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HAT複合体構成因子 Brd1の血液細胞における機能解析 

先端生命科学専攻（分子細胞生物学研究室）	
 三嶋 雄太 

 
【目的】真核細胞においてクロマチンは DNA とヒストンからなるヌクレオソームを最小単位として構成され
ている。近年、このヌクレオソームを構成するヒストン蛋白質の特定リジン残基におけるアセチル化によって

ヒストンの正電荷が中和され、ヌクレオソームの構造が弛緩することで、転写活性化に働くと考えられている。

アセチル基の付加はヒストンアセチル基転移酵素 (histone acetyltransferase: HAT) により行われる。多くの場合、
HAT は蛋白質複合体を形成し、その構成因子により HAT 活性や基質特異性等が制御される。そのため、HAT
の構成因子の機能を明らかにできれば、HATの活性制御や基質特異性の制御に関する新たな知見が得られると
共に新しい創薬のターゲットとなる可能性も考えられる。本研究では、MYST (MOZ, Ybf2/Sas3, Sas2, and Tip60) 
ファミリーに属する HAT複合体の構成因子である Brd1 (Bromodomain-containing protein 1) の個体レベルでの機
能を明らかにすることを目的とした。 
 
【背景】Brd1はクロマチン制御因子に特徴的な機能ドメインを複数有する分子であり、Brpf2とも呼ばれ、Brpf
ファミリーに属する。同様のドメイン構造を有する Brpf1は H3 HATである MOZ/MORFと複合体を構成し、
HAT活性を増強する活性化因子として機能する事が報告されている。この事から Brd1も HAT複合体の構成要
素として、ヒストン修飾を介した遺伝子発現制御に関与する可能性が考えられたが、その生理学的な機能は明

らかにされていなかった。そこで、今回新たにノックアウトマウスを作製し、その機能解析を試みた。 
 
【方法】個体レベルでの機能解析を行うため、Brd1遺伝子欠損マウスを作製し、血液細胞をフローサイトメト
リーで解析した。また、必要に応じて血液細胞をソーティングし、それらの細胞を用いた培養実験、タンパク

結合実験、マイクロアレイ解析、Chromatin-immunoprecipitation on microarray (ChIP-Chip) 解析を行い Brd1の機
能を解析した。 
 
【結果と考察】  
 ①  Brd1-/-胎仔の胎生致死と形態異常 
	
 Brd1の ATG配列を含む exon2を欠損させたノックアウトマウス
を新規に作製したところ、Brd1-/-マウスは胎齢（E）12.5-13.5日にお
いて胎生致死である事が判明した。 
	
 E12.5 の Brd1-/-マウスの形態を観察すると、ほとんどの個体で発

達遅延（92/99匹） 、眼球の形成異常（74/122匹）が観察され（図
1 A,B）、その他にも神経管の閉塞不全（30/135 匹） を示す個体も
確認された。これらの所見から Brd1は胎生期の発生過程において、
様々な組織において重要な機能を有する事が考えられる。しかしな

がら、これらの異常は胎生致死の直接の原因とは考えにくく、主因

は別にあるものと考えられた。 
 

 ②  Brd1-/-胎仔肝における赤血球造血異常 
	
 胎生中期で起こる胎生致死の主因が貧血であることが多いこと

から、次に、この時期の造血組織である胎仔肝に注目し解析を進め

た結果、胎仔肝の細胞数は野生型の 22%に減少していることが判明
し（図 1 C,D）、胎仔肝の血液細胞の中には核が大きく未分化な赤芽
球細胞が多く観察された（図１E,F）。赤血球分化の異常をより詳細
に解析するため、トランスフェリンレセプターである CD71 と
Ter119 を共染色してフローサイトメトリーによる解析を行った結
果、未分化な赤芽球細胞（CD71+Ter119-細胞）が増加するとともに、

(A, B) 胎仔の顕微鏡像	
 
(C, D) 胎仔肝の組織切片蔵  
(E, F) 胎仔肝の血液細胞像  
（ ） 

［図１］胎齢 12.5日の Brd1-/-  
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成熟した赤芽球（CD71+Ter119+細胞）が著しく減少することが確認された。Annexin Ⅴ を用いた解析によりこ
れらの分画ではアポトーシスが亢進している事も明らかになった。この事から、Brd1 欠損による胎生致死は赤
血球の分化異常による貧血が主因であると考えられた。 
 

 ③  BRD1は HBO1、ING4と HAT複合体を形成する 
	
 BRD1 と同じファミリー分子である BRPF1 は MOZ と
HAT複合体を形成する。そのため、BRD1も MOZと複合体
を形成する可能性が考えられた。MOZ欠損マウスも胎生致
死であり、胎仔肝の造血異常を引き起こすことが報告され

ている。しかしながらその異常は主に造血幹細胞に認めら

れ、Brd1欠損マウスの赤血球分化異常とは異なる。そこで、
BRD1が形成する複合体を確認するため、Flag-BRD1を発現
するヒト白血病株 K562細胞を用いて、BRD1に結合するタ
ンパク質を精製し、LC/MS/MS にて解析した。その結果、
MYSTファミリーに属するHATであるHBO1とその活性化
因子 ING4が同定された。Flag-BRD1で精製した蛋白質の銀
染色像を示す (図２A)。Flag-BRD1が形成する複合体を免疫
沈降し、HBO1、ING4 に対する抗体を用いてウェスタンブ
ロッティングで確認を行ったところ、BRD1 は HBO1 と
ING4と複合体を形成することが確認された（図２B,C）。  
次に、BRD1と HBO1の結合に関して、BRD1のどの領域

が重要なのかを確かめるため複数の断片化BRD1蛋白質（図
２D）を用いて検証したところ、N末端領域 (a.a. 1-198) が
HBO1との結合に必要である事が明らかとなった。 
 

 ④  BRD1-HBO1複合体は赤血球分化を促進する 
	
 ヒト白血病株 K562は赤血球系へ分化誘導可能である細胞株である。この細胞の特性を利用して Brd1欠損と
赤血球分化異常との関連性を検証した。その結果 Brd1の強制発現により K562細胞の赤血球系への分化が促進
される結果が得られた。しかしながら、HBO1との結合に必要な N末端領域 (a.a. 1-198) を除いた Brd1の強制
発現ではその効果が見られなかった。さらに、Hbo1 をノックダウンした K562 細胞ではヘモグロビン産生細胞
が減少した事から、BRD1-HBO1複合体が赤血球分化に機能を有している事が示された。 
 
 ⑤  BRD1と HBO1は多くの遺伝子上で共局在している 
	
 次に、BRD1-HBO1複合体が標的とする遺伝子を明らかにするため、K562細胞を用いて ChIP-chip解析を行っ
た。その結果 BRD1と HBO1が多くの遺伝子上で共局在しており（図３A）、その局在ピークも転写開始点（TSS）
を中心に非常に類似していることが判明した（図３B）。さらに、共局在している遺伝子リストの中には Gata1、
Tal1 といった赤血球分化に重要な制御因子が含まれており、それらの遺伝子上において転写開始点を中心とし
たプロモーター領域に BRD1と HBO1が共局在していることが明らかになった（図３C）。 

 

(A) で精製した結合蛋白質の銀染色像	
 
(B) ウェスタンブロッティング  
(C) BRD1-HBO1 HAT 複合体模式図  
(D) 実験に使用した断片化 BRD1蛋白質の構造  

［図２］  
 

A  
 

B  
 

C  
 

D  
 

(A) BRD1と HBO1の結合が
検出された遺伝子の数	
 
(B) TSSを中心とした全遺伝
子結合シグナルの平均値  
(C) Gata1 遺伝子上の BRD1
と HBO1の局在シグナル  

［図３］  
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 ⑥  BRD1-HBO1複合体はヒストン H3K14のアセチル化に重要である 
	
 Brd1複合体が実際に HAT複合体として機能を持つかを検証するため、野生型と Brd1欠損マウスからそれぞ
れ採取した赤芽球細胞 (CD71+Ter119-) を用いて、ヒストンのアセチル化を評価した。その結果、Brd1欠損赤芽
球では H3K14 のアセチル化が特に著しく減少している事が判明し、さらに、Hbo1 をノックダウンした赤芽球
でも H3K14のアセチル化レベルが減少することが確認された。その一方で、Brpf1のパートナーである Moz欠
損マウスから採取した赤芽球細胞では H3K14のアセチル化に変化は見られなかった。 
	
 また、H3K14 のアセチル化抗体を用いて行った ChIP 実験では、Brd1 欠損マウスの赤芽球において Gata1 を
はじめとした赤血球分化に重要な遺伝子のプロモーター領域におけるH3K14のアセチル化が減少していること
が示された。これらの結果からも Brd1が MOZ ではなく HBO1と結合している事が示唆され、BRD1-HBO1複
合体が H3K14のアセチル化に重要であると考えられた。 
 
 ⑦  Brd1は赤血球分化制御遺伝子群の転写制御に関与する 
	
 これまでの結果から、Brd1 の欠損により赤血球分化に重要な遺伝子群の転写抑制が予想されたため、定量
RT-PCRを用いて検証した。その結果、野生型と比較し Gata1や Tal1などの遺伝子発現が mRNAレベルで減少
傾向にある事が示された。加えて、通常 Gata1に負に制御されている Gata2の mRNAレベルが逆に増加傾向に
ある事も示された。 
	
 このことから赤血球分化の重要な転写因子の一つである Gata1 に注目し、Brd1 を欠損した未分化な赤芽球前
駆細胞（c-Kit+CD71-）に Gata1を過剰発現させて培養実験を行ったところ、Brd1を欠損した赤芽球の in vitroに
おける増殖活性の回復が得られた。ただし、分化は十分な回復が得られなかった。 
 
【結論】  
	
 以上の結果から、今回の研究によってクロマチン制御因子 Brd1が Hbo1と HAT複合体を形成している事が明
らとなった。また、Hbo1-Brd1 HAT複合体によるヒストン H3K14のアセチル化を介した Gata1等の転写因子群
の発現制御が、胎仔期の赤血球造血に重要な役割を果たすものと考えられた。（図４） 
	
 現在、成体での機能を検討するために Brd1のコンディショナルノックアウトマウスを作製して解析を行って
おり、Brd1が胸腺における免疫細胞の分化にも機能を有している事が明らかになっている。 
	
 これらの知見は、ヒストンのアセチル化を介した遺伝子制御機構の更なる解明に寄与するものと考えられる。 

 

 

［図４］ Brd1-Hbo1複合体が H3K14のアセチル化によるクロマチンの構造変換を介した遺伝子
発現制御機構に寄与し、胎仔期における Gata1や Tal1、Lmo2といった赤血球分化に重要な転写
因子群の転写制御に機能していると考えられる。 
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Abstract 

The histone acetyltransferases (HATs) of the MYST family include TIP60, 

HBO1, MOZ/MORF, and MOF and function in multisubunit protein complexes. 

Bromodomain-containing protein 1 (BRD1), also known as BRPF2, has been 

considered a subunit of the MOZ/MORF H3 HAT complex based on analogy 

with BRPF1 and BRPF3. However, its physiological function remains obscure. 

Here we show that BRD1 forms a novel HAT complex with HBO1 and regulates 

erythropoiesis. Brd1-deficient embryos showed severe anemia due to impaired 

fetal liver erythropoiesis. Biochemical analyses revealed that BRD1 bridges 

HBO1 and its activator protein, ING4. Genome-wide mapping in erythroblasts 

demonstrated that BRD1 and HBO1 largely co-localize in the genome and target 

key developmental regulator genes. Of note, levels of global acetylation of 

histone H3 at lysine 14 (H3K14) were profoundly decreased in Brd1-deficient 

erythroblasts and depletion of Hbo1 similarly affected H3K14 acetylation. 

Impaired erythropoiesis in the absence of Brd1 accompanied reduced expression 

of key erythroid regulator genes, including Gata1, and was partially restored by 

forced expression of Gata1. Our findings suggest that the Hbo1-Brd1 complex is 

the major H3K14 HAT required for transcriptional activation of erythroid 

developmental regulator genes. 
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Introduction 

The histone acetyltransferases (HATs) of the MYST family, which include 

TIP60, HBO1, MOZ/MORF, and MOF, are highly conserved in eukaryotes and 

perform a significant proportion of all nuclear acetylation. They share a highly 

conserved MYST domain composed of an acetyl-CoA binding motif and a zinc 

finger and function in multisubunit protein complexes.1,2 Among the MYST 

family members, HBO1 and MOZ/MORF form complexes of very similar 

composition: JADE family proteins bridge HBO1 with inhibitor of growth 4 and 

5 (ING4/5) and Esa1-associated factor 6 ortholog (EAF6), whereas BRPF family 

proteins bridge MOZ/MORF with ING5 and EAF6, respectively.1,3,4 The plant 

homology domain (PHD) fingers in JADE1/2/3, BRPF1/2/3, and ING4/5 interact 

with histones and are thought to define the substrate-specificity of the HBO1 and 

MOZ/MORF complexes.1 HBO1 is considered responsible for the bulk of the 

acetylation of histone H4 at lysines 5, 8, and 12 (H4K5, K8, and K12), and the 

interaction between ING4 and histone H3 trimethylated at lysine 4 (H3K4me3) 

augments activity of HBO1 to acetylate histone H3.5 Furthermore, the HBO1 

complexes are enriched throughout the coding regions of genes, suggestive of a 

role in transcriptional elongation.6 By contrast, MOZ and MORF are HATs 

specific for histone H3. Binding of Yng1, a yeast ortholog of the ING family, to 

H3K4me3 has been shown to promote Sas3 (yeast ortholog of MOZ) HAT 

activity at H3K14.7 The mammalian MOZ complex also showed specificity for 

H3K14 acetylation in vitro.3 

Moz-deficient mice have a severe defect in the maintenance of 

HSCs.8,9 During zebrafish development, both moz and brpf1 are required for 

maintenance of cranial Hox gene expression and proper determination of 

pharyngeal segmental identities.10,11 Similar findings were reported from 



 
5 

analyses of Moz-deficient mice and medaka fish in which brpf1 was 

mutated.12 The genetic interaction between Moz and Brpf1 supports that Brpf1 is 

the major bridging protein of the MOZ HAT complex. In contrast to Brpf1, 

however, distinctive functions of other BRPF family members have not been 

elucidated. 

BRD1 (initially named BR140-LIKE; BRL) was originally cloned as a 

protein containing a cysteine-rich region related to that of AF10 and AF17, 

which are leukemic fusion partners of MLL.13 BRD1 contains a bromodomain, 2 

PHD zinc fingers, and a proline-tryptophan-tryptophan-proline (PWWP) domain, 

3 types of modules characteristic of chromatin regulators. Recently, BRD1 was 

reported to belong to a small family of BRPF proteins that includes BRPF1, 

BRD1/BRPF2, and BRPF3.1,3 BRD1 has been considered a subunit of the 

MOZ/MORF H3 HAT complex on the basis of analogy with BRPF1 and 

BRPF3.3,4 However, no detailed analysis of BRD1 has been reported. In this 

study, we found that BRD1 forms a novel HAT complex with HBO1 and is 

responsible for the bulk of the acetylation of H3K14. We confirmed a drastic 

reduction in levels of acetylated H3K14 in Brd1-deficient mice and found that 

the Hbo1-Brd1 HAT complex is required for full transcriptional activation of the 

erythroid-specific regulator genes essential for terminal differentiation and 

survival of erythroblasts in fetal liver. 
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Materials and Methods 

Gene targeting of Brd1 

Brd1-deficient mice were generated by the use of R1 embryonic stem cells 

according to the conventional protocol. Brd1-deficient mice were backcrossed to 

the C57BL/6 background > 5 times. All experiments in which mice were used 

received approval from the Chiba University Administrative Panel for Animal 

Care. 

 

Viral production 

To prepare the retrovirus, pMC-ires-GFP was used as a vector.14 The production 

and concentration of the recombinant retrovirus have been described 

previously.15 To prepare the lentivirus, pCSII-EF1-MCS-IRESII-Venus and 

pCS-H1-shRNA-EF-1α-EGFP were used as vectors.16 The viruses were 

produced as described previously. Target sequences were as follows; 

Sh-mHbo1#2; GAGGGAAGCAACATGATTA, Sh-mHbo1#3; 

GTGATGAGATTTATCGCAA, Sh-hHBO1#1; 

GGGATAAGCAGATAGAAGA, and Sh-hHBO1#3; 

CTCAAATACTGGAAGGGAA. 

 

Purification of BRD1-containing protein complex 

Protein purification, trypsin digestion, and liquid chromatography tandem mass 

spectrometry (LC/MS/MS) were performed as described previously.17 In brief, 

K562 cells expressing Flag-Brd1 (2.5 × 108 cells) were suspended in 15 mL of 

lysis buffer (20 mM sodium phosphate, pH 7.0; 350 mM NaCl; 30 mM sodium 

pyrophosphate; 0.1% NP-40; 5 mM EDTA; 10 mM NaF; 0.1 mM Na3VO4; and 1 

mM phenylmethylsulfonyl fluoride) containing protease inhibitors (cOmplete 
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mini; Roche) and sonicated for 20 minutes. The lysates were cleared by 

centrifugation and incubated with 100 µL of anti-FLAG M2 affinity gel 

(Sigma-Aldirch) with rotation at 4°C for 16 hours. The beads were extensively 

washed 6 times with 15 mL of lysis buffer. The complexes were eluted by 

incubating twice with 0.2 mg/mL of FLAG peptide in 300 µL of lysis buffer for 

2.5 hours. This purification was repeated 10 times. Then, eluents were pooled 

and concentrated by the use of a filtration device (Vivaspin 10K-PES; Sartorius) 

and separated by 7.5%-15% SDS-PAGE. 

 

Immunoprecipitation and extraction of histones 

Transfected 293T cells were lysed in lysis buffer containing 250 mM NaCl and 

then immunoprecipitation was performed. Immunocomplexes were eluted with 

FLAG peptide as describe previously. Histone proteins were extracted following 

the method described previously.18 

 

ChIP-on-chip experiment 

ChIP-on-chip analyses of BRD1 and HBO1 binding were performed by use of 

the Human Promoter ChIP-on-chip Microarray Set (G4489A; Agilent 

Technologies). The assignment of IP regions and calculations were performed as 

described.19 K562 cells were fixed with 1% formaldehyde in PBS for 10 minutes 

at room temperature and washed twice with PBS. Fixed cells swelled in the 

buffer (20 mM HEPES, pH 7.8; 1.5 mM MgCl2; 10 mM KCl; 0.1% NP-40; and 

1mM DTT) for 10 minutes on ice and nuclei were prepared by Dounce 

homogenizer. Nuclei were then lysed with RIPA (10 mM Tris, pH 8.0; 0.5% 

SDS; 140 mM NaCl; 1 mM EDTA; 1% TritonX-100; 0.1% SDS; 0.1% sodium 

deoxycholate; and a proteinase inhibitor cocktail [cOmplete mini]), and sonicated 
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for 30 minutes with a Bioruptor (Cosmobio Co Ltd). After centrifugation, the 

soluble chromatin fraction was precleared with a mixture of protein A and 

G-conjugated Dynabeads (Invitrogen) blocked with BSA and salmon sperm 

DNA. Three hundred micrograms of chromatin was immunoprecipitated 

overnight at 4°C with the use of 25 µL of antibody-conjugated Dynabeads. The 

immunoprecipitates were washed extensively and subjected to a quantitative 

PCR analysis with SYBR Premix Ex TaqTM II (Takara). For the ChIP of 

erythroblasts, the steps to prepare nuclei were omitted, and fixed cells were 

directly lysed by RIPA.  

 

cDNA cloning and expression vectors  

cDNA encoding a full-length Brd1 was cloned by PCR from the EML cell 

library, and cloned into the pcDNA3 vector. DNA fragments encoding 

full-length and truncated forms of Brd1 were amplified by PCR and subcloned 

into pcDNA3 containing sequences coding for Flag or HA. Expression vectors 

for HBO1, Tip60, MOZ, CBP, p300, and Brpf1 were described elsewhere. 

Details regarding expression vectors are available from the authors on request.  
 

Antibodies  

The following antibodies were used for Western blotting, immunostaining, 

immunoprecipitation and chromatin immunoprecipitation: anti-FLAG (clone M2; 

Sigma), anti-HA (clone 3F10; Roche), anti-HA (rabbit IgG, Santa Cruz), 

anti-MYC (9E10, Santa Cruz), anti-HBO1 (goat IgG, Santa Cruz), anti-ING4 

(rabbit IgG, Proteintech group), anti-α-Tubulin (clone DM1A, Calbiochem), 

anti-acetyl-histone H3 (lys9), anti-acetyl-histone H3 (lys14), anti-histone H3 

(rabbit IgG; Millipore), anti-acetyl-histone H4 (lys5) (cloneEP1000Y), 

anti-trimethyl-histone H3 (lys9) (rabbit IgG,  abcam), anti-acetyl-histone H4 
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(lys8),  anti-acetyl-histone H4 (lys12), anti-acetyl-histone H4 (lys16), 

anti-acetyl-histone H4, anti-histone H4, anti-trimethyl-histone H3 (lys27)  

(rabbit IgG; Millipore), anti-CD31/PECAM  (G8.8; BD), and anti-active 

caspase3 (rabbit IgG, Chemicon). These antibodies were diluted appropriately 

according to the suppliers’ recommendations.  A polyclonal antibody against 

mouse Brd1 was generated by immunizing rabbits with recombinant N-terminal 

Brd1 (a.a. 1-456).  
 

Flow cytometric analysis 

Fetal liver cells were triturated with PBS containing 2% FBS and filtered through  

a nylon screen to obtain a single cell suspension. Yolk sacs were carefully 

separated and digested with 2 mg/ml of collagenase type I in the presence of 10% 

FBS at 37°C for 1.5 h and triturated with PBS containing 2% FBS. Single cell 

suspensions of fetal liver and yolk sac were incubated with fluorochrome- and/or 

biotin-conjugated antibodies. Biotin-conjugated antibodies were detected with 

fluorochrome-conjugated Streptavidin. For Annexin V staining, fetal liver cells 

were suspended with 1xAnnexin binding buffer (BD), and stained with 

PE-conjugated CD71 and FITC-conjugated Ter119 antibodies, and 

APC-Annexin V (BD) following the manufacturer’s protocol. For the staining of 

K562, cells were blocked with AB serum (sigma) for 20 min at room temperature 

and stained with antibodies. FACS analysis was performed with JSAN (Bay 

bioscience) or FACSCantoII (BD Biosciences), followed by an analysis with 

FlowJo software (Tree Star). Cell sorting was performed with a FACSAriaII (BD 

Biosciences) or JSAN using propidium iodide to exclude dead cells. The 

following antibodies were used for the flow cytometric analysis: CD45.2 (clone 

104, FITC), CD71 (clone RI7217, PE), c-Kit (2B8, APC or PE-Cy7), Ter119 
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(clone TER-119, APC or Biotin), Dlk1 (clone 24-11, FITC), Glycophorin A 

(clone GA-R2, PE), and NGFR (clone C40-1457). Biotin-conjugated antibodies 

were visualized with Streptavidin-APC-Cy7. 
 

HAT assay  

K562 cells expressing Flag-Brd1 were suspended in 15 ml of lysis buffer [20 

mM sodium phosphate pH 7.0, 350 mM NaCl, 30 mM sodium pyrophosphate, 

0.1% NP-40, 5 mM EDTA, 10 mM NaF, 0.1 mM Na3VO4, and 1 mM 

phenylmethylsulfonyl fluoride (PMSF)] containing protease inhibitors (Complete 

mini, Roche) and sonicated for 20 min. The lysates were cleared by 

centrifugation and incubated with 100µl of anti-FLAG M2 affinity gel (sigma) 

with rotation at 4°C for 16 h. The beads were extensively washed six times with 

15 ml of lysis buffer. The immunoprecipitates, equivalent to 1x107 cells, were 

mixed with 25 µl of HAT reaction mix containing 50 mM Tris pH 8.0, 10% 

glycerol, 0.1 mM EDTA, 1 mM dithiothreitol, 10 µM Acetyl CoA, and 0.1 

mg/ml of recombinant histone H3 or H4. After 30 min at 30°C, the reaction was 

stopped with the addition of SDS-sample buffer. The acetylation of histones was 

detected by Western blotting using specific antibodies. 
 

GST pull-down assay 

For GST pull-down assays, DNA fragments encoding the full-length HBO1 

(GST-HBO1) and its MYST domain (GST-MYST), which encompasses 335 to 

608 amino acids residues, were amplified by PCR and subcloned into the 

pGEX6p vector. GST fusion proteins were expressed in BL21 (DE3) cells. For 

the GST pull-down assay, HA-tagged Brd1 or dN  was translated  in vitro 

using a TNT reticulocyte lysate transcription/translation system (Promega) and 
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mixed with GST-fusion proteins. The reaction was carried out in lysis buffer 

containing 150 mM NaCl at 4°C for 2 h and the beads were washed four times 

with the same buffer. 

 

Histochemical and immunohistochemical analyses  

The embryos were fixed in formalin and embedded in paraffin. The 10 µm 

sections were subjected to hematoxylin and eosin staining. For 

immunohistochemical analyses, fetal livers dissected from 12.5 dpc embryos 

were fixed with 4% PFA, cryoprotected in 30% sucrose, frozen in OCT materials, 

and sectioned at 12 µm. 
 

RT-PCR 

Total RNA was extracted using Trizol reagent according to the manufacturer’s 

instructions (Invitrogen). cDNA was synthesized from total RNA using 

ThermoScript RT-PCR System (Invitrogen). Quantitative RT-PCR was carried 

out by using TaqMan Universal PCR Master Mix (Applied Biosystems), 

Universal ProbeLibrary (Roche), and the Applied Biosystems 7300 Fast 

Real-Time PCR system (Applied Biosystems). 
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Primer sequences and probe numbers   
Brd1 5’-AATGGTGCTCCCCTGTTG-3’, 5’-TGGCAGCTTTCATCTCTTCAT-3’,  
probe #95   
 
Hbo1 5’-GAGTCACCCGCTCCTCAG-3’, 5’-TGGAGTTCGAGGTGGTGAC-3’,  
probe #66  
 
Gata1 5’-TCCCAGTCCTTTCTTCTCTCC-3’, 5’-CACACACTCTCTGGCCTCAC-3’,  
probe #66  
 
Gata2 5’-GCTTCACCCCTAAGCAGAGA-3’, 5’-TGGCACCACAGTTGACACA-3’,  
probe #15  
 
Tal1 5’-GCTCGCCTCACTAGGCAGT-3’, 5’-ACCCGGTTGTTGTTGGTG-3’,  
probe #60  
 
Cbfa2t3 5’-GTGGTCCATGGTCTGTCTCTT-3’, 5’-AAGCCATTGGGTGTAGATGG-3’, 
probe #66  
 
Stat5a 5’-CAACATGTACCCACCCAACC-3’, 5’-CTGGCAACATCCATGCTCT-3’,  
probe #85 
 
Stat5b 5’-TTTATCACAGTGGATCGAAAGC-3’, 5’-GGGTGGCCTTAATGTTCTCC-3’, 
probe #95  
 
Bcl-xl 5’-CCTTGGATCCAGGAGAACG-3’, 5’-CAGGAACCAGCGGTTGAA-3’,  
probe #66  
 
Hprt1 5’-TCCTCCTCAGACCGCTTTT-3’, 5’-CCTGGTTCATCATCGCTAATC-3’,  
probe #95.  
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ChIP-on-chip experiment 

Primer sequences:   

human GATA1 

Promoter 5’-GCTTAGCCTGGGTCATCAAG-3’ and  

5’-GGATGTGGCTGTACCCATTT-3’  

TSS 5’-CTTGTCTTTGCCCCACTCTC-3’ and  

5’-TACTGAGCAGGCAGGGAGTT-3’   

Exon2 5’-TGTCCTCCACACCAGAATCA-3’ and  

5’-TCCCTGTAGTAGGCCAGTGC-3’;   

Down 5’-TAAGCCCTGACCTCAGCCTA-3’ and  

5’-CCAGTACCAGTCCGTGTCCT-3’;   

human TAL1   

promoter 5’-CTTTCCCCCTTTGTTGGTCT-3’ and  

5’-AGGGGGCTTGGAGAGAGATA-3’  

Exon1 5’-GAGGGGTTGTTGTTGCTGTT-3’ and  

5’-AGGTGTTTGGAGCCTTTCCT-3’  

Exon4 5’-AGGGCCTGGTTGAAGAAGAT-3’ and  

5’-CACAGGCTTAGGAAGGCAAG-3’;   

human Albumin   

promoter 5’-TGGCAGCCAATGAAATACAA-3’ and  

5’-AACACACCCCTGGAATAAGC-3’  

mouse Gata1  

5’-ACCTGCAAAATGGGTACAGC-3’ and  

5’-AGGCTATGTGTGGGTTGGAC-3’ 

mouse Gata2 

5’-GAGTTTGGGGAGTCAGTTGG-3’ and  
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5’-GACGTGCACCTTCTGGGTAT-3’  

mouse Stat5a 

5’-GATCAGGAACTCGGAATGGA-3’ and  

5’-TGGCTGCCTACTCGAATACC-3’  

mouse Tal1 

5’-CCAGTTTTAGAGCGGTCAGG-3’ and  

5’-ACCAACCCTCCCTTCTTCAT-3’  

mouse Albumin 

5’-GCAAACATACGCAAGGGATT-3’ and  

5’-ACCTCGCATTTCATTGGTTC-3’. 
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Results 

Brd1−/− embryos die at mid-gestation because of anemia 

To clarify the physiologic function of Brd1, we generated Brd1-deficient mice in 

which exon 2 containing the first ATG of the Brd1 gene was deleted (Figure 1A). 

Northern blot analysis detected no Brd1 mRNA in Brd1−/− embryos (data not 

shown). The Brd1−/− embryos were recovered at nearly the expected Mendelian 

ratio at 12.5 days postcoitum (dpc) but most had died by 15.5 dpc (Table 1). 

Brd1−/− embryos showed growth retardation (92 of 99 embryos at 12.5 dpc), 

failure to fuse the neural tube (30 of 135 embryos at 8.5-12.5 dpc), and abnormal 

lenses with disoriented optic cups (74 of 122 embryos at 10.5-12.5 dpc; Figure 

1B and Table 1). These results indicated Brd1 as having pivotal roles in 

embryonic development in multiple tissues and organs, but none of them was 

considered to be the cause of death. 

We then analyzed hematopoiesis in the absence of Brd1. Numbers of total 

yolk sac cells and Ter119+ erythroblasts were rather increased in Brd1−/− yolk sac 

compared with those in wild-type yolk sac (Figure 1C-D). This trend was more 

apparent at later stages. At 12.5 dpc, erythropoiesis was still active in Brd1−/−yolk 

sac, whereas erythropoiesis tended to decline in wild-type yolk sac (supplemental 

Figure 1A). Together, our findings suggest that primitive erythropoiesis in 

the Brd1−/− yolk sac was not affected but rather enhanced. 

Nevertheless, Brd1−/− embryos at 12.5 dpc were pale and the fetal liver, in which 

fetal hematopoiesis mainly occurs, was significantly smaller than that of 

littermate controls (Figure 2A-D). Cytologic analysis revealed that Brd1−/− fetal 

livers had profoundly fewer erythroblasts beyond the proerythroblast stage than 

did wild-type fetal livers (Figure 2E-F). 
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Brd1 is required for erythropoiesis in fetal liver 

Among the phenotypes associated with Brd1 deficiency, we focused on anemia, 

which is a major causative defect for lethality at this stage of development. Flow 

cytometric analysis of fetal livers at 12.5 dpc revealed a 2-fold reduction in the 

Ter119+ erythroid cell fraction and a 2-fold increase in the c-Kit+ hematopoietic 

progenitor fraction (Figure 2G). Because the total number of Brd1−/− fetal liver 

cells was decreased to 22% of the control, the absolute number of 

Ter119+ erythroid cells was decreased by 91% in Brd1−/− fetal livers compared 

with wild-type fetal livers, whereas that of c-Kit+ hematopoietic progenitors was 

not profoundly changed (Figure 2H). The number of Dlk1+ hepatoblasts was 

reduced to 57% of the control, but the differentiation of hepatoblasts into 

hepatocytes and cholangiocytes was grossly normal in theBrd1−/− fetal liver 

(Figure 2G-H; and data not shown). These results indicated that the fetal liver 

hypoplasia in Brd1−/− embryos was mainly caused by a reduction in numbers of 

erythroid lineage cells. 

Detailed flow cytometric analyses revealed a significant increase in the 

CD71+Ter119− fraction and a drastic reduction in the CD71+Ter119+ and 

CD71−Ter119+ fractions in Brd1−/− fetal livers compared with wild-type fetal 

livers (Figure 2I-J). The CD45−c-Kit+CD71+Ter119− CFU-erythroid fraction was 

also more prevalent in Brd1−/− fetal livers (Figure 2J top). These results indicate a 

differentiation block of Brd1−/− fetal liver erythroblasts at the transition from 

CD71+Ter119− to CD71+Ter119+ stage. Nonetheless, absolute numbers of cells 

in each fraction, particularly the CD71+Ter119+ and CD71−Ter119+ fractions, 

were significantly decreased (Figure 2J bottom). To further elucidate the 

mechanism by which Brd1 deficiency causes defective erythropoiesis, we 

examined the apoptosis of erythroblasts. Apoptotic cells with an active caspase-3 
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were readily detected in Brd1−/− fetal livers (supplemental Figure 1B). The 

number of annexin V+/7-aminoactinomycin D− apoptotic cells was also 

significantly elevated in Brd1−/− fetal livers; cell death was even further 

exacerbated in the CD71+Ter119+ and CD71−Ter119+ fractions (Figure 2K). 

Thus, loss of Brd1 in fetal liver erythroblasts causes massive apoptosis and 

maturation delay, leading to severe anemia. These findings suggested that severe 

anemia combined with other physiologic defects accounts for the death 

of Brd1−/− embryos. 

 

BRD1 forms an active HAT complex with HBO1 and ING4 

Analogous to BRPF1, BRD1/BRPF2 has been proposed to form a H3 HAT 

complex with MOZ.3,4 Similar to Brd1−/− mice, Moz−/− mice die in the embryonic 

stage and show impaired fetal liver hematopoiesis. However, the hematopoietic 

defect in Moz−/− fetal livers is observed mainly in HSCs.8,9 To address this 

discrepancy, we purified BRD1-containing protein complexes by Flag 

epitope-specific immune-affinity purification from K562 human leukemic cells 

expressing Flag-BRD1 and analyzed them by LC/MS/MS (Figure 3A). The 

LC/MS/MS analysis identified several proteins as putative components of the 

BRD1 complex. Among these proteins, we focused on ING4 and HBO1 because 

HBO1 and ING4 were reproducibly and substoichiometrically copurified with 

Flag-BRD1 in our repeated purifications. Immunoblotting of the purified fraction 

confirmed the presence of HBO1 and ING4 in the complex (Figure 3B). HBO1 

and MOZ have been demonstrated to form similar protein complexes with 

ING4/5, JADE1/2/3, and hEAF6 and ING5, BRPF1/2/3, and hEAF6, 

respectively, in HeLa cells.1,2 JADE and BRPF family proteins function as a 

bridging protein between HBO1 and ING4/5 and MOZ and ING5, respectively. 
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To determine the physical interaction among HBO1, BRD1, and ING4 in 

the complex, we transfected 293T cells with different combinations 

of BRD1, HBO1, and ING4. HBO1 and ING4 were coimmunoprecipitated only 

in the presence of BRD1, whereas BRD1 was coimmunoprecipitated with HBO1 

or ING4 in the absence of ING4 and HBO1, respectively (supplemental Figure 

2A-C). These results indicate that BRD1 functions as a scaffold to link HBO1 

with ING4 and form a ternary complex. To confirm the formation of a complex 

between the endogenous Brd1 and Hbo1 proteins, we immunoprecipitated Brd1 

with an anti-Brd1 antibody from both wild-type and Brd1−/− whole embryos at 

12.5 dpc. Of note, Hbo1 was detected in the immunoprecipitates from wild-type 

but not Brd1−/− embryos (supplemental Figure 2E). 

The Brd1 mutants containing the N-terminal 198 amino acids (N and 

dPWWP) interacted with HBO1, whereas fragments lacking the N-terminal 192 

amino acids did not (PHD, Br-PWWP, and dN; (Figure 3C-D). These results 

indicate that the N-terminal 198 amino acids of BRD1 are necessary and 

sufficient for physical interaction with HBO1. Conversely, the BRD1-interacting 

domain was localized to the MYST domain of HBO1 (supplemental Figure 2D). 

We then tested whether the complementation of Brd1−/− progenitors with 

exogenous Brd1 can rescue their compromised erythroid differentiation in vitro. 

We purified c-Kit+CD71− hematopoietic progenitors from 12.5 dpc fetal livers. 

The cells were retrovirally transduced with the wild-type Brd1 or dN mutant and 

then cultured for 3 days in the presence of erythropoietin (EPO) to induce 

erythroid differentiation (supplemental Figure 3). As expected, 

wild-type Brd1 but not dN mutant considerably canceled the differentiation block 

of Brd1−/− erythroblasts at the transition from CD71+Ter119− to 

CD71+Ter119+ stage. These results further support the formation of a complex 
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between BRD1 and HBO1 through the N terminus of Brd1. 

We also noted that coexpression of HBO1 increases the protein level of 

BRD1 (Figure 3D; see inputs of BRD1, N, and dPWWP) in 293T cells. The 

treatment of the cells with MG132, a proteasome inhibitor, also increased the 

BRD1 protein level, strongly suggesting that HBO1 stabilizes the BRD1 protein 

by inhibiting the proteasome-dependent protein degradation pathway 

(supplemental Figure 4A). Similar levels of protein stabilization were observed 

when HBO1 was coexpressed with BRD1 deletions retaining an HBO1-binding 

capacity, but not dN, which lacked the HBO1-binding domain (supplemental 

Figure 4A), indicating that the N-terminal 198 amino acids are required not only 

for BRD1-HBO1 interaction but also for stability of the BRD1 protein. These 

findings further support the formation of a complex between BRD1 and HBO1. 

We then examined the interaction of BRD1 with various HATs. 

Coimmunoprecipitation assays demonstrated that BRD1 binds mainly to HBO1 

and TIP60, moderately to MOZ, and not at all to CBP and p300 (Figure 3E). In 

contrast, BRPF1 preferred MOZ and bound moderately to HBO1 (supplemental 

Figure 4B). The difference in affinity for HATs between BRD1 and BRPF1 was 

evident when they were forced to compete with each other to form complexes. 

This experiment clearly showed that BRD1 and BRPF1 prefer to bind with 

HBO1 and MOZ, respectively (supplemental Figure 4C). 

The HBO1 HAT complex is reportedly responsible for the bulk of the 

acetylation of H4K5, K8, and K12 and also acetylates histone H3.3,5,20 The BRD1 

complex from K562 cells efficiently acetylated the recombinant histone H4 at K5, 

K8, and K12, but not K16, and moderately acetylated the recombinant histone 

H3 at K9 and 14 (Figure 3F). These findings implied that BRD1 and HBO1 form 

a novel HAT complex that differs in composition from known HAT complexes. 
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The HBO1-BRD1 complex promotes erythroid differentiation 

K562 human leukemic cells, which we used for purification of the BRD1 

complex, have a potential to differentiate along the erythroid lineage. We found 

that overexpression of BRD1 promotes hemoglobinization of K562 cells (clone 

BRD1c2, Figure 4A). Enhanced hemoglobin production was confirmed by 

benzidine staining in BRD1c2 (Figure 4B, benzidine-positive cells, control cells 

5.3% ± 0.4% vs BRD1c2 18.4% ± 0.3%) and in a series of other clones 

(supplemental Figure 5A-B, control cells 5.7% ± 2.3% vs Flag-BRD1 25.6% ± 

6.7%). Expression of glycophorin A, an erythroid lineage marker antigen, on the 

cell surface, was also significantly increased in the BRD1-overexpressing clones 

(supplemental Figure 5C-D, control cells 29.0% ± 0.3% vs Flag-BRD1 72.0% ± 

0.2%). These results indicated that BRD1 induces erythroid differentiation of 

K562 cells. 

To understand the mechanism of the BRD1-mediated erythroid 

differentiation, we examined the impact of BRD1 deletions on erythroid 

differentiation of K562 cells. The capacity of BRD1 to induce erythroid 

differentiation was profoundly affected by deletion of the N-terminus, which 

mediates interaction with HBO1 (dN mutant; Figure 4C), although the dN mutant 

was expressed and localized to the nucleus (data not shown). In contrast, the 

C-terminal deletion mutant (dPWWP) still had a significant effect (Figure 4C). 

Both BRD1 and dPWWP significantly reduced cell growth probably as a 

consequence of erythroid differentiation (Figure 4D). These results indicate that 

the HBO1-binding domain is indispensable for BRD1 to induce erythroid 

differentiation. We also tested the effect of BRPF1, which mostly binds to MOZ, 

and found that BRPF1 does not induce erythroid differentiation (Figure 4E), 

implying that the HBO1-BRD1 complex has a distinct function from the 
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MOZ-BRPF1 complex in erythroid cells. We then examined whether HBO1 has 

a significant impact on erythroid differentiation by knocking down its expression. 

We transduced K562 cells with lentiviruses expressing shRNA against the 

human HBO1 (shHBO1#1 and #3) and a scrambled control shRNA sequence. 

The percentages of benzidine+ cells were significantly reduced 

by HBO1 knockdown even in uninduced K562 cells (Figure 4F). 

 

Localization of the HBO1-BRD1 complex in the human genome 

To identify the direct target genes of the HBO1-BRD1 complex, we conducted a 

ChIP-on-chip analysis in K562 cells coexpressing 3xFlag-BRD1 and HA-HBO1, 

and we identified 2120 and 1852 genes bound by BRD1 and HBO1, respectively 

(full data are listed in supplemental ChIP-chip dataset). Of these, 1379 genes 

were co-occupied by BRD1 and HBO1, indicating that BRD1 and HBO1 

coregulate a significant portion of their target genes in erythroid cells (Figure 

5A). The peaks of BRD1 and HBO1 signals coincided around −1.0 kb and 1.0 kb 

from the transcription start site (TSS; Figure 5B). Then, we examined the 

relationship between the degree of HBO1-BRD1 binding and transcription status 

by using published data on expression profiles of K562 cells examined with 

microarrays.21 The HBO1- or BRD1-occupied genes tended to be expressed in 

K562 cells (Figure 5C), indicating that the HBO1-BRD1 complex generally 

activates transcription of their target genes. The functional annotation of the set 

of genes bound by both BRD1 and HBO1 was performed on the basis of gene 

ontology and showed significant enrichment for genes that fell into the categories 

“transcriptional coactivator activity” (P < .015), “transcriptional factor activity” 

(P < .018), and “structural constituent of the ribosome” (P < .042). 

Of note, targets included erythroid master regulator 
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genes, GATA1, TAL1/SCL, and LMO2, and other regulator genes such 

as CBFA2T3/ETO2, STAT5A, and STAT5B. The binding of HBO1 and BRD1 

was detected throughout the coding regions of genes with peaks around TSS 

(Figure 5D-E). 

 

Acetylation of H3K14 is specifically reduced in Brd1−/− mice 

To test for a function of Brd1 as a histone modifier, we compared histone 

acetylation in CD71+Ter119− and CD71+Ter119+ erythroblasts 

between Brd1−/− and Moz−/− fetal livers. Of note, the level of global acetylation of 

H3K14 was profoundly decreased in Brd1−/− erythroblasts by 70%-80% and that 

of H3K9 was also moderately decreased, whereas those of H4K5, K8, and K12 

were not significantly changed (Figure 6A and supplemental Figure 6A). In 

contrast, the levels of global acetylation of H3K9 and H3K14 did not change 

in Moz−/− erythroblasts (Figure 6A). Similar results were obtained 

with Brd1−/− and Moz−/− mouse embryonic fibroblasts (MEFs) and Brd1−/− brain 

(supplemental Figure 6B-C). In contrast, the levels of representative repressive 

histone modifications, H3K9me3 and H3K27me3, were not largely changed in 

erythroblasts and MEFs (supplemental Figure 6D-E). ChIP assays confirmed 

global reductions in levels of H3K14 acetylation in the promoter regions of both 

erythroid (Gata1, Stat5a, and Tal1) and nonerythroid (Albumin; Alb) genes 

(Figure 6B). Furthermore, the ChIP-on-chip analysis in K562 revealed that 

H3K14 were highly acetylated at the TSS/promoter region of 46.9% of the genes 

bound by both BRD1 and HBO1, including GATA1, TAL1/SCL, CBFA2T3/ETO2, 

and STAT5A (supplemental Figure 7). These findings support our biochemical 

findings that BRD1 forms a HAT complex with HBO1 but not MOZ and imply 

that this complex is responsible for the bulk of H3K14 acetylation. 
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We then tested whether the depletion of HBO1 in erythroblasts 

recapitulates the defective erythropoiesis of Brd1−/− fetal livers. We purified 

c-Kit+ CD71− hematopoietic progenitors from 12.5 dpc fetal livers. The cells 

were transduced with Hbo1 knockdown lentiviruses and then cultured for 3 days 

in the presence of EPO to induce erythroid differentiation (Figure 6C). Of note, 

the frequency of CD71+Ter119+ erythroblasts in the green fluorescent protein 

positive (GFP+) knockdown cells was significantly reduced with sh-Hbo1#2 and 

#3 (Figure 6C). Quantitative RT-PCR analysis of the erythroblasts revealed that 

sh-Hbo1#3 knocked down Hbo1 more efficiently than #2 (#2, 44.7%, and #3, 

19.1% of the control). Correspondingly, the block in erythroid differentiation 

was more pronounced by knockdown with #3. These results indicate 

that Hbo1knockdown perturbs differentiation of fetal liver erythroid progenitors 

in a fashion similar to the absence of Brd1. Importantly, levels of H3K14 

acetylation were severely reduced in Hbo1-knockdown erythroblasts and H3K9 

acetylation was also significantly reduced (Figure 6D). In addition, levels of 

H4K5 and K8 acetylation were moderately reduced in Hbo1-knockdown 

erythroblasts (Figure 6D). 

We then compared the expression levels of erythroid transcription factors 

in wild-type and Brd1−/− erythroblasts by quantitative RT-PCR. As expected, 

mRNA expression of Gata1, Scl/Tal1, and Lmo2,22–26 erythroid master regulator 

genes that appeared to be the direct targets of the HBO1-BRD1 complex in K562 

cells, was mildly decreased in Brd1−/− erythroblasts (Figure 7A). Furthermore, 

expression of Gata2, the gene negatively regulated by Gata1,27,28 was 

up-regulated in Brd1−/− CD71+Ter119+ erythroblasts. These expression patterns 

implied that the impaired functions of erythroid transcription factors, particularly 

Gata1, is responsible for the defective erythropoiesis in Brd1−/− fetal livers. To 



 
24 

test this hypothesis, we transduced c-Kit+CD71− hematopoietic progenitors from 

12.5 dpc fetal livers with Gata1 and cultured them for 3 days in the presence of 

EPO to induce erythroid differentiation (Figure 7B). Notably, forced expression 

of Gata1 efficiently restored the proliferative capacity and survival 

of Brd1−/− erythroblasts (Figure 7B). Of note, however, it only partially canceled 

the differentiation block at the CD71+Ter119− to CD71+Ter119+ transition 

(Figure 7B). Furthermore, the morphologic analyses of the purified 

CD71+Ter119+ erythroblasts revealed no obvious defects in morphologic 

maturation of Brd1−/− CD71+Ter119+ erythroblasts even in the absence of 

exogenous Gata1 (supplemental Figure 8). These results suggest that 

dysregulated expression of Gata1 mainly accounts for impaired proliferation and 

survival of Brd1−/− erythroblasts. 
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Discussion 

In this study, we identified a novel HAT complex consisting of HBO1, BRD1, 

and ING4. BRD1 was believed to be involved in the MOZ HAT complex on the 

basis of analogy to BRPF13,4 but appeared to prefer to form a complex with 

HBO1. The finding that HBO1 stabilized the BRD1 protein further supported the 

physiologic significance of this complex. The levels of H3K14 acetylation were 

profoundly reduced in all cells and organs examined in Brd1−/− mice 

and Hbo1-knockdown erythroblasts. Thus, this complex is responsible for the 

bulk of H3K14 acetylation in general. Very recently, loss of Hbo1 in mice was 

reported to lead to a significant reduction of H3K14 acetylation, but not to affect 

acetylation at other histone residues.29 These observations correspond well to 

ours and support our notion that BRD1 functions in the HBO1 HAT complex. 

However, residual H3K14 acetylation was evident in Brd1−/− cells, suggesting the 

existence of other H3K14 HATs. These might include the Moz-Brpf1 complex, 

which reportedly acetylates H3K9 and K14,7,30 although the levels of H3 

acetylation were not affected in Moz−/− erythroblasts or MEFs in this study. In 

addition, another Hbo1 HAT complex, which involves Jade family 

proteins,3,20 might also contribute to the acetylation of H3K14, although its 

capacity to acetylate H3K14 has not been tested. This notion is supported by the 

finding that Hbo1 knockdown affected levels of H3K14 acetylation more 

severely than the depletion of Brd1 in erythroblasts. 

HBO1 and MOZ/MORF MYST HAT complexes target chromatin via 

multiple PHD finger-based interactions with histone H3 tails.5 The PHD finger of 

ING4 recognizes and binds to H3K4me3.5–7 JADE and BRPF family proteins 

share 2 highly conserved PHD fingers that function in chromatin binding. Given 

their similar composition, the HBO1 and MOZ/MORF HAT complexes likely 
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regulate acetylation of H3K14. Nonetheless, the absence of Brd1 had little or no 

impact on the acetylation of H3K9 and H4 (K5, K8, and K12) 

whereas Hbo1 knockdown considerably affected the acetylation of H3K9 and 

H3K14 and marginally reduced levels of acetylated H4K5 and 

K8. Jade1L knockdown reportedly decreased bulk histone H4 acetylation in 

293T cells.20 These findings highlight differences in specificity among these 

HAT complexes. 

HBO1 was originally cloned as a binding partner of origin recognition 

complex 1, a subunit of the DNA replication initiation complex, and interacts 

with MCM2, a component of the MCM helicase complex.31,32 According to 

accumulating evidence,3,33,34 HBO1 has a crucial role in regulation of the 

prereplicative complex assembly and initiation of DNA replication. In contrast, 

recent findings also unveiled its role in transcriptional regulation, sometimes in 

concert with transcription factors. Two closely related HBO1 complexes with 

different ING proteins (either ING4 or ING5) have been characterized and MCM 

proteins were specifically copurified with the ING5-HBO1 complex, suggesting 

that the ING5 complex functions in DNA replication whereas the ING4 complex 

is involved in transcriptional regulation. Actually, ING5 knockdown in 293T 

cells completely blocks cell-cycle progression through the S phase.3 Thus, 

composition, ie, the recruitment of either ING4 or ING5, may hold the key to 

context-dependent function of HBO1. BRD1 forms a complex with HBO1 and 

ING4 and loss of Brd1 impaired the maturation and/or survival of erythroblasts, 

but not their proliferation, indicating that the transcription-related function of 

Hbo1 is mainly affected in Brd1-deficient erythroid cells. However, Kueh et al29 

observed no defects in DNA replication or cell proliferation in Hbo1 mutant 

embryos, MEFs, or immortalized fibroblasts. Role of Hbo1 in DNA replication 
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might require careful reevaluation using Hbo1-deficient cells. 

It is widely recognized that the N-terminal tail of histone proteins is 

acetylated in the promoter region of actively transcribed genes and acetyl-lysine 

residues are recognized by bromodomain-containing factors in general. Although 

the role of acetylation at H3K9 and K14 is not well understood compared with 

that of histone methylation, H4K8 and K12 acetylation is reportedly followed by 

H3K9 and K14 acetylation at the IFNβ promoter after a viral infection.35 In this 

cascade, H4K8 acetylation mediates recruitment of the SWI/SNF complex via 

the bromodomain-containing BRG1 subunit, whereas the acetylation of H3K9 

and K14 is critical to the recruitment of TFIID via a tandem bromodomain factor, 

TAFII250. This coordinated recruitment of transcriptional complexes participates 

in the transcriptional induction of the IFN-β gene. However, the BAF complex is 

reported to be anchored to promoters by acetylated H3K14 though the BAF57 

subunit, which contains a bromodomain.36 Therefore, the BRD1-HBO1 complex 

might be involved in the recruitment of transcriptional complexes to promoters 

via H3K14 acetylation and exert activity in transcriptional initiation. However, 

the binding of BRD1 and HBO1 was detected throughout the coding regions of 

genes, although the peaks were detected around TSS. Therefore, we cannot 

eliminate a role for the HBO1 HAT complex in transcriptional elongation as 

proposed by Saksouk et al.6 The recognition of H3K36me3, an epigenetic mark 

for transcriptional elongation, by the PWWP domain of Brpf1 supports this 

notion.37 

Among the study of various developmental defects observed in Brd1−/− 

embryos, detailed analyses of erythropoiesis highlighted a crucial role for the 

HBO1-BRD1 complex in transcriptional activation of developmental regulator 

genes. The process of erythropoiesis is well orchestrated at the molecular level 
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by a complex network of transcription factors, including Gata1, Gata2, 

andScl/Tal1.24,26 A genome-wide ChIP-chip analysis clearly demonstrated that 

the HBO1-BRD1 complex targets genes involved in “transcriptional regulation,” 

including these key erythroid regulator genes. Among them, the transcription 

factor gene Gata1 is required for terminal erythroid maturation and functions as 

an activator or repressor depending on context. Gata1-deficient embryos are 

severely anemic and their fetal liver erythroblasts have a differentiation block at 

the CD71+Ter119− stage and undergo massive apoptosis.22,24,26 Although the 

reduction in Gata1 expression was mild in Brd1−/− erythroblasts, the expression 

of Gata2, an erythroid regulator gene negatively regulated by Gata1, was mildly 

but significantly derepressed, and impaired Brd1−/− erythropoiesis was partially 

restored by the expression of Gata1. Given that the Hbo1-Brd1 complex 

regulates global H3K14 acetylation in erythroblasts, the defective erythropoiesis 

could not be attributed solely to Gata1. The failure of exogenous Gata1 to 

release differentiation block of Brd1−/− erythroblasts supports this notion. 

Nevertheless, all these findings provide the first evidence of a crucial role for the 

HBO1-BRD1-ING4 complex and H3K14 acetylation in the transcriptional 

activation of key developmental regulator genes required for development and 

differentiation. 

The MYST family HATs are involved in various aspects of tumorigenesis 

as transcriptional regulators.1 Overexpression of HBO1 has also been reported in 

various human cancers.38 Intriguingly, BRD1 fused to PAX5 (PAX5-BRD1) has 

recently been implicated in acute lymphoblastic leukemia.39 This fusion protein 

is thought to ectopically activate transcription of PAX5 target genes by recruiting 

HBO1. Thus, our findings also provide a molecular basis to understanding the 

complex functions of HBO1 in cancer. 



 
29 

Figures 
 

 
Figure 1. Targeted disruption of the mouse Brd1 gene.  

(A) Strategy for making a knockout allele for Brd1 by homologous 

recombination in ES cells. B, BamHI; N, NcoI; E, EcoRI; K, KpnI; S, SalI. (B) 

Developmental defects in Brd1−/− embryos. Abnormal lenses with disoriented 

optic cups (top) and neural tube disclosure (bottom) in Brd1−/− embryos at 12.5 

dpc. Sections were stained with hematoxylin and eosin. (C) Appearance of 
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wild-type (Brd1+/+, left) and Brd1−/− (right) yolk sac at 10.5 dpc. (D) Absolute 

numbers of total cells, c-Kit+ hematopoietic progenitors, and Ter119+ erythroid 

cells in 10.5 dpc yolk sac from wild-type (left bar, n = 5) and Brd1−/− (right bar, n 

= 3) embryos. The results are shown as the mean ± SE *P < .05, **P < .005. 
 

Table 1. Analysis of Brd1-heterozygous intercross progenies. 
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Figure 2. Impaired hematopoiesis in Brd1−/− fetal liver. Appearance of wild-type 

(A) and Brd1−/− (B) embryos at 12.5 dpc. H&E-stained transverse sections of 
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12.5 dpc wild-type (C) and Brd1−/− (D) embryos. Morphology of 12.5 dpc fetal 

liver hematopoietic cells from wild-type (E) and Brd1−/− (F) embryos stained 

with May-Grüenwald-Giemsa solutions. Arrows and arrowheads indicate mature 

erythroblasts and nucleated erythrocytes, respectively. Frequency (G) and 

absolute cell numbers (H) of c-Kit+ hematopoietic progenitors, CD45+ 

hematopoietic cells, Ter119+ erythroid cells, and Dlk1+ hepatoblasts in 12.5 dpc 

fetal livers from wild-type and Brd1−/− embryos. The results are shown as the 

mean ± SE (n ≥ 4). *P < .05, ***P < .0005. (I) Flow cytometric profiles of 

erythroid differentiation defined by CD71 and Ter119 expression in 

representative fetal livers at 12.5 dpc. The percentage of each fraction is 

indicated. (J) Frequency (top) and absolute cell numbers (bottom) of BFU-E, 

CFU-erythroid, CD71−Ter119− cells, CD71+Ter119− erythroblasts, 

CD71+Ter119+ erythroblasts, and CD71−Ter119+ erythroblasts in 12.5 dpc fetal 

livers from wild-type and Brd1−/− embryos. The results are shown as the mean ± 

SE (n ≥ 8). **P < .005, ***P < .0005. (K) Massive apoptosis of Brd1−/− 

erythroblasts. The percentage of annexin V+/7-aminoactinomycin D− (7-AAD−) 

apoptotic cells in each fraction defined by CD71 and Ter119 is shown as the 

mean ± SE (n ≥ 4). *P < .05, **P < .005. 
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Figure 3. BRD1 forms a HAT complex with HBO1.  

(A) Purification of the BRD1 complex. Flag-tagged BRD1 protein was partially 
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purified from lysates of K562/Flag-BRD1 cells using an anti-Flag antibody. (B) 

Western blot analysis of the purified BRD1 complex in panel A by the use of 

indicated antibodies. (C) Schematic representation of BRD1 and its deletion 

mutants. Three major domains are indicated. (D) Localization of the binding site in 

BRD1 for HBO1. 293T cells were transfected with HA-tagged BRD1 mutants with 

and without Flag-tagged HBO1. Proteins in the lysates of the transfectants were 

immunoprecipitated with the anti-FLAG antibody and eluted with an excess of 

Flag peptide. The eluents were analyzed by Western blotting by the use of 

anti-Flag or HA antibodies. (E) Affinity of BRD1 for the MYST family HATs 

(HBO1, MOZ, and Tip60) and CBP/p300. 293T cells were transfected with 

HA-tagged Brd1 together with indicated Flag-tagged HATs. Proteins in the lysates 

of the transfectants were immunoprecipitated with the anti-FLAG antibody. The 

immunoprecipitates were analyzed by Western blotting with anti-Flag and HA 

antibodies. (F) HAT activity of the BRD1 complex. The BRD1 complex was 

partially purified from lysates of K562/empty vector (Empty) and 

K562/Flag-BRD1 cells by the use of the anti-Flag antibody and HAT activity on 

recombinant histones H3 and H4 was evaluated. As a negative control (N.C.), the 

recombinant histones H3 and H4 were similarly treated without HAT complexes. 
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Figure 4. Overexpression of BRD1 induces erythroid differentiation in K562. 

(A) Appearance of parental K562 cells (Control) and the Flag-BRD1-expressing 

clone (BRD1c2) used for purification of the BRD1 complex. (B) Benzidine 

staining of parental K562 cells (Control) and Brd1c2. The bar indicates 20 µm 

(C) Benzidine staining of K562 cells expressing BRD1 mutants. K562 cells were 

transduced with an empty vector (Control) or retroviruses expressing full-length 
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BRD1 (BRD1), dPWWP, or dN. Transduced cells were sorted with the use of 

GFP as a marker antigen and expanded for benzidine staining. Bars represent 

mean ± SE (n = 12). (D) Growth of K562 cells expressing BRD1 or the BRD1 

mutant in (C). The results are shown as the mean ± SE for triplicate cultures. (E) 

Overexpression of BRPF1 in K562 cells. K562 cells were transduced with a 

HA-BRPF1 retrovirus, and BRPF1 expression was detected by Western blotting 

by use of the anti-HA antibody (left). Effects of BRPF1 on erythroid 

differentiation of K562 cells were evaluated by benzidine staining. The data are 

shown as the mean ± SE for triplicate cultures. (F) Knockdown of HBO1 with 

the use of shRNA. K562 cells were infected with lentiviruses expressing shRNAs 

against HBO1 and analyzed as to the basal status of hemoglobinization by 

benzidine staining. The results are shown as the mean ± SE for triplicate cultures. 

*P < .05, **P < .005, ***P < .0005. 
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Figure 5. BRD1 and HBO1 coregulate erythroid genes. 

(A) ChIP-chip analysis of BRD1 and HBO1 binding in K562 cells.A ChIP-chip 
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analysis was performed in K562 cells coexpressing 3xFlag-BRD1 and 

HA-HBO1 by use of anti-Flag and HA antibodies. Fold enrichment > 4 was 

judged as positive. The number of genes in each category of the Venn diagram is 

indicated. (B) Average BRD1 and HBO1 binding was depicted in the promoter 

regions (from −6 kb to +6 kb relative to the transcription start site) of all genes in 

the ChIP-on-chip analysis. The dotted line represents the normalized average 

signal over the entire chip. (C) Graph of the correlation of expressed genes in 

K562 cells in terms of the degree of BRD1 or HBO1 binding. Gene expression 

profiles of K562 cells examined with microarrays were used to judge the 

transcriptional status of the BRD1- or HBO1-occupied genes identified in the 

ChIP-chip analysis. The percentage of probes that produced “PRESENT” signals 

in the microarray analysis was plotted against the BRD1 or HBO1 binding 

detected in the ChIP-on-chip analysis. (D) ChIP-on-chip signals in the GATA1 

and TAL1 promoter regions. Blue columns indicate the probes with no signals. 

The GATA1 and TAL1 gene structures and the location of the primer sets are 

depicted. (E) ChIP analyses at the GATA1 and TAL1 loci. The binding of BRD1 

and HBO1 to the indicated regions of the GATA1 and TAL1 genes was 

determined by ChIP and site-specific real-time PCR. The relative amount of 

immunoprecipitated DNA is depicted as a percentage of input DNA. The data are 

shown as the mean ± SE for triplicate PCRs. The ALB promoter served as a 

negative control. Pro indicates promoter; and Down, 3 kb downstream from the 

polyadenylation site. 
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Figure 6. The Hbo1-Brd1 complex is responsible for the bulk of H3K14 acetylation. 

(A) Levels of acetylation at histone H3 in wild-type, Brd1−/−, 

and Moz−/− CD71+Ter119− erythroblasts. Histones purified from purified 
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CD71+Ter119− erythroblasts were analyzed by Western blotting by use of the 

indicated antibodies. Levels of acetylated H3K9 and H3K14 were normalized to 

the amount of H3 and are indicated relative to wild-type control values. (B) 

Levels of H3K14 acetylation at the promoters of erythroid regulator genes. A 

ChIP analysis was performed with CD71+ erythroblasts from wild-type (W) 

and Brd1−/− (K) 12.5 dpc fetal livers with an anti-acetylated H3K14 antibody. 

The relative amount of immunoprecipitated DNA is depicted as a percentage of 

input DNA. The data are shown as the mean ± SE for triplicate PCRs. 

The Alb promoter served as a negative control. (C) Hbo1 knockdown in fetal 

liver progenitor cells. c-Kit+ CD71− cells were sorted from fetal livers at 12.5 dpc 

and cultured in the presence of SCF and IL3. Twenty-four hours later, cells were 

infected with lentiviruses against Hbo1 (#2 and #3) and the culture medium was 

changed to that containing EPO to induce erythroid differentiation (top left). 

After a 3-day induction, cells were stained with the indicated antibodies and 

analyzed by flow cytometry. The knockdown cells were monitored for 

expression of GFP, a marker antigen for infection. The flow cytometric profiles 

of GFP+ cells are indicated (bottom left) and their differentiation defined by the 

expression of CD71 and Ter119 is shown as the mean ± SE for triplicate cultures 

(right). * P < .05, *** P < .0005. (D) Levels of acetylation of histones H3 and H4 

in Hbo1-knockdown erythroblasts. Histones were prepared from 

CD71+ erythroblasts purified from the Hbo1-knockdown culture in (C) and 

analyzed by Western blotting by the use of the indicated antibodies (left). Levels 

of acetylation of H3 and H4 at each residue were normalized to the amount of H3 

and H4, respectively. The acetylation levels relative to the sh-Luc controls are 

indicated (right). 
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Figure 7. Insufficient transcription of erythroid regulator genes causes 

impaired erythropoiesis in Brd1−/− fetal livers. 

(A) Quantitative RT-PCR analysis of expression of erythroid transcription factor 

genes in erythroblasts purified from wild-type and Brd1−/− 12.5 dpc fetal livers. 

mRNA levels were normalized to Hprt1 expression. Expression levels relative to 

those in the wild-type erythroblasts are shown as the mean ± SE (n = 4∼5). (B) 

Rescue of defective proliferation of Brd1−/− erythroblasts by exogenous Gata1. 

c-Kit+ CD71− cells were sorted from wild-type (Brd1+/+) and Brd1−/− fetal livers 

at 12.5 dpc and cultured in the presence of SCF and IL-3. Twenty-four hours 

later, cells were infected with either GFP control or Gata1 retroviruses and the 
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culture medium was changed to that containing EPO to induce erythroid 

differentiation. After a 3-day induction, cells were stained with the indicated 

antibodies and analyzed by flow cytometry. Cell growth during culture (left) and 

the final numbers of erythroid cells at different stages of differentiation 

(CD71−Ter119− to CD71−Te119+; right) are shown as mean ± SE for triplicate 

cultures. ***P < .0005. 
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Supplementary Figures 

 
 

Figure S1. Yolk sac and fetal liver hematopoiesis in Brd1-/- embryos. 

(A) Appearance of wild-type and Brd1-/- yolk sac at 12.5 dpc. A magnified image 

of the boxed area is depicted below. (B) Frozen sections of fetal livers at 12.5 

dpc were stained with an anti-active caspase-3 antibody (red). Nuclear DAPI 

staining is in blue. 
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Figure S2. Physical interaction among HBO1, BRD1, and ING4 in the complex. 

(A-C) Physical interaction among HBO1, BRD1, and ING4 in the complex. 

293T cells were transfected with different combinations of BRD1, HBO1, and 

ING4 genes. Proteins in the lysates of the transfectants were immunoprecipitated 

with anti-FLAG, HA, or Myc antibodies. The immunoprecipitates were analyzed 

by Western blotting using anti-Flag, HA, or Myc antibodies. (D) GST pull-down 

assay. The N-terminus of BRD1 (1-198)(N) and N-terminus-deleted form of 

BRD1 (192-1189)(dN) were incubated with GST, full-length HBO1 fused to 
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GST (GST-HBO1), and the HBO1 MYST domain fused to GST (GST-MYST) 

in vitro. Specific binding was confirmed by Western blotting using an anti-HA 

antibody (upper panel). The presence of purified GST-fusion proteins was 

confirmed by SDS/PAGE followed by Coomassie Brilliant Blue staining (lower 

panel). The band corresponding to each GST-fusion protein is indicated by an 

arrow. (E) Interaction of endogenous Brd1 with Hbo1 in the whole embryo at 

12.5 dpc. Proteins in the lysates of the whole embryos were immunoprecipitated 

with an anti-Brd1 antibody. The immunoprecipitates were analyzed by Western 

blotting using anti-Hbo1 antibody. 
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Figure S3. Rescue of defective differentiatio of Brd1-/- erythroblasts by 

exogenous Brd1. 

(A) Experimental design. c-Kit+ CD71- progenitors were sorted from wild-type 
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and Brd1-/- fetal livers at 12.5 dpc and cultured in the presence of SCF and IL3. 

Twenty-four hours later, cells were infected with GFP control, full-length Brd1, 

or Brd1ΔN retroviruses and the culture medium was changed to that containing 

EPO to induce erythroid differentiation. After a 3-day induction, cells were 

stained with anti-CD71 and Ter119 antibodies and analyzed by flow cytometry. 

(B) Flow cytometric profiles of cells infected with the indicated retroviruses is 

depicted in the left panels. The proportion of cells in the CD71+Ter119- (single 

positive, SP) and CD71+Te119+ (double positive, DP) fractions among the total 

CD71+ cells (CD71+Ter119- and CD71+Te119+) were indicated in the right 

panels. Two independent experiments were performed.   
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Figure S4. Stability of the BRD1 protein and the affinity of BRD1 for the 

MYST family HATs. 

(A) 293T cells were transfected with an HA-tagged full-length BRD1 (HA-Brd1), 

the N-terminus of Brd1 (1-198, HA-Brd1N) and an N-terminus-deleted form of 

Brd1 (192-1189, HA-Brd1dN) with and without Flag-tagged HBO1. The cells 

were treated with MG132 (20 µm) or DMSO (control) for 4 hours. Brd1 was 

detected by Western blotting using an anti-HA antibody. The level of α-Tubulin 

is shown as a control. (B) Affinity of BRPF1 for the MYST family HATs (HBO1, 

MOZ, and Tip60) and CBP/p300. 293T cells were transfected with HA-tagged 

BRPF1 together with indicated Flag-tagged HATs. Proteins in the lysates of the 
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transfectants were immunoprecipitated with an anti-FLAG antibody. The 

immunoprecipitates were analyzed by Western blotting using anti-Flag and HA 

antibodies. (C) Competitive binding assay of BRD1 and BRPF1 to HBO1 and 

MOZ. 293T cells were transfected with HA-tagged BRD1 and BRPF1 together 

with Flag-tagged HBO1 or MOZ. Proteins in the lysates of the transfectants were 

immunoprecipitated with the anti-FLAG antibody. The immunoprecipitates were 

analyzed by Western blotting using an anti-HA antibody. 

 
  



 
50 

 



 
51 

Figure S5. Effect of enforced expression of BRD1 on erythroid 

differentiation of K562 cells. 

(A) Expression of BRD1 in K562 cells transduced with an empty retrovirus 

vector (pMC) or retroviruses expressing Flag-BRD1. BRD1 expression was 

detected by Western blotting using an anti-FLAG antibody. The level of 

α-Tubulin is shown as a control. (B) Benzidine staining of K562 clones. The data 

is shown as the mean ± S.E. (C) Representative flow cytometric profiles of GPA 

expression in K562 clones. Percentages of GPA-positive cells are indicated. (D) 

The percentage of GPA-positive cells of each K562 clone is shown as the mean ± 

S.E. 
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Figure S6. Levels of acetylation at H3 and H4 in Brd1-/- erythroblasts, MEFs, 

and brain. 

Levels of acetylation at H3 and H4 in Brd1-/- and Moz-/- erythroblasts (A) and 
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MEFs (B), and Brd1-/- brain (C). Histones were extracted from fetal liver 

erythroblasts (CD71+Ter119- and CD71+Ter119+), brain at 12.5 dpc, and MEFs 

prepared from embryos at 12.5 dpc and then analyzed by Western blotting using 

the indicated antibodies (left panels). Levels of acetylation at each histone 

residue were normalized to the amount of H3 and are indicated relative to the 

control values (right panels). (D, E) Levels of trimethylation at H3K9 and 

H3K27 in Brd1-/- erythroblasts (D) and MEFs (E). Histones were prepared as in 

A and B. 
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Figure S7. Relationship between acetylation at H3K14 and BRD1-HBO1 

binding. 

ChIP-chip analyses was performed in K562 cells co-expressing 3xFlag-BRD1 

and HA-HBO1 using an anti-acetylated H3K14 antibody. Fold enrichment 

greater than 2 was judged as positive. The data was compared with those 

obtained in Figure 5A. The number of genes in each category of the Venn 

diagram is indicated. 
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Figure S8. Morphology of Brd1-/- CD71+Ter119+ erythroblasts. 

c-Kit+CD71- cells were sorted from wild-type (WT) and Brd1-/- fetal livers at 

12.5 dpc and cultured in the presence of SCF and IL-3. Twenty-four hours later, 

cells were infected with either GFP control or Gata1 retroviruses and the culture 

medium was changed to that containing EPO to induce erythroid differentiation. 

After a 3-day induction, CD71+Ter119+ erythroblasts were purified by cell 

sorting, cytospun onto slide glasses, and then subjected to morphological analysis 

by May-Gruenwald-Giemsa staining. 
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