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ABSTRACT 

Halogen concentrations and 129I/I ratios were determined in pore waters from the 25 

Nankai Trough subduction system, collected during IODP Expeditions 315, 316, 322, 

and 333 along the NanTroSEIZE transect. The transect allowed the first direct 

comparison of iodine results across an active subduction system, from subducting 

oceanic sediments to the accretionary prism, and the overlying forearc basin. In contrast 

to the other halogens (Cl and Br) iodine concentrations show large variations within and 30 

among the cores at all sites landward of the trough, I concentrations increase rapidly 

with depth and reach values several orders of magnitude higher than those in seawater, 

but are only slightly higher than seawater values at the seaward sites. Methane 

concentrations follow a similar pattern. Host sediments of the fluids are younger than 7 

Ma in all the cores, but the ages of iodine in pore waters at the landward sites reach 35 

values beyond 30 Ma., In contrast, iodine seaward of the trough is in isotopic 

equilibrium with the host sediments, resulting in very similar iodine and sediment ages. 

The distribution of iodine concentrations and ages indicates that iodine at the landward 

sites has been transported there in aqueous fluids, probably together with methane, from 

old formations in the upper plate. The specific fluid pathways potentially were 40 

influenced by features such as the megasplay fault in the prism or the decollement. The 

results demonstrate large-scale transport of fluids carrying iodine and other compounds 

such as methane from old layers in the upper plate to surface locations landward of the 

Nankai Trough, while separate, but only local hydrologic processes occur in the marine 

sediments moving toward the trough.  45 
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1. INTRODUCTION 

Integrated Ocean Drilling Program (IODP) Expeditions 315, 316, 322, and 

333 were carried out from 2007 to 2011 by D/V Chikyu as parts of the multistage 50 

Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). During these 

expeditions, the Kumano Forearc Basin sediment was cored down to the upper 

accretionary prism as well as the accretionary prism itself including brecciated/fractured, 

deformed zones associated with subduction processes and earthquakes (Fig. 1). The 

inputting hemipelagic/pelagic Shikoku Basin sediments on the subducting Philippine 55 

Sea Plate were also cored to the uppermost igneous basement along the NNW-SSE 

transect in the Nankai Trough, Japan. This program has provided numerous scientific 

resources to construct entire geological processes induced by plate subduction covering 

the loci of future input to the past accretion of sediments. We have focused on the 

behavior of fluids filling sediment pores, indicative of material remobilization, because 60 

marine pore water is a medium that captures and conveys materials originated from 

minerals and seawater due to sedimentation and accretion. The geochronology of a 

long-lived radioisotope of iodine (129I) has shown to be useful for the identification of 

sources and migration paths for sedimentary fluids, particularly on continental margins 

(Fehn et al., 2000, 2007a; Fehn, 2012). Here we examine pore water regimes with 65 

iodine geochronology including major accretionary processes, lithology change, 

fault/thrust activity, and subducting/inputting, across the Nankai Trough seismogenic 

zone. This approach allows the investigation of changes in iodine and methane 

concentrations across an active margin and of their relation to fluid flow in a subduction 

zone. In addition, the comparison between iodine concentrations and 129I/I ratios on 70 

both sides of the Nankai Trough provides insights into the systematics of this isotopic 
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system in coastal areas and the open ocean.  

 

2. IODINE GEOCHRONOLOGY 

 Applications of the iodine isotopic system are based on the presence of the 75 

radioisotope, 129I, which allows dating with a range of 100 Ma. Iodine is strongly 

associated with organic materials such as phytoplankton and algae in marine 

environments, where it can reach concentrations up to 10,000 ppm. Consequently, 

marine sediments constitute the major iodine reservoir in the earth’s surface (Elderfield 

and Truesdale, 1980; Harvey, 1980; Muramatsu and Wedepohl, 1998). After 80 

sedimentation and burial of organic-rich sediments, iodine typically is released into 

aqueous phases during the decomposition of organic particulates, but a large fraction of 

that iodine is returned back into the overlying seawater (Ullman and Aller, 1980, 1983). 

Iodine concentrations in pore waters are higher than those in seawater of 0.05 ppm or 

0.44 μM (e.g., Fuge and Johnson, 1986) and range mostly between 1 and 10 ppm (e.g., 85 

Kennedy and Elderfield, 1987). Exceptions are situations with the strong presence of 

methane in fluids, such as gas hydrate occurrences, where iodine concentrations can 

reach values as high as 250 ppm or 2 mM (e.g., Martin et al., 1993; Egeberg and 

Dickens, 1999; Fehn et al., 2006).  

Iodine has one stable isotope (127I) and one long-lived radioisotope (129I) with a 90 

half-life of 15.7 Myr, which is produced by the spontaneous fission of 238U in the crust 

or sediment and cosmic ray spallation of Xe isotopes in the atmosphere. Because of 

constant and similar contribution of 129I from these two sources into the marine iodine 

system and the relatively long residence time of iodine in seawater (~300 kyr; Broecker 

and Peng, 1982), compared with that in the atmosphere (~14 days), and with the 95 
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turn-over time of seawater (~1,000 yr), the isotopic ratio of 129I to total iodine (129I/I) 

among surface reservoirs can be assumed to be homogeneous. The 129I/I ratio in the 

surface reservoirs has, however, been increased by several orders of magnitude since the 

beginning of the nuclear age due to the release of 129I from anthropogenic activities, 

(Moran et al., 1999; Rao and Fehn, 1999; Santschi and Schwehr 2004; Snyder et al., 100 

2010). The natural or pre-anthropogenic ratio for 129I/I in surface reservoirs, has been 

determined to be (1500±150)×10-15 (Moran et al., 1998; Fehn et al., 2007b).  

 Dating using the 129I system is based on the separation of iodine from the ocean 

at time t and is governed by the decay equation: 

Robs=Rie-λt    (1) 105 

where Robs is the observed 129I/I ratio, Ri the initial seawater 129I/I ratio (1500×10-15) and 

λ  the decay constant of 129I (4.41×10-8 y-1). Potential additions of 129I from the 

spontaneous fission of 238U and of anthropogenic 129I are not taken into consideration 

here, making the measured ratio a maximum value and the calculated age a minimum 

value for a given sample. The relatively low uranium content in sediments of the 110 

research area, <1 ppm (Plank and Langmuir, 1998), make contributions of 

fissiogenic 129I unlikely, and anthropogenic 129I has not been detected beyond the layer 

of bioturbation in marine sediments (Fehn et al., 1986; Moran et al., 1998). The iodine 

system has been useful for the determination and correlation of ages or source 

formations for iodine and implications for fluid flow (Fehn et al., 1992; Tomaru et al., 115 

2007a, 2007b; Lu et al., 2008; Fehn, 2012). 

 

3. GEOLOGICAL SETTINGS 

The Nankai Trough was formed by the subduction of the Philippine Sea Plate under the 
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Eurasian Plate at a rate of ~4 to 6 cm/yr with an interface dipping of 3° to 7° (Fig. 1) 120 

(Seno et al., 1993; Kodaira et al., 2000; Heki and Miyazaki, 2001; Park et al., 2002; 

DeMets et al., 2010). The subducting Philippine Sea Plate along the NanTroSEIZE 

transect carries the incoming sediments of Shikoku Basin towards the trough, which 

constitute a relatively thin sediment package with ages ranging from 0 to 21 Ma (Jarrard, 

1986). On the landward side of the trough, the accretionary prism is formed by the 125 

accreted and forearc basin sediments. While sediments in these formations sampled 

during this study range between 0 and 7 Ma (Kinoshita et al., 2009; Saito et al., 2010; 

Henry et al., 2012; Hayashi et al., 2011; Su, 2012), ages at depth are considerably older, 

related to the prior subduction configuration between Eurasian and Pacific Plates. Gas 

hydrates are ubiquitous in the Nankai Trough area and were the focus of two earlier 130 

investigations at several locations ~100 km to the NE of the present study (Fig. 1B) 

(Fehn et al., 2003; Tomaru et al., 2007a). Although gas hydrates were observed also in 

several of the cores discussed here, they occurred only in those on the landward side of 

the trough. A large out-of-sequence thrust/fault system branching from the plate 

interface has been found in seismic profiles and a laterally extensive major fault, the 135 

megasplay fault (Fig. 1D), is identified distinctly in the research area (Park et al., 2002; 

Conin et al., 2012). 

During IODP Expedition 315, we cored the upper accretionary prism at two 

sites; Site C0001 at the seaward edge of the Kumano Basin uplift (outer arc high) on the 

hanging wall of the megasplay fault, and Site C0002 at the southern margin of the basin 140 

(Fig. 1) (Kinoshita et al., 2009). Holocene to late Pliocene silty clay to clayey silt with 

intercalations of volcanic ash is unconformably underlain by the upper accretionary 

prism of late Miocene age composed mainly of mudstone, which are bounded by a thick 
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sand layer at 207 m core depth below seafloor (CSF) at Site C0001. An unconformity 

between the forearc basin and accretionary prism is identified by the lithology change 145 

from the basal Pliocene mudstone above to late Miocene interbeds of mudstone to 

sandstone below 922 m CSF at Site C0002. Logging-while-drilling (LWD) during 

Expedition 314 delineated these unit boundaries, and identified the accumulation of gas 

hydrates in sandy layers in the upper ~400 m CSF, but only at Site C0002. 

During IODP Expedition 316, we cored the seaward edge of the Kumano Basin 150 

uplift where the megasplay fault is branching from the plate interface between the 

subducting Philippine Sea Plate and overlying Eurasian Plate at Site C0004. A 6 cm 

thick microbreccia, indicating concentrated shear within the megasplay fault zone, was 

found in the middle Pliocene hemipelagic section at 291 m CSF. Site C0008 is located 

~1 km seaward of Site C0004, providing a reference site for the sediments 155 

underthrusting beneath the megasplay fault (Kinoshita et al., 2009). Onboard pore water 

analyses found accumulation of gas hydrate in some coarse layers between 70 and 170 

m CSF at Site C0008 whereas no geochemical signs of gas hydrate occur at Site C0004. 

During IODP Expedition 333, Site C0018 was cored on a small slope basin seaward of 

the megasplay fault, ~5 km south-southwest of Site C0008. Holocene to Pleistocene 160 

hemipelagic clay is often interbedded there with volcanic ash layers and mass transport 

deposits above 191 m CSF, and sandy turbidites slope basin sediment down to 314 m 

CSF (Henry et al., 2012).  

Sites C0006 and C0007, located at the main frontal thrust at the seaward edge 

of the accretionary wedge, were also cored during IODP Expedition 316 (Kinoshita et 165 

al., 2009). Late Miocene to middle Pleistocene mud is interbedded with volcanic ash 

and sand/silt layers, which were deposited in a trough setting. The uppermost section, 
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~30 m CSF, at these sites are composed of hemipelagic silty clay to silty sand with 

interbedded sands deposited on the lowermost slope above the trough floor. At Site 

C0006, cores are often tectonically brecciated/fractured between 230 and 545 m CSF. At 170 

Site C0007, fault zones were recognized between 238 and 259 m CSF, and 342 and 362 

m CSF. 

During IODP Expeditions 322 and 333, Sites C0011 and C0012 were 

investigated on the seaward side of the Trough. Site C0011 cored the Shikoku Basin 

sediments reaching almost the igneous basement on the subducting Philippine Sea Plate, 175 

which was formed by the backarc spreading of the Izu-Bonin volcanic arc during the 

early and middle Miocene (Okino et al., 1994; Kobayashi et al., 1995). The upper 

Shikoku Basin is composed of hemipelagic mud with abundant ash and volcaniclastic 

layers, underlain by middle Shikoku Basin hemipelagites with tuffaceous sandstone and 

volcaniclastic sand layers and lower Shikoku Basin bioturbated hemipelagites and 180 

turbidites (Saito et al., 2010; Henry et al., 2012). Middle Miocene tuffaceous silty 

claystone with zeolite and smectite from alteration of volcanic glass occurs from 850 m 

CSF. Log-seismic integration indicates a depth to igneous basement of ~1050 m below 

seafloor (Saito et al., 2010). Site C0012 is located on the basement high in the Shikoku 

Basin, which is composed of hemipelagic mud intercalated with volcanic ash/tuff, 185 

volcanoclastic sand, and siltstone layers similar to Site C0011. The basalt basement 

older than 18.9 Ma occurs at 538 m CSF, which is highly altered (Saito et al., 2010). 

 

4. ANALYTICAL METHODS 

For all the samples used here, a whole-round core of several tens of centimeter 190 

length was sectioned soon after core recovery and scraped in a nitrogen-filled glove bag 
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to avoid potentially contaminated surface sediments. The core section was then 

squeezed with a shipboard hydraulic press to extract pore water through 0.45 μm filters. 

Sample sizes ranged between 3 and 10 mL of pore waters. The sample aliquot was 

diluted by factors between 500 and 1000 with 5 wt% tetramethyl ammonium hydroxide 195 

solution for the determination of total dissolved iodine concentration and measured by 

inductively coupled plasma mass spectrometry (ICP-MS), HP4500 (Hewlett 

Packard/Agilent), at the University of Tokyo, with a standard deviation better than 3%.  

For the measurement of 129I/I ratio, silver iodide (AgI) was precipitated from 

the pore water samples at the Cosmogenic Isotope Lab, University of Rochester for 200 

samples from Sites C0001 to C0008 and at the University of Tokyo for samples from 

the other sites by established methods (Fehn et al., 1992). The sample solutions were 

oxidized to iodine with 30% hydrogen peroxide and nitric acid and then extracted into 

chloroform, back extracted into sodium bisulfite as iodide, and precipitated as AgI with 

1 M silver nitrate. The AgI targets produced by these procedures were analyzed at the 205 

accelerator mass spectrometry (AMS) facility at PRIME Lab, Purdue University 

(Sharma et al., 2000). Because a minimum of 0.1 mg of I is required for reliable 129I/I 

analyses (Lu et al., 2007), we had to combine between 3 and 9 neighboring samples to 

produce an AMS target. The weighted average depth and I concentration of 129I/I 

samples were calculated from I concentrations and volumes of sample aliquots 210 

combined for AgI precipitation (Table 1). Error margins for depth in the 129I/I profiles 

reflect the interval between the shallowest and deepest aliquots. 

 

5. RESULTS 

5.1. General properties of sediment and pore water 215 
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While iodine concentrations and isotopic ratios are the focus of this 

investigation, shipboard determinations of other parameters of sediments and pore 

waters are reported here together with the biostratigraphic age of cored sediments in 

order to put the iodine results into a wider context (Fig. 2). These results include 

sediment porosity calculated using the moisture and density (MAD) method in order to 220 

discuss potential movement of gases and pore waters. Determination of total organic 

carbon (TOC) in sediments and methane concentration in headspace samples and 

concentrations of other halogens (chlorine and bromine) are also reported. These data 

were collected onboard following the IODP standard protocol during the expeditions 

and are available on the respective IODP proceedings for these expeditions (Kinoshita 225 

et al., 2009; Saito et al., 2010; Henry et al., 2012).  

The TOC values decrease slightly from the landward sites with concentrations 

just above 0.5 wt% to the seaward sites with values around 0.3 wt%, although there is 

considerable variation within all the profiles. While there are relatively small 

differences in TOC between the landward and seaward locations, methane 230 

concentrations show a distinct increase from seaward to landward sites. All landward 

sites have methane concentrations higher than 10,000 ppmv, with averages around 

20,000 ppmv. Several of the sites in the Kumano Forearc Basin and in the accretionary 

prism have concentrations above 40,000 ppmv, (e.g., C0001, C0002, C0004, and 

C0008). In contrast, concentrations in both of the seaward sites generally are at or below 235 

1,000 ppmv. The highest values are below 5,000 ppmv at Site C0011 and below 210 

ppmv at Site C0012. Low concentrations of higher molecular hydrocarbons, mostly 

ethane, were observed in all of the cores, typically with values around 10 ppmv. The 

concentration range for these gases is very similar at landward and seaward sites. 
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Concentrations of chlorine are generally stable and close to the seawater level 240 

of 559 mM. Generally, the values gently decrease downward at Sites C0002, C0006, 

and C0011, and increase at Sites C0004, C0012, and C0018. The scatter observed in 

some sites probably is related to the presence of gas hydrates, as fresh water input from 

gas hydrate dissociation during core recovery is common in cores in accretionary prisms 

(Hesse, 2003). Gas hydrates were found between 120 and 200 m CSF at Site C0002 and 245 

between 70 and 170 m CSF at Site C0008. While the downward patterns of bromine are 

similar to those of chlorine, they generally show enrichments of 20 to 30% relative to 

seawater values, reaching ~1200 mM at Sites C0001, C0002, C0004, C0008, and C0018 

and ~1000 mM at Sites C0006, C0007, C0011, and C0012. 

 250 

5.2. Iodine and 129I/I results 

Iodine concentration profiles were produced for all nine cores of the 

NanTroSeize transect, and 129I/I were measured in a subset of the samples from seven 

cores. Results reported previously (concentrations from Sites C0001, C0002, C0004, 

and C0008, ratios from C0001 and C0002; Tomaru and Fehn, 2012) are integrated here 255 

for the examination of iodine systematics across the study area. In all the landward sites 

except for the two sites at the prism toe (C0006 and C0007), iodine concentrations 

increase strongly with depth from the seawater value (0.44 µM) to values around 200 

µM beyond 200 m CSF. Values up to 450 μM, corresponding to enrichment factors of 

1,000 compared to seawater were observed at Site C0002, which also has the most 260 

prominent presence of gas hydrates of all the sites. The increase of iodine 

concentrations with depth is more modest in the profiles at the two toe sites, which level 

out at values around 100 μM. In contrast, the profiles for the two sites seaward of the 
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trough (C0011 and C0012) show hardly any increase with depth and have 

concentrations close to seawater values.  265 

All the 129I/I ratios were found to be at or below the initial seawater ratio 

(1500×10-15), the starting point at the seawater-sediment interface. Sample volumes 

were not sufficient to determine ratios in samples close to the seafloor, but it can be 

assumed that the profiles start at that value. All the profiles decrease with depth, with 

the most consistent downward decrease in 129I/I ratios observed at Site C0001, from 270 

939×10-15 at 41 m CSF to ~400×10-15 at ~200 m CSF, where the lithologic boundary 

between the old accretionary prism and overlying younger forearc basin sediment is 

located (red line in Fig. 2). Although the data coverage for Site C0002 is quite limited, it 

suggests constant values of ~400×10-15 beyond the lithologic boundary at 922 m CSF 

(blue line in Fig. 2). The lowest ratios (oldest iodine ages) are observed in some of the 275 

sites in the accretionary prism (C0004 and C0008) above the megasplay fault, with a 

gentle increase in the ratio toward the fault. A very different behavior is apparent at Site 

C0011, the seaward site located in the Shikoku Basin. Because of the low iodine 

concentrations there, only two samples provided sufficient material to make AMS 

determinations, but both of those ratios are close to the pre-anthropogenic value and 280 

considerably higher than any of the other ratios measured in the landward cores. 

 

6. DISCUSSION 

6.1. Interpretation of iodine concentrations 

6.1.1. Iodine and organic material 285 

Concentrations of iodine display the strongest variation of all the halogens at 

the sites. At all the sites landward of the trough, they strongly exceed the seawater value 
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of 0.44 μM, except at very shallow levels just below the seafloor, in contrast to the 

seaward sites, where iodine concentrations are relatively close to seawater values (Fig. 

2). Concentrations in pore waters on continental margins are, however, often affected by 290 

hydration reactions due to the alteration of volcanic ash or dilution related to clay 

mineral dehydration at depth (Brumsack et al., 1992; Kastner et al., 1993). Because 

chlorine is a physicochemically stable halogen in marine environments, its 

concentration profiles provide a good measure for input or uptake of H2O and I/Cl 

profiles describe iodine enrichment more properly without H2O gain or loss (Fig. 3). 295 

Although the behavior of bromine in marine pore water has not been studied well, the 

amount of organic material influences bromine concentrations (Price et al., 1970; Price 

and Calvert, 1977) and depth profiles of bromine fall somewhere between those of 

chlorine and iodine (Fig. 2). The I/Cl profiles as well as I/Br show significant 

enrichment of iodine with increasing depth in the landward sites, but only slight 300 

increases in concentrations in the seaward sites (Fig. 3). 

The presence of iodine in marine sediments typically shows a close association 

with the amount of carbon present in the sediments and iodine concentrations in pore 

waters often follow the TOC profiles (e.g., Kennedy and Elderfield, 1987). This 

correlation is obvious at the seaward sites, where TOC values around 0.5 wt% are 305 

associated with almost constant values of iodine concentrations, which are only slightly 

above seawater values. This downward pattern of iodine reflects release of iodine from 

marine organic materials into pore water with no or minor upward diffusion/advection. 

Thickness of organic rich sediments within the diagenesis interval is also reflected in 

the total amount of iodine in pore water, resulting in the variation of iodine enrichment 310 

(You et al., 1993; Muramatsu et al, 2007). Sediments within the thermogenic zone, 
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>50 °C peaking at ~150 °C (Rightmire, 1984), are relatively thin at the seaward sites. 

The extrapolated temperatures at the bottom of the Shikoku Basin are 62 °C at Site 

C0011 (1050 m CSF) and 75 °C at Site C0012 (538 m CSF), respectively (Henry et al., 

2012). These observations suggest low rates of decomposition, in good agreement with 315 

the relatively low concentrations of methane observed in the seaward locations. The 

modest and linear increases of methane to 5,000 ppmv and iodine to 100 µM at Site 

C0011 and somewhat less at Site C0012 together with nearly constant TOC around 0.3 

wt% possibly reflect continuous release of iodine from low TOC hemipelagic 

sediments. 320 

 The situation is very different at the sites landward of the trough: Rapid 

increases of iodine concentration are visible in the upper 100 to 200 m CSF and 

relatively constant values in the deeper section in all the landward sites (Fig. 2). 

Concentrations reach the highest values in the Kumano Basin (> 400 µM in Site C0002), 

and somewhat lower values (~100 µM) in the prism toe sites, which are, however, still 325 

higher than seawater values by several orders of magnitude. The strong enrichment in 

iodine in the landward sites is not accompanied by higher concentrations of TOC, in fact 

the range and variation of TOC observed at all the sites is quite similar around 0.5 wt% 

(Kinoshita et al., 2009; Saito et al., 2010). Because concentrations of organic material 

and the age range of sediments are almost identical at landward and seaward sites, the 330 

high concentrations of iodine at the landward sites are unlikely to be derived from the 

decomposition of organic material in the host sediments. A much more likely scenario is 

that iodine was transported into the current location via advection of aqueous fluids. 

Similar arguments can be made for the distribution of methane in the cores: 

Concentrations in the seaward sites are much lower than in all the landward sites, even 335 
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though the concentrations of organic material are similar throughout all the sites. It is 

therefore likely that methane in the landward sites also originated in formations other 

than the current host sediments. 

 A distinct change in iodine concentration is observed at Site C0002, from more 

than 400 µM at 200 m CSF to 200 µM at 480 m CSF, which is more comparable to the 340 

other prism sites. Because material was not recovered between 200 and 477 m CSF at 

Site C0002, the exact location of the transition in the core cannot be identified, but the 

significant increase probably reflects lateral input of iodine-rich fluids that are also 

enriched in methane. Fluid of that type has been suggested to be responsible for the 

accumulation of gas hydrates in sandy layers in this interval (Muramatsu et al., 2007; 345 

Tomaru et al., 2007a; Miyakawa et al., 2014).  

 

6.1.2. Iodine and methane 

 The enrichment in iodine in the cores is accompanied by a similar behavior of 

methane, an observation common to many other locations with gas hydrates or other 350 

methane rich fluids (e.g., Martin et al., 1993; Egeberg and Dickens, 1999; Lu et al., 

2011). The transect allows a close look at the behavior of methane and other 

hydrocarbon gases in locations on both sides of the trench. All the landward sites reach 

methane concentrations which are higher by one or more orders of magnitude than those 

at the seaward sides. Because sediment ages are similar for all the cores and presence of 355 

organic material differs only slightly between seaward and landward sites, methane in 

the landward sites probably has sources outside the host sediments. The similarity in 

transport behavior between iodide and methane in aqueous fluids (Boudreau, 1997) 

suggests that these two compounds were transported into their present locations from 
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the same source, i.e. deeper layers in the upper plate. 360 

 Together with methane/ethane (C1/C2) ratios, δ13C values in methane were 

determined at all the landward sites, and the results point to a strong dominance of 

biogenic gases in these sites (Toki et al., 2012). Heat flow values in the accretionary 

prism range between 27 and 52 °C/km (Henry et al., 2012), i.e. they are too low to 

provide temperatures sufficient for the production of thermogenic methane in these 365 

cores. The C1/C2 ratios at the two seaward (Sites C0011 and C0012) sites are below 400, 

which usually are interpreted as sign of thermogenic production of hydrocarbons (Saito 

et al., 2010; Henry et al., 2012). However, low amounts of higher hydrocarbons, such as 

observed in these cores, can also be produced by biological processes in marine 

sediments (Hinrichs et al., 2006), so that the low C1/C2 ratio is not necessarily 370 

indicative of thermogenic production of these gases here. The measured heat flow 

values in these cores (56 °C/km at C0011 and 135 °C/km at C0012, Henry et al., 2012) 

also make it unlikely that temperatures for thermogenic production were reached in 

these sites. 

 375 

6.2. Interpretation of iodine ages 

6.2.1. 129I/I ratio and iodine age 

 The main observations related to the iodine distribution in the NanTroSEIZE 

transect are the strong increase in concentrations with depth at the landward sites, and 

the decrease in concentrations from landward to seaward sites. Changes in the 380 

concentration of organic materials as well as methane are relatively small compared to 

the magnitude of the changes in the observed iodine profiles. It is therefore likely that 

the concentration profiles reflect addition of iodine from sources outside the host 
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sediments of the pore waters, a problem that can be addressed with the iodine isotopic 

system. 385 

 The presence of the radioisotope, 129I, provides the opportunity to identify 

potential source formations for the iodine at the sites, which then allows the 

construction of transport models for the fluids in this region. The 129I/I ratios provide 

minimum iodine ages based on equation (1) as shown by the upper axis of 129I/I ratios in 

Figure 2, which vary from ages close to 50 Ma in some of the prism sites to less than 6 390 

Ma in the input sediments. The 129I results for the deep section of the accretionary prism, 

older than 25 Ma, agree well with previous investigations from gas hydrate exploration 

wells, located ~100 km NE of the present sites (Tomaru et al., 2007a). Figure 4 

compares ages of the host sediments (Kinoshita et al., 2009; Saito et al., 2010; Hayashi 

et al., 2011; Henry et al., 2012; Su, 2012) to the iodine ages of pore waters determined 395 

from 129I/I ratios. The host sediments cover similar age ranges throughout the transect, 

but only the iodine ages for the samples from the seaward side are close to those of the 

host sediments (indicated by the dashed line), while iodine ages for all the samples from 

the landward side of the trough are clearly older than those of their host sediments. This 

comparison demonstrates that different sources are responsible for the iodine in 400 

landward and seaward sites. Whereas iodine at the seaward sites is derived from 

material within the host sediments, iodine at the landward sites predominantly must 

have been transported in from formations with ages older than 25 Ma. 

 

6.2.2. Source formations for iodine 405 

 The large discrepancy between ages of host sediments and iodine ages in the 

pore waters in all the cores landward of the trough indicates that iodine is not derived 
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locally but transported into the present locations in aquatic fluids. Because the 

sediments on the incoming plate are younger than 21 Ma, in good agreement with the 

iodine ages observed at Site C0011, and have relatively low concentrations of iodine 410 

and organic material, subducting marine sediments can be ruled out as source for the 

iodine enrichment at the landward sites. A more likely source is to be found in the upper 

plate, where formations of Eocene age or older are present due to the tectonic evolution 

of that region (Okino et al., 1994). High organic productivity is prevalent at continental 

margins, which are thus often the location of considerable accumulation of organic 415 

material (Lu et al., 2011). In the case of the Nankai Trough region, potential source 

formations with ages between 30 and 50 Ma, i.e., compatible with the range suggested 

by the iodine results, are present in the backstop which is composed of formations of 

Eocene age or older (Nakanishi et al., 2002; Dessa et al.,2004; Waseda and 

Uchida,2004).  420 

 The likely source formations are located at depths of 5 km or more and at 

lateral distances of 10 km or more from the core sites, suggesting that iodine transport 

has occurred over distances greater than 10 km. Because transport of iodine over 

distances of this magnitude must occur in aquatic fluids, these observations indicate that 

fluid flow in active margins can cover tens of kilometers. Model calculations have 425 

suggested that transport of this type is quite possible in active margins (e.g., Saffer and 

Bekins, 2002). The distance between source formations and cored sites allows an 

estimate of the fluid velocities necessary in these formations. Assuming a distance of 20 

km between the source center and depositional sites and that the subduction scenario 

became active 20 Ma, a flow velocity of 0.1 cm/yr results. These values are, however, 430 

only minimum values, because a straight line flow path and onset of movement at the 
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time of subduction initiation is assumed. The actual flow path probably is very 

complicated and could include scenarios such as release of the fluids containing the 

methane and iodine from the source formation and subsequent residence in other 

formations for considerable time, before movement into the current location. The 435 

observation, that the dominant phase of methane in the fluids is of biogenic origin, 

indicates that the formation of the methane occurred while the source formations were 

still at relatively shallow levels, but because the isotopic composition of methane is 

unlikely to change after it has formed, later exposure to higher temperatures, as for the 

indicated source formations, would not affect the isotopic composition of the methane. 440 

 Regardless of the specific pathways and travel history, the fluids must have 

covered the distance from the source to the surface estimated above. The driving forces 

for fluid flow in active margins, such as seismic pumping or other forces related to plate 

movement are very intermittent in their nature. With these considerations, flow 

velocities related to subduction processes probably are one or two orders of magnitude 445 

greater than estimated here, which would bring them into ranges projected for 

hydrothermal convection at Mid-Ocean Ridges (e.g., Fehn et al., 1983) or large-scale 

gravitational flow (e.g., Bentley et al., 1986; Garven, 1995). 

 The situation is different for the two sites in the seaward Shikoku Basin, 

characterized by low iodine concentrations, low organic materials and relatively young 450 

iodine ages, which are compatible with the ages of the host sediments and possibly 

seawater. Although the concentration profiles reach all the way to the basaltic basement 

(Site C0012) or close to it (Site C0011), none of them show indications of fluid flow. 

This observation supports the result for the two isotope ratios measured at Site C0011, 

which demonstrate that iodine was derived from the local sediments. Ethane and 455 
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propane were observed at these sites, the presence of which can be interpreted as an 

indicator of advection (Saito et al., 2010). Because low concentrations, as seen here, can 

also be produced by in-situ biological processes (Hinrichs et al., 2006), the presence of 

these gases does not necessarily indicate advection in this case. Seismic activity 

associated with the subduction apparently does not trigger fluid flow on the seaward 460 

side of the trough and contributions of old iodine from the landward sites is absent at 

these hemipelagic sites. 

 

6.3. Influence of structural discontinuities on fluid flow  

 As an active margin, the Nankai Trough region has many tectonic structures 465 

such as the megasplay fault system, the decollement or depositional discontinuities, 

which could have observable influence on the fluid flow distribution. One example is 

the drop of sediment porosity observed at ~200 m CSF at Site C0001, from ~60% below 

the boundary to ~50% above, resulting in an 11% decrease in permeability (Yue et al., 

2012). Although these changes are rather small, they might slow the upward migration 470 

of fluids carrying old iodine and result in the somewhat younger age observed just 

above this boundary. 

 Two of the sites (Sites C0004 and C0008) cross the megasplay fault system, 

identified in earlier investigations (Seno et al., 1993), which has been suggested as a 

conduit for fluids (Lauer and Saffer, 2012). A slight increase in iodine age with depth is 475 

observed there which might be related to the transport of younger iodine from the root 

of the megasplay fault system. The megasplay fault branches at a depth of ~8 km and 

~55 km landward from the trough axis. Based on the subduction rate of ~4 to 6 cm/yr 

between the Philippine Sea Plate and Eurasian Plate, the age of the interface sediments 
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at the branching point is as young as 0.9 Ma (Seno et al., 1993; Heki and Miyazaki, 480 

2001; Park et al., 2002; DeMets et al., 2010). The age of iodine liberated at this point is 

thus considerably younger than that of the accretionary prism and the 129I/I ratio could 

have been increased in response to the addition of younger iodine, generating the 

observed downward increase in the 129I/I profile (Fig. 2). 

Fluid delivery through the deformed zone associated with the decollement 485 

might also be observable at Sites C0006 and C0007 in the frontal thrust area (Fig. 2), 

where iodine enrichments are found near the brecciated/fractured zone induced by the 

frontal thrust activity (Screaton et al., 2009). Of all the cores sampled, the profile at Site 

C0002 shows the strongest increase in iodine concentrations in the first 200 m. The 

upper section of this core is part of the Kumano Forearc Basin, while the deeper parts in 490 

the accretionary prism show lower concentrations. The profile is similar to several 

profiles obtained in gas hydrate zones at the Hydrate Ridge, which were related to the 

presence of considerable lateral flow in this region (Lu et al., 2008). Perhaps the 

sediment body of the Kumano Forearc Basin have a somewhat higher permeability than 

the deeper parts of the accretionary prism, allowing for lateral movement of fluids, 495 

although the source for all the fluids in this site was identical according to the iodine 

ages. Because data coverage is limited at these sites, these observations are tentative, 

but suggest that, with sufficient data coverage, the iodine system is useful for the 

detection of specific flow paths. 

 500 

6.4. Migration and mixing of iodine 

 The observed iodine concentrations and 129I/I ratios point to the presence of 

two main types of iodine in the pore waters of the Nankai Trough area (Fig. 5). One 
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type is best represented in the two seaward cores (Sites C0011 and C0012): Iodine 

concentrations there are mostly below 10 µM, i.e., only slightly higher than seawater 505 

values, and show only a modest increase with depth. This iodine originated from 

organic materials in hemipelagic sediments and was in isotopic equilibrium with 

seawater at the time of deposition. Because of the low iodine concentrations, 129I/I ratios 

in only two samples could be determined at Site C0011, but both of them were 

compatible with the ages of their respective host sediments. These results point to the 510 

release of iodine from local organic materials with little or no fluid movement within 

the sediments involved. The slight increase in iodine concentrations with depth probably 

is caused by the gradual degradation of organic materials with time and the concurrent 

release of iodine into the pore waters. The concentration profiles for these two cores 

agree well with others found in deep sea sediments with low concentrations of organic 515 

materials (e.g., Martin et al., 1993), but it is the first time that iodine ages verify that 

local sources are responsible for the iodine in these sediments. 

 The other major type of iodine is present in all the landward cores. Iodine there 

is enriched over seawater values by two to three orders of magnitude and has 129I/I 

ratios predominantly below 400×10-15, corresponding to ages of 30 Ma or older. 520 

Because the host sediments of samples there are all younger than 7 Ma, iodine could not 

have been derived locally and must have been transported into their current location by 

the advection of aqueous fluids. In most landward cores, iodine concentrations 

gradually increase with depth, with a corresponding decrease in 129I/I ratios, best visible 

in the core at Site C0001. These profiles reflect the mixing between the two types of 525 

iodine, especially in the shallow depths of the cores. It is worth noting that sites in other 

locations with high concentrations of iodine in pore waters are all characterized by the 
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presence of gas hydrates or other high concentrations of methane (e.g., Lu et al., 2011; 

Fehn, 2012) as is the case in the landward sites of the Nankai Trough. While mixing 

between these two sources of iodine are the predominant causes for the shapes of the 530 

observed profiles, presence of structural discontinuities might also influence the profiles, 

such as a change in porosity, fluid flow through the megasplay fault or lateral movement 

in the shallow layers of the Kumano Forearc Basin.  

 

6.5. Distribution of iodine between fluids and solids in marine sediments 535 

The main goal of this study was the determination of the origin of iodine in the 

fluids collected from sediments and its relation to flow patterns across an active margin. 

Iodine concentrations were not directly determined in the sediments themselves, but, 

because the distribution of iodine in marine sediments is closely tied to that of organic 

carbon (e.g., Kennedy and Elderfield, 1987), the TOC concentration can be used to 540 

estimate the amount of iodine in the solid part of the sediments. An investigation of 

iodine concentrations in cores from the Peru Margin determined that I/TOC ratios in the 

solids mostly are close to 1×10-4 g/g in situations without gas hydrates present and 

somewhat higher in locations with gas hydrates (Martin et al., 1993). The similarity in 

geologic setting between the two active margins allows the use of this value for an 545 

estimate of iodine concentrations in the solid phases in the Nankai Trough Transect. At 

Site C0011, the TOC value varies between 0.1 and 0.4 wt%, which results in iodine 

concentrations between 0.1 and 0.4 ppm. Using a porosity of 50% (Fig. 2) and a density 

of 2 g/cm3, the volumetric concentration of iodine is between 0.1 and 0.4 µg/cm3 in the 

solid phase. The concentrations in the fluids vary between 10 and 50 µM (Fig. 2), which, 550 

using the same porosity, translates to values between 0.5 and 2.5 µg/cm3 at Site C0011.  
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Although these calculations provide only rough estimates, they demonstrate 

that even at the low concentrations in the seaward sites the majority of iodine is 

contained in the fluids. Further addition of iodine from the disintegration of organic 

materials is possible, but would, at most, double the concentrations in these cores and 555 

would not affect the isotopic ratio, because iodine in the incoming sediments has similar 

ages as those observed in the fluids. While organic materials in the local sediments have 

contributed to the iodine budget in all of the fluids, it is the major source only in the 

seaward sites, but not in the landward sites. 

The high concentrations in the landward fluids suggest that the source 560 

formations had considerably higher organic materials present than found in the sediment 

cores here. All the measured TOC concentrations in this study are below 1 wt%, with 

most of the values around 0.5 wt%. Because these values are lower by one order of 

magnitude or more compared to other sites (e.g., Martin et al., 1993), it is not hard to 

image that the potential source regions had sufficient organic material to supply the 565 

observed iodine in the fluids on the landward sites.  

 

6.6. A model for fluid transport in the Nankai Trough area 

Figure 6A compares the analytical results across thetransect, with 

concentrations and ages of the oldest iodine sample at each site and the age of the 570 

respective host sediments. The proposed mode of iodine transport across the 

NanTroSEIZE transect based on the 129I system in pore waters is summarized in Fig. 6B. 

The ages are relatively constant at >30 Ma throughout the sediment column at the 

landward site, suggesting that iodine there is derived from similar lithologic units 

related to the old backstop positioned landward of the core sites. These units probably 575 
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contain substantial amounts of organic materials, accumulated over 50 Myrs or more, 

which is the likely source of the iodine in the pore waters. The migration of the fluids 

carrying old iodine might be impeded at unconformities such as the lithologic boundary 

found at Site C0001, or might show the addition of substantial amounts of iodine via 

lateral movement as at Site C0002. The situation is very different in the Shikoku Basin 580 

hemipelagic sediment overlying the subducting Philippine Sea Plate. Iodine 

concentrations in these locations are only slightly above those in seawater, suggesting 

that little, if any, iodine is transported within these sediments. Although 129I/I ratios in 

only two samples could be measured in these cores, the results are compatible with this 

interpretation, i.e., they are of similar age as the host sediments and do not show 585 

migration into the current locations. As marine sediments travel past the trough into the 

subduction zone, relatively young iodine might be mobilized and added to the fluids 

traveling through the megasplay fault zone and the decollement. These additions could 

explain the younger ages observed in the fluids close to these structural discontinuities. 

Although the results derived from the 129I system are directly applicable only to 590 

questions concerning origin and migration of iodine, they provide insights for the 

movement of fluids and other compounds in this area. Transport of iodine over the 

distances postulated here must have occurred in aqueous fluids, which, although not 

necessarily as old as the iodine, must have reached the deep source formations or 

originated there to bring iodine to the current locations. Cores with high iodine 595 

concentrations were all found on the landward side of the trough system, typically 

associated with high concentrations of methane. The change from low methane 

concentrations in the seaward sites to very high concentrations in the landward sites 

follows closely that of the iodine concentrations. Just like iodine, methane is also 
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derived from organic material and has very similar transport characteristics in aqueous 600 

fluids (Boudreau, 1997), which has resulted in a close correlation between the 

occurrence of methane and the enrichment of iodine in marine fluids (e.g., Martin et al., 

1993; Egeberg and Dickens, 1999, Lu et al., 2011). 

 

7. CONCLUSIONS 605 

 The iodine isotope system together with halogen systematics was applied for 

the understanding of sources and migration paths for iodine-carrying fluids in the 

accretionary system along the NanTroSEIZE transect. It is the first investigation, in 

which the iodine system was used to compare sites on both sides of an active subduction 

zone. Samples came from nine cores covering sites in sediments of the Shikoku Basin at 610 

the seaward side of the trough as well as in the accretionary prism and the Kumano 

Forearc Basin at the landward side. In all landward cores, iodine concentrations are 

strongly enriched compared to seawater values, reaching values above 400 µM, but are 

close to seawater values in the seaward sites. The differences are also visible in iodine 

ages: At all landward sites ages reach values between 30 and 50 Ma, i.e., considerably 615 

older than those in the host sediments, but ages are very close to those of the host 

sediments at the seaward sites.  

The low iodine concentrations observed at the seaward sites probably are 

related to the release of iodine from organic matter and, because iodine ages at the 

seaward sites are compatible with those of the host sediments, only local transport of 620 

iodine occurs there. This compatibility between iodine ages and sediment ages at the 

seaward sites also is in excellent agreement with the interpretation of earlier 129I results, 

related to the transport of marine sediments into subduction zones and subsequent 
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release of volatiles from subduction volcanoes (e.g., Snyder and Fehn, 2002; Fehn, 

2012).  625 

In contrast, the 129I/I data at the landward sites as well as the high iodine 

concentrations demonstrate that iodine in pore waters there was transported from old 

accreted sediments in the forearc area. The potential source areas are at distances of 

more than 10 km from the sample sites, indicating that large scale fluid movement 

occurs in the upper plate. The distribution of iodine ages in these sites might also reflect 630 

the influence of structural features, such as the megasplay fault or the decollement, on 

the transport of fluids in this region. The similarities observed in the systematics of 

iodine and methane concentrations in this transect together with their matches in 

transport characteristics indicate that iodine and methane are derived from the same 

sources in the upper plate and carried by aquatic fluids over distances in excess of 10 635 

km into the current locations at the landward sites of the trough. 
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FIGURE CAPTIONS 

Fig. 1 (A) Location of research area. (B) Bathymetric map of the Nankai Trough 870 

offshore the Japanese main island and locations of Sites C0001 to C00018 cored during 

IODP Expeditions 315, 316, 322, and 333. Black thick lines indicate the seismic line 

shown in panel (D). Stars indicate the locations of previous gas hydrate explorations 

(Fehn et al., 2003; Tomaru et al., 2007a). (C) Detailed bathymetric map of the 

NanTroSEIZE transect with the seismic line (except Site C0002). (D) Regional seismic 875 

image across the cored sites. 

Fig. 2 Depth profiles of sediment porosity, total organic carbon (TOC), headspace 

methane,  concentrations of chlorine, bromine, iodine, and 129I/I ratio with iodine age 
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in pore waters, shown with sediment age. No samples were recovered between 201 and 

477 m CSF at Site C0002. Red and blue lines indicate the depths of lithologic 880 

boundaries between the overlying Kumano Forearc Basin sediment and underlying 

accreted sediment at Sites C0001 and C0002, respectively (Kinoshita et al., 2009). 

Green lines indicate brecciated/fractured zone associated with the megasplay fault 

(Kinoshita et al., 2009). Black and gray lines indicate brecciated/fractured zone of the 

main frontal thrust zone (Kinoshita et al., 2009). Light blue and orange lines indicate the 885 

lithologic boundary between the Shikoku Basin sediment and underlying igneous 

basement (Saito et al., 2010). Dashed lines represent seawater values (Burton, 1996; 

Fehn et al., 2007b).  

Fig. 3 Depth profiles of I/Cl and I/Br ratios characterizing iodine enrichment and 

iodine (bromine) source material. Lines indicate the lithologic boundaries or 890 

brecciated/fractured zones as shown in Figure. 2 

Fig. 4. Comparison between the ages of host sediments and iodine ages derived 

from 129I in pore water. The dashed line indicates a ratio of 1:1 between the ages of the 

host sediment and dissolved iodine. The ages of host sediment including error margins 

were determined using biostratigraphic ages in Kinoshita et al. (2009), Saito et al. 895 

(2010), Henry et al. (2012), Hayashi et al. (2011), and Su (2012). 

Fig. 5. 1/I vs. 129I/I diagram showing sources and mixing paths of iodine. 

Fig. 6. (A) Summary of concentration of iodine dissolved in pore water (open symbol), 

age of iodine radioisotope (closed symbol) and its host sediment (bar). Samples with 

oldest iodine at each site are represented. (B) Schematic of iodine migration paths 900 

across the NanTroSEIZE transect. Blue colored areas highlight potential sources for old 

iodine relative to the host sediments: old accreted sediments in the backstop and at the 
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root of the megasplay fault. 



Table 1. Analytical results of 129I/I ratio of pore waters from IODP Expeditions 315, 316, 

322, and 333.  

Site/Hole 

Average 

depth 

(m CSF)* 

Average I 

(μM)* 

129I/I 

(10-15)† 

Age 

(Ma) 

C0001E 41.0 71.91 938±98.1 10.6 

C0001E 89.6 143.2 825±243 13.6 

C0001F 154.3 190.8 545±110 22.9 

C0001F 183.9 203.1 817±92.7 13.8 

C0001F 226.2 209.2 344±66.9 33.3 

C0001F 278.9 196.7 420±40.3 28.9 

C0001F 336.1 202.4 388±124 30.6 

C0001F 423.0 195.6 383±26.0 31.0 

C0002B 741.3 197.3 426±105 28.5 

C0002B 984.2 180.8 421±86.3 28.8 

C0002D 36.3 187.4 379±16.4 31.2 

C0002D 111.9 400.1 246±16.1 41.0 

C0004D 246.2 193.1 315±113 35.4 

C0004D 345.0 205.7 582±243 21.4 

C0006E 130.9 138.9 355±127 32.6 

C0006E 312.4 135.6 311±80.1 35.6 

C0007ABC 10.3 n.d. 244±23.8 41.1 

C0007D 250.4 106.8 289±38.5 37.3 

C0007D 383.0 84.36 221±24.7 43.3 

C0008AC 20.4 95.01 194±43.6 46.3 

C0008A 61.3 168.8 191±18.8 46.7 

C0008A 138.0 195.6 237±33.1 41.8 

C0008A 211.5 189.0 229±20.7 42.6 

C0008C 54.5 169.8 207±49.6 44.9 

C0008C 97.5 181.4 246±21.4 40.9 

C0008C 163.4 173.2 336±29.0 33.9 

C0011D 203.7 27.23 (150±30.0)x10  0.00 

C0011D 322.5 32.62 (115±21.0)x10 6.02 

*Weighted average depth and concentration were calculated from I 
concentration and volume of sample aliquots combined in the sample 



for 129I/I measurement. 
†Iodine age is calculated from standard decay equation of 129I with an 
initial 129I/I ratio of 1500×10-15. 
n.d.: not determined. 
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