inshore  

2.4-

6.24 

11.9-50 

(NO3-N) 

50-

160 

25.9-26 2.3-2.7 Muyodi et 

al., 2010 

       

Optical properties  

(2003-2004): 

Murchison Bay 

36.72 

 

    Okullo et al., 

2007 

       

Phytoplankton 

dynamics 

(2003-2004): 

Murchison Bay 

20-60 >1100  > 90  26.2 0.8-4  Haande et al., 

2011 

 

MWE (2000-2001): 

Murchison Bay 

 

5.61 

 

 

27 

 

4 

  

1.38 

 

Unpublished 

a) Years are shown in parentheses.  

Detailed historical and recent data was presented in Sitoki et al., 2010. 

LVEMP – Lake Victoria Environmental Management Project 

MWE – Ministry of Water and Environment 
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2.2 THE CASE OF LAKE NAIVASHA 

 

2.2.1 Overview of Lake Naivasha 

 

 Lake Naivasha a freshwater lake located in Kenya rift valley at an altitude of 1889 m 

with surface area of 180 km
2 

and mean depth of 8 meters, the lake receives water from River 

Malewa and Giligal (Stoof-Leichsenring et al., 2011). Important for fishing, tourism and a 

source of water to Nakuru area and for irrigation which has sustained the floriculture sector in 

the Country.  

Lake Naivasha a RAMSAR site of ecological significance has experienced problems of 

reduction in water level and effects of fertilizers and pesticides which are heavily used within 

it’s catchment (Ballot et al., 2009). Historical events presented by Stoof-Leichsenring et al., 

(2011) show that Lake Naivasha has been experiencing drought periods which significantly 

reduces its water level through the centuries, however an issue of the recent past was the 

introduction of flower production in 1969. The catchment of Lake Naivasha which is estimated 

to be 3,400 km
2
 is dominated not only by Flower farms but there also coffee and tea plantations 

and other horticultural crops. Heavy metals from agrochemicals were found to be as one of the 

problems affecting the lake (Mutia et al., 2012).  

Similar to Lake Victoria, Cyperus papyrus exists within the catchment of Lake Naivasha 

though the area is reduced by grazers (buffalo and cattle) according to Morrison and Harper, 

2009. Application of tools that highlight ecosystem services and the relevance of wetland 

conservation with community participation are emphasized to be  better options for management 
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of Lake Naivasha compared to studies that only focus on biological and geosciences with no 

social dimension (Morrison et al., 2013). 

 

Fig. 2.9  Section of Kenya Topographic map showing Lake Naivasha and the Capital Nairobi, 

an extract of ArcGIS online basemap 
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2.2.2 Temperature and Rainfall for Naivasha 

A 

 

B 

 

Fig. 2.10 Temperature and rainfall for Naivasha 

Source: Worldweather 

http://www.worldweatheronline.com/Naivasha-weather-averages/Rift-Valley/KE.aspx 
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2.2.3 Kenya Floriculture Industry 

 

Flower production started in 1969 (Stoof-Leichsenring et al., 2011) and recently, 95% of 

the Flower production in Kenya is within Naivasha area (Mekonnen et al., 2012). The main 

drivers of investment in the Kenya floriculture sector are climate (low temperature), water for 

irrigation from Lake Naivasha, low labour and energy cost. In 2010, flowers covered an area of 

3,400 hectares (Rikken, 2011). 

Data shows that the Kenya flower exports have increased steadily except for 1998. As 

the leading exporter of roses to the European Union with 38 % of the market share, most of the 

roses (65 %) are sent to the Dutch Auctions. Floriculture exports were valued at KShs 42.9 

billion in 2012, one of the leading horticultural exports from Kenya. The sector employs 90,000 

people (KFC, 2013). 

 

Fig. 2.11 Kenya flower exports (1995-2011) 

Data Source: KFC  
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CHAPTER III 

 

MONITORING POSSIBILITY USING  

REMOTE SENSING 

______________________________________________ 

3.0 REMOTE SENSING 

3.1 SATELLITE DERIVED MODELS 

 

3.1.1 Introduction  

 

Remote sensing a process of acquiring information from objects and surfaces through 

analysis of light reflection and absorption within the light spectrum has found wider applications 

in urban planning and in assessment of water resources and terrestrial areas. The continuity of 

satellites at the same path and row enables monitoring of changes in Chlorophyll-a a measure of 

influence of environmental pressure and effectiveness of policies. Lake monitoring requires 

significant amount of data collected at various locations for lakes within a Country or across 

Countries. Issues of resource constraints or inaccessibility of lakes and sampling points are 

solved by remote sensing. The trans-boundary nature of many lakes makes data management 

challenging and lake monitoring is usually done at country level. Remote sensing offers 

opportunities to monitor and predict changes in Chlorophyll-a with limited amount of 

Chlorophyll-a and transparency data using satellite images with higher frequency per year, 

wider areas for analysis per single image and less susceptibility to estimation errors during cloud 

free days (Allan et al., 2011; Giardino et al., 2001).  
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Field spectrometric measurements of plant species is precise (Manevski et al., 2011), 

efficient for location specific studies but does not allow concurrent evaluation of features and 

land cover for wider regions. A single image (e.g., 170km X 185km for Landsat 7) allows 

spatial mapping of land cover and studying extensive utilization of natural resources. 

Monitoring Spatio-temporal changes in land use and land cover using remote sensing has been 

applied to determine the drivers of vegetation change (e.g., Maxwell and Slyvester, 2012; 

Otukei and Blaschke, 2010). Applications in Crop Science include mapping rice and ever 

cropped areas (Maxwell et al., 2013; Chen et al., 2011). The most popular satellite images used 

are for Landsat (5 & 7) and Moderate Resolution Imaging Spectroradiometer (MODIS), 

however RapidEye (5m resolution) enables mapping of land cover with greater detail compared 

to Landsat (30 resolution). Landsat images are freely available for download at the USGS site. 

Though remote sensing has been widely applied in the USA, Europe and China for over 3 

decades, the studies are not very extensive in Africa.  

Chlorophyll-a concentration is related with band values of satellite data for mapping it’s 

distribution within a lake (Giardino et al., 2001). Band ratios of Landsat images were used in a 

regression to map Chlorophyll-a by Duan et al. (2008), such studies of remote sensing have 

provided reliable estimates of Chlorophyll-a (Allan et al., 2011; Zhang et al., 2011). SDT 

another popular indicator for assessing water resources is related with satellite band reflectance. 

An application is explained by Olmanson et al. (2008), who used Landsat to assess the water 

clarity of 10,000 lakes in Minnesota, USA. The correlations are made between natural 

logarithms of SDT and band values. Chlorophyll-a is more related to phosphorus and nitrogen 

concentrations in lakes than SDT.  
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3.1.2 Satellite derived Chlorophyll-a models  

 

 

 

Table 3.1 Models of Chlorophyll-a derived from Landsat images 

 

Note: Also see Sass et al. (2007) and Nas et al. (2010)  with more descriptions of other studies 

on Chlorophyll a and SD. 

  
a)
 ETM - Enhanced Thematic Mapper 

  
b)

 TM - Thematic Mapper. 

  
c)

 pTM1 and pTM2 are atmospherically corrected reflectance values in TM bands and 1 and 2. 

 

  

Model and date Lake Authors

In(Chl-a) = 1.9742 [In(B3)]+11.556

January, 2002

In(Chl-a) = 2.3205 [In(B3)]+13.244

October, 2002 and January, 2002

Chl-a = 44.2-1.17(B1)-0.88(B2)+1.49(B3)+4.08(B4) Dajingshan reservoir,

China

Xiong et al . (2011)

November, 2005

Chl-a = 7.394-0.377TM1+0.536TM2+0.732TM4 Lake Beysehir, Turkey Nas et al . (2010)

August, 2006

Chla = 11.18pTM1 - 8.96pTM2-3.28mg/m
3

Lake Iseo, Italy Giardino et al . (2001)
c

March, 1997

Rotorua Lakes, Lake 

Taupo and Rotoiti, 

New Zealand

Allan et al . (2011)
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3.1.3 Secchi-disk transparency (SDT) models 

 

 

 

 

 

Table 3.2 Models of Secchi Depth derived from Landsat TM images 

 

a)
 pTM1 and pTM2 are atmospherically corrected reflectance values in TM bands and 1 and 2. 

 

  

Model and date Lake Authors

InSD = 0.134TM1-0.392TM3+2.484 Lake Maine, USA McCullough et al.  (2012)

September, 2004

SD = -16.89+93.84(TM1/TM3)-2.162TM1 Lake Beysehir, Turkey              Nas et al.  (2010)

August, 2006

In(SD) = 1.493(TM1/TM3)-0.035TM1-1.956 Lakes in Minnesota, USA        Sawaya et al.  (2003)

August, 2001

SD = 8.01pTM1/pTM2-8.27 Lake Iseo, Italy Giardino et al.  (2001)
a

March, 1997
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3.2 SATELLITE IMAGE CLASSIFICATION AND 

VEGETATION DIFFERENTIATION 
 

Image classification procedures are generally grouped as parametric or non-parametric. 

Parametric classifiers assume that data is normally distributed while the later are distribution 

free classifiers for example, Decision Trees (DT) and Support Vector Machines (SVM). The 

two are popularly applied to classify satellite images (Otukei and Blascke, 2010). Since DTs 

make no prior assumptions about the data and their capacity to manage non-linear relationships 

between features and classes, they are of more advantage than other classifiers (Pal and Mather, 

2003). Maximum Likelihood Classification (MLC) a parametric technique with the assumption 

that data is derived from a normal distribution (Keuchel et al., 2003) is the most commonly used 

classifier (Lu and Weng, 2007), in their review, they present  the advances in image 

classification.  

In supervised classification, co-ordinates are used to create training samples for 

formation of classes which leads towards a more specific calculation of area occupied by the 

different features in the landscape. Multiple classification techniques termed classifier 

ensembles can be applied on the same image to compare results and improve the accuracy of 

image classification procedure (Waske and Braun, 2009).  

The relatedness in reflectance for most plant species is a major challenge to their 

differentiation (Ullah et al., 2012), this has resulted into development of a diversity of indices. 

Currently there are over 40 vegetation indices (Peng et al., 2012). Normalized Difference 

Vegetation Index (NDVI), Difference Vegetation Index (DVI), Greenness Index (GI) are some 

of the vegetation indices (Saadat et al., 2011), NDVI being the most popular index (e.g, Chen et 
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al., 2012; Maxwell et al., 2012).  NDVI values developed from the satellite images and 

shapefiles are used as ancillary data for accuracy of image classification (Heinl et al., 2009). 

Satellite images at high resolution with high spectral definitions are analysed to differentiate 

plant species, RapidEye (5 m resolution) is applied in this study. 

NDVI is based on the principle of light assimilation and reflectance by the objects being 

assessed. Chlorophyll absorbs Red-light of the electromagnetic spectrum while the mesophyll 

cells scatters Near Infrared (NIR) (Pettorelli et al., 2005). The range of NDVI is -1 and 1. 

Values in the positive range represent increasing vegetation greenness whereas values close to 0 

represent soil, rock, water, ice and other objects and surfaces other than vegetation. Below is the 

formula for calculating NDVI. 

 

 

NDVI = 

NIR-R 

NIR+R 

 

Naturally, a variety of plants exist with similar reflectance spectra (Ullah et al., 2012) 

which results into similar NDVI values. Ancillary data such as co-ordinates for plant species 

and elevation when combined to set training samples in the process of image classification 

improves interpretation of NDVI values (Chen et al., 2011; Manevski et al., 2011). In the 

section ahead, Landsat and RapidEye are analysed to assess the spatio-temporal changes in land 

cover for Entebbe and Kampala, Uganda. 
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3.3 WETLAND CHANGE 

 

Changes in Wetlands of Lake Victoria 

The dominant plant surrounding Lake Victoria is Cyperus papyrus. Cyperus papyrus in 

this area has been studied since the 1950s (Lind, 1956). The studies describe the biological 

functionality of papyrus (Kansiime et al., 2007) and socio-economic perspectives of wetland 

conservation. Real Estate development, Agriculture, Eucalyptus plantations (Appendix A3) are 

the main drivers of receding wetlands. In estimating land cover changes for the past 20 years in 

East Africa, Brink et al. (2014) show that Agricultural area increased by 28 %. 

Remote sensing was previously applied to support strategies for management of water 

weeds (Cavalli et al., 2009). A similar technique for mapping the distribution of papyrus is a 

remaining research gap. Using the available satellite images, it is possible to map papyrus 

wetlands concurrently with impervious surfaces (estates, roads) for change detections and 

evaluating the trend of urban development.  

Spatio-temporal changes in land use and land cover is essential to determine transitions 

between land use types over time. Since the ecological sustainability of Lake Victoria depends 

mostly on papyrus wetlands, their present distributions will guide landscape and urban planning 

efforts as Kampala the capital is located 37 Km away from Entebbe and the latter is developing 

further due the increase of urban population.  
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3.4 SPATIO-TEMPORAL CHANGES IN            

LAND-COVER: LAKE VICTORIA 

 

_____________________________________________ 

 

 

3.4.1 Abstract 

  

In this paper, we estimated, for Entebbe and Kampala areas on the northern shore of 

Lake Victoria as study areas, the present extent of Cyperus papyrus (papyrus) wetland and its 

change over time, using RapidEye (5 m resolution) and Landsat (30 m resolution) satellite 

images. We first estimated land cover for Entebbe area in 2010/2011 by using both RapidEye 

and Landsat images, second, the performance of Landsat in land cover classification was 

compared with that of RapidEye, and third, we identified changes in land cover in the last 15 

years for the study areas by using Landsat images.  The results of GIS analysis of RapidEye 

revealed that in 2011, 30% of Entebbe area was occupied by wetland, of which 70% was 

papyrus-covered. Between 1995 and 2010, the share of wetland decreased from 38% to 32% for 

Entebbe and from 15% to 11% for Kampala, but for both areas, the most decreases occurred in 

the last 5 years. The urban land use increased in Kampala from 17% to 64%, and from 9% to 

23% for Entebbe, but for both areas, the type of land encroached first by the expanding urban 

land use was non-wetland vegetation, such as crop land, forest and green space, with relatively 

low encroachment on wetlands until the mid-2000s. However, the urban expansion in recent 

years has reached a stage to encroach wetlands. 
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3.4.2 Introduction 

Found in areas around Lake Victoria, the second largest freshwater lake in the world, are 

immense wetlands with thickly grown Cyperus papyrus (henceforth papyrus), a popular scenery 

in inter-lacustrine areas in East, Central and Southern Africa but a very important ecosystem not 

only to the natives but also to the world, as it is important for biodiversity and environmental 

conservation (Lind, 1956; Lind and Visser, 1962; NFA, 2002; Kansiime et al., 2007; Maclean et 

al., 2011). The increase in urban population has resulted into shifts in land cover mainly to 

agricultural, industrial and estate developments, a phenomenon occurring in areas around Lake 

Victoria, Uganda, responsible for a decline in wetlands.  Papyrus is a plant species that absorbs 

pollutants. The changes in the extent of papyrus-covered wetlands, therefore, would critically 

affect the water quality of Lake Victoria. Changes in land cover are evident from observations 

on the ground, particularly along roads and highways, but the topographic nature of wetland 

areas makes it difficult to know how extensive the changes have been.  An accurate estimation 

of papyrus habitat is important in the sustainable development of the area surrounding Lake 

Victoria. There are some land-cover and topographical maps, such as National Forestry 

Authority’s ‘Shapefile of 1996 and 2005’ (NFA, 2006) and Survey and Mapping Department’s 

topographic map of 1998 (SMD, 1998).  Though useful to know land-cover classifications, they 

do not give a complete estimate of wetlands, and papyrus is only mentioned among many 

wetland species. SMD gives data only for a single year, not enabling us to analyze changes over 

time. 

Remote sensing techniques could be instrumental in providing information for accurately 

identifying papyrus-covered wetlands at present and their changes over time.  Since papyrus is a 
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perennial sedge of the Cyperaceae family which propagates by rhizomes and seeds, growing up 

to a height of 9 m with emergent stems and an inflorescence (Jone and Muthuri, 1985; Kansiime 

et al., 2007), the use of high-resolution satellite images makes it possible to identify papyrus-

covered wetlands. Adam et al. (2012), Adam and Mutanga (2009) and Cavalli et al. (2009) 

identified papyrus-covered wetlands in some parts of the lacustrine areas in Eastern and 

Southern Africa using field spectral measurements and Landsat. RapidEye, one of the high-

resolution satellite images of 5 m resolution, has offered an opportunity to classify papyrus. A 

problem of RapidEye is that its high resolution increases the number of satellite images, and 

therefore the cost, which are necessary to analyze a wide range of area.  Landsat is another set of 

satellite images that are more readily available than RapidEye, but Landsat’s resolution is 30 m, 

with which wetlands are well identified but not efficiently for papyrus. Vermeiren et al. (2012) 

and Abebe (2013) studied changes in land-cover patterns in Kampala using Landsat images, but 

their land cover classification does not include papyrus. 

The purpose of this paper is to identify papyrus wetlands that face a high likelihood to be 

developed in future for areas along the Northern shore of Lake Victoria, through estimating the 

present extent of papyrus wetlands and its changes over time, using satellite images of RapidEye 

and Landsat. Specifically, we first identify ‘papyrus wetlands’ in Entebbe area by using a 

RapidEye image; second compare the performance of land cover classification between 

RapidEye and Landsat for Entebbe area; and third identify changes in wetlands in the last 15 

years for Entebbe and Kampala areas based on Landsat images. 
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3.4.3 Materials and Methods 

 

Study areas 

 

We chose Entebbe and Kampala situated along the Northern coast of Lake Victoria as 

our study areas.  Entebbe area was selected for our study to represent areas with vast papyrus 

wetlands facing a high likelihood of being developed in the near future. Entebbe is in Wakiso 

district, with the population of 1.3 million in 2011 (UBOS, 2013), total yearly rainfall of 1,507 

mm, and a daily average minimum and maximum temperature of 17.5 and 25.6
° 
C, respectively 

(BBC, 2012).  Our Entebbe study area includes Entebbe town, the Entebbe International Airport 

and the surrounding areas within a square of 625 km
2
 (25 km x 25 km with the coordinate of the 

northwest corner; 32.35 E and 0.222 N).   The landscape of Entebbe town is relatively flat at an 

altitude of 1180 meters, while the nearby areas are mostly hilly with valleys that embrace at the 

bottom extensive wetlands, all of which are continuously connected with Lake Victoria on the 

surface or underground. As reported by Elhadi et al. (2009) for Lake Victoria and Central Africa, 

papyrus is the most abundant species in wetlands in the study area. Besides residential plots, 

agricultural fields, Eucalyptus plantations, pine and forest reserves are the main land use and 

land cover types. A distinct feature in the land use of the area is the concentration of a high 

number of export-oriented large scale flower farms (UFEA, 2010).   

Kampala, the capital of Uganda, which was selected for our study to represent areas that 

have undergone rapid urbanization, is situated 37 km to the northeast of Entebbe, at an altitude 

of 1190 meters, with a population of 1.7 million (UBOS, 2013).  Nearly adjacent to the Entebbe 

study area with only a 10 m difference in elevation from Entebbe town, the Kampala study area 
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shares similar natural conditions as the Entebbe study area.   For land cover, however, the 

Kampala study area has gone through tremendous changes during the past decade as one of the 

rapidly growing cities in Africa (Vermeiren et al., 2012), and most of the land in Kampala is 

occupied by buildings and roads.  The Kampala study area follows the area designated as 

Kampala in the NFA Shapefile of 2005 (NFA, 2005), within a square of 784 km
2
 ( 28 km x 28 

km with the coordinate of the northwest corner; 32.50 E and 0.500  N).  

 

Fig. 3.1 Topographic map of East Africa (left) and street map of the study site (right), sections 

of ArcGIS online basemaps. 

 

Satellite image analysis by Maximum Likelihood Classification  

 

  The procedures of image classification into various land cover are generally grouped as 

parametric or non-parametric. Parametric classifiers such as Maximum Likelihood 
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Classification (MLC) rely on the assumption that data are normally distributed (Keuchel et 

al. ,2003), while non-parametric classifiers are distribution free, such as Decision Trees (DT) 

(Otukei and Blaschke, 2010), and Support Vector Machines (SVM) (Pal and Mather, 2003). 

MLC is the most commonly used classifier and adopted in this study.  

The satellite image analyses conducted in this study are summarized schematically in 

Figure 3.2. We used RapidEye high resolution satellite image of 2011 to identify the distribution 

of papyrus wetlands and Landsat 5 and 7 images of 1995, 1999, 2005 and 2010 to identify the 

distribution of wetland and its changes over-time. In order to focus on wetlands, in this study we 

classify land cover into four classes, papyrus-covered wetland, multi-species wetland, non-

wetland vegetation and impervious surfaces for RapidEye image, and three classes, wetland 

(including papyrus-covered wetland), non-wetland vegetation and impervious surfaces, for 

Landsat images. Impervious surfaces are such land as buildings, roads and open land, and crop 

lands and forests are included in non-wetland vegetation.  

In setting the training areas to establish classification patterns, information on actual 

situations (ground truths) obtained from field observation was used for RapidEye 2011 and 

Landsat 2010 images. For Landsat 1995 and 1999 images, the topographic map of 1998 made 

by the Survey and Mapping Department with the assistance from JICA (SMD, 1998) and the 

Shapefile of 2005 (NFA, 2005) were used. All the GIS analyses were conducted in Arcmap 

version 10 by Maximum Likelihood Classification.     

 

 

  



35 
 

  

Fig. 3.2  Procedure for classification of satellite images by Arcmap 10 

 

Training samples 

Maximum Likelihood Classification 

Spectral signatures from all land cover data 

Land Use attribute tables 

NFA Shapefile 

2005 

  
SMD  

1998 

  

Accuracy 

Ground truths 

2012 

Rapideye image 
(2011) 

(5 m resolution) 

 

Landsat images   
(1995 – 2010) 

(30 m resolution) 

 

Landsat and RapidEye bands 



36 
 

Satellite images 

The satellite images used in this study are listed in Table 3.3.  The RapidEye image was 

obtained from RapidEye (RapidEye, 2012).  Landsat images used are Landsat 5 and 7 in Path 

171 and Row 60, downloaded from the United States Geological Survey (USGS) online archive 

(USGS, 2012).  Landsat images of 1999 and 2010 were used instead of 2000 and 2011, 

respectively, due to image availability in the archive, image quality and the need to estimate 

changes in land-cover at a 5 year interval. Landsat 7 image for 2005 used in this study was a 

SLC-off image due to failure of scan line corrector. The striped missing areas were excluded 

automatically from our analysis when we made land-cover maps.  Note that Landsat image of 

1999 was affected by a thick cloud cover.  Since as much as 43% of the image is not visible, 

compelling us to confine our analysis to the visible part, the results of analysis for this year must 

be regarded as a reference. For the rest of the years, cloud cover is so thin or inexistent that it 

entails no problem for the analysis.  

Table 3.3 Sensors and dates of satellite images used, RapidEye and Landsat
a
 

 

Field evaluation and ground truthing  

 

Sensor
Cloud 

cover (%)

Shadow 

(%)

Date of 

image

RapidEye 0.9 0 11/02/2011

Landsat 5 na na 14/12/2010

Landsat 7 na na 06/01/2005

Landsat 7 37 6 24/12/1999

Landsat 5 na na 19/01/1995

a) 'na' means that estimates are not affected by cloud 

cover.
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In order to collect data on actual land cover (ground truth), field evaluations were 

conducted between February and March 2012 in the Entebbe study area. The GPS coordinates 

of land-cover distributions and locations of various plant species were collected.  Montana 650 

(Garmin Inc) Global Positioning System (GPS) was used to capture geo-referenced images of 

diverse vegetation. Although papyrus dominates in wetlands in the area, diverse plant species, 

such as common reed and palm also occupy a certain percentage of the study area (Appendix 

A2).  The co-ordinates of papyrus and other land-cover distributions were used to set training 

areas for supervised classification for the RapidEye image of 2011 and the Landsat image of 

2010 by Maximum Likelihood Classification (Figure 3.2).  

Results and discussion 

Entebbe in 2011 (RapidEye) 

 

The results of land cover classification for Entebbe study area based on RapidEye are 

summarized in Table 3.4 for the four land use land cover classes and mapped in Figure 3.3.  The 

overall accuracy rate of the estimated classification is 83%, which is comparable to other studies 

(Vermeiren et al., 2012; Abebe, 2013). The accuracy rate for papyrus wetlands is 86%. 

Papyrus wetlands took as much as 21% of the total area, excluding the water surface of 

Lake Victoria.  Since multi-species wetlands took 9%, altogether 30% of the study area was 

occupied by wetlands, and 70% of the entire wetlands were papyrus wetlands. It is apparent in 

Figure 3.3 that the papyrus wetlands took a substantial share in the study area.  However, it is 

also apparent that large, extensive papyrus wetlands were found in the central and western parts 

where human habitation was sparse, and in the areas stretching from the northeast corner of 

Figure 3.3, adjacent to Kampala metropolitan area, to the tip of Entebbe peninsular (the largest 
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peninsular jutting out into the lake south-westerly) where urbanized land use shown as 

impervious surfaces dominates, papyrus wetlands were besieged by impervious surfaces. This 

urban-land-use-congested area is along the highway connecting Kampala with Entebbe 

International Airport situated at the tip of the Entebbe peninsular.  Found midst of many 

relatively small papyrus wetlands in this area are spots of impervious surfaces, which is the sign 

of human encroachments. 

 

              Lake Victoria           Cyperus papyrus             Impervious surfaces 

Fig. 3.3   Results of RapidEye satellite image for 2011 showing locations of Cyperus 

papyrus and impervious surfaces 
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Table 3.4 Results of land-cover classification estimation for Entebbe area, RapidEye 2011 and 

Landsat 2010
a
 

 

 

 

 

Table 3.5 Results of land-cover estimation for Entebbe and Kampala, Landsat 1995, 1999, 2005 

and 2010a

  

Area

(`000ha)
%

Accuracy

 (%)

Area

(`000ha)
%

Accuracy 

(%)

Impervious surfaces 8.4 19 83 10.1 23 76

Non-wetland vegetation 22.7 51 80 20.0 45 73

Wetland:

Cyperus papyrus 9.1 21 86

Multi-species 3.9 9 83

Total 13.0 30 84 14.1 32 80

Total 44.2 100 84 44.2 100 76

a) Land area without Lake Victoria.

RapidEye, 2011 Landsat 5, 2010

1995 1999
b

2005 2010

%
Area

`000ha
%

Area

(`000ha)
%

Area

(`000ha)
%

Entebbe:

Impervious surfaces 3.8 8.6 8.0 18 8.4 19 10.1 23

Non-wetland vegetation 23.4 52.9 20.8 47.1 19.4 44 20.0 45

Wetland 17.0 38.5 15.4 34.9 16.4 37 14.1 32

Total 44.2 100 44.2 100 44.2 100 44.2 100

Kampala:

Impervious surfaces 12.5 16.6 25.1 33.5 32.2 42.9 48.1 64.1

Non-wetland vegetation 51.0 68 39.1 52.1 31.4 41.8 18.5 24.7

Wetland 11.6 15.4 10.8 14.4 11.5 15.3 8.4 11.2

Total 75 100 75 100 75 100 75 100

a) Lake area without Lake Victoria

b) Affected by heavy cloudcover

Area

 ('000 ha)
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Comparison between RapidEye and Landsat for Entebbe 

 

 In order to examine how Landsat images perform in land cover classification, the results 

of land cover classification based on the Landsat 5 image of 2010 for the Entebbe study area 

were compared with those of the RapidEye of 2011 (Table 3.4). For Landsat with a lower 

resolution, three classes of land cover were distinguished: wetland, impervious surfaces and 

non-wetland vegetation. The overall accuracy rate of 76% for the Landsat is lower than for 

RapidEye, but it is 80% for wetland, higher than for other land-cover classes.  

The Landsat image of 2010 identified that the area of wetlands was 14,100 ha or 32% of 

the entire Entebbe study area, not including the lake. Corresponding figures obtained from 

RapidEye were 13,000 ha and 30%; the estimation gap of 8% for the absolute area and 2% for 

the percentage share. These estimation gaps between RapidEye and Landsat 14% and 4% for 

impervious surfaces and 12% and 6% for non-wetland vegetation, respectively. There are some 

estimation gap between Landsat image of 30 m resolution and RapidEye image of 5 m 

resolution, but the degrees of the gaps are less than the degree of the resolution gap. In particular, 

the gap between the two estimates is relatively small for wetland. Taking note of these 

estimation gaps, we estimated the temporal changes in land cover using Landsat images in 

Entebbe and Kampala. 
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Fig. 3.4 Multi-temporal changes in land cover 1995-2010 by Landsat, Entebbe and Kampala 

 

Changes in wetland for Entebbe and Kampala (Landsat) 

 

 The results of estimation for 1995, 1999, 2005 and 2010 based on Landsat images are 

summarized in Table 3.5 and shown in Figure 3.4 for Entebbe and Kampala. The changes in 

land cover in Entebbe study area have been relatively gradual. The share of wetlands decreased 

from 38% in 1995 to 32% in 2010. However, most of its decrease occurred between 2005 and 

2010. As expected, the share of impervious surfaces increased markedly in the last 15 years.  

This increase occurred at the expense of wetlands and non-wetland vegetation, but the latter, 

changing from 53% in 1995 to 45% in 2010, was encroached more than the former.  Comparing 

to Kampala area, in Entebbe with relatively less population, the pressure on changes in land 
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cover is less.  However, wetland and forest encroachment is a common problem in Entebbe area 

too (Baranga et al., 2009). 

 The changes in land cover for the Kampala study area have been far more drastic than 

those for Entebbe. Impervious surfaces increased tremendously from 17% in 1995 to 64% in 

2010.  In Kampala, too, it was non-wetland vegetation that absorbed most of the expansion of 

urbanized land use; the share of non-wetland vegetation decreased from 68% to 25% in the 

same period.  In contrast, the share of wetland remained nearly at the same level of 15% until 

the mid-2000s, but began to decrease after 2005.  This trend in wetland supports the findings of 

Vermeiren et al. (2012) and Abebe (2013).  The changes in land cover for Kampala has been 

typical of rapidly developing urban centers where green spaces, crop lands, forests and wetlands 

have been replaced by buildings and roads for industrial and residential developments, including 

encroachments by new city dwellers. 

  A common observation for Entebbe and Kampala is that though began to decline in 

recent years, wetlands had remained relatively less affected during the decade between 1995 and 

2005.  Since it is expected that the composition of papyrus wetlands and multi-species wetland 

did not change rapidly, the changes in papyrus wetland would have also been small. This is in a 

sharp contrast to the case of the western shore of Lake Victoria where as much as 50% of 

papyrus wetlands were lost between 1969 and 2000 (Owino and Ryan, 2007).  

However, encroachments by urban development, and by agricultural land use at a lesser 

extent, now reach wetlands, most of which are covered by papyrus.  In 5 years from 2005, 

Entebbe lost 14% of wetlands and Kampala lost as much as 27%. As the Uganda economy 

continues to develop in future as has been in the recent past, the pressure on changes in land use 
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will increase and encroachments of urban and agricultural land uses into papyrus wetlands will 

become more rampant. Whether papyrus wetlands are to be preserved from environmental 

points of view or to be harnessed as economic resources, whichever the case, it is now the time 

to establish or re-establish firm and manageable policies towards papyrus wetlands.   

  



44 
 

CHAPTER IV 
 

RELATIONSHIP BETWEEN PHOSPHORUS, 

NITROGEN AND ENVIRONMENTAL INDICATOR 

____________________________________________ 

4.1.1 STATISTICAL MODELLING 

  Statistical modeling is essential to develop models and coefficients applicable to 

lakes with in countries and globally. There is need to forecast the status of lakes using available 

data, such simulations are feasible with robust models. Chlorophyll-nutrient relationships are 

widely published (Brown et al., 2000; Reckhow, 1993).  

Panel data analysis which controls for site specific effects is applied to develop robust 

models for Chlorophyll-nutrient relationship. Since we incorporate cross-sectional and 

longitudinal data in panel data analysis, it is justifiable technique as most available data are for a 

few years 2 to 4 and on a limited number of lakes. Databases on multiple lakes, in many 

countries and for a long period are vital to develop better models.  

The modelling approach used data which spans over 4 decades (45 years). These are the 

first panel data models to appear in this field as previous studies have shown that the most 

popular model was ordinary least squares (OLS) (eg.,Trevisan and Forsberg, 2007; Huszar et al., 

2006). The two types of panel data models developed are the random effect and dynamic model.  
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4.1.2 CHLOROPHYLL-A IN LAKES 

 

In monitoring water resources, data on parameters such as chlorophyll-a, phosphorus, 

nitrogen, temperature are collected routinely. The increase in phytoplankton biomass in lakes 

will signify the necessity of management interventions for sustainable use of a lake or reservoir. 

Chlorophyll-a is the most used indicator of phytoplankton biomass (Søndergaard et al., 2011). 

Chlorophyll-a in lakes depends mostly on phosphorus, nitrogen and temperature (Phillips et al., 

2008; Brown et al., 2000), temperature is natural factor and complex to manage in a spatial 

context.  

Sunlight on phytoplankton biomass 

In relative terms, the effect of sunlight on phytoplankton is less studied compared to 

studies on the influence of nitrogen and phosphorus on Chl-a. However, the studies indicate that 

light is a major environmental factor that affects the growth of phytoplankton (Ssebiyonga et al., 

2013; Zinabu, 2002). On seasonality, high summer temperature increases Chl-a concentration 

(Kallio, 1994), though not a general issue for temperate lakes. In addition, results of Liu et al. 

(2010b) show a positive correlation between Chl-a and temperature.  

Depth and chlorophyll-a 

Since light is essential for growth of phytoplankton, their distribution varies with water 

depth as influenced by reduction in light intensity (Bhutiani et al., 2009), thus, sampling depth 

affects the efficient estimation of Chl-a in lakes (Nõges et al., 2010). Results of a study by 

Carvalho et al. (2009) show that high concentration of Chl-a is found between 0 and 2 meters.  

Variations exist among deep and shallow lakes with a tendency of deep lakes having high 
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subsurface concentrations of Chl-a during lake stratification compared to shallow lakes, 

commonly known as deep chlorophyll maximum (DCM) (Camacho, 2006; Hamilton, et al., 

2010). 

Regressions 

Regression relationships are made using data for single or multiple lakes and the most 

common of these relationships is one between Chlorophyll-a and phosphorus, followed by 

Chlorophyll-a and nitrogen and, Chlorophyll-a and temperature (e.g., Lv et al., 2011; Trevisan 

and Forsberg, 2007; Liu et al., 2010b). Distributions of Chlorophyll-a, total phosphorus and 

total nitrogen have been spatially presented (Bachmann et al., 2012; Arhonditsis et al., 2003). 

Details of panel data regression are discussed in the next two sections (4.2.1 and 4.2.2). 
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4.2 REGRESSION ANALYSIS USING EURO-

LAKES DATA 

 

4.2.1 RANDOM-EFFECT MODEL 
 

 

Abstract 
 

Chlorophyll-a (Chl-a) is widely used as a water quality indicator.  Sampling locations 

within lakes are visualized by spatial analytical tools for decision making in effective 

management of water resources. With available limnological data, a model can be developed to 

enable application of its coefficients in other areas where data collection is not feasible. We 

developed a model which explains the variation of Chl-a in lakes by adopting panel data 

analysis with water quality data of European lakes and verified the robustness of the model by 

predicting Chl-a for lakes in United Kingdom, Japan, Australia and the USA. The amount of 

Chl-a in lakes mainly depends on Total Phosphorus (TP) and Total Nitrogen (TN). In addition to 

nutrients, we included a land-use dummy as a variable to account for the effects of land-use type 

on lake Chl-a. In the fixed- and random-effect models, TP and TN were significant (p <0.05). 

The random effect model was selected for the simulations on the basis of the Hausman test. The 

R
2
 between the predicted and actual Chl-a using samples from different countries was between 

0.83 and 0.66, except for the database of Florida lakes in the USA, which indicates we 

succeeded at developing a functional model for prediction of Chl-a from phosphorus and 

nitrogen. 
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Introduction 

 

The increasing interference in ecosystems has resulted into diverse ecological and public 

health problems.  The most common problem is deterioration of water quality. Chlorophyll-a 

(Chl-a) is among the parameters used to indicate phytoplankton biomass and is related with the 

concentrations of nutrients in water bodies (Søndergaard et al., 2011; Kasprzak et al., 2008; 

Greisberger and Teubner, 2007).  In addition to Chl-a, secchi disk transparency and reflectance 

data from satellite images are used in remote sensing studies to assess water clarity (Olmanson 

et al., 2008; Hedger et al 2002; Pepe et al., 2001).  Geographical Information Systems (GIS) 

enables the combination of point and spatial water quality data to identify areas affected by 

environmental problems using land use maps, watershed networks and digital elevation models.  

The use of Chl-a in remote sensing is cost-effective and enables the assessment of data for trans-

boundary and multiple lakes.  

In this paper, we used Chl-a as a waterquality indicator because phytoplankton growth 

depends on the aggregative effect of nutrients, environmental and geological factors.  In the past 

studies, Jeppesen et al. (2005) concluded that reduction in external total phosphorus resulted in 

low Chl-a concentration.  Many previous studies indicated that phytoplankton growth was 

mostly phosphorus-limited (Arvola et al., 2011; Lv et al., 2011; Wang et al., 2007; Brown et al., 

2000).  However, Trevisan and Forsberg (2007) found that it was mostly nitrogen-limited. Liu et 

al. (2010b) used multivariate analysis to understand the factors which influence Chl-a and found 

that temperature and phosphorus were important determinants. 

Conventional Chl-a and nutrient relationships have singled out phosphorus and nitrogen, in 

that order, as important determinants of Chl-a. However, most of these studies dealt with the 
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scale of a  single lake, a group of lakes in the same area, country (Sondergard et al., 2011), 

region (Seip et al., 2000) or a combination of tropical and sub-tropical lakes (Huszar et al., 

2006). If the relationship among Chl-a, phosphorus and nitrogen in lakes could be developed 

with cost-effective Geographical Information Systems  and  modelled  across many countries, 

regions and even globally, such a model would be invaluable in assessing water quality and 

environment around lakes.  

The purpose of this study was to examine if such a comprehensive and robust model could 

be constructed.  First, we built a model in which lake Chl-a was determined by Total 

Phosphorus (TP) and Total Nitrogen (TN), on the basis of data for 198 lakes in 10 countries 

across the European continent. We used the panel data regression method to eliminate 

heteroscedasticity caused by large variations inherent in widely scattered observation points. 

Second we tested the model by applying it to lakes in United Kingdom, Japan, Australia and 

Florida in the USA to predict lake Chl-a.   

 

Methodology and data 

 

 Analytical models 

The relationship between trophic state indices is estimated by panel data regression 

models, which have the advantage of controlling the heterogeneity associated with individual 

units.  An observation of the data set is identified along two dimensions of time ( 1, ,t T ) and 

water quality monitoring site ( 1, ,i N ).   

-  =   +  +  + it it i itChl a u x 
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where xit is a vector of TP, TN and other explanatory variables,  and are unknown 

parameters to be estimated, ui  is the unit-specific residual which differs among units, but the 

value is constant for any particular unit, and it is the error term with the usual properties of 

mean 0 and homoscedastic variance, 

.  We tried out two models.  The fixed effect model 

considers ui  as an intercept specific for each unit, while it is treated as a random variable with 0 

mean and u
2 

for the random effect model, in which the Generalized Least Squares (GLS) 

method is required since the covariance of 


and u
2is not equal to zero for each unit.  The 

GLS estimation is performed by transforming the variables using , as follows:

           1  1it i it i it iiy y x x v                 

where 
/iti t

y  y T
, 

 /iti t
x x T

, 
 /iti t

T 
 and 

 2 2 21 uT      
.  In 

case = 0, the equation is exactly the same as the one of fixed effect model.  Adequacy of the 

random effect model is judged by the Hausman specification test, 

     
1

Fixed Random Fixed Random Fixed RandomH V V   
     

where V denotes the covariance matrix of the estimator.  Selection between a random effects 

regression and a simple pooled regression is determined by the Breusch and Pagan Lagrange 

multiplier test, in which the null hypothesis is that cross-sectional variance components are zero.  

Furthermore, the overall-, between- and within-R
2
s are equal to the squared correlation 

coefficients corresponding to the equations  
ˆˆˆ

it ity  x  
, 

ˆˆ ˆ
i ity  x  

 and



51 
 

  ˆˆˆ
it i it iy y  x x   

, respectively, except that the within-R
2
 is directly calculated from 

residuals in the fixed effect model.  

Data 

 

Model estimation dataset. The data used to estimate the model were accessed from the online 

database of the European Environment Agency. The specific data selected from the database 

were Chl-a, TP and TN to constitute a balanced panel for 2003 to 2005, comprising of 199 

stations and 198 lakes selected from lakes in Switzerland (CH), Germany (DE), Denmark (DK), 

Hungary (HU), Italy (IT), Lithuania (LT), Latvia (LV), Netherlands (NL), Poland (PL) and 

Sweden (SE).  The sample lakes, observation stations and years for which data are taken for 

analysis are shown in Table 4.1 and appendix A7. Year-averages were used in our analysis to 

eliminate localised noises due to seasonal variations.  Additionally, we prepared a Land-Use 

Dummy (LUD) to associate the effect of land use with changes in actual lake Chl-a.  Each lake 

station co-ordinate was projected in Google Earth (Google Inc.) to examine and capture 199 

images of watersheds for classification based on land use type.  LUD takes the value of 1 or 0: 1 

for land occupied by artificial structures and farmland and 0 for natural area which includes 

shrubs, forests, bare land and mountains.  Images that had roads through watersheds were also 

classified as 0.  Examples of images for typical code 1 and 0 are shown in appendix A8. 

Temperature is among the environmental factors which influence the concentration of 

Chl-a, low temperature being associated with reduction in Chl-a concentration (Haande et al 

2011, Liu et al 2010b).  However, we had to omit it from the model because temperature data 
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were missing for many observation stations.  Altitude is considered as a good proxy for 

temperature, but it is not included in the analysis due to it’s high correlation with LUD.   

Simulation datasets  

 

To test the comprehensive applicability of the model across different locations in 

different countries, we performed simulations using data from lakes in the United Kingdom, 

Japan, Australia and the USA, which are selected for lakes located at high latitudes, in urban 

area, estuary, low and wetland, respectively.  All the simulations were based on year averages. 

The Lakes used for simulation are shown in Table 4.1. Lake Kasumigaura and Ibanuma are 

located northeast of Tokyo, since the lake is closer to the metropolitan area, the latter lake is one 

of the most affected lakes in Japan.  Lake Albert and Alexandrina are located south of Australia 

near the estuary of Murray River. Lakes in the United Kingdom are part of the general database 

for European lakes.  Data on Florida lakes were obtained from the FloridaLAKEWATCH online 

database, covering 57 counties. Most of the Florida lakes have surface area of approximately 4 

ha and depth of less than 5 m and 70% of them are without any surface inlet or outlet 

(Bachmann et al., 2012), a representative sample of lakes with less than 5 m depth often called 

“shallow lakes” whose trophic states vary considerably with different dynamics from deep lakes. 

The predictions of Chl-a for the Florida lakes was made for a sub-set of 8 lakes and for the 

entire database.  
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Table 4.1 Country, year, lakes and stations for European sample and simulation datasets. 

 

Country Year Lake(s) Station(s)

Europe (10 Countries) 2003-2005 198 (Appendix A) 199 (Appendix A)

Stations as indicated in the parentheses

after the lake name in their  order are Agard (Furdeto), 

Balatonakali,  Fertorakos, Gardony, Pakozd, 

373 - Piave - Lago Di Alleghe - Alleghe, 

369 - Po - Lago Di Garda - Brenzone,

371 - Po - Lago Di Garda - Bardolino, 

374 - Piave - Lago Di Misurina - Auronzo Di Cadore, 

361 - Piave - Lago Di Santa Croce - Farra D`Alpago,

Lago Di Scanno, East Part, East Part,

Burtnieku - Vidusdala, Kanieris Z - Dala, 

Kisezers - Riga  Preti Milgravja Caurtekai, 

Liepajas Ez. Pie Bartas Grivas, 

Raznas - Hidropostenis Kaunati, Vrouwenzand, 

Ketelmeer West, Markermeer Midden,

Haringvlietsluis, Wolderwijd, 

Veluwemeer Midden, Eemmeerdijk 23, 

Jez. Biale Wlodawskie, Jez. Sremskie,

jez. Tarnowskie Duze P - 01, j. Wuksniki st. 01, 

Skarsjon (ID 1149) and Skarsjon (ID SE633344-130068)

UK 2007-2010 Loch Ore Loch Ore - Yacht Jetty Near Outlet

Rescobie Loch Rescobie Loch(Bankside)

Loch Osgaig Loch Osgaig  Swcl

Loch Scarmclate Loch Scarmclate  Swcl

Loch a  Bhraoin Loch A Bhraoin (Wfd), W Of Boat House, Garve

Loch Tarff Loch Tarff (Wfd) - South Shore, 

S Of Eilean Ban Island, Fort Augustus

Loch Strathbeg Loch Of Strathbeg - S Shore Boat House,

W Of Rattray

Japan 2000-2009 Ibanuma Omonenomunekyou

Jousuidoushusuiguchika

Ichihonmatsushita 

Kitainbanumachuuou

Kasumigaura Kakeuma, Kihara, Ushigome, Takasaki, 

 Tamatsukuri, Koshin, Nishinoshuu, Asou,

Takei, Kamaya, Jinguubashi, Itako, 

Kamaya, Juiguubashi, Itako, Sotonasakaura, 

Ikisu, Hasaki and Yasujikawa

Australia 2008-2010 Albert Opening, Meningie and SouthWest Point

Alexandrina Milang, Poltalloch Currency 1 and Currency 2

USA, Florida 2000-2009 Little Orange

(Sub-set) Wauberg

Beauclair

Dorr

Yale

Carlton

Giles

Holden

USA, Florida 1986-2011 1988 lakes

(Entire database)
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Results and discussion  

 

Descriptive statistics 

Table 4.2 Descriptive statistics for the variables.
a 

 

a 
All for the entire period of observation. 

b 
SD – Standard Deviation. 

c
 LUD – Land-Use Dummy, 1 for lakes which are surrounded by artificial structures and 0 otherwise. 

d
 UC – Unclassified lakes. 

 

Data sources 

1
 Available at  

http://www.eea.europa.eu/data-and-maps/data/waterbase-lakes-8 

2
Available in Japanese at 

http://www.pref.chiba.lg.jp/suiho/kasentou/koukyouyousui/data/ichiran-koshou.html 

http://www.ktr.mlit.go.jp/kasumi/kasumi00014.html 

3
 Available at 

http://www.epa.sa.gov.au/environmental_info/water_quality/lower_lakes_monitoring/reports_and_data 

4
Available at  

http://lakewatch.ifas.ufl.edu/Lakewatch_County_Data.HTM 

Mean SD
b Mean SD Mean SD Mean SD

European Sample lakes
1 11.231 16.727 0.038 0.052 0.893 0.820 0.819 0.385

UK Lakes
1 23.888 27.163 0.054 0.077 0.888 0.799 0.714 0.488

Japan, Ibanuma and Kasumigaura
2 69.424 21.944 0.108 0.019 1.389 0.696 1 0

Australia, Albert and Alexandrina
3 57.759 34.833 0.160 0.075 2.936 0.947 1 0

USA, Florida Lakes (Subset)
4 69.152 63.774 0.060 0.045 1.791 1.143 1 0

USA, Florida Lakes (Entire database)
4 18.852 43.013 0.045 0.111 0.832 0.741 UC

d
UC

d

Sample
LUD

cTN (mg/l)Chl-a (μg/l) TP (mg/l)

http://www.eea.europa.eu/data-and-maps/data/waterbase-lakes-8
http://www.pref.chiba.lg.jp/suiho/kasentou/koukyouyousui/data/ichiran-koshou.html
http://www.ktr.mlit.go.jp/kasumi/kasumi00014.html
http://www.epa.sa.gov.au/environmental_info/water_quality/lower_lakes_monitoring/reports_and_data
http://lakewatch.ifas.ufl.edu/Lakewatch_County_Data.HTM
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The range of annual mean TP and TN for the analysed panel at different stations in the 

European sampled lakes was between 0.002 and 0.334 mg/l with a mean of 0.04 mg/l for TP and 

between 0.13 and 4.883 mg/l with a mean of 0.89 for TN, whereas Chl-a concentration was 

between 0.2 and 121.7mg/l with a mean of 11.23 μg/l (Table 4.2).  

Positive correlations were observed between Chl-a and TP and, Chl-a and TN, as shown 

in figure 4.1 and 4.2.  TP had a higher correlation with Chl-a than TN.   These results are in line 

with other studies on correlations in Chl-a-TP-TN (e.g., Liu et al., 2010b; Brown et al., 2000).  

In many lakes, phosphorus is the limiting nutrient for primary production (Paerl et al., 2011; 

Bechmann et al., 2005; Arhonditsis et al., 2003), but nitrogen is also a limiting nutrient for 

phytoplankton growth in some lakes (Gunkel and Casallas, 2002).  Our goal was to explore if a 

solid model could be constructed to describe the relationship among Chl-a, TP and TN.  It is 

noteworthy that the large variations in the three concerned variables in our dataset were mainly 

arising from variations among stations located in different countries, as shown by the coefficient 

of variation in Table 4.3.  The variations among countries were half of the variations among 

stations for all the three variables.  Variations among years were low.  This heterogeneity 

between stations and countries requires the use of panel regression in estimating the model. 
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Table 4.3 Standard deviations of Chl-a, TP and TN by station, country and year.
a 

 
a 
The figures in parentheses are coefficients of variation (%). 

 

Regression 

Table 4.4 Panel regression of Chl-a determinants, 2003-05 (N=597).
a 

 

 
a 
The figures in parentheses are the elasticity at the means.  ***, ** and * denote the significance 

of the   coefficients at the 0.01, 0.05 and 0.1 critical level, respectively. The random effect 

model is estimated by GLS regression.  Hausman test of the fixed- and random-effects (model I 

vs. II) cannot reject the null hypothesis of difference in coefficients (p-value = 0.9668). Breusch 

and Pagan Lagrangian multiplier test for model II shows that the null hypothesis of Var(u) = 0 is 

rejected (p-value<0.000). 

Stations Countries Years

Chl-a (μg/l) 15.973 10.896 0.380 16.727

(142) (76) (3.4) (149)

TP (mg/l) 0.051 0.042 0.003 0.052

(132) (69) (7.3) (136)

TN (mg/l) 0.805 0.584 0.032 0.820

(90) (45) (3.5) (92)

Variables
Variation among 

Overall

Coef. SE. Coef. SE. Coef. SE.

TP 180.9 16.99 *** 179.2 12.91 *** 177.8 12.94 ***

(0.612) (0.606) (0.602)

TN 4.776 1.365 *** 4.523 0.893 *** 4.365 0.898 ***

(0.379) (0.359) (0.347)

LUD 2.802 1.986

(0.204)

Const. 0.012 1.332 0.302 1.021 -1.794 1.802

 u 10.55 10.14 10.11

  5.346 5.346 5.346

 0.709 0.708

R
2
 :

within 0.2557 0.2556 0.2556

between 0.5641 0.5641 0.5688

overall 0.5359 0.5360 0.5402

Variables

Fixed effect

I II III

Random effect
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Table 4.4 presents results of the regression analysis generated by STATA 12.1 statistical 

package.  The analysis was performed for the fixed and random-effect models.  Elasticity of 

each estimated coefficient is shown in parenthesis below the coefficient. Results show that TP 

and TN were all significant (p < 0.05).  LUD had a coefficient of 2.802 in Model III, but not 

significant (p-value = 0.158). The elasticity for TP and TN was about 0.60 and 0.35 in all the 

estimated models respectively. Our results of the multiple regressions are consistent with the 

results reported by most previous studies that used data from temperate regions.  Variations 

exist, however, for the results of the studies that include tropical lakes, such as studies by 

Trevisan and Forsberg (2007) and, Huszar et al. (2006) where the coefficient of TN is reported 

to be larger than TP.  The result of the Hausman test (p-value = 0.9668) for the fixed and 

random effect models was in favour of the latter, so we used the random effect model in the 

simulations. 

 

Fig. 4.1 Correlation between Chl-a and TP for European sample lakes 
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Fig. 4.2 Correlation between Chl-a and TN for European sample lakes 

 

Simulations 

 

The results of simulations to predict the level of Chl-a from the levels of TP and TN of 

various lakes in different countries using our Model II are shown in figure 4.3 to 4.6, the graphs 

depict the predicted Chl-a (vertical axis) against the actual data (horizontal axis) in standardized 

units.  The data used for the simulations are presented in Table 4.1 by country.  

The test samples from lakes in the United Kingdom provided the best prediction results 

in the simulation tests with an R
2
 of 0.83. The R

2 
of the simple regression between the predicted 

and actual Chl-a values for Lake Ibanuma and Kasumigaura in Japan is 0.63. A similar result is 

obtained for combined data of Lake Albert and Alexandrina in Australia (R
2
 = 0.65). For these 
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three cases, our model predicts lake Chl-a reasonably well, the variation of predicted Chl-a 

‘explains’ more than 60% of the variation of the actual Chl-a.    

Our model that uses only two explanatory variables has unexplained part, which could 

be explained by other variables that influence Chl-a, though not as strongly as TP and TN, yet 

evidently. Temperature is an important variable (Liu et al., 2010b; Ogbebo et al., 2009) but it is 

not included in our model due to lack of temperature data for many lakes in the database. Lake 

geochemistry, which is difficult to study on a wide scale, is another variable that influences the 

Chl-a – TP - TN relationship (Trolle et al., 2009). Annual precipitation (Liu et al., 2010a) and 

atmospheric deposition of nitrogen and phosphorus are also factors that may lead to changes in 

the predicted Chl-a (Muyodi et al., 2010; Morales-Baquero et al.,2006).   

The results for Florida lakes in the USA are different from other simulations. The model 

predictions for a subset of the overall data give results similar to the other three cases with R
2
 of 

0.66 (Figure 4.6, Table 4.1).  However, the application of the model to the entire database which 

includes 1988 lakes is not successful with a low R
2
 of 0.24 due to the heterogeneous nature of 

the variables in this database (FloridaLAKEWATCH) with varying concentrations.  All Florida 

lakes are situated in densely populated areas. There were no significant changes in the predicted 

Chl-a using model III, partly due to the negative correlation between the LUD and TP. This 

correlation reflects the decline in TP level for more than 30 years with an increasing population 

(Terrell et al., 2000). Differences in geology and hydrology in the Florida lakes as described by 

Bachman et al. (2012) also explain the low predictability of our models.  
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Fig. 4.3 Simulations results of the random-effect model for sample lakes in the United 

Kingdom 
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Fig. 4.4 Simulation results of the random-effect model for Lake Ibanuma and Lake 

Kasumigaura 
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Fig. 4.5 Simulation results of the random-effect model for Lake Albert and lake Alexandrina, 

Australia using standardized values. 
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Fig. 4.6 Simulation results of the random-effect model for Subset of Florida Lakes, USA 

The four figures in the simulations of random –effect model are for standardized values. 
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Conclusion 

 

In this paper, we have developed a comprehensive and robust model to describe the 

correlations among Chl-a, TP and TN, using a multi-country dataset including 198 lakes in 10 

European countries.  The model was applied to lakes in other countries and continents with 

reasonably satisfactory results. Our model evidently shows that TP and TN are good predictors 

of Chl-a and will supplement existing models. Further investigation is needed to include the 

impacts of other factors, such as temperature, light intensity and water residence time.  These 

variables incorporated, the model would become a powerful tool to study and regulate water 

quality of lakes in a wider perspective.  
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4.2.2 DYNAMIC PANEL MODEL 
 

 

 

 

Abstract 
 

The major objective of this paper is to show how the estimated parameters in empirical 

models to predict Chlorophyll-a (Chl-a) in lakes by the concentration of total phosphorous (TP) 

and total nitrogen (TN) could be different from those estimated by using the conventional 

ordinary least squares (OLS) method, if station-specific effects and auto-regressive effects of 

Chlorophyll-a are taken into account in the regression estimation, by applying respectively, the 

random effect panel estimation for the former and the dynamic panel estimation for the latter.  

Our estimation based on water quality data from European lakes reveals that the OLS estimation 

gives comparable parameters to those of many earlier studies, in which both TP and TN are 

significant determinants of Chlorophyll-a and the elasticity of TP is much larger than that of TN.  

The application of the non-conventional estimation methods alters this parameter structure 

radically.  The station-specific effects being controlled, TN/TP is not a significant factor in 

determining the Chlorophyll-a concentration, and the elasticity of TP is far smaller than in the 

conventional estimation.  The inclusion of auto-regressive effects, in addition, makes TN 

insignificant, leaving TP as the only significant parameter.  These results suggest a strong need 

to take station-specific effects as well as previous concentrations of Chlorophyll-a into 

consideration in the study of the Chl-a = f (TP, TN) relationship. 
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Introduction 

Chlorophyll-a (Chl-a as a variable name) is the most widely used measure of 

phytoplankton biomass in lakes, the relationships between Chlorophyll-a, total phosphorus (TP) 

and total nitrogen (TN) in water bodies have been intensively studied (Søndergaard et al., 2011; 

Brown et al., 2000; Reckhow, 1993) since it was first introduced by Sakamoto (1966).  It is well 

established that the concentrations of TP and TN, together or in isolation, affect the 

concentration of Chlorophyll-a, though the Chl-a = f (TP, TN) relationship varies according to 

factors such as latitude, altitude, depth and stoichiometric characteristics of lakes (Abell et al., 

2012; Gunkel and Casallas, 2002).  A comprehensive model of this relationship that could be 

applied to lakes with different characteristics would be invaluable for developing effective 

policies to control lake water quality (Abell et al., 2012; Philips et al., 2008). 

 Various attempts have been made to establish a reasonable empirical model for the Chl-a 

= f (TP, TN) relationship, controlling other factors by using regression techniques (Table 4.5).    

Each of the authors in Table 4.5 adopted the ordinary least squares (OLS) method, except 

Reckhow (1993), who applied the random coefficient method.  The data used for the regression 

analyses in this field of study are observations of Chlorophyll-a, TP, TN, and other control 

factors, collected from stations (sampling sites) in many lakes at a time point or, more often, 

over time.  One problem of applying OLS to this type of data is failure to control station-specific 

differences within a lake, or between different lakes in a country or even in different countries.  

Another, even more serious problem stems from the time-series nature of the data: the 

concentration of Chlorophyll-a at a certain point in time depends not only on TP, TN and the 

factors mentioned above, but also on previous concentration.  Failing to adequately address 

these two problems makes it difficult to accurately estimate a statistical relationship for Chl-a = 
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f (TP, TN).  To the best of our knowledge, no study to date has taken these problems into 

account in a regression analysis.   

Using lake water quality data provided by the European Environment Agency, this paper 

estimates the parameters of the Chl-a = f (TP, TN) relationship in three types of regressions: 

pooled OLS, random effect panel that deals with station-specific variations, and dynamic panel 

that takes into account the auto-regressive effects of phytoplankton biomass as well as the 

station-specific variations.   
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Table 4.5 Coefficients of TP and TN for the Chl-a = f(TP, TN) relationship estimated in 

previous studies. 

 

a) ǂ Results represent nutrient-chlorophyll-a relationships for summer. 

Ŧ Sampling period: November 1999 - January 2000. 

Τ Of the parameters for 63 lakes presented, the median is shown here. 
b) Italics indicate coefficients for single predictor regression. 

 

Methods 

Regression models 

 

The following three models are used to examine the Chl-a = f(TP, TN) relationship:  

 

Model I Pooled OLS:  Yi = β1 + β2Xi + ui            

TP TN

Abell et al. (2012) OLS (pooled) European 

Environment Agency 

and  previous studies 

1316

1965-2007
Between 70

0
S 

and 83
0
N, lakes 

in over 30 

countries

0.81 0.84

Bachmann  et  al. (2012) OLS(pooled) Florida 

LAKEWATCH and 

other reports

1001 

30 years               

Florida, USA 0.71 

0.93

0.52

1.38

Sondergaard et al. (2011) OLS (pooled, time 

series)

Danish local 

government

440

1989-2008

Denmark 0.80

0.95

0.35

1.01

Phillips et al. (2008) OLS (pooled) National data archives 1138 

1988-2004
ǂ

Europe  

(16 Countries)

0.79

1.03

0.32

1.36

Trevisan  and 

Forsberg (2007)

OLS (cross-section) Field samples 20
Ŧ Amazonia basin, 

Brazil

0.31

0.72

0.63

0.005

Huszar et al. (2006) OLS (pooled) Published articles and 

unpublished data

136 lakes and 56 

reservoirs

1980-2004

Between 31
0
 N 

and 30
0
 S

0.41

0.70

0.50

0.94

Brown et al. (2000) OLS (pooled) Florida 

LAKEWATCH

273

1986-1997

Florida, USA 0.91

1.05

0.32

1.21

Reckhow (1993) GLS - Random 

Coefficient 

(cross-section)

North Carolina 63 

1981
Τ

North Carolina, 

USA

0.78

0.71

0.32

0.58

Author(s)
Coefficients

(b

Location
Lakes and study 

period
(a

Data sourcesMethods of estimation



69 
 

Model II Random effect Panel: Yit = β1 + β2Xit + ei + uit           

Model III Dynamic panel:  Yit = β1 + β2Xit + β3Kit + β4L 
j
.Chl-ait + uit     

 

where i and t are used to identify the station and time, Y is the concentration of Chlorophyll-a, X 

is a vector of variables which affect Chlorophyll-a, and u is a conventional error term with 

N(0,σu).  In Model I, observations obtained at different time points are pooled without regard to 

time.  In Model II, which is a “random effect panel model” of panel data analysis, the term e 

captures station-specific effects and is assumed to be a random variable with N(0,σe).  In Model 

III, X is a vector of the endogenous variables, K is a vector of the exogenous variables, L.Chl-a 

is a vector of the lagged variables of Chlorophyll-a, and j refers to a vector with Chl-at-1, Ch-at-2, 

………, Chl-at-j. The endogenous variables can be correlated with the error term, while the 

exogenous variables are determined outside the model.  The variables were transformed to 

logarithm before statistical analysis.  A detailed explanation of the random effect panel analysis 

used in this study can be found in Hsiao (2007) and Oscar (N.d.), and further information on the 

dynamic panel analysis is available in Arellano and Bond (1991) and Roodman (2009).  All 

regression analyses were carried out using STATA 12. 

Data set 

 

The data used in our analysis were obtained from the online database of the European 

Environment Agency, which is one of the most detailed and longest online databases on the 

status of European lakes.  We selected data on yearly averages of Chlorophyll-a, TP and TN and 

altitude for the period between 1965 and 2009 (Fig. 4.7) for countries within the European 

continent.  For lakes with no altitude data, we obtained the data from Google Earth.  The 
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original data set thus compiled consists of 3055 observations for 454 stations in 396 lakes with 

an average observation period of 6.7years per station.  We then computed the partial auto-

correlation coefficient for Chlorophyll-a (Fig. 4.8) and found that it correlates positively with 

the previous level, i.e, the first-order lag.  We therefore decided to model the first order auto-

regression process, AR(1), for dynamic panel analysis.  Using the first-year lag for the sample 

lakes reduces the observations to 2601 (3055-454) for the period 1965-2009, and this data set is 

used for our regression estimation for the three models.  For Model III, the data for the first and 

second years are used as the instrumental variables, based on the results of our preliminary 

regressions (Arellano and Bond, 1991).  

 

Fig.4.7 Changes in mean Chlorophyll-a, 1965-2009 (N=2601) 
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Fig. 4.8 Partial autocorrelation  coefficient and time lag for ln (Chl-a), 1965-2009 (N=2601) 

 

Explanatory variables 

TP, TN, TN/TP, altitude and year are the explanatory variables used in our regression 

analyses.  All of these variables are treated as X-variables in Models I and II.  In Model III, 

altitude and year are treated as K-variables, but TP, TN and TN/TP are treated as X-variables, 

i.e., the endogenous variables.  In addition to these variables, one lagged dependent variable is 

included as an explanatory variable in Model III.  The variable TN/TP is included in the analysis 

because it has been widely used as an index to identify limiting nutrients (Bachmann and Hoyer, 
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2003).  Altitude is introduced to control the effect of temperature on the concentration of 

Chlorophyll-a (Carvalho et al., 2009), since temperature data are missing for many lakes.  Year 

is included to examine the existence of time trend in the variation of Chlorophyll-a even after 

other determinants are controlled. 

 

Results 

The means and standard deviations of Chlorophyll-a, TP, TN, TN/TP and altitude, and 

the simple correlation coefficients among them are shown in Table 4.6.  In the over-all variation, 

Chlorophyll-a varied more than the explanatory variables.  The overall variation is divided into 

variations ‘between stations’ and variation ‘within stations’.  For TN, in particular, more than 

70% of variation stems from variation between the stations. The simple correlation coefficients 

between Chlorophyll-a and TP and, between Chlorophyll-a and TN are shown in fig. 4.9 and 

4.10), and the elasticity of TP with respect to Chl-a, i.e., ∂ln Chl-a/∂ln TP, is larger than that of 

TN.  In these respects, our data set shares a similar structure with many past studies (e.g., Abell 

et al., 2012).  The time-series of mean Chlorophyll-a values for the sample European lakes 

shows large fluctuations over time and a slight downward trend (Fig. 4.7).   
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Fig. 4.9 Correlation between Chlorophyll-a and TP (N=2601) 

 

Fig. 4.10 Correlation between Chlorophyll-a and TN (N=2601) 
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Table 4.6 Statistics for the variables (N=2601)
(a
 

 

a) For 2601 observations of 454 stations for an average time period of 5.7years per station.  

"Between" standard deviation is calculated for mean values of stations, while "within" standard 

deviation is calculated for each station. 

 

 

 

 

 

 

 

Chl-a TN TP TN/TP Altitude

Chl-a µg/l Mean 16.27 1.00

Std.Dev. 36.22 43.26 16.81

TN mg/l Mean 1.11 0.48 1.00

Std.Dev. 1.14 1.060 0.360

TP mg/l Mean 0.05 0.69 0.65 1.00

Std.Dev. 0.08 0.08 0.04

TN/TP Mean 41.86 -0.25 -0.09 -0.36 1.00

Std.Dev. 33.3 38.55 16.3

Altitude 1000m Mean 0.17 -0.18 -0.24 -0.21 0.25 1.00

Std.Dev. 0.26 0.39 N.A.

Correlation coefficients
Variables Unit Stat. Overall Between Within
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Table 4.7 Regression results of Chl-a determinants (N=2601)
(a
 

 

a)
 *** and ** denotes the significance of the coefficients at the 1% and 5% critical level, 

respectively.  N.S. denotes "not significant" and N.A. denotes "Not Applicable".
 

b)
 R

2
 is simple correlation coefficients between predicted and actual values.  

 

Table 4.7 presents the results of the estimations.  For all the models, coefficients that are 

significant at 5% critical level or higher are shown. For the standard errors of the coefficients, 

we use robust standard errors, which produce reliable results for t-tests even when the error term 

has heteroscedasticity (Greene, 2011).     

For the pooled OLS model, all of the coefficients of the explanatory variables are 

statistically significant at 5% except year.  The coefficients of ln TP and ln TN are positive, 

while those of TN/TP and altitude are negative.  The partial elasticity of TP, ∂ln Chl-a/∂ln TP, is 

Coefficient Coefficient Coefficient

ln (TP) 0.655 0.056 *** 0.386 0.04 *** 0.361 0.044 ***

ln (TN) 0.203 0.067 *** 0.211 0.045 ***

TN/TP -0.002 0.001 **

Altitude -0.889 0.094 *** -0.923 0.155 *** -0.495 0.135 ***

Year

ln (Chl-at-1) 0.527 0.047 ***

Constant 14.85 5.66 *** 3.282 0.165 *** 2.29 0.219 ***

R
2 (b

Elasticity:

TP

TN

0.830.640.66

0.3610.386

0.211 N.A.

0.699

0.158

Variables

Model I

(OLS)

Model II 

(Random effect panel)

Robust S.E.

Model III

(Dynamic panel)

Robust S.E.Robust S.E.

N.S.

N.S.

N.S.

N.S.

N.A.

N.S. N.S.

N.A.
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estimated to be 0.699 and that of TN is 0.158.  For the random effect panel model, the 

coefficients of ln TP, ln TN and altitude are significant, but the coefficient of TN/TP is not.  For 

the dynamic panel model, the coefficient of ln TP remains significant, but that of ln TN becomes 

insignificant, as does TN/TP.  Altitude produces a significant coefficient.  The lagged dependent 

variable also results in a positive significant impact on the level of Chlorophyll-a. 

R
2
, which is the squared correlation coefficient between predicted and actual values, is 

shown for the purpose of comparing the statistical performance among the models. It is 

particularly high for the dynamic panel data model.   

 

Discussion 

Most remarkable in the results of our regression estimation is that although all the three 

models reveal that TP is a significant determinant of Chlorophyll-a, the magnitude of its impact 

varies considerably across the models: in terms of elasticity, it is reduced almost in half in the 

random effect panel data and the dynamic panel models from the level estimated in the OLS 

model. 

We included two control variables in the estimation of the Chl-a = f (TP, TN) 

relationship, altitude and year.  Altitude is included in our analysis as a proxy for temperature.  

Carvalho et al. (2009) and Liu et al. (2010b) reported that temperature is an important 

determinant of Chlorophyll-a: higher temperatures increase the Chlorophyll-a concentration in 

lakes.  Since altitude and temperature are inversely correlated, our results in Table 4.7 confirm 

the results of these earlier studies.  Few studies in this field have incorporated temperature and 

altitude in linear models, but the impact of temperature as shown by the coefficient of altitude, is 

too large to ignore.  The coefficient of year is not significant for any of the models, which is in 
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contrast to the results of simple time series analysis shown in Fig. 4.7. Søndergaard et al. (2011), 

Acker et al. (2009) and Räike et al. (2003) found some significant time trends in Chlorophyll-a 

for lakes and rivers, but their results were obtained using estimation methods based on a simple 

correlation between Chlorophyll-a and time as in Fig. 4.7. 

The most important variables in the estimation of the Chl-a = f (TP, TN) relationship are 

TP, TN and TN/TP.  Most previous studies, including those listed in Table 4.5, found that both 

TP and TN are significant determinants for Chlorophyll-a.  Some studies pointed out that 

phytoplankton growth was TP-limited (e.g., Arvola et al., 2011; Lv et al., 2011; Wang et al., 

2007; Bechmann et al., 2005; Jeppesen et al., 2005; Arhonditsis et al., 2003; Brown et al., 2000), 

while others indicated that TN is a limiting factor (Trevisan and Forsberg, 2007; Gunkel and 

Casallas, 2002). It has also been argued that the relative ratio of these nutrients, i.e., TN/TP, is 

an important factor, in conjunction with TP and TN (Jin and Hongjuan, 2010; Guildford and 

Hecky, 2000), as an indicator of nutrient limitation. According to Guilford and Hecky (2000), a 

high TN/TP indicates phosphorus limitation and a lower ratio indicates nitrogen limitation.  

Our OLS estimation indicates that TP, TN and TN/TP are all significant factors in 

determining the concentration of chlorophyll-a and that the magnitudes of the estimated 

elasticity for TP and TN are in line with estimates from the previous studies shown in Table 4.5.  

From this evidence, one might conclude that the concentration of Chlorophyll-a in European 

lakes is determined by both TP and TN and by their relative abundance, and that the estimated 

OLS model can be used to predict the concentration of Chl-a for the management of the water 

quality of the lakes.  

However, adopting a random effect panel regression or especially a dynamic panel 

regression radically alters the estimated parameter structure.  Once the station-specific effects 
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are controlled in Model II, TN/TP is not a significant factor in determining the concentration of 

Chlorophyll-a, which means that the effect of TN/TP is easily affected by station-specific 

conditions and that the elasticity of TP is far less than in the OLS model.   Taking into account 

the effect of the previous Chlorophyll-a and the station-specific effects, Model III shows that TP 

is the only significant factor in determining Chlorophyll-a, and that the elasticity of TP is as 

small as that estimated in the random effect panel model.   

In  Danish lakes, Søndergaard et al. (2011) found that the elasticities of TP and TN are 

large and comparable to those of our sample European lakes (Figs. 4.9 and 4.10), when these 

nutrients are used as the single predictor.  However, when both of them are included in a 

multiple OLS regression, their elasticities, particularly TN’s, become considerably smaller 

(Table 4.5).   Further refinements in the regression models change the parameter structure and 

lower the elasticities for these nutrients. If the better-performing Model III is to be used for 

prediction and management of lake water quality, the scenarios obtained could be very different 

from those of the simple predictor model or the pooled OLS model.   

 

Conclusions 

 

In this paper, we examined empirical models used to predict Chlorophyll-a in lakes by 

the concentration of total phosphorous and total nitrogen. The estimated parameters differ from 

those estimated using the conventional ordinary least squares (OLS) method when station 

specific-effects and auto-regressive effects on Chlorophyll-a are taken into account. Our 

estimation based on water quality data from European lakes reveals that the OLS method gives 
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parameters comparable to those of many earlier studies in which both TP and TN were found to 

be significant determinants of Chlorophyll-a. 

 

Appling the non-conventional estimation methods radically alters this parameter 

structure.  If station-specific effects are controlled, TN/TP is not a significant factor in 

determining the Chlorophyll-a concentration, and the inclusion of auto-regressive effects in 

addition to the station-specific effects makes TN insignificant leaving TP as the only significant 

parameter.  The elasticity of TP estimated by non-conventional methods is far smaller than by 

the conventional estimation.  In order for the Chl-a = f (TP, TN) relationship to be used as an 

operational tool to predict the concentration of Chlorophyll-a in lakes, it is imperative to clarify 

the bio-chemical mechanism behind the relationship. Our study shows that further research 

beyond the conventional OLS model is necessary for this relationship to be used in developing 

effective policies to control lake water quality. 
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4.3 FORECASTING: A CASESTUDY OF 

JAPANESE LAKES  
 

_____________________________________________ 

4.3.1 Abstract 
 

The goal of the paper is to test the performance of Ordinary Least Squares (OLS) and 

dynamic panel models for predicting Chlorophyll-a in lakes. Dynamic panel model is a new 

proposed model developed from a sample of 396 European lakes with a pronounced difference 

that only phosphorus is the only significant variable in determining Chlorophyll-a in lakes when 

panel and station-specific effects are considered contrary to earlier studies using OLS which 

show that phosphorus and nitrogen significantly determine chlorophyll-a. The coefficients of 

OLS and those of the new model are applied. Performance of the models was simulated using 

annual mean data (2000-2009) from 8 Japanese lakes in three regions. The lakes were grouped 

based on altitude and chlorophyll-a concentrations. The two models show higher performance 

measured by R
2
 values with variations in certain cases. The highest R

2
 was 0.94 and 0.89 for 

dynamic panel and OLS models respectively. Simulation results show that the dynamic model is 

superior to OLS model and it is observed that the dynamic model is more applicable for spatial 

estimation of Chlorophyll-a in multiple lakes.  

 

 

 

  



81 
 

4.3.2 Introduction 

The purpose of this section is to test the performance of the Ordinary Least Squares 

(OLS) model (Model A) and the Dynamic panel model (Model B) in forecasting Chlorophyll-a 

(Chl-a) for Japanese lakes. The most popular indicators assessed when monitoring water 

resources are chlorophyll-a (Søndergaard et al., 2011) and secchi-disk transparency (Olmanson 

et al., 2008). Models and model coefficients are necessary where there are insufficiencies in data 

for phosphorus and nitrogen or Chlorophyll-a that may prevent whole lake or multiple lake 

assessments or in cases where forecasting is necessary from data samples. Chlorophyll-a is 

related with reflectance data of satellite images, a relationship which enables mapping of 

Chlorophyll-a for single or multiple lakes in remote sensing as decision support tool (Allan et al., 

2011; Oyama et al., 2009; Östlund et al., 2001). 

In Chlorophyll-nutrient relationships, it is known that phosphorus and nitrogen are the 

main predictors of Chlorophyll-a (Bachmann et al., 2012; Huszar et al., 2006; Reckhow, 1993), 

other factors such as temperature and latitude also influence the level of Chlorophyll-a (Abell et 

al., 2012; Liu et al., 2010b). The studies reporting coefficients of variables in these relationships 

apply OLS, in many, expect a few, the coefficients for phosphorus are higher than that of 

nitrogen. The parameter structure changes when station-specific and auto-regressive effects of 

chlorophyll-a are considered in the dynamic panel model. 

4.3.3       Method and data 

The heterogeneity inherent in data due to station-specific effects if not controlled results 

in parameters which may not really portray the data structure from multiple lakes across varying 

geographical areas, panel data analysis is applied to address this problem. OLS and the dynamic 
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panel model, a new model which is based on auto-regressive effects for the first lag in this case, 

were developed from 396 European sample lakes (N=2601). The regression results show that all 

the variable, phosphorus, nitrogen, altitude and year were significant in OLS model. The results 

indicated that the dynamic model was superior to  pooled OLS based on the R
2 

of 0.83 which is 

the squared value of correlation coefficient between predicted and actual chlorophyll-a. Only 

phosphorus was the significant variable and, altitude as a proxy for temperature in the dynamic 

panel model which changed the parameter structure.  

We include other lake characteristics which might have influence on performance of the 

models. Models are tested for groups of lakes based altitude and for the combined data set. The 

coefficients from OLS and dynamic panel model are used to estimate Chlorophyll-a (Table 4.7).  

Data for simulation is from 9 lakes in four prefectures, a representative sample of 

Japanese lakes. Simulations here are made for Japanese lakes using data for a 10year period 

using yearly mean values for 2000-2009. Lake Kasumigaura and Ibanuma are located close to 

Tokyo, Lake Biwa the largest lake in Japan in central while Nagano lakes in the west and 

mountainous areas of Japan (Table 4.8). The predictions were made using coefficients of Model 

A and B from Table 4.7. Figures are presented as relationships between predicted ln Chl-a and 

actual ln Chl-a and R
2
 is a correlation coefficient to show the performance of each model. It 

should be noted however, that the coefficient for year in Model A was significant at 10%, in the 

earlier paper where the first estimates of Model A are made, only variables significant at 5% 

were reported, including this coefficient sets the predicted values to be comparable with 

estimates of Model B.  

           4.3.4       Results 
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Table 4.8 shows lake characteristics and mean for the variables used in simulations. The 

mean values show that Nagano lakes had the lowest concentrations of total phosphorus with 

exception of Lake Suwako and Tateshinako whereas Lake Kasumigaura and Inbanuma had the 

highest concentrations of Chlorophyll-a. Biwako which was divided into two sections i.e., North 

and South for the purpose of estimations also had low levels of total phosphorus and hence 

minimal Chlorophyll-a. 

All models had high performance scores for data of high altitude lakes in Nagano 

prefecture (Fig. 4.11), the R
2
 of 0.89 was the highest performance value shown by Model A, 

however, in this case Model A performed better compared to other results of the same model 

even above the general case. Figure 4.13 shows the estimates for the combined data of Japanese 

lakes, both models show higher R
2 

values. Model B was superior to Model A with an R
2
 of 0.94 

and 0.82 respectively, for Model B, this was the highest performance level.  
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Table 4.8 Characteristics and mean values for the variables, 2000-2009, for the Japanese 

lakes used for simulation 

 

 

Region Prefecture Lake

Kanto Chiba Inba 1 11.6 2.5 1.782 0.101 17.7 86.00

 (Eastern) Ibaraki Kasumigaura 1 171.0 7.3 1.040 0.107 9.8 62.27

Chubu Nagano Aoki 822 1.9 58 0.242 0.006 49.4 1.68

(Central) Kizaki 764 1.4 29.5 0.229 0.008 32.1 4.88

Nojiri 654 4.6 38.5 0.103 0.005 21.2 2.29

Suwa 759 13.3 7.6 0.820 0.044 18.8 41.35

Tateshina 1250 0.1 5.0 0.166 0.036 4.7 17.11

Kansai Shiga Biwa - North 85 618.0 103.5 0.259 0.007 36.7 2.97

(Western) Biwa - South 85 50.7 5.0 0.300 0.014 21.5 4.66

Chl-a 

(μg l
-1

)

Data sources: 

Lake Imba: http://www.pref.chiba.lg.jp/suiho/kasentou/koukyouyousui/data/ichiran-koshou.html 

Lake Kasumigaura: http://www.ktr.mlit.go.jp/kasumi/kasumi00145.html 

Lakes in Nagano: https://www.pref.nagano.lg.jp/kankyo/mizutaiki/suishitsu/ent.htm

Lake Biwa: http://www.lberi.jp/asp/bkkc/Suishitsu/bkkcKeinenKListSearch.asp

Altitude 

(m)

Surface 

area 

(km
2
)

Max. 

depth 

(m)

TN 

(mg l
-1

)

TP 

(mg l
-1

)
TN/TP
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Fig. 4.11 Relationship between predicted and actual Chlorophyll-a for Nagano lakes, Japan 

 

Fig. 4.12 Relationship between predicted and actual Chlorophyll-a for Lake Biwa, Japan 
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Fig. 4.13 Relationship between predicted and actual Chl-a for Japanese lakes (2000-2009) 

 

4.3.5      Discussion  

The results indicate that there are performance variations for the two models. The 

models give satisfactory results except for Lake Kasumigaura and Inbanuma where both models 

show low R
2
 values, with Model A giving the least prediction. The variation in performance is 

partly attributed to higher concentrations of total phosphorus and total nitrogen and Chlorophyll-

a in these lakes compared to majority of high altitude lakes in Nagano, the issue of high 

Chlorophyll-a concentrations in these two lakes has been reported by other authors  (Oyama et 

al., 2009; Iwashita et al., 2004). Altitude i.e., temperature is also a major factor that determines 

Chlorophyll-a (Liu et al., 2010b), most high altitude lakes had low concentrations of 
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Chlorophyll-a. Differences in lake depth as shown by high Chlorophyll-a level in shallow lakes 

compared to deep lakes is reflected in the performance of the two models. 

Inferring from the results of Figure 4.13, the two models were successful in predicting 

Chlorophyll-a. It is imperative that panel and auto-regressive effects be considered in modelling 

since Model B with three variables, phosphorus, altitude and first lag of chlorophyll-a 

outperformed Model A.  

4.3.6 Conclusions 

 

Results indicate that OLS and the dynamic panel model are both essential in predicting 

Chlorophyll-a, the dynamic panel model show a more predictive power compared to the OLS as 

shown by the high R
2 

value. Since policies are formulated for application at wider geographical 

areas for management of multiple lakes within a country or across countries, we argue that the 

dynamic panel model is more applicable in such cases. 
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CHAPTER V 

 

CONCLUSIONS AND FUTURE RESEARCHES 

 

_____________________________________________ 

5.1 CONCLUSIONS  

Earlier authors have done significant amounts of work to model the Chla = f(TP,TN) 

relationship using OLS. Their coefficients for total phosphorus and total nitrogen on average 

were commonly 0.7 and 0.4 respectively. The results of estimations for OLS in this thesis are 

consistent with those in previous studies. In simulations, OLS was successful in predicting 

Chlorophyll-a expect for one case of high concentration of Chlorophyll-a of which also the 

performance for the dynamic model in this specific scale was not as other simulations, therefore 

OLS remains as an important model in estimating Chlorophyll-a. 

OLS does not consider station-specific and auto-regressive effects of Chlorophyll-a 

which are necessary considerations for the dynamic model, drawing conclusions from the 

performance of the dynamic model, it is concluded that the dynamic model was superior to OLS.  

Results indicate that altitude a proxy for temperature had a high coefficient implying that 

temperature is a significant factor influencing Chlorophyll-a, it was among the factors that led to 

variation in Chlorophyll-a for the samples lakes in Japan used in the  testing OLS and dynamic 

panel model. 
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 As per the results of the dynamic model, it originates from this thesis that the parameter 

structure of Chlorophyll-nutrient relationships has changed from phosphorus and nitrogen as the 

significant variables to only phosphorus when station-specific effects are controlled and 

autoregressive effects of Chlorophyll-a are included in the estimation. 

The adjusted coefficient of determination for dynamic model surpassed those of OLS, it 

is therefore recommended that the dynamic model should be applied in estimations of 

Chlorophyll-nutrient relationships. 

 For cases of sustainability, as phosphorus is a major predictor of Chlorophyll-a, 

adjusting production systems to hydroponics will reduce phosphorus use and hence a reduction 

of environmental enrichment. 

Further investigation is necessary to estimate coefficients of the dynamic model using 

data from other regions and simulate Chlorophyll-a values other than the European dataset, this 

will provide insights for studies in limnology in other continents which have a high number of 

lakes like the United States. 

Literature review has shown that coefficients of total phosphorus and total nitrogen vary 

in a few studies, further investigation is necessary to resolve this controversy and clarify on the 

underlying factors and conditions for search parameters. 

The study has also revealed by proxy that temperature is a major factor that influences 

Chlorophyll-a based on the high coefficient of altitude. A combination of the article written by 

Abell et al. (2012) which focuses on Chlorophyll-a changes with variation in latitude and a 

related paper on global Chlorophyll-a changes in lakes along temperature and altitude gradients 

will be useful in understanding Chlorophyll-nutrient relationships globally. 
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5.2 RESEARCHES AHEAD 

 

5.2.1 APPLICATION OF PANEL DATA MODELS TO OTHER LAKES 

 

 In this thesis, the new panel data models were tested using cross-country samples (Japan, 

UK, Australia and Sub-sample of Florida) for the random effect model in Chapter 4. The 

dynamic model was tested using sample data for Japanese lakes, the former as the superior 

model.  Further application of these models to lakes from other continents will extend the 

application of these results. 

5.2.2 SPATIAL DISTRIBUTION OF CHL-A IN LAKES USING REMOTE 

SENSING 

  

Chlorophyll-a and secchi disk transparency (SDT) maps are usually developed from point 

data (Olmanson et al., 2008; Nas et al., 2010; Allan et al., 2011). A review of application of 

remote sensing in this regard was presented later in Chapter 3. It is based on chlorophyll maps 

that regions of a lake or group of lakes are evaluated. Spatial distribution of Chlorophyll-a for 

Lake Victoria is necessary in this regard. 
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A1. Ground truth (photographs and GPS route) for Entebbe and Kampala: Feb – Mar 2012  
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         A2.  Plant species images and co-ordinates 

       taken during February and March 2012 for 

       classification of RapidEye satellite image. 

       [A] Cyperus papyrus 
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0
 32' 50"E,  

       [B] Multi-species wetland 

      (Cyperus papyrus, Palm and other plant species) 

       0
0
 08' 26"N  32

0
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     A3. Eucalyptus, a common tree species mostly planted in wetlands. 
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 A4. Grassland expanse in Wakiso, Uganda. The area was classified 

among Non-wetland vegetation. A significant area in the study site was 

occupied by savannah vegetation. 
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A5. Residential area in Kampala, Uganda 
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A6. Satellite image analysis in ArcMap 10  
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A7. European lakes and stations consisting of 198 lakes and 199 stations, for developing the random 

effect model, two stations 05-369 and 05-371 originate from Lago Di Garda. Stations names are shown 

in the parenthesis where (-do-) after the lake name implies similar name for the lake and station while 

(number) are station  names included  in Table 4.1 in their respective order as shown in this appendix, 

Lake NL1 and NL2 were missing geographically.
a
 

 

  

Country Lake and station Country Lake and station

CH Bielersee (-do-) HU Balatonfenyves (-do-) 

CH Brienzersee (-do-) HU Keszthely (-do-)

CH Burgaschisee (-do-) HU Retkozi To (-do-)

CH Greifensee (-do-) HU Szigliget (-do-)

CH Pfaffikersee (-do-) HU Velencei-To (Agard Molo) - (4)

CH Thunersee (-do-) HU Velencei-To (Nemet Tisztas) - (5)

CH Turlersee (-do-) IT Alleghe (6)

DE Gro-er Muggelsee (-do-) IT Avigliana Piccolo (-do-)

DE Kummerower See (-do-) IT Barbellino Ii O Pian Barbellino (-do-)

DE Muritz (Au-enmuritz) (-do-) IT Cancano (-do-)

DE Muritz (Binnenmuritz) (-do-) IT Candia (-do-)

DE Sacrower See (-do-) IT Fusine (-do-)

DE Schweriner See (Au-ensee) (-do-) IT Lago Di Garda (7) and (8)

DE Schweriner See (Innensee) (-do-) IT Maggiore-Ghiffa (-do-)

DE Stechlinsee (-do-) IT Maggiore-Lesa (-do-)

DE Steinhuder Meer (-do-) IT Mergozzo (-do-)

DK Arreskov So Amtst.4 (-do-) IT Mezzo (-do-)

DK Arresoen (-do-) IT Misurina (9) 

DK Bryrup Langso,  Bry 1 (-do-) IT Monte Spluga (-do-)

DK Engelsholm So St Amt (-do-) IT Santa Croce (10) 

DK Furesoen Dybeste Sted Amt St (-do-) IT Scais (-do-)

DK Gundsomagle So St Amt (-do-) IT Scanno (11)

DK Hinge So (-do-) IT Truzzo (-do-)

DK Holm So (-do-) IT Val Di Lei (-do-)

DK Hornum So (-do-) LT Alnis (-do-)

DK Kvie So (-do-) LT Lukstas (12)

DK Magleso Amt St 1 (-do-) LT Rubikiai (13)

DK Nors So St 1 (-do-) LT Sventas (-do-)

DK Ravn So, Midt -- Rav1 (-do-) LV Akacis (-do-)

DK Soby So, Midtjylland (-do-) LV Burtnieku (14)

DK Sogard So St Amt (-do-) LV Kanieris (15)

DK Soholm So St Amt (-do-) LV Kishezers (16)

DK Store Sogard So Amt St 1 (-do-) LV Liepajas (17)

DK Tisso Amt St 1 (-do-) LV Raznas (18)

DK Utterselv Mose, Ostlige Bassin (-do-) LV Usmas (-do-)

DK Vesterborg So (-do-) NL Ijsselmeer (19)

HU Agard (1) NL Ketelmeer + Vossemeer (20)

HU Balaton (Siofoki Medence) (2) NL Markermeer (21)

HU Balaton (Szemesi Medence) (3) NL NL1 (22) 
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A7 Continued. 

 

a Data source;  European Environment Agency (EEA). 

Available online at http://www.eea.europa.eu/data-and-maps/data/waterbase-lakes-8 
  

Country Lake and station Country Lake and station Country Lake and station

NL NL2 (23) SE Grissjon (-do-) SE Pahajarvi (-do-)

NL Randmeren-Oost (24) SE Gryten (-do-) SE Rammsjon (-do-)

NL Randmeren-Zuid (25) SE Hagasjon (-do-) SE Remmarsjon (-do-)

PL Biale Wlodawskie (26) SE Hallsjon (-do-) SE Rotehogstjarn (-do-)

PL Sremskie (27) SE Hallvattnet (-do-) SE Rundbosjon (-do-)

PL Tarnowskie Duze (28) SE Harasjon (-do-) SE S. Bergsjon (-do-)

PL Wuksniki (29) SE Harsvatten (-do-) SE Sangen (-do-)

SE Abiskojaure (-do-) SE Hinnasjon (-do-) SE Sannen (-do-)

SE Algarydssjon (-do-) SE Hjartsjon (-do-) SE Siggeforasjon (-do-)

SE Algsjon (-do-) SE Hokesjon (-do-) SE Skaravattnet (-do-)

SE Allgjuttern (-do-) SE Holmeshultasjon (-do-) SE Skargolen (-do-)

SE Alsjon (-do-) SE Horsan (-do-) SE Skarsjon (1) - (30)

SE Baen (-do-) SE Humsjon (-do-) SE Skarsjon (2) - (31)

SE Baste Trask (-do-) SE Jutsajaure (-do-) SE Spjutsjon (-do-)

SE Bergtrasket (-do-) SE Krankesjon (-do-) SE St. Envattern (-do-)

SE Betarsjon (-do-) SE Langsjon (-do-) SE St. Lummersjon (-do-)

SE Bjorken (-do-) SE Larkesholmssjon (-do-) SE Stensjon (-do-)

SE Branntrasket (-do-) SE Latnjajaure (-do-) SE Stora Skarsjon (-do-)

SE Brunnsjon (-do-) SE Lilla Oresjon (-do-) SE Storasjo (-do-)

SE Bysjon (-do-) SE Lillesjo (-do-) SE Stor-Backsjon (-do-)

SE Dagarn (-do-) SE Lillsjon (-do-) SE Storsjon (-do-)

SE Dagtorpssjon (-do-) SE Limmingsjon (-do-) SE Svanshalssjon (-do-)

SE Degervattnet (-do-) SE Louvvajaure (-do-) SE Svartesjon (-do-)

SE Djupa Holmsjon (-do-) SE Malaren. Bjorkfjarden (-do-) SE Svartsjon (-do-)

SE Edasjon (-do-) SE Malaren. Ekoln (-do-) SE Svinarydsjon (-do-)

SE Ekholmssjon (-do-) SE Malaren. Galten (-do-) SE Tangerdasjon (-do-)

SE Ellestadssjon (-do-) SE Masen (-do-) SE Tangersjo (-do-)

SE Fagertarn (-do-) SE Mossjon (-do-) SE Tarnan (-do-)

SE Faglasjon (-do-) SE N. Yngern (-do-) SE Tomeshultagolen (-do-)

SE Fiolen (-do-) SE Navarn (-do-) SE Torrgardsvattnet (-do-)

SE Fjarasjo (-do-) SE Njalakjaure (-do-) SE Tvaringen (-do-)

SE Forsjon (-do-) SE Norrsjon (-do-) SE Ulvsjon (-do-)

SE Fracksjon (-do-) SE Ojsjon (-do-) SE V. Rannobodsjon (-do-)

SE Fyrsjon (-do-) SE Oljaren (-do-) SE Valasjon (-do-)

SE Fysingen (-do-) SE Orsjon (-do-) SE Valkeajarvi (-do-)

SE Gipsjon (-do-) SE Orvattnet (-do-) SE Vanern, Tarnan (-do-)

SE Glimmingen (-do-) SE Oversjon (-do-) SE Vastra Solsjon (-do-)

SE Gosjon (-do-) SE Overudsjon (-do-) SE Vikasjon (-do-)

SE Gransjon (-do-) SE Ovre Fjatsjon (-do-) SE Vuolgamjaure (-do-)

SE Granvattnet (-do-) SE Ovre Skarsjon (-do-) SE Ymsen (-do-)

http://www.eea.europa.eu/data-and-maps/data/waterbase-lakes-8
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A8. Typical examples of the 199 Google Earth  

images used to code Land-Use Dummy. 

[A] Co-ordinates: 10.053771E  46.062865N 

Country: Italy 

National Station ID: 12 

Elevation:1868m 

Land-Use Dummy: 0 
 

[B] Co-ordinates: 18.00545E      46.94603N 

Country: Hungary 

National Station ID: HU41Lw1872 

Elevation: 105m 

Land-Use Dummy: 1 
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A9.  Country Codes and Country Names for the 396 lakes and 454 stations used to develop the   

        dynamic panel model 

 

 
 

Country Code Country 

BE Belgium

CH Switzerland

DE Germany

DK Denmark

FR France

GB Great Britain

HR Croatia

HU Hungary

IT Italy

LT Lithuania

LV Latvia

NL Netherlands

PL Poland

PT Portugal

RO Romania

RS Serbia

SE Sweden

SI Slovenia


