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要旨 

論文題名 

ポジトロン断層法イメージングに使用する金属放射性薬剤の開発について：亜

鉛 63 の製造とガリウム標識プローブの分子設計 

[背景] ポジトロン断層法「PET」は、陽電子放出核種から放出された陽電子と陰電子

とが衝突して生成する 2 個の消滅ガンマ線を対向に設置された検出器で同時に検出す

ることにより，優れた解像度と高い感度および定量性を併せ持つ分子イメージング技

術である。PET では陽電子放出核種で標識された薬剤（プローブ）を人体に投与し、

目的組織に集積したプローブから発生された消滅ガンマ線を検出することにより、分

子・細胞レベルにおける生物学的なプロセスを in vivo で可視化、計測する。亜鉛は生

体関連プロセスに関わる必須金属であり、その陽電子放出核種は、亜鉛の生体内プロ

セスを直接評価できるため、高い関心を集めている。しかし、利用可能な放射性亜鉛

には 62Zn と 65Zn があるが、これらの放射性核種は分子イメージングで最適な性質を有

していない。一方、ゲルマニウム/ガリウムジェネレータから溶出可能なガリウム-68

「68Ga」はサイクロトロンを必要としない陽電子放出核種として関心を集めている。

68Ga では標的分子認識素子を持つ放射性プローブを調整するために様々な二官能性キ

レートが開発されている。その一つに、分子内に複数分子の標的分子認識素子を導入

可能な 1,4,7-triazacyclononane -1,4,7-tris-(glutaric acid) (NOTGA)がある。NOTGA にはジ

アステレオマーを含む構造異性体が生成するが、これまでにそれらの詳細な評価は行

われていない。そこで、本研究では分子イメージングに適した性質を持つ 63Zn の新た

な製造および精製システムの開発と、多量体ガリウム放射性薬剤用の 1,4,7-

triazacyclononane -1,4,7-tris-(glutaric acid) (NOTGA)ジアステレオマーの合成およびそれ

らの評価を行った。 
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陽電子を放出する亜鉛 63 の製造に関する基礎的研究 

「背景」陽電子を放出する亜鉛には亜鉛 62「62Zn」、亜鉛 63「63Zn」および亜鉛 65

「65Zn」がある。62Zn は半減期 9.3 h で陽電子放出核種である 62Cu「T1/2 = 9.7 min」に

壊変し、また 65Zn は 243.9 日と非常に長い半減期を有する。一方、63Zn は半減期 38.5

分で、安定同位体 63Cu に壊変することから、63Zn は核医学イメージングにおいてより

望ましい性質を有する。これまでの 62Zn および 65Zn を用いた報告から 63Zn は腫瘍また

はすい臓疾患のイメージングに有用と考えられる。 

「方法と結果」天然由来銅ターゲット「63Cu: 69.17% ・65Cu: 30.83%」に 13.5 MeV の陽

子を照射し、63Zn を製造した。その後、陽イオン交換カラム「0.05 N HCl-85%アセト

ン」により精製し総収率 169  30 MBq/A·h で 63Zn を得た。放射化学的純度は 99%以

上で、不純物として 65Zn のみ観察された。一方、照射 1.6 時間後の比放射能は 29.4 

GBq/mol であった。ターゲットである Cu の残存量は 0.04 g/g 以下であった。ラット

を用いた PET 撮像では 63Zn の体内動態は以前報告された 65Zn の動態と一致し、すい臓

に高い集積を示し、63Zn の分子イメージングへの応用の可能性が認められた。 

「考察」63Zn の製造および精製法を確立した。その方法は迅速かつ直接的であり高い

化学的および放射科学的純度で 63Zn を得た。PET 画像において亜鉛のすい臓への特徴

的な集積が観察された。本成果により PET の分子イメージングを目的とする 63Zn の利

用が可能となった。 

多量体ガリウム放射性薬剤としての 1,4,7-triazacyclononane-1,4,7-tris-(glutaric 

acid) (NOTGA)のジアステレオマーの合成と検討 

「背景」ガリウム-68「68Ga」は半減期 67.7 分であることから速やかな薬物動態を示す

低分子化合物の標識に有用である。一方、標識プローブの設計においては、標的分子

認識素子を分子内に複数分子持つ多価化合物は、標的分子認識素子を一分子しか持た

ない一価化合物に比べ、高い結合力を有し、これは多価効果として知られている。二
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官能性キレートである NOTGA は多量体の 68Ga 放射性薬剤を調整するために開発され

た。NOTGA は(R,S) -bromoglutaric acid 1-tert-butyl ester 5-benzyl ester を用いて 1,4,7-

triazacyclononane の窒素にアルキル化することでジアステレオマーである RRR/SSS と

RRS/SSR の 2 つの鏡像異性体を生成する。そこで、これらのジアステレオマーの性質

を評価するために，それぞれの NOTGA-tBu3キレート前駆体または triethylene glycol リ

ンカー「TEG」を含む RGD ペプチド結合体を合成し、67Ga による標識、および 67Ga

標識体の安定性、Integrin v3の結合親和性および体内動態を比較した。 

「方法と結果」NOTGA の RRR/SSS と RRS/SSR のジアステレオマーを 69%と 17%の合

成収率で得た。67Ga による標識反応を配位子濃度 10 μM、室温において検討した結果， 

RRS/SSR は pH 依存性を示さなかったが、RRR/SSS は pH 依存的に変化し pH 5 が最適で

あった。標識溶液 pH 5 ではいずれのジアステレオマー錯体も、10 分以内に、放射化学

的収率 95％以上で得られた。いずれのジアステレオマー錯体も apo-Transferrin 溶液中

で安定に存在することを確認し、標的へ同程度の結合親和性を認めた。正常マウス実

験において各ジアステレオマー錯体は同様の体内動態を示し、いずれも腎臓排泄であ

った。また、U87MG 細胞を移植した担癌モデルマウスを用いた検討では，いずれも腫

瘍に対して同程度の集積を認め、SPECT/CT 画像として鮮明な画像を与えた。 

「考察」本研究成果により、NOTGA-(TEG-RGD)3 誘導体のジアステレオマーの構造学

的な相違は 67Ga 標識反応、または生物学的な性質に有意な影響を与えず、混合ジアス

テレオマー放射性薬剤の使用が可能であることを示した。しかしながら、標的分子認

識素子の特異的な性質と細胞でのレセプター発現レベルや薬物動態修飾リンカーなど

はジアステレオマーの構造学的な相違による分子プローブのリガンド－レセプターの

相互作用または薬物動態に影響する可能性があることから、異なる標的分子認識素子

に NOTGA を応用する際には誘導体の調製または化学的なおよび生物学的性質を調べ

ることが重要であると考えられる。 
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「総括」陽電子放出核種である 63Zn と 68Ga の純粋な NOTGA ジアステレオマー分子

プローブは分子イメージングにおいて新規 PET 放射性薬剤の開発に寄与すると期待で

きる。 
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Preface 

In recent years, a greater understanding between disease pathogenesis and molecular alterations 

at cellular levels has promoted the discovery of molecules able to target these alterations.(1, 2) 

Molecular Imaging aims to use these “targeting molecules” for the visualization, 

characterization, and measurement of biological processes at the molecular and cellular 

levels.(3) The relevance of this discipline is not simply to study the biology underneath a 

disease, but to do it in a personalized approach; allowing personalized medical care based on 

individual specificities. In cancer patient management, one of the leading causes of dead 

worldwide, the diagnosis and staging of tumors, as well as, assessment of therapeutics targets, 

monitoring therapy and prognosis evaluation can be performed.(1, 2) Molecular imaging can be 

also applied to the process of new drug discovery or in basic science, to the discovery of new 

targets for diagnosis and treatment.  

Radiotracer imaging by Positron Emission Tomography (PET) is one of the techniques used in 

molecular imaging, due to the high quantification and resolution properties of this imaging 

modality.(1, 4) PET imaging is based on the detection of the anti-parallel 511 keV gamma rays 

emitted from the annihilation of positrons with surrounding electrons (Figure 1 A) by detectors 

arranged in a ring around the subject (Figure 1 B). Only two photons detected in coincidence 

(10 – 20 ns) are registered, being unnecessary physical collimation to block scattered photons 

not perpendicular to the detector surface. Due to this “electronic” collimation PET will therefore 

be much more sensitive (1 – 2 orders higher) than other radiotracer based modalities, such as 

Single Photon Emission Computed Tomography (SPECT). The number of coincidences 

registered by all possible detector pairs along their respective axis provides an estimation of the 

number and position of the positron-emitting nuclides, hence a quantitative map of the 
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radiopharmaceutical concentration over time throughout the living human being.(1) 

 

Figure 1. PET imaging basic principles. (A) The movement of the positron before annihilating 

with an electron, with emission of two 511 keV photons opposite to each other; and (B) a 

scheme depicting a PET camera with the acquisition system. Only coincident photons and not 

scattered are registered  

PET radioisotopes are artificially produced with high specific activities in cyclotrons, as result 

of the nuclear reaction induced upon the irradiation of a target element with protons, deuterons, 

etc. The traditional PET isotopes are fluorine-18 (18F), carbon-11 (11C), nitrogen-13 (13N) and 

oxygen-15 (15O) (Table 1). 11C, 13N and 15O are considered “biological” positron-emitting 

isotopes, since they are chemical elements normally found in biological substrates. By far 18F is 

the most used among them, partly because its ideal decay properties, i.e. high positron 

abundance and low positron energy; and the success of 2-deoxy-2-[18F]fluoroglucose, an FDA 

approved radiopharmaceutical to study drug metabolism in lung, heart, brain, and localization of 

tumors.  
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Table 1 Decay data and production routes of commonly used PET radioisotopes (1, 5, 6) 

Nuclide 
Decay Mode 

(%) 
T1/2 E+ keV (%)a Nuclear reaction for 

production 

11C +(99.8) 20.36 min 960.4 (99.80) 14N(p,α)11C 
13N +(100) 9.97 min 1199 (99.80) 16O(p,α)13N 
15O +(100) 2.04 min 1732 (99.90) 15N(p,n)15O 

14N(d,n)15O 
18F +(100) 109.8 min 633.5 (96.70) 18O(p,n)18F 

64Cu +(17.6) 

EC(43.9) 

-(38.5) 

12.7 h 653.0 (17.60) 64Ni(p,n)64Cu 

68Ga +(89.1) 

EC(10.9) 

67.7 min 1899 (87.94) 68Ge/68Ga Generator 

 aMean + energy (total + intensity) 

One important aspect in the progress of molecular imaging field is the development of improved 

imaging probes. In PET-based radiopharmaceuticals this is translated, among others, into the 

production of novel radioisotopes with more desirable nuclear or chemical properties to match 

an intended molecular process.  

In this sense, there are essential trace elements in the body, such as zinc, whose radioactive 

isotopes could be directly used to study biofunctions or molecular interactions where the metal 

plays an important role, a subject not exploited yet in molecular imaging. They can be thought 

as the metallic version of the “biological” radioisotopes. Zinc is a metal involved in numerous 

biological processes in the body (7) and among the useful radioactive zincs (62Zn, 63Zn, 65Zn), 

63Zn possesses the most appropriate nuclear properties for PET imaging. However, the 

radionuclide was not available for molecular imaging purposes due to the lack of production 

and purification methods.  
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On the other hand, alternative positron-emitting radionuclides can be also obtained via 

generators. A representative example is the metallic radioisotope gallium-68 (T1/2 = 67.7 min) 

which is available from 68Ge/68Ga generators. 68Ga radiopharmacy is cyclotron-independent and 

allows the development of cold, freeze-dried kits that can be conveniently labeled similar to the 

case of 99Mo/99mTc-generators, at the workhorse in nuclear medicine. The attention gained by 

68Ga is evidenced by more than 50 radiopharmaceuticals enlisted in the Molecular Imaging and 

Contrast Agent Database (MICAD) (8) and the clinical success of 68Ga-DOTATOC for imaging 

somatostatine receptors in neuroendocrine tumors.(9, 10) 

One major advantage of metallic radioisotopes like 68Ga is their simpler radiolabeling, governed 

by their coordination chemistry. It allows the development of bifunctional chelators (BFC), 

which are in essence chelators equipped with functional groups for both, conjugation of a 

biomolecule of interest and coordination of the metal cation. Therefore, a metal containing 

molecular probe consists of a radionuclide wrapped by the BFC, the targeting molecule and 

additionally a pharmacokinetic modifier (PkM) linker is sometimes included (Figure 2).(11) 

Novel BFCs for gallium that improve aspects of molecular design such as, conjugation of 

biomolecules, radiolabeling or implementing innovative targeting strategies to increase probe 

avidity, have been developed.(12-15) One example is 1,4,7-triazacyclononane-1,4,7-tris-

(glutaric acid) (NOTGA). This BFC possesses a 1,4,7-triazacyclononane (TACN) core structure 

with three glutaric acid pendant arms; and it was designed to allow multiple conjugation of 

targeting molecules as a way to exert the multivalent effect,(16, 17) a targeting strategy used in 

receptor-based imaging for maximizing binding capabilities.(11, 18-21) One peculiarity in 

NOTGA is the presence of three chiral centers located at the alpha position of each glutaric acid 

moieties, leading to the formation of two diastereomeric pairs of enantiomers. However, their 
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isolation and the influence their structural differences, which might affect the stability, 

radiochemistry, target affinity, pharmacokinetics and in vivo targeting properties, have not been 

study yet.  

 

Figure 2. Molecular probe design of a metal-based radiopharmaceutical. PkM (Pharmacokinetic 

Modifier) 

With all above in mind, it is the intention of the present thesis to tackle two important aspects of 

the development of PET-based radiopharmaceuticals: first, the radioisotope production, 

materialized in the development of a method for the production and purification of the metallic 

positron emitting radionuclide zinc-63; and second, the molecular probe design, exemplified in 

the synthesis and evaluation of diastereomers of NOTGA for the preparation of multimeric 

radiopharmaceuticals of gallium. 

The first topic is addressed in Chapter 1 entitled “Production and purification of the positron 

emitter zinc-63”. The Introduction section makes a summary of the role of zinc in the human 

body and the applications that radioactive zinc has found so far. It also presents the advantages 

of 63Zn over the analogues 62Zn and 65Zn and the irradiation of copper targets with protons as the 

most convenient 63Zn production route. Materials and methods section gives details of the 
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irradiation protocol, the purification system based on cation exchange chromatography, 

including a detailed scheme, and the analytical methods used to assess the purity of the 63Zn 

final solutions. Issues such as, proton energy selection, copper target thickness and its impact on 

the following purification step are addressed in 63Zn production of the Results and Discussion. 

In the same section, the efficacy of the purification method to save elution time to avoid decay 

of the 63Zn product, and to provide high purity final product is analyzed in Radiochemical 

processing of 63Zn. Further, the applicability of the 63Zn was estimated in a PET imaging study. 

The chapter finishes with the partial conclusions. 

Chapter 2 presents the “Synthesis and evaluation of diastereoisomers of 1,4,7-

triazacyclononane-1,4,7-tris-(glutaric acid) (NOTGA) for multimeric radiopharmaceuticals of 

gallium”. Introduction section makes a brief summary of the nuclear properties and coordination 

chemistry of gallium radioisotopes important to imaging, aspects related to TACN-based BFC 

designed for multi-attachment of biomolecules and the formation of stereoisomers are also 

revised. The possibility of preparation of diastereomerically pure NOTGA radiopharmaceuticals 

is postulated and a RGD peptide molecular probe is formulated to address the problem. The 

synthetic procedures and other in vitro and in vivo experiments protocols are presented in 

Materials and Methods. A whole section devoted to Results includes, among others, the 

isolation of isomers of NOTGA, 67Ga radiolabeling, stability, in vitro affinity for integrin v3, 

and animal experiments. The results are analyzed and discussed in relation to the existing 

international knowledge in the Discussion section. Conclusions to this chapter are also given.  

General Conclusions will integrate the achievements of the thesis from a global point of view 

and references will be gathered in the Bibliography section.  
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Chapter 1.                                                                                  

Production and Purification of the Positron Emitter    

Zinc-63 

1.1. Introduction 

Zinc is one of the essential trace minerals in the body, and is required for the metabolic 

activity of more than 300 enzymes. It is also involved in protein, nucleic acid, carbohydrate, and 

lipid metabolism, as well as in the control of gene transcription and other fundamental 

biological processes.(7) Zinc deficiency and perturbations of zinc metabolism are now 

recognized as factors in the pathogenesis of several chronic diseases.(22)  

Although the potential use of 63Zn-EDTA was reported in 1974,(23) the application of 

radioactive zinc for imaging purposes has been limited to 62Zn and 65Zn. They have been used 

for preparing pancreas-seeking radiopharmaceuticals,(24-27) labeling an anti-cancer agent, (28, 

29) and brain tumor imaging.(30-34) 

Table 1.1 Decay data of zinc radioisotopes (6) 

Parent Nucleus Decay mode T1/2 E+ keV (%)a Daughter Nucleus

 EC, + 9.26  h 259 (8.40)  

 EC, + 38.47 min 992 (92.7)  

 EC, + 243.93 d 143 (1.42)  

 aMean + energy (total + intensity) 

 

Zn62
30 Cu62

29

Zn63
30 Cu63

29

Zn65
30 Cu65

29
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However, these zinc radioisotopes present some drawbacks as radionuclides for PET 

imaging. 62Zn is a positron emitter with a half-life of 9.26 h, which decays to another positron 

emitter, 62Cu, with 9.7 min of half-life. This constitutes a source of non-isotopic radionuclidic 

impurity. The long half-life of 65Zn, on the other hand, would result in unacceptable radiation 

exposure to patients, which significantly hinders its clinical application (Table 1.1). 

Furthermore, the positron emission intensity of both radioisotopes is rather low. Conversely, 

63Zn decays to the stable 63Cu with a half-life of 38.47 min and has high positron abundance 

(Table 1.1). Such nuclear properties render 63Zn an attractive radionuclide for molecular 

imaging to better understand the role played by the metal in the body through PET imaging. 

However, the application of 63Zn has been unexplored, because of the lack of methods for the 

production and purification of non-carrier added (n.c.a) 63Zn. 

63Zn can be produced by irradiating natural copper with protons through the natCu(p,n)63Zn 

nuclear reaction that exhibits high cross section values at low proton energies.(35) Although the 

60Ni(α,n)63Zn nuclear reaction exhibits comparable cross sections,(36) the coproduction of 62Zn 

is inevitable, making its application difficult. 63Zn can also be produced from the irradiation of 

natural zinc with neutrons thorough the 64Zn(n,2n)63Zn;(23) however, the reaction produces 63Zn 

in a carrier-added form. In this study, the production of 63Zn through the irradiation of natural 

copper targets with proton beams, its subsequent purification by ion exchange chromatography, 

as well as a pilot PET imaging study is presented.  
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1.2. Materials and methods 

1.2.1. General 

Copper foils (100 μm in thickness, 99.99 % purity) were purchased from Fuchikawa Rare 

Metal Co. (Tokyo, Japan). Analytical grade ion exchange resin (AG 50W-X8, H+ form, 100-200 

mesh) was obtained from Bio-Rad Laboratories, Inc (Tokyo, Japan). Reagents used in standard 

productions were analytical grade from Wako Pure Chemical Industries, Ltd (Osaka, Japan) and 

used without further purification. Water was purified using a Milli-Q purification system. To 

reduce the amount of metal impurity ultra-pure grade conc. Nitric acid, conc. HCl and water 

were purchased from Wako Chemicals and; acetone was purchased from Kanto Chemical Co., 

Inc (Tokyo). Proton energy calculations were performed using the software SRIM.exe 2008-3 

(37) or stopping power formulas.(38) The primary beam energy (14 MeV nominal) was checked 

using the ratio 65Zn/63Zn determined experimentally from the natCu(p,x)63,65Zn nuclear reactions 

in a copper foil of 20 m thickness (39) (13.93  0.12 MeV experimental). Cross-section data 

was taken from IAEA TECDOC 1211.(35) 

1.2.2. Production of 63Zn via natCu(p,n)63Zn reaction 

The irradiations were carried out using protons of 14 MeV from the AVF-930 cyclotron of 

the National Institute of Radiological Sciences of Japan, at beam intensities of 0.5 – 8 μA for 

0.5 – 1.5 h. A stack of 1.9 cm in diameter was arranged using an aluminum foil of 70 μm 

thickness to degrade the energy from 14 MeV to 13.5 MeV and the copper target of 100 μm 

thickness (13.5  11.4 MeV). After irradiation, the target holder was removed from the 

irradiation port and transferred to a shielded hot cell where all the operations were performed 
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remotely.(40) 

1.2.3. Purification of 63Zn from the Cu target 

The purification of 63Zn was carried out using the apparatus shown in Figure 1.1. The 

irradiated Cu foil was dropped inside the dissolution vessel using mechanical arms. The HNO3 

(1.5 mL) was added to the vessel from the A Line. After complete dissolution of the foil, water 

(15 mL) was added from the B Line and the solution was bubbled with air. The solution was 

loaded onto a cation exchange resin column (AG 50W-X8, H+ form, 1 cm I. D. × 40 cm, 

preconditioned with water) using a peristaltic pump. The column was then washed with 10 mL 

of water (from the D line). Lastly, 63Zn was eluted with a mixture of 0.05 N HCl – 85% acetone 

solution (prepared by mixing 0.33 M HCl and acetone at 1:5.7 v/v ratio) from the C line at a 

flow rate of approximately 3.5 mL/min. The eluents were monitored using the radiation sensor 

(RS). Radioactive fraction was collected and concentrated to dryness to remove HCl using a 

rotary evaporator. After the radioactive solution was evaporated to dryness, the residue was re-

dissolved in 5 – 10 mL of H2O or saline. 

1.1.1. Analysis of final product solutions 

The radioactivity was determined both destructively and non-destructively by standard 

gamma-ray spectrometry using a HpGe detector Gx1020 (4098 channels, 0.9 keV/channel, 34 – 

3643 keV) manufactured by Canberra Industries, Inc, CT, USA coupled to the acquisition 

system RZMCA 1.1.0.3 (Laboratory Equipment Corporation, Ibaraki, Japan) as well as a dose 

calibrator (ICG-3, ALOKA CO., LTD, Tokyo), which was cross-calibrated with the HpGe 

detector. The energy and efficiency calibration of the HpGe system was done using a 152Eu 
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certified calibration source obtained from Japan Radioisotope Association (Tokyo); and 137Cs 

and 60Co standard sources from QSA Global Inc. (Burlington, USA) (error < 3 %). Gamma ray 

energies and intensities for calibration were taken from the Nudat database.(6) The detector-

source distance was kept high enough to avoid summation of the pulses originating from 

cascade processes and dead times of less than 5 %. 

 

Figure 1.1. Apparatus used for the production of 63Zn from the copper target. (RS: Radiation 

sensor) 

The final 63Zn solutions were analyzed also by high performance ion exchange 

chromatography coupled to a UV–Vis detector (2475, Waters Corporation, Milford, MA, USA) 

and a NaI(Tl) radioactivity detector (Ohyo Koken Kogyo Co; LTD, Tokyo). The metal analysis 

was performed by ion chromatography with post column method. Samples were analyzed on a 
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column (IonPac CS5A, 4 mm I.D. × 250 mm; Dionex K.K., Osaka) equipped with a guard 

column (IonPac CG5A, 4 mm I.D. × 50 mm, Dionex K.K., Osaka) with mobile phase of diluted 

MetPac PDCA (Dionex K.K, Osaka) (MetPac PDCA : H2O = 1 : 5) at a flow rate of 1.2 mL/min. 

MetPac PDCA represents 7 mM of pyridine-2,6-dicarboxylic acid, 66 mM of potassium 

hydroxide, 5.6 mM of potassium sulfate and 74 mm of formic acid. The eluents from the 

column were mixed with a post column reagent, 4-(2-pyridylazo) resorcinol (PAR) in MetPac 

eluent (0.06 g/L), at a flow rate of 0.6 mL/min. MetPac represents 1 M of 2-

dimethylaminoethanol, 0.5 M of ammonium hydroxide and 0.3 M of sodium bicarbonate 

solution The mixture was monitored at 530 nm. The lower limits of detection of the elements 

were 0.020 g/g (Fe), 0.125 g/g (Ni), 0.020 g/g (Co), 0.019 g/g (Cu) and 0.018 g/g (Zn). 

1.1.2. Small-animal PET scanning 

Male Wistar rats (8 weeks old) were obtained from Japan SLC (Shizuoka, Japan). The 

animal experimental procedures were approved by the Animal Ethics Committee of the National 

Institute of Radiological Sciences. A chest/abdominal PET scan was performed using small-

animal PET scanner, InveonTM (Siemens Medical Solutions USA, Knoxville, TN), which 

provides 159 transaxial slices 0.796 mm (center-to-center) apart, a 10 cm transaxial field of 

view (FOV), and a 12.7 cm axial FOV.(41) Prior to the scan, the rat was anesthetized with 5% 

(v/v) isoflurane, and maintained thereafter by 1–2% (v/v) isoflurane. After transmission scans 

for attenuation using a Cobalt-57 point source, emission scan was acquired for 60 min after 

intravenous injection of [63Zn]ZnCl2 (16 MBq, 0.3 mL). All list-mode acquisition data were 

sorted into 3-dimensional sinograms, which were then Fourier rebinned into 2-dimensional 

sinograms (frames × min; 4 × 1, 8 × 2, 8 × 5). Dynamic images were reconstructed with filtered 

back-projection using Hunning’s filter, and a Nyquist cutoff of 0.5 cycle/pixel. 
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1.3. Results and Discussion 

1.1.3. 63Zn production  

63Zn can be formed from natural copper (63Cu, 69.2%; 65Cu, 30.8%) via two nuclear 

reactions: 63Cu(p,n)63Zn with a threshold energy of Eth = 4.2 MeV, and 65Cu(p,3n)63Zn, with Eth 

= 22.3 MeV. The highest cross section values (probability of the reaction to occur) of the 

63/65Cu(p,n)63Zn reaction are attained at a proton energy range between 16 to 6.5 MeV with a 

maximum at proton energy of 12.55 MeV. Unfortunately, within this useful energy region, both 

62Zn and 65Zn are also produced (Figure 1.2). Hence, careful selection of the initial proton 

energy was needed in order to minimize impurities. The generation of undesired 62Zn was 

completely avoided at proton energy levels below 13.47 MeV, the threshold energy of the 

63Cu(p,2n)62Zn reaction.  

The yield of 63Zn increases as incident energy range increases using thick targets. However, 

the use of thick copper targets requires larger columns in the purification process, which result 

in longer purification times to remove the target. Therefore, a favorable balance between the 

target thickness and purification time (i.e. yields at the end of bombardment (EOB) and at the 

end of processing) is necessary. The consideration led us to select a target thickness of 100 μm 

for an energy range from 13.5 to 11.4 MeV (Figure 1.2), thereby covering the highest cross-

section values for a theoretical yield of 1.87 GBq/μA·h. This is a production parameter that is 

calculated using the relationship:  integrated over the energy 

range and expressed in . The product of the number of target atoms (Natoms), the number 

of incident protons (Nproton) and the cross-section () gives the number of product atoms formed, 

)(ENNY protonatoms  
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that multiplied by the disintegration constant ( ) gives the activity of the sample (in Bq). 

The number of protons Nproton is conveniently expressed in 1/μA·h for practical reasons. It can 

be observed that long-lived radionuclides will have low yields. Nevertheless, experimentally the 

production yield is calculated from the measured activity following the relationship: 

. Where I (in μA) is the beam intensity and T (in h) is the irradiation 

time. 

 

Figure 1.2. Reaction cross-section of zinc radioisotopes in proton irradiated copper (35) 

The experimental thick target yields determined from trial irradiations are presented in Table 

1.2. The average was 1.41  0.19 GBq/μA·h, which is 75.4 % of the predicted value and some 

deviation was observed in one of the experiments. Since the energy was found to be in 

agreement with the nominal value, factors such as variations in the current delivered by the 

cyclotron, beam alignment, uncertainty in the activity determination, etc., might affect the 

results. Irradiated targets were allowed to decay and the radioactivity was measured. Although 
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the formation of 62Zn was completely avoided, the gamma spectrometry analysis of the copper 

targets revealed the presence of 65Zn and 64Cu impurities. The resulting yields were 91 ± 9.3 

kBq/μA·h for 65Zn and 164 kBq/μA·h for 64Cu. 65Zn is formed only from 65Cu via the 

65Cu(p,n)65Cu reaction with a threshold energy of Eth = 2.2 MeV. Meanwhile, 64Cu is formed 

from the nuclear reaction 65Cu(p,n+p)64Cu with Eth = 10.06 MeV. Thus, the use of 63Cu-enriched 

targets would allow producing 63Zn not only in high yields but also in high purities since 65Zn 

and 64Cu would be minimized. 

Table 1.2. Experimental thick target yields of 63Zna,b 

Run # A min 63Zn Yield (GBq/Ah)  % of theoretical yieldc 

1 0.50 30 1.68 89.9  

2 0.50 30 1.34 71.4  

3 1.0 30 1.37 73.0  

4 0.50 30 1.26 67.3  

a Ep= 13.5  11.4 MeV  
b Non-destructive measurements 
c Calculated yield: 1.87 GBq/Ah 

1.1.4. Radiochemical processing of 63Zn 

Due to the relatively short half-life of 63Zn (T1/2 = 38.47 min), a short and efficient 

separation process was required to minimize the loss by the decay of the product and by 

purification process. Typical procedure to separate zinc from copper through an anion exchange 

column chromatography is time-consuming (ca. 2 h), (40) as the radioactive zinc elutes after the 

elution of the copper target. To reduce purification time, a different elution system that elutes 

first the product while keeping the copper target in the column was appropriate.  
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Strelow et al. reported distribution coefficients with cation exchange resin for several metal 

ions in HCl – acetone mixture. High distribution coefficient ratio for Cu2+/Zn2+ pair of 76 is 

achieved using a 0.1 N HCl – 80% acetone.(42) Under the conditions, 63Zn was obtained in the 

first elution fractions while keeping the bulk copper target in the column. It was also 

documented that at low acid concentrations, the distribution coefficients increase as the acetone 

concentration increases, until the hydration field around the cation is weak enough to allow the 

replacement of the water dipoles in the coordination shell by chloride anions.(42) Considering 

that low acid concentration and high acetone concentration were favorable conditions for 

accelerating the evaporation step and avoiding polymerization of acetone by HCl, the elution 

conditions were also performed using a combination 0.05 N HCl – 85% acetone. Since the two 

elution conditions resulted in similar copper contents in the 63Zn fractions, the elution system 

utilizing 0.05 N HCl-85% acetone was selected to purify 63Zn from the copper target by cation 

exchange chromatography. 

In practical productions, the target foil readily dissolved in nitric acid was loaded onto the 

column without further rinsing the dissolution vessel. Radioactivity was detected between 20 

and 30 minutes after loading the metal solution and the radioactive fraction corresponding to the 

63Zn radionuclides was collected (70 – 80 mL), as shown in figure 1.3. Approximately 93.3 % 

of the loaded activity was recovered in the solution. However, losses during processing (9 % 

and 35 % of the radioactivity remained in the dissolution and evaporation vessel respectively) 

impacted the yield of HCl free 63Zn solutions. The chemical processing lasted an hour and the 

63ZnCl2 final product was ready to use at 1.6 h after EOB.  
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Figure 1.3. Radioactivity content in the effluents (expressed in arbitrary units) 

Table 1.3. Irradiation parameters, yield and purity analysis of practical production a 

Run 
# A min 

63Zn Yield 
MBq/Aha 

% 
predicteda 

Purity 

(%) 

SPA 
GBq/mola

Metal  
Impurity (g)b 

1. 8.0 60 166 44.8 99.92 29.4 Zn2+ 1.8, Cu2+ 0.2, 

Fe2+ 0.8, Co2+ 0.15  

2. 8.0 60 156 42.1 99.91 5.65 Zn2+ 7.1, Cu2+ 0.2, 

Fe2+ 1.7 

3. 6.0 90 145 39.3 99.91 4.66 Zn2+ 9.1, Cu2 + 0.1, 

Fe2+ 1.4 

4. 5.0 30 221 59.7 99.94 2.39 Zn2+ 11.8, Fe2+ 10.2

5. 5.0 30 159 43.0 99.54 1.79 Zn2+ 11.2, Cu2 + 1.2, 

Fe2+ 1.9 

a Specific activity (SPA). Referred to the End of Processing 
b Metal content per 5 mL of water/saline  
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The results of the productions are presented in Table 1.3. The average yield of the purified 

63Zn at the end of processing was 169  30 MBq/μA·h, i.e. 45.8 % of the predicted value. The 

radionuclidic purity was higher than 99%, with 65Zn being the only impurity. 64Cu was not 

detected after the purification (Figure 1.4).  

 

Figure 1.4. Gamma spectrum of the 63Zn final product. HpGe detector (30 cm of source – 

detector distance, LT 1128 sec). Gamma lines: 63Zn: 669.6 keV (8.2%), 962.1 keV (6.5%), 

1412.1 keV (0.75%); 65Zn: 1115.5 keV (50.6%) 

The HPLC-IC analyses detected Fe3+, Cu2+, Co2+ and Zn2+ (Table 1.3). The copper 

concentration could be decreased to 0.04 g/g and the only radioactive ion detected was Zn2+ 

(Figure 1.5). However, the amounts of non-radioactive zinc were relatively high at the initial 

experiments (1.42 – 1.82 g/g). The carrier zinc could come from several sources, including the 

copper target, the reagents used and contamination in the purification apparatus. When 

analytical grade reagents were changed to ultra-pure grade reagents, including water, and 

thoroughly cleaning of the production system was performed, the zinc amount decreased by a 
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factor of 5 for a specific activity of 29.4 GBq/μmol at 1.5 h EOB. Low specific activity may 

constitute a limiting factor for biological studies. Since the copper target impurities are a source 

of contaminant zinc, a reduction of the target size and use of highly pure 63Cu enriched targets 

would increase the specific activity. 

 

Figure. 1.5. Ion chromatograms of 63Zn solutions. (Fe3+: 4.25 min, Cu2+: 4.84 min, Zn2+: 6.05 

min, Co2+: 6.84 min). (AU: arbitrary units) 

1.1.5. Animal PET study 

The applicability of the presently produced 63Zn for molecular imaging was estimated in a 

PET imaging study performed 1 h after injection of [63Zn]ZnCl2 to a male Wistar rat (Figure 

1.6). Radioactivity was observed in the liver and kidneys, in good agreement with tissue 
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distribution studies previously reported using the radioisotope 65Zn.(26, 43-45) Furthermore, 

accumulation was also observed in pancreas, attributable to the utilization of the metal for 

exocrine functioning, in carboxypeptidase enzymes;(24, 25) and endocrine functioning, in the 

synthesis of insulin (46-48) thanks to the presence of zinc transporter in the tissue.(49, 50) 

These studies indicated that the presently produced 63Zn met the laboratory necessity for 

molecular imaging with PET. Recent efforts are being made to estimate beta-cell mass by non-

invasive in vivo imaging for better understanding the diabetes pathogenesis and monitoring 

therapeutic recovery of the cell.(51) The findings in this study along with previous ones using 

62/65Zn (24-27, 43, 52, 53) imply that 63Zn would be useful for estimating pancreatic functions 

by PET imaging. Additionally, zinc and its transporters are involved in a variety of biological 

processes in the body and alterations are related to chronic pathologies such as, Alzheimer’s 

disease (7, 22) that could be investigated using 63Zn. 

 

Figure 1.6. Representative chest/abdominal PET images of [63Zn]Zn (16 MBq) in the 

isoflurane-anesthetized rat. PET images were generated by summation of the whole scan (0–60 

min). %ID/ml (Percentage of injected dose per ml) 
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1.4. Conclusions 

The production and purification of the PET radionuclide 63Zn was established. The 

procedure was rapid and straightforward, and the product was obtained in high chemical and 

radiochemical purities. The typical accumulation of zinc in liver and kidneys, as well as in the 

pancreas, was observed in the PET image study. Therefore, the presently produced 63Zn has 

become available for molecular imaging with PET. 

  



 

- 28 - 
 

Chapter 2.                                                                                            

Synthesis and Evaluation of Diastereoisomers of          

1,4,7-triazacyclononane-1,4,7-tris-(glutaric acid) (NOTGA) 

for Multimeric Radiopharmaceuticals of Gallium 

2.1. Introduction 

Gallium radioisotopes are of great interest for molecular imaging. Gallium-68 (68Ga) is a 

PET radioisotope available from long-lived 68Ge/68Ga generator systems allowing potentially 

cost-effective production of 68Ga radiotracers far away from a cyclotron facility. Its physical 

half-life of 67.7 min is attractive for labeling low molecular weight probes with rapid 

pharmacokinetics.(54) 

For preparing 68Ga-based radiotracers, a macrocyclic chelator 1,4,7-triazacyclononane-

N,N’,N”- triacetic acid (NOTA, Figure 2.1 A) is preferably used due to the formation of a 

hexadentate gallium complex of high thermodynamic (Log K = 30.98) (55) and kinetic 

stabilities arising from the good fit of the relatively small gallium cation in the cyclic cavity.(54) 

Moreover, this chelator has been efficiently radiolabeled with 68Ga, even at room 

temperature.(13, 56, 57) 

Since the conjugation of targeting molecules to the carboxylic acids of NOTA compromises 

its coordination ability with Ga, several NOTA-based bifunctional chelating agents (BCA) with 

dissimilar functional groups in a pendant arm or on an ethylene bridge have been 

developed.(12-15) Triazacyclononane (TACN) has been selected as the core of the scaffold 

containing phosphinic acid (triazacyclononane phosphinic acids; TRAP) (58, 59) or glutaric 

acid (nonane triglutaric acid; NOTGA) (16, 17) for multi-attachment of biomolecules to the 

three pendant arms as a way to apply to the multivalent concept (Figure 2.1 B and C). 
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Figure 2.1. Structures of (A) NOTA and the NOTA-based BCAs, (B) TRAP and (C) NOTGA. 

TRAP contains phosphinic acids whereas NOTGA glutaric acids 

Recently, Singh et al.(17) exemplarily demonstrated that the binding affinity and tumor 

accumulation of a trivalent cyclic RGD peptide conjugated-NOTGA (68Ga-3) increased with 

respect to its bivalent and monovalent counterparts. Similarly, Notni et al. reported that the 

targeting ability of the trivalent 68Ga-TRAP(RGD)3 was superior to that of the monovalent 18F-

Galacto-RGD.(59) However, one aspect to consider when preparing NOTGA- and TRAP-based 

radiopharmaceuticals is the presence of chiral centers in their pendant arms leading to RRR, SSS, 

RRS, SSR stereoisomers. In NOTGA, these stereoisomers are formed as a result of the alkylation 

of TACN with racemic (R/S) -bromoglutaric acid diester (Figure 2.2), which was also 

observed in the alkylation of tetraazacyclododecane,(60, 61) where the RRRR isomer of 

gadolinium complex exhibited faster water exchange rate than the other isomers.(61) 

In TRAP ligands, the phosphorous atoms become chiral upon coordination with the metal 

ion and four RRR, SSS, SSR, RRS isomers are formed depending on the substituent.(58, 62) A 

mixture of diastereomers, with differences in spatial orientation of the chelating unit or targeting 

molecules and physicochemical properties, might influence the biodistribution of the molecular 

probe.(63, 64) In cases where radiopharmaceuticals can form distinct isomeric species, it is 
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important to evaluate the individual product separately to ensure that they both possess good 

biological efficacy,(63) as well as stability and radiochemistry. 
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Figure 2.2. Structures of the isomeric forms of NOTGA. The RRR and SSS, as well as RRS and 

SSR constitute enantiomers; while the pairs RRR/SSS and RRS/SSR are diastereomers 

In TRAP-based radiolabeled probes, separation of a potential diastereomer can only be 

conducted after radiolabeling reaction. On the other hand, the isolation of diastereomers in 

NOTGA is feasible after alkylation of TACN, and diastereomerically pure conjugates can be 

obtained. In NOTGA-based radiolabeled probes, therefore, a diastereomerically pure 68Ga-

labeled compound can be obtained without post-labeling purification by selecting a 

diastereomer of preferable chemical and biological performance. In the present study, pure 

diastereomers of NOTGA using RGDfK as the targeting molecule, were synthesized, and 

compared their performance in terms of radiochemical yields using the more convenient 67Ga 
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(T1/2 = 3.3 d), kinetic stability, affinity for integrin v3, and biological behavior of each 

complex in normal and nude mice bearing U87MG tumor xenografts.  

2.2. Materials and Methods 

2.2.1. General 

All commercially obtained chemicals were of analytical grade and used without further 

purification. 9-Fluorophenylmethoxycarbonyl (Fmoc)-protected amino acids and H-Gly-2-Cl-

Trt Resin were purchased from Watanabe Chemical Industries, Ltd. (Hiroshima, Japan). 67GaCl3 

was supplied by FUJIFILM RI Pharma Co., Ltd. (Tokyo, Japan). 1,4,7-Triazacyclononane 

(TACN) was purchased from Sigma Aldrich Chem. Co. (Milw, WI, USA). Apo-Transferrin 

(apo-Tf) Iron free was purchased from Nacalai Tesque Inc. (Kyoto, Japan). Reversed phase 

(RP) HPLC  was performed with a Cosmosil 5C18-AR-300 column (4.6 mm I.D. × 150 mm, 

Nacalai Tesque Inc.) at 1 mL/min with a gradient mobile phase starting from 90% A (0.1% 

aqueous trifluoroacetic acid (TFA) and 10% B (acetonitrile with 0.1% TFA) to 70% A and 30% 

B at 30 min. The eluent was monitored online with a UV-Vis single beam spectroscopy detector 

(L-7405, Hitachi Co. Ltd., Tokyo) coupled to a NaI(Tl) radioactivity detector (Gibi star, Raytest, 

Strubenhardt, Germany). TLC analyses was performed with silica plates (Silica gel 60 F254, 

Merck Ltd., Tokyo) developed with MeOH/0.1 M AcONH4 (1:1). Radioactivity was measured 

using a MiniGita Star Gamma TLC Scanner (Raytest) and an auto well γ counter (ARC-380M, 

Aloka, Tokyo). Mass spectrometry was carried out using an Agilent 6130 Series Quadrupole 

LC/MS electrospray system (Agilent Technologies, Tokyo) or MALDI TOF MS Kratos Axima 

CFR Plus (Shimadzu Corporation, Kyoto). 1H, 13C-NMR spectra were recorded on a JEOL 

JNM-ECP-400 (400 MHz) spectrometer (JEOL Ltd., Tokyo). 
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Scheme 2.1. Synthesis of NOTGA-(TEG-RGD)3: (a) Fmoc-O-Su, K2CO3, H2O; (b) c(-

Arg(Pbf)-Gly-Asp(OtBu)-D-Phe-Lys-), EDC, HOBt, DMF; (c) 10% piperidine/DMF; (d) 1,4,7-

triazacyclononane, K2CO3, MeCN; (e) 10% Pd/C, MeOH, H2O; (f) H2N-TEG-

c(R(Pbf)GD(OtBu)fK), EDC, DIMAP, CH2Cl2; (g) TFA/ H2O /Et3Si 

2.2.2. Synthetic procedures 

 (2-{2-[2-(9H-Fluoren-9-ylmethoxycarbonylamino)-ethoxy]-ethoxy}-ethoxy)-acetic acid (1) 

(Fmoc-TEG). 11-Amino-3,6,9-trioxaundecanoic acid (0.79 g, 3.79 mmol) and K2CO3 (1.04 g, 

7.50 mmol) were dissolved in 5.8 mL of water and stirred at room temperature for 15 minutes 



 

- 33 - 
 

after which N-(9-fluorenylmethoxycarbonyl) succinimide (1.28 g, 3.79 mmol) was added and 

the mixture was stirred for 24 h, while the progress of the reaction was monitored by TLC 

(CHCl3/MeOH/AcOH, 5/1/0.06). The salt was filtrated and the filtrate was washed with 3 × 3 

mL of Et2O, acidified to pH 1 using 3 N HCl and the desired compound extracted with 5 × 5 mL 

of CH2Cl2. After removing the solvent in vacuo, the residue was purified with open column 

chromatography using silica gel and subsequent elution with CHCl3/MeOH/AcOH (40:1:0.1) to 

afford Fmoc-TEG (1.19 g, 73%). ESI-MS, m/z: 430 [M+H]+: Found 430. 

Synthesis of Fmoc-TEG-c(-Arg(Pbf)-Gly-Asp(OtBu)-D-Phe-Lys-) (2). Fmoc-TEG (0.16 

g, 0.36 mmol), c(-Arg(Pbf)-Gly-Asp(OtBu)-D-Phe-Lys-) (0.3 g, 0.33 mmol) (65) and 1-

hydroxybenzotriazole monohydrate (HOBt, 0.049 g, 0.36 mmol) were dissolved in 13 mL of 

dimethylformamide (DMF) and cooled to -3 °C. Subsequently, 1-ethyl-3-(3-

dimethylaminopropyl)-carbodiimidehydrochloride (EDC, 0.21 g, 1.08 mmol) in 12 mL of DMF 

was added dropwise during 1 h under N2 atmosphere. The reaction mixture was further stirred 

for 1 h and then reacted overnight at room temperature. The solvent was removed in vacuo and 

then the residue dissolved in 100 mL of CH2Cl2 was washed with 5% citric acid (2 × 40 mL). 

The organic layer was collected and dried over MgSO4. After removing the solvent in vacuo, 

the residue was purified with open column chromatography using silica gel and subsequent 

elution with CHCl3/MeOH (20:1) to obtained compound 2 as a white solid (0.22 g, 51%). ESI-

MS, m/z: 1345 [M+Na]+: Found 1345. 

Synthesis of TEG-c(-Arg(Pbf)-Gly-Asp(OtBu)-DPhe-Lys-) (3). Fmoc-TEG-c(-Arg(Pbf)-

Gly-Asp(OtBu)-D-Phe-Lys-) (0.47 g, 0.35 mmol) was dissolved in 23 mL of 10% piperidine 

DMF solution and then stirred for 2 h. After concentrating the solvent, Et2O was added to the 

solution. The white precipitate was filtrated, washed alternatively with Et2O and n-hexane, dried 
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in vacuum overnight to obtain compound 3 as a yellow solid (0.30 g, 76%). ESI-MS, m/z: 1101 

[M+H]+: Found 1101. 

1,4,7-Tris-(1-tert-butoxycarbonyl-3-benzyloxycarbony-propyl)-1,4,7-

triazacyclononane (4) (NOTGA-tBu3-Bz3). (R/S) -Bromoglutaric acid 1-tert-butyl ester 5-

benzyl ester (1.3 g, 3.64 mmol) (66) was dissolved in 3.5 mL of acetonitrile and the solution 

was added dropwise to a solution of 1,4,7-triazacyclononane (0.142 g, 1.10 mmol) in 3.3 mL 

acetonitrile with K2CO3 (0.913 g, 6.62 mmol) during 2 h at 0C under N2. The mixture was 

stirred at room temperature for 24 h. The reaction mixture was filtrated and the solvent was 

evaporated in vacuo. The residue was dissolved in dichloromethane (15 mL) and washed with 

5% NaHCO3 (3 × 10 mL) and the organic layer was dried over MgSO4. After removing the 

solvent in vacuo, the residue was purified with open column chromatography using silica gel 

and subsequent elution with chloroform/acetone (50:1) to afford compound 4 as yellowish oil. 

RRR/SSS (0.637 g, 69%): 1H-NMR (400 MHz, CDCl3),  (ppm): 7.28–7.34 (m, 15H, Ph); 5.10 

(s, 6H, CH2–Ph); 3.09–3.13 (t, 3H, N–CH); 2.68, 2.95 (d, J = 0.03, 12H, N-CH2-CH2-N); 2.42–

2.53 (m, 6H, CH2–COOBz); 1.82–2.03 (m-m, 6H, N-CH-CH2); 1.43 (s, 27H, C(CH3)3). 
13C-

NMR (100 MHz, CDCl3),  (ppm): 173.06 (COOBzl); 173.27 (COO-tBu); 128.13, 128.17, 

128.49, 136.02 (Ph); 81.80 (C-Me3); 67.26 (C-Ph); 66.14 (N-C); 54.24 (N-C-C-N); 31.27 (C-

COO-Bzl); 28.26 (tBu); 25.26 (C-COO-Bzl). RRS/SSR (0.165 g, 17%): 1H-NMR (400 MHz, 

CDCl3),  (ppm): 7.27–7.34 (m, 15H, Ph); 5.10,5.09 (s-s, 6 H, CH2–Ph); 3.09–3.14 (m, 3H, N–

CH); 2.93 (d, J = 0.03, 2H, N-CH2); 2.70–2.84 (m, 8H, N-CH2-CH2-N); 2.58 (d, J = 0.03, 2H, 

CH2-N); 2.40–2.55 (m, 6H, CH2-COOBz); 1.80–2.04 (m-m, 6H, N-CH-CH2); 1.43,1.44 (s-s, 

27H, C(CH3)3). 
13C-NMR (100MHz, CDCl3),  (ppm): 173.34, 173.45 (d, COOBzl); 172.62, 

172.74 (d, COO-tBu); 128.41, 128.46, 128.77, 136.31 (Ph); 81.09, 81.11 (C-Me3); 67.25 (C-Ph); 
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66.40, 66.59 (N-C); 53.85, 54.16, 54.60 (N-C-C-N); 31.33, 31.51 (C-COO-Bzl); 28.56 (tBu); 

25.48, 25.65 (C-COO-Bzl). ESI-MS, m/z: 958 [M+H]+, Found 958. 

1,4,7-(-Bromoglutaric acid 1-tert-butyl ester 5-benzyl ester)-1,4,7 triazacyclononane 

(5) (NOTGA-tBu3). The RRR/SSS (0.57 g, 0.59 mmol) or RRS/SSR (0.15 g, 0.16 mmol) 

fractions were dissolved in methanol/water (5:1) and then 10% Pd/C (381 and 103 mg, 

respectively) was added portionwise. The mixtures were stirred for 12 h under H2 atmosphere. 

Then filtered over Celite, and evaporated to dryness to obtain compound 5 as white solids. The 

products were used without further purification. RRR/SSS (408 mg, 96.4%). 1H-NMR (400 MHz, 

CD3OD), (ppm): 3.69–3.70 (br, 3H, N-CH); 2.99–3.13 (br, 12H, N-CH2-CH2-N); 2.52–2.64 

(br, 6H, CH2-COOH); 2.06–2.19 (br, 6H, N-CH-CH2); 1.51 (s, 27H, C(CH3)3). RRS/SSR (104 

mg, 95%). 1H-NMR (400 MHz, CD3OD), (ppm): 3.62–3.72 (br, 3H, N-CH); 2.87–3.22 (br, 

12H, N-CH2-CH2-N); 2.44–2.81 (br, 6H, CH2-COOH); 2.19–2.15 (br, 6H, N-CH-CH2); 1.51 (s, 

27H, C(CH3)3). ESI-MS, m/z: 688 [M+H]+, Found 688. 

NOTGA-(TEG-RGD)3 (6). NOTGA-tBu3 (RRR/SSS, 8.52 mg, 12.4 μmol; RRS/SSR, 10 mg, 

14.5 μmol) was dissolved in dry CH2Cl2 (0.5 mL) and 0.3 eq of 4-dimethylaminopyridine 

(DMAP), 3.5 eq of TEG-c(-Arg(Pbf)-Gly-Asp(OtBu)-D-Phe-Lys-), 3.6 eq of EDC dissolved in 

0.5 mL of CH2Cl2 were added dropwise on an ice bath. After stirring at room temperature for 12 

h under N2, the solvent was evaporated in vacuo. The residue was dissolved in CH2Cl2 (10 mL), 

washed with 5% NaHCO3 (3 × 7 mL) and dried over MgSO4. After removing the solvent, the 

residue was taken up by a small amount of CHCl3. The precipitate formed upon addition of 

excess of Et2O was filtrated and dried in vacuum overnight to obtain the protected conjugate 

intermediate as a yellow solid (RRR/SSS, 33.3 mg, 68.2%; RRS/SSR, 38.7 mg, 67.6%). ESI-MS, 

m/z: 1683.9 [M+2H]2+: Found 1685.5. After treatment with TFA/triethylsilane/H2O (90:5:5) at 
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room temperature for 3 h, the solvent was evaporated in vacuo and the precipitate formed upon 

addition of excess of Et2O (RRR/SSS, 17.8 mg, 64.6%; RRS/SSR, 16 mg, 57.1%). ESI-MS, m/z: 

1422 [M+2H]2+: Found 1422. 

Ga-NOTGA-(TEG-RGD)3. NOTGA-(TEG-RGD)3 (RRR/SSS, 0.8 mg, 0.28 μmol; 

RRS/SSR, 3 mg, 1.05 μmol) was dissolved in 500 L of water, and 0.1 M Ga(NO3)3 solution 

(4.4 and 14.3 L, respectively) were added. After 10 min heating at 70°C, the pH was adjusted 

from 1.9 to 3.5 using 1 M sodium acetate and heated for another 30 min. The complex was 

purified by preparative HPLC and lyophilized to obtain Ga-NOTGA-(TEG-RGD)3 (RRR/SSS, 

0.7 mg, 85%; RRS/SSR, 2.67 mg, 87%). ESI-MS, m/z: 1455 [M+2H]2+, Found 1455.  

2.2.3. 67Ga-Radiolabeling 

The complexation of 67Ga by both diasteremeric pair of ligands was studied regarding the 

reaction pH and time at room temperature. 67GaCl3 (10 L, 1.5 MBq) in 0.05 M HCl was mixed 

with 10 L of 0.5 M sodium acetate buffer (A.B.) pH 4 – 5.5. The mixtures were added to 

Eppendorf tubes containing 0.4 nmol of ligand in 20 L of 0.25 M acetate buffer pH 3 – 5.5 to 

give final solutions of 0.25 M A.B., pH 3.5 – 5.5 and 10 M of ligand concentration. The 

mixtures were incubated at 25ºC for 5, 10 and 15 min and radiochemical yield were determined 

by Radio-TLC. 

2.2.4. In vitro stability 

67Ga labeled complexes (RRR/SSS, RRS/SSR) were purified by RP-HPLC to remove 

unlabeled ligands. The radioactive peak was collected and the solvent was removed in vacuo. 

The residue was reconstituted in apo-Tf solution (50 M, 0.1 M carbonate buffer, pH 7.4) and 
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incubated at 37C. Samples were withdrawn at 1, 3 and 6 h and analyzed by Radio-TLC (n = 3). 

2.2.5. Binding affinity to integrin v3 

 To evaluate the binding affinity of Ga labeled compounds to integrin v3, surface plasmon 

resonance (SPR) technology-based ProteOn™ XPR36 protein interaction array system (Biorad 

Laboratories Japan, Yokohama, Japan) was used. The SPR experiment was performed 

according to the manufacturer’s instruction. In brief, human purified integrin v3 (20 g/mL, 

Chemicon International, Temecula, CA, USA) dissolved in 10 mM A.B. (pH 4.0) was 

immobilized on a ProteOn GLH sensor chip (Biorad Laboratories Japan) by standard amine 

coupling method. The Ga-NOTGA-(TEG-RGD)3 complexes (RRR/SSS, RRS/SSR) at 10, 5, 2.5 

and 1.25 M concentrations and c(RGDfk) at 200, 100, 50, 25 and 12.5 M as a positive control 

in 10 mM Tris-HCl buffer (50 mM NaCl, 1 mM MgCl2, 1 mM MnCl2, pH 7.4) were injected 

simultaneously into the six horizontal channels of the chip. Kinetic analysis was performed by 

globally fitting curves describing a simple 1:1 biomolecular model to the set of five 

sensorgrams. 

2.2.6. Cell line 

Human glioblastoma U87MG cells were grown in a 75 cm2 tissue culture flask with canted 

neck (Becton, Dickinson and Company, Tokyo) in Dulbecco’s Modified Eagle Medium (Sigma-

Aldrich Japan K.K., Tokyo) supplemented with 10% fetal calf serum (FCS, Nippon Bio-supply 

Center, Tokyo) and GIBCO BRL 1% penicillin–streptomycin (5000 unit – 5000 g/mL, 

Invitrogen, Life Technologies Japan Ltd., Tokyo), at 37°C in a humidified atmosphere 

containing 5% CO2.  
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2.2.7. Biodistribution studies 

Animal studies were conducted in accordance with institutional guidelines approved by the 

Chiba University Animal Care Committee. Male ddY mice (67) (Japan SLC, Inc., Shizuoka, 

Japan) of 6-week-old were injected via tail vein with either RRR/SSS or RRS/SSR diastereomers 

of 67Ga-NOTGA-(TEG-RGD)3 (100 L, 11.1 KBq, 10 M ligand concentration). The animals 

were sacrificed and dissected at 30 min, 1 h, 3 h and 6 h after administration. Tissues of interest 

were removed, weighted and the radioactivity counts were determined with an auto well gamma 

counter. The urine and feces were collected for 6 h and the radioactivity was also measured. 

Values were expressed as mean ± SD for a group of 3 – 5 animals. 

BALBc nu/nu male mice (Japan SLC, Inc, Shizuoka, Japan) of 6-week-old, 18 – 20 g, were 

xenografted by subcutaneous (s.c.) injection of U87MG human glioblastoma cells (5 × 106 

cells/80 L of culture medium) into their right hind legs. The mice were subjected to 

biodistribution studies as well as SPECT/CT imaging studies when the tumor volume reached 

100 – 300 mm3.  

Biodistribution studies were also conducted in male BALBc nu/nu mice bearing U87MG 

xenografts 30 min after administration of each radiotracer (n = 4). The integrin v3 specificity 

was estimated by co-injection of either RRR/SSS or RRS/SSR diastereomers of 67Ga-NOTGA-

(TEG-RGD)3 (100 L, 11.1 KBq, 10 M ligand concentration) and c(RGDyV) peptide (3 

mg/kg mouse body weight) into mice bearing U87MG tumors. The animals were sacrificed and 

dissected at 2 h after administration (n = 4). 
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2.2.8. Small Animal SPECT/CT imaging studies 

SPECT/CT images were taken 30 min after administration of either RRR/SSS or RRS/SSR 

diastereomers of [67Ga]-NOTGA-(TEG-RGD)3 (100 L, 4.5 MBq, 10 M ligand concentration) 

to male BALBc nu/nu mice bearing U87MG xenografts from the tail vein (n = 3). The mice 

were anaesthetized with 1 – 2% (v/v) isoflurane (DS Pharma Animal Health, Osaka, Japan) and 

positioned on the animal bed where anesthesia was continuously delivered via a nose cone 

system. SPECT imaging and X-ray CT imaging were performed by use of small animal 

SPECT/CT system (FX-3200, Gamma Medica Inc., CA) equipped with five pinholes (0.5 mm) 

collimator. Data acquisition was performed for 64 min at 60 s per projection with stepwise 

rotation of 64 projections over 360˚. 

2.2.9. Statistical analysis 

Quantitative data were expressed as mean ± SD. Means were compared using unpaired two-

tailed Student’s t test. P values <0.05 were considered statistically significant. 

2.3. Results 

2.3.1. Chemical synthesis 

TACN was alkylated with (R/S) -bromoglutaric acid 1-tert-butyl ester 5-benzyl ester (15, 

66, 68) in acetonitrile and K2CO3 at room temperature to obtain the fully protected NOTGA-

tBu3-Bz3 4 (Scheme 2.1). Purification was carried out using silica-gel column chromatography 

and a mixture of chloroform and acetone as the mobile phase. Two fractions (a major fraction of 

69% and the following of 17%) were verified to be the target compound by mass spectrometry. 
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Structure assignment was possible by 1H-NMR and 13C-NMR, which provides deeper insights 

into their structural differences (Figure 2.3 – 2.5). Focusing on the chiral carbon (label b in 

Figure 2.3), a single resonance was observed in the 69% fraction Figure 2.3 A) indicating 

equivalent carbons, and two resonances in the 17% fraction indicating the presence of two 

chemically non-equivalent carbons (Figure 2.3 B). The 69% fraction was assigned to the 

RRR/SSS diastereomeric pair and the 17% to the RRS/SSR.  

In order to evaluate the differences of both diastereomeric pairs, each fraction was treated 

separately. After debenzylation by palladium catalyzed hydrogenolysis, the diastereomeric 

orthogonally protected NOTGA-tBu3 prochelators were obtained in quantitative yields. 

The peptide substituent was prepared using an Fmoc chemistry to introduce the TEG spacer 

in the lysine side chain of c(RGDfK) in 50 % yield. The prochelators of NOTGA-tBu3 were then 

conjugated to the partially protected TEG-c(-Arg(Pbf)-Gly-Asp(OtBu)-D-Phe-Lys-) by in situ 

activation using the standard EDC based coupling method followed by complete removal of all 

protecting groups to obtain the desired ligands at moderate yields after HPLC purification (> 

95% purity). 
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Figure 2.3. 13C NMR (100MHz, CDCl3, 25 C) spectra of NOTGA-tBu3-Bz3 products 

obtained from alkylation of TACN with (R/S)--bromoglutaric acid 1-tert-butyl ester 5-

benzyl ester, followed by column chromatography. (A) The major fraction (69 %) 

corresponds to RRR/SSS enantiomers while (B) the minor fraction (17 %) to RRS/SSR 

diastereomers. See inserted structural formula for assignments 
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Figure 2.4. 1H NMR (400 MHz, CDCl3, 25 C) spectra of NOTGA-tBu3-Bz3 from the 

alkylation of TACN with (R/S)--bromoglutaric acid 1-tert-butyl ester 5-benzyl ester. Column 

chromatography isolated fraction (69%) corresponding to RRR/SSS enantiomers. See inserted 

structural formulas for assignments 
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Figure 2.5. 1H NMR (400MHz, CDCl3, 25 C) spectra of NOTGA-tBu3-Bz3 from the alkylation of 

TACN with (R/S)--bromoglutaric acid 1-tert-butyl ester 5-benzyl ester. Column chromatography 

isolated fraction (17%) corresponding to the RRS/SSR diastereomers. See inserted structural 

formulas for assignments 

2.3.2. Radiochemistry 

The RRR/SSS and RRS/SSR pairs of NOTGA-(TEG-RGD)3 were radiolabeled with 67Ga and 

the resulting complexes were analyzed by HPLC (Figure 2.6). In both cases, a single peak was 

observed and the retention time of the RRR/SSS was 24.5 min, slightly longer than that of 

RRS/SSR (24.3 min). In both cases, their retention times were identical to those of the 

corresponding non-radioactive gallium complexes verified by mass spectrometry. 
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Figure 2.6. HPLC radiochromatograms of 67Ga-NOTGA-(TEG-RGD)3. The RRR/SSS 

diastereomer (top) was eluted at 24.5 min slightly longer than that of the RRS/SSR counterpart 

(bottom, 24.3 min) 

Formation kinetic as a function of pH is presented in Figure 2.7. In both cases, 

radiochemical yields were low under acidic conditions (pH 3.5) and quantitative at higher pH. 

Interestingly, while RRR/SSS was preferentially labeled at pH 5 the RRS/SSR was pH 

independent from pH 4 to 5.5 (Figure 2.7 A). Nevertheless, at pH 5 the time variation of the 

radiochemical yield was essentially the same for both pairs (Figure 2.7 B) and complete 

radiolabeling with more than 98% yield was attained after 10 min of reaction. Under the present 

conditions, the specific activity of the 67Ga-labeled compounds was 4,500 MBq/µmol. 
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Figure 2.7. Radiochemical yields of each diastereomer of 67Ga-NOTGA-(TEG-RGD)3 

(RRR/SSS: squares, and RRS/SSR: triangles) (A) at different pH values for 10 min and (B) 

different reaction times at pH 5.0 

2.3.3. In vitro stability 

The kinetic stability of [67Ga]-NOTGA-(TEG-RGD)3 diastereomeric pairs, purified by 

HPLC in order to remove the excess of ligand, was estimated in an apo-Tf challenge (Table 2.1). 

After 6 h of incubation at 37°C, more than 98% of the radioactivity was still bound to the 

NOTGA tri-peptide conjugates of both pairs. 
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Table 2.1. Stability of 67Ga-NOTGA-(TEG-RGD)3 diastereomers against apo-Tfa 

Time (h) Percent of intact radiolabeled complex 

 RRR/SSS RRS/SSR 

1 98.6 ± 0.2  98.9 ± 0.4 

3 98.9 ± 0.3  98.3 ± 0.9 

6 98.0 ± 0.4  98.4 ± 0.2 

aResults are expressed as mean ± SD of three experiments 

2.3.4. Binding affinity 

The binding kinetics of the two diasteromeric gallium complexes of NOTGA-(TEG-RGD)3 

to v3 integrin was estimated with the SPR technology using a monovalent c(RGDfK) as a 

reference (Table 2.2). Both diastereomeric trivalent complexes exhibited higher association and 

lower dissociation rates than that of a monovalent c(RGDfK) with the rate constants similar 

each other. As a result, both trivalent complexes showed 10-folder lower dissociation constant 

values (KD) than that of monovalent c(RGDfK). 

Table 2.2. Kinetic binding constants of 67Ga-NOTGA-(TEG-RGD)3 (RRR/SSS and RRS/SSR), 

c(RGDfK) to integrin v3 determined using the SPR technology 

Analyte Ka (1/Ms) Kd (1/s) KD(M) 

RRR/SSS 1.13 × 105 ± 6.8 × 103 8.03 × 10-3 ± 1.7 × 10-4 7.13 × 10-8 ± 4.5 × 10-9 

RRS/SSR 0.94 × 105 ± 5.3 × 103 8.12 × 10-3 ± 1.6 × 10-4 8.64 × 10-8 ± 4.9 × 10-9 

c(RGDfK) 2.57 × 104 ± 6.1 × 103 1.38 × 10-2 ± 6.2 × 10-4 5.37 × 10-7 ± 2.7 × 10-7 

2.3.5. In vivo experiments 

The results of the biodistribution studies of [67Ga]-NOTGA-(TEG-RGD)3 in normal mice at 
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30 min, 1 h, 3 h and 6 h after administration are shown in Table 2.3 (RRR/SSS) and Table 2.4 

(RRS/SSR). No significant differences were observed in the uptake of both diastereomers in 

almost all organs and tissues. These profiles were characterized by rapid blood clearance with 

low accumulation in the liver and the majority of the radioactivity was localized in the kidneys.  

Table 2.3. Biodistribution of RRR/SSS diastereomer of 67Ga-NOTGA-(TEG-RGD)3 in normal 

micea 

RRR/SSS 

Organ 30 min 1 h 3 h 6 h 

Blood 0.61 ± 0.13 0.16 ± 0.02 0.07 ± 0.02 0.09 ± 0.02 

Liver 1.27 ± 0.22 1.32 ± 0.15 1.49 ± 0.32 1.50 ± 0.30 

Spleen 2.09 ± 0.35 1.26 ± 0.12 1.32 ± 0.21 1.77 ± 0.56 

Kidneys 5.82 ± 1.22 5.04 ± 1.15 3.48 ± 0.54 3.00 ± 0.43 

Pancreas 1.06 ± 0.19 0.72 ± 0.09 0.65 ± 0.10 0.66 ± 0.13 

Heartb 1.00 ± 0.07 0.69 ± 0.05 0.65 ± 0.09 0.73 ± 0.11* 

Lung 2.52 ± 0.33 1.41 ± 0.11 1.08 ± 0.37 1.25 ± 0.47 

Muscle 0.84 ± 0.14 0.55 ± 0.12 0.51 ± 0.07 0.52 ± 0.04 

Stomachc 0.63 ± 0.06 0.74 ± 0.16 0.56 ± 0.13 0.47 ± 0.14 

Intestinesb,c  2.98 ± 0.54 3.67 ± 0.27** 5.23 ± 0.80* 4.44 ± 0.26** 

Urinec    63.22 ± 6.83 

Fecesc    4.25 ± 1.30 

aData expressed as %ID/g  SD (n = 5). b* p < 0.05, ** p < 0.01 in comparison to RRS/SSR. cExpressed 
as %ID 

Both radioligands were excreted in the urine with a small amount in feces. Although in 

absolute terms the uptake in the intestines was very low, a slight tendency of the RRR/SSS to be 

excreted through the intestinal tract can be noted. Its intestine accumulation was significantly 

higher at 1, 3 and 6 h p.i. Likewise, relatively higher radioactivity in feces and lower 

radioactivity in urine for the RRR/SSS were observed.  
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Table 2.4. Biodistribution of RRS/SSR diastereomer of 67Ga-NOTGA-(TEG-RGD)3 in normal 

micea 

RRS/SSR 

Organ 30 min 1 h 3 h 6 h 

Blood 0.58 ± 0.18 0.19 ± 0.02 0.09 ± 0.03 0.08 ± 0.02 

Liver 1.22 ± 0.12 1.19 ± 0.07 1.56 ± 0.38 1.33 ± 0.19 

Spleen 1.42 ± 0.59 1.20 ± 0.17 1.40 ± 0.06 1.57 ± 1.17 

Kidneys 5.38 ± 0.89 4.74 ± 0.87 3.58 ± 0.39 3.04 ± 0.28 

Pancreas 0.85 ± 0.07 0.69 ± 0.03 0.71 ± 0.09 0.58 ± 0.11 

Heartb 0.93 ± 0.16 0.73 ± 0.08 0.73 ± 0.09 0.55 ± 0.05* 

Lung 1.94 ± 0.53 1.36 ± 0.16 1.33 ± 0.35 1.00 ± 0.04 

Muscle 1.22 ± 0.91 0.55 ± 0.04 0.55 ± 0.06 0.62 ± 0.17 

Stomachb 0.59 ± 0.06 0.63 ± 0.11 0.61 ± 0.11 0.40 ± 0.02 

Intestinesb  2.59 ± 0.35 3.00 ± 0.27** 4.10 ± 0.62* 2.90 ± 0.38** 

Urineb    71.52 ± 2.64 

Fecesb    2.24 ± 0.89 

aData expressed as %ID/g  SD (n = 5). bExpressed as %ID 

Figure 2.8 shows the biodistribution studies of [67Ga]-NOTGA-(TEG-RGD)3 (RRR/SSS and 

RRS/SSS) at 30 min postinjection to nude mice bearing U87MG xenografts. The biodistribution 

profiles of both diastereomeric pairs were characterized by rapid blood clearance, high tumor 

uptake with comparatively low accumulation in non-target organs and renal excretion pathway. 

In agreement with the studies in normal mice, the uptakes of the diastereomeric pairs in organs 

of interest were comparable. Tumor uptakes were 4.40  0.38 and 4.77  0.76 %ID/g (p<0.05) 

for RRR/SSS and RRS/SSR, respectively. Tumor to organ ratios (Figure 2.8 B) were high for 

blood and muscle, moderate for the liver and much lower for the kidney. A combination of 

slightly higher tumor and lower blood uptakes led to a statistically significantly higher tumor to 

blood ratio for the RRS/SSR pair. 
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Figure 2.8. (A) Biodistribution of 67Ga-NOTGA-(TEG-RGD)3 in tumor-bearing male nude 

mice at 30 min after intravenous injection of 11.1 KBq of RRR/SSS (white) or RRS/SSR (black). 

(B) The tumor to organ ratios of the 67Ga labeled conjugates. Data expressed as %ID/g  SD    

(n = 4, ** p < 0.01) 

When the radiolabeled probes were co-injected with a high amount of RGDyV, tumor 

accumulation was significantly decreased (p < 0.05) to 0.82  0.17 and 0.68  0.2 %ID/g at 2 h 

p.i. (RRR/SSS and RRS/SSR, respectively), demonstrating integrin v3 targeting specificity 

(Figure 2.9). 
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Figure 2.9. Biodistribution data in tumor-bearing male nude mice at 2 h after administration of 
67Ga-NOTGA-(TEG-RGD)3 with (black) and without (white) the presence of an excess of 

RGDyV. (A) RRR/SSS; (B) RRS/SSR. Data expressed as %ID/g  SD (n = 4) 

SPECT/CT imaging studies were performed for both RRR/SSS and RRS/SSS diastereomers 

of [67Ga]-NOTGA-(TEG-RGD)3 using nude mice bearing U87MG xenografts (Figure 2.10). 

Tumors were clearly visualized as early as 30 min after administration. Radioactivity was 

concentrated in the kidneys and bladder. Impressively, non-specific accumulation in liver or 
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bowel was not observed resulting in high contrast images. 

 

Figure 2.10. SPECT/CT images of U87MG tumor-bearing male nude mice after 30 min of i.v. 

injection of 4.5 MBq of each diastereomer of [67Ga]-NOTGA-(TEG-RGD)3. (A) RRR/SSS and 

(B) RRS/SSR. Images were shown at the same signal intensity scale 

2.4. Discussion 

The cyclic RGD peptides have been widely study as a targeting molecule due to its high 

affinity for integrin v3 over-expressed during tumor angiogenesis.(11) It has also been well 

recognized that in vitro binding affinity and in vivo tumor targeting ability of multimeric RGD 

peptides are enhanced due to the multivalent effect and the enriched local RGD 

concentration.(11, 18-21) Moreover, it has been demonstrated that the spacer units of 

appropriate length and hydrophilicity between a radiometal chelate and each RGD motif 

increase avidity of the radiotracers and simultaneously may act as pharmacokinetic modifier to 

improve pharmacokinetics of the radiotracer.(11, 69, 70)  

The preparation of NOTA-based radiopharmaceuticals was conducted according to the 
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procedure reported previously.(16, 17) In brief, the synthesis of the orthogonally protected 

prochelator NOTGA-tBu3 took place first, followed by conjugation of the bioactive molecules to 

each carboxylic acid of the pendant arm and final deprotection. Intermediate 4 exists in different 

isomeric forms,(60, 61) RRR, SSS, RRS, and SSR (Figure 2.2) due to the use of the (R/S) 

racemates of -bromoglutaric acid 1-tert-butyl ester 5-benzyl in the alkylation of TACN. They 

were synthesized from (S)-glutamic acid-5-benzyl ester through bromination by diazotization 

with sodium nitrite in NaBr/HBr solution as previously.(15, 17, 60, 66) This reaction is not 

stereoselective and the -bromo acid product is only enantioenriched as reported.(71) Further 

methods should be devised at this stage to isolate the major fraction by chiral chromatography 

or by using enantioselective bromination reactions.(72) The RRR and SSS isomers constitute 

enantiomers with three equivalent chiral carbons and the pair was assigned to the 69% fraction 

with a single resonance at the corresponding position in 13C-NMR. Enantioenriched reactants 

may have favored the formation of this two enantiomers. Likewise, two different carbons (R, S) 

are present in RRS/SSR and were associated with the two resonances observed in the 17% 

fraction. A similar phenomena was observed in the tetralkylation of the tetraazacyclodecane 

analogue with racemix -bromo acid diesters.(61)  

It should be mention that besides the isomerism in NOTGA ligands coming from the chiral 

carbon in the pendant arms, NOTA-based complexes are chiral depending on the orientation of 

the pendant arms around the metal center (: clockwise or : anticlockwise) and the relative 

puckering of the ethylenediamine subunit chelate rings ( or  conformers).(73, 74) In case 

of gallium, only the enantiomeric ()/() combination has been observed.(73) Therefore, 

each RRR/SSS and RRS/SSR of Ga-NOTGA diastereomeric pair may further exist as the 

enantiomeric combinations ()-RRR/()-SSS or ()-SSS/()-RRR), as well as, 

()-RRS/()-SSR or ()-SSR/()-RRS. Further, X-ray crystallography analysis 
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or computational modeling methods would clarify the actual structure. Nevertheless, both 

diastereomeric ligands provided gallium complexes of high inertness, demonstrated in the apo-

Tf challenge, indicating good retention of the metal inside the complex cavity. 

67Ga radiolabeling was performed at room temperature as previously reported for NOTA 

and its derivatives.(13, 56, 57) The reaction condition allowed assessing the differences in the 

complexation ability of the diastereomeric ligands that otherwise would be suppressed by 

heating. Lower radiochemical yields under acidic conditions were also found by Singh et al. 

(17) when labeling NOTGA and its di-substituted parent, in comparison to the mono-substituted 

and the p-SCN-Bn-NOTA RGD conjugates, possibly due to steric hindrance caused by the three 

substituents. On the other hand, pH 5 was found optimal for labeling NODAGA-RGD with 

68Ga,(75) and a study of the Ga-NOTA formation in acetate solutions found faster reaction rates 

at higher pH.(76) Intriguingly, the RRS/SSR was almost pH-independent from pH 4 to 5.5. A 

hypothesis to account for this observation would be related to the formation mechanism of the 

Ga-NOTA complex and the structural differences between the diastereomers.  

It has been reported that complexation of NOTA and other polyazamycrocycles containing 

pendant arms proceed in two steps. The first step comprises a fast formation of a 

monoprotonated intermediate species in which the metal ion is outside of the macrocyclic cage 

and coordinated to the three peripheric carboxylate oxygen atoms. The ring nitrogen atoms 

remain unbound and the proton would be attached to one of them. In the second step, 

deprotonation takes place followed by migration of the metal to inside the cavity where it also 

becomes coordinated to the nitrogen atoms.(77) Due to electrostatic repulsion between the 

nitrogen’s proton and the metal, removal of the proton is considered to be the rate-determining 

step. (76, 78, 79) It has been proposed this is an OH-catalyzed deprotonation,(76-79) explaining 



 

- 54 - 
 

the faster complexation at higher pH. It has also been proposed that the migration of the proton 

from the NH+ group to a carboxylate facilitates the accessibility with respect to OH- ions.(79) In 

either cases, the RRS/SSR conformation might facilitate the access of the OH- ions to the 

nitrogen bound proton or the proton migration to the carboxylate, making the complexation less 

pH dependent.  

To further estimate the differences between the two diastereomers, the binding affinity of 

the two gallium complexes of NOTGA-(TEG-RGD)3 to v3 integrin were estimated by SPR 

assay and it was found that the structural differences in the NOTGA diastereomers presented 

here do not affect the interaction with the targets (Table 2.2). The binding to v3 integrin is 

strongly dependent on the molecular design of multimeric RGD probes. There are two factors 

underneath the enhanced target affinity: enhanced local RGD concentration and multivalency. 

Although the local concentration factor is innate in all multimeric probes, an appropriate 

distance between each two sets of cyclic RGD motifs is required to achieve multivalency.(11, 

80, 81) In this design, the triethylene glycol spacer was inserted to provide a distance between 

the RGD motifs of 37 bonds. According to the previous study,(80) the distance between the two 

cyclic RGD motifs of [67Ga]-NOTGA-(TEG-RGD)3 would be suitable for simultaneous v3 

integrin binding. In addition, Syngh et al. reported that a trimeric RGD linked to NOTGA 

showed enhanced tumor uptake and retention compared with monomeric RGD counterpart, due 

to the multivalent effect partially.(17) From these findings, a combination of multivalency and 

enhanced local RGD concentration might be attributable to higher targeting capabilities of 

[67Ga]-NOTGA-(TEG-RGD)3, reflected in a binding affinity 10 folder higher than the 

monovalent cRGDfK. Thus, both diastereomers might act as trivalent compounds and the 

spatial arrangement of the RGD motifs in each complex would be equivalent with respect to 

binding affinity to v3 integrin.  
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No significant differences were also observed in the biodistribution of the 67Ga labeled 

diastereomers (Tables 2.3 and 2.4, Figure 2.8). Both exhibited rapid blood clearance and renal 

excretion in normal and nude mice bearing U87MG tumors. The high renal uptake was 

consistent with previous studies of other multimeric RGD peptides.(17, 19, 82-84) It was 

reported that endothelial cells of the glomeruli vessels in the kidneys express integrin v3,(85) 

which could partially explain the observation. The presence of three guanidine groups in the 

trivalent RGD conjugate would increase positive charge, which may have facilitated 

reabsorption in proximal renal tubular cells.(19, 20, 85, 86) While both diastereomers exhibited 

similar biodistribution, the elution order of the diastereomers from HPLC (Figure 2.6; RRS/SSR 

followed by RRR/SSS) suggests that a small difference in the lipophilicity between the two may 

be responsible for the slight tendency of the RRR/SSS to be excreted through the intestinal tract, 

though the excretion route is minimal. The similar affinity for integrin v3 along with similar 

pharmacokinetics of the diastereomers resulted in similar tumor accumulation of the two 

compounds (Figure 2.8), yielding SPECT/CT images of high contrast as shown in Figure 2.10.  

The longer-lived 67Ga was used throughout the study. The outcomes of this study would 

also be applicable to the synthesis of 68Ga labeled NOTGA-(TEG-RGD)3. Moreover, given the 

efforts in the processing of generator eluates to reduce metal impurities (1, 10, 56, 87) and the 

sensitivity of PET imaging techniques, superior images of in vivo integrin v3 expression can 

be obtained. Furthermore, NOTGA can be used also for applications with other metal 

radionuclides such as 64Cu, which have been previously incorporated to other NOTA-based 

BFC.(88) 
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2.5. Conclusions 

The findings in this study show that the RGD conjugates of both diastereomers presented 

here possess equivalent biological efficacy, and the combined usage of the diastereomic mixture 

would be feasible as far as the present compounds are concerned. It is worth noting that the 

specific properties of a given biomolecule, cell expression levels of the corresponding target 

molecule, presence or absence of pharmacokinetic modifiers might affect the structural 

differences between diastereomers on the ligand-receptor interactions and biodistribution. Since 

the synthesis of diastereomerically pure NOTGA-tBu prochelators has been established, the 

preparation of corresponding conjugates and evaluation of their chemical and biological 

performances still remains important for applying NOTGA to other biomolecules of interest. 
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Chapter 3.                                                                                

General conclusions 

Molecular imaging offers the potential to image non-invasively promising molecular targets; 

shifting the place we look for diseases from tissues and organs to molecular structures and 

mechanisms at cellular and subcellular levels. These molecular targets or more precisely, the 

corresponding targeting molecules need to be part of successful molecular probes to have a 

practical meaning. The outcomes of this thesis, the availability of the positron emitter zinc-63 

and diastereomerically pure molecular designs for 68Ga probes, will undoubtedly contribute to 

the development of novel PET based radiopharmaceuticals for molecular imaging. 
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