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Introduction; 

Given the high costs and labor-intensive efforts involved in the development of a new drug, 

selection of candidates with good pharmacokinetic profiles is becoming commonplace (Wishart 

2007). Indeed, while poor exposure of candidate compounds was the most significant cause of 

attrition, accounting for approximately 40% of all candidate loss in the early 1990s, the 

contribution of poor pharmacokinetics to all attrition had dramatically decreased to less than 10% 

by 2000 due to improvements in methods for predicting human pharmacokinetics, including 

development of the physiological model, well-stirred model, parallel tube model, and dispersion 

model (Iwatsubo et al., 1996, Naritomi et al., 2001, De Buck et al., 2007). In addition, human liver 

microsomes became commercially available in the late 1990s, and screening systems to evaluate 

metabolic stability toward cytochrome P-450 (CYP)-mediated metabolism in the liver have also 

been developed, facilitating selection of drug candidates most stable against CYP metabolism in the 

liver. In contrast, increasing focus is being directed towards the role of extra-hepatic or non-CYP 

metabolism in elimination of drug candidates from the body (Doherty and Charman 2002, Williams 

et al., 2004).  

The intestine is the major organ involved in extra-hepatic metabolism in the body, and members of 

the CYP3A subfamily are present in high levels in human intestinal epithelial cells as metabolizing 

enzymes, influencing the oral exposure of several drugs (Doherty and Charman 2002). Benet et al. 

(1999) proposed that the synergistic effects of CYP3A4-mediated metabolism and p-glycoprotein 

(P-gp)-mediated efflux in epithelial cells may result in unexpectedly high first-pass metabolism in 
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the intestine due to the overlapping substrate specificities of these proteins. Therefore, when 

predicting human pharmacokinetics, the fraction absorbed (Fa) and intestinal availability (Fg), in 

addition to hepatic availability (Fh), are the main factors to consider. However, unlike Fh, which 

can be easily estimated via conventional pharmacokinetic analysis described above, Fa and Fg are 

difficult to evaluate separately. As such, animal pharmacokinetic parameters have mainly used to 

predict human FaFg in the drug discovery stage. 

Similarly, an increasing amount of data has evidenced the contribution of non-CYP 

metabolism to elimination of drug candidates. For instance, while introducing polar functional 

groups such as hydroxyl or carbonyl groups does indeed reduce lipophilicity of compounds, 

thereby proving useful in preventing CYP metabolism during lead optimization in drug discovery, 

these units are subsequently targeted by phase II metabolism such as conjugation (Nassar et al., 

2004, Thompson, 2001). Indeed, the UDP-glucuronosyltransferase family contribute to clearance 

for approximately 10% of the top 200 drugs prescribed in the United States in 2002, and 

glucuronidation is the next major clearance mechanism for these drugs following CYP family 

(Williams et al., 2004). Likewise, flavin-containing monooxygenase and monoamineoxidase have 

significant contributions to clearance for some of the top 200 drugs (Williams et al., 2004). In 

addition, efforts to reduce CYP metabolic liability have led to development of a number of 

compounds that are instead cleared by aldehyde oxidase (AO) (Torres et al., 2007). Or Rosemond 

and Walsh (2004) reported that carbonyl reduction is the major or sole metabolic pathway for 

several clinical drugs, where carbonyl and aldo-keto reductase are major isoform contributing to 
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drug metabolism. However, given that AO and certain members of the reductase family are 

cytosolic enzymes, current microsome-based methods do not adequately and completely describe 

metabolic activities; indeed, several studies have reported the risk of underestimating AO 

metabolism in humans (Hutzler et al., 2012, Zientek et al., 2010).  

Despite these situations, species differences in extra-hepatic or non-CYP metabolism remains 

un-clarified. Consequently, the methods of human pharmacokinetics prediction with respect to 

these metabolic pathway have not been sufficiently developed. As such, novel approaches to 

complement liver microsome-based prediction methods are needed to evaluate human extra-hepatic 

or non-CYP metabolic pathways.  

Here, I examine the impacts of species differences in intestinal and AO metabolism on human 

pharmacokinetic prediction in the drug discovery process and assess a novel approach to predicting 

AO metabolism in humans. 
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1. A comparison of pharmacokinetics between humans and monkeys 

 

1.1  Introduction 

 When predicting human pharmacokinetics, the Fa, Fg, and Fh are the main factors to consider. 

Fh prediction has become considerably accurate since several mathematical prediction models have 

been established, including the physiological model, well stirred model, parallel tube model, and 

dispersion model (Iwatsubo et al., 1996; Naritomi et al., 2001; De Buck et al., 2007). For FaFg, 

however, no quantitative prediction method has ever been established, although several qualitative 

prediction methods using human intestinal microsomes have been reported (Chiba et al., 1997; 

Shen et al., 1997; Fagerholm, 2007; Fisher and Labissiere, 2007; Yang et al., 2007). For these 

reasons, I have mainly used animal pharmacokinetic parameters to predict human FaFg in the drug 

discovery stage.  

It has been regarded as natural that monkey metabolism is most similar to that of humans, so that 

cynomolgus monkeys have been widely used in pharmacokinetic or drug-safety studies for that 

reason. In the last decade, however, cynomolgus monkeys have often been found to have a poorer 

bioavailability (BA) than other animal species for many compounds (Tabata et al., 2009).  

More recently, several reports have stated that the intestinal transit process, namely Fa or Fg, is a 

major contributor to the low BA in cynomolgus monkeys (Sakuda et al., 2006; Takahashi et al., 

2008). However, unlike Fh, which can be easily calculated via conventional pharmacokinetic 

analysis, Fa and Fg are difficult to evaluate separately, particularly in the intestine. Consequently, 
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few systemic studies have explored the usefulness of monkey FaFg parameters to predict human 

pharmacokinetics.  

Chiou and Buehler (2002) reported that the Fa and total clearance, corrected by hepatic blood 

flow rate, correlated well between humans and monkeys. This finding suggested that the species 

difference might be caused by Fg. In addition, it was also reported that midazolam (MDZ) had a 

markedly lower BA (2.0%) in cynomolgus monkeys than in humans (24–46%), which was caused 

by high first-pass intestinal metabolism (Sakuda et al., 2006). Similar results reported by Nishimura 

et al. (2007) showed that extensive metabolism in the intestine was the cause of MDZ's low BA in 

cynomolgus monkeys.  

In this study, the following studies were performed to further investigate the species differences 

between humans and cynomolgus monkeys. Thirteen commercially available drugs for which the 

human pharmacokinetic parameters are known were selected and classified into five categories 

according to CYP isoform selectivity and P-gp affinity.  

The 13 drugs were intravenously and orally administered to cynomolgus monkeys to obtain in 

vivo pharmacokinetic parameters (BA, Fh, and FaFg) for each drug, which were then compared 

with those in humans. In addition, I also obtained in vitro parameters for all 13 drugs, including 

protein binding, blood-to-plasma concentration ratio (Rb), membrane permeability, in vitro intrinsic 

clearance in liver microsomes (CLint vitro, liver), CLint vitro in intestine microsomes (CLint vitro, intestine), 

and P-gp affinity.  

Here, I discuss the main factor affecting the species difference between humans and cynomolgus 
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monkeys indicated by these results. I also discuss the adequacy of cynomolgus monkeys as an 

animal model for predicting human pharmacokinetics. 

 

1.2  Materials and Methods 

1.2.1 Chemicals and reagents 

MDZ (Dormicam, 5 mg/mL solution for intravenous injection) was obtained from Astellas 

Pharma Inc. (Tokyo). Tacrolimus (TAC) was synthesized at our laboratory. Lithium carbonate (Li) 

was purchased from Kanto Chemical Co., Inc. (Tokyo). Hydrochlorothiazide (HT), verapamil 

(VER), propranolol (PRO), and amitriptyline (AMI) were purchased from Wako Pure Chemicals 

(Osaka). Dexamethasone (DEX), nifedipine (NIF), quinidine (QID), timolol (TIM), and ibuprofen 

(IBU) were purchased from Sigma-Aldrich Corporation (St. Louis, MO, USA). Liver and intestine 

microsomes from humans and cynomolgus monkeys were purchased from XenoTech, LLC 

(Lenexa, KS, USA). All other reagents and solvents were commercial products of analytical grade. 

 

1.2.2 Selected drugs and categorization 

I allocated the 13 drugs into five categories (Type A–E), according to their pharmacokinetic 

properties in humans, as follows: membrane permeability, CYP isoform selectivity, and P-gp 

affinity (Yu, 1999; Kivisto et al., 2004; Yang et al., 2006) (Table 1-1).  

Type A 

The drugs categorized as Type A are indicator drugs that undergo no metabolism in humans and 
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are not P-gp substrates. For each of these, almost all of the absorbed drug is excreted into urine as 

the unchanged form. Li, which has a high BA in humans (94.5%) (Arancibia et al., 1986), and HT, 

which has a moderate BA in humans (60.2%) (Patel et al., 1984), were assigned to this category.  

Type B 

The drugs categorized as Type B are CYP3A4 substrates, and they have very weak, if any, affinity 

for P-gp. DEX, which has a high BA in humans (81.4%) (Duggan et al., 1975), NIF, and MDZ, 

which have a moderate BA in humans [41.2% (Holtbecker et al., 1996) and 30.0% (Thummel et al., 

1996), respectively] were assigned to this category.  

Type C 

The drugs categorized as Type C are substrates of both CYP3A4 and P-gp. QID, which has a high 

BA in humans (79.5%) (Greenblatt et al., 1977), as well as TAC and VER, which have a moderate 

BA in humans [23.3% (Moller et al., 1999) and 18.0% (McAllister and Kirsten, 1982), 

respectively], were assigned to this category.  

Type D 

Digoxin (DIG), which is substrate of P-gp but not CYP3A4, was categorized as Type D. DIG has 

a high BA in humans (65.3%) (Hinderling and Hartmann, 1991) and undergoes almost no 

metabolism in the human body, i.e., it undergoes only P-gp efflux during the absorption process in 

the intestine.  

Type E 

The drugs categorized as Type E are mainly metabolized by the CYP isoform (except CYP3A4) 
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and have very weak, if any, affinity for P-gp. IBU and TIM, which have a high BA in humans 

[100% (Martin et al., 1990) and 61.0% (Wilson et al., 1982), respectively], as well as AMI and 

PRO, which have a moderate BA in humans [47.7% (Schulz et al., 1983) and 29.0% (Borgstrom et 

al., 1981), respectively], were assigned to this category. See Table 1-1 for CYP isoform that 

contribute to each drug metabolism.  
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1.2.3 Pharmacokinetic study in cynomolgus monkeys 

Animals 

Male cynomolgus monkeys (Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, and Astellas 

Research Technology, Osaka) weighing approximately 5 kg were used. The animal experiment was 

conducted according to the ethical rules of each company.  

Pharmacokinetic Study 

Intravenous and oral administrations were performed with a washout period of at least 7 days 

between each type of administration. Animals were fasted for approximately 17 h before dosing. 

Blood samples were collected from the antebrachial vein, kept in an ice-water bath, and then 

centrifuged at 10,000 rpm for 1 min at 4°C. The plasma samples were kept in a deep freezer 

(approximately −20°C) until analysis. The experimental conditions for the pharmacokinetic studies, 

including doses, dosing solution, dosing volume, and sampling time for each drug, are shown in 

Table 1-2. Values obtained from the literature were used as the pharmacokinetic parameter values 

for all selected drugs in humans as well as those for MDZ in cynomolgus monkeys. 
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1.2.4 Measurement of model compounds plasma concentration in cynomolgus monkeys 

The concentrations of model drugs in cynomolgus monkey plasma were determined by using 

atomic absorption, enzyme immunoassay analysis, or high-performance liquid chromatography 

(LC) coupled with tandem mass spectrometry (MS/MS) with sample pretreatment.  

 

Atomic absorption method: Lithium 

The lithium level in the plasma was determined by using atomic absorption in accordance with the 

method of Pybus and Bowers (1970).  

 

Enzyme immunoassay analysis: Dexamethasone and tacrolimus 

The DEX level in the plasma and the TAC level in the blood were determined by using enzyme 

immunoassay. After extraction (see below), an aliquot was used as the sample for analysis by 

enzyme immunoassay (Tamura et al., 1987).  

A 50-μL aliquot of plasma was buffered with 1% skim milk/phosphate-buffered saline. After the 

addition of 1 mL of distilled water, the mixture was extracted with 5 mL of diethyl ether, and the 

solvent was removed under a stream of nitrogen gas. The residue was then dissolved in 250 μL of 

skim milk (1%)/phosphate-buffered saline.  

 

LC-MS/MS analysis 

The plasma concentrations of all other drugs were determined by using LC-MS/MS. The 
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LC-system comprised a LC-VP/LC-10A series (Shimadzu, Kyoto) or HP-1100 series 

high-performance liquid chromatography (HPLC: Agilent Technologies, Santa Clara, CA, USA). 

The MS/MS experiments were conducted by using API-2000 or API-3000 LC-MS/MS systems 

(AB SCIEX, Foster, CA, USA). The details of the LC-MS/MS conditions, including the machines 

and columns used for each drug, are shown in Table 1-3.  

 

Hydrochlorothiazide 

A 200-μL aliquot of plasma was buffered with 500 μL of phosphate buffer (10 mM) adjusted to 

pH 3.0. After adding 100 μL of acetonitrile and 20 μL of internal standard solution (1 μg/mL 

diclofenac in 50% acetonitrile), the mixture was extracted with 4 mL of ethyl acetate, and the 

solvent was removed under a stream of nitrogen gas. Then, the residue was dissolved in 100 μL of 

mobile phase, and a 40-μL aliquot was injected into the LC-MS/MS (molecular>product: m/z = 296 

> 269 [M+H]−).  

 

Nifedipine 

A 50-μL aliquot of plasma, 50 μL of acetonitrile (50%), and 100 μL of internal standard solution 

(1 μg/mL of in-house compound A in acetonitrile) were mixed well and then centrifuged to remove 

precipitated protein. The supernatant (100 μL) was then decanted, and 30 μL was injected into the 

LC-MS/MS (molecular>product: m/z = 347 > 315 [M+H]+).  
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Quinidine, Verapamil, Propranolol, Amitriptyline, and Timolol 

A 200-μL aliquot of plasma was buffered with 500 μL of saturated sodium bicarbonate solution. 

After the addition of 50 μL of acetonitrile and 50 μL of internal standard solution (1 μg/mL of 

in-house compound B in 50% acetonitrile), the mixture was extracted with 3 mL of tert-butyl 

methyl ether, after which the solvent was removed under a stream of nitrogen gas. The residue was 

then dissolved in 200 μL of mobile phase, and a 20-μL aliquot was injected into the LC-MS/MS 

(molecular>product: QID m/z = 325 > 307 [M+H]+, VER m/z = 455 > 165 [M+H]+, TIM m/z = 

317 > 261 [M+H]+, AMI m/z = 278 > 117 [M+H]+, PRO m/z = 260 > 116 [M+H]+).  

 

Digoxin 

A 200-μL aliquot of plasma was buffered with 500 μL of phosphate buffer (10 mM) adjusted to 

pH 3.0. After the addition of 100 μL of acetonitrile and 50 μL of internal standard solution (1 

μg/mL digitoxin in 50% acetonitrile), the mixture was extracted with 3 mL of ethyl acetate, and the 

solvent was removed under a stream of nitrogen gas. The residue was then dissolved in 100 μL of 

mobile phase, after which a 20-μL aliquot was injected into the LC-MS/MS (molecular>product: 

m/z = 798 > 391 [M+NH4]+).  

Ibuprofen 

A 200-μL aliquot of plasma was buffered with 500 μL of phosphoric acid (5 mM). After the 

addition of 50 μL of acetonitrile and 50 μL of internal standard solution (1 μg/mL of diclofenac in 

50% acetonitrile), the mixture was extracted with 3 mL of tert-butyl methyl ether, and the solvent 
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was removed under a stream of nitrogen gas. The residue was then dissolved in 200 μL of mobile 

phase, and a 20-μL aliquot was injected into the LC-MS/MS (molecular>product: m/z = 205 > 161, 

[M+H]−). 
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1.2.5 In vitro parameters 

Blood-to-plasma concentration ratio 

One milliliter of human and cynomolgus monkey blood was spiked with 10 μL of standard 

solution (100 μg/mL; 1000 ng/mL final) and pre-incubated in a shaking water bath at 37°C for 10 

min. A 200-μL aliquot was then analyzed to determine the drug concentration in the blood. The 

remaining samples were centrifuged at 1800g for 10 min at 4°C, after which the drug concentration 

in 200-μL aliquots of plasma was determined. The Rb was then calculated from the concentrations 

of drug per milliliter of blood and plasma. All data regarding TAC level in humans and cynomolgus 

monkeys were determined by blood level base because the Rb value of TAC has been reported to 

be nonlinear, with values between 10 and 40 depending on the drug concentration in humans 

(Wallemacq et al., 1993).  

 

Parallel artificial membrane permeability assay 

The parallel artificial membrane permeability assay (PAMPA) method was carried out by using a 

PAMPA Evolution instrument from pION INC. (Woburn, MA, USA) (Avdeef et al., 2005). The 

lipid solution consisted of a 20% (w/v) dodecane solution and lecithin mixture. The donor solutions 

consisted of test compounds dissolved in 10 mM dimethylsulfoxide diluted in pH 6.5 buffer (final 

concentration of 50 μM). The acceptor plate was filled with 1% (w/v) SDS in water, and the pH 

was adjusted to 7.4 with 1N hydrochloric acid. The test plate was incubated for 120 min at 30°C. 

The concentration of each test compound in the reference, donor, and acceptor plates was measured 
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with a UV plate reader. The permeability coefficient was calculated by using Evolution Library 

Manager software version 2.2 (pION INC.).  

 

Plasma protein binding 

The plasma protein binding (unbound drug fraction in plasma) was determined by using the 

equilibrium dialysis method or ultracentrifugation method and the following equations:  

Protein binding (%) = (1-fp) × 100  (1-1) 

fp = concentration in filtrate or supernatant/concentration in serum  (1-1)’ 

where fp is the unbound drug fraction in plasma. The unbound drug fraction in blood (fb) was 

calculated by dividing fp by Rb.  

 

Equilibrium dialysis method 

A DIANORM dialysis device (Diachema, Zürich, Switzerland), which is impermeable to 

substances with molecular weights greater than 10,000, was used. Aliquots (3.5-mL) of human and 

cynomolgus monkey plasma were spiked with 35 μL of standard solution (100 μg/mL; 1000 ng/mL 

final) and pre-incubated in a 37°C shaking water bath for 10 min.  

 

One milliliter of mixture and isotonic phosphate buffer solution (pH 7.4) was put into the 

dialyzing cell and receptor cell, respectively. After 4-h incubation at 37°C, the plasma mixture and 

buffer sample were stored in 100-μL aliquots at −20°C until analysis.  



 

21 
 

 

Ultracentrifugation method 

Ten microliters of standard solution (100 μg/mL) was added to 1000 μL of human or cynomolgus 

monkey plasma. The calibration samples were prepared by adding 17 μL of acetonitrile (50%) to 

1700 μL of human or cynomolgus monkey plasma. These samples were then centrifuged at 

436,000g for 140 min at 37°C by using a Beckman Optimal TL ultracentrifuge (Beckman Coulter, 

Fullerton, CA, USA). After ultracentrifugation, the unbound fp was calculated by dividing the 

concentration of drugs in the supernatant by that in the plasma. 

 

In vitro metabolism in liver and intestine microsomes 

Metabolic study conditions 

The time courses of the unchanged drugs were obtained. Each drug was incubated at 37°C with a 

reaction mixture (1 mL) containing 500 μL of potassium-phosphate buffer (200 mM; pH 7.4), 100 

μL of 1 mM EDTA-NaOH (pH 7.4), 100 μL of liver or intestine microsomes solution (the final 

concentration of microsomal protein was 0.05 mg/mL for TAC, 0.5 mg/mL for HT and DIG, and 

0.2 mg/mL for all other drugs), 190 μL of distilled water, and 10 μL of each compound solution in 

50% acetonitrile (final concentration: 0.2 μM).  

After a 5-min pre-incubation, the reaction was initiated by the addition of 100 μL of an 

NADPH-generating system. The reaction was terminated by adding 100 μL of reaction mixture to 

200 μL of acetonitrile including the internal standard at various time periods. After stopping the 
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enzyme reaction, the reaction mixture of TAC and DIG was extracted with 3 mL of tertiary butyl 

methyl ether, and the solvent was removed under a stream of nitrogen gas. The residue was then 

dissolved in 150 μL of mobile phase, and a 10-μL aliquot was injected into the LC-MS/MS. The 

reaction mixture of DEX and NIF was centrifuged at 10,000g for 5 min. The supernatant (100 μL) 

was then decanted, and 30-μL aliquots were injected into the LC-MS/MS.  

The reaction mixtures of all other drugs were centrifuged at 10,000g for 5 min. The supernatants 

(100 μL) were decanted, and 10-μL aliquots were injected into the LC-MS/MS.  

 

LC-MS/MS conditions 

In this experiment, the unchanged concentrations of all drugs were determined by using 

LC-MS/MS analysis. Mass number of molecular ion and product ion for each compounds were 

identified as follows (polarity, molecular>product): HT m/z = 296 > 269 [M+H]−; DEX m/z = 393 

> 91 [M+H]+; NIF m/z = 347 > 315 [M+H]+; MDZ m/z = 326 > 291 [M+H]+; QID m/z = 325 > 

307 [M+H]+; TAC m/z = 821 > 769 [M+NH4]+; VER m/z = 455 > 165 [M+H]+; DIG m/z = 780 > 

85 [M+H]−; IBU m/z = 205 > 161 [M+H]−; TIM m/z = 317 > 261 [M+H]+; AMI m/z = 278 > 117 

[M+H]+; PRO m/z = 260 > 116 [M+H]+.  

The Prominence 2000 series (Shimadzu) was used as the LC-system. The MS/MS analyses were 

conducted on an API-3200 LC-MS/MS system (AB SCIEX). For TAC, an Alliance HT Waters 

2790 separations module and Micromass Quattro Ultima (Waters Corporation, Milford, MA, USA) 

were used for the LC-MS/MS analysis.  
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The Supelco RP-Amide (3 μm, 3.0 × 31 mm; Supelco, Inc., Bellefonte, PA, USA) was used as the 

analysis column for HT and DIG. The Capcell PAK MG (3 μm, 2.0 × 35 mm; Sh iseido Corporation, 

Kyoto) HPLC column was used for all other drugs.  

The flow rate was 0.3 mL/min. The column temperature was 50°C. The gradient system was used, 

starting with an ammonium acetate concentration of 20 mM (pH 4.8)/acetonitrile (9:1) for 0.5 min, 

and increasing the ratio of acetonitrile to 20 mM ammonium acetate (pH 4.8)/acetonitrile (1:9) over 

0.5 min, which was then held for 2.5 min. The initial conditions were restored over 0.1 min, after 

which the column was re-equilibrated for 1 min.  

 

Calculation of CLint vitro in liver microsomes 

CLint vitro, liver was calculated by using the following equation based on the time course of the 

residual ratio of the unchanged drugs as determined using least-squares linear regression (Naritomi 

et al., 2001): 

  CLint vitro, liver (mL/min/mg protein) = ke/microsomal protein concentration (1-2) 

where ke is the disappearance rate constant.  

In the case of liver microsomes study, the units of CLint liver values were converted to per kilogram 

of body weight by using the following equation: 

CLint vitro, liver (mL/min/kg) = CLint vitro, liver (mL/min/mg protein) × SF1 (mg protein/g liver) × 

SF2 (g liver/kg body weight) (1-3) 

where SF1 is the microsomal protein content per gram of liver [48.8 was used for both species 
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(Naritomi et al., 2001), assuming that the SF1 in cynomolgus monkeys is the same as in humans] 

and SF2 is the liver weight per kilogram of body weight (25.7 and 30.0 were used for humans and 

cynomolgus monkeys, respectively) (Davies and Morris, 1993).  

 

Calculation of CLint vitro in intestine microsomes 

CLint vitro, intestine was calculated by using the following equation based on the time course of the 

residual ratio of the unchanged drugs as determined using least-squares linear regression (Naritomi 

et al., 2001): 

  CLint vitro, intestine (μL/min/mg protein) = ke/microsomal protein concentration (1-4)  

 

P-gp ATPase assay 

Each drug was dissolved in dimethylsulfoxide (0.1–100 μM final) and pre-incubated for 5 min 

with 2 μg/mL human P-gp membrane (BD Gentest, Woburn, MA, USA) in 50 mM MES buffer (pH 

6.8 adjusted with Tris) containing 2 mM EGTA, 2 mM dithiothreitol, 50 mM potassium chloride, 

and 5 mM sodium azide. Then, the ATPase reaction was started by the addition of 50 mM Mg-ATP 

solution. After 20-min incubation at 37°C, the reaction was stopped by adding 20 μL of sodium 

dodecyl sulfate (10%) containing Antifoam A (Sigma-Aldrich Corporation). Subsequently, 200 μL 

of ammonium molybdate/zinc acetate was added for color development, and the mixture was 

incubated for another 20 min at 37°C. After incubation, the amount of liberated phosphate was 

measured by using the UV absorption method (630 nm). Baseline activity was determined by 
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reading incubated sodium orthovanadate (100 μM). Finally, ATPase activity was determined as the 

amount of liberated phosphate per milligram protein per minute. VER was evaluated in all ATPase 

assays, and the ATPase activity of each drug was normalized by dividing by the VER ATPase 

activity for each experiment. 

 

1.2.6 Calculation of in vivo pharmacokinetic parameters 

Plasma concentration data were analyzed individually at each point in time, and pharmacokinetic 

parameters were calculated by using a model-independent method. BA, FaFg, and Fh were then 

calculated from these pharmacokinetic parameters and Rb (see Blood-to-plasma concentration ratio 

under Materials and Methods) by using the formulas shown below. For Li and HT, I assumed that 

these drugs underwent almost no in vivo metabolism and that their FaFg values (meaning Fa in this 

case) were equal to BA. The BA values for the drugs in cynomolgus monkeys were determined by 

using the following equation: 

BA (%) = {AUCinf (p.o.)/AUCinf (i.v.)} × (Dose i.v./Dose p.o.) × 100 (1-5) 

where AUCinf (i.v.) and AUCinf (p.o.) are the area under the plasma concentration-time curve 

calculated using the trapezoidal rule with extrapolation from the last measured plasma 

concentration to infinity after intravenous and oral administrations, respectively.  

The Fh of drugs was determined by using the following equation and assuming that the 

elimination of drugs from the body after intravenous administration consisted of liver metabolism 

and renal excretion: 
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Fh = 1 − {(CLh/Rb)/Qh}, CLh = CLt × (1 − fe) (1-6) 

where Qh is the blood flow rate in the liver (the human and cynomolgus monkey Qh values were 

20.7 and 43.6 mL/min/kg, respectively) (Davies and Morris, 1993), CLh is hepatic clearance, CLt 

is total clearance, and fe is the urinary excretion ratio of the unchanged drug after intravenous 

administration. In cases where the fe value was not available, the CLh was assumed to be equal to 

the CLt.  

The drug FaFg values were determined by using the following equations, assuming that the BA 

was expressed as the product of FaFg and Fh: 

BA (%) = Fa × Fg × Fh × 100 (1-7) 

FaFg = {BA (%)/100}/Fh.  (1-7)’ 

The BA, FaFg, and Fh values of each drug in humans were also calculated in a similar manner by 

using the reported pharmacokinetic parameters.  

 

1.3  Results 

1.3.1 Comparison of pharmacokinetic parameters between humans and monkeys 

 The in vivo pharmacokinetic parameters, BA, FaFg, and Fh, for all 13 drugs are summarized in 

Table 1-4. Each drug's cynomolgus monkey BA, FaFg, and Fh values are plotted against those in 

humans in Figure 1-1. 

 

Correlation of the BA between Humans and Cynomolgus Monkeys 
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The BA values of all drugs observed in cynomolgus monkeys were compared with those in 

humans. The results showed that the BA value for Li, DEX, and IBU in humans and cynomolgus 

monkeys were similar, and that the BA value for HT and DIG were almost similar (<2-fold). In 

contrast, with the exception of DEX and IBU, many of the CYP substrate drugs had a markedly 

lower BA in cynomolgus monkeys than in humans.  

 

Type A 

The BA values for Li in humans and cynomolgus monkeys were similar (94.5%/97.9%), and HT 

showed slightly lower BA values in cynomolgus monkeys (30.7%) than in humans (60.2%).  

 

Type B 

For DEX, the BA values in humans and cynomolgus monkeys were similar (81.4 and 78.9%, 

respectively). However, the BA values for NIF and MDZ in cynomolgus monkeys were markedly 

lower [9.3 and 2.0% (Sakuda et al., 2006), respectively] than those in humans (41.2 and 30.0%, 

respectively).  

 

Type C 

The Type C drugs, QID, TAC and VER, which are known to be substrates for both CYP3A4 and 

P-gp in humans, had markedly lower BA values (4.5, 0.5, and 0%, respectively) in cynomolgus 

monkeys than in humans (79.5, 23.3, and 18.0%, respectively).  



 

28 
 

 

Type D 

The DIG, which is a typical substrate of P-gp, had a slightly lower BA value in cynomolgus 

monkeys (45.0%) than in humans (65.3%). This finding was similar to that for HT.  

 

Type E 

Whereas the BA value of IBU was almost the same in both species, that for TIM, AMI, and PRO 

was lower in cynomolgus monkeys (10.8, 1.3, and 3.3%) than in humans (61.0, 47.7, and 29.0%). 

These findings were similar to those for Type B drugs. No significant correlation between the CYP 

isoform selectivity of drugs and their BA values in cynomolgus monkeys was observed.  

 

Correlation of the Fh between humans and cynomolgus monkeys 

The correlations between the human and cynomolgus monkey Fh values for the 13 drugs are 

shown in Figure 1-1B. The Fh values in cynomolgus monkeys were similar to those in humans for 

all drugs except VER (Fh was calculated as 0 in cynomolgus monkeys), because the plots for the 

drugs were the same or nearly the same (Fig. 1-1B; Table 1-4). Li and HT underwent almost no in 

vivo metabolism; therefore, the Fh values were considered to be 1.  

 

Correlation of the FaFg between humans and cynomolgus monkeys 

As shown in Figure 1-1C, the FaFg values for Li, DEX, and IBU were similar in both humans and 
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cynomolgus monkeys (0.95/0.98, 0.93/0.85, and 1/1, respectively). For HT and DIG, the FaFg 

values in cynomolgus monkeys were slightly lower than those in humans (0.60/0.31 and 0.67/0.48 

in humans and cynomolgus monkeys, respectively).  

For the other 7 drugs (except VER), the BA in cynomolgus monkeys was low, and a markedly low 

FaFg was observed. These tendencies correlated well with those of the BA values (assuming Fh = 1 

for Li and HT, which means BA = FaFg). 
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A 

B  

C  

 

Figure 1-1. Correlation of BA (A), Fh (B), and FaFg (C) in humans and cynomolgus monkeys. 
Open circle, open triangle, open square, closed circle, and closed triangle represent category Types A-E, 

respectively. 
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Table 1-4; Summary of in vivo pharmacokinetic parameters in humans and cynomolgus 
monkeys. 

Drugs Species 
Dose 

(i.v./p.o.) 
CLt fe CLh BA FaFg Fh 

    mg/kg mL/min/kg % mL/min/kg %     

Lithium 
Human (−/0.25) 0.4 ± 0.2 No data 0a 94.5 ± 15.8 0.95 1a 

Monkey 0.14/0.27 0.7 ± 0.1 No data 0a 97.9 ± 6.8 0.98 1a 

Hydrochlorothiazide 
Human (−/0.32) 3.0 ± 1.0 60.2 0a 60.2 0.6 1a 

Monkey 1/1 5.9 ± 2.0 No data 0a 30.7 ± 9.4 0.31 1a 

Dexamethasone 
Human 0.17/0.17 2.7 ± 0.8 10.8 ± 4.3 2.4 81.4 ± 15.8 0.93 0.88 

Monkey 0.25/0.5 4.5 ± 0.8 No data 4.5 78.9 ± 9.8 0.85 0.93 

Nifedipine 
Human 0.02/0.27 8.2 ± 0.6 No data 8.2 41.2 ± 5.4 0.89 0.46 

Monkey 0.1/1 15.6 ± 3.5 0.057 15.6 9.3 ± 4.0 0.19 0.48 

Midazolam 
Human 0.013/0.026 4.7 ± 1.5 0.27 ± 0.07 4.7 30.0 ± 10.0 0.45 0.67 

Monkey 1/3 12.9 ± 1.8 <1% 12.9 2.0 ± 0.4 0.03 0.62 

Quinidine 
Human 4.3/5.0 3.8 ± 0.3 35.1 ± 1.8 2.5 79.5 ± 15.0 0.96 0.83 

Monkey 1/3 12.8 ± 0.7 0.6 ± 0.2 12.7 4.5 ± 1.7 0.07 0.62 

Tacrolimus 
Human 0.02/0.05 0.5 ± 0.1 0.04 ± 0.02 0.5 23.3 ± 16.7 0.24 0.98 

Monkey 0.004/0.02 2.6 ± 0.3 No data 2.6 0.5 ± 0.5 0.005 0.94 

Verapamil 
Human 0.14/1.14 11.8 ± 0.5 No data 11.8 18.0 ± 10.1 0.47 0.38 

Monkey 1/3 44.9 ± 10.5 1.5 ± 0.7 44.2 0 −b 0 

Digoxin 
Human 0.01/0.01 2.9 ± 0.6 80.5 ± 3.2 0.6 65.3 ± 22.5 0.67 0.97 

Monkey 0.1/0.1 2.9 ± 0.03 17.1 ± 9.3 2.4 45.0 ± 14.0 0.48 0.94 

Propranolol 
Human 0.13/0.5 11.6c No data 11.6 29 0.78 0.37 

Monkey 0.3/1 24.3 ± 2.4 No data 24.3 3.3 ± 1.5 0.1 0.34 

Amitriptyline 
Human 0.6/1.2 12.5 ± 2.3 No data 12.5 47.7 ± 11.0 1d 0.3 

Monkey 0.3/1 35.8 ± 8.8 0.2 ± 0.2 35.7 1.3 ± 1.0 0.03 0.41 

Timolol 
Human 0.025/0.4 7.7 ± 3.7 No data 7.7 61.0 ± 19.2 1d 0.56 

Monkey 0.3/1 13.6 ± 0.4 4.8 ± 2.6 13 10.8 ± 4.3 0.15 0.71 

Ibuprofen 
Human 2.9/4.2 0.8 ± 0.2 No data 0.8 102.8 ± 12.0 1d 0.93 

Monkey 1/3 7.9 ± 0.7 18.5 ± 1.1 6.4 103.4 ± 14.2 1d 0.76 
a Assuming CLh was 0, e.g., the Fh values were 1.  
b Not calculated.  
c CLt was calculated by dividing dose by AUC after intravenous administration.  
d The calculated values were greater than 1. 
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1.3.2 In vitro parameters 

In this study, some additional in vitro assays were performed to evaluate the drugs' (except Li) in 

vitro pharmacokinetic properties. These assays included determination of the Rb, membrane 

permeability, in vitro metabolic stability assay using human and cynomolgus monkey liver and 

intestine microsomes, plasma protein binding, and P-gp affinity. The results are summarized in 

Table 1-5. 

 

Membrane permeability 

As shown in Table 1-5, almost all drugs except HT and DIG showed good membrane permeability 

(apparent permeability coefficient of more than 10). Taking the BA values into consideration, the 

HT and DIG were speculated to be absorbed moderately in cynomolgus monkeys. These results 

suggest that all tested drugs were well absorbed or relatively well absorbed in cynomolgus 

monkeys, even though many drugs had a low BA.  

 

Metabolic stability in liver microsomes 

For HT and DIG, no depletion was observed, and the CLint vitro, liver for DEX MDZ, and IBU in 

both humans and cynomolgus monkeys were almost the same (66/24 mL/min/kg, 877/1422 

mL/min/kg, and 38/25 mL/min/kg, respectively). CLint vitro, liver values for the other seven drugs 

were higher in cynomolgus monkeys than in humans (Table 1-5). Although Fh correlated well 

between humans and cynomolgus monkeys for all tested drugs except VER, these drugs were 
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metabolized more rapidly in cynomolgus monkey microsomes than in human microsomes. 

Furthermore, the fb × CLint vitro, liver/Qh for NIF, VER, PRO, and AMI were found to be higher (>4) 

after taking fb and blood flow rate in the liver into consideration, indicating that these drugs might 

undergo rapid metabolism in the liver of cynomolgus monkeys.  

 

Metabolic stability in intestine microsomes 

The CLint vitro, intestine was expressed by μL/min/mg protein because there is no widely used 

physiological conversion model from μL/min/mg protein to μL/min/kg in intestine. The CLint vitro, 

intestine values for NIF, MDZ, QID, TAC, and VER in cynomolgus monkey intestine microsomes 

were 612, 1635, 212, 4663, and 696 μL/min/mg protein, respectively. As well as in human, the 

values were 138, 385, no depletion, 625, and 69 μL/min/mg protein for each (Fig. 1-2; Table 1-5). 

In contrast, no significant decreases in other drugs were observed in both human and cynomolgus 

monkey intestine microsomes. 

 

ATPase assay 

The ATPase activity of all drugs was normalized by dividing them by the VER value. As shown in 

Table 1-5, the ATPase activity of QID, DIG, and TAC was higher than that of VER. For PRO, AMI, 

TIM, and IBU, the ATPase activity values were similar to the VER value, whereas the HT, DEX, 

NIF, and MDZ were lower. No significant correlation between P-gp affinity and BA values in 

cynomolgus monkeys was observed. 
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Figure 1-2. Correlation of CLint vitro, intestine in humans and cynomolgus monkeys. 
NIF, MDZ, QID, TAC, and VER represent nifedipine, midazolam, quinidine, tacrolimus, and verapamil, 
respectively. 

 



 

35 
 

Table 1-5; Summary of in vitro pharmacokinetic parameters of tested drugs in humans and cynomolgus 
monkeys. 

Drugs Species Rb Papp 
Protein 

binding 
fp fb 

CLint 

vitro, liver 

CLint vitro 

intestine 
fb x 

CLint vitro, 

liver/Qh 

ATPase 

      ×10−6cm/s %     mL/min/kg μL/min/mg protein 
ratio vs 

VER 

Hydrochlorothiazide 
Human 2.7 0.1 40 0.6 0.222 −a −a −a 0 

Monkey 1.84   39 0.61 0.331 −a −a −a NT 

Dexamethasone 
Human 0.95 16.4 52 0.48 0.507 66 −a 1.62 0.01 

Monkey 1.34   77.5 0.225 0.167 24 −a 0.09 NT 

Nifedipine 
Human 0.74 13.4 93.4 0.066 0.089 438 138 1.89 0.03 

Monkey 0.65   94.3 0.057 0.088 2597 612 4.96 NT 

Midazolam 
Human 0.69 30.8 97 0.03 0.044 877 385 1.85 0.28 

Monkey 0.77   95.7 0.043 0.056 1422 1635 1.72 NT 

Quinidine 
Human 0.72 17.9 91.4 0.086 0.119 52 −a 0.3 4.57 

Monkey 0.78   92.1 0.079 0.102 872 212 1.91 NT 

Tacrolimus 
Human 20 34.2 98.9 0.011 0.001 1538 625 0.04 7.89 

Monkey 20   99 0.01 0.001 5793 4663 0.06 NT 

Verapamil 
Human 0.92 35.8 95.2 0.048 0.052 656 69 1.65 1 

Monkey 0.93   88.2 0.118 0.127 2491 696 6.83 NT 

Digoxin 
Human 1 0.1 60.3 0.397 0.398 −a −a −a 56.1 

Monkey 0.82   52.9 0.471 0.574 −a −a −a NT 

Propranolol 
Human 0.89b 37.4 86 0.14 0.157 165 −a 1.25 1.7 

Monkey 0.85c   78.8 0.212 0.249 974 −a 5.25 NT 

Amitriptyline 
Human 0.86d 53.3 85.4 0.146 0.17 80 −a 0.66 1.2 

Monkey 1.4   87.2 0.128 0.091 2559 −a 5.06 NT 

Timolol 
Human 0.84b 27.3 50.9 0.491 0.585 32 −a 0.89 1.66 

Monkey 1.02   95.5 0.045 0.044 391 −a 0.37 NT 

Ibuprofen 
Human 0.55d 29.4 98.8 0.012 0.022 38 −a 0.04 1.14 

Monkey 0.61   98.5 0.015 0.024 25 −a 0.01 NT 

Lithium was excluded from all in vitro studies. Papp, apparent permeability; NT, not tested.  
a The CLint could not be calculated because the tested drug was not depleted. 
b Data were taken from Shibata et al., 2002. 
c Data were taken from Evans et al., 1973.  
d Data were taken from Obach RS 1999.
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1.4  Discussion 

Although cynomolgus monkeys are often used for pharmacokinetic studies for drug discovery, it 

remains unclear whether this is a useful animal species for predicting human pharmacokinetics. In 

this study, I investigated the pharmacokinetic profile of 13 commercially available drugs in 

cynomolgus monkeys and compared their pharmacokinetic parameters with those in humans. The 

results showed that the majority of the drugs tested (8 of 13) had a markedly lower BA in 

cynomolgus monkeys (<15%). I explored the reasons for these species differences and suggest 

some possibilities as listed below.  

 

Species differences in hepatic metabolism 

The Fh values in humans and cynomolgus monkeys were almost the same for the 12 drugs (except 

VER). No obvious species differences were revealed for hepatic metabolism, regardless of CYP 

isoform selectivity. These results suggested that the values obtained from cynomolgus monkeys 

after intravenous administration were useful for predicting human pharmacokinetic parameters, 

such as CLt or Fh. These findings agreed with the consistency seen between the species with regard 

to CYP isoform amino acid sequence (over 90% agreement) (Uno et al., 2007).  

A species difference in Fh was apparent for VER, which was explained by the difference in the 

rate of hepatic metabolism. The fb × CLint vitro, liver/Qh of VER in cynomolgus monkeys was much 

higher than that in humans, which agreed with the in vivo observation.  
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Species differences in the intestinal transit process 

The fact that all drugs with a low BA in cynomolgus monkeys had low FaFg values indicates that 

the low FaFg is attributable to the low BA, in cynomolgus monkeys specifically. The FaFg values 

for Li, DEX, and IBU were correlated well between humans and cynomolgus monkeys. The 

common properties of these three drugs are as follows: 1) they have good membrane permeability 

(Li is absorbed via a paracellular pathway); 2) they are not P-gp substrates; and 3) they undergo 

little or no in vivo metabolism (see Tables 1-4 and 1-5).  

Subsequently, the FaFg correlation between humans and cynomolgus monkeys was found to be 

weak for both HT and DIG. The FaFg values for these drugs in cynomolgus monkeys were slightly 

lower than those in humans. The common properties of these two drugs are as follows: 1) they have 

moderate membrane permeability, and 2) they undergo almost no in vivo metabolism (Tables 1-4 

and 1-5). Although HT is not a P-gp substrate, DIG was found to cause high activity in the ATPase 

assay. These results suggest that membrane permeability and P-gp efflux are partial contributors to 

the low BA in cynomolgus monkeys.  

In contrast, the other seven drugs (except VER), which had a markedly low FaFg in cynomolgus 

monkeys, were metabolized by CYP enzymes and had relatively high CLint vitro values in 

cynomolgus monkeys liver or intestine microsomes. These drugs also showed good membrane 

permeability (Table 1-5). 

These findings suggest the possibility that these drugs are extensively metabolized in the 

cynomolgus monkey intestine, and the low FaFg is caused by intestinal metabolism rather than 
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poor absorption. In fact, all of five drugs, which observed good FaFg correlation in both species, 

undergo little or no in vivo CYP metabolism.  

 

The major species difference factor between humans and cynomolgus monkeys 

There have been several reports that focused on the species differences between humans and 

monkeys (Chiou et al., 2002; Sakuda et al., 2006; Takahashi et al., 2008). However, the present 

study showed that drugs that satisfy the following properties have similar FaFg or BA values in 

both humans and cynomolgus monkeys: 1) good membrane permeability; 2) not a P-gp substrate; 

and 3) undergoes little or no in vivo metabolism.  

In contrast, drugs that are CYP substrates and are relatively or rapidly metabolized in cynomolgus 

monkeys could have markedly low BA values because of their low FaFg values, even if the drugs 

have a low CLt. The potential reasons for these findings are as follows: 1) the amount of CYP 

enzyme expressed in cynomolgus monkey intestine is higher than that in humans, even though 

CYP3A4 is a major intestinal enzyme in humans; and 2) the enzyme expressed in cynomolgus 

monkey intestine has higher activity (Vmax/Km) than that in humans. To clearly understand these 

speculations, additional in vitro studies using intestine microsome were conducted with the same 

condition as the liver microsomes study. In cynomolgus monkey, the values of CLint vitro, intestine for 

NIF, MDZ, QID, TAC, and VER were 612, 1635, 212, 4663, and 696 μL/min/mg protein, 

respectively. As well as in human, the values were 138, 385, no depletion, 625, and 69 μL/min/mg 

protein for each. These five compounds, which have low BA in cynomolgus monkey, showed 
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markedly larger values in cynomolgus monkey than those in human (Fig. 1-2). In contrast, no 

significant decreases in other drugs were observed in both human and cynomolgus monkey 

intestine microsomes.  

Whereas the cynomolgus monkey CYP isoform corresponding to human CYP3A4 is CYP3A8 

(Uno et al., 2007), it is unclear whether CYP3A8 is also a major enzyme in the cynomolgus 

monkey intestine. In fact, a lower FaFg in cynomolgus monkeys was also observed for Type E 

drugs (mainly metabolized by CYP 2C9, 2C19, or 2D6 in humans).  

Although it is possible that glucuronide conjugates contributed to the low BA obtained for PRO 

(Walle et al., 1979), further studies are needed to explain this observation. Because all drugs with a 

low BA in cynomolgus monkeys show good membrane permeability in the present study, first-pass 

intestinal metabolism must be the most critical factor affecting species differences between humans 

and cynomolgus monkeys.  

I also investigated the pharmacokinetics of several drugs in rats and/or dogs, and the FaFg in rats 

or dogs correlates better with humans than cynomolgus monkeys (Tabata et al., 2009). Further 

studies are needed to clarify the species differences for FaFg, including the contribution of 

permeability, intestinal first-pass metabolism, and P-gp excretion.  

 

The usability of cynomolgus monkey pharmacokinetic parameters for predicting pharmacokinetic 

in humans 

These results suggest that a go/no go decision does not have to be made immediately, even if a 



 

40 
 

candidate has a markedly low BA in cynomolgus monkeys. In such cases, the main factor causing 

low BA in cynomolgus monkeys may be evaluated separately from Fa, Fg, and Fh. If the cause is 

found to be Fg, the candidate could still have an acceptable pharmacokinetic profile in humans.  

Since recognition of the importance of intestinal metabolism has increased over recent years, 

many studies using intestinal microsomes may be in progress in an attempt to establish a system for 

evaluating human Fg.  

It is noteworthy that a rough correlation was observed between CLint vitro, liver and Fg in humans 

(Fig. 1-3) in this study, indicating the possibility that Fg prediction in humans using only in vitro 

parameters may be possible with slight but elaborated modification of the evaluation system for in 

vitro intestinal metabolism. In fact, when evaluation of intestinal metabolism was inadequate, I 

successfully predicted the human pharmacokinetics for several in-house candidate drugs with a 

markedly low BA in cynomolgus monkeys by using human in vitro parameters for each candidate, 

including membrane permeability, metabolic stability in liver microsomes, and P-gp affinity 

(in-house data). These low values for BA in cynomolgus monkeys were virtually thought to be due 

to low Fg. 
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Figure 1-3. Correlation of FaFg and CLint vitro, liver in humans. 
Open triangle, open square, and closed triangle represent category Types B, C, and E, respectively. 

 

  



 

42 
 

In conclusion, many drugs had a markedly low BA in cynomolgus monkeys despite having 

relatively good BA in humans. These findings are speculated to be attributable mainly to first-pass 

intestinal metabolism. Consequently, the pharmacokinetic parameters obtained for a candidate after 

oral administration to cynomolgus monkeys are not adequate for directly predicting human 

pharmacokinetics.  

The accurate prediction of Fg in humans eventually becomes necessary to predict human 

pharmacokinetics with more accuracy. In addition, the slight but elaborated modification of the 

evaluation system for in vitro intestinal metabolism such as simplified intestinal availability model 

(Kadono et al., 2010), may enable us to estimate the Fg in humans, and subsequently it becomes 

possible to predict accurate human pharmacokinetics in the near future. 
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2. Extensive metabolism of FK3453 by aldehyde oxidase in humans 

 

2.1  Introduction 

Predicting human pharmacokinetics of drug candidates at the discovery stage of drug 

development is crucial to prevent candidate attrition in a phase 1 study. In particular, CYPs have 

been recognized as the most important drug metabolizing enzymes in regulating exposure of drugs 

administered orally. Indeed, a phase 1 study found that poor exposure of drug candidates was the 

most significant cause of candidate attrition, accounting for approximately 40% of all candidate 

loss in the early 1990s (Kola and Landis, 2004). Given its significant influence on ensuring 

compound promotion, a considerable number of studies have been focused on predicting CYP 

metabolism in humans over the past few decades (De Buck et al., 2007; Iwatsubo et al., 1996; 

Naritomi et al., 2001). Subsequently, several techniques have been developed to predict human 

pharmacokinetics, thereby helping to reduce the rate of attrition due to poor BA in the clinical stage 

(Wishart, 2007). In addition, screening systems to evaluate candidate compounds’ CYP metabolic 

stability have also been developed, facilitating selection of those compounds most stable against 

CYP metabolism.  

Increased attention has also been focused on the role of non-CYP enzymes in elimination of 

drug candidates from the body. Given that most existing methods of predicting human 

pharmacokinetics were established based solely on CYP metabolism, great care must be taken with 

regard to predicting pharmacokinetics for those candidates primarily metabolized by non-CYP 
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enzymes. FK3453 [6-(2-amino-4-phenylpyrimidin-5-yl)-2-isopropylpyridazin-3(2H)-one] (Fig. 

2-1), a novel adenosine A1/2 dual inhibitor for the treatment of Parkinson’s disease (Mihara et al., 

2007, 2008a, b), is one such example of an in-house clinical drug candidate which undergoes 

extremely little metabolism by CYPs in humans in vitro. Although the preclinical pharmacokinetic 

profiles suggested favorable pharmacokinetics of FK3453 in humans, compound development was 

suspended due to extremely low plasma concentrations of unchanged drug in a phase 1 study. 

Underestimation of the contribution of non-CYP metabolism resulted in our inaccurately predicting 

the human pharmacokinetics of FK3453, subsequently resulting in these unexpected findings 

(described as below). 

Here, to address the difficulty of predicting human pharmacokinetics for non-CYP 

metabolism, I describe a series of pharmacokinetic studies for development of FK3453 from 

preclinical to clinical stages. I also include pharmacokinetics findings for FK3453 after intravenous 

and oral administration to rats and dogs and oral administration to humans, as well as in vitro 

pharmacokinetic profiles. In addition, I also discuss the mechanism behind the low systemic 

exposure of FK3453 in humans. 

 

2.2  Materials and Methods 

2.2.1 Chemicals and reagents 

FK3453 and its oxidative metabolite of the aminopyrimidine moiety (M4) synthesized at our 

laboratory were used (Fig. 2-1). [3H]-FK3453 (specific radio activity: 38.9Ci/mmol, radioactive 
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purity: >98.6%) was synthesized by GE Healthcare Japan (Tokyo). Liver microsomes from rats and 

dogs were purchased from Celsis In Vitro Technologies (Baltimore, MD, USA), and liver 

microsomes and S9 from humans were purchased from XenoTech LLC. Allopurinol, 

1-aminobenzotriazole, and menadione were purchased from Sigma-Aldrich Corporation. 

Isovanillin was purchased from ICN Biomedical Inc. (Aurora, OH, USA). All other reagents and 

solvents were commercial products of analytical grade. 

 
 

 
   FK3453                                     M4     

 

Figure 2-1. Chemical structures of FK3453 and M4 (*:3H). 

 

 

2.2.2 Pharmacokinetic study in humans 

Design 

This was a Phase I, double-blind, placebo-controlled single ascending dose, sequential group 

study. The primary objective was to evaluate the safety, tolerability and Pharmacokinetics of 

FK3453. It was planned to study a total of 72 subjects, in nine groups of eight (Groups A to I). 
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However, following completion of the third group of eight subjects (Group C), the study was 

terminated due to plasma levels of parent compound being markedly lower than anticipated.  

 

Subjects and dosing 

A total of 24 healthy male subjects aged between 21 and 41 years and weighing between 58 and 

92 kg were enrolled into the study. The protocol was approved by an institutional review committee 

before study initiation, and all subjects gave their written informed consent to participate before 

starting. The subjects were assigned to Groups A, B, and C (n=6 active and 2 placebo). A single 

dose of FK3453 was administered orally at a dose of 0.5, 1, and 10 mg, respectively. Blood samples 

were taken by venipuncture or cannulation of a forearm vein. Samples were collected into 10 mL 

lithium heparin Vacutainer tubes at 0 (before dosing), 15, and 30 min, and 1, 1.5, 2, 3, 4, 6, 8, 10, 

12, 24, 48, 72, and 96 h after administration. All plasma samples were stored at -20 °C until 

analysis.  

2.2.3 Pharmacokinetic study in animals 

All animal procedures described below were conducted according to the animal ethics rules at 

each facility involved in the study. 

 

Rats 

Male and female Sprague-Dawley rats were purchased from Charles River Japan Inc. (Tokyo). 

Rats weighing 200-250 g were fasted overnight before administration of dosing solution. FK3453 
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solution prepared with 100% PEG was administrated intravenously (0.1, 0.32, or 3.2 mg/kg) and 

orally (0.1, 0.32, or 3.2 mg/kg) to male rats and intravenously (0.1 or 1 mg/kg) and orally (0.32 or 1 

mg/kg) to female rats. Blood samples were then collected from the inferior vein at predetermined 

times and stored at -20 °C until analysis. 

 

Dogs 

Three male beagle dogs weighing 10-15 kg were obtained from Ichiyanagi Farm (Shizuoka) and 

fasted overnight before administration of dosing solution. FK3453 solution prepared with 0.1N 

hydrochloric acid was administrated intravenously (0.1 mg/kg) and orally (0.03, 0.1, or 0.3 mg/kg) 

with a washout period of at least 7 days. Blood samples were then collected from the antecubital 

vein at predetermined times and stored at -20 °C until analysis. 

 

2.2.4 Measurement of plasma concentration 

Plasma samples were analyzed for presence of FK3453 (rats, dogs, and humans) and M4 

(humans) using validated HPLC with LC-MS/MS.  

 

Humans  

A 1-mL aliquot of each human plasma sample was treated with 25 µL of internal standard 

solution prepared with 50% acetonitrile. After adding 1 mL of purified water, samples were applied 

to the solid-phase extraction column (Bond Elut C18, 200 mg/3 mL; VARIAN, Inc., Palo Alto, CA, 
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USA) pre-conditioned with methanol (3 mL) followed by purified water (3 mL). The column was 

then washed with 3 mL of water and eluted with 3 mL of methanol. After mixing the eluent, the 

organic solvent was evaporated under a stream of nitrogen gas, and the residue was subsequently 

dissolved in 500 μL of a mixture of water and methanol (70:30, v/v). The reconstituted solution was 

then passed through a membrane filter, and the resulting filtrate was used as the injection sample 

for analysis by LC (NANOSPACE SI-2, Shiseido Corporation)-MS/MS (TSQ Quantum; Thermo 

Fisher Scientific Inc., Waltham, MA, USA). A TSG-gel ODS-80Ts (5 µm, 2.0 mm ID x 150 mm; 

TOSOH, Tokyo) was used as the analysis column, and 5 mmol/L ammonium acetate and methanol 

(40:60, v/v) was used as the mobile phase. The substances were ionized by electro-spray ionization 

and detected in a positive mode using m/z 308>266 [M+H]+ for FK3453 and m/z 324>282 [M+H]+ 

for M4. The qualification limit was 0.025 ng/mL. 

 

Rats and dogs 

A 250-µL aliquot of each rat or dog plasma sample was treated with 25 µL of internal standard 

solution prepared with 50% acetonitrile. After adding 500 µL of 20 mmol/L sodium hydroxide 

solution and 5 mL of diethyl ether, samples were shaken for 10 min and centrifuged at 3000 rpm 

for 5 min. The organic layer (4.5 mL) was then transferred to glass tube, and the organic solvent 

was evaporated under a stream of nitrogen gas. The resulting residue was dissolved in 150 μL of 

mixture of water and acetonitrile (70:30, v/v), and 20-μL aliquots were analyzed by LC-MS/MS as 

described above. The qualification limit was 0.2 ng/mL. 
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2.2.5 In vitro parameters 

Plasma protein binding 

Plasma protein binding was determined via ultra filtration using the following equation: 

plasma protein binding (%) = (1-unbound fraction in plasma [fp]) × 100 (2-1) 

fp = concentrations in filtrate/concentrations in plasma (2-2) 

Aliquots (4.5 mL) of male rat, dog, and human plasma were spiked with 22.5 μL of [3H]-FK3453 

standard solution (final concentrations: 2, 20, and 200 ng/mL, respectively) and pre-incubated for 5 

min at 37 °C. One-millilitre aliquots of samples were then transferred to reservoirs of individual 

Centrifree® tubes (Millipore Co., Bedford, MA, USA) and centrifuged at 1500 g at 37 °C. To 

obtain an ultrafiltrate volume below 200 µL, centrifugation was set a 8 min for rat, 10 min for dog, 

and 12 min for human plasma samples. After centrifugation, the ultrafiltrate was transferred to a 

micro-test tube. Preliminary experiments showed that [3H]-FK3453 was not adsorbed on the 

ultrafiltration device or membrane. 

Before ultrafiltration, 1 mL of Soluene-350® (Packard Instrument Co., Meriden, CT, USA) was 

added to 25 μL of plasma solution to dissolve the biological specimens, and radioactivity was then 

measured by adding 10 mL of Econofluor-2® (Packard Instrument Co.). To measure radioactivity 

in the ultrafiltrate, 10 mL of Hionic-fluor® was added to 100 μL of the ultrafiltrate, and 

radioactivity was measured for 5 min using a liquid scintillation analyzer (2300TR; Packard 

Instrument Co.). 
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Blood to plasma concentration ratio 

The Rb was calculated by dividing the concentrations of FK3453 in whole blood by that in 

plasma. Aliquots (4.5 mL) of male rat, dog, and human plasma were spiked with 22.5 μL of 

[3H]-FK3453 standard solution (final concentrations: 2, 20, and 200 ng/mL, respectively) and 

pre-incubated for 5 min at 37 °C. After incubation, samples were divided into 2 tubes; one was used 

for blood concentration measurement, while the other was centrifuged at 3000 g for 1 min to 

separate the plasma fraction and then used for plasma concentration measurement. Both whole 

blood and plasma samples were measured for concentrations of radioactivity under similar 

conditions as those described above. 

 

In vitro metabolic stability in liver microsomes 

To determine the time course of the unchanged drug, FK3453 was incubated at 37 °C with a 

reaction mixture (500 μL) containing 250 μL of 200 mM potassium-phosphate buffer (pH 7.4), 50 

μL of 1 mM EDTA-NaOH (pH 7.4), 25 μL of liver microsomes solution (final concentration of 

microsomal protein: 1 mg/mL), 170 μL of distilled water, and 5 μL of FK3453 solution in 50% 

acetonitrile (final concentration: 0.1 µmol/L). After 5 min of pre-incubation, the reaction was 

initiated by the addition of 50 μL of a NADPH-generating system and then terminated by adding 50 

µL of reaction mixture to 200 μL of acetonitrile including the internal standard at 30, 60, and 120 

min after incubation.  

After stopping the enzyme reaction, the reaction mixture was centrifuged at 3000 g for 5 min at 
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4 °C. After adding 5 mL of acetonitrile to the supernatant, the solvent was evaporated under a 

stream of nitrogen gas, and the residue was dissolved in 250 µL of mobile phase consisting of 1 

mmol/L perchloric acid solution and acetonitrile (90:10, v/v). Following this, a 20-µL aliquot was 

injected into the LC (LC-VP/LC-10A series; Shimadzu)-MS/MS (TSQ7000; Thermo Fisher 

Scientific Inc.) apparatus. The substances were ionized by electro-spray ionization and detected in a 

positive mode using m/z 308>266 [M+H]+ for FK3453. A CAPCELL PAK UG120 (3 µm, 4.6 mm 

ID × 150 mm; Shiseido Corporation) was used as the analysis column under the following gradient 

conditions: Gradient elution increased the ratio of 1 mmol/L perchloric acid and acetonitrile to 

80:20 (v/v) over 15 min, 60:40 (v/v) over 15 min, and 50:50 (v/v) over 5 min, which was then held 

for a further 5 min. Initial conditions were restored over 1 min, after which the column was 

re-equilibrated for 9 min. The flow rate was 1.0 mL/min.  

The CLint vitro, liver was calculated using the equations below and was based on the time-course of 

the residual ratio of the unchanged drugs, as determined using least squares linear regression 

(Naritomi et al., 2001). 

CLint vitro, liver (mL /min/mg protein) = ke / microsomal protein concentration (2-3) 

CLint vitro, liver (mL/min/kg) = CLint vitro, liver (mL/min/mg protein) × SF1 (mg protein/g liver) × SF2 

(g liver/kg body weight)  (2-4) 

where ke is the disappearance rate constant (assumed to follow first-order kinetics), SF1 is the 

microsomal protein content per gram of liver (44.8, 77.9, and 48.8 for rats, dogs, and humans, 

respectively), and SF2 is the liver weight per kilogram of body weight (40.0, 32.0. and 25.7 for rats, 
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dogs, and humans, respectively) (Naritomi et al., 2001). 

 

2.2.6 Calculation of in vivo pharmacokinetic parameters  

Pharmacokinetic parameters were calculated via the model-independent method. Cmax and 

Tmax were determined from the mean of the actual values, and the AUCinf was calculated from the 

time-course change in concentrations of unchanged drug in plasma, based on the trapezoidal rule 

with extrapolation from the last measured plasma concentrations to infinity. CLt, half-life at the 

elimination phase (t1/2β), and volume of distribution (Vdss) were calculated using the following 

equations:  

CLt = Dose /AUCinf after intravenous administration (2-5) 

t1/2β = ln2 / λ (2-6) 

Vdss = CLt × AUMCinf / AUCinf (2-7) 

where λ is the slope of the final elimination phase estimated from the linear portion of the plasma 

concentration-time curve on a semi-logarithmic scale using the linear least squares method and 

AUMCinf is the area under the first order moment of plasma concentration-time curve extrapolated 

to infinity. BA was calculated from the ratio of the AUCinf values between intravenous and oral 

administration studies. 

 

2.2.7 Prediction of human hepatic availability from in vitro-in vivo scaling 

I predicted human Fh of FK3453 using the in vitro-in vivo scaling method, which involved 
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comparing CLint vitro, liver with CLint vivo in rats and dogs. The CLint vivo was calculated using the 

following equations, based on dispersion model (Iwatsubo et al., 1996):  

CLh = Qh × (1-Fh) (2-8) 

Fh=4a / (1+a)2 exp [(a-1)/2DN] - (1-a)2 exp [-(a+1)/2DN] (2-9) 

a= [1+(4 × fp/Rb × CLint vivo × DN /Qh)]1/2  (2-10) 

where CLh is the hepatic clearance (assumed to be equal to CLt because urinary excretion of 

unchanged drug was negligible in rats and humans [data not shown]), Qh is hepatic blood flow rate 

(55.2, 30.9, and 20.7 mL/min/kg or rats, dogs, and humans, respectively) (Davis and Morris, 1993), 

and DN is dispersion number (0.17 used for all calculations).  

Human CLint vivo was predicted based on human CLint vitro, liver with a scaling factor, as follows:  

Predicted human CLint vivo = human CLint vitro, liver × rat or dog scaling factor (2-11) 

Scaling factor = CLint vivo / CLint vitro, liver (2-12) 

 

2.2.8 In vitro metabolite profiling of FK3453 with human sub-cellular hepatic fractions 

To determine the mechanism responsible for FK3453 metabolism, I conducted in vitro metabolite 

profiling using radio-chromatography analysis. [3H]-FK3453 (final concentration: 0.1 µmol/L) was 

incubated with an NADPH-regenerating system and either human liver microsomes (1 mg/mL) or 

S9 (1 mg/mL) in a total volume of 1 mL of pH 7.4 phosphate buffer. Reactions were initiated by 

adding microsomes or S9 and then shaking the mixture in a water bath at 37 °C for 60 min. 

Reactions were terminated by adding 1 mL of acetonitrile and centrifuging the vial at 3000 g for 5 
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min at 4 °C. After evaporating the supernatant under a stream of nitrogen gas, the resulting residue 

was dissolved in 200 μL of mobile phase (1 mmol/L perchloric acid solution and acetonitrile, 90:10 

[v/v]).  

The samples were then subjected to radio-HPLC analysis, using a CAPCELL PAK UG120 (3 µm, 

4.6 mm ID × 150 mm; Shiseido Corporation) as the analysis column. For the reaction mixture with 

microsomes, the gradient system described above was used. For the reaction mixture with S9, the 

gradient started with 1 mmol/L perchloric acid solution and acetonitrile at 90:10 (v/v) for 5 min, 

with the ratio increasing to 80:20 v/v over 15 min, 60:40 (v/v) over 15 min, and 20:80 (v/v) over 5 

min, which was then held for 5 min. The initial conditions were restored over 1 min, after which 

the column was re-equilibrated for 9 min. A FLO-ONE/β A525AX device (PerkinElmer, Turku, 

Finland) was used to measure radioactivity.  

For the inhibition study, 1-aminobenzotriazole (Ortiz de Montellano and Mathews, 1981; Mugford 

et al., 1992), menadione (Johns, 1967) and allopurinol (Massey et al., 1970), as inhibitors of CYPs, 

AO and xanthine oxidase (XO), respectively, were added to human liver S9 incubation mixtures at 

respective concentrations of 1000, 200, and 200 µmol/L. 

Structural elucidation of metabolites for human liver microsomes and S9 was conducted using 

LC-MS and MS/MS systems. The LC-MS system consisted of a Waters model 717 plus 

auto-sampler, a Waters model 600s system controller, a Waters model 616 pump (Waters 

Corporation) and a TSQ7000 triple quadrupole mass spectrometer (Thermo Fisher Scientific Inc.). 

The reaction mixture after incubation was applied to the solid-phase extraction column (Bond Elut 
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C18, 200 mg/3 mL; VARIAN, Inc.) pre-conditioned with acetonitrile (3 mL) followed by purified 

water (3 mL) in that order. The column was then washed with 3 mL of water and eluted with 3 mL 

of acetonitrile. The eluent were mixed, and the organic solvent was evaporated under a stream of 

nitrogen gas. The resulting residue was then dissolved in 200 μL of mobile phase consisting of 5 

mmol/L ammonium formate and acetonitrile (81.5:18.5, v/v), after which the samples were 

subjected to LC-MS and LC-MS/MS analysis. The gradient elution increased linearly from 18.5% 

B to 54.5% B over 20 min and was held at 54.5% B for 5 min before returning to 18.5%. The flow 

rate was 0.2 mL/min.  

The identity of the metabolites was determined by confirming the mass fragmentation and 

chromatographic retention times to be identical to those of the reference compound and 

subsequently estimating the chemical structures of these metabolites and their metabolic pathways. 

 

2.2.9 In vitro metabolic inhibition study of FK3453 with liver cytosol 

To clarify the AO contribution to the FK3453 elimination in humans and animals, I conducted in 

vitro metabolic study using liver cytosol. FK3453 was incubated at 37 °C with a reaction mixture 

(500 μL) containing 250 μL of 200 mM potassium-phosphate buffer (pH 7.4), 50 μL of 1 mM 

EDTA-NaOH (pH 7.4), 100 μL of liver cytosol solution (final concentration of microsomal protein: 

1 mg/mL for male and female rats, 2 mg/mL for dogs and humans, respectively), and 100 μL of 

distilled water. After 5 min of pre-incubation, the reaction was initiated by the addition of 5 μL of 

FK3453 solution in 50% acetonitrile (final concentration: 1 µmol/L) and then terminated by adding 
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100 µL of reaction mixture to 200 μL of acetonitrile including the internal standard at 15, 30, and 

45 min after incubation.  

After stopping the enzyme reaction, the reaction mixture was centrifuged at 3000 g for 5 min at 

4 °C. 200 μL of the supernatant was injected into the glass vials. Following this, a 60-µL aliquot 

was injected into the LC apparatus (Alliance, Waters Corporation) -UV (2470 dual wavelength UV 

detector, Waters Corporation). A Inertsil ODS-3 (5 µm, 4.6 mm ID × 150 mm; GL Sciences Inc, 

Tokyo) was used as the analysis column with mobile phase of 200 mM potassium-phosphate buffer 

(pH 7.4) and acetonitrile to 60:40 (v/v). The flow rate was 1.0 mL/min.  

The CLint vitro in liver cytosol (CLint vitro, cys) was calculated using the equations below and was 

based on the time-course of the residual ratio of the unchanged drugs, as determined using least 

squares linear regression. 

CLint vitro, cys (mL /min/mg protein) = ke / cytosolic protein concentration  (2-13) 

For the inhibition study, menadione (Johns, 1967),  isovanillin (Beedham, 1987), and allopurinol 

(Massey et al., 1970), as inhibitors of AO (menadione and isovanillin) and XO respectively, were 

added to liver cytosol incubation mixtures at respective concentrations of 100 µmol/L. 

 

2.3  Results 

2.3.1 Pharmacokinetics of FK3453 in rats, dogs, and humans 

Intravenous and oral administration of FK3453 to rats 

The plasma concentration-time curve of the unchanged drug and pharmacokinetic parameters after 
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intravenous and oral administration to male rats are shown in Figure 2-2A and Table 2-1. Following 

intravenous administration at 0.1, 0.32, and 3.2 mg/kg to male rats, plasma concentrations of 

FK3453 decreased with respective t1/2β values of 0.95, 0.50 and 0.37 h. CLt and Vdss values at 

each dosage were estimated to be 14.9, 17.6, and 10.8 mL/min/kg and 0.69, 0.91, and 0.48 L/kg, 

respectively (Table 2-1). The pharmacokinetics of FK3453 after intravenous administration 

appeared to be linear within the dose range of 0.1-3.2 mg/kg in male rats. Following oral 

administration at 0.1, 0.32, and 3.2 mg/kg to male rats, plasma concentrations of FK3453 reached 

Cmax between 0.5 and 1.5 h after administration, with mean Cmax values of 41.0, 36.8, and 544.0 

ng/mL, respectively. BA of FK3453 ranged from 30.5% to 41.9% in male rats (Table 2-1). 

The plasma concentration-time curve of the unchanged drug and pharmacokinetic parameters after 

intravenous and oral administration to female rats are shown in Figure 2-2B and Table 2-1. 

Following intravenous administration to female rats, large individual variations were observed. The 

plasma concentrations of FK3453 decreased with respective t1/2β values of 1.11 and 0.36 h at 0.1 

mg/kg and 1.05 and 4.49 h at 1 mg/kg, respectively. CLt and Vdss values were estimated to be 11.0, 

17.2 mL/min/kg and 0.97, 0.95 L/kg at 0.1 mg/kg, and 13.7, 1.9 mL/min/kg and 0.87, 0.67 L/kg at 

1 mg/kg, respectively (Table 2-1). Large individual variations were also observed following oral 

administration at 0.32 and 1 mg/kg to female rats. Although the mean values of Cmax and AUCinf 

after administration at these dosages were 73.1 and 373.3 ng/mL and 227.7 and 3372.4 ng·h/mL, 

respectively, individual values showed more than 5-fold variation. The BA of FK3453 ranged from 

57.3% to 67.6% in female rats (Table 2-1). 
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  A 

  
 

Figure 2-2. Plasma concentration-time curve of FK3453 after intravenous and oral 

administration to male (A) and female rats (B).  

Insert is magnification for lower dose. 
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Intravenous and oral administration of FK3453 to dogs 

The plasma concentration-time curve of the unchanged drug and pharmacokinetic parameters after 

intravenous and oral administration to dogs are shown in Figure 2-3 and Table 2-2. Following 

intravenous administration at 0.1 mg/kg to dogs, the mean values of CLt, Vdss, t1/2β, and AUCinf 

were 5.0 mL/min/kg, 0.87 L/kg, 2.7 h, and 339.7 ng·h/mL, respectively (Table 2-2). Following oral 

administration at 0.03, 0.1, and 0.3 mg/kg to dogs, plasma concentrations of FK3453 reached Cmax 

between 0.5 and 1 h after administration, with mean Cmax values of 19.2, 70.4, and 252.3 ng/mL, 

respectively. Mean BA of FK3453 ranged from 71.3% to 93.4% in dogs (Table 2-2). The 

pharmacokinetics of FK3453 after oral administration appeared to be linear within the does range 

of 0.03-0.3 mg/kg in dogs. 

 

 
 

Figure 2-3. Plasma concentration-time curve of FK3453 after intravenous and oral 

administration to dogs.
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Oral administration of FK3453 to humans 

The plasma concentrations and pharmacokinetic parameters of the unchanged drug after oral 

administration at 0.5, 1, and 10 mg to humans are shown in Table 2-3. The plasma 

concentration-time curves of FK3453 and M4 for 10 mg administration are shown in Figure 2-4, 

and the plasma concentrations and pharmacokinetic parameters of M4 are shown in Table 2-4. 

Following oral administration to humans, the unchanged drug was detected in only slight amounts 

in human plasma at all time-points for all doses (Table 2-3). In contrast, high concentrations of M4 

were observed in human plasma at 10 mg (Table 2-4). The Cmax and AUCinf values of M4 were 

approximately 200 times greater than those of FK3453. 

 

 

 

Figure 2-4. Plasma concentration-time curve of FK3453 and M4 after oral administration at 

10 mg to humans. 
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2.3.2 In vitro parameters 

Data regarding protein binding, RB, and CLint vitro, liver of FK3453 in male rats, dogs, and humans are 

shown in Tables 2-5 and 2-6. The percent-bound values for FK3453 were similar in all species 

examined over a concentration range of 2 to 200 ng/mL, ranging from 74.78% to 75.83% in male rats, 

67.87% to 68.75% in dogs, and 75.47% to 77.56% in humans (Table 2-5). The blood to plasma 

concentration ratio of FK3453 was also similar in all species examined over the concentration range 

of 2 to 200 ng/mL, ranging from 0.86 to 0.89 in male rats, 0.89 to 0.99 in dogs, and 0.78 to 0.82 in 

humans (Table 2-5). CLint, vitro, liver values of FK3453 in male rat, dog, and human were 42.3, 14.5, 

and 1.1 mL/min/kg, respectively (Table 2-6). 

 

2.3.3 Prediction of human hepatic availability from in vitro-in vivo scaling 

The CLint vivo values in male rats and dogs were calculated to be 51.3-94.5 and 17.8, respectively, 

and the predicted human Fh was estimated to be >0.97 (Table 2-6). 
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TABLE 2-5. Summary of protein binding and blood to plasma concentration ratio of FK3453 in 

male rats, dogs and monkeys 

Species 
Protein binding Rb 

(ng/mL) (%) (ng/mL) (%) 

Male rats 

2 74.78 2 0.87 

20 75.83 20 0.86 

200 75.37 200 0.89 

Mean  75.33  0.87 

Dogs 

2 67.87 2 0.99 

20 68.56 20 0.93 

200 68.75 200 0.89 

Mean  68.39  0.94 

Humans 

2 75.47 2 0.82 

20 77.56 20 0.82 

200 77.23 200 0.78 

Mean  76.75  0.81 

Rb, blood-to-plasma concentration ratio 
Data in each concentration represent mean for n =3. 
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2.3.4 Identification of mechanism responsible for low exposure of FK3453 in humans 

In vitro metabolite profile study 

After incubation of [3H]-FK3453 with human sub-cellular liver fractions, at least six peaks derived 

from FK3453 metabolites were observed on the radio-chromatograms. Although the major metabolite 

of FK3453 was M4, three others in the incubation mixture were also identified as the dealkylated 

metabolite on the nitrogen in the pyridazine (M1), hydroxylated metabolite on the isopropyl group 

(M2), and p-hydroxylated metabolite on the benzene ring (M3) (Fig. 2-5). Although M4, the main 

metabolite in human plasma, was not detected in the incubation mixture with microsomes (Fig. 2-6), 

it was detected in the mixture with S9 (Fig. 2-7A). In the inhibition study, the metabolic reaction of 

M4 formation was inhibited by menadione (Fig. 2-7C) but not 1-aminobenzotriazole or allopurinol 

(Fig. 2-7B, D).  

 

In vitro metabolic inhibition study with liver cytosol 

CLint vitro, cys values of FK3453 in male rat, female rat, and human were 1.1, 12.5, and 6.5 

mL/min/mg protein, respectively. These metabolic reactions were inhibited by menadione and 

isovanillin but not allopurinol (Table 2-7, Fig. 2-8). Whereas, no depletion of FK3453 was observed 

in dog liver cytosol (Table 2-7). 
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Figure 2-5. Possible metabolic pathway of FK3453 in incubation mixture with human liver 

sub-cellular fractions. 

 

 

 

Figure 2-6. Representative HPLC radio-chromatogram of reaction mixture after incubation of 

[3H]-FK3453 with human liver microsomes. 
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Figure 2-7. Representative HPLC radio-chromatogram of reaction mixture after incubation of 
[3H]-FK3453 with human liver S9 and inhibitors. 
 (A) control, without inhibitor; (B) 1-aminobenzotiazole, CYP inhibitor; (C) menadione, aldehyde oxidase 
inhibitor; (D) allopurinol, xanthine oxidase inhibitor. 
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Figure 2-8. Percentage of remaining cytosolic enzyme activity to the control (without inhibitors) 
in presence of aldehyde oxidase inhibitors (menadione and isovanillin) or xanthine oxidase 
inhibitor (allopurinol) in male rats, female rats, and humans. 

 

 

TABLE 2-7. In vitro metabolic inhibition study using male rats, female rats, dogs and humans 
liver cytosol. 

Species 
CLint vitro, cys (mL/min/mg protein) 

Control Menadione Isovanillin Allopurinol 

Male rats 1.1 ND ND 0.9 

Female rats 12.5 1.3 ND 10.5 

Dogs ND ND ND ND 

Humans 6.5 0.2 ND 6.5 

CLint vitro, cys, in vitro intrinsic clearance calculated from cytosol study; ND, No depletion
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2.4  Discussion 

I described the in vitro and in vivo pharmacokinetic profiles of FK3453 in rats, dogs, and humans, 

and investigated the mechanism responsible for low exposure of the unchanged drug in humans. 

The predicted human Fh estimated from pharmacokinetic parameters in male rats and dogs 

exceeded 0.97 (Table 2-6), suggesting a favorable pharmacokinetic profile of FK3453 in humans. 

However, poor systemic exposure of FK3453 was observed after oral administration to humans in a 

phase 1 study (Table 2-3). As a consequence, I failed to predict the pharmacokinetics of FK3453 in 

humans from preclinical data. 

To clarify the principal factor responsible for low systemic exposure of FK3453 in humans, I 

assessed the pharmacokinetic properties of FK3453 from various aspects. In terms of absorption, I 

predicted favorable absorption from the gastrointestinal tract based on observations of good 

solubility, high membrane permeability (data not shown), and high BA in rats and dogs. To 

investigate the metabolite profile in human plasma, I measured circulating metabolites of FK3453 

in a phase 1 study, identifying M4, an oxidative metabolite of the aminopyrimidine moiety, as a 

major metabolite with Cmax and AUC0-t values approximately 200-fold greater than those of 

FK3453 at 10 mg oral administration. The high plasma levels of M4 strongly suggested that 

extensive metabolism for M4 formation was a major factor in the low systemic exposure of 

FK3453. M4 is an oxidative metabolite of FK3453 with structural characteristics suggesting the 

involvement of AO and XO, molybdenum cofactor-containing soluble enzymes which catalyze 

oxidation of compounds such as aldehyde and N-heterocyclic aromatic compounds (Kitamura et al., 
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2006). 

I then investigated the possible involvement of AO or XO in M4 formation. As AO and XO are 

cytosolic enzymes, I used liver S9 and liver microsomes to conduct our in vitro metabolic assay to 

investigate the sub-cellular location of enzymes involved in M4 formation. After separately 

incubating [3H]-FK3453 with human liver S9 and microsomes, M4 formation was observed in the 

reaction mixture incubated with S9 but not in that with microsomes (Fig. 2-6, 2-7A), which 

suggested the involvement of cytosolic enzymes such as AO or XO in M4 formation. This then 

prompted our examination of the inhibitory effect on M4 formation in an effort to identify the 

enzyme responsible for M4 formation between AO, XO, or any other CYPs. For this study, I 

selected 1-aminobenzotriazole, menadione and allopurinol as potent inhibitors of CYPs, AO, and 

XO, respectively, and found that M4 formation was inhibited by menadione but not by allopurinol 

or 1-aminobenzotriazole (Fig. 2-7). A similar results were also observed in the metabolic inhibition 

study using liver cytosol (Table 2-7, Fig. 2-8). These results indicated that the enzyme responsible 

for converting FK3453 to M4 was AO, and the low systemic exposure of FK3453 in humans was 

due to unpredictably high AO metabolism. 

Although AO is known to catalyze oxidation of several clinical drugs, including zaleplon, 

methotrexate, and ziprasidone (Beedham et al., 2003; Kawashima et al., 1999; Kitamura et al., 

1999), few reports have explored AO metabolism with regard to human pharmacokinetic prediction 

and species differences (Zientek et al., 2010; Diamond et al., 2010). Difficulties in understanding 

AO metabolism may be explained by several key reasons. Chiefly, large variations in AO activity 
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had been observed between rat strains (Sugihara et al., 1995; Sasaki et al., 2006), and a significant 

genetic polymorphisms had also been identified even among members of the same strains (Itoh et 

al., 2007a, b). These findings suggest that diligent care must be taken in selecting rat strains to be 

used in evaluating the pharmacokinetic profile of drug candidates metabolized by AO. Indeed, I did 

observe large pharmacokinetic variation in female rats in the present study (Fig. 2-2B). In contrast, 

deficiency of AO expression was reported in dogs (Kitamura et al., 1999; Diamond et al., 2010). I 

observed a good pharmacokinetic profile for FK3453 in dogs and no cytosolic enzyme reaction in 

dogs, findings which were highly consistent with reports of absence of AO metabolism in dogs. 

These results suggest that conventional preclinical animal pharmacokinetic studies such as rat- and 

dog-based studies are not sufficiently fulfilled to evaluate the in vitro-in vivo relationship for AO 

metabolism and to predict the human pharmacokinetic profile (Dalvie et al., 2010). Instead, given 

that high AO activity has been reported in monkeys (Diamond et al., 2010), monkeys may be useful 

as a preclinical species assessing AO metabolism. However, a large species difference in 

pharmacokinetic profile was also reported between humans and cynomolgus monkeys following 

oral administration of several drugs mainly metabolized by CYPs (See Chapter 1). For this reason, 

special care should be focused on the metabolic enzymes of a drug candidate if monkeys are used 

in pharmacokinetic studies in drug discovery research. 

Another problem with regard to predict AO metabolism in human is that conventional in vitro 

studies such as general metabolic stability screening using liver microsomes may lead to 

underestimation of the risk of AO metabolism of drug candidates in humans, as AO is located in the 
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cytosol. In addition, unlike CYP metabolism, methods of predicting human pharmacokinetics for 

metabolism by cytosolic enzymes have not been well established. A possible way to predict the 

human hepatic availability of cytosolic enzymes substrates is an in vitro-in vivo scaling using the 

data obtained from incubation with cytosol or S9 fractions. Zientek et al (2010) reported in vitro-in 

vivo correlations (IVIVC) for AO substrates using human liver cytosol and S9, however, the 

underestimation of human hepatic availability was also observed. Furthermore, Zientek et al (2010) 

discussed that one reason for underestimation of human hepatic availability was attributed to 

enzymatic lability of AO during homogenization and storage process. Therefore, further preclinical 

study using monkeys or in vitro studies using more comprehensive evaluation tools such as human 

hepatocytes will be necessary to facilitate a better understanding of AO metabolism. 

 

In summary, I demonstrated that the poor systemic exposure of FK3453 observed in humans was 

due to unpredictably high AO metabolism despite the favorable pharmacokinetic profiles FK3453 

showed in rats and dogs. 
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3. A quantitative approach to hepatic clearance prediction of metabolism by 

aldehyde oxidase using pooled hepatocytes. 

 

3.1  Introduction 

While the prediction of in vivo hepatic clearance in humans from CLint vitro, liver has been closely 

studied for compounds cleared by CYP, microsome-based methods do not adequately describe total 

metabolic activity, and non-CYP metabolism is now of increasing concern in human 

pharmacokinetic prediction. Indeed, the risk of underestimating AO metabolism in humans was 

suggested in Chapter 2. This situation indicates the need for novel approaches to complement 

microsome-based prediction methods for human AO metabolic pathways. 

With their broad spectrum of enzyme activity, human hepatocytes have garnered recent 

attention as a novel tool for evaluating metabolism to complement liver sub-cellular fractions such 

as microsomes, cytosol, and S9 fractions. Human hepatocytes have been found to be a 

physiologically relevant tool for evaluating liver-related pharmacokinetics, including metabolism, 

drug-drug interaction, and drug transport ( Li, 2007, 2010; Soars et al., 2007, 2009), and both fresh 

and cryopreserved human hepatocytes are used in various circumstances. Cryopreserved 

hepatocytes might have similar usability as human liver sub-cellular fractions in aspects such as 

long-term storage, ease of experimental scheduling, choice of pre-characterized lots for 

experimentation, and repeat experimentations with hepatocytes from the same donors ( Li et al., 

2010), and these aspects would prove extremely useful in drug discovery screening. Thus, 
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cryopreserved hepatocytes might prove a useful tool in the comprehensive evaluation of 

metabolism at drug discovery, including AO metabolism. In addition, since the use of individual 

cryopreserved hepatocytes lots for large-scale compound metabolic screening studies might be 

hampered by lot-to-lot individual variation and a limited number of vials, pooled hepatocytes 

aimed at overcoming these disadvantages have been developed. Among advantages, pooled 

hepatocytes provide a far larger number of vials from the same lot than samples from individuals. 

This potentially allows large-scale metabolic studies, such as metabolic stability screening, 

drug-drug interaction, and hepatic clearance prediction, provided the same lot of hepatocytes can be 

used for a certain length of time. However, using cryopreserved hepatocytes to improve 

understanding of AO metabolism in humans will require that the AO enzymatic activity of fresh 

hepatocytes is maintained in cryopreserved ones, or pooled hepatocytes maintain the average AO 

activity of each of the individual lots which comprise the pooled hepatocytes. However, 

information concerning the effect of the production process of cryopreserved hepatocytes or pooled 

hepatocytes on AO activity is unknown. 

In this study, to confirm the usefulness of human hepatocytes in evaluating AO metabolism, I 

firstly compared the CLint values of 4 compounds primarily metabolized by AO in freshly isolated 

and cryopreserved hepatocytes from the same donor (n=4). Subsequently, I compared CLint values 

of AO substrates in individual lots and in pooled hepatocytes consisting of lots from the same 

individual donors. I then examined a quantitative prediction for human hepatic clearance in AO 

substrates using CLint in pooled hepatocytes and CLint vivo calculated from clinical data in the 
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literature. 

 

3.2  Materials and Methods 

3.2.1 Chemicals and reagents 

FK3453 was synthesized at Astellas Pharma Inc (Osaka). XK-469 (XK), o6-benzylguanine 

(O6BG), phthalazine (PHT) was purchased from Sigma-Aldrich Corporation. Zaleplon (ZAL), and 

6-deoxypenciclovir (6DP) were purchased from Toronto Research Chemicals Inc. (Ontario, 

Canada).Zoniporide (ZNP) was purchased from Tocris Bioscience, LLC (Ellisville, MO). The 

structure of each compound is shown in Figure 3-1. William Medium E and Cryopreserved 

Hepatocytes Recovery Medium (CHRM®) were purchased from CellzDirect/Invitrogen 

Corporation (Durham, NC). All other reagents and solvents were commercial products of analytical 

grade. 

 
 

Figure 3-1. Structure of each AO-cleared compound. 
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3.2.2 Human hepatocytes 

Cells 

Freshly isolated and cryopreserved hepatocytes were purchased from CellzDirect/Invitrogen 

Corporation (lot names Hu1186 and Hu1197) and Celsis In Vitro Technologies (lot names SLH and 

EXG; Baltimore, MD, USA). Cryopreserved hepatocytes (lot names GGJ, IQJ, TSF, and WMN), 

and custom pooled hepatocytes consisting of the four lots described above (lot name: VKA) were 

also purchased from Celsis In Vitro Technologies.  

 

Fresh human hepatocytes study  

Hepatocytes were re-suspended in pre-warmed William Medium E containing HEPES (final 

concentration: 15 mM) and L-glutamine (final concentration: 2 mM) purged with 95% O2 and 5% 

CO2 (pH: 7.2-7.4). Cell viability was assessed via trypan blue exclusion just prior to and after 

incubation. Hepatocytes showing >80% viability before and >60% viability after incubation were 

used. 

 

Cryopreserved human hepatocytes study  

The hepatocytes were stored in liquid nitrogen until use, at which point they were removed from 

the liquid nitrogen and immediately immersed in a water bath pre-warmed to 37 °C. The vials were 

shaken gently until all ice crystals had been dissolved and then emptied into pre-warmed CHRM®. 

After centrifugation at 100 × g for 10 min at room temperature, the hepatocytes were re-suspended 
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in pre-warmed William Medium E containing HEPES (final concentration: 15 mM) and 

L-glutamine (final concentration: 2 mM) purged with 95% O2 and 5% CO2 (pH: 7.2-7.4). Cell 

viability was assessed as described above. 

 

3.2.3 In vitro metabolism in hepatocyte suspensions 

Metabolic study conditions 

Each compound and cells in suspension buffer were pre-incubated separately at 37 °C for 10 min 

in a 5% CO2 incubator (MCO-18AIC; SANYO Electric Co. Ltd., Osaka), after which reactions 

were initiated by adding cell suspensions solution (final concentration of hepatocytes: 0.1 million 

cells/mL for PHT; 0.5 million cells/mL for FK3453 and O6BG; 1 million cells/mL for 6DP, ZAL, 

and ZNP; and 2.5 million cells/mL for XK.) to compound solution (final concentration of each 

compound: 0.2 μM, total ratio of organic solvent in incubation mixture: <0.5%).  

Reactions were terminated by adding reaction mixture to ice-cold acetonitrile with 0.1% formic 

acid (v/v), including the internal standard, at 0, 30, 60, 90, and 120 min. After terminating the 

metabolic reaction, the reaction mixtures of all compounds were centrifuged at 1,500 × g for 5 min. 

The supernatant was then decanted and 50 μL of 0.1% formic acid was added, after which 2- to 

5-μL aliquots of the resulting solutions were subjected to LC-MS/MS. Each assay was performed in 

triplicate.  

 

LC-MS/MS conditions 
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The amount of unchanged compounds was determined using LC-MS/MS analysis. The mass 

numbers of the molecular and product ions for each compound were identified as follows (polarity, 

molecular>product): FK3453 m/z = 308 > 266 [M+H]+; O6BG m/z = 242 > 91 [M+H]+ ; PHT m/z 

= 131 > 104 [M+H]+; ZAL m/z = 306 > 236 [M+H]+; 6DP m/z = 238 > 136 [M+H]+; XK m/z = 

345 > 273 [M+H]+; ZNP m/z = 321 > 262 [M+H]+.  

 

 The Prominence 2000 series (Shimadzu) was used as the LC-system. MS/MS analyses were 

conducted on an API-5000 MS/MS system (AB SCIEX). A n Atlantis® C18 (5 μm, 2.0 x 50 mm; 

Waters Corporation, Milford, MA, USA) for 6DP. An XBridge™ C18 (5 μm, 2.0 x 50 mm; Waters 

Corporation) HPLC column was used for all other compounds. Mobile phase was 0.1% formic acid 

and acetonitrile, and gradient elution was carried out for all LC-MS/MS analyses. 

 

Calculation of in vitro intrinsic clearance  

The CLint vitro in hepatocytes (CLint vitro, hep) was calculated using Equation 3-1 and 3-2 based on 

the time course of the residual ratio of the unchanged compounds (%), as determined using least 

squares linear regression (Naritomi et al. 2001). The depletion profile of unchanged compounds is 

described as follow if substrate disappearance rate can be assumed to follow first order kinetics 

R(t) = 100·exp (-ke･t) (3-1) 

CLint vitro, hep (μL/min/million cells) = ke (min-1) / cell concentration (million cells/mL)× 

1000 (3-2), 
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where R(t) is the residual ratio of the unchanged compounds (%) at each incubation time 

(time 0 was regarded as 100%), ke is the disappearance rate constant of unchanged compounds. 

For IVIVE analysis, the units of CLint vitro, hep values were then converted to per kilogram of body 

weight using Equation 3-3. 

 

CLint vitro, hep (mL/min/kg) 

= CLint vitro, hep (mL/min/million cells) x SF1 (million cells/g liver) x SF2 (g liver/kg body 

weight)   (3-3) 

 

where SF1 is the number of cells per gram of liver and SF2 is the liver weight per kilogram of body 

weight. (120 and 25.7 were used, respectively; Naritomi et al. 2003).  

CLint vitro, hep’ is in vitro intrinsic clearance corrected by unbound fraction in hepatocyte incubation 

(fu hep; See Unbound fraction in hepatocyte incubation under Materials and Methods, Equation 3-4). 

 

CLint vitro, hep’ (mL/min/kg) = CLint vitro, hep (mL/min/kg) / fu hep (3-4) 

 

3.2.4 In vitro parameters 

Blood-to-plasma concentration ratio  

 Three hundred microliters of human blood was spiked with 3 μL of 100 μM standard solution (1 

μM final) and pre-incubated in a shaking water bath at 37 °C for 30 min. A 25-μL aliquot was then 
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taken as a blood sample. The remaining samples were centrifuged at 4 °C and 1,800g for 10 min, 

after which a 25-μL aliquot of plasma sample was taken. Samples (25 μL of sample plasma and 25 

μL of blank blood or 25-μL of sample blood and 25-μL of blank plasma) were quenched with 200 

μL of ice-cold acetonitrile containing internal standard and centrifuged at 10,000g for 5 min. The 

Rb was then calculated from the peak area of compounds to that of the internal standard in blood 

per that in plasma. Each assay was performed in triplicate. A value of 0.55 (1 - hematocrit) was 

used if the calculated Rb value was less than 0.55.  

 

Plasma protein binding  

Protein binding was determined using a rapid equilibrium dialysis device (Pierce Biotechnology, 

Thermo Fisher Scientific, Waltham, MA, USA) method (Waters et al., 2008) and an 

ultracentrifugation method with the following equations: 

Protein binding (%) = (1-fp) × 100  (3-5) 

fp  = concentration in PBS or supernatant/concentration in serum  (3-5)’ 

where fp is the unbound drug fraction in plasma. The unbound drug fraction in blood (fb) was 

calculated by dividing fp by Rb.  

The rapid equilibrium dialysis method was used to determine the protein binding of XK-469, and 

the ultracentrifugation method was used for all other AO substrates. 

 

Rapid equilibrium dialysis method 
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Aliquots (1 mL) of human plasma were spiked with 10 μL of 100 μg/mL standard solution (1 

μg/mL final). 300-μL aliquots of the spiked plasma were then added to the donor wells (n=3), and 

500-μL aliquots of PBS were added to the acceptor wells. The plate was then sealed and incubated 

on an orbital shaker (120 rpm) at 37 °C overnight (13-16 h).  

Incubation samples (10 μL of sample plasma and 100 μL of blank PBS, or 100 μL of sample PBS 

and 10 μL of blank plasma) were quenched with 200 μL of ice-cold acetonitrile containing internal 

standard and centrifuged at 10,000g for 5 min. The supernatant was removed under a stream of 

nitrogen gas, the residue was then dissolved in 150 μL of mobile phase, and a 2-5-μL aliquot was 

injected into LC-MS/MS.  

 

Ultracentrifugation method 

Aliquots (1 mL) of human plasma were spiked with 10 μL of 100-μg/mL standard solution (1 

μg/mL final). The calibration samples were prepared by adding 17 μL of 50% acetonitrile to 1,700 

μL of human plasma. These samples were then centrifuged at 436,000g for 140 min at 37 °C using 

a Beckman Optimal TL ultracentrifuge (Beckman Coulter, Fullerton, CA, USA). After 

ultracentrifugation, the fp was calculated by dividing the concentration of drugs in the supernatant 

by that in the plasma. The assay was performed in triplicate. 

 

Unbound fraction in hepatocyte incubation  

The unbound fraction in hepatocyte incubation (fu hep) was determined using the rapid equilibrium 
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dialysis method (Pierce Biotechnology, Thermo Fisher Scientific). Aliquots (1 mL) of hepatocyte 

suspensions were spiked with 10 μL of 20-μM standard solution (0.2 μM final), then 300-μL 

aliquots of the spiked hepatocyte suspensions were added to the donor wells (n=3), after which 

500-μL aliquots of William Medium E containing HEPES (final concentration: 15 mM) and 

L-glutamine (final concentration: 2 mM) were added to the acceptor wells. The cell concentration 

of each compound was consistent with that in the metabolic study (described below). The plate was 

sealed and incubated on an orbital shaker (120 rpm) at 37 °C for 6 h.  

After incubation, 200 μL of ice-cold acetonitrile containing internal standard was added to the 

incubation samples (30 μL of sample suspension and 30 μL of blank medium, or 30 μL of sample 

medium and 30 μL of blank suspension) and centrifuged at 10,000g for 5 min. The supernatant was 

removed under a stream of nitrogen gas, the residue was dissolved in 150 μL of mobile phase, and 

2-5-μL aliquots were injected into LC-MS/MS. The fu hep was then calculated from the peak area of 

compounds to that of the internal standard in sample medium per that in sample suspensions. A 

value of 1 was used if calculated fu hep was greater than 1. 

 

3.2.5 Data analysis 

Statistical Analysis 

Homogeneity of variances was analyzed using the F test at P<0.05 (two-tailed test). If a set of 

variances was found to be homogenous, Student's t test was used at P<0.05 (two-tailed test). 

Significance of differences in average value of CLint vitro, hep between freshly isolated and 
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cryopreserved hepatocytes was determined using an unpaired Student's t test; significance of 

differences in matching lots was determined using a paired Student's t test. 

 

Calculation of CLint vivo for IVIVC   

The CLint vivo was calculated using the following equations, based on the dispersion model 

(Iwatsubo et al., 1996):  

CLh = CLt – CLr, CLt × (1-fe), or Dose iv/AUC iv   (3-6) 

CLh = Qh × (1-Fh) (3-6)’ 

Fh=4a / (1+a)2 exp [(a-1)/2DN] - (1-a)2 exp [-(a+1)/2DN] (3-7) 

a= [1+(4 × fp/Rb × CLint vivo× DN /Qh)]1/2  (3-8) 

where CLt, CLh, and CLr are total, hepatic, and renal clearance; fe is the ratio of the urinary 

excretion of unchanged drug; dose iv and AUC iv are dosage at intravenous administration and the 

area under the plasma concentration-time curve after intravenous administration, respectively; Fh is 

hepatic availability; Qh and DN are hepatic blood flow rate and dispersion number, with values of 

20.7 mL/min/kg and 0.17 used, respectively (Naritomi et al., 2003).    

If iv data were not available, CLoral was used to calculate CLh using the following equation, after 

which CLint vivo was calculated by equations (3-7) and (3-8). 

CLoral = CLh / (1-fe) × Fa × Fg × Fh (3-9) 

where Fa and Fg are fraction absorbed and intestinal availability, respectively (assumed to be 

1 if data are not available) 
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I used the average values in subjects to calculate CLint vivo. In cases where a parameter showed as a 

range of minimum to maximum in the literature, the intermediate value between the minimum and 

maximum, namely (minimum + maximum)/2, was used. In cases where data were not available, 70 

kg was used for human body weight, CLr or fe were assumed to be 0, and Fa and Fg were assumed 

to be 1. 

 

3.3  Results 

3.3.1 In vitro intrinsic clearance in fresh and cryopreserved hepatocytes 

CLint vitro, hep values of FK3453, O6BG, PHT, and ZAL in donor-matched fresh and cryopreserved 

hepatocytes were summarized in Figure 3-2 and Table 3-1. On direct comparison of CLint vitro, hep in 

freshly isolated and cryopreserved hepatocytes from the same donors (n = 4), I found that 

cryopreservation resulted in -32% to +85% changes in CLint vitro, hep values of FK3453, O6BG, PHT, 

and ZAL.
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Figure 3-2. Comparison of AO enzyme activities of freshly isolated and cryopreserved 
hepatocytes from the same donor. 
 Closed triangle open triangle, closed circle, and open circle represent intrinsic clearance in Hu1186, SLH, 
Hu1197, and EXG, and bars represent mean value of intrinsic clearance in each compound. 

 
 
TABLE 3-1 Summary of CLint vitro, hep in freshly isolated and cryopreserved human hepatocytes 

Compounds 

CLint vitro, hep (μL/min/106 cells) Average 

Hu1186 
 

SLH 
 

Hu1193 
 

EXG Ratio 

F C C/F   F C C/F   F C C/F   F C C/F (n=4) 

FK3453 12.6 13.2 1.05 

 

11.8 18.7 1.59 

 

11.1 15 1.35 

 

7.2 9.4 1.32 1.33 

O6-benzylguanine 8.2 9.7 1.18 

 

7.4 8.6 1.17 

 

8.2 6.5 0.79 

 

5.4 6.7 1.23 1.1 

Phthalazine 152.9 99.6 0.65 

 

169.8 122.4 0.72 

 

91.6 54.9 0.6 

 

85.8 63.2 0.74 0.68 

Zaleplon 2.1 2.6 1.26   2.5 4.3 1.71   1.4 3.6 2.5   1.1 2.1 1.91 1.85 

C, Cryopreserved hepatocytes; F, Fresh hepatocytes 
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3.3.2 In vitro intrinsic clearance in individual and pooled cryopreserved hepatocytes 

The CLint vitro, hep values of FK3453, O6BG, and ZAL in individual hepatocytes and pooled 

hepatocytes are summarized in Figure 3-3 and Table 3-2. Values in pooled hepatocytes were +4%, 

+55%, and +7% of average clearance value in individual hepatocytes for FK3453, O6BG, and ZAL, 

respectively. 

 

 
 

Figure 3-3. Comparison of intrinsic clearance in pooled (VKA) and individual cryopreserved 
hepatocytes (GGJ, IQJ, TSF, and WNN). 

Open column represents intrinsic clearance in GGJ, IQJ, TSF, and WNN. Solid column represents mean 
value of intrinsic clearance in VKA (mean, n=3). Error bars represent the standard deviation. 

 

TABLE 3-2. In vitro intrinsic clearance in individual and pooled hepatocytes. 

Compound 

Individual lots   VKA (mean±SD, n=3)   Ratio 

GGJ IQJ TSF WNN Mean ± SD (CV) 

 

Mean ± SD (CV) 

  mL/min/kg %   mL/min/kg %     

FK3453 22.2  30.0  23.1  64.6  35.0  ± 20.1  (57) 

 

36.4  ± 7.8  (21) 

 

1.04  

o6-benzylguanine 13.7  22.2  11.4  27.7  18.8  ± 7.5  (40) 

 

29.1  ± 8.6  (30) 

 

1.55  

zaleplon 3.4  5.9  5.2  11.8  6.6  ± 3.7  (56)   7.1  ± 2.3  (32)   1.07  

GGJ, IQJ, TSF, WNN and VKA, lot names of individual hepatocytes and pooled hepatocytes; Ratio, 
average value of CLint in VKA per that in individuals (GGJ, IQJ, TSF, and WNN). 

pooled (VKA) 
Average of individuals (GJJ, IQJ, TSF, and WNN)
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3.3.3 In vitro-in vivo correlation analysis using pooled cryopreserved hepatocytes 

Rb, fp and fu hep in AO substrates 

Rb, fp, and fu hep values in AO-cleared compounds are listed in Table 3-3. An extremely high 

value of protein binding was observed in XK (99.3%). 

 

TABLE 3-3. Summary of blood-to-plasma concentration ratio, protein binding, and unbound 
fraction in hepatocyte incubation of AO substrates  
  Rb fp fu, hep 

FK3453 0.86 0.195 0.90 
o6-benzylguanine 1.02 0.086 0.85 

zaleplon 0.92 0.402 0.83 
6-deoxypenciclovir 1.08 0.793 0.99 

XK-469 0.55 a 0.007 b 0.98 
zoniporide 0.81 0.320 0.89 

Rb, blood to plasma concentration ratio; fp, unbound drug fraction in plasma; fu hep, unbound fraction in 
hepatocyte incubation. 
a Assumed to be 0.55 (calculated values were below 0.55).  
b Rapid equilibrium dialysis was used for determination. 
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In vitro-in vivo correlation of CLint vivo and CLint vitro 

Values overall showed a trend toward underestimation. Underestimation was approximately 

10-fold (7.2- to 14.9-fold) for all AO substrate compounds (Fig.3-4, Table 3-4).  

 

 
Figure 3-4. In vitro-in vivo correlation analysis for AO substrates. 
1, FK3453; 2, o6-benzylguanine; 3, zaleplon; 4, 6-deoxypenciclovir; 5, XK-469; and 6, zoniporide. 
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3.4 Discussion 

Here, to examine the usefulness of human hepatocytes as an evaluation tool for AO substrate 

compounds in drug discovery, potential effects of cryopreservation on AO enzyme activities was 

assessed by comparing CLint vitro, hep values in FK3453, O6BG, PHT, and ZAL which are reported 

to be primarily metabolized by AO in humans between freshly isolated and cryopreserved 

hepatocytes.  

Subsequently, I compared AO enzyme activity in four lots of cryopreserved hepatocytes from 

individuals (GGJ, IQJ, TSF, and WNN) with that in a custom pooled lot (VKA) made from those 

same individual lots using FK3453, O6BG, and ZAL. IVIVC analysis for hepatic clearance 

prediction was then performed in 6 AO-cleared compounds by comparing CLint vitro, hep in pooled 

hepatocytes (lot name: VKA) and CLint vivo were obtained from clinical data in the literature. 

 

Effect of cryopreservation on AO enzyme activities in hepatocytes 

In the present study, I evaluated the effect of cryopreservation on AO in two ways: direct 

comparison of AO enzyme activities between freshly isolated and cryopreserved human 

hepatocytes from the same donor (n=4), and between individual lots and in pooled hepatocytes 

consisting of lots from the same individual donors. 

I investigated the effects of cryopreservation by comparing CLint vitro, hep values for FK3453, 

O6BG, PHT, and ZAL in four pairs of fresh and cryopreserved hepatocytes derived from the same 

donors (Hu1086, Hu1097, EXG, and SLH, Fig. 3-2, Table 3-1). Although I observed a significant 
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reduction in CLint vitro, hep for PHT after cryopreservation when compared to donor-matched fresh 

hepatocytes (−32%), the changes in CLint vitro, hep values after cryopreservation were within 2-fold 

in all AO substrates (+33%, +10%, and +85% for FK3453, O6BG, and ZAL, respectively). 

On comparison of average CLint vitro, hep values between individual and pooled hepatocytes for 

FK3453, O6BG, and ZAL, CLint vitro, hep values in custom pooled hepatocytes showed +4%, +55%, 

and +7% of average clearance in individual hepatocytes, respectively. These data support the idea 

that pooled hepatocytes reflect the mean value of metabolic activities of each individual lot which 

contribute to the pool. Further, AO enzymes activity maintained during the freezing and thawing 

process generally required for pooled hepatocytes. These results indicated that pooled human 

hepatocytes are a useful tool in evaluating AO metabolism in large-scale compound screening. 

 

In vitro-in vivo correlation for AO substrates 

 IVIVC analysis for AO-cleared compounds was then performed by comparing CLint vitro, hep in 

pooled hepatocytes and CLint vivo calculated from previously published clinical data.  

In this study, although the rank order of CLint vitro, hep with CLint vivo was maintained, 7.9- to 

14.9-fold underestimation was observed in IVIVC for all 6 AO substrates (Fig. 3-3). Given that a 

similar range of under-prediction (average 11-fold) was also observed in predicting human in vivo 

clearance from CLint vitro calculated from cytosol or S9 (Zientek et al. 2010), the risk of 

underestimation of AO metabolism in humans exists regardless of enzyme resource. In general, not 

only with AO, it is known that the CLint vitro obtained from human liver microsomes or hepatocytes 
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systematically under-predicted CLint vivo by 9 and 3-6-fold, respectively (Chiba et al., 2009). 

Several interesting recent papers might potentially explain the under-prediction in several category 

compounds based on mechanistic rationales. For example, the prediction method of Poulin et al 

improved prediction accuracy in highly protein binding compounds which showed a tendency to 

the underestimation of predicted clearance by conventional method (Poulin et al., 2012). Prediction 

of clearance of acid compounds, whose clearance was under-predicted from hepatic metabolism 

parameter only, was improved by including hepatic uptake, biliary excretion, and sinusoidal efflux 

into the clearance calculation (Umehara and Camenish, 2012). Unfortunately, these strategies may 

not be directly applicable to the AO substrates tested in this study, as most of them are basic 

compounds (Fig. 3-1) and show moderate protein binding except XK-469 (Table 3-3). While the 

reason for this consistent underestimation of AO metabolism in humans remains unclear, Zientek et 

al (2010) suggested several possibilities, including the contribution of extra-hepatic metabolism to 

total clearance and enzyme lability during preparation or storage. Likewise, Chiba et al (2009) also 

discussed possible reasons for underestimation of CLint vivo saying that extrinsic factors such as 

preparation process and storage conditions are responsible for the potential loss of enzyme activity 

in human liver extracts or hepatocytes, resulting in the systematic under-prediction. However, 

evaluation of AO activity using fresh human liver biopsy after harvesting is almost impossible, 

therefore, I cannot assess the lability issues using human sample. One possibility might be the use 

of monkeys as a preclinical species for assessing AO metabolism, given their high reported AO 

activity (Diamond et al., 2010). Evaluation of AO lability during preparation or storage might be 
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assessed by comparing AO activity between liver biopsy immediately after harvesting and 

hepatocytes in monkeys. Meanwhile, underestimation at a constant rate, as observed in this study, 

suggests the possibility that prediction accuracy may be improved by using an empirical scaling 

factor. I propose that the CLint vivo may be well predicted by calculating the geometric average ratio 

of CLint vivo / CLint vitro, hep from several reference drugs as a scaling factor, and then multiplying 

CLint vitro, hep of the candidate by that scaling factor. Using the 6 AO substrates tested in this study 

as examples, empirical scaling factors of 9.1 to 10.6 were calculated using the other 5 substrates, 

and CLint vivo was predicted to be within 2-fold in all tested compounds (Table 3-5). With regard to 

FK3453, CLh was calculated to be 19.5 mL/min/kg from 369.3 of predicted CLint vivo by the 

dispersion model. These results confirm the observed poor human exposure of FK3453, and also 

confirm that this poor exposure risk would have been identified if hepatocytes had been used as a 

screening tool. A similar approach was taken by Hutzler et al (2012), who predicted hepatic 

clearance from a well-stir model using human cryopreserved hepatocytes with several AO 

substrates including BIBX1382, which had been expected to show acceptable exposure in humans 

from pre-clinical data, but in fact showed less than 5% of BA in humans. They confirmed that the 

risk of high clearance in BIBX1382 due to AO metabolism would be detected if the predicted 

hepatic clearance from cryopreserved hepatocytes was used to estimate BA in humans. By 

comparison, use of the well-stir model in IVIVC analysis for the 6 compounds in this study resulted 

in non-constant under-prediction compared to the dispersion model, which is not adequate for 

empirical scaling theory, as described above. The underestimation ratio increased proportionally 
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with CLint vivo in well-stir model-based analysis (data not shown); however, these model-depend 

difference may be explained by the mathematical theory in both models. If CLint vivo is calculated 

back from CLh or CLoral, the CLint vivo value from a well-stirred model is higher than that from the 

dispersion model, especially with high-clearance drugs (Chiba et al., 2009). 

These observations further suggest the possibility that relatively large pools of hepatocytes with 

superior AO enzyme activities might be obtained by selecting individual lots following preliminary 

characterization. As previously reported by Shibata et al (2002), who reported successful 

quantitative clearance prediction using 14 drugs mainly metabolized by CYP, hepatic clearance 

prediction for AO metabolism within a certain period of time would be made possible using custom 

pooled hepatocytes from several individuals whose hepatocytes had been pre-identified as showing 

good IVIVC for AO substrate drugs. 

 

TABLE 3-5. Prediction of hepatic clearance of AO compounds using an empirical scaling 
factor. 

Compound 
Observed    Predicted 

CLint vivo CLint vitro, hep ' Ratio   ESF CLint pred 

FK3453 603.2 40.4 14.9 
 

9.1 369.3 
o6-benzylguanine 288.9 34.3 8.4 

 
10.2 351.2 

zaleplon 102.3 8.5 12.1 
 

9.5 80.7 
6-deoxypenciclovir 63.6 6.9 9.3 

 
10.1 69.2 

XK-469 16.9 1.8 9.4 
 

10.0 18.0 
zoniporide 227.8 31.6 7.2   10.6 334.5 

CLint vitro, hep ', in vitro intrinsic clearance divided by unbound fraction in hepatocyte incubation (fu hep); 
Ratio, CLint vivo / CLint vitro, hep '; ESF, empirical scaling factor (geometric mean of CLint vivo/ CLint vitro, hep' in 
other 5 substrates: e.g. 9.1 in FK3453 responds to the geometric mean of 8.4, 12.1, 9.3, 9.4, and 7.2 in 
o6-benzylguanine, zaleplon, 6-deoxypenciclovir, XK-469, and zoniporide); CLint pred, predicted intrinsic 
clearance: CLint vitro, hep'× ESF. 
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In conclusion, pooled hepatocytes reflect the average of the AO enzyme activities of the 

individual hepatocytes used to make the pool. This observation enabled us to obtain specific pooled 

hepatocytes which showed the expected AO enzyme activities by pre-characterization. While a 

trend toward underestimation was observed in IVIVC analysis for AO metabolism using 

hepatocytes, I successfully quantified the hepatic clearance prediction for these compounds using 

an empirical scaling factor.  
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Concluding Remarks 

 

Summary of the studies 

Commercialization of human liver microsomes and the development of methods for predicting 

human hepatic CYP metabolism have enabled selection of candidates stable against CYP 

metabolism in the early drug discovery stage. However, extra-hepatic and non-CYP metabolism 

continue to pose problems with human pharmacokinetic prediction for drug candidates. Here, I 

have described the impacts of species differences in intestinal metabolism and AO metabolism on 

human pharmacokinetic prediction in drug discovery. In addition, I also discussed a novel approach 

to quantitate human hepatic clearance by AO metabolism.  

 

In Chapter 1, I demonstrated the risk of underestimating human BA prediction in drug 

discovery research and discussed the importance of separate evaluation of Fa, Fg, and Fh when 

predicting human BA from monkey pharmacokinetic parameters. In addition, the potential of such 

novel approaches to estimating Fg values in humans was nevertheless suggested.  

On comparing BA, Fh, and FaFg after intravenous and oral administrations of 13 commercially 

available drugs to cynomolgus monkeys with those for humans reported in the literatures, 8 of 13 

drugs showed markedly lower BA in monkeys than those in humans. There were no obvious 

differences in Fh between humans and monkeys, however, a remarkable species difference in FaFg 

was observed. Given that in vitro membrane permeability data suggested favorable Fa in monkeys 
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for all tested drugs, higher first-pass intestinal metabolism in cynomolgus monkeys than in humans 

was suggested as a major factor of the markedly lower BA observed in monkeys. CLint vitro values 

were larger in monkey intestinal microsomes than in humans for 5 of the 8 drugs which showed 

low BA in monkeys, suggesting that species difference in intestinal metabolism between humans 

and monkeys results in drastic underestimation of human BA, thereby leading to a loss of 

candidates with favorable pharmacokinetic profiles in humans in drug discovery research. As 

cynomolgus monkeys are widely used in pharmacokinetic and drug-safety studies, separate 

evaluation of FaFg and Fh is recommended when using monkey pharmacokinetic parameters for 

candidate selection. In addition, a metabolic stability assay using human intestine microsomes may 

help to better understand pharmacokinetic profiles of drug candidates in humans. 

 

 In Chapter 2, the risk of extensive AO metabolism in humans was discussed by describing 

preclinical and clinical pharmacokinetic profiles of FK3453 and the mechanism responsible for 

poor oral exposure of FK3453 in humans. Although FK3453 showed a promising pharmacokinetic 

profile in preclinical studies, such as demonstrating a satisfactory BA, total body clearance in 

animals, and favorable metabolic stability in liver microsomes, plasma concentrations of FK3453 

in humans were extremely low, with M4 identified as a major metabolite. AO was identified as the 

enzyme responsible for poor exposure of FK3453 in humans by in vitro metabolic study using 

human liver sub-cellular fractions such as S9, cytosol, and microsomes with or without inhibitors.  

While rats and dogs have also been widely used for preclinical studies for drug development at 
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pharmaceutical industries, rat- and dog-based pharmacokinetic studies and microsome-based 

compound screening are not sufficiently capable of evaluating the in vitro-in vivo relationship for 

AO metabolism and predicting the human pharmacokinetic profile. As such, great care must be 

taken to avoid candidate attrition in human pharmacokinetic studies should the candidate be 

metabolized by AO. 

 

In Chapter 3, I verified that findings in pooled hepatocytes represent the average of the AO 

enzyme activities of the individual hepatocytes. A quantitative method of predicting hepatic AO 

metabolism in humans using pooled hepatocytes was also developed to avoid the risk of 

underestimating AO metabolism in humans. Although pooled cryopreserved hepatocytes were 

believed to be the most efficient tool in evaluating AO metabolism during drug discovery research, 

considering their advantages in usability, whether or not the process of producing pooled 

hepatocytes, which involves at least two rounds of freezing and thawing, adversely affected AO 

activity remained unclear. Consequently, CLint vitro, hep values of AO-cleared compounds in human 

hepatocytes were maintained among fresh, cryopreserved, and pooled hepatocytes.  

Given the above results, pooled hepatocytes were selected for IVIVC analysis to predict 

hepatic clearance of AO-cleared compounds in humans. Although approximately 10-fold 

underestimation was observed in IVIVC analysis using pooled hepatocytes for all tested AO 

substrates, quantitative hepatic clearance for AO compounds was successfully predicted with an 

empirical scaling factor. I also confirmed that the poor exposure risk of FK3453 in humans would 
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have been identified if hepatocytes had been used as a screening tool.  

Taken together, these present findings allowed us to avoid passing over potential candidates 

with acceptable pharmacokinetic profile in humans due to intestinal metabolism and candidate 

attrition during phase 1 trials due to unexpected high AO metabolism in humans, thereby 

facilitating more efficient candidate selection and optimization in drug discovery research. 

 

Future prospects 

 In future studies, I would like to thoroughly examine the usefulness of a monkey pharmacokinetic 

profile of AO substrates in evaluating AO metabolism for drug discovery, as high AO activity has 

been reported in monkeys. And if monkey represents higher AO activity in humans, in-depth 

studies regarding elimination pathway such as contribution of intestinal CYP or AO will be 

required to estimate human BA of new chemical entities in cases where the compound shows 

favorable pharmacokinetic profiles in rats and dogs but markedly poor exposure in monkeys.  

Subsequently, while a quantitative approach using intestinal microsomes was suggested in 

Chapter 1, this study doesn’t describe Fg in humans directly. Development of a mathematical 

model to calculate Fg value from in vitro data will be useful for adequate candidate selection. In 

addition, the AO-specific underestimation could be overcome using ESF, provided the compounds 

are mainly metabolized by AO (Chapter 3); however, methods of estimating the hepatic clearance 

of compounds in which AO only partially contributes to their elimination from the body remain to 

be developed.  
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In the future, I expect more factors besides intestinal or AO metabolism with a crucial impact 

on human BA prediction to be identified. In the present study, investigations into the cause of low 

BA or the establishment of evaluation systems to complement these factors were shown to be 

important in furthering pharmacokinetic research in drug discovery. 
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