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Preface

In 1864, Stokes studied the asymptotic behavior of the Airy integral [St]:

Ai(z) =
1

2π

∫ ∞

−∞
exp

{
i

(
s3

3
+ zs

)}
ds.

Airy attempted to numerically compute Ai(z) for z real, but his method using a con-
vergent series only worked when |z| was small. Stokes found asymptotic expansions
that yielded good approximations for large |z|, but he noticed that the expansions
for positive z and negative z were different. Further investigation showed that in the
complex domain, the asymptotic expansions depend discontinuously on the angle of
approach. This behavior is called the Stokes phenomenon.

In this paper, we study the Stokes phenomenon for solutions to ordinary dif-
ferential equations and systems of differential equations. In particular, we wish to
investigate the dependence of the asymptotic behavior of a solution on the sectorial
neighborhood near an irregular singularity.

For any sector, any fundamental set of solutions near a regular singular point,
and any fundamental set of solutions near the irregular singular point on the sector,
there is a linear transformation relating the two fundamental sets of solutions. The
problem of finding the coefficients of this linear transformation is called the connec-
tion problem. By composing these linear transformations, we can analyze the Stokes
phenomenon.

In Chapter 1, we introduce a method for reducing a single differential equation
with a finite number of regular singular point and one irregular singular point to
a generalized Schlesinger system. Using this reduction, the multi-point connection
problem may then be solved by a method of Kohno [K3].

Okubo [O1] treated the connection problem of a Birkhoff system with an irregular
singular point of rank one at infinity and one regular singular point at the origin:

t
dX

dt
= (A+ Ct)X,

where A and C are n by n constant matrices, X is a vector with n entries, and t
is a complex variable. He also solved the reduction problem from hypergeometric
equations to the hypergeometric system

(tI −B)
dX

dt
= AX,

also called the Okubo system. The special case where all eigenvalues of B are dis-
tinct had been briefly addressed in lectures by Hukuhara [H], and the existence of a
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solution in the general case was worked out in [O2]. In the preface of [O2], Okubo
credits Kohno and Suzuki [KS] with proving “the constructive version, and reduc-
tion program in Reduce III” where they gave an explicit description of the matrix A.
Moreover, Kohno studied the two point connection problem for a single differential
equation which has one regular singular point at the origin and one irregular singular
point of rank greater than one at infinity [K1], and in the last section of [K3], he
sketched a method for finding the solutions of the multi-point connection problem
for a generalized Schlesinger system.

Given the above results, it is worth investigating reduction problems in more
general settings, e.g., where one has more than two regular singular points. For this
reason, we wish to reduce to a generalized Schlesinger system.

In Chapter 2, we compute the Fuchsian relations for non-holomorphic solutions
for a single ordinary differential equation, and we find the difference between this
and the Fuchsian relation for the corresponding system. The Fuchsian relation plays
an essential role in the global analysis of linear differential equations with regular or
irregular singularities.

In Chapter 3, we consider single differential equations on the complex projec-
tive line which have one regular singular point and one irregular singular point. We
construct a family of functions whose asymptotic expansions match those of a funda-
mental solution at a regular singular point. These functions are particular solutions
of first order nonhomogeneous differential equations that can be derived from the
fundamental solutions at the regular singular point and formal solutions at the ir-
regular singular point of the original differential equation. We call these functions
the fundamental functions associated with this two point connection problem. The
series expansions of the associated fundamental functions are described by systems of
difference equations, and the coefficients relating them to the fundamental solutions
can be found by a recursive process. This yields a method for calculating the linear
relation between the two fundamental sets of solutions, i.e., solving the connection
problem.

The method of associated fundamental functions was first applied to the two-
point connection problem for a differential system with an irregular singular point
of rank one by K. Okubo in 1963 [O1]. In 1974, M. Kohno applied it to a single
differential equation with a regular singular point and an irregular singular point of
arbitrary rank [K1]. In 1999, he also sketched an argument that would allow one
to apply the associated fundamental functions to the problem in the case where one
has an arbitrary number of regular singular points and one irregular singular point
[K2].

It seems that this last advance has gone largely unnoticed, and there have been
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no further developments. In future work, we intend to apply this method to solve
the multi-point connection problem.

Finally, in the last chapter, we consider the Stokes coefficients. The Stokes phe-
nomenon for a linear differential system with an irregular singularity at zero is the
appearance of distinct sector-dependent analytic solutions that are asymptotic to a
single formal solution. To each anti-Stokes direction there is a Stokes matrix which is
a meromorphic invariant for the system. For analyzing the Stokes coefficients, Sibuya
gave a characterization of meromorphic equivalence classes of differential equations
in terms of Stokes data, using the Cauchy-Heine integral [S]. B. Malgrange reinter-
preted this characterization as an isomorphism with a sheaf cohomology group [M],
now called the Sibuya-Malgrange Isomorphism. M. Loday-Richaud proved a for-
mula for the Stokes multipliers for the Birkhoff canonical system of size two, using
the Cauchy-Heine integral [L]. The Stokes matrices are, in general, transcendental
with respect to the coefficients of the differential system. As we do not have an alge-
braic method for finding the Stokes Multipliers, we turn to numerical manipulation
of examples for insight.

The author would like to thank her advisors, R. Ishimura, M. Loday-Richaud, and
K. Takeuchi, for good advice and encouragement. Also, she would like to thank Y.
Haraoka of Kumamoto University and Y. Takei of RIMS for good advice and many
helpful discussions. She would like to thank the members of the IPMU analysis sem-
inar, especially A. Bondal, S. Carnahan, S. Galkin, A. Getmanenko, T. Milanov, K.
Saito, and C. Schmidt-Colinet, for teaching her the beauty and fun of mathematics.
Finally, she would like to thank M. Kohno for teaching her initiative, and introducing
her to the world of research.
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1 Reduction to a system of first degree differential

equations

In this chapter, we introduce a method of a reduction from a single differential
equation with a finite number of regular singular points and one irregular singular
point to a generalized Schlesinger system. In Section 1.1, we shall introduce a method
of our reduction. In Section 1.2, we shall describe an explicit form for our system.
And in Section 1.3, we shall describe how our methods can be applied to a more
general reduction problem, where we remove a constraint on the degree. In Section
1.4, we consider an example of the reduction of a fourth order linear differential
equation. We believe that an explicit example is valuable for understanding our
algorithm of the reduction. Furthermore, it has been helpful in our work on the
multi-point connection problem.

In the beginning, we define a regular singular point, and an irregular singular
point.

Definition 1.1. (regular singular point of a function) Assume that a ∈ C and f(t)
is a holomorphic function on 0 < |t− a| < r, r ∈ R.

We say that t = a is a regular singular point, if f(t) cannot be extended to a
holomorphic function at t = a and ∃N > 0,∀α, β s.t.

|t− a|N |f(t)| → 0 (|t− a| → 0 α < arg(t− a) < β).

1. If t = a is a regular singular point or a holomorphic point, we say that a is at
least a regular singular point.

2. If t = a is neither a regular singular point nor a holomorphic point, we call a
an irregular singular point.

Definition 1.2. (regular singular point of a differential equation) Assume that a ∈ C.
Consider

y(n) + p1(t)y
(n−1) + · · · + pn(t)y = 0, (1.1)

where pj(t)(j = 1, 2, · · · , n) are holomorphic on 0 < |t − a| < r and they are either
holomorphic at t = a, or have poles of finite order there. We say that t = a is a
regular singular point of (1.1), if for any solution y(t) of (1.1) t = a is at least a
regular singular point of y(t).

In the paper [AK], we considered the reduction of the linear differential equation

Pn(t) y(n) = Pn−1(t) y
(n−1) + · · · + P1(t) y

′ + P0(t) y, (1.2)
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where

Pn(t) =
n∏

j=1

(t − λj),

and the coefficients Pj(t) (j = 0, 1, ... , n − 1) are polynomials of degree at most n,
to the system of linear differential equations

(tI −B)
dX

dt
= (A+ Ct)X,

with
B = diag (λ1, λ2, . . . , λn),

and A, C being constant matrices. We then showed a method of reduction for the
case where all the λj are mutually distinct. In this paper we shall consider the
more general reduction problem, in which Pn(t) may have multiple roots. Moreover,
multiplying (tI − B)−1 from the left side, we shall show that our system can be
reduced to a generalized Schlesinger system:

dX

dt
=

(
q∑

i=1

Āi

t− λi

+ C

)
X,

where q is a number of regular singular points and Āi(i = 1, 2, . . . , q) are n by n
constant matrices.

Given the above results, it is worth investigating reduction problems in more
general settings, e.g., where one has at least two regular singular points. For this
reason, we wish to reduce to a generalized Schlesinger system. In [AK], we treated
the case where all of the regular singular points are mutually distinct. In this chapter,
we consider such a reduction problem, in which the regular singular points are not
necessarily distinct.

1.1 Method of the reduction

Consider the single linear differential equation with a finite number of regular singular
points at t = λν (ν = 1, 2, · · · , q) and one irregular singularity of rank one at t = ∞
in the whole complex plane. A general form of such differential equations can be
expressed as follows :

Pn(t)y(n) = Pn−1(t)y
(n−1) + · · · + P1(t)y

′ + P0(t)y, (1.3)
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where we assume that the coefficients Pj(t) (j = 0, 1, · · · , n− 1, n) are polynomials
of degree at most n. This hypothesis is not essential, and we shall show how to
eliminate it in a remark at the end of Section 1.3. The roots of Pn(t) are the regular
singular points.

We now assume that

Pn(t) = (t− λ1)
n1(t− λ2)

n2 · · · (t− λq)
nq , (1.4)

with 
n1 + n2 + · · · + nq = n (1 ≤ q ≤ n),

1 ≤ nq ≤ nq−1 ≤ · · · ≤ n1 ≤ n.

In this case, in order that t = λν be a regular singularity of (1.3), the functions

(t− λν)
iPn−i(t)

Pn(t)
(i = 1, 2, · · · , n)

must be holomorphic at t = λν , and hence for each ν, the polynomials Pn−i(t)
(1 ≤ i ≤ nν) have the factor (t− λν)

nν−i.
From the above fact, it is easy to see that the coefficients Pn−i(t) are written as :

Pn−i(t) =

[
q∏

ν=1

(t− λν)
nν−i

]
P̂n−i(t) (0 < i ≤ nq),

Pn−i(t) =

[
k−1∏
ν=1

(t− λν)
nν−i

]
P̂n−i(t) (nk < i ≤ nk−1 ; k = q, q − 1, · · · , 2),

Pn−i(t) = P̂n−i(t) (n1 < i ≤ n),
(1.5)

with P̂n−i(t) being a polynomial for all i = 0, 1, . . . , n.
Then, introducing the notation

Nk = n1 + n2 + · · · + nk (k = 1, 2, · · · , q),

N0 = 0, Nq = n,

one can see that for nk < i ≤ nk−1 (k = 1, 2, · · · , q + 1 ; n0 = n, nq+1 = 0), the

degree of P̂n−i(t) is at most

n− {n1 + n2 + · · · + nk−1 − i(k − 1)} ≡ n−Nk−1 + i(k − 1).

3



Hence, the single differential equation includes

N =

q+1∑
k=1

nk−1∑
i=nk+1

{n−Nk−1 + i(k − 1) + 1}

=

q+1∑
k=1

{
(n+ 1 −Nk−1)(nk−1 − nk) + (k − 1)

(nk−1 − nk)(nk−1 + nk + 1)

2

}
constants.

Since

q+1∑
k=1

(k − 1)(nk−1 − nk) =

q∑
k=1

nk = n,

q+1∑
k=1

(k − 1)(n2
k−1 − n2

k) =

q∑
k=1

n2
k,

q+1∑
k=1

Nk−1(nk−1 − nk) =

q∑
k=1

Nknk −
q+1∑
k=2

Nk−1nk

= N1n1 +

q∑
k=2

(Nk −Nk−1)nk −Nqnq+1

=

q∑
k=1

n2
k,

we have

N = n(n+ 1) −
q∑

k=1

n2
k +

1

2

{
q∑

k=1

n2
k + n

}

=
n(2n+ 3)

2
− 1

2

q∑
k=1

n2
k.
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We now investigate the characteristic exponents of convergent power series solu-
tions near regular singularities and the characteristic constants of formal solutions
at the irregular singularity.

Near each regular singular point at t = λν (ν = 1, 2, . . . , q), there exist conver-
gent power series solutions of the form

y(t) = (t− λν)
ρ

∞∑
m=0

g(m) (t− λν)
m, g(0) 6= 0. (1.6)

The characteristic exponent ρ is a root of the equation

[ρ]n =
nν∑
i=1

γi [ρ]n−i,

where [ρ]k is the Pochhammer symbol for k = 0, 1, 2, . . . :

[ρ]k ≡ ρ(ρ− 1) · · · (ρ− k + 1), [ρ]0 ≡ 0,

and the coefficients γi are given by

γi =

[
Pn−i(t)

Pn(t)
(t− λν)

i

]
t=λν

=
P̂n−i(λν)

k−1∏
`=1
` 6=ν

(λν − λ`)
i

q∏
`=k

(λν − λ`)
n`

(nk < i ≤ nk−1 ≤ nν).

Then, ρ is a root of

[ρ]n−nν = 0, i. e. , 0, 1, · · · , n− nν − 1,

or

[ρ− n+ nν ]nν =
nν∑
i=1

γi [ρ− n+ nν ]nν−i. (1.7)

This implies that there exist n−nν holomorphic solutions and possibly, nν nonholo-
morphic solutions near the regular singular point t = λν .
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Near the irregular singularity at infinity, one can find formal solutions of the form

y(t) = eµ t tη
∞∑

s=0

h(s) t−s, h(0) 6= 0, (1.8)

where the characteristic constant µ is a root of the equation

µn =
n∑

i=1

pn−i µ
n−i, (1.9)

with pn−i being the coefficient of highest degree in P̂n−i(t).

Now we shall consider the reduction of the single differential equation (1.3) to
the system of differential equations

(t−B)
dY

dt
= (A + C t)Y, (1.10)

where

B = diag(

n1︷ ︸︸ ︷
λ1, · · · , λ1,

n2︷ ︸︸ ︷
λ2, · · · , λ2, · · · ,

nq︷ ︸︸ ︷
λq, · · · , λq),

where we recall the notation

n = Nq = n1 + n2 + · · · + nq,

and A, C are n by n constant matrices with the following form :

A + C t ≡ D(t) =



D1(t)
1 0

D2(t)
1

dj, i(t)
. . . . . .

1

Dq(t)



.
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All the elements dj, i(t) are polynomials of degree at most 1 and the Dk(t) are nk×nk

submatrices of the form

Dk(t) =



dNk−1+1, Nk−1+1(t) 1

dNk−1+2, Nk−1+2(t) 1 0
dj, i(t)

. . . . . .

. . . 1

dNk, Nk−1+1(t) dNk, Nk−1+2(t) · · · · · · dNk, Nk
(t)


.

In order to reduce (1.3) to (1.10), we apply the transformation introduced in
[AK]:

y1 = y,

y2 = ϕ1 y
′ + e2, 0(t) y,

...

yj = ϕj−1 y
(j−1) + ej, j−2(t) y

(j−2) + · · · + ej, 1(t) y
′ + ej, 0(t) y,

...

yn = ϕn−1 y
(n−1) + en, n−2(t) y

(n−2) + · · · + en, 1(t) y
′ + en, 0(t) y.

(1.11)

Here we set

ϕj =

j∏
k=1

(t− λa(k)) (j = 1, 2, · · · , n), ϕ0 ≡ 1,

where a : {1, 2, . . . , n} → {1, 2, . . . , q} is the unique weakly increasing function such
that a−1(i) has cardinality ni for all 1 ≤ i ≤ q. Obviously, ϕn = Pn(t).

We shall attempt to drive a system of linear differential equations for the column

7



vector Y = (y1, y2, . . . , yn)∗:


t−λa(1) 0

t−λa(2)

...
...0 t−λa(n)

Y ′ =


d1, 1 1 0
d2, 1 d2, 2 1
...

...
. . . . . .

...
...

. . . 1
dn, 1 dn, 2 · · · · · · dn, n

Y,

where all dj, i(t) are polynomials of the first degree.

For this transformation, we have the following :

Theorem 1.3. Assume that y is a solution of the single differential equation
(1.3), and that Y = (y1, y2, . . . .yn)∗ is a vector that satisfies a system of differential
equations of the form (1.10), such that y and Y are related by a reduction of the form
(1.11). Then, the polynomials ej,`(t) for 1 ≤ `+ 1 < j ≤ n are uniquely defined, and
they satisfy:

(t − λj) (ej, j−`−3(t) + e′j, j−`−2(t))

= ej+1, j−`−2(t) +
`+1∑
h=0

dj, j−h(t) ej−h, j−`−2(t)

(j = 1, 2, · · · , n ; ` = −1, 0, · · · , j − 2),

(1.12)

where

en+1, k(t) = −Pk(t) (k = 0, 1, · · · , n− 1),

e1, 0(t) ≡ 1, ej, j−1(t) ≡ ϕj−1, ej,−k(t) ≡ 0 (k > 0).

1.2 Determination of ej, i and dj, i

In this section, we shall prove Theorem 1.3. In the paper [AK], we have verified that
the above transformation leads to a desired system in the distinct case, where q = n
and nj = 1 (j = 1, 2, ..., n).

We shall also use this transformation to reduce (1.3) to (1.10) in the general case

8



just considered. For that purpose, we introduce the following notation:

f i
k =

k∏
ν=1

(t− λν)
nν−i,

f i
k = f i+1

k ψk,

ψk =
k∏

ν=1

(t− λν),

(f i
k)

′ = f i+1
k gi

k,

gi
k =

k∑
ν=1

(nν − i)
k∏

ν′=1
ν′ 6=ν

(t− λν′)

(k = 1, 2, · · · , q).

Then, we can rewrite the coefficients and ϕj as follows :{
Pn−i(t) = f i

k−1 P̂n−i(t) (nk < i ≤ nk−1 ; k = q + 1, q, · · · , 2),

Pn−i(t) = P̂n−i(t) (n1 < i ≤ n),

and for j in Nk−1 < j ≤ Nk (k = 1, 2, · · · , q):{
ϕj = f 0

k (t − λk)
j−Nk = f 1

k ψk (t − λk)
j−Nk = f 1

k ψk−1 (t − λk)
j+1−Nk ,

ϕ′
j = f 1

k (t − λk)
j−Nk

{
(t − λk) g

0
k−1 + (j − Nk−1)ψk−1

}
.

We set 
dj, j(t) = cj t + aj = cj (t − λk) + a′j,
dj, i(t) = cj, i t + aj, i = cj, i (t − λk) + a′j, i
(Nk−1 < j ≤ Nk ; k = q, q − 1, · · · , 1).

Then, we write D(t) in the form

D(t) = diag ( (t− λ1)En1 , (t− λ2)En2 , · · · , (t− λq)Enq )C + A′,

where Eν denotes ν × ν identity matrix and the first matrix in the right hand side is
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a block-diagonal matrix, and C is a lower triangular matrix, and A′ is of the form

A′ =



a′1 1
a′2, 1 a′2 1 0. . . . . . . . .

a′j, i
. . . . . . . . .

. . . . . . 1
a′n, 1 a′n, 2 · · · · · · · · · a′n


.

First step ( Relation between C and A′ )

[I] For the diagonal elements dj, i(t), the argument is identical to the one given
in [AK], so we shall show only the conclusion for the following two cases. For the
first case, with j = Nk(k = 1, 2, . . . , q):

a′j = nk − 1 − êj+1, j−1(λk)

ψk−1(λk)
,

and  dj, j(t) = cj (t − λk) + nk − 1 − êj+1, j−1(λk)

ψk−1(λk)
,

ej, j−2(t) = f 1
k êj, j−2(t) (j = Nk),

where

êj, j−2(t) = (t− λk)
−1{ êj+1, j−1(t) + (a′j − nk + 1)ψk−1 } + cjψk−1 − g0

k−1.

For the second case, where Nk−1 < j ≤ Nk − 1(k = 1, 2, . . . , q):

a′j = j − 1 − Nk−1,

{
dj, j(t) = cj (t − λk) + j − 1 − Nk−1,

ej, j−2(t) = f 1
k (t − λk)

j−Nk êj, j−2(t) (Nk−1 < j ≤ Nk − 1),

where

êj, j−2(t) = êj+1, j−1(t) + cj ψk−1 − g0
k−1

= êNk, Nk−2(t) + (cNk−1 + cNk−2 + · · · + cj)ψk−1 − (Nk − j)g0
k−1.

10



For j = 1, the formula (1.12) becomes

e2, 0(t) + d1, 1(t) = 0 ( a′1 = 0 ). (1.13)

Thus we have determined all diagonal elements a′j of A′ and the form of dj, j(t) and
ej, j−2(t) (j = n, n− 1, · · · , 2) from Pn−1(t).

We remark that the ej, j−2(t) are polynomials of degree at most j − 1. It is easily
seen that en, n−2(t) has degree at most n − 1, because it is derived by taking the
quotient of Pn−1(t) by powers of the factor (t − λq). Then, each ej, j−2(t) is derived
by taking the quotient of ej+1, j−1(t) by powers of the factor (t− λk).

[II] Now we shall proceed to the investigation of the subdiagonal elements
dj, j−i(t) (i = 1, 2, · · · , j − 1) and the coefficients of transformation ej, j−i(t) (i =
1, 2, · · · , j − 1).

We wish to prove that for k = 1, 2, · · · , q:

ej, j−i(t) = f i−1
k (t − λk)

j−Nk êj, j−i(t) (Nk−1 < j ≤ Nk ). (1.14)

From now on, the factor to the power of a non-positive integer is understood to be
equal to 1, that is, (t − λk)

p ≡ 1 (p ≤ 0).

For i = 2, we have already seen

ej, j−2(t) = f 1
k (t − λk)

j−Nk êj, j−2(t),

and for j = n+ 1, we have

en+1, n+1−i(t) = Pn−i+1(t) = f i−1
q P̂n−i+1.

Taking account of these facts, we shall prove the formula (1.14) by mathematical
induction in the subdiagonal order i. Setting ` = i − 2 (i = 1, 2, · · · , j) in (1.12),
we have for Nk−1 < j ≤ Nk (k = 1, 2, · · · , q) :

(t − λk)(ej, j−i−1(t) + e′j, j−i(t))

= ej+1, j−i(t) +
i−2∑
h=0

dj, j−h(t) ej−h, j−i(t) + dj, j−i+1(t)ϕj−i.
(1.15)

Suppose that the same formulas as (1.14) are valid for j = Nk +1, for which one can

11



express

ej, j−2(t) = f 1
k (t − λk)

j−Nk êj, j−2(t) = f 2
k ψk−1(t − λk)

j−Nk+1 êj, j−2(t),

e′j, j−2(t) = f 2
k (t − λk)

j−Nk

[
{g1

k + (j − Nk)ψk−1} êj, j−2(t) + ψkê
′
j, j−2(t)}

]
,

ϕj−2 = f 0
k (t − λk)

j−Nk−2 = f 2
k ψ

2
k−1 (t − λk)

j−Nk .

Now set i = 2 in (1.15) and let
:::::::::
j = Nk . Substituting above expressions into (1.15),

we obtain

(t − λk) ej, j−3(t) − ej+1, j−2(t)

= f 2
k (t − λk)

j−Nk+1
[
{(dj, j(t) − j + Nk)ψk−1 − g1

k} êj, j−2(t)

− ψk ê
′
j, j−2(t)

]
+ dj, j−1(t) f

2
k (t − λk)

j−Nk ψ2
k−1.

Moreover, since ej+1, j−2(t) = f 2
k êj+1, j−2(t), we consequently obtain

ej, j−3(t) = f 2
k (t − λk)

−1 { êj+1, j−2(t) + a′j, j−1 ψ
2
k−1 }

+ f 2
k

[
{ (dj, j(t) − j + Nk)ψk−1 − g1

k } êj, j−2(t)

+ cj, j−1 ψ
2
k−1 − ψk ê

′
j, j−2(t)

]
.

This immediately leads to

a′j, j−1 = − êj+1, j−2(λk)

ψ2
k−1(λk)

(j = Nk), (1.16)

and  dj, j−1(t) = cj, j−1 (t − λk) − êj+1, j−2(λk)

ψ2
k−1(λk)

,

ej, j−3(t) = f 2
k êj, j−3(t) (j = Nk).

12



Then, substituting the above form of ej+1, j−2(t) into (1.15), we have

ej, j−3(t) = f 2
k (t − λk)

j−Nk

[
{(dj, j(t) − j + Nk)ψk−1 − g1

k}êj, j−2(t)

− ψk ê
′
j, j−2(t) + êj+1, j−2(t) + cj, j−1 ψ

2
k−1

]
+ f 2

k (t − λk)
j−Nk−1 a′j, j−1 ψ

2
k−1.

From this, for j = Nk − 1, Nk − 2, · · · , Nk−1 + 2, successively, we can conclude
that there hold 

a′j, j−1 = 0,

dj, j−1(t) = cj, j−1 (t − λk),

ej, j−3(t) = f 2
k (t − λk)

j−Nk êj, j−3(t).

In case j = Nk−1 + 1, the polynomials ej, j−2(t) = f 1
k−1 êj, j−2(t) and ϕj−2 = f 1

k−1ψk−2

do not include the factor (t − λk). Then, in this case, a′j, j−1 can be determined by
putting t = λk in (1.15). In fact, in this case the formula (1.15) becomes

ej, j−3(t) = f 2
k−1 (t − λk)

−1

×
{
êj+1, j−2(t) + a′j ψk−1 êj, j−2(t) + a′j, j−1 ψ

2
k−2(t − λk−1)

}
+ f 2

k−1

[
cj ψk−1 êj, j−2(t) + cj, j−1 ψ

2
k−2 (t − λk−1)

− { g1
k−1 êj, j−2(t) + ψk−1 ê

′
j, j−2(t) }

]
.

From this, we immediately obtain
a′j, j−1 = − êj+1, j−2(λk)

ψ2
k−2(λk) (λk − λk−1)

−
a′j êj, j−2(λk)

ψk−2(λk)
,

dj, j−1(t) = cj, j−1(t − λk) − êj+1, j−2(λk)

ψ2
k−2(λk) (λk − λk−1)

−
a′j êj, j−2(λk)

ψk−2(λk)
,

ej, j−3(t) = f 2
k−1 êj, j−3(t).

Consecutive calculations for k = q, q−1, · · · , 1 finally leads to the determination
of all subdiagonal elements a′j, j−1 and the form of dj, j−1(t) and ej, j−3(t) in terms of
Pn−2(t).

[III] We shall sketch the proof of (1.14) by mathematical induction.

13



Suppose the formulas (1.14) are valid up to (i− 2)-th subdiagonal elements, that is,

ej, j−`−2(t), dj, j−`(t) ( ` = 0, 1, · · · , i− 2 )

are known. Then, we can prove that the formula (1.14) holds for the (i − 1)st
subdiagonal elements ej, j−i−1(t), together with the determination of the form of
dj, j−i+1(t) in terms of Pn−i(t).
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Figure 1: Procedure of Mathematical Induction
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The remainder of the calculation is similar to [II], so we shall show only the
conclusion:

a′j, j−i+1 = 0,

dj, j−i+1(t) = cj, j−i+1 (t − λk)

(j = Nk − 1, Nk − 2, · · · , Nk−1 + i, 2 ≤ i ≤ nk),

and also see that ej, j−i−1(t) has the form (1.14). This result implies that the sub-
matrix Dk(λk) corresponding to the regular singular point t = λk has the following
form :

Dk(λk) =



a′Nk−1+1, Nk−1+1 1 0
a′Nk−1+2, Nk−1+2 1

. . . . . .

0
. . . 1

a′Nk, Nk−1+1 a′Nk, Nk−1+2 · · · · · · a′Nk, Nk


.

For the case Nk−1 < j ≤ Nk−1 + i− 1, 2 ≤ i ≤ nk or Nk−1 < j ≤ Nk, i > nk, we
can also see that ej,j−i−1(t) has the form (1.14) by same way to [II].

Continuing the above procedure of calculations for all blocks (Nk−1 < j ≤ Nk :
k = q, q−1, · · · , 1), one can determine (i−1)st subdiagonal elements a′j, j−i+1 from
Pn−i(t). Thus the proof of mathematical induction is completed.

Second step ( Determination of C )
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In the first step, we showed that the constant matrix A′ is expressed in the form

A′ =



A′
1

1 0

A′
2

1

a′j, i
. . . . . .

1

A′
q



,

where each diagonal block is an nk × nk companion matrix :

A′
k =



0 1 0
1 1

0
. . . . . .

nk − 2 1

a′Nk, Nk−1+1 a′Nk, Nk−1+2 · · · · · · a′Nk, Nk


.

Then, the matrix A′ includes

1

2
n2 − 1

2

q∑
k=1

n2
k + n

constants to be determined. Since C is a triangular matrix, it includes

1

2
n(n+ 1)

constants. Hence, the reduced system of differential equations includes

n(2n+ 3)

2
− 1

2

q∑
k=1

n2
k

16



constants to be determined, the number of which is equal to N in Section 1.1.

Now we shall prove that the above N constants are determined by the constants
of Pn−j(t) (j = 1, 2, · · · , n). Since we have clarified the relations between a′j, i and
cj, i, we have only to determine the constants cj, i.

For that purpose, we first investigate the degrees of the polynomials of transfor-
mation ej, i(t). We have already shown that each ej, j−2(t) is a polynomial of degree
at most (j − 1). Here we also prove by induction that the degree of the polynomial
ej, i(t) is at most j − 1.

We rewrite (1.12) in the form

(t − λj) (ej, j−k−1(t) + e′j, j−k(t))

= ej+1, j−k(t) +
k−1∑
h=0

dj, j−h(t) ej−h, j−k(t),
(1.17)

where ej−k+1, j−k(t) = ϕj−k, and, in particular, for j = n, we have

(t − λq)(en, n−k−1(t) + e′n, n−k(t))

= −Pn−k(t) +
k−1∑
h=0

dn, n−h(t) en−h, n−k(t).

(1.18)

In the formula (1.18) for k = 2, the right hand side is easily seen to be a polynomial
of degree at most n, and hence en, n−3(t) becomes a polynomial of degree at most
n − 1. And then, from the formula (1.17) for j = n− 1, n − 2, · · · , 3, successively,
one can verify that each ej, j−3(t) is a polynomial of degree at most j − 1, because
polynomials with the highest degree in the right hand side of (1.17) are ej+1, j−2(t)
and dj, j(t) ej, j−2(t).

In general, suppose that for h = 2, 3, · · · , k, the polynomials

e`, `−h(t) ( ` = n, n− 1, · · · , h )

are known and each e`, `−h(t) is of degree at most ` − 1. Then, the right hand side
of (1.18) is known as a polynomial of degree at most n. Dividing it by the factor
(t − λq), we obtain en, n−k−1(t) as a polynomial of degree (n − 1). Furthermore,
suppose that each e`, `−k−1(t) ( ` = n, n − 1, · · · , j + 1 ) is known as a polynomial
of degree ` − 1. Then, from (1.17) we can immediately see that ej, j−k−1(t) is a
polynomial of degree at most j − 1, because the degree of the right hand side is j.
Thus, we have verified that ej, i(t) is a polynomial of degree at most j − 1.

17



We are now in a position to determine the constants cj, i.
For Nk−1 < j ≤ Nk and i = j, we have

(t − λk) e
′
j, 0(t) − ej+1, 0(t) −

j−2∑
h=0

dj, j−h(t) ej−h, 0(t) = dj, 1(t). (1.19)

Since ej, i(t) is a polynomial of degree at most j − 1, the degree of the left hand side
of (1.19) is at most j. However, the degree of dj, 1(t) is 1. Then, the coefficients of
t` (` = j, j − 1, · · · , 2) must be vanishing. Assigning zero to them, the formulas
(1.19), together with (1.13), determine dj, 1(t), i.e., the constants cj, 1.

Consequently, we obtain

n∑
j=2

(j − 1) + n =
n(n+ 1)

2

equations determining the same number of cj, i. This is sufficient, because the system
determined by comparing coefficients in (1.19) is triangular given a suitable ordering
of variables.

The next result is useful because, as Kohno mentions in [K3], one may solve the
multiple point connection problem for the generalized Schlesinger system.

Proposition 1.4. The system (1.10) can be reduced to a generalized Schlesinger
system:

dX

dt
=

(
q∑

j=1

Āj

t− λj

+ C

)
X,

with Āj(j = 1, 2, . . . , q) being n by n constant matrices.

Proof. Recall that we set D(t) := A+ Ct and D(t) can be also rewritten

D(t) = diag ( (t− λ1)In1 , (t− λ2)In2 , · · · , (t− λq)Inq )C + A′,

where Iν denotes the ν × ν identity matrix and the first matrix in the right hand
side is a block-diagonal matrix. We set

A′ =

 A′
11 · · · A′

1q

· · · · · · · · ·
A′

q1 · · · A′
qq

 , Aij ∈M(ni, nj; C).

18



For each j = 1, 2, . . . , q, setting

Āj =

 0
A′

j1 · · · A′
jp

0

 ,

and multiplying both sides of (1.10) by (tI −B)−1 from the left, we obtain a gener-
alized Schlesinger system.

1.3 General case: different degrees

We consider the more general case where the degree m of the polynomial may be
strictly more than the differential degree n of the differential equation.
Let m < n. Then, we consider a linear differential equation of the form

m∑
j=0

Qj(t) y
(j) = 0, (1.15)

where all the coefficients Qj(t) are polynomials of degree at most n and Qm(t) has
the same form (1.4) as follows:

Qm(t) = (t− λ1)
n1(t− λ2)

n2 · · · (t− λq)
nq ,

with 1 ≤ nν ≤ m (ν = 1, 2, · · · , q) and n1 + n2 + · · · + nq = n. Moreover, it is
assumed that for each ν the functions

(t− λν)
iQm−i(t)

Qm(t)
(i = 1, 2, · · · , nν)

are holomorphic at t = λν .
Hence the linear differential equation (1.15) has regular singular points at t =

λν (ν = 1, 2, · · · , q) and an irregular singularity of rank 1 at t = ∞.

Now, in order to apply our method of reduction, we first have to rewrite (1.15)
in the form (1.3), that is, by differentiating in (n −m) times, we derive the n - th
order differential equation

m∑
j=0

(Qj(t) y
(j) )(n−m) = 0. (1.16)
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By the Leibniz rule, we have

m∑
j=0

{
n−m∑
k=0

n−mCn−m−k Qj(t)
(n−m−k) y(j+k)

}
= 0.

Then, setting j + k = n− `, we obtain

n∑
`=0

{
m∑

j=0

n−mC`−m+j Qj(t)
(`−m+j)

}
y(n−`) = 0, (1.17)

where the binomial coefficient is interpreted as follows:

pCq ≡ 0 ( q < 0, q > p ).

Moreover, setting
Pn(t) = Qm(t),

and

Pn−`(t) = −
m∑

j=0

n−mC`−m+j Qj(t)
(`−m+j)

= −
∑̀
h=0

n−mCh Qm−`+h(t)
(h)

for ` = 1, 2, · · · , n, we obtain exactly the same linear differential equation as (1.3).

We shall now investigate the singularities of the linear differential equation (1.17).
From the expression, it is easy to see that all P`(t) (0 ≤ ` ≤ n) are polynomials
of degree at most n. More precisely, we verify that for 0 ≤ ` ≤ m, the Pn−`(t) are
polynomials of degree at most n , however, for ` ≥ m+1 , the Pn−`(t) are polynomials
of degree less than n, the fact of which can be seen directly from the expression

Pn−`(t) = −
∑̀

h=`−m≥1

n−mCh Qm−`+h(t)
(h).

Hence, t = ∞ is an irregular singularity of rank 1 and then it is not difficult to derive
the characteristic constant µ as roots of the characteristic equation

µn−m

{
m∑

i=0

qm−i µ
m−i

}
= 0,
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the qm−i being coefficients of the highest degree tn in Qm−i.

On the other hand, for each ν (1 ≤ ν ≤ q), the polynomials Qm−`(t) (0 ≤ ` ≤ nν)
have the factor (t− λν)

nν−` and hence their derivatives Qm−`(t)
(h) have at least the

factor (t−λν)
nν−`−h. Taking account of this fact, together with the above expression

of Pn−`(t), we can see that for 1 ≤ ` ≤ nν the polynomial Pn−`(t) includes the factor
(t− λν)

nν−`.
Therefore, the points t = λν (1 ≤ ν ≤ q) are regular singularities.

We shall investigate the characteristic exponents of convergent power series solu-
tions near regular singular points t = λν (ν = 1, 2, · · · , q).

For each ν, denoting{
Om−i(t) = (t− λν)

nν−i Q̂ν
m−i(t),

rν
m−i = Q̂ν

m−i(λν) (i = 1, 2, · · · , nν),

we rewrite the linear differential equation (1.15) in the form

nν∑
i=0

(t− λν)
nν−i Q̂ν

m−i(t) y
(m−i) +

m∑
i=nν+1

Qm−i(t) y
(m−i) = 0. (1.18)

Substituting a power series of the form

y(t) = (t− λν)
ρ { g0 + g1 (t− λν) + · · · }

into (1.18), we have

(t− λν)
ρ+nν−m fν(ρ) g0 + d1 (t− λν)

ρ+nν−m+1 + · · · = 0,

where we have set

fν(ρ) ≡
nν∑
i=0

rν
m−i [ ρ ]m−i.

Hence, we see that the characteristic exponents are given by roots of

fν(ρ) = 0,

that is, by integral roots of [ ρ ]m−nν = 0 and roots of

fν(ρ−m+ nν) = 0.
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Next, we consider the characteristic exponents of the linear differential equation
(1.17). In this case, we have only to substitute the above power series into (1.15),
obtaining

(t− λν)
ρ+nν−n fν(ρ) [ρ+ nν −m]n−m g0 + d̂1 (t− λν)

ρ+nν−n+1 + · · · = 0.

Hence, the characteristic exponents are given by the characteristic equation

fν(ρ) [ρ+ nν −m]n−m = 0,

that is, by the same roots as above and integral roots of [ρ+ nν −m]n−m = 0.

As we see, the transformation of (1.15) to (1.17) yields no essential changes of
behaviors of solutions.

1.4 Example of the reduction

In this section, we consider an example of the reduction of a fourth order linear
differential equation. We apply our theory, with unknown function y to the following
equation:

t (t − 1)3 y(4) = P3(t) y
(3) + P2(t) y

′′ + P1(t) y
′ + P0(t) y, (1.19)

where 
P3(t) = − (t − 1)2 (5 t + 1),
P2(t) = − (t − 1)2 (t − 4),

P1(t) = t4 − t3 − t2 + 21 t − 8,

P0(t) = 4 t3 − 3 t2 + 4 t + 3.

This linear differential equation has regular singularities at t = 0, 1 and an irregular
singular point of rank one at infinity. Now, we consider the reduction of (1.19) to
a system of linear differential equations of the form (t I − B)Y ′ = (A + C t)Y by
the transformation

y1 = y,
y2 = ϕ1 y

′ + e2, 0(t) y,
y3 = ϕ2 y

′′ + e3, 1(t) y
′ + e3, 0(t) y,

y4 = ϕ3 y
(3) + e4, 2(t) y

′′ + e4, 1(t) y
′ + e4, 0(t) y,

where I is the 4 × 4 identity matrix, A and C are 4 by 4 constant matrices with C
lower triangular, B is a diagonal matrix:

B = diag(1, 1, 1, 0),
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{yj}4
j=1 are defined using the unknown function y from (1.19), ϕ1 = t − 1, ϕ2 =

(t − 1)2, ϕ3 = (t − 1)3, and the coefficients ei, j(t) (i = 2, 3, 4, j = 0, . . . , i − 2)
are polynomials in t.

Then, we have the following relations:

1© t (e4, 2(t) + ϕ′
3) = −P3 + d4, 4 ϕ3,

2© t (e4, 1(t) + e′4, 2(t)) = −P2 + d4, 4 e4, 2(t) + d4, 3 ϕ2,

3© t (e4, 0(t) + e′4, 1(t)) = −P1 + d4, 4 e4, 1(t) + d4, 3 e3, 1(t) + d4, 2 ϕ1,

4© t e′4, 0(t) = −P0 + d4, 4 e4, 0(t) + d4, 3 e3, 0(t) + d4, 2 e2, 0(t) + d4, 1,

5© (t − 1) (e3, 1(t) + ϕ′
2) = e4, 2(t) + d3, 3 ϕ2,

6© (t − 1) (e3, 0(t) + e′3, 1(t)) = e4, 1(t) + d3, 3 e3, 1(t) + d3, 2 ϕ1,

7© (t − 1) e′3, 0(t) = e4, 0(t) + d3, 3 e3, 0(t) + d3, 2 e2, 0(t) + d3, 1,

8© (t − 1) (e2, 0(t) + ϕ′
1) = e3, 1(t) + d2, 2 ϕ1,

9© (t − 1) e′2, 0(t) = e3, 0(t) + d2, 2 e2, 0(t) + d2, 1,

10© − e2, 0(t) = d1, 1.

In the above, dj, i are polynomials of degree 1 in t. Avoiding the difficult calculation,
we shall show just the order of steps in our reduction algorithm. First, we calcu-
late the principal diagonal elements di, i(t) (i = 4, 3, 2, 1). We follow the order of
calculation 1©→ 5©→ 8© → 10©.

Next, we shall proceed to the calculation of the first subdiagonal elements di, i−1(t)
(i = 4, 3, 2) by following 2©→ 6©→ 9©.

In order to determine the second subdiagonal elements di, i−2(t) (i = 4, 3), we
follow the order of calculations 3©→ 7©.

Lastly, from 4© we obtain the value of d4, 1(t).
We have thus determined all coefficients ei, j(t) of the transformation and the

elements of dj,i(t) as follows:

e2, 0(t) = −ω2 (t − 1),
e3, 0(t) = (t − 1) (t − ω),
e3, 1(t) = (t − 1)2,
e4, 0(t) = − t3 + 3 t2 + (ω − 3) t − (ω + 5),
e4, 1(t) = 3(t − 1)(t − 3),
e4, 2(t) = 3(t − 1)2,
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

d1, 1 = ω2 (t − 1),
d2, 1 = (ω − 1) (t − 1),
d2, 2 = ω (t − 1) + 1,
d3, 1 = − (9ω + 4) (t − 1) + 6,
d3, 2 = − (ω − 1)(t − 1) + 6,
d3, 3 = (t − 1) − 1,
d4, 1 = − (17ω + 12) t + (18ω + 26),
d4, 2 = (ω + 2) t + 18,
d4, 3 = 2 t + 1,
d4, 4 = 1,

where ω is a non-real root of ω3 − 1 = 0.
Consequently, we can reduce the single linear differential equation (1.19) to a

system of linear differential equations of the form

(t I − B)
dY

dt
= (A + C t)Y = {diag ( (t − 1)In1 , t )C + Ā}Y, (1.20)

where for the rest of this paper, Iν denotes the ν by ν identity matrix, and A, Ā and
C are the constant matrices given as follows:

A =



−ω2 1 0 0

− (ω − 1) − (ω − 1) 1 0

9ω + 10 ω + 5 − 2 1

18ω + 26 18 1 1


,

Ā =


ā1 1 0 0
ā2, 1 ā2 1 0
ā3, 1 ā3, 2 ā3 1
ā4, 1 ā4, 3 ā4, 3 ā4

 =



0 1 0 0

0 1 1 0

6 6 − 1 1

18ω + 26 18 1 1


,
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and

C =



ω2 0 0 0

ω − 1 ω 0 0

− (9ω + 4) − (ω − 1) 1 0

− 17ω − 12 ω + 2 2 0


.

We will describe how to compute the entries of Ā in the next section.

2 Restricted Fuchsian relation

In Section 2.1, we shall compute the difference between characteristic exponents of a
single differential equation and of the corresponding system. In Section 2.2, we will
show that the nonholomorphic solutions for the single differential equation satisfy
the restricted Fuchsian relation, by employing a method of Kohno. To this end, we
compute the restricted Fuchsian relations of the single differential equation and the
system of differential equations, and we will compare them (cf.[A1]). That is, we
shall take a sum of the characteristic exponents obtained in Section 2.1, and the
characteristic exponents for irregular singular points.

2.1 Characteristic exponents and constants

We shall investigate the characteristic exponents for the regular singular points and
the characteristic constants for the irregular singular point for the differential equa-
tion (1.3) and the output (1.10) of the reduction. In order to show that our reduc-
tion preserves monodromic properties of the solutions for differential equations at
the regular singular points, we will show that the difference between the sum of the
characteristic exponents for the regular singular points of (1.3) and the correspond-
ing sum for (1.10) is an integer. The calculation of this difference will appear in
the proposition at the end of this section. In the reduction from (1.3) to (1.10), all
entries ej, i(t) of the transformation matrix are polynomials in t. We shall show here
that the characteristic exponents at each regular singular point of both (1.3) and
(1.10) are invariant modulo integers.

We recall the notation of [A1] for obtaining the restricted Fuchsian relation of
(1.3) and (1.10). We introduce the notation Nk, f

i
k and ψk where k = 1, 2, · · · , q
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and i is an integer index (not an exponent).

Nk = n1 + n2 + · · · + nk (k = 1, 2, . . . , q),

f i
k =

k∏
ν=1

(t− λν)
nν−i,

ψk =
k∏

ν=1

(t− λν),

where N0 ≡ 0, then we know that{
Nq = n,

f i
k = f i+1

k ψk.

Then, we can rewrite the coefficients (1.5) of (1.3) as follows:{
Pn−i(t) = f i

k P̂n−i(t) (nk+1 < i ≤ nk ; k = 1, 2, . . . , q),

Pn−i(t) = P̂n−i(t) (n1 < i ≤ n),

where nq+1 ≡ 0.
As we saw in the introduction, in the punctured disc 0 < |t − λν | < r(ν =

1, 2, . . . , q), there exists at least one solution of (1.3)

y(t) = (t− λν)
ρ

∞∑
m=0

g(m) (t− λν)
m.

Substituting it into (1.3), we find that the characteristic exponent ρ is a root of the
equation

[ρ]n =
nν∑
i=1

γi [ρ]n−i,

where [ρ]k is the Pochhammer symbol for k = 0, 1, 2, . . . , defined by the following
recursion:

[ρ]k = ρ(ρ− 1) · · · (ρ− k + 1), [ρ]0 ≡ 1,
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and the coefficients γi are given by

γi =

[
Pn−i(t)

Pn(t)
(t− λν)

i

]
t=λν

=
P̂n−i(λν)

k−1∏
`=1
` 6=ν

(λν − λ`)
i

q∏
`=k

(λν − λ`)
n`

(nk < i ≤ nk−1 ≤ nν).

Then, ρ is a root of
[ρ]n−nν = 0, (2.1)

or a root of

[ρ− n+ nν ]nν =
nν∑
i=1

γi [ρ− n+ nν ]nν−i. (2.2)

For (1.3), (2.1) and (2.2) imply that there exist n−nν holomorphic solutions and nν

possibly nonholomorphic solutions in the punctured disc 0 < |t− λν | < r.
Next, we shall consider the characteristic exponents and constants for (1.10). For

(1.10), there also exist (n−nν)(ν = 1, 2, . . . , q) holomorphic solutions and nν possibly
nonholomorphic solutions near each singular point t = λν . For the calculation, we
shall rewrite (1.10) by setting āj := aj − λkcj, and āj,i := aj,i − λkcj,i where aj and
aj,i are entries of A and cj and cj,i are entries of C of (1.10). aj,i and cj,i are the
(j, i)-entries of A and C, respectively, and aj := aj,j and cj := cj,j are j-th diagonal
entries. That is, we obtain the formula:

dj, j(t) = cj t + aj = cj (t − λk) + āj,
dj, i(t) = cj, i t + aj, i = cj, i (t − λk) + āj, i

(Nk−1 < j ≤ Nk ; k = q, q − 1, . . . , 1, i = 1, 2, . . . , j − 1).

Then, we rewrite the right hand side of (1.10) in the form

{diag((t− λ1)In1 , (t− λ2)In2 , · · · , (t− λq)Inq)C + Ā}Y,

where C is a lower triangular constant matrix, and Ā is of the form

Ā =


ā1 1
ā2, 1 ā2 1 0
ā3,1 ā3,2

. . . . . .
...

...
. . . . . . 1

ān, 1 ān, 2 · · · ān,n−1 ān

 .
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In [A1], to find the order of ej, j−i(t), we showed that for k = 1, 2, . . . , q

ej, j−i(t) = f i−1
k (t − λk)

j−Nk êj, j−i(t) (Nk−1 < j ≤ Nk, i = 1, 2, . . . , j − 1),

where (t − λk)
p ≡ 1 (p ≤ 0) and êj, j−i(t) is a polynomial of t, and we obtained an

explicit form of the entries of Ā near the diagonal. Concretely, the nν × nν diagonal
block Āν is given as follows:

Āν =



0 1 0
1 1

. . . . . .

0 nν − 2 1

āNν , Nν − 1 +1 āNν , Nν − 1 +2 · · · · · · āNν , Nν − 1 āNν


,

where for 1 ≤ i ≤ nν ,

āNν , Nν−i+1 = − êNν+1, Nν−i(λν)

(ψν−1(λν))i
, (2.3)

āNν = nν − 1 + āNν ,Nν .

The characteristic exponents of nonholomorphic solutions of (1.10) are given by eigen-
values of the constant matrix Āν . Since the matrix Āν is a companion matrix, the
eigenvalues are roots of the equation

[ ρ̂ ]nν =
nν∑

i =1

āNν , Nν − i +1 [ ρ̂ ]nν − i. (2.4)

Now we shall show that the reduction described above preserves characteristic
properties.

Proposition 2.1. The sum of the characteristic exponents of nonholomorphic solu-
tions of (1.10) differ from the sum of the characteristic exponents of nonholomorphic
solutions of (1.3) at each regular singular point t = λν only by the integers nνNν − 1.
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Proof. We define
ρ′ := ρ̂− n+Nν .

Substituting
ρ′ + n−Nν

into ρ̂ of (2.4), we find that from (2.3), for ν = 1, 2, . . . , q

[ ρ′ ]nν =
nν∑

i = 1

γi [ ρ
′ ]nν − i, (2.5)

but the proof is an induction argument that we omit. By the relation between the
coefficients of a polynomial and its roots for (2.5), (2.2), and (2.4) we have thus
verified that:

nν∑
`=1

ρν,` −
nν∑
`=1

ρ′ν,` = nν(n− nν),

and
nν∑
`=1

ρ′ν,` −
nν∑
`=1

ρ̂ν,`− = nν(−n+Nν).

By adding the two formulas above, we obtain the desired equation:

nν∑
`=1

ρν,` −
nq∑
`=1

ρ̂ν,` = nνNν−1.

This proposition means that the transformation treated between (1.3) and (1.10)
in this paper preserves the monodromic properties. We remark that there is a
fundamental set of solutions to (1.10) with the form (1.6) in the punctured disk
0 < |t − λν | < r := min{|λν − λi| : i 6= ν, i = 1, 2, . . . , q} (ν = 1, 2, . . . , q) where
g(m) is a nonzero n-entry column vector. There also exists a formal solution of (1.10)
at the irregular singular point with the form (1.8) where h(s) is a nonzero n-entry
column vector. Like the case of a single differential equation, we call the numbers
ρ, η characteristic exponents and µ characteristic constants.

2.2 Restricted Fuchsian relation

We shall explain an important identity, which necessarily exists among character-
istic exponents for (1.3) and plays an essential role in the global analysis of linear
differential equations with regular or irregular singularities.
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As in the previous section, in the punctured disc 0 < |t−λν | < r(ν = 1, 2, . . . , q),
there exist nν non-holomorphic solutions of (1.3)

yν, `(t) = (t− λν)
ρν, `

∞∑
m=0

gν, `(m) (t− λν)
m (` = 1, 2, . . . , nν),

where the characteristic exponent ρν, ` are roots of the characteristic equation

[ρ− n+ nν ]nν =
nν∑
i=1

γν, i [ρ− n+ nν ]nν−i. (2.6)

The coefficients γν, i are given by

γν, i =

[
Pn−i(t)

Pn(t)
(t− λν)

i

]
t=λν

. (2.7)

We now consider the sum of all characteristic exponents ρν, ` . From the charac-
teristic equation (2.6), we immediately obtain

nν∑
`=1

ρν, ` =
nν∑
`=1

(n − `) + γν, 1

= nnν − nν(nν + 1)

2
+ γν, 1.

Then, we have

q∑
ν=1

nν∑
`=1

ρν, ` =

(
n − 1

2

) q∑
ν=1

nν − 1

2

q∑
ν=1

n2
ν +

q∑
ν=1

γν, 1

=

(
n − 1

2

)
n − 1

2

q∑
ν=1

n2
ν +

q∑
ν=1

γν, 1. (2.8)

In order to calculate the last sum in the above formula, we apply the fact

γν, 1 =

[
Pn−1(t)

Pn(t)
(t− λν)

]
t=λν

.

The right hand side is the residue of Pn−1(t)
Pn(t)

dt at t = λν . We can then express the
sum of γν, 1 in the form

q∑
ν=1

γν, 1 =
1

2π i

∫
|t|=R

Pn−1(t)

Pn(t)
dt, (2.9)
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where all t = λν (ν = 1, 2, · · · , q) are included in the disk |t| < R for sufficiently
large R, and the path of integration is oriented counterclockwise. According to the
theory of residues for rational functions, the right hand side of (2.9) is equal to minus
one times the value of the residue at infinity. If we denote the polynomial Pn−`(t) of
degree n by

Pn−`(t) =
n∑

j=0

pn−`, j t
j (` = 0, 1, . . . , n),

then for sufficiently large values of t the integrand can be written as follows:

Pn−1(t)

Pn(t)
=
pn−1, n + pn−1, n−1 t

−1 + · · · + pn−1, 0 t
−n

1 + pn, n−1 t−1 + · · · + pn, 0 t−n

= (pn−1, n + pn−1, n−1 t
−1 + · · · + pn−1, 0 t

−n)(1 − pn, n−1 t
−1 + · · · )

= pn−1, n + (pn−1, n−1 − pn−1, n pn, n−1) t
−1 + · · · .

Consequently, we have

q∑
ν=1

γν, 1 = pn−1, n−1 − pn−1, n pn, n−1. (2.10)

Now we shall investigate the characteristic exponents of formal solutions for (1.3)
at the irregular singularity t = ∞, which are expressed in the form

y(t) = eµ t tη
∞∑

s=0

h(s) t−s,

where we assume that h(0) 6= 0, and we define h(−s) ≡ 0 when s is a positive integer.
We begin with some preparative calculations for finding the characteristic exponent
η, following the method in the paper [K1]. We define yk(t)(k = 0, 1, . . . , n) to be the
kth derivative of y(t) with respect to t:

yk(t) =
dky(t)

dtk
,

and we shall denote by hk(s) the coefficients of the formal series, that is,

yk(t) = eµ t tη
∞∑

s=0

hk(s) t
−s,
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where
y0(t) ≡ y(t).

Then, we have the following result:

Lemma 2.2. For k = 1, 2, . . . , n, the relation

hk(s) = µhk−1(s) + (η − s+ 1)hk−1(s− 1) (s = 0, 1, . . .) (2.11)

holds, where hk(−s) = 0 for s > 0.

Proof.

yk(t) = y′k−1(t)

⇔ eµ t tη
∞∑

s=0

hk(s) t
−s = eµttη

{
µ

∞∑
s=0

hk−1(s)t
−s +

∞∑
s=0

(η − s)hk−1(s)t
−s−1

}

⇔
∞∑

s=0

hk(s) t
−s =

{
µ

∞∑
s=0

hk−1(s)t
−s +

∞∑
s=0

(η − s)hk−1(s)t
−s−1

}
.

Comparing the coefficients of t−s, we have the above formula.
Moreover, substituting

tj yk(t) = eµ t tη
∞∑

s=−j

hk(s+ j) t−s

into (1.3), we have

n∑
j=0

{
pn, j hn(s+ j) −

n−1∑
k=0

pk, j hk(s+ j)

}
= 0 (s = −j,−j + 1, . . .). (2.12)

With this preparation complete, we are now in a position to calculate the value
of the characteristic constants µ and the characteristic exponents η of the formal
solutions of (1.3). To this end, we iteratively apply (2.11) to get the k+ 1-term sum
(see [K1]):

hk(s) = µk h(s) + {µk + (η − s+ 1)k µk−1}h(s− 1) + · · · . (2.13)

We then apply (2.12) with the substitution s = −n. Then, from (2.13), we obtain(
µn −

n−1∑
k=0

pk, n µ
k

)
h(0) = 0.
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Hence, the equation

J(µ) ≡ µn −
n−1∑
k=0

pk, n µ
k = 0

determines the n characteristic constants, which we denote by µ`(` = 1, 2, . . . , n).
From here, we assume that they are mutually distinct, i.e., µ` 6= µi (` 6= i). Without
this assumption, the argument becomes more complicated, because we can no longer
use the assumption that J ′(µ`) 6= 0 to produce (2.14).

Next, we substitute s = 1 into (2.13) to obtain

hk(1) = µk h(1) + {µk + η k µk−1}h(0).

Then, combining this with what we get from substituting s = −n+1 into (2.12), we
obtain

J(µ)h(1) + {J(µ) + η J ′(µ)}h(0)

+

{
pn, n−1 µ

n −
n−1∑
k=0

pk, n−1 µ
k

}
h(0) = 0,

whence the characteristic exponent corresponding to µ` is given by the formula

η` = − pn, n−1 µ
n
` −

∑n−1
k=0 pk, n−1 µ

k
`

J ′(µ`)
. (2.14)

By exactly the same consideration as in the case (2.9), we can express the sum of
the characteristic exponents (2.14) in the form of the integral

n∑
i=1

ηi = − 1

2π i

∫
|µ|=R

pn, n−1 µ
n −

∑n−1
k=0 pk, n−1 µ

k

J(µ)
dµ

for sufficiently large R, with the path of integration oriented counterclockwise. From
the residue theorem we obtain

n∑
i=1

ηi = pn−1, n−1 − pn−1, n pn, n−1. (2.15)

Combining this formula with (2.10) and (2.8), we consequently obtain the restricted
Fuchs relation.
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Theorem 2.3. Consider (1.3), and set ρν,`(ν = 1, 2, . . . , q, ` = 1, 2, . . . , nν) to be
the characteristic exponents at regular singular points t = λν and ηi(i = 1, 2, . . . , n)
to be the characteristic exponents at the irregular singular point at infinity. Assume
the characteristic constants of the formal solutions at the irregular singular point
are mutually distinct, i.e., µ` 6= µi (` 6= i). Then, the restricted Fuchs relation for
non-holomorphic solutions for (1.3) is the following:

q∑
ν=1

nν∑
`=1

ρν, ` −
n∑

i=1

ηi =

(
n − 1

2

)
n − 1

2

q∑
ν=1

n2
ν . (2.16)

Remark 2.4. For the special case q = 1, we have n1 = n and hence the right hand
side of (2.16) is equal to n(n−1)/2. In particular, the above restricted Fuchs relation
is a generalization of the Lemma 3.1 in [K1].

3 Toward the multi-point connection problem

In Section 3.1, we will explain how the two-point connection problem is useful for
analyzing the Stokes phenomenon. In Section 3.2, we will introduce an associated
fundamental function which was introduced by K. Okubo in the 1960’s [O1]. In
Section 3.3, we will give an example of the two-point connection problem.

3.1 What is the connection problem?

We assume that t is a complex variable. We consider an n-th order single differential
equation which has one irregular singular point of rank one at infinity and a regular
singular point at the origin, with unknown function y, of the form:

tn
dny

dtn
=

n∑
`=1

an−`(t)t
n−`d

n−`y

dtn−`
, (3.1)

where a`(t)(` = 0, 1, . . . , n− 1) are holomorphic functions at the origin. There exists
a fundamental set of solutions expressed in terms of convergent power series:

yj(t) = tρj

∞∑
m=0

Gj(m)tm (j = 1, 2, . . . , n),

in a punctured disc around the regular singular point t = 0, where ρi−ρj /∈ Z (i 6= j).
We can calculate formal solutions:

yk(t) = eλkttµk

∞∑
s=0

hk(s)t−s (k = 1, 2, . . . , n)
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at infinity, where λk, µk ∈ C. On each sector S with vertex at the origin and
central angle not exceeding π, there exists a fundamental set of solutions yk

S(t) (k =
1, 2, . . . , n), such that

yk
S(t) ∼ yk(t) (|t| → ∞ in S).

We write Y0(t) to denote a vector function whose components are given by a funda-
mental set of solutions yj(t) near the origin, and YS(t) to denote a vector function
whose components are given by a fundamental set of solutions yk

S(t) near infinity on
S;

Y0(t) =


y1(t)
y2(t)

...
yn(t)

 , YS(t) =


y1

S(t)
y2

S(t)
...

yn
S(t)

 .

Let us denote the analytic continuation of the yk
S(t) into a sector S ′ by the same

notation yk
S(t). Then, we have a linear relation between yk

S(t) and yk
S′(t):

YS(t) = T (S : S ′)YS′(t) T (S : S ′) ∈ Mn(C) in S ′. (3.2)

We call this constant matrix T (S : S ′) the Stokes matrix or the lateral connection
matrix. If we can find the exact value of the matrix T (S : S ′), then the asymptotic
behavior of yk

S(t) as t tends to infinity in S ′ will be immediately understood.

On the other hand, a linear relation between two fundamental sets of solutions
yj(t) and yk

S(t) in S clearly holds:

Y0(t) = W (S)YS(t) in S, W (S) ∈ GLn(C). (3.3)

We call this coefficients matrix the central connection matrix. Its derivation is often
called the central connection problem.

If we can solve such a central connection problem (3.3) for every sector S, then
after the analytic continuation of the yk

S(t) across a domain near t = 0 and then
into the sector S ′, we can directly obtain the lateral connection formula (3.2). That
is, once the central connection problem is solved, the Stokes phenomenon will be
completely understood.

3.2 Associated fundamental function

We will give here a short sketch of a method for the establishment of the asymptotic
expansion yj(t) as t tends to infinity, together with the determination of the lateral
connection matrices T (S : S ′) for every sector S.
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Assume that the central connection problem were solved. There exists a funda-
mental set of solutions of (3.1) expanded in terms of convergent power series in a
punctured disc around the regular singular point t = 0:

yj(t) = tρj

∞∑
m=0

Gj(m)tm (j = 1, 2, . . . , n),

where ρi − ρj /∈ Z(i 6= j). The fundamental solutions yk
S(t)(k = 1, 2, . . . , n) of (3.1)

are characterized by formal solutions at the irregular singular point:

yk
S(t) ∼ yk(t) (|t| → ∞ in S).

Then, yj(t) can be expressed as:

yj(t) = tρj

∞∑
m=0

Gj(m)tm =
n∑

k=1

W k
j (S)yk

S(t),

where W k
j (S) are entries of the matrix W (S):

W (S) =


W 1

1 (S) W 2
1 (S) · · · W n

1 (S)
W 1

2 (S) W 2
2 (S) · · · W n

2 (S)
...

...
...

W 1
n(S) W 2

n(S) · · · W n
n (S)

 .

We shall introduce a set of functions xk
j (s; t), distinguished by the property that

they admit the same local behavior as yj(t) in a punctured disc around the origin
and yk(t) near infinity. We call the functions xk

j (s; t) the associated fundamental
functions and we will work out the expansion of yj(t) in terms of xk

j (s; t):

xk
j (s; t) ∼

{
tρj(|t| → 0),

eλkttµk(|t| → ∞).

Now we consider a first order non homogeneous differential equation:

t
dxk

j (s; t)

dt
= (λkt+ µk − s)xk

j (s; t) + tρjλkg
k
j (s− 1) (s = 0, 1, 2, . . .)

which has the particular solutions:

xk
j (s; t) = tρj

∞∑
m=0

gk
j (m+ s)tm.
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By quadrature, from the first order non homogeneous differential equation, we obtain
the integral representation:

xk
j (s; t) = λkg

k
j (s− 1)tρj

∫ 1

0

eλkt(1−τ)τ s+ρj−µk−1dτ.

We remark that the integral is well-defined for all integers s satisfying s+ ρ−µ > 0,
and if ρ− µ /∈ Z, it can be regularized by analytic continuation for all integers s.

It is known that asymptotic behavior of x(s; t) is

xk
j (s; t) ∼ e2πi(ρj−µk)`eλkttµk−s + tρj{gk

j (s− 1)t−1 + gk
j (s− 2)t−2 + · · · }

as |t| → ∞ in | arg(λkt) − 2π`| < 3π/2, where ` is an integer. This concludes our
introduction of the associated fundamental functions xk

j (s; t)(k, j = 1, 2, . . . , n), and
our analysis of the asymptotic behavior of xk

j (s; t)(k, j = 1, 2, . . . , n).
Next, we shall define additional functions:

fk
j (m) =

∞∑
m=0

hk(s)gk
j (m+ s) (k = 1, 2, . . . , n).

We can show that fk
j (m)(k = 1, 2, . . . , n) satisfies the same reccurances which Gj(m)

satisfies, but the proof is omitted. From these facts, we can analyze the asymptotic
expansion of yj(t):

yj(t) = tρj

∞∑
m=0

Gj(m)tm

=
∞∑

m=0

(
n∑

k=1

W k
j f

k
j (m)

)
tm+ρj

=
n∑

k=1

W k
j

∞∑
s=0

∞∑
m=0

hk(s)gk
j (m+ s)tm+ρj

=
n∑

k=1

W k
j

∞∑
s=0

hk(s)xk
j (s; t).

The asymptotic behavior of the associated fundamental function xk
j (s; t) is the same

as that of yk(t). We will see more detail in the next section, where we work out an
example.
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3.3 Example

In this section, we apply the Okubo-Kohno method to describe the global behavior
of solutions of Airy’s differential equation:

t2y′′ +
1

3
ty′ − t2y = 0. (3.4)

This equation has one regular singular point at the origin, and one irregular singular
point at infinity in the complex projective line. In [K2], Kohno computes some entries
of the central connection matrix of (3.4). Here, we shall compute the remaining
entries, and furthermore, we shall determine the Stokes matrix.

To begin, we find a fundamental set of solutions of (3.4) in a punctured disc
around the regular singular point t = 0. These solutions have the form

y(t) = tρ
∞∑

m=0

G(m)tm (G(0) 6= 0). (3.5)

By substituting this expansion into (3.4), we obtain the linear difference equation{
(m+ ρ)(m+ ρ− 2

3
)G(m) = G(m− 2),

G(0) 6= 0, G(r) = 0 (r < 0).
(3.6)

In order for negative terms to vanish, it is necessary that ρ is equal to 0 or 2/3, and
that G(1) = 0. By induction, G(2m + 1) = 0 for all m ≥ 0. If we set G(0) = 1, we
obtain  G(2m) =

Γ(ρ
2
)Γ(ρ

2
+ 2

3
)

4mΓ(m+ ρ
2

+ 1)Γ(m+ ρ
2

+ 2
3
)
,

G(2m+ 1) = 0.

(3.7)

Consequently, the two values of ρ yield a fundamental set of solutions in a punctured
disc around the regular singular point t = 0 as follows:

y1(t) =
∞∑

m=0

Γ(2
3
)

Γ(m+ 1)Γ(m+ 2
3
)

(
t

2

)2m

,

y2(t) =
∞∑

m=0

22/3Γ(4
3
)

Γ(m+ 1)Γ(m+ 4
3
)

(
t

2

)2m+2/3

.

(3.8)

By the asymptotic properties of Γ, the first series has infinite radius of convergence,
and the second series is t2/3 times a series with infinite radius of convergence.
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We now consider solutions of (3.4) near t = ∞. Because the singularity is irregu-
lar, the solutions do not have the convergent expansions of the form (3.5). However,
there are formal power series solutions of the form

y(t) = eλttµ
∞∑

s=0

h(s)t−s (h(0) 6= 0). (3.9)

In order to seek the value of the characteristic constant λ and the characteristic
exponent µ, we follow the method in the paper [K1]. We define y(κ)(t) (κ = 0, 1, 2)
to be the κth derivative of y(t) with respect to t:

y(κ)(t) =
dκy(t)

dtκ
,

and we shall write the coefficients of the formal series hκ(s), that is

y(κ)(t) = eλ t tµ
∞∑

s=0

hκ(s) t−s, (3.10)

with h0(s) ≡ h(s).
We substitute (3.10) into (3.4) to find that our initial terms satisfy:

(λ2 − 1)h(0) = 0, (3.11)

(λ2 − 1)h(1) + 2λ

(
µ+

1

6

)
h(0) = 0, (3.12)

and the remaining terms satisfy the following recursion for s ≥ 0:

(λ2 − 1)h(s+ 2) + 2λ

(
−s− 1 + µ+

1

6

)
h(s+ 1) + (s− µ)

(
s− µ+

2

3

)
h(s) = 0.

Because we assumed h(0) 6= 0, we see from the initial term equations that λ must
be equal to ±1 and µ must be equal to −1

6
. Then, from the recursion, we obtain the

linear difference equation in s:

h(s) =
(s− µ− 1)(s− µ− 1

3
)

2λs
h(s− 1).

Setting h(0) = 1, we obtain the explicit formula:

h(s) =

(
1

2λ

)s Γ(s− µ)Γ(s− µ+ 2
3
)

Γ(s+ 1)Γ(−µ)Γ(−µ+ 2
3
)
.
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Using the two possible values of λ, we obtain two formal solutions near t = ∞ :
y1(t) = ett−

1
6

∞∑
s=0

Γ(s+ 1
6
)Γ(s+ 5

6
)

Γ(s+ 1)Γ(1
6
)Γ(5

6
)

(
1

2λ

)s

(λ = 1),

y2(t) = e−tt−
1
6

∞∑
s=0

Γ(s+ 1
6
)Γ(s+ 5

6
)

Γ(s+ 1)Γ(1
6
)Γ(5

6
)

(
− 1

2λ

)s

(λ = −1).

(3.13)

It is straightforward to see that these formal solutions diverge wildly, but they
are useful because they are in fact asymptotic expansions of holomorphic solutions
in sectors near infinity.

We shall now apply the Okubo-Kohno method.
Suppose that we are given a convergent power series solution of the form (3.5) near

t = 0, and suppose we have an additional expansion as a combination of holomorphic
functions {x(s; t) : s = 0, 1, . . .} as follows:

y(t) =
∞∑

s=0

h(s)x(s; t).

The solution y(t) behaves near infinity like

y(t) ∼ Teλttµ
{

1 +O

(
1

t

)}
(|t| → ∞),

where T is a Stokes multiplier. If our functions {x(s; t) : s = 0, 1, . . .} admit the
following asymptotic behavior{

x(s; t) ∼ tρ (|t| → 0),

x(s; t) ∼ eλttµ−s (|t| → ∞),
(3.14)

we can reasonably expect them to combine to form y, and satisfy convenient unique-
ness properties.

We will construct functions {x(s; t) : s = 0, 1, . . .} of the form :

x(s; t) = tρ
∞∑

m=0

g(m+ s)tm (3.15)

that satisfy the first order non-homogeneous linear differential equations

tx′(s; t) = (λt+ µ− s)x(s; t) + λg(s− 1)tρ (s = 0, 1, . . .), (3.16)
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and the asymptotics given in (3.14). We will see that x(s; t) is uniquely defined by
these properties once we have chosen g(0).

By substituting (3.15) into (3.16) and isolating powers of t, we see that the
coefficient g(m+ s) satisfies the first order linear difference equation

(m+ s+ ρ− µ)g(m+ s) = λg(m+ s− 1). (3.17)

This linear difference equation therefore uniquely determines x(s; t) once the initial
term is specified. We set:

g(m+ s) =
λm+s+ρ−µ

Γ(m+ s+ ρ− µ+ 1)
(3.18)

as a particular solution of (3.17). By quadrature, the non-homogeneous equation
(3.16) has solution given by the integral representation

x(s; t) = λg(s− 1)tρ
∫ 1

0

exp{λt(1 − τ)}τ s+ρ−µ−1dτ. (3.19)

We therefore have our sequence of associated fundamental functions {x(s; t) : s =
0, 1, . . .}, and they have the expected asymptotic behavior in sectors. Indeed, for
arbitrarily small positive ε, and any integer `, we have:

x(s; t) ∼ e2πi(ρ−µ)`eλttµ−s + tρ{g(s− 1)t−1 + g(s− 2)t−2 + · · · } (3.20)

as t −→ ∞ in | arg(λt) − 2π`| ≤ 3π/2 − ε.
We return to our example, where our solutions were determined by the values of

ρ ∈ {0, 2/3} and λ = ±1. Here, we consider the cases where ρ = 2/3, λ = ±1 and
µ = −1

6
. Then, the associated fundamental functions are defined by(

m+ s+
5

6

)
gk
2(m+ s) = λkg

k
2(m+ s− 1) (k = 1, 2;λ1 = 1, λ2 = eπi), (3.21)

and using the explicit formula for gk
2(m) from (3.18), we have

xk
2(s; t) =

∞∑
m=0

gk
2(m+ s)tm+ 2

3 ,

=
∞∑

m=0

(λk)
m+s+ 5

6

Γ(m+ s+ 11
6
)
tm (k = 1, 2).

(3.22)
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If we write hk(s)(k = 1, 2) to denote the coefficients in the formal power series
expansion (3.13) of yk(t), we may define the functions fk

2 (m)(k = 1, 2) by

fk
2 (m) =

∞∑
s=0

hk(s)gk
2(m+ s) (k = 1, 2). (3.23)

Because our explicit formula for gk
2(m) from (3.18) yields a holomorphic function on

the right half m-plane, the same is true for fk
2 (m). Indeed, we have the asymptotic

relations:

fk
2 (m) ∼ (λk)

m+ 5
6

Γ(m+ 11
6
)

{
1 +O

(
1

m

)}
. (3.24)

Here the proof is omitted.

We claim that fk
2 (m)(k = 1, 2) satisfies the same recurrence that defines G2(m),

but we omit the proof. Therefore, G2(m) can be expressed as a linear combination
of the fk

2 (m)(k = 1, 2) as follows :

G2(m) = W 1
2 f

1
1 (m) +W 2

2 f
2
2 (m), (3.25)

where the W k
2 (k = 1, 2) are, in general, periodic functions of m with period 1,

however, they may be considered to be constants for integral values of m. From this,
we consequently obtain the expansion of y2(t) in terms of sequences of associated
fundamental functions {xk

2(s; t) : s = 0, 1, . . . (k = 1, 2)} :

y2(t) =
∞∑

m=0

G2(m)tm+ 2
3

= W 1
2

∞∑
m=0

f 1
2 (m)tm+ 2

3 +W 2
2

∞∑
m=0

f 2
2 (m)tm+ 2

3

= W 1
2

∞∑
s=0

h1(s)

(
∞∑

m=0

g1
2(m+ s)tm+ 2

3

)
+W 2

2

∞∑
s=0

h2(s)

(
∞∑

m=0

g2
2(m+ s)tm+ 2

3

)

= W 1
2

∞∑
s=0

h1(s)x1
2(s; t) +W 2

2

∞∑
s=0

h2(s)x2
2(s; t). (3.26)
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We conclude that for each nonnegative integer m, fk
2 (m)(k = 1, 2) is the coefficient

attached to tm+ 2
3 , when y2(t) is expanded as a power series. We may now use the

asymptotic behavior (3.20) of the associated fundamental functions to analyze the
asymptotic behavior of the original solutions. We derive from (3.26)

y2(t) ∼ W 1
2

∞∑
m=0

h1(s)

{
ett−

1
6
−s +

∞∑
r=0

g1
2(s− r)t−r

}

+W 2
2

∞∑
s=0

hs(s)

{
e−tt−

1
6
−s +

∞∑
r=0

g2
2(s− r)t−r

}

∼ W 1
2 y

1(t) +W 2
2 y

2(t)

+
∞∑

r=0

(
W 1

2 f
1
2 (−r) +W 2

2 f
2
2 (−r)

)
t−r

∼ W 1
2 y

1(t) +W 2
2 y

2(t) +
∞∑

r=0

G2(−r)t−r

∼ W 1
2 y

1(t) +W 2
2 y

2(t)

as t −→ ∞ in the sector

Ŝ =
2∩

k=1

{
| arg(λkt)| <

3

2
π

}
=

{
−3

2
π < arg t <

π

2

}
.

Now that we have all of the necessary asymptotic information in hand, we can de-
termine W k

2 (k = 1, 2) by combining the fact that Gj(m)(j = 1, 2) vanishes on odd
inputs with our knowledge of the asymptotic behavior on even inputs. Explicitly, we
combine (3.13) and (3.22) to get

f 2
2 (m) = eπi(m+ 5

6
)f 1

2 (m)
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for all m ≥ 0, and from that, we apply

0 = G2(2m+ 1) = W 1
2 f

1
2 (2m+ 1) + f 2

2 (2m+ 1)

= (W 1
2 −W 2

2 e
5
6
πi)f 1

2 (2m+ 1)

to deduce one relation:
W 1

2 = W 2
2 e

5
6
πi. (3.27)

For the second relation, we consider the formula:

G2(2m) = W 1
2 f

1
2 (2m) +W 2

2 f
2
2 (2m).

From (3.7) and using the asymptotic behavior of fk
2 (2m) given in (3.24), we may

divide by f 1
2 (2m) to find that for sufficiently large m,

W 1
2 +W 2

2 e
5
6
πi

=
Γ(4

3
)Γ(2m+ 11

6
)

4mΓ(m+ 1)Γ(m+ 4
3
)

{
1 +O

(
1

m

)}

=
Γ(4

3
)22m+ 11

6 Γ(m+ 11
12

)Γ(m+ 17
12

)
√

2π4mΓ(m+ 1)Γ(m+ 4
3
)

{
1 +O

(
1

m

)}

=
Γ(4

3
)2

4
3

√
2π

{
1 +O

(
1

m

)}
.

However, W 1
2 +W 2

2 e
5
6
πi is constant, so the O(1/m) terms vanish:

W 1
2 +W 2

2 e
5
6
i =

2
4
3 Γ(4

3
)

√
2π

. (3.28)

By combining this with (3.27), we find that the connection coefficients W k
2 (k = 1, 2)

are:

W 1
2 = W 2

2 e
5
6
πi =

2
7
6

√
3

Γ(5
6
)

Γ(1
3
)
.
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Therefore, we obtain the connection formula:

y2(t) ∼



W 2
2 y

2(t) (S1 : −3
2
π < arg t < −π

2
),

W 1
2 y

1(t) (S2 : −π
2
< arg t < π

2
),

W 2
2 e

5
3
πiy2(t) (S3 : π

2
< arg t < 3

2
π).

For y1(t), in [K2], Kohno employed a similar calculation to find the following con-
nection formula:

y1(t) ∼



W 2
1 y

2(t) (S1 : −3
2
π < arg t < −π

2
),

W 1
1 y

1(t) (S2 : −π
2
< arg t < π

2
),

W 2
1 e

π
3
iy2(t) (S3 : π

2
< arg t < 3

2
π),

where W 1
1 = W 2

1 e
π
6
i =

(
1
2

) 1
6 Γ( 1

3
)

Γ( 1
6
)
. Even without the exact value of W 1

1 and W 2
1 , we

can compute the Stokes coefficients. For example, the analytic continuation of YS2

from S2 to S3:

T (S2 : S3) = W−1(S2)W (S3) =

 0 i

i 1

 ,

with

YS2 =

(
y1

S2

y2
S2

)
,W (S1) = W (S2) =

 W 1
1 W 2

1

W 1
2 W 2

2

 =

 W 2
1 e

π
6
i W 2

1

W 2
2 e

5
6
πi W 2

2

 ,

W (S3) =

 W 1
1 e

π
3
i W 2

1 e
π
3
i

W 1
2 e

5
3
πi W 2

2 e
5
3
πi

 =

 W 2
1 e

π
2
i W 2

1 e
π
3
i

W 2
2 e

π
2
i W 2

2 e
5
3
πi

 .
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4 Numerical Computation of Stokes Multipliers

In Section 4.1, we introduce some notation. In Section 4.2, we introduce the Sibuya-
Malgrange Isomorphism. In Section 4.3, we shall give formulas for Stokes multipliers
for three cases. In Section 4.4, we shall show applications of calculations of Stokes
multipliers for three cases. In the appendix, we provide tools for understanding the
proof of the Sibuya-Malgrange Isomorphism theorem.

4.1 Notation

Definition 4.1. (Sector) We define sectors S(α, β,R) = {t : α < arg t < β, 0 <
|t| < R}. If R = +∞, then we write S(α, β).

Definition 4.2. (Asymptotic expansion) Let S be an open sector of the complex

plane whose vertex is at the origin. Let f̂(t) =
∑

m≥0 f̂mt
m ∈ C[[t]] be a formal power

series. Let f be an analytic function on the sector S. We say that f is asymptotic
to f̂(t) =

∑
m≥0 f̂mt

m on the sector S if for every closed subsector S ′ of S ∪ {0} and
every positive integer N ∈ N∗, there exists a positive constant CS′,N such that

∀t ∈ S ′, |f(t) −
N−1∑
m=0

f̂mt
m| ≤ CS′,N |t|N .

We denote it by
f(t) ∼ f̂(t) (t ∈ S).

Definition 4.3. (types of asymptotic expansion)
We describe three notions of asymptotic expansion of a holomorphic function, in

increasing complexity. Let f be a holomorphic function on a sector S.

1. We write f(t) ∼ f̂(t) (t ∈ S) if f is asymptotic to the formal series f̂ .

2. If ϕ(t) 6= 0 is holomorphic on S, and f/ϕ ∼ f̂ on S in the first sense, we write

f(t) ∼ ϕ(t)f̂(t) (t ∈ S).

3. If ϕ(t) 6= 0 and ψ(t) 6= 0 are holomorphic on S, and there exist f and g such
that {

f ∼ ϕ(t)f̂ ,

g ∼ ψ(t)ĝ,

then we write h(t) ∼ ϕ(t)f̂(t) + ψ(t)ĝ(t) (t ∈ S), where h(t) = f(t) + g(t).
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Definition 4.4. (Flat function) We say that an analytic function on S is flat at the
origin, if its asymptotic expansion at the origin is

0 + 0 t + 0 t2 + · · · .

We denote the space of the flat functions on S by Ā<0(S).

4.2 Sibuya-Malgrange Isomorphism

Definition 4.5. (Good covering) Let U := {I1, I2, · · · In} be a set of open intervals
in S1. U is a good covering of S1 if it satisfies the following conditions:

(1) α` < α`+1, (` = 1, 2, · · · , n) with αn+1 = α1 + 2 π,

(2) β` − α` < π, (` = 1, 2, · · · , n),

(3) I` ∩ I`+1 6= φ, (` = 1, 2, · · · , n) and I` ∩ Ik = φ otherwise if ` 6= {k ± 1, k}
with In+1 = I1.

Definition 4.6. We define the following presheaves on S1:

Ā: The presheaf that assigns to any sector S the space of holomorphic functions
on S with asymptotic expansion.

A: The sheaf associated to Ā.

Ā<0: The presheaf that assigns to any sector S the space of flat functions on
S.

A<0: The sheaf associated to Ā<0.

Now, we shall introduce the Cauchy-Heine’s integral and theorem.

Definition 4.7. (Cauchy-Heine’s integral) Let V = S(α, β + 2π,R) be a sector
that overlaps itself around 0. Let V̄ = S(α, β,R) denote its self intersection. Let
γ =]0, t0] ⊂ V̄ be a straight line path and ϕ ∈ A<0(V̄ ) be a flat function on V̄ . We
call the function

f(t) =
1

2πi

∫
γ

ϕ(ξ)

ξ − t
dξ

the Cauchy-Heine integral associated with ϕ and γ.
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The function f is well-defined and analytic on V \γ and it can be analytically
continued to the domain U = V ∩ {|t| < |t0|}. The analytic continuation is given by
integrating the same integrand over paths that are homotopic to γ with endpoints
fixed. The difference between two Cauchy-Heine integrals associated to different
t0 ∈ V̄ is analytic on their common domain of the definition.

Theorem 4.8. (Cauchy-Heine theorem) The Cauchy-Heine integral

f(t) =
1

2πi

∫
γ

ϕ(ξ)

ξ − t
dξ

satisfies the following properties:

• f ∈ Ā(V ),

• Its Taylor series at the origin reads

TV f(t) =
∑
n≥ 0

an t
n, with an =

1

2 π i

∫
γ

ϕ(ξ)

ξn+1
dξ,

• The variation var(f(t)) = f(t)−f(te2πi) equals ϕ(t) for all t ∈ Ū = V̄ ∩{|t| <
|t0|}.

Theorem 4.9. (Borel-Ritt, see [W, section 9]) For any sector S ⊂ C̃∗, where C̃∗ is
the universal cover of C∗, the following map defined by Taylor expansion is surjective:

Ā(S) −→ C[[t]].

This theorem gives the short exact sequence of the sheaves:

0 −→ A<0 ↪→ A −→ C[[t]] −→ 0. (4.1)

Therefore, by taking cohomology, we obtain the exact sequence:

0 −→ Γ(S1,A) −−−→ Γ(S1,C[[t]]S1)

−−−→ H1(S1,A<0)
Φ−−−→ H1(S1,A) −→ 0.

(4.2)

Lemma 4.10. The map

H1(S1,A<0)
Φ−−−→ H1(S1,A)

is the 0-map.
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Proof. We consider the following piece of diagram (A.17):

C0(U ,A)yδ0

C1(U ,A<0)
a−−−→ C1(U ,A)y yb

H1(S1,A<0)
Φ−−−→ H1(S1,A),

(4.3)

where U is a good covering, Ck(U ,A) denotes the group of Čech k-cochains (k = 0, 1)
with coefficients in the sheaf A, and the other symbols are defined similarly. For each
j (j = 1, 2, . . . , n), let uj ∈ Γ(Ij ∩ Ij+1,A<0). It is enough that for any cohomology
class [u] ∈ H1(S1,A<0), any cocycle ⊕uj ∈ C1(U ,A<0) that represents [u] (where we
may need to refine U depending on [u]) is sent to zero in H1(S1,A) by Φ.

By using the Cauchy-Heine Theorem, we obtain sections wj of A on each sector
that overlaps itself at Ij ∩ Ij+1. Concretely,

wj(t) =
1

2πi

∫
γ

uj(ξ)

ξ − t
dξ,

where γ ⊂ Ij ∩ Ij+1. Let

vj :=
n∑

i=1

wi|Ij
+ h(t) ∈ Γ(Ij,A),

with h(t) ∈ C{t}. Then, ⊕vj ∈ C0(U ,A). Therefore b(δ0(⊕vj)) = 0 in H1(S1,A).
On the other hand, we can prove the variation ⊕var(wj) is equal to δ0(⊕vj), so
b(a(⊕uj)) = 0 . See Appendix A.2 for the proof.

By the commutativity of (4.3), we conclude Φ([⊕uj]) = 0.

By Lemma 4.10, we obtain the short exact sequence:

0 −→ Γ(S1,A) −−−→ Γ(S1,C[[t]]S1) −−−→ H1(S1,A<0) −→ 0. (4.4)

We remark that Γ(S1,A) ' C{t} and Γ(S1,C[[t]]S1) ' C[[t]]. The short exact
sequence (4.4) implies the next theorem.

Theorem 4.11. (Sibuya-Malgrange Isomorphism, see [S], [M])
We call the following isomorphism Ψ the Sibuya-Malgrange Isomorphism:

C[[t]]/C{t} Ψ−−−→ H1(S1,A<0).
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4.3 Formula for Stokes multipliers

We consider the differential equation:

tr+1dX

dt
= A(t)X, t ∈ C, r ≥ 1. (4.5)

Assume X(t) is an n× n matrix function, and A(t) is an n× n matrix whose entries
are polynomials in t. Since r ≥ 1, t = 0 is an irregular singular point. The equation
has a formal solution

X̂(t) = F̂ (t)tLeQ(1/t),

where

1. F̂ (t) ∈Mn(C[[t]]) has expansion
∑∞

m=0 F (m)tm with F (0) = I,

2. L is a constant matrix in the Jordan form,

3. Q(1/t) = diag(q1(1/t), . . . , qn(1/t)), where qj(1/t) =
∑r

k=1
σj,k

tk
.

We define sectors Sj(αj, βj) to be where we have fundamental solutions:

Xj(t) = Fj(t)t
LeQ(1/t)

that are asymptotic to the formal solution. On Sj ∩ Sj+1, we have the relation:

Xj(t) = Xj+1(t)Cj.

Because of Fj(t) ∼ F̂ (t) on Sj(j = 1, 2, . . . ,m), diag(Cj) = I, then we can separate
Cj to Cj = I + C ′

j. Then, substituting the fundamental solutions into the above
formula we obtain on Sj ∩ Sj+1:

Fj+1 − Fj = Fjt
LeQ(1/t)C ′

je
−Q(1/t)t−L. (4.6)

We shall call C ′
j the Stokes matrix, and entries of C ′

j the Stokes multipliers.
We shall define the Stokes direction and the anti-Stokes direction for (4.6).

Definition 4.12. To simplify, we consider the case:

qj(1/t) − q`(1/t) =
σj,`

tν
(j, ` = 1, 2, . . . , r),

where each σj,` is different. The function exp(qj(1/t) − q`(1/t)) has ν decreasing
sectors. All sectors have an argument π

ν
. These are separated by 2 ν open rays. We

call these rays Stokes directions. And we call the bisectors of the Stokes directions
anti-Stokes directions.
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We shall write here a formula for the Stokes direction θ:

σj, `

|t|ν ei ν θ
∈ iR.

In (4.6), the sums Fj and Fj+1 are asymptotic to F̂ near the anti-Stokes direction
arg t = αj for Fj+1 − Fj. Since {Fj+1 − Fj}j is a 1−cocycle, then we obtain that
[Fj+1 − Fj] ∈ H1(S1,A<0).

Then, by the Cauchy-Heine’s theorem and the Sibuya-Malgrange Isomorphism,
we obtain the following formula:

F̂ (k) =
m∑

j=1

1

2πi

∫
γj

Fj+1 − Fj

ξk+1
dξ,

with F̂ (t) =
∑∞

k=0 F̂ (k)tk.
We shall show the formulas for three examples. We consider a formal series;

X(x) = F̂ (x)xL exp(Q(1/x)),

where L is a Jordan matrix, Q(1/x) is a diagonal matrix whose entries are polyno-
mials in 1/x:

Q(1/x) := diag(q1(1/x), · · · , q1(1/x), q2(1/x), · · · , q2(1/x)),

and we define a matrix-valued formal series:

F̂ = I +
∞∑

m =1

Fm x
m,

F̂ =
(
Ĝ Ĥ

)
=

 Ĝn1 Ĥn1, n2

Ĝn2, n1 Ĥn2

 ,

and we let Fα denote a matrix-valued function whose asymptotic expansion in the
anti-Stokes direction α is F̂ ;

Fα = (Gα Hα) =

 Gαn1
Hαn1, n2

Gαn2, n1
Hαn2

 .
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4.3.1 Case of 2 diagonal matrices

We consider the following block-diagonal matrices:
L = d1 In1 ⊕ d2 In2 , d1, d2 ∈ R,

Q(1/x) = 0n1 ⊕
(
− 1

x

)
In2 ,

where ni (i = 1, 2) are the dimensions of the matrix, the anti-Stokes direction is
θ = 0, and the Stokes matrix is following:

I + C0 = I +

 0n1 0n1×n2

Cn2, n1 0n2

 ,

where Cn2, n1 is an n2 × n1 matrix and 0n1×n2 is an n1 × n2 zero matrix.

By the Sibuya-Malgrange Isomorphism we obtain the next formula:

Ĝn2, n1 =
∞∑

m =0

(
1

2π i

∫ ∞

0

Ĥ0−n2
(ξ) ξd2 − d1 −m− 1 e−

1
ξ d ξ

)
Cn2, n1 x

m

=
∞∑

m =0

1

2π i
Γ(m + d1 − d2) (1 + O(m− 1))Cn2, n1 x

m.

Comparing the coefficients of xm, we obtain

Cn2, n1 = 2 π i
Ĝn2, n1(m)

Γ(m + d1 − d2)
(1 + O(m− 1))

= 2 π imd2 − d1
Ĝn2, n1(m)

Γ(m)
(1 + O(m− 1)),

Next we consider the Stokes matrix of the direction θ = π;

I + Cπ = I +

 0n1 Cn1, n2

0n2×n1 0n2

 ,

where Cn1, n2 is a (n1 × n2)−matrix, and 0n2×n1 is a (n2 × n1)− zero matrix. By

the Sibuya-Malgrange Isomorphism, we obtain Ĥn2, n1 :

Ĥn2, n1 =
∞∑

m =0

(
1

2 π i

∫ ∞ eπ i

0

Ĝπ−n1
(ξ) ξd1 − d2 e

1
ξ

1

ξm +1
d ξ

)
Cn1, n2 x

m,
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and the Stokes matrix;

Cπ =
1

2 π i
(− 1)d1 − d2 −m Ĥn1, n2(m)

Γ(m − d1 + d2)
(1 + O(m− 1))

=
1

2 π i
(− 1)d1 − d2 −mmd2 − d1

Ĥn1, n2(m)

Γ(m)
(1 + O(m− 1)).

4.3.2 Case of 1 diagonal and 1 Jordan matrix

We again consider a pair of block-diagonal matrices: L = d1 In1 ⊕ Dn2 , d1 ∈ R,

Q(1/x) = 0n1 ⊕ (− 1

x
) In2 ,

whereDN2 := d2 In2 +Nn2 andNn2 are nilpotent matrices. By the Sibuya-Malgrange
Isomorphism we obtain:

Ĝn2, n1 mod C{x} =
∞∑

m=0

(
1

2πi

∫ ∞

0

Ĥ0−n2
(ξ)ξd2−d1−m−1e−

1
ξ ξNn2dξ

)
Cn2,n1x

m,

with

xNn2 = I +
Nn2

1 !
log x+

N2
n2

2 !
(log x)2 + · · · .

We note the following identities concerning derivatives of the Gamma function:

Γ(n)(m) =

∫ ∞

0

e−
1
ξ

1

ξm +1

(
log

1

ξ

)n

d ξ,

Γ(n)(m + d) = md Γ(n)(m) (1 + O(m− 1)),

Γ(n)(m) = (logm)nΓ(m) (1 + O( 1
m log m

)).

Ĝn2, n1 mod C{x} =
∞∑

m =0

1

2π i
md1 − d2 Γ(m) (1 + O(m− 1))m−Nn2 Cn2, n1 x

m

Comparing the coefficient of xm, we obtain the Stokes matrix for the anti-Stokes
direction θ = 0

Cn2, n1 = 2 π imD2
Ĝn2, n1(m)

Γ(m)
m− d1 (1 + O(m− 1)),
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By the Sibuya-Malgrange Isomorphism, we obtain the formula for the anti-Stokes
direction θ = π:

Ĥn1, n2 mod C{x}

=
∞∑

m =0

(
1

2 π i

∫ ∞ eπ i

0

Ĝ0−n2
(ξ) ξd1 − d2 −m− 1 e−

1
ξ ξ−Nn2 d ξ

)
Cn1, n2 x

m

=
∞∑

m =0

(
1

2π i
Γ(m + d2 − d1) (1 + O(m−1))mNn2 Cn2, n1 x

m

)
.

Then, we obtain the Stokes matrix for the anti-Stokes direction θ = π

Cn1, n2 = 2 π im−D2
Ĥn1, n2(m)

Γ(m)
md1 (1 + O(m− 1)).

4.3.3 Case of 2 Jordan matrices L = Dn1 ⊕ Dn2 ,

Q(1/x) = 0n1 ⊕ (− 1

x
) In2 ,

where DN1 := d1 In1 + Nn1 , DN2 := d2 In2 + Nn2 , d1, d2 ∈ R et Nni
(i = 1, 2)

are nilpotent matrices. By the Sibuya-Malgrange Isomorphism, we obtain

Ĝn2, n1 mod C{x}

=
∞∑

m =0

(
1

2 π i

∫ ∞

0

Ĥ0−n2
(ξ) ξd2 − d1 −m− 1 e−

1
ξ ξNn2 Cn2, n1 ξ

−Nn1 d ξ

)
xm

=
∞∑

m =0

1

2π i
Γ(m + d1 − d2) (1 + O(m− 1))m−Nn2 Cn2, n1 m

Nn1 xm.

Comparing of the coefficient of xm, we obtain the Stokes matrix for the anti-Stokes
direction θ = 0:

Cn2, n1 = 2 π imD2
Gn2, n1(m)

Γ(m)
m−D1 (1 + O(m− 1)).

4.4 Application

In this section we shall calculate the Stokes multipliers for an example.
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4.4.1 Example (dimension 2 and level 1)

We shall calculate the Stokes multipliers for the linear differential system:

t2
dX

dt
=

{(
0 −1
−1 0

)
−
(
α 0
0 α + µ

)
t

}
X, (4.7)

with X a (2 × 2)−matrix. The system (4.7) has an irregular singular point of
Poincaré rank 1 at t = 0. By a change of variables

X = QY, Q =

(
1 1
−1 1

)
,

we transform the constant matrix of (4.7) into a diagonal matrix. We obtain

t2
dY

dt
= A(t)Y

= (A0 + A1 t)Y

=

{(
1 0
0 −1

)
+

(
−α − 1

2
µ 1

2
µ

1
2
µ −α − 1

2
µ

)
t

}
Y. (4.8)

We apply a gauge transformation to the formal solution

Y = F̂ (t)Y1, F̂ (t) =
∞∑

m =0

F (m) tm =
∞∑

m =0

(
fm gm

hm km

)
, F (0) = I

to obtain a differential system having the diagonal matrix:

dY1

dt
= B(t)Y1 (4.9)

= (B0 + B1 t)Y1

=

{(
1 0
0 −1

)
+

(
b1 0
0 b2

)
t

}
Y1,

with
F̂ ′ = A(t) F̂ − F̂ B(t).
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By comparing coefficients, we find an equation as follows :

− (m− 1)F (m−1) = A0 F (m) +A1 F (m−1)−F (m−1)B1 −F (m)B0, (m ≥ 1).

Setting m = 1, we find B1

B1 =

 −α− 1
2
µ 0

0 −α− 1
2
µ

 , F1 =

 f1
1
4
µ

− 1
4
µ k1

 .

And we can obtain a recurrence as follows:
gm = (−1

8
µ2

m− 1
+ m−1

2
) gm− 1 (m ≥ 2),

g0 = 0, g1 = 1
4
µ,


hm = (1

8
µ2

m−1
− m−1

2
)hm−1 (m ≥ 2),

h0 = 0, h1 = −1
4
µ.

Then, we can find the formal solution for (4.9)

Y1 =

 t−α− 1
2

µ exp(−1
t
) 0

0 t−α− 1
2

µ exp(1
t
)

 .

Therefore, we will find the Stokes and anti-Stokes directions. We set

q1(1/t) = −1

t
, q2(1/t) =

1

t
.

Then, the anti-Stokes direction for q1(1/t) − q2(1/t) is α1 = 0, and the anti-Stokes
direction for q2(1/t) − q1(1/t) is α2 = π.

By examining the entry (1, 2), we find that Cα1 is given as follows:

pp (gm) =
Cα1

2 π i

∫ ∞

0

e−
2
ξ ξ−mdξ

ξ

=
Cα1

2 π i
2−mΓ(m)

⇔ Cα1 = pp(2m 1

Γ(m)
2π i gm).
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Similarly by examining the entry (2, 1), we calculate the Stokes multiplier Cα2 as
follows.

pp (hm) =
Cα2

2π i

∫ eπi ∞

0

e
2
ξ ξ−mdξ

ξ

=
Cα2

2π i
(−2)−mΓ(m)

⇔ Cα2 = pp((−2)m 1

Γ(m)
2π i hm).

We denote the principal part of this formula by pp(CH1, 2)(m). Then, the Stokes
matrix is:  1 Cα1

Cα2 1

 ≈

 1 2i

2i 1

 .

4.4.2 Two Jordan blocks of dimension 1 and 3

We consider the following system of differential equations;

x2X ′ = A(x)X =



0 0 0 0

x2 1 x 0

x2 0 1 x

x2 0 0 1


X.
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where X(x) is a matrix-valued function. It admits the formal fundamental solution

X̂(x) = F̂ (x) xL eQ(1/x) with

F̂ (x) = I +
∞∑

m=1

Fm x
m =

 1 0n1×n2

Ĝn2, n1 0n2

 ,

L =



0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0


, Q(1/x) = diag

(
0, − 1

x
, − 1

x
, − 1

x

)
,

where 0n1×n2 is a 1 × 3 matrix, Ĝn2, n1 is a 3 × 1 matrix, and n2 = 3. Note

xL eQ(1/x) =



1 0 0 0

0 e−
1
x e−

1
x log x 1

2
e−

1
x (log x)2

0 0 e−
1
x e−

1
x log x

0 0 0 e−
1
x


.

The system of differential equations admits two anti-Stokes directions: α = R±,
and the Stokes matrices are defined by

C0 =



0 0 0 0

c10 0 0 0

c20 0 0 0

c30 0 0 0


, Cπ =



0 c1π c2π c3π

0 0 0 0

0 0 0 0

0 0 0 0


= 0.
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By the Sibuya-Malgrange Isomorphism, we obtain a formula for the Stokes matrix
in the direction R+:

F̂ (x) mod C{x} =
∞∑

m=0

(
1

2π i

∫ ∞

0

Fπ(ξ) ξ−n− 1 e−
1
ξ C0 e

− 1
ξ ξ−L d ξ

)
xm.

We compare the m-th term of the (4, 1) entry:

f̂4(m) ≈ 1

2 π i

∫ ∞

0

ξ−n− 1 e−
1
ξ dξ c30

=
1

2π i
Γ (m) c30.

By the Sibuya-Malgrange theorem, the left hand side has an estimate of Gevrey
order 1. Therefore, we obtain the Stokes multiplier c03 by dividing both sides by the
Γ function.

Using

Γ(p)(m + d) = md Γ(p)(m)

(
1 + O

(
1

m

))
,

Γ(p)(m)

Γ(m)
= (log m)p

(
1 + O

(
1

m log m

))
,

we compare the coefficients of the (3, 1) and (2, 1) entries:

f̂3(m) ≈ 1

2 π i

∫ ∞

0

c20 + c30 log ξ

ξm +1
e−

1
ξ dξ

=
1

2π i

(
Γ (m) c20 − d

dm
Γ(m) c30

)

=
1

2π i
Γ(m)

{
c20 − log mc30

(
1 + O

(
1

m log m

))}
,
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and

f̂2(m) ≈ 1

2 π i

∫ ∞

0

c10 + c20 log ξ + c30 (log ξ)2

ξn +1
e−

1
ξ dξ

=
1

2 π i

(
Γ (m) c10 − d

dm
Γ(m) c20 +

(
d

dm

)2

Γ(m) c30

)

=
1

2 π i
Γ(m)

{
c10 − log mc20 + (logm)2 c30

}(
1 + O

(
1

m log m

))
.

We obtain the following formulas;

f̂2(m) =
1

2π i

{
c10 − c20 logm + c30

1

2
(logm)2

}
Γ(m)

(
1 + O

(
1

m logm

))
,

f̂3(m) =
1

2π i
(c20 − c30 logm) Γ(m)

(
1 + O

(
1

m logm

))
,

f̂4(m) =
1

2π i
c30 Γ(m).

Next we find recurrences which f̂j (j = 2, 3, 4) satisfy, by using the differential
equations. By the transformation equation, we obtain some initial terms;

F (2) =



0 0 0 0

− 1 0 0 0

− 1 0 0 0

− 1 0 0 0


, F (3) =



0 0 0 0

− 1 0 0 0

− 1 0 0 0

− 2 0 0 0


,

F (4) =



0 0 0 0

− 2 0 0 0

− 1 0 0 0

− 6 0 0 0


, F (5) =



0 0 0 0

− 7 0 0 0

2 0 0 0

− 24 0 0 0


,
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F (6) =



0 0 0 0

− 37 0 0 0

34 0 0 0

− 120 0 0 0


.

We obtain the recurrences of the first column of F̂ (x);

f2(m) = Γ(m)
(
− 3 + 3 γ − γ2

+ (2 − γ) Ψ(m) −
m−3∑
n=0

Ψ(n + 2)

n + 2

)
,

f3(m) = Γ(m) (γ − 2 + Ψ(m)),

f4(m) = −Γ(m),

where γ ∼ 0.577216 · · · is Euler’s constant, and Ψ(m) is the polygamma function.
Then, we can obtain the Stokes multipliers;

c10 = − 2 π i (γ2 − 3 γ + 3),

c20 = 2 π i (γ − 2),

c30 = − 2 π i.

We recall that the polygamma function is defined by;

Ψ(m)(x) =

(
d

dz

)m

Ψ(z) =

(
d

dz

)m +1

log Γ(z).

In particular,

Ψ(z) =
Γ′(z)

Γ(z)
.
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4.4.3 Two Jordan blocks of dimension 2

We consider the following system of differential equations;

x2X ′ = A(x)X =



0 x 0 0

0 0 0 0

0 0 1 + x
2

x

x2 0 0 1 + x
2


X,

where X is a matrix variable. It admits a formal fundamental solution: X̂(x) =

F̂ (x)xL eQ(1/x) with

F̂ (x) = I +
∞∑

m=1

Fm x
m =

 Ĝn1 Ĥ1, 2

Ĝn2, n1 Ĥn2

 ,

L = N1 ⊕ (
1

2
I2 +N2) =



0 1 0 0

0 0 0 0

0 0 1
2

1

0 0 0 1
2


,

Q(1/x) = diag

(
0, 0, − 1

x
, − 1

x

)
,

where N1, N2, are nilpotents of a dimension 2, and I2 is the unit matrix of dimension
2. Ĥn1, n2 is a (2 × 2)−matrix, Ĝn2, n1 is a (2 × 2)−matrix, and Ĥn2 , Ĝn1 have a
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dimension 2 with n1 = n2 = 2. Note that:

xL eQ(1/x) =



1 log x 0 0

0 1 0 0

0 0 x
1
2 e−

1
x x

1
2 e−

1
x log x

0 0 0 x
1
2 e−

1
x


.

The system of differential equations admits two anti-Stokes directions: R±, and
the Stokes matrices are defined by

C0 =



0 0 0 0

0 0 0 0

c10 c30 0 0

c20 c40 0 0


, Cπ =



0 0 c1π c3π

0 0 c2π c4π

0 0 0 0

0 0 0 0


= 0.

By the Sibuya-Malgrange Isomorphism, we obtain the following formula for the
Stokes matrix in the direction R+:

Ĝn2, n1(x) mod C{x} =
∞∑

m=0

(
1

2π i

∫ ∞

0

Ĥπ−n2
(ξ)

1

ξm+1
ξ

1
2 e−N2Cn2,n1 e

N1dξ

)
xm,

where we set

Cn2, n1 =

 c10 c30

c20 c40

 ,

and we set

Ĝn2, n1(x) =

 f̂3(x) ĝ3(x)

f̂4(x) ĝ3(x)

 .

63



We obtain the recurrences of the first column of F̂ (x):

f̂3(m) = − 2√
π

Γ

(
m − 1

2

) {
2 − γ − 2 log 2 − ψ

(
m − 1

2

)}
,

f̂4(m) = − 2√
π

Γ

(
m − 1

2

)
,

ĝ4(m) =
2√
π

Γ

(
m − 1

2

) {
2 − γ − 2 log 2 − ψ

(
m − 1

2

)}
,

ĝ3(m) =
1

32(m− 4)(m− 3)3{
(16(m− 4))(6m4 − 77m3 + 409m2 − 1086m+ 1200)g3(m− 1)

+ (−637056 + 820944m− 22672m4 − 444912m2 + 131376m3

+ 2208m5 − 96m6)g3(m− 2)

+ (−2719776 + 3857328m− 150696m4 − 2322640m2 + 768280m3

+ 17568m5 − 1136m6 + 32m7)g3(m− 3)

+ 2(64m5 − 1388m4 + 12092m3 − 53037m2 + 117531m− 105732)

(m− 5)2g3(m− 4)

+ (m− 5)(2m− 11)3(m− 6)3 g3(m− 5)
}
,

where γ ∼ 0.577216 · · · is Euler’s constant γ and ψ(m) is the polygamma function.
By the Stokes matrix formula, we can obtain the Stokes multipliers:

Cn1, n2 ≈

 − 4
√
π i (2 − 2 log 2 − γ) −11.55438125 i

− 4
√
π i 4

√
π i (2 − 2 log 2 − γ)

 .

A Appendix

A.1 Proof of the Poincaré-Perron theorem

We shall consider the following difference equation:

y(s+ n) + an−1(s)y(s+ n− 1) + · · · + a0(s)y(s) = 0 (A.1)
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where we assume that s is a non negative integer,

a0(s) 6= 0,

and the coefficients aj(s) admit the behavior

lim
s→∞

aj(s) = aj (j = 0, 1, . . . , n− 1).

The algebraic equation

f(ρ) = ρn + an−1ρ
n−1 + · · · + a0 = 0 (A.2)

is called the characteristic equation of (A.1), whose roots are denoted by ρj(j =
1, 2, . . . , n).

Proposition A.1. (H.Poincaré 1885) If the absolute values of the roots of the char-
acteristic equation (A.2) are mutually distinct, then for every nontrivial solution y(s)
of (A.1), there holds

lim
s→∞

y(s+ 1)

y(s)
= ρj,

where ρj is one of the roots of (A.2).

Proof. We shall set

xj(s) = y(s+ j − 1) (j = 1, 2, . . . , n). (A.3)

Then, we can rewrite (A.1) as an equivalent system of difference equations
xj(s+ 1) = xj+1(s),

xn(s+ 1) = −
n∑

k=1

ak−1(s)xk(s).

Here, we set
X(s) = t(x1(s), x2(s), . . . , xn(s)),

where X(s) = t(x1(s), x2(s), . . . , xn(s)) means the transpose of the indicated row
vector. Then, we can rewrite (A.1) as

X(s+ 1) = A(s)X(s), (A.4)
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where A(s) = (aj,k(s)) is the following n× n matrix:

A(s) = (aj,k(s)) =


0 1

0 1
. . . . . .

0 1
−a0(s) −a1(s) · · · · · · −an−1(s)

 .

Concretely, aj,k(s) (j, k = 1, 2, . . . , n) is the (j, k)-element of A(s) with an,k =
−ak−1 (k = 1, 2, . . . , n), aj,j+1 = 1 (j = 1, 2, . . . , n− 1), and aj,k = 0 (k 6= j + 1, j =
1, 2, . . . , n− 1, k = 1, 2, . . . , n). By our assumption on aj(s), we have

lim
s→∞

aj,k(s) = aj,k (j, k = 1, 2, . . . , n).

We let A be the n× n (aj,k) matrix. For simplicity, we assume that detA(s) 6= 0 for
s ≥ 0. A and A(s) are companion matrix, then the eigenvalues of A and A(s) are
roots of the characteristic equation:

ρn + an−1ρ
n−1 + · · · + a0 = 0,

and
ρn + an−1(s)ρ

n−1 + · · · + a0(s) = 0.

We set ρj(s) to be the eigenvalue of A(s) with jth largest absolute value, where
we choose an arbitrary ordering for those cases where eigenvalues have the same
absolute value. This choice introduces no ambiguity for large s, because eigenvalues
depend continuously on matrix entries.

Now, we assume that the eigenvalues ρj(j = 1, 2, . . . , n) of A are mutually dis-
tinct. Then, for sufficiently large s ≥ s1, the eigenvalues ρj(s)(j = 1, 2, . . . , n) of
A(s) are also mutually distinct and

lim
s→∞

ρj(s) = ρj (j = 1, 2, . . . , n).

By our assumption on ρj, we may diagonalize A and A(s):

Ω(s) = C(s)A(s)C−1(s),

Ω = CAC−1,

where

Ω(s) = diag(ρ1(s), ρ2(s), . . . , ρn(s)),

Ω = diag(ρ1, ρ2, . . . , ρn),
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and

lim
s→∞

Ω(s) = Ω, (A.5a)

lim
s→∞

C(s) = C, (A.5b)

lim
s→∞

C−1(s) = C−1.

We shall consider the linear transform:

U(s) = C(s)X(s). (A.6)

We substitute X(s+ 1) = A(s)X(s) into (A.6), then we obtain the following:

U(s+ 1) = C(s+ 1)X(s+ 1)

= C(s+ 1)A(s)X(s)

= C(s)A(s)X(s) − (C(s+ 1) − C(s))A(s)X(s)

= ΩU(s) +
{
Ω(s) − Ω + (C(s+ 1) − C(s))A(s)C−1

}
U(s).

Here, we set
E(s) = Ω(s) − Ω + (C(s+ 1) − C(s))A(s)C−1,

where ej,k(s) (j, k = 1, 2, . . . , n) is the (j, k)-element of E(s). Then, we have

U(s+ 1) = (Ω + E(s))U(s). (A.7)

From (A.5a) and (A.5b), we can see that

lim
s→∞

E(s) = 0.

Here, we set
U(s) = t(u1(s), u2(s), . . . , un(s)),

where U(s) = t(u1(s), u2(s), . . . , un(s)) means the transpose of the indicated row
vector. We can write the j-th element of (A.7) following:

uj(s+ 1) = ρjuj(s) +
n∑

i=1

ej,i(s)ui(s) (j = 1, 2, . . . , n), (A.8)

with
lim
s→∞

ej,i(s) = 0 (j, i = 1, 2, . . . , n). (A.9)
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Now, we assume that the absolute values of ρj(j = 1, 2, . . . , n) are mutually
distinct:

|ρ1| > |ρ2| > · · · > |ρn|. (A.10)

As s ≥ s1 tends to infinity, some one of n absolute values |uj(s)|(j = 1, 2, . . . , n) will
be as large as or lager than the remaining for an infinite number of values of s.

Lemma A.2. Let J satisfy

|uJ(s)| ≥ |uj(s)| (j = 1, 2, . . . , n) (A.11)

for infinitly many s hold for a set S = {sk | k = 1, 2, . . . ; sk → ∞}. Then, uJ(sk) 6= 0
for all k ≥ 1.

Proof. Suppose uJ(sN) = 0 for some sN . Then, from (A.11) and (A.8) we have:

|uJ(sN + 1)| = |ρjuj(sN) +
n∑

i=1

ej,i(s)uj(sN)|

≤ |ρj||uJ(sN)| + n|ej,i(sN)||uJ(sN)|
= 0.

Then, by induction on s ≥ sN , we have

uj(s) = 0,

for all j = 1, 2, . . . , n. Hence, X(s) = 0 for all values of s because detA(s) 6= 0 for
s ≥ 0. This contradicts the assumption that y(s) is nontrivial.

Lemma A.3. Let J satisfy (A.11) for infinitly many s hold for a set S = {sk | k =
1, 2, . . . ; sk → ∞}. Then, there exists some sN0 such that (A.11) holds for all values
of s ≥ sN0.

Proof. We divide both sids of the (A.8) by uJ(s) when j = J to obtain

uJ(s+ 1)

uJ(s)
= ρJ + dJ(s), (A.12)

and we divide both sids of (A.8) by uJ(s+ 1) to obtain

uj(s+ 1)

uJ(s+ 1)
=

ρj

ρJ + dJ(s)

(
uj(s)

uJ(s)

)
+

dj(s)

ρJ + dJ(s)
(j = 1, 2, . . . , n), (A.13)
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where we set

dj(s) =
n∑

i=1

eji(s)

(
ui(s)

uJ(s)

)
(j = 1, 2, . . . , n).

From (A.9) and (A.11), for j = 1, 2, . . . , n it follows that

|dj(sk)| ≤
n∑

i=1

|eji(sk)|
∣∣∣∣ ui(sk)

uJ(sk)

∣∣∣∣
≤

n∑
i=1

|eji(sk)|

≤ nē(sk),

where we set
ē(sk) = max

1≤j,i≤n
|eji(sk)| −→ 0 (k → ∞).

We shall prove the Lemma A.3 for j = J+1, J+2, . . . , n by induction. From (A.13),
we have ∣∣∣∣uj(sk + 1)

uJ(sk + 1)

∣∣∣∣ ≤ ∣∣∣∣ ρj

ρJ + dJ(sk)

∣∣∣∣ ∣∣∣∣uj(sK)

uJ(sk)

∣∣∣∣+ ∣∣∣∣ dj(sk)

ρJ + dJ(sk)

∣∣∣∣
≤
∣∣∣∣ ρj

ρJ + dJ(sk)

∣∣∣∣+ ∣∣∣∣ nē(sk)

ρJ + dJ(sk)

∣∣∣∣ .
Then, from (A.10), because dJ(sk) → 0 and ē(sk) → 0, we find that for arbitrarily
small ε > 0 there exists sN1 such that for all sk ≥ sN1∣∣∣∣uj(sk + 1)

uJ(sk + 1)

∣∣∣∣ ≤ ∣∣∣∣ ρj

ρJ

∣∣∣∣+ ε < 1 (j = J + 1, J + 2, . . . , n).

This implies that sk+1 ∈ S and hence the inequalities (A.11) for j = J+1, J+2, . . . , n
always hold for s ≥ sN1 .

Next, we shall prove that

|uj(sk + 1)| < |uJ(sk + 1)| (j = 1, 2, . . . , J − 1)

for all sk ≥ sN2 . We shall prove it by contradiction. We assume that for some number
of j (1 ≤ j ≤ J − 1)

|uj(sk + 1)| ≥ |uJ(sk + 1)| (j = 1, 2, . . . , J − 1)

69



hold for an infinite number of values sk. As above, we can prove that∣∣∣∣uJ(sk + 2)

uj(sk + 2)

∣∣∣∣ < 1 (sk ≥ sN1).

It follows that for all sk ≥ sN1

|uj(sk)| ≥ |uJ(sk)| (j = 1, 2, . . . , J − 1).

It contradicts the definition of uJ(s). It concludes that if we assume (A.11) for
S = {sk | k = 1, 2, . . . ; sk → ∞}, then there exists s ≥ sN0 such that (A.11). This
contradicts (A.11)

Lemma A.4. Let J satisfy (A.11) for infinitly many s hold for a set S = {sk | k =
1, 2, . . . ; sk → ∞}. Then,

lim
s→∞

uj(s)

uJ(s)
= 0 (j 6= J, j = 1, 2, . . . , n). (A.14)

Proof. First, we shall prove (A.14) for j = J + 1, J + 2, . . . , n. To the contrary, we
assume that there exists ` > J and some fixed η > 0 such that∣∣∣∣ u`(s)

uJ(s)

∣∣∣∣ ≥ η (A.15)

for an infinite number of values {s′k | sN0 ≤ s′k → ∞ (k → ∞)}. Then, as the proof
of Lemma A.3, we obtain the following:∣∣∣∣ u`(s

′
k + 1)

uJ(s′k + 1)

∣∣∣∣ ≤ (∣∣∣∣ ρ`

ρJ

∣∣∣∣+ ε

) ∣∣∣∣ u`(s
′
k)

uJ(s′k)

∣∣∣∣ .
We remark that ∣∣∣∣ ρ`

ρJ

∣∣∣∣+ ε < 1

because of our assumption (A.10). Then, we can take such a large positive integer
mk that ∣∣∣∣ u`(s

′
k +mk)

uJ(s′k +mk)

∣∣∣∣ ≤ (∣∣∣∣ ρ`

ρJ

∣∣∣∣+ ε

)mk
∣∣∣∣ u`(s

′
k)

uJ(s′k)

∣∣∣∣ < η.

This, in turn, implies that there is an infinite set S
′′

= {s′′k} for which there holds∣∣∣∣ u`(s
′′

k)

uJ(s
′′
k)

∣∣∣∣ < η.
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Then, from (A.13), we have∣∣∣∣ u`(s
′′

k + 1)

uJ(s
′′
k + 1)

∣∣∣∣ ≤ ∣∣∣∣ ρ`

ρJ + dJ(s
′′
k)

∣∣∣∣ η +

∣∣∣∣ d`(s
′′

k)

ρJ + dJ(s
′′
k)

∣∣∣∣ < η

for all s ≥ sN3 . This is the contradiction for the assumption (A.15).
Next, we shall prove (A.14) for j = 1, 2, . . . , J − 1. To the contrary, we assume

that there exists ` < J and some fixed η > 0 such that (A.15) for an infinite number
of values {s′k | sN0 ≤ s′k → ∞ (k → ∞)}. In this case, se have for sufficiently large
s′k ∣∣∣∣ u`(s

′
k +mk)

uJ(s′k +mk)

∣∣∣∣ ≥ (∣∣∣∣ ρ`

ρJ

∣∣∣∣− ε

)mk

η > 1,

that is, we have an infinite number of values of s for which the above inequality
holds.

We shall return the proof of Proposition A.1. From (A.12), we immediately obtain

lim
s→∞

uJ(s+ 1)

uJ(s)
= ρJ .

We conclude it and Lemma A.11. For any solution U(s) = (u1(s), u2(s), . . . , un(s))
of (A.8), there necessarily exists such an element uJ(d) that

lim
s→∞

uJ(s+ 1)

uJ(s)
= ρJ ,

lim
s→∞

uj(s)

uJ(s)
= 0 (j 6= J, j = 1, 2, . . . , n).

We now again consider (A.4). Setting C−1(s) = (ĉji(s)) we have

xj(s) =
n∑

i=1

ĉji(s)ui(s) (j = 1, 2, . . . , n),

with
lim
s→∞

ĉji(s) = ĉji (j, i = 1, , 2 . . . , n).

For each i, not all of ĉji (j = 1, , 2 . . . , n) are vanishing. So, for J , let ĉKJ 6= 0.
lim
s→∞

xK(s+ 1)

xK(s)
= lim

s→∞

ĉKJ(s+ 1)uJ(s+ 1)

ĉKJ(s)uJ(s)
= ρJ ,

lim
s→∞

xj(s)

xK(s)
= lim

s→∞

ĉjJ(s)

ĉKJ(s)uJ(s)
=

ĉjJ
ĉKJ

(j 6= K),
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that is, one of the elements of the solution X(s) = (x1(s), x2(s), . . . , xn(s)) tends to
some one of eigenvalues of A as s −→ ∞. From (A.3), we obtain

lim
s→∞

y(s+K)

y(s+K − 1)
= ρJ .

Substituting K = 1 into it, we have

lim
s→∞

y(s+ 1)

y(s)
= ρJ ,

with
ĉ1J 6= 0.

Thus we have completed the proof of Proposition A.1.
We shall introduce the Poincaré-Perron theorem.

Theorem A.5. (Poincaré-Perron) We consider the following deference equation:

Φ(s+ q) + a1(s)Φ(s+ q − 1) + · · · + aq(x)Φ(s) = 0, (A.16)

where the coefficients aj(s)(j = 1, 2, . . . , q) have two following properties:

• There is a constant âj(s) such that

lim
k→∞

aj(s)

skj
= âj (j = 1, 2, . . . , q).

• The points
(0, 0), (1, k1), . . . , (q, kq)

are on a straight line or below the Newton polygon.

Then, we have

lim
s→∞

sup

(
|Φ(s)|

|Γ(s+ 1)τ |

)1/s

= |γj|,

where τ = 1
q
, and γj is one of the roots of the equation

tq + âi1t
q−i1 + âi2t

q−i2 + · · · + âq = 0.
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A.2 Proof of the Sibuya-Malgrange Isomorphism

In this section, we shall review some properties of exact sequences of cohomology
and sheaves on S1.

We shall make a remark about (4.4).

Remark A.6. We obtain a commutative diagram from the short exact sequence
(4.1):

0 → Γ(S1,A<0) −−−→ Γ(S1,A) −−−→ Γ(S1,C[[t]]S1)y y y
0 → C0(U ,A<0) −−−→ C0(U ,A) −−−→ C0(U ,C[[t]]) → 0

δ0

y yδ0

yδ0

0 → C1(U ,A<0) −−−→ C1(U ,A) −−−→ C1(U ,C[[t]]) → 0y y y
H1(S1,A<0)

Φ−−−→ H1(S1,A) −−−→ 0

(A.17)

Applying the snake lemma, and the fact that Γ(S1,A<0) = 0, we obtain the exact
sequence of cohomology (4.2):

0 −→ Γ(S1,A) −−−→ Γ(S1,C[[t]]S1) −−−→ H1(S1,A<0) −→ 0.

We shall prove the equality δ0(⊕vj) and ⊕var(wj) of Lemma 4.10.

Proof. We recall that we set vj(t) ∈ Γ(Ij,A) following,

vj :=
k∑

i=1

wi|Ij
+ h(t)

with h(t) ∈ C{t}.
Let us set

Ij,j+1 := Ij ∩ Ij+1 (j = 1, 2, . . . , n− 1), In,1 := In ∩ I1 (j = 1, 2, . . . , n).

Setting for (j = 1, 2, . . . , n− 1)

vj|Ij∩Ij+1
:=

n∑
k=1

wk(t)

vj+1|Ij∩Ij+1
:=

n∑
k=1

wk(t) − wj(t) + wj(te
2πi),
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and

vn|In∩I1 :=
n∑

k=1

wk(t)

v1|In∩I1 :=
n−1∑
k=1

wk(t) + wn(te2πi),

we obtain

δ0(vj) = vj|Ij∩Ij+1
− vj+1|Ij∩Ij+1

= wj(t) − wj(te
2πi) = var(wj),

δ0(vn) = vn|In∩I1 − v1|In∩I1 = wn(t) − wn(te2πi) = var(wn).

By these formulas, we can conclude

δ0(⊕vj) = ⊕var(wj).
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