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Preface

Let I and @ be two ideals of a commutative ring R. We set

I'rQ={a€R|aQ C I}

and call it the ideal quotient of I by (). This is an ideal of R which contains I. The
ideal quotient is a very important notion in the theory of commutative algebra. For
example, if (R, m) is a Noetherian local ring and I is an m-primary ideal of R, then
depth R/I = dim R/I = 0, so the Gorensteinness of R/I is characterized by the socle of
R/I SocR/I = (I :p m)/I. Also, when (R, m) is a local ring and I is an ideal of R, we
define the saturation of I (I)%** using I :x m’, where i is a positive integer.

The *-transform of an acyclic complex of length 3 is introduced in [8] for the purpose
of composing an R-free resolution of the ideal quotient of a certain ideal whose R-free
resolution is given, and its generalization is explained in [18]. Here, let us recall the outline
of the generalized *-transform.

Let (R, m) be an n-dimensional Cohen-Macaulay local ring, where 2 < n € Z, and let
x1,Z9,...,T, be an sop for R. We put Q = (x1,z9,...,x,)R. Suppose that an acyclic

complex

F, 0—)Fnﬂ>Fn_1—)—)F1ﬂ>F0

of finitely generated free R-modules such that Imy, C QF,_; is given. We put M =

Ime;. M is an R-submodule of F,, and F, is an R-free resolution of Fy/M. Then,



transforming F,, we can get an acyclic complex
Fo : 0—F, 5°F, — - —F 5 Fy =

of finitely generated free R-modules such that Im*p; = M 5, Q = {z € Fy|Qx C M}
and Im*p, € m-*F,_;. *F, is an R-free resolution of Fy/(M :p, Q). We call *F, the
x-transform of F, with respect to xq,xs,...,z,. If Fj = R, then M is an ideal of R, so
M :p, @ is an ideal quotient.

We give a little more detailed explanation of this operation. We use the Koszul complex
K, = Ko(x1,29,...,7,). We denote the boundary map of K, by d,. Let ej,es,...,¢€,
be an R-free basis of K such that 0;(e;) = z; for i = 1,2,...,n. Moreover, we use the

following notation about Kj,:
e N:={1,2,...,n}.

e N,:={I CN|fl=p}forl<p<nand Ny:={0}. Here, if S is a finite set, § .5

denotes the number of elements of S.
o If 1 <p<mnandIl ={{i,is,...,5} €Ny, where 1 <i; <iy <--- <i, <n, we set
6]:6i1/\€i2/\"'/\6ip EKp.

In particular, for i = 1,2,...,n, & = en\(;3 € K,—1. Furthermore, ey denotes the

identity element 1p of R = K.
e lf1<p<n,IeN,andiec N, we set

s(i, I) =t{j e Ij <i}.



We define $0 = 0, so s(,1) = 0 if i < minI.

Then, for any p=0,1,...,n, {e;}ren, is an R-free basis of K, and

Oper) =Y (=101 2 ep gy,

iel
We explain subsequently. Let us fix an R-free basis of F},, say {vy}ren. We set A=AxN

and take a family {v(,\i)}(/\ ek of elements in F),_; so that

Pn(v2) = DT vy

ieN
for all A € A. This is possible as Im ¢, C QF,,_1. The next theorem is the essential part
of the process to get *F,.

Theorem. There exists a chain map oo : F, ®p Kg — F,

0 — F.opK, ™ P QpK, | — -+ — F,op K, 228 £ o5 K,

Lo Lo Lo |

0 — F, R Foy — - — R BN F,

satisfying the following four conditions.
(1) o5 (Impy) = Im(F, @ &).
(2) Imog+Imyy = M 5, Q.
(3) n_1(va® &) = (—1)"H 1wy for all (A7) € A.
(4) op(va®en) = (=1)"-wvy for all X € A.

In the rest, o, : F,, ®r K¢ —> F, is the chain map constructed in the above theorem.

We take the mapping cone of o,. We notice that it gives an R-free resolution of length



n+1of Fy/(M :g, Q), that is,

Fn Or Kn—l Fn Or Kn—2 , Fn Or Kn—3

0 —Ferk,™ o % o 2 g
Fn Fn—l Fn—2
. Fo @r K4 F,®@pr K1 | F,®r Ky |
iy ) —ee— e B BE
Fo3 Fy Fy

is acyclic and Im*p; = M :p, (), where

1/] o Fn®8n ¢ _ Fn®8n71 0 / o Fn®an72 0
mH (_1)77, *On ’ " (_1)71—1 *On—-1 ©¥n ) Pl = (_1)71—2 *O0p—2 ¥n-1 ’
. ( F, ® 0,1 0
N

_1)19*1 .o

> for2§p§n—2and*g01:(ao 901).
p—1 Pp

Here, since o, : F,, ®g K,, — F,, is an isomorphism by (4) of the above theorem, 1,1

splits, and therefore, removing F,, ®r K, and F,, from

" Fn ®R Kn—l Fn ®R Kn—2

Fn anl

we get the acyclic complex

"pnfl * *901'1,72 *

! * *
0—'F, 25 'F, | 3 F, g 2, o —— o — Fy B ISR = I,

where
Fn Or Kn—Z Fn QR Kp—l
F,=F,rKn_1, 'Fo_1 = D , F, = a3} for1<p<n-—2
F,_ F,

/ _ Fn & 0n—1
= ((—m—l o)

This complex is an R-free resolution of length n of Fy/(M :g, @), but Im‘p, C m-'F,
may not hold. Thus, it is necessary to remove non-minimal components from 'F,, and
'F,—1. Going through this operation, we get free R-modules *F,, and *F,,_; such that

*on—1 *

O—)*Fnﬂ)*n_1—> n_2—>"'—>*F1£>*F0:FO



is acyclic and Im *p,, € m-*F,,_{, where %p,, and *p,,_; are the restrictions of ‘p,, and ‘p,,_1,
respectively.

Here, we give a supplementary explanation about the length of *F,. If {U(A,i)}o\,i) cx 18
a subset of a certain R-free basis of F,_1, then ‘p, splits. Therefore, in this case, we can

remove F,, ®r K, itself and an unnecessary component of F, _; from

Fn®RKn72,
0— F, @p K,_1 = & Oy — e
Fn—l

and we get the free R-module *F},_; such that

*pn—1 *

0—*F, | 25, 5 — - — *F) 25 *Fy = F,

is acyclic, where *p,_; is the restriction of ‘p,,_;. This complex is an R-free resolution of
length n — 1 of Fy/(M :g, Q), and so we have depthy Fy/(M :p, Q) > 0. This condition
is very important for analyzing symbolic powers of ideals through ideal quotients.

If R is regular, for any finitely generated free R-module Fjy and any R-submodule M of
Fy, we can take m and the minimal R-free resolution of Fy/M as @) and F,, respectively,
and then *F, gives an R-free resolution of Fy/(M :g, m). Here, we notice that we can
take the x-transform of *F, again because Im*p, C m - *F,,_;, and an R-free resolution
of Fy/(M :p, m?) is induced. Repeating this procedure, we get an R-free resolution of
Fo/(M :p, m*) for any positive integer k, and it contains complete information about the
0-th local cohomology module of Fy/M with respect to m. This method is very useful for
computing the symbolic powers of the ideal generated by the maximal minors of a certain

matrix. In fact, in [8], the symbolic powers of the case of a 2 x 3 matrix are computed



using this method.

In the first half of this paper, we describe substance of the generalized *-transform
and its proof in detail.

In the second half, we compute the saturation of the powers of a certain determi-
nantal ideal, applying the theory of x-transform. We assume that (R, m) is an (m + 1)-
dimensional Cohen-Macaulay local ring, where 2 < m € Z. Let x1,x9,..., %, Tmi1 be
an sop for R, and let {a; ;} be a family of positive integers, where i = 1,2,...,m and
17=12,...,m,m+ 1. We set

Xi,j

Tiiiq iti+7<m+2

ai,j =
T ey it j>m42
fori=1,2,...,mand j =1,2,...,m,m+ 1, and consider the matrix A = (a;;) of size

m x (m+1). If a;; =1 for all ¢ and j, the matrix A looks

1 Lo T3 0 Ty Tyl
) XT3 Ty - Tmtl T1
T3 Ty Ty - i i)
Tm xm+1 T e Tm—2 LTm—1

In this situation, we denote the ideal generated by the maximal minors of A by I, and

study the saturation of the m-th power of I.
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Chapter 1

The x-transforms of acyclic
complexes

1.1 Introduction to Chapter 1

Let I and J be ideals of a commutative ring R. The ideal quotient
I'rJ={a€R|aJ CI}

is an important notion in the theory of commutative algebra. For example, if (R, m) is a
Noetherian local ring and I is an m-primary ideal of R, the Gorenstein property of R/I is
characterized by the socle Soc(R/I) = (I :g m)/I. The *-transform of an acyclic complex
of length 3 is introduced in [8] for the purpose of composing an R-free resolution of the
ideal quotient of a certain ideal I whose R-free resolution is given. Here, let us recall its
outline.

Let (R, m) be a 3-dimensional Cohen-Macaulay local ring and ) a parameter ideal of

R. Suppose that an acyclic complex

F, : 0—F 2352 2S5 F,=R

9



10 CHAPTER 1.
of finitely generated free R-modules such that Im @3 C QF; is given. Then, taking the

x-transform of F,, we get an acyclic complex

Fy oo 0 — Ty R, AR, ISR =R

of finitely generated free R-modules such that Im*p; = Im ¢y :g @ and Im w3 C m - *F5.
If R is regular, for any ideal I of R, we can take m and the minimal R-free resolution
of R/I as @ and F,, respectively, and then *F, gives an R-free resolution of R/(I :gr m).
Here, let us notice that we can take the x-transform of *F, again since Im*p3 C m - *F5,
and an R-free resolution of R/(I :x m?) is induced. Repeating this procedure, we get
an R-free resolution of R/(I :p m*) for any k > 0, and it contains complete information
about the 0-th local cohomology module of R/I with respect to m. This method is very
useful for computing the symbolic powers of the ideal generated by the maximal minors
of a certain 2 x 3 matrix as is described in [8].

Thus, in [8], the theory of x-transform is developed for only acyclic complexes of
length 3 on a 3-dimensional Cohen-Macaulay local ring. The purpose of this chapter is
to generalize the machinery of x-transform so that we can apply it to acyclic complexes
of length n as follows. Let (R, m) be an n-dimensional Cohen-Macaulay local ring, where

2 <n € Z,and let Q be a parameter ideal of R. Suppose that an acyclic complex

0—F, 2% F_ | — - — 5 E

of finitely generated free R-modules such that Im ¢, C QF,,_; is given. We aim to give a
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concrete procedure to get an acyclic complex
0—>*Fnﬂ* n,1—>“'—>*F1ﬂ>*F0:FO

of finitely generated free R-modules such that Im %p; = Im ¢y 15, @ and Im ", C m-*F,,_;.
Let us notice that we don’t need any restriction on the rank of Fj, so there may be some
application to the study of M :r ), where F' is a finitely generated free R-module and
M is an R-submodule of F'. Moreover, as the generalized x-transform works for acyclic
complexes of length n > 2, we can apply it to the study of some ideal quotients in n-
dimensional Cohen-Macaulay local rings. In fact, in the subsequent paper [9], setting [

to be the m-th power of the ideal generated by the maximal minors of the matrix

(0% (6% (6% « «
x11,1 $21’2 x31,3 . xml,m xml-ﬂ+1
o1 2.2 2.3 a2 m a2 m41
Lo T3 Ly T
as Qas,2 Qas,3 a3z as
rt oy Ty x " py
Qm,1 Qam,2 am,3 Am,m Om om+1
Tm Tmt1 L1 T Ty m—1
and setting @ = (1, %2, 23, ..., Tm, Tme1)R, where 1,29, 23, ..., Ty, Tmeq 1S an sop for

an (m + 1)-dimensional Cohen-Macaulay local ring R and {a;  }1<i<m,1<j<m+1 1S a family
of positive integers, the ideal quotient I :g () is computed, and it is proved that I :g Q)
coincides with the saturation of I, that is, the depth of R/(I :g Q) is positive.
Throughout this chapter, R is a commutative ring, and in Section 1.3, we assume that
R is an n-dimensional Cohen-Macaulay local ring. For R-modules G and H, the elements

of G & H are denoted by column vectors;

(z) (g€ G, heH).
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In particular, the elements of the forms

(6) ()

are denoted by [¢g] and (h), respectively. Moreover, if V' is a subset of GG, then the family
{[v]}vev is denoted by [V]. Similarly (W) is defined for a subset W of H. If T is a subset
of an R-module, we denote by R-T the R-submodule generated by 7. If S is a finite set,

1.5 denotes the number of elements of S.
1.2 Preliminaries for Chapter 1
In this section, we summarize preliminary results. Let R be a commutative ring.

Lemma 1.2.1. Let G4 and F, be acyclic complexes, whose boundary maps are denoted
by O, and ., respectively. Suppose that a chain map o, : Go¢ —> F, is given and

oy (Im ) = Im &y holds. Then the mapping cone Cone(a,) :

Gp_l Gp—Q Gl » GO ¥
= B e = — B S EF—0
F, F, by £y

15 acyclic, where

0, _ 0
1/1p - ((_1)1’511.0]3—1 90p> fOT CL” p Z 2 a’nd wl = (UO (‘01) ’

Hence, if Go and F, are complexes of finitely generated free R-modules, then Cone(o,)

gives an R-free resolution of Fy/(Im 1 + Imoy).

Proof. See [8, 2.1]. O
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Lemma 1.2.2. Let 2 < n € Z and Coe be a double complex such that C,, = 0 unless
0 < p,qg <n Foranypq € Z, we denote the boundary maps Cp, — Cp_14 and

Cpq — Cpq1 by d,,, and dy ,, respectively. We assume that Cpe and Coey are acyclic for

0 <p,qg<n. Let T, be the total complex of Cee and let do be its boundary map, that is,

ifE€Cpy CT, (p+q=r), then
dr(f) = (_1)p ’ dfé,q(f) + d;,q(f) S Op,qfl S Cpfl,q CTr.
Then the following assertions hold.

(1) Suppose that &, € Cppo and &1 € Cp11 such that d;, ((§,) = (=1)" - dy;_; 1(En1)

are given. Then there exist elements &, € Cp—p for allp =0,1,...,n—2 such that

5n+§n—1+€n—2+"'+50 EI<erdn

- Tn = C’n,O S Cnfl,l S Cn72,2 b---D CO,n-

(2) Suppose that &, +&,—1+- - +&+E& € Kerd, C T, = Crg®Cr11®- - - ®C1 ;1D Cop

and § € Imd ,,. Then
gn +§n—1 + - +£1 +§0 c ImdnH.
In particular, we have &, € Imdy, ;.

Proof. (1) It is enough to show that if 1 < p < n—1 and two elements &,.1 € Cpi1n—p-1,

&p € Cpn—p such that

d;—&-l,n—p—l(gp-i-l) = <_1)p+1 'dg,n—p(gp)
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are given, then we can take §,_1 € Cp_1 ,_p41 SO that

pn p(gp) = (_ ) dg 1,n— p+1(5p—1)'

In fact, if the assumption of the claim stated above is satisfied, we have

dg 1,n— p( p,N— p(fp)) _d;on —p— 1(dgn p(fp))
= d;n —p— 1(( 1);0-‘1-1 ’ d;)+1,n—p—1(€p+l))

=0,

and so

(&) € Kerd, ,, ,=1Imd)

pn D -p p—1,n—p+1>

which means the existence of the required element §,_;.

(2) We set 1y = 0. By the assumption, there exists 1, € Cy,, such that

50 = dll,n<771) = dl n(nl) + dO n+1(770)

Here we assume 0 < p < n —1 and two elements 1, € Cp, ,—pi+1, Mp+1 € Cpt1,n—p such that

ép = d;+1,n—p(77p+l) + ( ) d;)/n p+1(77p)

are fixed. We would like to find 7,12 € Cpi2n—p—1 such that

€P+1 = d;)—l—Z,n—p—l(anrZ) + ( )erl dg+1 n— p(Uerl)-

Now d),y 1, 1 (&) = (=1)PFH-dy (&) holds, since &, + &1 + -+ + & + & € Kerd,.



1.2.

Hence, we have

dp1np1(§pr1 + (=1)7 - dpiy (M)
=dpiypp1(Epr1) + (0P dy 1 (A (pe1)
= (=1 dy (&) + (=17 dy (o (Tp41))
= (=P dy (& — dyyy ey (1p11)

= (=1 dy (1) dy (7))

=0,
and it follows that
Spir + (1) -dyy, (pi) €Kerdyyy oy =Tmd, b, .
Thus we see the existence of the required element 7.

Lemma 1.2.3. Suppose that

0—F 256 H- "L

1s an exact sequence of R-modules. Then the following assertions hold.

(1) If there exists a homomorphism ¢ : G — F of R-modules such that ¢ o p =

then
% K 4
0—"G—H—L

1s exact, where "G = Ker ¢ and *) is the restriction of ¥ to 'G.

15

idp,
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(2) IfF=F&'F, G=Ga&G, p(F)="G and o(*F) C 'G, then
0—F 565 H-SL
1s exact, where *p and ") are the restrictions of ¢ and ¥ to *F and "G, respectively.

Proof. See [8, 2.3]. O

1.3 x*-transform

Let 2 < n € Z and let R be an n-dimensional Cohen-Macaulay local ring with the maximal

ideal m. Suppose that an acyclic complex
0—F, ™ F,_, —. - —F 2 F

of finitely generated free R-modules such that Imy, C QF,_; is given, where () =
(1,22, ...,x,)R is a parameter ideal of R. We put M = Im ¢y, which is an R-submodule

of Fy. In this section, transforming F, suitably, we aim to construct an acyclic complex
0—>*Fnﬂ>* n_1—>"'—>*F1ﬂ)*F0:F0

of finitely generated free R-modules such that Im*p,, C m-*F,_; and Im*p = M 5, Q.
Let us call *F, the *-transform of F, with respect to z1,xo, ..., z,.

In this operation, we use the Koszul complex K, = K,(x1,z9,...,z,). We denote
the boundary map of K, by 0,. Let ej,es,...,e, be an R-free basis of K; such that

O1(e;) = x; for all i = 1,2,...,n. Moreover, we use the following notation:

e N:={1,2,...,n}.
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o N, ={I CN|4]=p}forl<p<nandN,:={0}.
o If 1 <p<mnandI={i,is,...,ip} €Ny, where 1 < i3 <ip <--- <1, <n, we set
er =ey Ney N Ney, € K.

In particular, for 1 < i < n, & = en\(;3. Furthermore, ey denotes the identity

element 1 of R = K.
e lf1<p<n,IeN,andiec N, we set
s(i, I) =t{j e I'lj <i}.
We define 0 = 0, so s(,1) = 0 if i < min [.

Then, for any p = 0,1,...,n, {er}ren, is an R-free basis of K, and

Opler) = Y (=100 2 ep gy,

el

Theorem 1.3.1. (M :5, Q)/M = F,/QF,.

Proof. We put Ly = Fy/M. Moreover, for 1 <p <n —1, we put L, =Imyp, C F,_; and
consider the exact sequence
0—L,—F, 1 23 L, 1 —0,

where g : Fy —> Ly is the canonical surjection. Because

Ext? ' (R/Q, F, 1) = Ext’,(R/Q, F,_1) = 0,
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we get

Extly(R/Q, Ly) = Extly ' (R/Q, Ly-1).

Therefore Extly '(R/Q, L,_1) = Homg(R/Q, Fy/M) = (M :, Q)/M. Now, we see that

Ext?(R/Q, F,) = Homgp(R/Q, F,/QF,) = F,/QF,

and

Exth(R/Q, Fr—1) = Hompg(R/Q, Fr—1/QF,—1) = F,_1/QF, 1
hold, because x1,xs,...,x, is an R-regular sequence. Furthermore, we look at the exact
sequence

0—F, 2 Fp 3L —0.

Then, we get the following commutative diagram

0 — Bxt’ Y(R/Q, Lu_1) — Exth(R/Q,F,) < Extn(R/Q, Fo_t) (ex)

E E

Fn/QFn ﬁ> Fn—l/QFn—b

where ,, and @,, denote the maps induced from ¢,,. Let us notice @, = 0 as Imp, C
QF,_1. Hence

Ext Y (R/Q, Ly_1) = Fo/QF,,

and so the required isomorphism follows. O]

Let us fix an R-free basis of F,,, say {vy}rea. We set A = A x N and take a family

{vovi}oiyer of elements in F,_; so that

Pn(v2) = D @i v

1€EN
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for all A € A. This is possible as Im ¢,, C QF,,_1. The next result is the essential part of

the process to get *Fy.

Theorem 1.3.2. There exists a chain map oo : F,, ®p K¢ —> F,

0 — F,opK, ™% F,@ogKyy — -+ — Foop K, ™28 F, 0 K,
[ o [ [
0 — F, RN Foy — - — K 2 F,
satisfying the following conditions.
(1) oy (Im ;) = Im(F, ® ).
(2) Imog +Imyy =M 5, Q.
(3) Tur(va®&) = (—1)™F~L vy for all (A7) € A.
(4) on(vy®@en) = (=1)"-wvy for all A € A.
Proof. Let us notice that, for any p = 0,1,...,n, {vx ® e} (r1eaxn, is an R-free basis of

F,®rK,, so 0, : I}, g K, — F, can be defined by choosing suitable element w, 1) € F,
that corresponds to vy ® er for (A, I) € A x N,. We set wnn) = (—1)" - vy for A € A and

won(iy) = (1" wp for (A 0) € A. Then

Qon<w(/\,N)) = (=1)" - pn(vn)
= (=" Zil?z " UNi)
iEN

= > N wo gy,
€N
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Moreover, we can take families {wx 1) }x,neaxn, of elements in F), for any p = 0,1,...,n—
2 so that
ep(wonny) = > (=10 2w gy (1)
icl

forallp=1,2,...,nand (A, I) € AXN,. If thisis true, an R-linear map o, : F,,®@prK, —
F, is defined by setting o,(vy ® 1) = winp for (A, 1) € A x N, and o, : F}, ®p Kg — F,

becomes a chain map satisfying (3) and (4).

In order to see the existence of {w )}, neax N, let us consider the double complex

Fo ®RK0~

| i

. — Fork, "5 FE_ @rK, — -

le®8q le—l®8q

K,
s B@r K T F @p Ky — -

We can take it as C,e of 1.2.2. Let T, be the total complex and d, be its boundary map.

In particular, we have
Tn = (Fn ®R K()) EB (Fn_1 ®R Kl) @ e 69 (Fl ®R Kn—l) 69 (FO ®R Kn)

For I C N, we define
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For a while, we fix A € A and set

: (—1)t(N) “woN) ® eg € F, Qg Ko,

En1(A) = (1) = - Z(—l)t(N\{i}) “wo N\ R € € Fromy Qp K.

i€N
It is easy to see that

£n()\) = Ui X (&)

since t(N) = (n — 1)n/2 and n? +n =0 (mod 2). Moreover, we have

GtV = (D)"Y vpy ®e

1EN

since t(N \ {i}) = (n—1)n/2 — (i — 1). Then

(0 @ Ko)(§n(A)) = @n(va) © €9

= Q@) @e

1EN
= Z V(i) @ T
iEN
= (Fam1 ® ) (Yo @ )
1EN

= (=" (Fim1 ® 01) (=1 (V).

Hence, by (1) of 1.2.2 there exist elements {,(\) € F, ® K,,_, for all p=0,1,...

such that

En(N) + &1 (N) + Eua(N) + -+ -+ &(N) € Kerd, C Ty,

which means

(p ® Knp)(§p(AN) = (=1)7 - (Fpo1 ® Onpi1)(€p-1(A))

21
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for any p = 1,2,...,n. Let us denote N \ I by I° for I € N. Because {er}ren, is an

R-free basis of K,,_,, it is possible to write

p(p+1)
&N =(-1) = - Z (_1)t(1) “W(NT) & ere

IEN,

for any p=0,1,...,n— 2 (Notice that &,(\) and &,_1(\) are defined so that they satisfy

the same equalities), where w, 1y € F},. Then we have

(0p ® Kup) (&(N) = (=1)"5 - 37 (1D - g, (win ) © ere.

IeN,

On the other hand,

(_1)p ’ (Fp—l ® an—p-lrl)(fp—l()‘))

= (-1 (DY (- wosy © (Y (=107 i - ey}

JENp_1 ieJe

Here we notice that if I € N,, J € Np_; and i € N, then
=J\{i} = I=JU{i}.

Hence we get

(_1)p ’ (Fp—l ® an—p+1)(§p—1(>‘>)

(+1 i c i
)7E D AQ () IEIRCIID  awi ) @ e}

IeN, el

For I € N, and ¢ € I, we have

tIA\{a}) = t(1) — (i = 1),

s(i, I) + s(i, I°U {i}) = s(i, N) =i — 1,
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and so

t(I\{i}) +s(i, I°U{i}) = t(I) — s(i, I)

=t(I)+s(i,I) (mod 2).

Therefore we see that the required equality (f) holds for all I € N,,.

Let us prove (1). We have to show o (Im ¢;) C Im(F, ®0;). Take any 7, € F, ®x K

such that og(n,) € Im ;. As {&,(A)}ren is an R-free basis of F,, g Ky, we can express

T = Zak'gn()‘) = ZGA : (UA®6®)>

AEA AEA

where ay € R for A € A. Then we have

Za,\ SWO) = Za,\ ~op(vA ® €g) = oo(n,) € Im ;.
AEA AEA

Now we set

M = Z(I)\ &p(A) € F, ®r Knyp
AEA

for 0 <p<n—1. Then

Mo+ o1+ 4= ax- (G +&oa(N) +- + &) + &)
AeA

€ Kerd,, CT,.
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Because

m=Y_ ax &)

XA
=Y ax (wop ®ex)
AeA
= (Z ax - wog) ® en
AeA

€ Im(p ® K,,),

we get 0, € Im(F,, ® 01) by (2) of 1.2.2.

Finally we prove (2). Let us consider the following commutative diagram

Foop K ™2 F,o9r Ky — F,/JQF, — 0 (ex)
io'l \LUO lﬁ

F £ F, — F/M — 0 (ex),

where 7, is the map induced from o. For all A € A and i € N, we have

wi - woe = Pr{wogn) € M,
which means w9 € M :p, Q. Hence Imoy € M :p, @, and so Imay C (M :p Q)/M.
On the other hand, as oy *(Im ¢;) = Im(F, ® 0;), we see that 7 is injective. Therefore
we get Imag = (M g, Q)/M since (M :p, Q)/M = F,/QF, by 1.3.1 and F,,/QF, has a

finite length. Thus the assertion (2) follows and the proof is complete.

In the rest, o, : F, @z K¢ —> F, is the chain map constructed in 1.3.2. Then, by

1.2.1 the mapping cone Cone(o,) gives an R-free resolution of Fy/(M :g, @), that is,

Fn Or anl Fn Or Kn72 , Fn Or an?)

0—F,erK, "™ o % o 23 g
Fn Fn—l Fn—2
. F, ®r Ky F,®@r K1 _  F,®r Ky |
o @ —— e B o BF

Fn_g F2 Fl
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is acyclic and Im*p; = M :p, (), where

w _(Fn®8n> w _( Fn®an—1 0) / _( Fn®an—2 0 )
(a (_1)71 *On 7 " (_1)n—1 *On—-1 ©¥n ) Pn-l (_1)n—2 *Op—2 $n-1 ’
* _ ( Fn ® apfl 0
p =

<p<n-— o =
(—1)-1. . 90p> for 2 < p <n-—2and (O’O 901) )

Because o, : F,, @ K,, — F, is an isomorphism by (4) of 1.3.2, we can define
Fn ®R Kn—l
o= (0 (-1)"-0,%): @ — F, @p K,.
F,
Then ¢ o Y41 = idp, 0.k, and Ker¢ = F,, ® K,,_;. Hence, by (1) of 1.2.3, we get the

acyclic complex

p / * . X
n Pn— Pn—
O—)Tngln_l—;*n_g —>2*n_3—>"'—>*F2ﬁ*F1£>*F0:FQ,

where
Fn ®R Kn—2 Fn ®R Kp—l
F,=F,r Kn_1, 'Fy_1 = &) , F, = D for1<p<n-2
F,_ F,

/ _ Fn ®8n—1

Although Im‘,, may not be contained in m-'F,,_;, removing non-minimal components

from 'F,, and 'F,,_1, we get free R-modules *F},, and *F},_; such that

*pn—1 *

O—)*Fnﬂ*n_lﬁ n_2—>"'—>*F1ﬂ>*F0:FO

is acyclic and Im *p,, € m-*F,,_;, where *p,, and *p,_; are the restrictions of ‘p,, and ‘p,, 1,
respectively. In the rest of this section, we describe a concrete procedure to get *F,, and

*F,,_1. For that purpose, we use the following notation. As described in Introduction, for



26 CHAPTER 1.

any { € I, Qr K, and n € F,,_4,

€] == (g) € 'F,_1 and (n) = <2) €'F, 1.

In particular, for any (A, 1) € A X N,,_o, we denote [v) ® e;] by [, I]. Moreover, for a
subset U of F,,_1, (U) := {{u) }uev-

Now, let us choose a subset ‘A of A and a subset U of F,,_1 so that

{vouytoea UU

is an R-free basis of F,_;. We would like to choose A as big as possible. The following

almost obvious fact is useful to find ‘A and U.

Lemma 1.3.3. Let V' be an R-free basis of F,,_1. If a subset’A ofJN\ and a subset U of V

satisfy
(i) A +8U <8V, and
(i) VS R-{vontowen + R-U+mF, 1,
then {vina tovnen UU is an R-free basis of F,, ;.
Let us notice that
{IM I vneaxyv, e U{(vpa) Youen U (U)

is an R-free basis of 'F,,_;. We define *F,,_; to be the direct summand of 'F},_; generated
by

N I aoneaxa, , U U).
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Let *p,_1 be the restriction of v, 1 to *F,,_;.
Theorem 1.3.4. If we can take A itself as'A, then
00— Fpy 25 Fy gy — o —Fy 25 By = F,
is acyclic. Hence we have depthy Fy/(M :p, Q) > 0.
Proof. It 'A = K, there exists a homomorphism ¢ : 'F,,_; — 'F}, such that

o([A\I]) =0 for any (A, 1) € A x N,_o,

P((vai)) = (=1) vy ® ¢ for any (N, i) € A,

¢((u)) =0 for any u € U.

Then ¢ o o, = idg, and Ker¢ = *F,_;. Hence, by (1) of 1.2.3 we get the required

assertion. O

In the rest of this section, we assume A C A and put *A = A \’A. Then, for any
(u,7) € *A, it is possible to write

_ (13) J
Vi) = D At v + 08
(M)A =

where agf\‘f)) b € R. Here, if ‘A is big enough, we can choose every b*” from m. In
fact, if b7 ¢ m for some u € U, then we can replace A and U by A U {(y,7)} and

U \ {u}, respectively. Furthermore, because of a practical reason, let us allow that some

terms of vy ;) for (A7) € *A with non-unit coefficients appear in the right hand side, that
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is, for any (u,j) € *A, we write

( ;
Vi) = D a('if) v + b

(A\i)eA uel

where
R if (A1) €A,
E‘; f)) € and b)) € m.
m if (N i) €A
Using this expression, for any (u,j) € *A, the following element in 'F,, can be defined.

Vg = (1 v @+ Y ()T alll v @eé
(A\i)eA

Lemma 1.3.5. For any (u,7) € *A, we have

Pult) = (1Y - [0u ® 00 (@) + Y (1) 0l - [oa @ 0aa ()] + Db - fu

(Ai)eh uel

As a consequence, we have p, (v, j)) € m-*F,_y for any (u,j) € *A.

Proof. By the definition of ‘p,, for any (u,j) € *A, we have

On (V) = [(Fr @ 0n1) ()] + (1" - 001 (i)

Because

(Fn & 8n—1)(*v(u,j)) = <_1)] e X an—l(éj) + Z (_1)i_1 : )\1)) U\ ® an 1(62)
(\i)eA

and

Un_1<*1)(u7j)) = (—1)J On—-1 Uu ®ej + Z /\Z')) Op— 1(1))\ & e,)

_ (_1)n—1 V(s Z ,UJ) V)
)

= (1) = > ald v

(\i)eA

).
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we get the required equality. O

Let *F,, be the R-submodule of 'F,, generated by {*v(,;)}(ujjesn and let %, be the

restriction of ‘o, to *F,,. By 1.3.5 we have Im *p,, C *F},,_;. Thus we get a complex
0—>*Fn&)* n_1—>"'—>*F1£>*F0:F0.
This is the complex we desire. In fact, the following result holds.

Theorem 1.3.6. (*F,, "p,) is an acyclic complex of finitely generated free R-modules with

the following properties.

(1) Im*%p; = M :p, Q and Im*p, Cm-*F, ;.

(2) {uj) }ujyem is an R-free basis of *F,.

(3) {IN I} aneaxn,_, U(U) is an R-free basis of *F,,_1.
Proof. First, let us notice that {v) ® éi}(/\,i) ci is an R-free basis of 'F,, and

U ®€j € Ry + R-{oa®é}oen +m-F,
for any (u,j) € *A. Hence, by Nakayama’s lemma it follows that 'F,, is generated by
{va ® €} nipen U {00 Huj)ens

which must be an R-free basis since rankp’F, = $A = #A + £*A. Let "F, be the R-

submodule of 'F;, generated by {vy ® €;}(rien. Then 'F, ="F, @ *F,.
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Next, let us recall that

{IMN I  ouneas v, U {{vo) Fovien U (U)

is an R-free basis of 'F,,_;. Because
on(va ® &) =[x @ 0y 1(&)] + (=1)" - (V)

we see that

{1 ouneasn, o U {on(va ® ) }aipen U (U)

is also an R-free basis of 'F,_. Let "F,_; = R - {p,(vx ® &)}nien. Then F,_y =
"Fo1 @ Fo1.

It is obvious that ‘v, ("F,) = "F,_1. Moreover, by 1.3.5 we get ‘v,(*F,) C *F,_1.
Therefore, by (2) of 1.2.3, it follows that *F, is acyclic. We have already seen (3) and
the first assertion of (1). The second assertion of (1) follows from 1.3.5. Moreover, the

assertion (2) is now obvious. O

1.4 Computing symbolic powers

Let z,y, z be an sop for R and [ an ideal of R generated by the maximal minors of the
matrix

o (5 LT ).
where a, 3,7,d/, 8,7 are positive integers. As is well known, R/I is a Cohen-Macaulay

ring with dim R/I = 1. In this section, we give a minimal free resolution of I" for any
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n > 0, and consider its #-transform in order to compute the symbolic power 1™ . We

put

/ / / / / /
a=2 — ¥y b=t =y

Then, I = (a, b, c) R and we have the next result (See [17] for the definition of d-sequences).
Lemma 1.4.1. The following assertions hold.

(1) a4+ 4°b+27c=0 and y"a+ 27b+2¥c=0.

(2) Letp € Assg R/I. Then IR, is generated by any two elements of a,b, c.

(3) Any two elements of a,b,c form an ssop for R.

(4) a,b,c is an unconditioned d-sequence.

Proof. (1) These equalities can be checked directly.

(2) Let us prove IR, = (a,b)R,. lf x € p, theny,z € \/(a,c,x)R Cp,andsop =m,

which contradicts to the Cohen-Macaulayness of R/I. Hence x ¢ p. Then

=" a+2b)/2° € (a.D)R,,

which means IR, = (a,b)R, .

(3) For example, as x, z € \/(a,b,y)R, it follows that a,b is an ssop for R.

(4) Let us prove that a,b,c is a d-sequence. As a,b is a regular sequence by (3), it is
enough to show (a,b)R :g ¢ = (a,b)R :g ¢. We obviously have (a,b)R :gr ¢ D (a,b)R :r

c. Take any q € Assg R/(a,b)R :rc. As R/(a,b)R :gp ¢ — R/(a,b)R, we have htpq = 2.
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If c € q, then g € Ming R/I, and so IRy = (a,b)Ry by (2), which means
(a,b)Ry :r, ¢ = (a,b)Rq i, ¢ = Ry.

If ¢ ¢ q, we have

(a,b)Ry i, ¢ = (a,b)Ry :r, ¢ = (a,b)R,.

Therefore we get the required equality. O

We take an indeterminate ¢ and consider the Rees algebra R[[t]. Moreover, we take
three indeterminates A, B, C' and put S = R[A, B, C]. We regard S as a Z-graded ring by
setting deg A = deg B = degC = 1. Let 7w : S — R|[It] be the graded homomorphism
of R-algebras such that 7(A) = at, 7(B) = bt and 7(C) = ct. By (4) of 1.4.1 it follows

that Ker 7 is generated by linear forms (cf. [16, Theorem 3.1]). On the other hand,
0 R g9 p LRI 50
is a minimal free resolution of R/I. Hence Ker 7 is generated by
fi=2A+y’B+2C and g:=y"A+2"B+2¥C.
Thus we get S/(f,9)S = R[It]. Then, as f, g is a regular sequence of S,

0— 5(-2) Y s(-1) @ 5(-1) Y9 5 = R — 0

is a graded S-free resolution of R[It]. Now we take its homogeneous part of degree n,

and get the next result.
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Theorem 1.4.2. For anyn > 2,

—g
00— S, 4 () S @S, LY R

is acyclic and it is a minimal free resolution of I"™ , where Sy (d € Z) is the R-submodule
of S consisting of homogeneous elements of degree d and € is the R-linear map defined by

substituting a, b, ¢ for A, B,C', respectively.

Let us denote the complex in 1.4.2 by (F}, pl) | that is, we set

F?}:Sn—Qangsn—l@sn—l7F11:Sn’FUI:R’
py=(F) pi=(fg) and ¢} =c.

Then F! is an acyclic complex of finitely generated free R-modules and Im ¢ = I"™. The
number ”17 of F! means that it is the first acyclic complex we need for computing 1™ .
Our strategy is as follows. Taking the x-transform of F} with respect to suitable powers
of x,y, z, we get *F} | which is denoted by F?2. If its length is still 3, we again take some
x-transform of F? and get F3. By repeating this operation successively, we eventually
get an acyclic complex F¥ of length 2. Then the family { F¥ };<;<) of acyclic complexes

has complete information about I .

1"

Let Oé” = miH{O[,O/}, 5// = min{ﬂaﬁl}v '7// — min{ry/y/} and Q = (xa 3 y’B”> Z'Y//)R.
Because f and g are elements of @, we have Im 3 C QF, , and so by 1.3.1 we get the

following.
Theorem 1.4.3. (I" ;5 Q)/I" = (R/Q)®(3) .

Now we are going to take the s-transform of F! with respect to 2", y?", 27" . At first,

we have to fix A!, which is an R-free basis of Fy . For any 0 < d € Z, let us denote by



34 CHAPTER 1.
m¢ p o the set {A’BIC* | 0 <i,j,k € Z and i+ j + k = d}, which is an R-free basis of

Sy . We take mf\_gc as Al. Then, for any M € mZ_BQC , we have to write

@é(M) =z 'U(lM,1) + ?/’B 'U(lM,Z) + 27 ‘U(lM,s) )

where U(IM ) € Fy for i = 1,2,3. Asis described at the end of Introduction, for h € S,,_1,

N2

let us denote the elements

h
(0) and (2) € le = Sn,1 D Sn,1

by [h] and (h) , respectively. Then, for any M € m’y 7 ., we have

—gM
1 M) = g
aon =)
_ (—y"AM — 2"BM — 2*'CM
-\ 2“AM +yPBM + 27CM

= —y? . [AM] — 2. [BM] — 2 - [CM]
+ 2% (AM) + y°-(BM) + 27 -(CM)

=z 'U(lM,1) +y° ‘U(lM,z) + 27 'U(lM,S) ;

where
Vory = 27 (AM) — ¥ [CM],
vz = Y7 (BM) — 7 [AM],

U(1M73) = z7_7//~<CM) — 27/_7//~[BM] )

We set Al = Al x {1,2,3} and we have to choose its subset ‘Al as big as possible so

that {v(lM i)}(M,i)G’Al is a part of an R-free basis of F)} . For that purpose, we need to fix
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a canonical R-free basis of Fy . For a subset H of S,,_;, we denote the families {[h]}rer
and {(h)}rem by [H] and (H) , respectively. Let us notice that [m’j{éo] U <m21,_1§,0> is an
R-free basis of F) .

Setting n = 2, we get the next result.

Theorem 1.4.4. (cf. [12]) 1@ =1%?:3Q and I?/I* = R/Q) .

Proof. By replacing rows and columns of ® and by replacing z,y, z if necessary, we may

assume that one of the following conditions are satisfied;

Ha<d,B<p,v<y; (iJa>ad, <8, v<H.

Let n=2. Then A' = {1} . In the case (i), we have o’ = a, 8" = 3,7"” = v and

Then, as [m} p o]U(m} 5 o) is an R-free basis, by 1.3.3 we see that {v(, ;) }iz123U[m} 5 o] is
an R-free basis of I} . On the other hand, in the case (ii), we have o’ = o/, 8" = 3,7" = v

and

Then, {0(1171.)}2-:17273 U {(A),[A], [B]} is an R-free basis of F, . In either case, we can take
Al as ‘A, Hence, by 1.3.4 we see depth R/(I% iz Q) > 0, and so I® = I? ;5 Q. The

second assertion follows from 1.4.3. O
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Similarly as the proof of 1.4.4, in order to study I™ for n > 3, we have to consider

dividing the situation into several cases. In the rest of this section, let us assume
a=1,a'=2,28<8,27<7,

and explain how to compute I® using *-transforms. We have o/ = 1,5” = fand " = 7.

Let n = 3. Then A = {A, B,C} and we have

vlan = (A% = [AC], wlyp = (AB) —y" P [A%], vlus = (AC) — 2" 7:[AB],
vipa) = (AB) = 2:[BCY, vlpy) = (B) —y” *-[AB], v(py = (BC) — 27 -[B%,

Vie) = (AC) = 2:[C%), wicy = (BC) —y” P [AC), vigs = (C*) — 27" -[BCY.

We set ‘Al = {(A,1), (A,2), (A,3), (B,2), (B,3), (C,3)} C Al = {4, B,C} x {1,2,3}.

Then we have the following.
Lemma 1.4.5. {v(),»}oriyenm U [m? 5 o] is an R-free basis of Iy .

Proof. Let us recall that [m% 5] U (m? 5 ) is an R-free basis of Fj . Because f/A! =
fm? o= 6and (m? 5 o) C R{vy i} (M) e + R:[m? p o], we get the required assertion

by 1.3.3. [

Let K, = K.(z,y”,27). By 1.3.2 there exists a chain map ol : Ff ®r K, — F!

such that Tmog +Img; = I° 1 Q and 05(M ® ¢;) = (=1)" vy, for any (M,4) € A' =

{A,B,C} x {1,2,3}. Moreover, we get an acyclic complex

N N
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where
Fy ®p Ky F3y @ Ko .
. idp ® O
B-Fenk, B o L, H- o . {=(M80%),
F} Fl 72
and *o} = (o} ¢1). Let us recall our notation introduced in Section 1.3. For any

(M,i) € A we set

[Mﬂ=W®M=(M§ﬂe@;

On the other hand, for any n € Fy | we set

=) e

In particular, as Fy = Sy @ Sy, ([h]) € 'F} is defined for any h € Sy. We set ((m% o)) =

{{(IM])}srens, ,, . - Let “Fy be the R-submodule of 'F; generated by

(M1} e U (0 pcl)

and let %o} be the restriction of o} to *F} . In order to define *Fil , we set *Al = AL\ /Al =

{(B,1), (C,1), (C,2)}. We need the next result which can be checked directly.

Lemma 1.4.6. The following equalities hold;

U(IB,I) = U(lA,Q) —x:[BC] + ?Jﬁ/_ﬁ'[AZ] 5
Ly = g — 2 [C? + 2"V [AB]
Ve Uz — z )

U(lc,z) = U(lB,3) —y" 7 AC) + 2B,
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So, we define the elements *w(), , € Fy for (M,4) € "A' as follows;

*U)(lcyl) = —C ® él + A ® ég s

*w(lm) = CRé&+BReés.

Let *F} be the R-submodule of 'F} generated by {"wir i} arinen and let o3 be the

restriction of 4} to *Fy . Thus we get a complex

* 1 * 41 * 1
© © ©

Let us denote (*F, ,%p,) by (F?,¢2). Moreover, we put wfy, = "w(y  for (M, ) € *A'.

Then, by 1.3.5 and 1.3.6 we have the next result.

Lemma 1.4.7. (F?,¢2) is an acyclic complex of finitely generated free R-modules satis-

fying the following conditions.

(1) Ing? =1 Q.

(2) {w(QBJ) 7w(20,1) ,w(Qaz)} is an R-free basis of F2 .

(3) {IM, i} sy e Y ((m% pcl) is an R-free basis of Fy5 .
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(4) The following equalities hold;

pi(wipy) =~y (B3] + 27 [B,2] — 2:[A, 3] + 27+ [A,1]
—2-([BC)) +y” (A7),
p3(wicy) = =y [C.3] +27[C, 2] + 2 [A, 2] -y [A, 1]
z([C?)) + 2777 ([AB]),
P3(Wice) = 2[C,3] = 27-[C,1] + 2+ [B,2] — y”[B, 1]
—y7 7 ([AC)) + 27 ((B2).
We put A2 = *A! = {(B,1),(C,1),(C,2)} and A2 = A? x {1,2,3}. We simply denote

(M, 1), )GA2 by (M,i,j). Then

_ (B,1,1), (B,1,2), (B,1,3),
A2{<c,1,1), (C,1,2), (C,1,3), }
(0,2,1), (C,2,2), (0,2,3)

As we are assuming 23 < ' and 2y </, by (4) of 1.4.7 we get

90§<w?M,i)) = fE'U(QM,m) + yﬂ'v?M,i,Q) + ZW'U(QM,Z;:%)
for any (M, i) € A*, where
(B 1,1) = —[A, 3] = «([BCY), U(QB,1,2) =—[B,3] + ?JB _2'8'<[A2]> ) U(23,1,3) = [B,2] +[A, 1],

vioan = (4,21 = {[C%), vicas = —[C3] = [A1], vicas =102+ 27" ([AB]),

U(Qc,z,l) =[C, 3]+ [B,2], U(20,2,2) = —[B,1] - yﬂ/fw'([AC]) and

5 of elements in Fy is fixed and we see Im 3 C QF7.

Thus a family {U(QM,i,j)}(M”)eA
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Because Imp? :p Q = (I’ :(g Q) :g Q = I? :g Q* and F} = R®3 by 1.3.1 we get the next

result.
Theorem 1.4.8. Leta=1,d =2, 28 < and 2y <~'. Then we have
(I*:r @*)/(I° :r Q) = (R/Q)¥°.
The following relation, which can be checked directly, is very important.
Lemma 1.4.9. 0(237173) + 0(2071,2) + U(20,2,1) =2-1B,2].

By 1.3.2 there exists a chain map o2 : F? ®p K, — F? such that Im o2 + Im ©? =
I? . Q% and ag(w(QM’i) ®é;) = (_1)j"‘)(2M,¢,j) for any (M,1,j) € A2. Moreover, we get an
acyclic complex

2 PR 2 O3 w2 TPl w2

where
F? @p K, F? g Ky :
) dpe ® 0
WeFeuks, B e . m= e | F=(800)
F? F? 72

and "o} = (02 ¢?). In order to remove non-minimal components from F5 and 'F§ , we
would like to choose a subset ‘A2 of A2 as big as possible so that {U(QM% j)}( M,ij)e2 1s a part

of an R-free basis of F .

Theorem 1.4.10. Let o = 1, o/ = 2, 28 < B’ and 2y < +'. Suppose that 2 is a
unit in R. Then, we can take A2 itself as 'N*. Hence depth R/(I® :gr Q%) > 0, and so

I®) = I35 Q*. Moreover, we have Lr(I® /%) =6-Cr( R/Q).
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Proof. We would like to show that

{U(QMJJ) }(M,i,j) er Y <[H1,24,B,C]>

is an R-free basis of Fy . Let us recall that

(M} e U (0 pl)

is an R-free basis of F?. Because ti/&vl = ﬁ/@ , we have to prove

{[Mv i]}(Mﬂ-)eﬁ CG:= R'{U(QM,i,j)}(MJ’j)eﬁ + R‘([mi,B,CD :

In fact, we have [4,2] = vy, ) + ([C?]) € G. Similarly, we can easily see that [A,3],
[B,1], [B, 3], [C,1] and [C, 2] are included in G. Moreover, as 2 is a unit in R, we have
[B,2] € G by 1.4.9. Then [A,1] = U(QBM) —[B,2] € G and [C, 3] = U(20,2,1) —[B,2] € G.

The last assertion holds since

Cr(IDYT) = LR((IP: Q1)) T)
= (r((P:r Q)/(I° 2 Q) +r((I°:r Q)/1°)

= 3lr(R/Q)+3-(r(R/Q)
by 1.4.3 and 1.4.8. Thus the proof is complete. m

In the rest of this section, let us consider the case where ch R = 2. In this case, we

have

U(QB,I,B) + 0(20,1,2) + U(20,2,1) =0.
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We set /A2 = A2 \{(B,1,3)}. Then, it is easy to see that

{vluiptorinene U {[B,21} U ([m} 5 o))

is an R-free basis of Fy. For any (M,i,j) € A2, let us simply denote (M, 1),j] =

(Wi @ 5] € 'F5 by [M,i,j]. Then

{IM3 01} i em Y 40w Yorapene U (B, 2) } U ([ 5.0])

is an R-free basis of ' . Let *F} be the R-submodule of ' generated by

{0 5]} e W 4B 2D} U (Imd g )

and let %p2 be the restriction of %2 to *F2. In order to define *F2, we set A2 = A2\ A? =

{(B,1,3)}. Because

2 2 2
Y(B,1,3) = “Yc12) V21

we define *wly | 5 € T3 to be
R 2 s 2 .
(B,1) €3 + w(CJ) X €y 'lU(C’2) X €7 .

Let *F3 be the R-submodule of ' generated by "wiy , 5 and let 3 be the restriction of

‘0% to *F? . Thus we get a complex
w2 PR w2 O3 w2 TP w2

Let us denote (*F7,%p7) by (FJ, 7). Moreover, we put wip, 5 = Wiy, 4 . Then, by

1.3.5 and 1.3.6 we have the next result.
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Lemma 1.4.11. (F2,p3) is an acyclic complex of finitely generated free R-modules sat-

1sfying the following conditions.
(1) Ing = I* 2 Q2.
(2) wip, g is an R-free basis of Fy .

(3) LM} gy U LB} U (0 s c])) is an Refiee basis of F§ .

(4) The following equality holds ;

§0§<w?8,1,3)) =T [Bv L 2] + yﬁ {B7 L, 1] +a- [Ca L, 3]
—27[C,1,1] —4°-[C,2,3] + 27-[C, 2,2] .
We put A* = *A2 = {(B, 1,3)} and A3 = A3x {1,2,3} . We simply denote ((B,1,3),i) €
M by (B,1,3,i). Then b = {(B,1,3,) }iz123. By (4) of 1.4.11 we have
Wg(w?B,l,:a)) = 55'”?3,1,3,1) + yB'U?B,l,?;,Q) + ZV'U?B,1,3,3) )

where

U?B,L?,,l) - [Ca 17 3] - [B’ 17 2] ) U?B,1,372) = [B> 17 1] - [07 2’ 3] and

U?B,1,3,3) = [Ca 27 2] - [07 17 1] :

Thus a family {U?B’1’37Z-)}7;:17273 of elements in F3 is fixed and we see Im 3 C QF; . Because
Imef g Q=("rQ%) g Q=1 :5Q°
and F3 = R, by 1.3.1 we get the next result.

Theorem 1.4.12. Leta=1,a =2,28 <[ ,2vy<+" andchR=2. Then we have

(IPrQY) /(I R Q) = R/Q.
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It is easy to see that
2]

1
1]

[B7 17
[07 ]'7
C,2

B,
{U(QB,1,3,i)}i=1,2,3 U C,
C

)

U ()

N =
AR

)
I
b ?

) 9

is an R-free basis of Fy . Therefore, by 1.3.4 we get the following result.

Theorem 1.4.13. Let o« = 1, o = 2,28 < (', 2y <+ and chR = 2. Then, it
follows that depth R/(I® :z @®) > 0, and so I® = I? :p Q>. Moreover, we have

(r(I9/1°) = T-Lr(R/Q) = T8y (r(R/(z,y,2)R).
The last assertion of 1.4.13 holds since £r( I®®/I?) coincides with
Cr((IP i Q°)/(I° :r Q) + Lr((I° :r Q*)/(I° :r Q) + (r((I° :r Q)/ %)
= (r(R/Q)+3-Lr(R/Q) +3-lr(R/Q)
by 1.4.3,1.4.8 and 1.4.12.
1.5 Computing e-multiplicity

Let R be a 3-dimensional regular local ring with the maximal ideal m = (z,y,z)R. Let

I be the ideal generated by the maximal minors of the matrix

x oy z
y z a2% )’

We will compute the length of 10" /1" for all n using the *-transforms. As a consequence

of our result, we get €(I) = 1/2, where
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which is the invariant called e-multiplicity of I (cf. [6], [26]). Let us maintain the same
notations as in Section 1.4. So, a = 2*> — 2%y, b= —yz,c=y* — 2z, S = R[A, B, (],
f =axA+yB+ 2C and g = yA + 2B + 2°C. Furthermore, we need the following
notations which is not used in Section 1.4. For any 0 < d € Z, we denote the set
{B°C" | 0 < B,y €Zand f+~ = d} by mf, and for a monomial L and a set S
consisting of monomials, we denote the set {LM | M € S} by L-S.

Let n > 2. Then the complex
0—> Sn_g (LZ Sn_l ) Sn—l (fiZ Sn —6> R

is acyclic and gives a minimal free resolution of I™. We denote this complex by (F}, l).
As A') which is an R-free basis of Fy = S,,_», we take mZ’_B%C . Then, for any M € Al

we have

p3(M) = x'v(lM,l) + Z/'U(lM,z) + Z'U(lM,s) ;
where
Voray = (AM) = 2:[CM], v(y9) = (BM) = [AM], vy 5 = (CM) — [BM].
Hence, by 1.3.1 we get the following.
Lemma 1.5.1. (I" :;pm)/[" = (R/m)@(g) .

The next result can be checked directly.

Lemma 1.5.2. Suppose n > 4. Then, for any N € mz’_g"c, we have

1 .1 1 1 1 1
Viazn3) = Y(aBN2) — Y(B2N,1) T Vacn,1) — T Vc2n2) T T U(BON,3) -
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Let Al = Al x {1,2,3}. Then the following result holds.

Lemma 1.5.3. As an R-module, Fy = S,,_1 ® S,,_1 is generated by

[} eq U {IAC™ 2] [BC™2] [C" 1)
Proof. Let G be the sum of the R-submodule of Fy generated by the elements stated
above and mFE). It is enough to show that [mz”é’c] and <m’}"’3170> are contained in G'.
First, let us prove (L) € G for any L € mABC We write L = A*BPC7, where
0<a,pf,y€Zanda+p+y=n—-1.1lfa>0,

(L) = (A-A*"'BPCY) = 0 4o 1pscyy + 2:[C- AT BPCT] € G.

Hence, we have to consider the case where a = 0. However, as

(C"7Y) = (C-C"2) = vlpuagy + [B-C"Y € G and

(BC™%) = (B-C"%) = vlgn-agy + [A-C"?| € G,

we may assume [ > 2. Then, as
(L) = (B-B7'(7)
- U(lBﬁflcv,z) + [A.Bﬁ—lcw]
= Vlpsicng + [B-ABTC]
- U(lBﬁ—ch,z) - U(IABﬂ—mw,s) +(C-ABP72C7)
and as (C-ABP72C7) = (A-BP2C1) | we get (L) € G.
Next, we prove [m’ 5 ] € G. Let us notice my 5 o = A-m’y 5 U B-m} S U{C"'}.

For anyMGmABC and anyXGmBC,We have

[AM] = —U(IMQ) +(BM) e G and [BX]= —v(1X73) +(CX) e G.
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Hence, the proof is complete as [C™"~!] € G holds obviously. ]

Now, let ¢ be the largest integer such that ¢ < n/2. For any 1 < k < ¢, we would

like to construct an acyclic complex

kP ok 5 ok P ok

of finitely generated free R-modules satisfying the following conditions.
(1) Im b = 1" :mh- 1L,
(#5) F¥ has an R-free basis indexed by A* := mz_gkc ,say {wk dare

(#5) Let AF = A* x {1,2,3}. Then, there exists a family (Vs Y ar iy 3 Of elements in

(M)

F¥ satisfying the following conditions .

(i) For any M € A*, o5(why) = 2030y + Y Varg) + 2 Vfars)

(i) If k < ¢, for any N € A*! .= ijBQf“CTQ,
k k k k k k
Viazn3) = V(aBN2) — Y(B2N,1) T V(aoN,1) — T Vc2n2) T T V(BON3) -

iii) There exists a subset U* of F¥ such that {v¥ . .~ U U* generates F¥
2 (M) (M i) e A 2

and

ﬂUk:rankF§—3-(n_22k+2>+<n_22k),

where the last binomial coefficient is regarded as 0 if k = q.

Let us notice that the acyclic complex (F}, ol), which is already constructed, satisfies

(81), (83) (wi; is M itself for M € A') and (#3). So, we assume 1 < k < g and an acyclic
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complex (FF k) satisfying the required conditions is given. Taking the x-transform of

(FF , ©F) with respect to z,y, z, we would like to construct (FFF! ok+1),

First, we have the following result since the conditions (£}), (#5) and (i) of (%) are
satisfied and (I" :p mF1) :pm = I" ;g mF.
Lemma 1.5.4. (I" :p m*)/(I" ;g mF1) = FF/mEY | so
2

a0 ) () = (MR

If T is a subset of A* and 1 < i < 3, we denote by (I',i) the subset {(M,i) | M € T'}
of A¥ . Let us notice that A* is a disjoint union of A1 Aml 2 and mp; 27 We set
A= (A1) U (AF,2) U (Amp 2P umf 2 3).

Then the next result holds.
Lemma 1.5.5. {vé“Myi)}(Mvi)e/Ak U U* is an R-free basis of F¥ .
Proof. Because
AN = 2 A (A 2T U )
= 2.4 A" (AR A% AR
— 3ﬁAk—ﬂAk+1
_a (" 2k +2 n — 2k
B 2 2 )’
by (iii) of (#5) we have /A" + # U* = rank Fi¥ . Hence, by 1.3.3 it is enough to show that,

for any N € A1, vé“Ag N3 18 contained in the sum of the R-submodule of F¥ generated
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by {U?M7i)}(M7i)€/Ak U U* and mFY . We write N = A“X | where X € m%fc%_%o‘. Then,
using the equalities in (ii) of (#%), the required containment can be proved by induction

on «. [l
Let *F¥ be the R-submodule of Fy generated by
{[Mv ﬂ}(M,i)eE U <Uk> )

where [M,i] = [wh, ® e;] for any (M, i) € N+, and let %ok be the restriction of ok to *Fk.
In order to define *F¥ | we notice AF\'A¥ = {(A2N,3) | N € A**1}. Looking at (ii) of (#%),

* .k 1k
we define "wiysy ) € I3 to be
—whoy @3 —whipy ®é —whey @&+ Whiony ®ELF T Wy ®EF Wy @6
A2N 3 ABN 2 B2N 1 ACN 1 C2N 2 BCN 3

for any N € A1, Let *F¥ be the R-submodule of 'F¥ generated by {*W?A2N73)}N€Ak+1

and let “o% be the restriction of ‘0% to *F¥ . Thus we get a complex
*1k *‘pl?f *1k *‘pg *1k *‘pllc *k

Let us denote (*FF *oF) by (FF1 k1), Moreover, we put wh™ = *w?A2N73) for any

N € A**! Then, by 1.3.5 and 1.3.6 we have the next result.

Lemma 1.5.6. (FF1 of1) s an acyclic complex satisfying the following conditions.
(1) Im @+t =17 :p mP
(2) {wh ™}y a1 s an R-free basis of Fa™.

(3) {IMil} sy e Y (U*) is an R-free basis of Fyt".
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(4) For any N € N**1 | the following equality holds ;
O (wht!) = —x - [A2N, 2]+ y - [A’N, 1] — 2 - [ABN, 3] + z - [ABN, 1]

—y-[B®*N,3] + 2 - [B*N,2] +y-[ACN, 3] — z- [ACN, 2]

+ 2%[C%N, 3] — xz - [C?N, 1] + 2*[BCN, 2] — 2y - [BCN, 1].
The assertions (1) and (2) of the lemma above imply that (FF', oF+1!) satisfies (#51)

and (#57), respectively. Moreover, by (4) we have

P5 T wy ) = @i Ty oiy + 2 ey

for any N € A**1, where

vivy = —[A’N,2] = [ABN,3] + - [C®N,3] +z - [BCN, 2],

Uiy = [A’N,1] = [B?N,3] + [ACN,3] -z - [BCN, 1],

vivs = [ABN,1]+[B?N,2] - [ACN,2] —z - [C*N,1].
k+1

Thus a family {v(y; of elements in Fi™! satisfying (i) of (#5™) is fixed, where

}(N,z')GA/’;:l
NHL = AR 5 {1,2,3}. The next result, which can be checked directly, insists that (ii)

of (#571) is satisfied if k + 1 < q.

Lemma 1.5.7. Suppose k+1 < q. Thenn — 2k —4 > 0 and we have

k+1 okl ket k1 okl okl
Viazr,3) = YaBr2) ~ YBera) T Yaccy — T Ve T T VUpors)

for any L € N2 .= m 2%

If T is a subset of A* and 1 < i < 3, we denote by [T',7] the family {[M,i|}rer of

elements in FF ®g K, . The next result means that (iii) of (#5) is satisfied.
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Lemma 1.5.8. We set

UMt = [A. mgc%’“ PUmp A1 U A 3] U

{[ABC«n—%—Q’ 2] ’ [AC’"‘Qk_l, 2] ’ [BO”‘%‘l, 2] ’ [Cm—%7 2]} U <Uk> )

Then {ka } (Vayem U UMY generates Fyt' and

—2 —2k—2
jjUk“:rankFQkH—S-(n 5 k) + (n 2k )

Proof. Let G be the sum of the R-submodule of Fi*! generated by {ka } u

(Ni) € A1

U1 and mFy+ . We would like to show G = Fy™ . Let us recall that
(417U [45,2] U [4,3] U (U%)

is an R-free basis of F;™" and notice that A* is a disjoint union of A%-A¥T! A.m’ 2%
and m}; 2" . Because [A¥,3] C U™ | it is enough to show [AZ-AM1 1] U [AF2] CG.

First, we prove [ A%2.A¥*1 1] C G. Let us take any N € A¥*1. Then

[A’N, 1] = v{3) + [B2N,3] = [ACN, 3] + 2 - [BCN,1] € G,

and so the required inclusion follows.

Next, we prove [A*,2] C G. Because

[A’N, 2] = —vfy}) = [ABN, 3] + 2 - [C*N, 3] + = - [BCN,2] € G

for any N € A" we have [A%-A*F! 2] C G. Furthermore, for any B°C7 € m%fgk_l , wWe

get [ABPC7,2] € G. In fact, [ABPC7,2] € Uk if =0o0r 1, and if 3 > 2, we have
[AB°C",2] = [B*-ABP~2(C", 2]
k+1 [AQBBfICw’ 1] + [A2BBfQC'y+17 2]+

(ABB 207,3)

- [ABP2C T 1] € G
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Hence [A-m”BTCQk_l, 2] C G. In order to prove [m"B_C%k, 2] C G, we newly take any B°C7 €

m’é‘ék We have [B?C7,2] € UKL if = 0or 1, and if 8 > 2, we have

[B°C7,2] = [B*B°%C",2
= vfgg,m 5= [ABP~'CY 1] + [AB°2C" ™ 2] + 2-[B°2C" 2 1] € G

Hence the required inclusion follows, and we have seen the first assertion of the theorem.

By (3) of 1.5.6 we have rank Fy ™' = 3-4 A* + #U*. On the other hand,
FURTE = f(AF\ AN A 4 U
= 24AF g AT L4 TR
Hence we get
rank F2k+1 . ﬁUk+1 _ ﬁAk + ﬂAk+1 _4
 (n—2k+2 n n — 2k 4
B 2 2
_ 3 n—2k\ (n—2k—-2
B 2 2 ’
and so the second assertion holds. O]
Thus we have constructed an acyclic complex
¢ $3, pq P2 pg Pl g

of finitely generated free R-modules satisfying (17), (#2) and (81). Of course, n — 2q =

Oor 1, and

v [ ifn—2¢=0,
| {A,B,C} ifn—2¢=1.
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The second condition of (iii) of (£%) implies rank Fy = ﬂ&l + #U?. Hence, by the first
condition of (iii) of (%), we see that {v Yoriem Y (U7 must be an R-free basis of

Fj . Therefore, by 1.3.4 we get the next result.
Theorem 1.5.9. depth R/(I" :r m%) > 0, and so I = I" :p m?.

Let us compute £x( 1™ /I"). By 1.5.9 and 1.5.4 we have

(1™ m) ZeR "im (”:m’“‘l>>=i<n_22k+2)'

k=1
As a consequence, we get the next result.
Theorem 1.5.10. The following equality holds ;
1/n—+2 1/n+1 1/n 1 i
5\ 3 A s\ S if n 1s even,
1 2 1 1 1
o e I e Y if nois odd.
2\ 3 4\ 2 8\1

ER(I(H)/—W):






Chapter 2

Saturations of powers of certain
determinantal ideals

2.1 Introduction to Chapter 2

Let R be a Noetherian ring and m an integer with m > 2. Let xy,%9,..., 2,41 be a

sequence of elements of R generating a proper ideal of height m + 1 and let {a;;} be a

family of positive integers, where : =1,2,... , mand j=1,2,...,m+ 1. We set
wily ifi+j<m+2
Qij = g
Ty it >m+2
forany i =1,2,...,mand j =1,2,...,m+ 1, and consider the matrix A = (a;;) of size

m x (m+1). If a;; =1 for all ¢ and j, the matrix A looks

T T2 s Tm  Tm+l
X2 Tt Tm  Tm+1 X1
Tm  Tm+1 €1 T Tm—1

However, we may put any exponents to each entries. In this chapter, we study the ideal
generated by the maximal minors of A. If m = 2, this kind of ideals are known as ideals
of Herzog-Northcott type in the recent literature [22], and it is a well known result of

Herzog [14] that the defining ideal of a space monomial curves is Herzog-Northcott type.

25



56 CHAPTER 2.
Because the ideals of Herzog-Northcott type provide interesting examples of symbolic
Rees algebras, a lot of authors studied the symbolic powers of those ideals (cf. [5], [10],
[11], [13], [15], [20], [25]). Although the symbolic powers of ideals usually behave very
wild, if the ideal is Herzog-Northcott type, its second symbolic power can be controlled
well (cf. [12], [19], [21]). The purpose of this chapter is to generalize this fact for ideals
stated above replacing ”symbolic power” by ”saturation”. In order to explain our main
result, let us recall the definitions of the symbolic power and the saturation of an ideal.
Let (R, m) be a local ring and I an ideal of R such that dim R/I > 0. Let r be a

positive integer. We set
(I"y* = {z € R|mi-x C I" for some integer i > 0}

and call it the saturation of I". As (I7)%* /" =2 HO(R/I"), where HY (- ) denotes the 0-th
local cohomology functor, we have (I")** = I" if and only if depth R/I" > 0. Moreover,
if J is an m-primary ideal such that depth R/(I" :x J) > 0, we have (I")** = [" :p J.

On the other hand, the r-th symbolic power of [ is defined by
I = {z € R|sz el for some s € R such that s ¢ p for any p € Ming R/I}.

In order to compare (I")** and I, let us take a minimal primary decomposition of I" ;

r= (1 Q).

pEAssp R/I"

where Q(p) denotes the p-primary component. It is easy to see that

(I = (N  Qr and M= () Q.

m#p € Assg R/I” pE€Ming R/I
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Hence we have (I7)** C I and the equality holds if and only if Assg R/I" is a subset of
{m}UMing R/I. Therefore, if dim R/I =1 then (I")*®* = [") | If dim R/I > 2, (I")**
may be different from I) | but even in that case, (I")** has meaning as an approximation
of 1),

If (R, m) is a 3-dimensional Cohen-Macaulay local ring and I is an ideal of Herzog-
Northcott type, then I®/I? is a cyclic R-module and its generator can be described
precisely (cf. [12, (2.2) and (2.3)]). This fact can be generalized as follows, which is the

main result of this chapter.

Theorem 2.1.1. Let (R,m) be a Cohen-Macaulay local ring of dim R = m + 1, where
m > 2. Let x1,To,...,Tmy1 be an sop for R and set I to be the ideal generated by the

mazimal minors of A. Then the following assertions hold.

(1) (")t =1I" foranyr=1,...,m—1.

(2) (I™)=*/1™ is a cyclic R-module.

The proof of this theorem is given in Section 2.4. Moreover, for I of 2.1.1, we can
describe a generator of (I™)%* /I assuming suitable condition on {«;;}. In order to com-
pare (I7)%* with I") for I of 2.1.1, we have to compare Assg R/I" with {m}UMing R/I .
For that purpose, we study the associated primes of powers of ideals in a more general
situation in Section 2.3. Our results are closely related to [3, Lemma 3.3 and Corollary
3.5] and the frameworks for the proofs are similar. Anyway, as a corollary of the results

stated in Section 2.3, we see that the ideal I of 2.1.1 satisfies (I")*®* C I if r > m >3
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and a;; = 1 for any 7, ;.

Throughout this chapter R is a commutative ring, and we often assume that R is a
Noetherian local ring with the maximal ideal m. For positive integers m,n and an ideal
a of R, we denote by Mat(m,n;a) the set of m x n matrices with entries in a. For any
A € Mat(m,n; R) and any k € Z we denote by I;(A) the ideal generated by the k-minors
of A. In particular, Ix(A) is defined to be R (resp. (0)) for & < 0 (resp. k > min{m,n}).
If A,B € Mat(m,n;R) and the (i, ;) entries of A and B are congruent modulo a fixed

ideal a for any (i,7), we write A = Bmoda.

2.2 Preliminaries for Chapter 2

In this section, we assume that R is just a commutative ring. Let m,n be positive integers
with m <nand A = (a;;) € Mat(m,n; R). Let us recall the following rather well-known

fact.

Lemma 2.2.1. Suppose 1,,(A) Cp € SpecR and put { = max{0< ke Z | (A) Lp}.
Then ¢ < m and there ezists B € Mat(m — {,n — {;pR,) such that 1;,(A)y, = Iy_¢(B) for

any k € 7.

Proof. We prove by induction on ¢. The assertion is obvious if £ = 0. So, let us consider
the case where ¢ > 0. Then I;(A) € p, and so some entry of A is a unit in R,. Hence,

applying elementary operations to A in Mat(m,n; R,), we get a matrix of the form
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where A" € Mat(m —1,n—1; R,). It is easy to see that I;(A), = I;_1(A) for any k € Z.
Hence I,,_1(A") CpR, and { — 1 =max{0 < k € Z | I;(4A") € pR, } . By the hypothesis

of induction, there exists
BeMat((m—1)—(—1),(n—1)—((—1);pR,) =Mat(m —,n—(;pR,)

such that I,(A") = Li__1)(B) for any ¢t € Z. Then we have I;(A4), = L;—,(B) for any

kel. ]

In the rest of this section, we assume n = m+ 1. Forany j = 1,2,... ., m+ 1, A,
denotes the m x m submatrix of A determined by removing the j-th column. We set
dj = (=1)"'-det A; and I = (dy,ds,...,dms1)R =1,(A). Let us take an indeterminate

J

t over R and consider the Rees algebra of I;
R(]> = R[dltdeta s 7dm+1t] g R[t] )

which is a graded ring such that degd;t = 1forall j = 1,2,...,m+1. On the other hand,
let S = R[T1,T5,...,Tyns1] be a polynomial ring over R with m + 1 variables. We regard
S as a graded ring by setting degT; = 1forall j =1,2,...,m+1. Let 7 : S — R(I) be
the homomorphism of R-algebras such that 7(7}) = d;t for any j. Then 7 is a surjective

graded homomorphism. Now we set

m+1

fi= Z zi; 15 € Sy
j=1

for any ¢ = 1,...,m. It is easy to see (f1, fo,..., fm)S C Kerm. For our purpose, the

following result due to Avramov [2] is very important (Another elementary proof is given
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in [7).

Proposition 2.2.2. Suppose that R is a Noetherian ring. If gradel;(A) > m — k + 2
for all k = 1,...,m, then Kerm = (f1, fa, .-, fm)S and fi, fo, ..., fm is an S-regular

sequence.

As the last preliminary result, we describe a technique using determinants of matrices.

Suppose that y1, s, ..., yms1 are elements of R such that

Y1 0
Y2 0
A . =
Ym+1 0
Weput y =y1 +yo2+ - + Ymy1 -
Lemma 2.2.3. If y,yx form a reqular sequence for some k =1,2,....,m+ 1, then there

exists 0 € R such that y; -0 = d; forany j =1,2,... , m+1.

Proof. We put d =dy +ds + -+ + dpuy1 . Then the following assertion holds:

Claim y-d; =y;-dforall j =1,2,... . m+1.

In order to prove the claim above, let us consider the following (m + 1) x (m + 1) matrix:

Expanding det B along the first row, we get det B =d. Let us fix j = 1,2,... . m+ 1.
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Multiplying the j-th column of B by y;, we get

J

—
1 e Y . 1
B — an 0 GY; o G1mdl
aml PP am]y] . e a/m7m+1

Then det B’ =y; -det B =y, -d. Next, forany £ € {1,2,...,m+1}\{j}, we add the

¢-th column of B’ multiplied by ¥, to the j-th column, and get

J

A
1 Y 1
a ... 0 PERY a
" o__ 11 1,m+1
B - )
aml o .. 0 .. am,erl

since our assumption means

ainy + - A ay; o+ G Ymyr = 0

foralli=1,...,m. Then det B” = det B’ = y; - d. Finally, replacing the first j columns

of B”, we get

B" —

Theny-d; =y - (—1)"!-det A; = (—1)7"' - det B” = det B” = y; - d. Thus we get the

equalities of the claim.
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Now we take k = 1,2,...,m + 1 so that y,y, form a regular sequence. Because

y-dp = Yy - d, there exists 0 € R such that d = yo. Then y-d; = y; - yo for any

j=12,...,m+1. Asyisan R-NZD, we get d; =y, -6 forany j =1,2,...,m+1, and

the proof is complete. O

Lemma 2.2.4. If R is a Cohen-Macaulay local ring and y1,Y2, - -, Ymi1 1S an ssop for

R, then y,yr form a reqular sequence for any k=1,2,...,m+1.

Proof. 1t is enough to show for kK = 1. Because (y1,y2, ..., Yms1) R = (Y, 91, ., ym) R, it

follows that v, y1, ...,y is an ssop for R, too. Hence y,y; is R-regular. [

Lemma 2.2.5. Suppose that a is an ideal of R and a;; € a for all i,5. We put Q) =

(Y1,Y2, - -, Yms1)R. Then § of 2.2.3 is an element of a™ g Q.

Proof. We get this assertion since d; € a™ for any j =1,2,...,m+ 1. O]

2.3 Associated primes of R/I"

Let R be a Noetherian ring and A = (a;;) € Mat(m,m + 1; R), where 1 < m € Z. Let
I =1,,(A). Throughout this section, we assume that I is a proper ideal and grade I;,(A) >
m—k+2forall k=1,...,m. Let us keep the notations of Section 2.2.

Let K, be the Koszul complex of fi, fo,..., fm, which is a complex of graded free
S-modules. We denote its boundary map by d,. Let e, es,..., e, be an S-basis of K;

consisting of homogeneous elements of degree 1 such that 0;(e;) = f; foranyi=1,...,m.
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Then, for any s =1,...,m,
{6i1/\ei2A---/\eis\1§i1<i2<---<7j5§m}

is an S-basis of K, consisting of homogeneous elements of degree s, and we have

S
Oulei, New Aow-Nei) = (=1 fi e Ao Neg Ao A,
p=1

where E; means that e;, is omitted from the exterior product. Let 1 < r € Z. Taking

the homogeneous part of degree r of K, , we get a complex

[Kdr 00— [Knlr 22 [Kpoa]y — - — [Ki]y =5 [Kol, — 0

of finitely generated free R-modules. It is obvious that [K], = 0 if r < s. On the other

hand, if » > s, then
0§a17&27"'7&m+1 EZ?
TlalTQO‘Q"'T,zrfl'eil/\ez‘g/\"‘/\eis a1 t+ag+ -+ Qp=1r—35,

1<ii<ia<-- <1< m

is an R-basis of [K], .

Proposition 2.3.1. If (R,m) is a local ring and A € Mat(m, m + 1;m), we have

r+1 ifr<m,

roj.dim, R/I" =
pro) n {m+1 ifr>m.

Proof. By 2.2.2 and [4, 1.6.17], we see that

00— K 22 Koy — - — Ky -2 Koy -5 R(I) — 0

is a graded S-free resolution of R(/). Hence, for any integer » > 0,

0 — [Kp]r 22 [Kooa]y — - — [K1]r -2 [Ko), == I't" — 0
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is an R-free resolution of the R-module I"t". Let us notice I"t" = I" as R-modules.
Suppose 1 < s < m and r > s. Then, for any non-negative integers oy, as, ..., @1 With

a1+ ag + -+ -+ a1 =1 — s and positive integers i1, ig,...,1, with 1 <14 <ip < -+ <

iy < m, we have

DTS2 - T eqy Aeiy A+ Aey)

S m+1
— aq a2 am+1 o~
= 171y T E E @i, i 15) e Nowo Neg, N Nej,
p=1
s m+1
— p Ter. .. I, mtl 5 . .
= E E aw T} Tj 0 e A ACAA A €,
p=1 j=1

€ m- [Ks—l]r .

Hence [K,], gives a minimal R-free resolution of I". If » < m, we have [K,], # 0 and
(K], = 0 for any s > r, and so proj.dimg I" = r. On the other hand, if r > m, we have
(K] # 0 and [Kg), = 0 for any s > m, and so proj.dimg I” = m. Thus we get the

required equality as proj.dimg R/I" = proj.dimy I" + 1. ]
By Auslander-Buchsbaum formula (cf. [4, 1.3.3]), we get the following.

Corollary 2.3.2. If (R,m) is local and A € Mat(m,m + 1;m), we have

depthR—r—1 ifr<m,

depth R/I" =
depthR—m—1 ifr>m.

Here we remark that depth R > gradel;(A) > m + 1 by our assumption of this section.

As a consequence of 2.3.2, we see that the next assertion holds.

Corollary 2.3.3. Suppose that (R, m) is a local ring and A € Mat(m,m + 1;m). Then

we have m € Assg R/I" if and only if r > m and depth R =m + 1.
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The next result is a generalization of 2.3.3.

Proposition 2.3.4. Let I Cp € SpecR and 1 <r e Z. We put

C=max{0<k<m|Ix(A) <Lp}.

Then the following conditions are equivalent.

(1) pe Assg R/I".

(2) r>m—{ and depth R, =m —(+1.

When this is the case, gradel,;;1(A) =m — £+ 1.

Proof. By 2.2.1, there exists B € Mat(m — {,m — ¢+ 1;pR,) such that I;(B) = I;1.(A),

for any k € Z. Hence, for any k =1,...,m — £, we have

gradel,(B) = grade 4 o(A)y >m—(k+0)+2=(m—{0) —k+2.

Therefore, by 2.3.3, we see that pR, € Assg, R,/I,—¢(B)" if and only if 7 > m — ¢ and
depth R, = m — ¢+ 1. Let us notice I,,_¢(B) = I,. Because p € Assg R/I" if and
only if pR, € Assg, R,/1I,", we see (1) < (2). Furthermore, as I;11(A) C p, we have
gradel,;1(A) < depth R, , and so we get gradel,;;(A) = m — ¢+ 1 if the condition (2) is

satisfied. [

For any positive integer r, let A’ be the set of integers ¢ such that max{l,m — r +
1} < i < m and gradel;(A) = m — i+ 2. We denote by Asshgr R/I;(A) the set of

p € Assg R/1;(A) such that dim R/p = dim R/I;(A). Then the following assertion holds.
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Proposition 2.3.5. Let R be a Cohen-Macaulay ring. Then, for any positive integer r

we have

Assp R/I" = U Asshp R/1;(A).

i€AT,
Proof. Let us take any p € Assg R/I" and put { = max{0 < k < m | Ix(A) £ p}.
Then Ip41(A) € p. Moreover, by 2.3.4 we have r > m — ¢, depth R, = m — ¢ + 1 and
gradel,;1(A) =m — ¢+ 1. Hence £+ 1 € A”;. Let us notice that ht p = depth R, and
ht I,41(A) = gradely1(A) as R is Cohen-Macaulay. Therefore ht p = ht I (A), which
means p € Asshg R/I111(A).

Conversely, let us take any i € A and q € Asshg R/I;(M). Then ht q = ht I;(4) =
gradel;(A) = m—i+2. As our assumption implies ht I;_;(A) > m—i+3, it follows that
i—1=max{0 <k <m|I;(A) Zq}. Let usnoticer > m—(i—1) asm—r+1 < i, which
is one of the conditions for i € A . Moreover, we have depth Ry =htq=m—(i—1)+1.

Thus we get q € Assg R/I" by 2.3.4, and the proof is complete. O

As a natural question, one may ask whether the results stated above can be extended
to the case where A = (a;;) € Mat(m,n; R) with m < n. As far as the authors know,
the following two kinds of generalizations seem to be possible.

First, we would like to suggest considering the powers of modules. We set M to be
the cokernel of the R-linear map R™ — R™ defined by ‘A. Let us assume gradeI;(A) >
m—k+2forall k=1,...,m. Then, by [2, Proposition 4], M has rank n —m and the

r-th symmetric power S"(M) is torsion-free over R for any r > 1. In this case, M can be
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embedded into a finitely generated free R-module F' and the r-th power M" of M is defined
to be the image of S"(M) in S"(F') . Similarly as the case of m x (m+1) matrix, we consider
the polynomial ring S = R[ Ty, Ts, ..., T, ] and set f; = anTi+apTe+- - -+a;,T, € S for all
i=1,...,m. Then, by [2, Propsosition 1 and Proposition 4], we get an R-free resolution
of S"(F)/M" by taking the homogeneous part of the Koszul complex of fi, fa, ..., fm, over
S. In this way, detailed information about the associated primes of S"(F')/M" could be
deduced.

On the other hand, by using the free resolution of Akin-Buchsbaum-Weyman [1],
another generalization seems to be possible. This idea was suggested by the referee.
Similarly as the case of m x (m + 1) matrix, we set I to be the ideal generated by the
maximal minors of A. Let us assume gradelz(A) > (m — k + 1)(n — m) + 1 for any
k =1,...,m. Then, by [1, Theorem 5.4], we get an R-free resolution of R/I" for any
r > 1, and it could be used in place of 2.3.1 to deduce the m x n matrix version of 2.3.4

and 2.3.5.

Proposition 2.3.6. Let R be an (m + 1)-dimensional Cohen-Macaulay local ring, where
2 <m €Z. Let A be the matriz given in Introduction. Then the following assertions

hold.

(1) htIx(A) >m—k+2 forallk=1,2,...,m.

r+1 ifr<m,
(2) proj.dimy R/I" =
m+1 ifr>m.
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m—r ifr<m,
(3) depth R/I" =
0 ifr>m.

Furthermore, if c;; = 1 for all i and j, the following assertions hold.
(4) htI3(A) = m and Asshg R/15(A) C Assg R/I" for anyr >m — 1.

(5) If m is an odd integer with m > 3, then htI3(A) = m — 1 and Asshg R/I5(A) C

Assg R/I" for anyr >m — 2.
(6) If m >3, then (I")* C I for anyr >m —1.
Proof. (1) We aim to prove the following.

Claim J;_; + Ix(A) is an m-primary ideal for any &k = 1,2,...,m, where J;_; =

(ZEl, Lo, ... 7ZL'k_1)R .

If this is true, we have dim R/I;(A) < k—1, and so ht I(A4) > dim R—(k—1) = m—k+2,
which is the required inequality.

In order to prove Claim, we take any p € Spec R containing J,_1 + 1 (A) . It is enough
to show Jy,41 = (21,%2,...,Tmy1)R C p. For that purpose, we prove J, C p for any
{=k—1k,...,m+ 1 by induction on ¢. As we obviously have J,_; C p, let us assume

E<?¢{<m+1and J,_; Cp. Because the k-minor of A with respect to the first k£ rows

and the columns ¢ — k+1,...,¢ — 1,/ is congruent with

age

O w;zz,e_l

X

det

Ak f—k+1
Ly
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mod Jy,_1 , it follows that J,_; 4+ Ix(A) includes some power of x,. Hence z, € p, and so
we get J, Cp.

(2) and (3) follow from 2.3.1 and 2.3.2, respectively.

In the rest of this proof, we assume «;; = 1 for any 7 and j.

(4) Let ¢ = (21 — 22,22 — X3,..., Ty, — Tppy1)R. Then 27 = z; mod q for any

7=1,2,...,m+ 1. Hence, any 2-minor of A is congruent with

det(xl xl):o
Ir1 I

mod q. This means [5(A) C q, and so ht I1(A) < pgr(q) = m. On the other hand,
ht I5(A) > m by (1). Thus we get ht [,(A) = m. Then, for any » > m — 1, we have
2 € Ay, and so Asshp R/I5(A) C Assg R/I" by 2.3.5.

(5) Let p be the ideal of R generated by {x; — x;12}, where i runs all odd integers
with 1 <4 <m — 2. Similarly, we set q to be the ideal of R generated by {z; — z;12},
where j runs all even integers with 2 < 7 < m—1. Let A’ be the submatrix of A with the
TOWS 11, 19,13 and the columns ji, j2, 3, where 1 <111 < iy <13 <mand 1 < j; < Jp <
Jjs <m-+1. We can choose p,q with 1 < p < ¢ < 3 so that i, = i, mod 2. Then, for any
t=1,2,3, we have i, + j: = i, + j: mod 2, and so, if i, + j; is odd (resp. even), it follows
that a;, j, = a,,j, mod q (resp. p). Hence, we see that the p-th row of A" is congruent with
the ¢-th row of A’ mod p + q, which means det A’ =0 mod p + q. As a consequence, we
get I3(A) C p+q. Therefore ht I3(A) < pr(p) +ur(q) = (m—1)/24+(m—-1)/2=m—1.

(6) Let us take any p € Asshgr R/I5(A) and r > m — 1. Then, by (4) we have
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htp=m >3 and p € Assg R/I". Hence Assg R/I" is not a subset of {m } UMing R/I .
Therefore, by the observation stated in Introduction, we get (I")** C I and the proof

is complete. O

2.4 Computing ([™)%

In this section, we assume that (R, m) is an (m + 1)-dimensional Cohen-Macaulay local
ring, where 2 < m € Z. Let x1,29,...,2,11 be an sop for R and let A be the matrix
given in Introduction. We put I = 1,,(A). Then, by (3) of 2.3.6, we get the assertion (1)
of 2.1.1. Let us prove (2) of 2.1.1.

Forany j =1,2,...,m+1, weset d; = (—1)7"'-det A;, where A; is the submatrix of
A determined by removing the j-th column. Then I = (d,ds, ..., dy+1)R. Furthermore,
for any k = 1,2,...,m + 1, we denote by [; the minimum of the exponents of x; that

appear in the entries of A. Let us notice that A’s entries which are powers of x; appear

as follows:
QK
x, "
a2 k-1
Ly,
ag,
x,"
xzk+1,m+1
A2 m
Ly,
QA k+2
Ly,
if 1 <k<m,and
o o
xml’m xml-ﬂﬂ
a2 m—1 a2,m
m m—+1
or

Qm,1 Qm,2
T Tyl
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if k =m or m + 1, respectively. So, we have

min { @ p—it11<i<k U { G k—igmi2 thcicm 1<k <m,
Br =

min {ai,k—i+1}1§i§m ifk=morm+1.
Then, for any £k = 1,2,...,m+1, we can choose 7; so that one of the following conditions

is satisfied:
(i) 1 <ix <kand By = ki1 or (i) k<ix <mand By = a4, k—ip+m+2 -

Now, for any ¢ =1,2,...,mand j =1,2,...,m+ 1, we set

O o—it1— ep -
xkz,k i+1 51@ le S k',

Qip, = o s
AR R
Then a;bk =1forall k=1,2,...,m+ 1. The next assertion can be verified easily.

Lemma 2.4.1. Suppose 1 <i<mand1<j<m+1.

(1) Ifi+j7 <m+2, settinghk =i+j—1, we havel <k <m+1,i <k and

_ B

(2) Ifi+j>m+2, settingk =i+j—m—2, we havel <k <m, i >k and

o Be
aZj_Ik 'aik.

Let @ be the ideal of R generated by xfl, :zch, . ,xfn:f . Then A € Mat(m,m+1;Q)

by 2.4.1. The assertion (2) of 2.1.1 follows from the next

Proposition 2.4.2. (™) =™ :p Q and (I™)*™ /I = R/Q.
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Proof. Let S be the polynomial ring over R with variables Ty, 75, ..., ;11 . We regard
S as a graded ring by setting deg7; =1 for any j =1,2,...,m+ 1. Let

m—+1

fi=)Y _ayTj €S

j=1
for any ¢+ = 1,2,...,m and let K, be the Koszul complex of fi, fo,..., fin. Then K,
is a graded complex. Let 0, be the boundary map of K, and let eqy,es,..., €, be an

S-basis of K consisting of homogeneous elements of degree 1 such that 0;(e;) = f; for all

1=1,2,...,m. As is stated in the proof of 2.3.1,

is an acyclic complex, where € is the R-linear map such that

[e5¥g pleP] QUm+4+1\ __ Joq Jo Q41
E(Tl PR i >—d1 dy "‘dm+1

for any non-negative integers oy, o, ..., Q11 With a; + as + -+ + ayy; = m. We
obviously have Ime = I"™. Weset e = e; AeaA---Aey, and € =ey A---Ae;A---Ae,, for
any ¢ = 1,2,...,m. Let us take {e} and {736, |1 <i<m,1<j<m+ 1} as R-basis

of [Ku]m and [K,,_1]m , respectively. Because

m m m+l1
(Jj) am(e) = Z( - lfz ez Z Z Téz ;
i=1 i=1 j=1

we have O, ([Km|m) C Q - [Km—1]m - Hence, by 1.3.1 we get

(]m ‘R Q)/Im = [Km]m/Q[Km]m = R/Q
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Here, for any i = 1,2,...,mand 7 =1,2,...,m+ 1, we set
Ty i<k,
Ty =

Tk—i+m+2 ifi>k.

Then the following assertion holds:
Claim 1 Suppose 1 < k.l <m+1 and k #{, then Ty, # Ty for anyi=1,2,...,m.

In order to prove the claim above, we may assume k£ < £. Then the following three cases
can happen: (i) i <k </, (ii) k <i </ or (iii) k < ¢ <i. Because k—i+1 < {—i+1
and k—i+m+2 < {—i+m+2, we get T, # Ty in the cases of (i) and (iii). Furthermore,
asm+1>0—k,wegetk—i+m+2>/(—i+1,and so Tj; # Tj, holds also in the case
of (ii). Thus we have seen Claim 1.

Now, for any k =1,2,...,m+ 1, we set

V(k,e) = Z(—l)iila;k . ﬂkéz < [Km—l]m .
i=1
Then the following equality holds:
m—+1

Claim 2 0,,(e) = Z T Ve -
k=1

In fact, by (f) and 2.4.1 we have

m  m—i+2 m+1
Ome) = D (D (=D7'ay-Tiei+ D (1) tay - Tié)
=1 j=1 j=m—i+3
m  m+l i—1
= Z (Z(—l)’_lxgka;k Ty + Z(—l)’_lxg’“a;k Ty itmioCi )
=1 k=i k=1

m
= Z (_1)2_1x£ka;k - Tigéi,
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and so the equality of Claim 2 follows.

Finally, we need the following:
Claim 3 {vg ) }1<k<m is a part of an R-basis of /1] -

If this is true, by 1.3.4 (See [8, 3.4] for the case where m = 2) we get depth R/(I™ :g
Q) > 0, which means (I")*" = "™ .5 Q. So, let us prove Claim 3. By Claim 1, we see

that 15, 1€;,, iy 2€iy, - - -, 13, m€i,, are different to each other. We set
U:{Tjéi | 1<i<m, léjgm“—l}\{ﬂl«kéik | lgkém}

and aim to prove that U U {v ) }1<k<m is an R-basis of [K,,—1]m . By 1.3.3, it is enough
to show that the submodule of [K,,_1],, generated by U U {v(x¢) }1<k<m includes Tj, é;,
for any k =1,2,...,m. This can be easily seen since
Ve = (“DF Tt + 3 (<) ey - Tads
itip
and Tj.é; € U if i # i, which follows from Claim 1. Thus the assertion of Claim 3 follows,

and the proof of 2.4.2 is complete. n

If we assume a suitable condition on {«;;}, we can describe a generator of (1™)% /1™ .

Foranyi=1,2,.... mand k=1,2,...,m+ 1, we set

{ a;kdk,prl if 4 S k
bi =

, .
Cplr—iymia 1>k,

and B = (by) € Mat(m, m + 1;1). Then the next equality holds:
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i 0
x5 0
Lemma 2.4.3. B i =
T 0
Proof. For all i =1,2,...,m, we have
m—+1

Z aijdj =0.
j=1

Let us divide the left side of this equality as follows:

m—i+2 m—+1
E aijdj + E aijdj =0.
j=1 j=m—i+3

f1<j<m-—i+2, settingk=i4+7—1, wehave i <k <m+1 and

— Br 1 — Bk
aijdj =T Qg - dk,iJrl =T - blk .

On the other hand, if m—i+3 < j<m+1,settingk =i+j—m—2,wehave 1 <k <1

and
aijd; = 2" Yy - iz = 03" - ik -
Thus we get
m—+1
S by =0
k=1
forall = 1,2,--- ,m, which means the required equality. O]

For any k£ = 1,2,...,m + 1, we denote by Bj; the submatrix of B determined by

removing the k-th column. We set by = (—1)*"!det By, € I™.
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Proposition 2.4.4. Suppose [y, = ag, for any k = 1,2,....m (For example, this holds
if g =1 for any k =1,2,...,m). Then, there exists 6 € R such that x}* - § = by, for

any k=1,2,...,m+1 and (I™)™" = 1"+ (6) .

Proof. The existence of ¢ such that x -0 = by forany k= 1,2,...,m+ 1 follows from

2.2.3 and 2.4.3. Then § € I'™ ;5 Q C (I™)**. We put Q' = (28", 25*, ..., 2%)R. Then

0 e
A = m 0 mod @',
rot
and so d; = Fap,.; mod @', where @ = aymq1 + Qom + -+ + Q2. Furthermore,

if 2 <k <m+1, we have d, € @’ since the entries of the first column of M, are
P P Hence Q' 41 = Q' + (x%.,). On the other hand, the assumption of

2.4.4 implies that, for all k = 1,2,...,m, we can take k itself as iy, and then aj, = 1.

Hence
/ / / /
dy appdy  ayzds oo dydm 0
/ / / /
g i1 dy S (W az,m+1dm
_ / / / /
B = ag dm  A3pdmy1 dy s g a’3,m+1dm—1 ;
/ / / /
and so
(6%
i$m+1
e .Y 0
P /
Bm+1 — 0 . HlOdQ )
(0%
:tmerl

which means by, = £277%, mod Q’. Thus we get

Bm+l /
Ty -0 =yt mod Q.

Here we notice 1 < a1 me1 < «. Because 22 2% gPmis an R-regular sequence
m+ ,m—+ 1> 2 ) » Um—+1 )



24.

it follows that
§ = £ mod Q'
and so
Q+(0)=Q + (@) 2Q + (ent) = Q'+ 1™
Now we consider the R-linear map

Q + (T ™) _ Q@ +(9)
Q+(apg)  Q+Im

f:R—>
such that f(1) is the class of 2%7”"*' . Then we have the following:
Claim Ker f=0Q.

If this is true, then R/Q = (Q' + (9))/(Q" + I'™), and so

Q' + (%)
Q/ + [m

(r(R/Q) = lr( ).

77

Because (Q' + (0))/(Q" + I') is a homomorphic image of (I"™ 4 (0))/I™ and I™ + (§) C

(I™)%* | we have

Q + (%)
Q/ + |m

I+ (6)

lr(

where the last equality follows from 2.4.2. Thus we see

I+ (9)

b —

) = Lr((I™)™ /1),

and so I™ + (6) = (I™)%* holds.

) < Cn( ) < (™)™ /T™) = (a( R/Q)
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Proof of Claim. Let us take any z € Ker f. Then, there exists w € R such that

moa—Bm+1 mao /
A =w-x,5, modQ .

This congruence implies
ma—ﬂm«kl 6m+1 !/
Lint1 (’Z_w'xm—&—l)EQ'
Because xfl, e ,xﬁ;’l,x%i}ﬁ "™+ is an R-regular sequence, we have z — w - xﬁ{’;ﬁl € qQ,

which means z € (). Hence Ker f C (. As the converse inclusion is obvious, we get the

equality of the claim, and the proof of 2.4.4 is complete. O
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