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Abstract 

 

Flexible wings of insects and bio-inspired micro air vehicles generally deform 

remarkably during flapping flight owing to aerodynamic and inertial forces, which is of 

highly nonlinear fluid-structure interaction (FSI) problems. To elucidate the novel 

mechanisms associated with flexible wing aerodynamics in the low Reynolds number 

regime, I have built up a FSI model of a hawkmoth wing undergoing revolving and 

made an investigation on the effects of flexible wing deformation on aerodynamic 

performance of the revolving wing model. To take into account the characteristics of 

flapping wing kinematics I designed a kinematic model for the revolving wing in 

two-fold: acceleration and steady rotation, which are based on hovering wing 

kinematics of hawkmoth, Manduca sexta. Our results show that both aerodynamic and 

inertial forces demonstrate a pronounced increase during acceleration phase, which 

results in a significant wing deformation. While the aerodynamic force turns to reduce 

after the wing acceleration terminates due to the burst and detachment of leading-edge 

vortices (LEVs), the dynamic wing deformation seem to delay the burst of LEVs and 

hence to augment the aerodynamic force during and even after the acceleration. During 

the phase of steady rotation, the flexible wing model generates more vertical force at 

higher angles of attack (40~60 deg.) but less horizontal force than those of a rigid wing 

model. This is because the wing twist in spanwise owing to aerodynamic forces results 

in a reduction in the effective angle of attack at wing tip, which leads to enhancing the 

aerodynamics performance by increasing the vertical force while reducing the 

horizontal force. Moreover, our results point out the importance of the fluid-structure 

interaction in evaluating flexible wing aerodynamics: the wing deformation does play a 

significant role in enhancing the aerodynamic performances but works differently, 



 

 

which is mainly induced by inertial force in acceleration but by aerodynamic forces in 

steady rotation. 

In addition to the study on the flexible revolving wing, the hovering flight of a 

hawkmoth, Agrius convolvuli are recorded with five synchronized high-speed video 

cameras as the study on the flexile flapping wing. The integrated method of the filming 

and reconstruction of a three-dimensional wing model involving both wing kinematics 

and deformations have been developed with the aim of establishment of a realistic 

flapping flexible wing model with sufficient precision. Our results show that the wing 

deformations of the reconstructed wing model in the present study have larger values 

than that of the past studies. Moreover, single-flapping wing computation are tested 

with an in-house biology-inspired numerical flight simulator. In the comparative study 

of dynamically morphing and flat wing model, our result show that the wing 

deformation enhance not only the aerodynamic force but also the flight efficiency which 

is defined with the vertical force and power. 

Finally, the flexibility of the body was focused. The position and attitude controls of 

flapping wing flyers are challenging because of their inherent instabilities. Insects can 

cope with such difficulties by finely and quickly tuning their wing kinematics. In 

addition, it is known that insects change their posture through the joint between thorax 

and abdomen in response to visual stimuli. In this study, the effect of the body flexion 

on the flight dynamics of a hovering hawkmoth are investigated numerically by using 

an in-house computational fluid dynamics (CFD) and a flexible body dynamics (FBD) 

solvers. For an integrated understanding of the effects of the body flexion, the curved or 

flexible body models, which replicate the longitudinal active and passive body flexion 

respectively, are developed. Our computational results indicate that the slight change of 

the center of mass (CoM) caused by the active body flexion alters the total aerodynamic 

torque, which result in the large pitch-up or pitch down of the body within a few 

wingbeat cycles. It is also found that, even though the rigid body pitches up in 

free-flight with a measured wing kinematics, the mild flexibility in the body can 

maintain the body attitude without any control. These results point out the importance of 



 

 

the CoM position on the flight dynamics and control of a flapping flight and, 

furthermore, the possibility of the simple but effective flight-control system with the 

body flexion for a bio-inspired MAV. 

  



 

 

 

 

Acknowledgements 

 

I would like to thank, firstly, my advisor Professor Hao Liu who has guided me to 

the world of biomechanics in animal flight and given me the opportunity to work on a 

fascinating subject. I benefited a lot from his excellent supervision during my Master 

and Ph. D. I learnt so much from his not only the proffesional knowledge but also the 

courage to challenge and face difficulty in scientific research. 

 

I sincerely thank Prof. Masahiro Takei, Prof. Shigeru Sunada, Prof. Ken-ichi Tsubota 

and Prof. Masanori Ota for serving as the committee members and for providing many 

precious and fruitful suggestions. 

 

I would like to thank to following people in the Liu laboratory, Dr. Toshiyuki Nakata 

and Dr. Masateru Maeda for valuable discussions and giving me so many helps 

throughout th years, and Mr. Li Gen for his advice on writing papers, and Mr. Takashi 

Fujiwara for his efforts maintaining our computers. I am also grateful to all the 

members of Biomechanical Engineering Laboratory for all their help, ideas and 

camaraderie. 

 

Finally, I would like to thank my parents for their support and encouragement during 

my time at Chiba University. 

 

This work was partly supported by the Grant-in-Aid for Scientific Research 

(21360078 and 18100002) and Grant-in-Aid for Scientific on Innovative Areas 

(24120007, JSPS). 



 

 

 



 

 
 1 

 

 

Chapter 1 

General introduction 

 
Insects and birds have high flight abilities and can maintain the stable flight in the 

nature with the various environmental disturbances (Combes, et al., 2010, Siegert, et al., 

2013, Ravi, et al., 2013, Mountcastle and Combes, 2014). It is also known that most of 

insects and birds have a flexible structure on their wings and body and these deformable 

structure can change shape passively on the wing (Young, et al., 2009, Du and Sun, 

2010, Tanaka, et al., 2011, Zheng, et al., 2013, Mountcastle and Combes, 2013) and 

actively/passively on the body (Camhi, 1970, Kammer, 1971, Götz, et al., 1979, 

Zhanker, 1988, Baader, 1990, Fry, et al., 2003, Luu, et al., 2011, Hinterwirth and Daniel, 

2010, Dyhr et al., 2013) and dynamically during flapping flight while flights with 

fixed-wing and rotary-wing are generally given rigid wings. These deformable 

structures of insects have attracted attentions from researcher in either biology (Combes 

and Daniel, 2003, Shyy and et al., 2010, Zhao and et al., 2011) or engineering 

(Hinterwirth and Daniel, 2010, Tanaka and Shiroyama, 2010, Marardika, et al., 2011, 

Nakata and Liu, 2012) and it is also known the flexibility of the wing and body affect on 

aerodynamics, flight dynamics and flight stability (Nakata and Liu, 2012, Kim and Han, 

2012, Yokoyama, et al., 2013). 

Studies on the flapping flight mechanisms of insects have been around for a long 

time (Walker, 1931, Maxworthy, 1971, Weis-fogh, 1973, Bennett, 1977, Maxworthy, 

1979, Spedding and Maxworthy, 1986, Ellingtion, 1996). In the past, a dynamically 

scaled mechanical robots has been used for the investigation the flow structure around 

the wing and the measurement of the aerodynamic/inertial forces. However there were 
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some difficulties in the quantitative evaluation. Recently, these studies have been begun 

analyzing with numerical method by many researchers with advances in computational 

methods. The three-dimensional computational fluid dynamics (CFD) study on the 

flapping flight was firstly conducted by Liu (Liu, et al., 1998). In this study, a full 

Navier-Stokes simulation using a finite volume method was solved with a hawkmoth, 

Manduca sexta model. Then the number of research in three-dimensional CFD for 

investigation of the unsteady flows in the near-/far-fields (Wang, 2000, Liu, 2002, 

Ramamurti and Sandberg, 2002, Sun and Gang, 2003, Miller and Peskin, 2004, Aono, et 

al., 2008) has been increased gradually. Moreover, these CFD analysis was coupled with 

a body dynamics/computational structural dynamics (CSD) analysis (Sun, et al., 2007, 

Wu, et al., 2009, Nakata and Liu, 2012, Kim and Han, 2014) and it has been 

approaching to reproduce the more realistic flapping fight in the computational study. 

In the present paper, I focus on the flexibility of the wing and body of a hawkmoth 

and these effects on aerodynamics, flight dynamics and flight stability have been 

investigated numerically/experimentally. In Chapter 2, the flexible revolving wing 

computations with an in-house fluid-structure interaction (FSI) solver was conducted 

for elucidating the novel mechanisms associated with flexible flapping wings. In 

Chapter 3, the method of the digitizing and reconstruction of the wing kinematics and 

deformations was developed with high-speed video cameras and a hawkmoth, Agrius 

convolvuli for reconstructing the dynamically morphing wing model with sufficient 

precision. Finally in Chapter 4, a flexible multi body dynamics solver with a 

three-dimensional flexible beam model was developed newly and coupled with an 

in-house CFD solver. Using this integrated simulator, the active/passive effect of the 

body flexibility has been investigated with hawkmoth body model. 
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Chapter 2 

Revolving wing : 

Aerodynamic performance of rigid and 

flexible wings 

 
2.1 Introduction 

Insect's inherent flexible wings and flapping-winged micro air vehicles (MAV) are 

generally shaped thin and flat with light structures. These bio-flyers and bio-inspired 

MAVs flap their wings with high flapping frequencies to stay airborne, and within each 

beat cycle flapping wings repeat acceleration and deceleration. These wings normally 

are deformed mainly due to inertial and aerodynamic forces. This is of highly nonlinear 

fluid-structure interaction (FSI) problems. Many studies relating flexible wing 

aerodynamics have been undertaken (Young, et al., 2009, Du and Sun, 2010, Tanaka, et 

al., 2011, Mountcastle and Combes, 2013, Zheng, et al., 2013) till now, however they 

mostly focused on flapping wing aerodynamics with prescribed wing deformations. The 

wing deformation based on the FSI analysis and its effect on flapping flexible wing 

aerodynamics and energetics are still a main subject because there is the complexity of 

nonlinear interactions between flapping wing aerodynamics and structural dynamics 

(Nakata and Liu, 2012). 

Recently, aerodynamics of revolving wing models have also been a subject as a 

simplified model for flapping wings. This study is conducted either by means of 

dynamically scaled mechanical robots (Dickinson, et al., 1999, Usherwood and 

Ellington, 2002, Lentink and Dickinson, 2009) or by computational fluid dynamic 
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models (Zheng, et al., 2013, Harbig, et al., 2013) in the low Reynolds number regime. 

These models present the general aerodynamic performance of a flapping wing by force 

coefficients that can be estimated with blade element models, and the effects of wing 

planform shape, twist and camber on the revolving wing aerodynamics can be further 

investigated in a separated way (Usherwood and Ellington, 2002, Zheng, et al., 2013, 

Harbig, et al., 2013). Such revolving wing models with a simplified kinematics may be 

an essential model for an integrated understanding of the essence of flapping wing 

aerodynamics in a manner of separating some novel mechanisms such as the LEV and 

other force enhancement mechanisms from the complexity of flapping wing systems. 

In this study, I aim at establishing a FSI model of a revolving insect wing to tackle 

the nonlinear FSI problem associated with flexible wing aerodynamics at low Reynolds 

numbers. Follow our previous computational FSI analysis (Nakata and Liu, 2012) of 

flexible flapping wing aerodynamics that utilized a realistic morphological and 

structural model of hawkmoth wing, I constructed our revolving wing kinematics on the 

basis of the realistic wing kinematics of a hovering hawkmoth with a Reynolds number 

and the characteristics of acceleration identical to those of the hovering hawkmoth 

(Nakata and Liu, 2012). The kinematic model for the revolving wing is designed in 

two-fold: acceleration and steady rotation, in which the wing is accelerated around a 

pivot at wing base from rest and continues steady rotation after reaching the mean 

angular velocity of a hovering hawkmoth. The wing deformation, and the vertical and 

horizontal forces of the flexible revolving wing are simulated and compared with those 

of a rigid revolving wing. I further give an extended discussion on wing aerodynamics 

and energetics during the phases of acceleration and steady rotation and its correlations 

with wing deformations as well as its discrepancy compared with flapping wings.  

 

2.2 Methods 

2.2.1 Morphological wing model and revolving wing kinematics 

In this study, I use a hawkmoth wing model that was originally developed by Aono 

and Liu (2006) on the basis of the two-dimensional digitized image of hawkmoth, 
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Agrius convolvuli. The wing length R and mean chord length cm are 5.05 and 1.83 cm, 

respectively. Figure 2.1 shows the hawkmoth wing model and the coordinate system 

used in this study.  

The inertial force as well as aerodynamic force can have significant effects on wing 

deformations (Combes and Daniel, 2003). Therefore, the kinematic model of a 

revolving wing is constructed by simplifying the realistic wing kinematic of a hovering 

hawkmoth so that the Reynolds number and acceleration of the wing can be same with 

that of the hawkmoth’s wing in hovering. The angular velocity of revolving wing  is 

defined as follows: 

w  t( ) =
Wcos

1

2
1+

t

T
accel

æ

è

ç
ç

ö

ø

÷
÷
p

æ

è

ç
ç

ö

ø

÷
÷
, t<Taccel

W, Taccel ³ t

ì

í

ï
ï

î

ï
ï

 

 

(2.1) 

where  is rotational angular velocity, t is dimensionless time and Taccel is the time 

when the wing terminates its acceleration and starts steady rotation. In this study, Taccel 

is defined by using the wing kinematics of a hovering hawkmoth, Manduca sexta (Aono 

and Liu, 2006, Willmott and Ellington, 1997). As shown in figure 2.2, the wing tip 

velocity reaches its maxima when the flapping-wing tip acceleration of the hovering 

hawkmoth becomes zero at about 0.15 flapping period, which is identical to a 

dimensionless time of approximately1.64 after stroke reversal. I utilize this value as 

Taccel in equation (2.1). The rotational velocity  in equation (2.1) is calculated to be 

104.41 rad/s. The time-history of the angular velocity  during the acceleration phase is 

also plotted in figure 2.2. The wing model keeps rotation up to three revolving cycles 

after Taccel during the phase of steady rotation. The Reynolds number Re is defined as Re 

= Uref cm/, where Uref is reference velocity and  is the kinematic viscosity of air 

(1.5×10
-5

 m
2
/s). The mean chord length cm is used as the reference length, and the Uref is 

defined as R, the wing tip velocity of the rigid wing in steady rotation. Hence, Re is 

calculated to be approximately 6,400. 
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2.2.2 Fluid-structure interaction (FSI) model 

Analysis of the flexible revolving wing aerodynamics was conducted with an 

in-house fluid-structure interaction (FSI) solver developed by Nakata and Liu (2012). 

This FSI solver consists of a computational fluid dynamics (CFD) solver based on a 

fortified Navier-Stokes solver (Liu and Kawachi, 1998, Liu, 2009) and a computational 

structural dynamic (CSD) solver (Nakata and Liu, 2012) based on the finite element 

method specialized for thin structure such as insect wing. The CFD and CSD solvers are 

coupled in a manner of loose coupling. More details can be found in Nakata and Liu 

(Nakata and Liu, 2012). Note that the hawkmoth body model, which was used as a 

global grid in previous studies, is replaced with a sufficient small cylinder, which has 

been confirmed having negligible influence on the revolving wing aerodynamics. Both 

CFD grids and CSD meshes used in this study are illustrated in figure 2.3. 

 

2.2.3 Computational fluid (CFD) dynamics solver 

A general formulation of the multi-blocked, overset grid, fortified solutions to the 

Navier-Stokes equations is performed in the global system (X, Y, Z) as depicted in 

figures 2.3a and 2.3b. The algorithm employed here is based on a single Navier-Stokes 

solver as in Liu and Kawachi (Liu and Kawachi, 1998) but is extended to a 

multi-blocked, overset-grid system by means of the fortified solution algorithm (Liu, 

2009). The governing equations are the three-dimensional, incompressible, unsteady 

Navier-Stokes equations written in strong conservation form for mass and momentum. 

The artificial compressibility method is used by adding a pseudo time derivative of 

pressure to the equation of continuity. For an arbitrary deformable control volume V(t), 

the non-dimensionalized governing equations are 

dV
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In the preceding equations,  is the pseudo-compressibility coefficient; p is pressure; 

u, v, and w are velocity components in Cartesian coordinate system X, Y, and Z; t 

denotes physical time while  is pseudo time; and Re is the Reynolds number. Note that 

the term q associated with the pseudo time is designed for an inner-iteration at each 

physical time step, and will vanish when the divergence of velocity is driven to zero so 

as to satisfy the equation of continuity. 

The fortified Navier-Stokes solution algorithm is achieved by adding forcing terms 

to the Navier-Stokes equations; by introducing the generalized Reynolds transport 

theorem and by employing the Gauss integration theorem, an integrated form of the 

equation (2.4) in general curvilinear coordinate system is obtained as 

   qqnQufQ
q










 f

tS

g

tVtV

dSdV
t

dV 


)()()( , 

 

(2.3) 

where f = (F+Fv, G+Gv, H+Hv); S(t) denotes the surface of the control volume; 

n=(nx, ny, nz) are components of the unit outward normal vector corresponding to all the 

faces of the polyhedron cell; ug is the local velocity of the moving cell surface. The 

switching parameter  is set to be sufficiently large, compared to all the other terms in 

the region, and where the solution qf is available by the subset equations, and zero 

outside the region. For >> 1, the added source term simply forces q = qf; otherwise it 

blends q with qf. When = 0, the equations go back to the ordinary Navier-Stokes 

equations. 

The solutions to the multi-blocked, overset grid Navier-Stokes equations require 

specific boundary conditions at the overlapping zone stencils among grids, at the solid 

walls of a revolving wing and a cylinder as well as at the far field outside boundary as 
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shown in figure 2.3a. For two single grid blocks, the fortified Navier-Stokes equations 

were solved two times at each time step (Liu, 2009). For the holes inside the grid and 

the outermost two grid points, the qf are specified there by q of overlapping zones with 

other single grid at previous time step. Inside the computational domain except the 

holes and the single grid boundary q are equal to qf by setting = 0. 

When the Navier-Stokes equations are solved for each block, the aerodynamic 

forces Faero = (Fax, Fay, Faz) exerted on the wing is evaluated by a sum of aerodynamic 

forces in the global coordinate system. In this study, the vertical and horizontal forces 

coefficients Cv and Ch on a revolving wing are defined in the same way as in 

(Usherwood and Ellington, 2002) such as: 

2
2


S

F
C az

v


, 
(2.4) 

2
3


S

T
C az

h


, 
(2.5) 

where Fv is the aerodynamic vertical force on a single wing, Taz is the torque about 

the rotational axis, S2 and S3 are the second and third moments of area for a single wing 

(Ellington, 1984), respectively. 

 

2.2.4 Computational structural dynamic (CSD) solver 

In order to simulate dynamics and large deformations of insect wings due to inertial 

and aerodynamic forces under revolving motion, a finite element method (FEM)-based 

structural dynamic solver is employed (Nakata and Liu, 2012). To model a thin structure 

like insect wing, I employ a triangular shell element termed AT/DKT with a very thin 

and anisotropic structure, which combines an Allman membrane triangular (AT) 

element with a discrete Kirchhoff triangular (DKT) element (Ertas, et al., 1992). The 

element is hereby further utilized to study nonlinear dynamic response by introducing 

an updated Lagrangian (UL) formulation (Bathe, et al., 1975, Mohan and Kapania, 

1998). The virtual work principle for a single element at time t+t can be expressed as 
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e
T

s
T WVdVd   RRsε   (2.6) 

where s is the density of a wing; R is the position in reference to the origin of the 

global coordinate system at time t+t; s and  are the vectors of second Piola-Kirchhoff 

stress and incremental Green-Lagrange strain form the configuration at time t to the 

configuration at time t+t, respectively; We is the virtual work done by external forces 

F such as fluid force. By using the nodal displacement due to elastic deformation in 

reference to the wing base-fixed frame us and shape functions of AT/DKT elements 

(Ertas, et al., 1992), the integrals of equation (2.6), representing the virtual work due to 

internal and inertial forces in an element, can be given by 

 huMRR  s
T

s Vd  Tu , (2.7) 

 is
T Vd fKusε 

Tu , (2.8) 

where K is the tangent stiffness matrix; M is the consistent mass matrix; fi is the 

internal force vector; h represents the inertial forces by prescribed flapping motion. The 

equilibrium equation given by substituting equations (2.7) and (2.8) into equation (2.6) 

is assembled to form the global incremental equilibrium equation. The nonlinear 

equation of motion is solved by using the Newton-Raphson method combining with 

Wilson  integration scheme, which may be expressed as 

e
i

s
i

i
i

s
i

huMfFuK   )1()1()()1(   (2.9) 

where us
(i)

 = us
(i-1)

+us
(i)

. The superscripts of K
(i-1)

 and fi
(i-1)

 denote the previous 

time of i-1 when us
(i-1)

 (Bathe, et al., 1975). 
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2.3 Results and Discussion 

2.3.1 Force generation in rigid and flexible revolving wings 

Figure 2.4a-b show time courses of vertical and horizontal force coefficients plotted 

against angles of wing revolution. Non-dimensional time is depicted on the horizontal 

axis for reference. It is seen that the aerodynamic forces of both rigid and flexible wings 

show a rapid increase immediately after the onset of wing revolution, which is more 

obvious at higher angles of attack (40 ~ 60 deg.) due to the added mass. Note that the 

aerodynamic forces are apparently enlarged in the flexible wing during the acceleration 

phase (An extensive discussion on discrepancy between rigid and flexible wing will be 

given in section 2.3.3). The aerodynamic forces are relatively stable after the unsteady 

(acceleration) phase (0-180 deg.) but turn to decrease gradually after 360 deg. when the 

wing encounters and passes through the downwash generated during the first cycle. A 

bigger drop in both vertical and horizontal forces is then observed at higher angles of 

attack (40 ~ 60 deg.). As postulated by Usherwood and Ellington (2002) a full 

development of the vortex-structured wake with its associated radial inflow over the 

wing can shift the position of vortex breakdown inwards under steady rotational 

conditions at higher angles of attack and hence lead to a reduction in vertical force. At 

lower angles of attack (10 ~ 20 deg.), both vertical and horizontal forces converge 

comparatively faster and then keep almost constant without fluctuations till 1080 deg. 

Such decreasing in aerodynamic forces are continuously observed from 360 to 720 deg. 

but then the aerodynamic forces turn out to be unstable fluctuating largely at larger 

angles of arrack even though the wake is fully developed after the second cycle. Such 

time-varying feature of aerodynamic forces against angles of attack is also observed in 

experimental studies (Dickinson, et al., 1999, Usherwood and Ellington, 2002). For the 

sake of discussion, I have defined the interval from 0 to 180 deg. as unsteady 

(acceleration) phase, and the interval from 720 to 1080 deg. as steady (rotation) phase, 

and the averaged forces during each interval will be used for the following discussions. 
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2.3.2 Wing deformation in flexible revolving wings 

Twist and spanwise bending at 0.8R are further plotted against angle of wing 

revolution as illustrated in figure 2.4c-d. Note that the twist angle tw and the spanwise 

bending angle b are defined in a wing base-fixed coordinate system as depicted in 

figure 2.5. Both the twist and spanwise bending are observed increasing with increasing 

angle of attack throughout most of the period of the simulation. During the acceleration 

phase, the wing changes its shape rapidly and the wing deformation is maximized 

around a phase of 20 deg., where the largest twist and spanwise bending are 

approximately 7.2 deg. and 8.6 deg., respectively. Such large wing deformation is 

thought due to the large inertial forces (Combes and Daniel, 2003) as well as the large 

aerodynamic forces as described in the preceding section. Then the wing rapidly returns 

to its original flat shape until a phase of 50 deg. and eventually converges to some level 

around 180 deg. after experiencing some slight fluctuations. Corresponding to the time 

courses of aerodynamic forces in figure 2.4a-b the twist and spanwise bending also 

demonstrates a pronounced decrease during the interval from 360 to 720 deg. Note that 

at higher angles of attack slight fluctuations in twist and spanwise bending are observed 

after 540 deg., which are induced by the unstable vertical and horizontal forces as 

shown in figures 2.4a-b. 

 

2.3.3 Aerodynamic performance during unsteady phase 

Figure 2.6 shows the time-averaged vertical force coefficients Cv, horizontal force 

coefficients Ch, and their ratios Cv/Ch versus angles of attack. Note that these 

time-averaged value were calculated by using each time-varying value in the 

two-interval (unsteady and steady phases) as shown the shaded areas in figure 2.4. Table 

2.1 further gives those values at four angles of attack. During the unsteady phase when 

the wing rotates from 0 up to 180 deg., the vertical force coefficient increases with 

increasing angle of attack till the AoA of 40 deg. but then shows a drop at the AoA of 60 

deg. The horizontal force coefficient, however, shows a monotonic increase at four 

angles of attack. Such correlation between the time-averaged force and angle of attack is 
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also observed by Dickinson et al. (1999) and by Usherwood and Ellington (2002). Note 

that this tendency is also seen here in the case of the flexible wing. I further compare the 

discrepancy between rigid and flexible wings. Interestingly, I see that the FSI-based 

wing deformations lead to a reduction of horizontal force coefficients at all four angles 

of attack as shown in figure 2.6a and in table 2.1. The vertical force coefficients (figure 

2.6b), however, show a divergent result: the flexible wing underperforms the rigid wing 

at lower angles of attack of 10-20 deg. but outperforms the rigid wing at higher angles 

of attack of 40-60 deg. Furthermore, the vertical-to-horizontal force ratio Cv/Ch of the 

flexible wing outperforms the rigid wing at all four angles of attack (figure 2.6c). Our 

results demonstrate that the flexible wing undergoing revolving is capable to achieve 

better aerodynamic performance during the unsteady (acceleration) phase. Moreover, it 

is interesting to find that the vertical-to-horizontal force ratio shows a pronounced 

increase with increasing the angle of attack with a net increase of 9.3, 12.7, 14.0, 15.0% 

compared with that of the rigid wing at the angle of attack of 10, 20, 40, 60 deg., 

respectively.  

Here I further take one case at angle of attack of 40 deg. for instance to give an 

extensive discussion on aerodynamic performance during unsteady (acceleration) phase. 

Note that this angle of attack corresponds to the cycle-averaged feathering angle of a 

flapping wing in hawkmoth hovering, and the corresponding aerodynamic performance 

of the flexible revolving wing obtained here can be used to predict and analyze that of 

the flexible flapping hawkmoth wing. As shown in figure 2.7a-b the maximum vertical 

and horizontal force coefficients produced by the flexible wing are at least 25 percent 

larger than those of the rigid wing and the timing is obviously largely delayed. Such 

delayed timing of the maximum aerodynamic forces in the flexible revolving wing 

actually corresponds with a delayed LEV very similar with that observed in a flapping 

flexible wing by Nakata and Liu (2012). As illustrated in figures 2.8-2.9 the visualized 

pressures and spanwise vorticity on upper wing surface completely support such 

delayed LEV mechanism of the flexible revolving wing model. The pressure contours 

on upper surfaces of flexible and rigid wings show significant discrepancy as well as the 
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spanwise vorticity does at 0.5R and 0.8R. Note that the flow visualizations are done at 

three points of A, B and C (figure 2.7) corresponding to three phase angles of wing 

revolution of 23.74, 31.06, and 38.27 deg., respectively. In addition, as can be seen in 

figure 2.7c-d and figure 2.9A-C, the twist and spanwise bending in the flexible wing 

result in some pitch-up rotation at wing tip, which is likely capable to stabilize the 

LEVs and hence to enhance the generation of both vertical and horizontal forces. 

 

2.3.4 Aerodynamic performance during steady phase 

During the steady phase when the wing rotates from 720 up to 1080 deg. as shown 

in figure 2.6 and Table 2.2 the plots of force coefficient against angle of attack show 

similar tendency with that of the unsteady phase; the flexible wing outperforms the rigid 

wing at higher angles of attack of 40-60 deg. and is capable to achieve better 

aerodynamic performance. Here the vertical-to-horizontal force ratio also shows a 

pronounced increase with increasing the angle of attack with a net increase of 3.0, 14.3, 

11.5, 10.3% compared with that of the rigid wing at the angle of attack of 10, 20, 40, 60 

deg., respectively.  

Note that the time-varying force coefficients and wing deformations, at higher 

angles of attack of 40-60 deg., show comparatively large fluctuations in both flexible 

and rigid wings (figures 2.4a-b). Such fluctuating feature observed in the aerodynamic 

forces is probably caused by the breakdown and shedding of LEVs and tip vortices, 

which may result in some unstable vortex structures at wing tip. Liu, et al. (Liu, et al., 

1998) pointed out that the tip vortex generates some reverse pressure gradient on the 

wing surface and hence creates a reverse axial flow in the half of the down-stroke; 

Harbig, et al. (Harbig, et al., 2013) reported that as Reynolds number increases, the LEV 

tends to evaluate to two co-rotating vortex structures with a smaller counter-rotating 

vortex created as well as some adverse pressure gradient through the core of the vortex.  

Again with consideration of the case at angle of attack of 40 deg. in order to give an 

extensive discussion on aerodynamic performance during the steady phase, I find that 

the vertical force coefficient of the flexible wing is slightly higher than that of the rigid 



 

 
 14 

wing but the horizontal force coefficient is approximately 10% lower. Furthermore, it is 

seen that the slight fluctuations in twist and spanwise bending are less than 1.0 deg., 

which should have less influence on the flow structures. These are supported as shown 

in figures 2.10-2.11 by the visualized pressure contours and spanwise vorticity of 

flexible and rigid wings at three angles of wing revolution of 802, 904 and 997 deg., in 

which the discrepancy between flexible and rigid wings is margin. Figure 2.12 shows 

time courses of local angle of attack of the flexible wing from wing base to wing tip at 

AoA of 40 deg. At positions of 0.2R and 0.4R, the local angle of attack is reduced 

merely less than 1.0 deg. but when the position is greater than 0.4R the angle of attack 

shows a reduction by 2.0 to 5.0 deg. 

 

2.4 Summary 

In this study, the effects of wing deformation on aerodynamic performance of a 

revolving insect wing model are investigated by using a hawkmoth wing model and 

FSI-based simulations. It is confirmed that the wing flexibility can enhance the 

aerodynamic performance of the flexible revolving wing both during acceleration (an 

unsteady phase) that replicates the flapping wing kinematics of a hovering hawkmoth 

and during steady rotation (a steady phase) particularly when the angle of attack is large 

sufficient to match the mean feathering angle of a hovering hawkmoth. The flexible 

wing model can generate much greater aerodynamic forces than the rigid wing does 

during the acceleration phase because the dynamic wing deformations owing to the 

wing acceleration that results in large inertial and aerodynamic forces can reduce the 

angle of attack at wing tip. During the phase of steady rotation, the wing deformation is 

comparatively smaller but the wing twist can still reduce the angle of attack at wing tip 

and hence increases the vertical force at higher angles of attack (40~60 deg.) while 

reducing the horizontal force. Both of these (acceleration-based) unsteady and steady 

(rotation) mechanisms for the flexible revolving wing model presumably hold more or 

less for flexible flapping wings as well. Moreover, our results demonstrate that the 

fluid-structure interaction is important and essential in evaluating the aerodynamic 
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performance of flexible flapping wings and even in the simplified case of the revolving 

wing model, the wing deformation due to inertial force / aerodynamic force can enhance 

the aerodynamic performances but in different manner during acceleration / steady 

rotation. 
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Fig. 2.1 (a) A hawkmoth wing model with a global coordinate system (X, Y, Z) and a 

wing-fixed coordinate system (x', y', z'); (b) Definition of angle of attack (AoA) at wing 

base. 

 

Fig. 2.2 Time courses of angular velocities and accelerations of a flapping hawkmoth 

wing in hovering (dotted lines), and angular velocity of a revolving hawkmoth wing 

model (solid black line). 
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Fig. 2.3 Grid systems. (a) Local grid for CFD analysis; (b) A FEM mesh model of a 

hawkmoth wing; (c) global grids for CFD analysis. Note that a local tiny cylinder grid is 

set merely for generating global grids and its influence is negligible. 
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Fig. 2.4 Time courses of (a) vertical and (b) horizontal force coefficients generated by 

revolving flexible and rigid wings, and (c) twist, (d) spanwise bending of a flexible 

revolving wing. Shaded area corresponds to unsteady (0-180 deg.) and steady 

(720-1080 deg.) phases. 
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Fig. 2.5 Definition of (a) spanwise bending angle sb and (b) twist angle tw in a flexible 

wing. Computed wing deformations are described in a wing base-fixed coordinate 

system. 
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Fig. 2.6 Effects of angle of attack on (a) vertical and (b) horizontal force coefficients, 

and (c) vertical to horizontal force coefficient ratio in revolving flexible and rigid wings. 

Experimental results by Usherwood and Ellington (2002) are also plotted for 

comparison. 
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Fig. 2.7 Time courses of (a) vertical and (b) horizontal force coefficients of revolving 

flexible and rigid wings, and (c) twist, (d) spanwise bending of a flexible revolving 

wing during unsteady phase. 
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Fig. 2.8 Pressure contours on upper surfaces of flexible and rigid wings at instants A- C 

in Fig. 2.7. 
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Fig. 2.9 Spanwise vorticity around rigid and flexible wings at instants A-C (Fig. 2.7) 

with AoA of 40 deg. Cross-section of a rigid wing is superimposed in the results of 

flexible wing by dotted line for comparison. White solid lines represent contours of 

constant Q criterion. 
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Fig. 2.10 Pressure contours on upper surfaces of flexible and rigid wings at angle of 

wing revolution of (a) 802; (b) 904 and (c) 997 deg. 
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Fig. 2.11 Spanwise vorticity around rigid and flexible wings at angle of wing revolution 

of (a) 802; (b) 904 and (c) 997 deg. with AoA of 40 deg. Cross-section of a rigid wing is 

superimposed in the results of flexible wing by dotted line for comparison. White solid 

lines represent contours of constant Q criterion. 
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Fig. 2.12 Time courses of local angles of attack of a flexible wing from wing base to tip 

during steady phase at AoA of 40 deg. 
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Table 2.1  Force coefficients during unsteady phase at four angles of attack 

Angle of 
attack  

(degree) 

Cv Ch Cv/Ch 

Flexible Rigid Flexible Rigid Flexible Rigid 

10 0.46 0.50 0.10 0.12 4.46 4.08 

20 0.95 0.98 0.32 0.38 2.93 2.60 

40 1.62 1.56 1.12 1.22 1.47 1.29 

60 1.59 1.44 2.10 2.15 0.77 0.67 

 

 

Table 2.2  Force coefficients during steady phase at four angles of attack 

Angle of 
attack  

(degree) 

Cv Ch Cv/Ch 

Flexible Rigid Flexible Rigid Flexible Rigid 

10 0.26 0.28 0.075 0.08 3.38 3.28 

20 0.71 0.71 0.25 0.29 2.80 2.45 

40 1.27 1.24 0.88 0.96 1.45 1.30 

60 1.11 1.01 1.48 1.51 0.75 0.68 
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Chapter 3 

Flapping wing : 

Wing deformation of a hovering 

hawkmoth and aerodynamic 

performance of the morphing wing 

 
3.1 Introduction 

The effect of wing deformation of insects on their flight ability has attracted 

attentions from researchers in either biology (Combes and Daniel, 2003, Shyy, et al., 

2010, Zhao, et al., 2011) or engineering (Tanaka and Shiroyama, 2010, Hinterwirth and 

Daniel, 2010, Marardika, et al., 2011, Nakata and Liu, 2012) and simultaneous 

measurement of wing kinematics and deformation for a hovering insect is essential for 

an integrated understanding of flexible wing aerodynamics and flight maneuvering 

during flapping flights. However, there are usually some difficulties in filming and 

recording high-resolution sequences of insect hovering with high-speed video cameras 

and in digitizing and reconstructing a three-dimensional wing model involving both 

wing kinematics and deformation with sufficient precision (Zheng, et al., 2013). In this 

study, aiming at establishing a realistic flapping flexible wing model for hawkmoth 

hovering, I have developed a method to integrate the digitizing and reconstruction of the 

wing kinematics and deformations. 
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3.2 Methods 

3.2.1 Animals 

Male and female hawkmoths, Agrius convoluvuli (Linnaeus, 1758) were obtained in 

a pupal state from the Research center for advanced science and technology at Tokyo 

University. Pupae were kept under a 16 hours and 8 hours light:dark cycle at 28 °C. 

After eclosion, adult moths were kept under a 20 hours and 4 hours light:dark cycle at 

27°C for reducing their activity and avoiding damage during flight in the glasshouse. 

Figure 3.1 show the glasshouse which is designed can control the temperature and 

maintain the humidity over 80 percent. Note that male and female moths were kept 

separately because our experimental set-up for measuring of a hovering moth need to 

induce moths to a certain area by specific fragrance. For maintaining the mass, the adult 

moths were fed with honey-water (1:10 honey:water) once a day during the activity 

time. Moreover, the black circle-shaped markers were sprayed on the upper and lower 

sides of the wings for motion tracking as soon as the adult moth emerge. Note that these 

painting-mass are less than 8 percent of the total wing mass. 

 

3.2.2 Experimental design for filming of a hovering hawkmoth 

After three days from eclosion, the moth's hovering flight were filmed with five 

high-speed video cameras (Fastcam SA-3, Photron) and four infra red lights as shown in 

Fig. 3.2. Figure 3.3 also shows the calibration frame with eight metallic spheres used in 

this study. Note that the dotted background image were given for avoiding the crash to 

wall and the damage to wings during flight. The resolutions of these high-speed video 

cameras were 1024×1024 pixels and these were synchronized at 1000 frames per 

second and set the shutter speed at 1/7500 second. In this study, on the assumption that 

the wing deformation and wing kinematics are symmetric about the sagittal plane, the 

right wing was focused for reconstructing a three-dimensional wing model with 

sufficient precision. 
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3.2.3 Reconstruction of the wing kinematics and deformation 

Figure 3.4 shows the images used in the process of reconstructing the 

three-dimensional coordinates. Using these continuous images during hovering flight, 

the markers were tracked and the three-dimensional coordinates were reconstructed with 

a direct linear transformation (DLT) method. The marker points are consist of four 

points on the body surface and thirty-four points on the upper and lower sides of wings. 

Note that these reconstructing process were performed with the application for motion 

analysis (DIPP-Motion Pro, Ditect).  

Using the reconstructed-coordinate points, the wing deformation was reproduced 

with wing-coordinate. The interpolation of the lacked points which is due to the attitude 

of a hawkmoth during flight were conducted by least-squares method. In this method, 

the displacement xn, yn at time = tn was interpolated by real-valued function f(x, y, t) as 

bellow 
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then a1,2(i,j,k) = (au1,2(i,j,k), av1,2(i,j,k), aw1,2(i,j,k)) was calculated by least-squares 

method. Moreover, the sum of squares of residual L=(Lu, Lv, Lw) was described as 

bellow 
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where N denote the all measurement points including the time direction. In this 

equation, when L get the smallest value the coefficient a1,2 (i,j,k) is satisfied with the 

equation as described bellow 
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the another direction v, w are described as the same way. 
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3.3 Results and Discussion 

3.3.1 Morphing wing 

The initial fore and hind wing model was constructed on the basis of the 

two-dimensional digitized images, respectively. Then the fore and hind wings were 

coupled on the basis of the position and holding angle at the wing-base of each wing 

and treated as the single wing in this study. Figure 3.6 A -B shows the fore and hind 

wings of a hawkmoth and Fig. 3.6 C-D shows the reconstructed wing models used in 

this study. The wing length R and mean chord length cm are 3.60 and 1.24 cm, 

respectively. Moreover, the reconstructed wing kinematics are shown in Fig. 3.7 and the 

side view and top view images of reconstructed morphing wing model are also shown in 

Fig. 3.8. Note that the calculated stroke plane angle is 23 deg, wingbeat amplitude is 

101 deg and wingbeat frequency is 39 Hz. 

Figure 3.9 B-C show the time courses of feathering angels and camber at each wing 

span plotted against wingbeat cycles. It is seen that the positive and negative values of 

feathering angle increase with increasing the position of wing span over the most of the 

range. Moreover, the all reversal points of feathering angle at each wing span slightly 

shifts to the end of downstroke. In the time course of the camber, this trend also can be 

seen, however the positive and negative large values are seen around the middle of the 

wing span. Considering the difference of the wing size and the scale effect of the 

stiffness, these wing deformations during a hovering flight have the larger values than 

that of the computational study by Nakata and Liu (2012) and furthermore, these wing 

deformations and the trend about the time course are similar to that of the hummingbird 

(Maeda, 2013).  

 

3.3.2 Aerodynamic performance of the morphing wing 

To evaluate the effect of the wing deformation on aerodynamic performance, single 

wing computation with flat and dynamically morphing wing model was conducted 

using a biology-inspired numerical flight simulator (Liu, 2009). Grid system for 
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computational fluid dynamics analysis are shown in Fig. 3.10. 

Figure 3.11 A-B show the time courses of the vertical force and power over the third 

wingbeat cycle and the visualized flow field of the morphing and flat wing model at t/T 

= 2.3 are shown in Fig. 3.12 A-B, respectively. It is seen that the morphing wing model 

has the lager value than the flat wing model over the most of the range. The peak values 

of the vertical force and power can be seen around the middle downstroke in both 

morphing and flat wing models. These trend of the time course are similar to the 

experimental and computational study (Aono and Liu, 2006, Nakata and Liu 2012, 

Zheng, et al., 2013). This is due to the development of leading-edge vortex as shown in 

Fig. 3.12 A-B. Moreover, the strong downwash is seen in the morphing wing model 

more than the flat wing model because of the existence of the vortex ring which is 

shaped over the wing base to wing tip in the morphing wing model while the vortex 

generated around the wing base shed from the wing surface in the flat wing model. 

Although the wing-body interactions of the flow field are not taken into account in this 

study, these doubled-time averaged values are sufficient to lift their body. 

Using the time-averaged values of the vertical force and power, Fv / P is defined and 

calculated as the flight efficiency. Fv / P of the morphing wing model is 0.26 and the flat 

wing model is 0.22. It is revealed that the morphing wing model has the 18 percent 

higher efficiency compared to that of the flat wing model in this study. These result 

indicate that the wing deformation enhance the efficiency of the flapping flight as can 

be seen in the other study (Nakata and Liu, 2012). 

 

3.4 Summary 

In this study, aiming at establishing a realistic flapping flexible wing model for 

hawkmoth hovering, I have developed a method to integrate the digitizing and 

reconstruction of the wing kinematics and deformations. Male and female hawkmoths, 

Agrius convolvuli are kept separately under the constant light:dark cycle to elicit a 

stable hovering. After achieving the hovering flight, black circle-shaped markers are 

applied on the upper and lower sides of the wings as characteristic points. The hovering 
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flights are recorded with five synchronized high-speed video cameras and four infra red 

lights. The markers are then tracked and the three-dimensional wing coordinates are 

reconstructed with a direct linear transformation (DLT) method. Considering the 

difference of the wing size and the scale effect of the stiffness, the wing deformations of 

the reconstructed wing model in this study have larger values than that of the past 

computational studies. Moreover, using a biology-inspired numerical flight simulator, 

the hawkmoth model with prescribed wing kinematics and deformation are tested. The 

computational fluid dynamic (CFD) trials for the comparative study of dynamically 

morphing and flat wing model reveal that the wing deformation enhance not only the 

aerodynamic force but also the flight efficiency which is defined with the vertical force 

and power. 
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Fig. 3.1 Glass house with the thermostat for keeping adult moths. 
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Fig. 3.2 Experimental set-up with five high-speed video cameras and four infra red 

lights. 
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Fig. 3.5 Tracking points for the motion analysis. Four points are applied on the body 

surface and thirty-four points are applied on the upper and lower sides of the right wing. 
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Fig. 3.7 Reconstructed wing kinematics. 

 

 

Fig. 3.8 Morphing wing model. (A) Side view and (B) Top view. 
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Fig. 3.10 Global and local grids for Computational fluid dynamics analysis.. 
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Chapter 4 

Flight dynamics : 

Effect of the body flexibility with active 

and passive body models 

 
4.1 Introduction 

Insect flight has been attracting attentions from researchers who wish to develop 

novel bio-inspired micro air vehicles (MAV). Their smart maneuver is, in general, 

achieved by controlling aerodynamic forces with flapping wings in response to the 

sensory inputs (Taylor, 2001). In order to understand the flight dynamics and the 

mechanics of the control, various studies with theoretical or numerical models have 

been undertaken (Frye, 2001, Hedrick and Daniel, 2006, Sun, et al., 2007, Wu, et al., 

2009), which suggest some difficulties in the attitude control of flapping wing flyers. 

For example, Sun, et al. (2007) reported that there is the inherent instability in pitch 

direction and suggested that active neural feedback is required for pitch stabilization. 

It is also known that insects can change their postures in longitudinal and lateral 

directions through a joint between thorax and abdomen  (Camhi, 1970, Kammer, 1971, 

Götz, et al., 1979, Zhanker, 1988, Baader, 1990, Fry, et al., 2003, Hinterwirth and 

Daniel, 2010, Luu, et al., 2011, Dyhr et al., 2013). For example, the abdominal 

responses of a hawkmoth, Manduca sexta, under visual stimuli are observed in pitch 

direction more than yaw or roll direction (Hinterwirth and Daniel, 2010, Dyhr et al., 

2013). Even though the body flexion looks small, it can affect the flight dynamics and 

stabilities (Yokoyama, et al., 2013, Kim and Han, 2014). In order to understand the 
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flight dynamics of insects with the body flexion and to find novel control strategies for 

MAV, I investigate the effect of the longitudinal active and passive body flexion on 

flight dynamics by using an in-house CFD and FBD solver. The active body flexion is 

assumed to be static flexion of the body, and the kinematics model is constructed on the 

basis of the observations (Dyhr et al., 2013). The passive body models that have the 

flexibility in a joint between thorax and abdomen are also constructed with a 

three-dimensional flexible beam model. Based on the simulated results, I further discuss 

on the flight control and stability of the flyers with the active and passive abdominal 

flexion in terms of the design of flapping-winged MAVs. 

 

4.2 Methods 

4.2.1 Morphological and kinematic models of a hovering hawkmoth 

In this study, I use the morphological model of a hawkmoth, Agrius convolvuli, that 

was originally developed by Aono and Liu (2006) on the basis of the two-dimensional 

digitized image. The realistic kinematic model of a hovering hawkmoth is based on the 

measurement of the hawkmoth Manduca sexta, by Willmott and Ellington (1997). Note 

that wing kinematics model is constructed with the Fourier series as the same way in 

Liu, et al. (1998a). Figure 4.1A and B show the definitions of three-dimensional 

movement of a flapping wing and the time-series data of each angle for flapping wing. 

The major parameter used in this study, including the parameter used for an in-house 

CFD and a FBD solver are also shown in Table 4.1. 

 

4.2.2 Flexible body dynamics solver 

Finite element method (FEM), which is often used for formularization of beam with 

large deformation and large rotation, includes floating reference frame method, 

incremental finite element method, large rotational vector method, absolute nodal 

method, and so forth. In this study, update reference frame method which was one of the 

floating reference frame method, was employed to formularize the equations. Force of 
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each element and tangent modulus matrix are derived through infinitesimal deformation 

theory based on coordinates of the element just before updated due to motion of the 

beam. Equations of motion in update reference frame method are 

   0 extintL fqfqKqCqM   (4.1) 

where M, C and KL are mass, damping, and stiffness matrices, respectively. fext is 

external force. fint (q) , which is restoring force occurring with deformation of the beam, 

is a nonlinear function of the generalized coordinate q. Tangent modulus matrix KN is 

also required for numerical integration. 

 qfK intN   (4.2) 

 

Internal stress and stiffness matrix in this method are as follows. Orthogonal 

reference frame O-XYZ and element reference frame o-xyz, which is defined at each 

position of the element, are employed as coordinate systems (Fig. 4.2). Here I named 

the state just before present one and present state as "preceding state" and "current state", 

respectively. They show the context not only in time but also in Newton iterative 

process. In element reference frame, z-axis is oriented from node i to j, and x, y-axes are 

then determined so as to be perpendicular to z-axis. Both reference frames are 

right-handed coordinate systems and x, y-axes are oriented toward the principal axis of 

each cross-section. Displacement of certain node i in the generalized coordinate system 

in terms of orthogonal reference frame 
iq  and element reference frame 

iq  can be 

expressed as: 
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iq  (4.3) 

where subscript i, j denote numbers of nodes at both ends of the beam. Considering 

the preceding and current state at the beam element i-j, increment of displacement Δq 

can be calculated as: 

 
bq-qq   (4.4) 

where qb is the generalized coordinate of both ends of the beam in preceding state, q 

that in current state. By expressing Eq. (4.4) in the element reference frame, following 

equation is derived: 

 qTq b   (4.5) 

where Tb is transformation matrix which has 12×12 elements: includes four 3×3 

matrices Λb, which transform the coordinate from orthogonal to element reference 

frame, as diagonal components. With the components of node i, j at both ends of the 

element, Δq’ can be expressed as: 

 Tjjjjjjiiiiii wvuwvu  q  (4.6) 

The angles between z, y and x-axes in preceding state and those in current state shown 

in Fig. 4.3, namely increment of beam attitude angle, can be defined as: 

 

b

ij

l

uu
u





ˆ , 

b

ij

l

vv
v





ˆ , 

b

ij

l

ww
w





ˆ  (4.7) 
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With Eqs. (4.6) and (4.7), increment of angular deformation can be calculated as: 
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where the last term, which is the approximation derived by neglecting second-order 

infinitesimal, is described for intuitive comprehension. For example, Δεyi denotes 

increment of angular deformation around y-axis at node i; it is derived by subtracting 

increment of attitude angle from that of angular displacement. Deformation of the 

current state ε is 

   b  (4.10) 

given that 
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  Tzjyjxjziyixi 
 

  Tzjyjxjziyixi 
 

where ε and Δε are angular displacement and its increment, respectively. Axial 

elongation εL is derived by subtracting natural length l0 from current length l, which is 

calculated with q: 

0llL   

Therefore force of element in current state f'int is described as: 


intf  T

jzjyjxjzjyjxiziyixiziyix MMMfffMMMfff   

where 

 yjyi

y

xi
l

EI
f  

2

6

   xixj ff   

 xjxi
x

yi
l

EI
f  

2

6
   yiyj ff   

Lzi
l

EA
f        zizj ff   

 xjxi
x

xi
l

EI
M   2

2
    xjxi

x
xj
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EI
M  2

2
  

 yjyi

y
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l

EI
M   2

2

    yjyj

y

yj
l

EI
M  2

2
  

 
zizjzi

l

GJ
M      zizj MM 

 

By transforming coordinate of f'int with transformation matrix in current state T, force 

of element in orthogonal reference frame fint is gained as: 

 
int

T
int fTf   (4.11) 

On the other hand, stiffness matrix consists of elastic deformation matrix K’0 and 

geometric stiffness matrix K’G. These matrices are expressed as: 



 

 
 55 

































































































l

GI

l

GI
l

EI

l

EI

l

EI

l

EI
l

EI

l

EI

l

EI

l

EI
l

EA

l

EA
l

EI

l

EI

l

EI

l

EI
l

EI

l

EI

l

EI

l

EI
l

GI

l

GI
l

EI

l

EI

l

EI

l

EI
l

EI

l

EI

l

EI

l

EI
l

EA

l

EA
l

EI

l

EI

l

EI

l

EI
l

EI

l

EI

l

EI

l

EI

PP

yyyy

xxxx

xxxx

yyyy

PP

yyyy

xxxx

xxxx

yyyy

0000000000

0
4

000
6

0
2

000
6

00
4

0
6

000
2

0
6

0

0000000000

00
6

0
12

000
6

0
12

0

0
6

000
12

0
6

000
12

0000000000

0
2

000
6

0
4

000
6

00
2

0
6

000
4

0
6

0

0000000000

00
6

0
12

000
6

0
12

0

0
6

000
12

0
6

000
12

22

22

2323

2323

22

22

2323

2323

0K































































































0
44

00
44

0

4
000

2
0

4
000

2
0

4
0000

24
0000

2

00000000

2
00

2
00

0
2

00
2

0

0
44

00
44

0

4
000

2
0

4
000

2
0

4
0000

24
0000

2

00000000

2
00

2
00

0
2

00
2

0

xjyj

xjxj
xiyi

xjxj

xjTxjT

yjTyjT

xj
T

xi
T

xj
T

xi
T

xjyj

xixi
xiyi

xixi

xiTxiT

yiTyiT

xi
T

xi
T

xj
T

xi
T

MM
VW

MM
VW

M

l

MM

l

M

M

l

MM

l

M
l

W

l

V

l

W

l

V

V
l

M

l

W

l

T
V

l

M

l

W

l

T

W
l

M

l

V

l

T
W

l

M

l

V

l

T

MM
VW

MM
VW

M

l

MM

l

M

M

l

MM

l

M
l

W

l

V

l

W

l

V

V
l

M

l

W

l

T
V

l

M

l

W

l

T

W
l

M

l

V

l

T
W

l

M

l

V

l

T

GK



 

 
 56 

where 

  LlEAT       zizjT lGJM    

  lMMV yjyixi 43       lMMV yjyixj 43  

  lMMW xjxixi 43       lMMW xjxixj 43
 

Stiffness matrix in orthogonal reference frame KN is then derived by transforming 

coordinate, such as: 

  TKKTK G0
T

N   (4.12) 

Synthesizing fint、KN for all the elements of beam, force of element and stiffness matrix 

for all the degrees of freedom can be calculated. Hence equations of motion can also be 

constructed. Note that coordinate transformation matrix T should be updated based on 

the preceding state, such that: 

 diagT
 b 
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Neglecting high-order infinitesimal term for simplicity and intuitive comprehension, ΔΛ 

can be expressed as: 
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 (4.13) 

In preceding equations, multiplication of three matrices means the rotation around xb, yb 

and zb-axis by angles v̂ 、 u̂ 、  2ji   , respectively. For example, Fig. 4.4 shows 

the schematic description of the beam from zb-axis direction, where the position at the 

left end of the beam i in current state is translated so that it overlaps with that in 

preceding state. 

 

222

jijbibji  






 (4.14) 

 

In this study, numerical integration was conducted through Newmark-β method and 

Newton-Raphson method[6]. Approximate solution at tn+1 is computed through time 

integration method assuming displacement, velocity, and acceleration at tn are known. 

Based on approximate solutions, the convergent solution of displacement, velocity, and 

acceleration at tn+1 are then derived by iterative calculation in Newton-Raphson method, 

which is employed for the solution for nonlinear simultaneous equations. 

In the first step of iterative computation, approximate solution at tn+1 is computed 

through time integration method based on displacement, velocity and acceleration at tn. 

Hence Eq. (4.1) can be rewritten as: 
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             (0)
n1next,

1
1n

01
1n

01
1n

0
FFqKqCqM  

  (4.15) 

where M
(0)

, C
(0)

 and K
(0)

 are mass, damping and stiffness matrices at tn, respectively; 

(0)

nF  is nonlinear correction force, such as: 

    
n

0
n

0
nkint,ncint,

(0)
n qKqCFFF    (4.16) 

Note that at the first step of iterative computation, each matrix and nonlinear correction 

force are computed with nq , nq  and nq  at tn. In Newmark-β method, displacement 

and velocity are given by: 

   n1nn1n qqqq     1h  
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














  1nnnn1n qqqqq  

2

12hh  
(4.17) 

where h is the time step; β and γ are parameters. By substituting Eqs. (4.16) and (4.17) 

for Eq. (4.15), simultaneous equations to take acceleration  1
q 1n
  as an unknown are 

gained as: 

              

















  nn

0
n

0
nkint,ncint,1next,

1
1n

000
qqKqCFFFqKCM  

2

1
1 22 hhhhh  (4.18) 

 1
q 1n
  can be derived from Eq. (4.18) and  1

q 1n
 ,  1

q 1n  from Eq. (4.17). In case 

displacement  1
q 1n  is unknown, the same process is available by determining 

simultaneous equations to take  1
q 1n  as unknown instead of Eq. (4.18). Since Eq. (4.1) 

is derived through linear approximation between tn and tn+1, 
 1

q 1n
 ,  1

q 1n
  and  1

q 1n  do 

not rigorously satisfy the equations of motion at tn+1. Therefore, after the second step of 

iteration (l=2, 3,..)  the approximate solution is corrected by 
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 (4.19) 

An equation of equilibrium at tn+1 is expressed as: 

 1next,1nkint,1ncint,1niner, FFFF    (4.20) 

By substituting Eq. (4.18) for Eq. (4.20), performing Taylor expansion around the 

quantities at the l-1 step of iteration  1-1
q 1n
 ,  1-1

q 1n
  and  1-1

q 1n  , and taking first-order 

term of Taylor expansion, following equation is derived: 

             1)-(l
1nkint,

1)-(l
1ncint,

1)-(l
1niner,1next,

l1-ll1-ll1-l
FFFFqKqCqM      (4.21) 

where  1-l
M ,  1-l

C ,  1-l
K , 1)-(l

1niner,F  , 1)-(l
1ncint,F   and 1)-(l

1nkint,F   are determined based on the 

quantities at the l-1 step of iteration  1-1
q 1n
 ,  1-1

q 1n
  and  1-1

q 1n . From Eqs. (4.17) and 

(4.18), I derive 

    

   ll

ll

qq

qq









2h

h




 (4.22) 

By substituting Eq. (4.22) for Eq. (4.21), simultaneous equations about  l
q  is gained 

as: 

          1)-(l
1nkint,

1)-(l
1ncint,

1)-(l
1niner,1next,

l1-l1-l1-l
FFFFqKCM    2hh  (4.23) 

Eq. (4.23) is solved to determine  l
q  and Eq. (4.22) to determine  l

q  and  l
q . 

 1-1
q 1n
 ,  1-1

q 1n
  and  1-1

q 1n  are then determined with Eq. (4.18). Iterative computation at 

each time step is conducted until the residual of force at each node is within the range of 

certain tolerance. 
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Using these formularization and time integration techniques, a three-dimensional 

flexible beam model was applied to a flexible body dynamics (FBD) solver which can 

analyze of the six-degrees of freedom (6DoF) flight and passive body flexions of a 

flying hawkmoth. The flexible beam model is located on the central axis of the body 

grid and the wing-base of the right and left wing grids as depicted in Fig. 4.5A. Note 

that the beam elements located on the central axis was divided into three part of the 

head, the thorax and the abdomen and the mass of each part was determined based on 

the measurement of the hawkmoth Manduca sexta, by Hedrick and Daniel (2006) as 

shown in Table 1. In addition, note that the aerodynamic forces on the wings act to the 

two wing base nodes. The governing equation is formulated on the basis of update 

reference frame method, which is included in the finite element method. In this method, 

the nonlinear restoring force and stiffness matrix are calculated on a basis of small 

deformation theories. The governing equation of the FBD solver is expressed as 

                            (4.24) 

where M expresses the lumped mass matrix, C the damping matrix, KL the linear 

stiffness matrix, fint the nonlinear restoring force, fext the external force, and q the 

positions and orientations in the global frame. Note that in the present study, each 

element changes the position not only by the deformation but also by the whole-body 

motion. Thus the restoring force is expressed as a nonlinear function of the 

displacement. For the integration, Newmark-β for nonlinear problems was used. The 

tangent stiffness matrix KN for the time integration is expressed as the partial derivative 

of fint as 

             (4.25) 

The KN can be divided into two parts as 

          (4.26) 

where KG is the geometric stiffness matrix and KO is the elastic deformation matrix. 
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The CFD solver and the FBD solver need to exchange information to achieve the 

coupled computation. I used the following manner for this coupling process (Piperno 

and Farhat, 2001), as shown in Fig. 4.6. (1) Predict the displacement of each node of the 

structural model at time tn+1, using the information (displacement, velocity and 

acceleration) at time tn; (2) Update the position of the fluid grid based on the increments 

of each node; (3) Transfer fluid force to the structure; and (4) advance the time in the 

FBD solver. 

Note that the computational fluid dynamics solver used in this study is the same that 

of section 2.2.3, however the background grid is changed for translation of the wing and 

body grids. In this study, a Cartesian grid is adopted as the background and the global 

grid as shown in Fig. 4.7A. More detail about the CFD solver, including the techniques 

about the multi-blocked and overset-grid system can be found in Liu (2009) and Maeda 

and Liu (2013). 

 

4.2.3 Active and passive body models 

Firstly, in order to see the effect of the active body flexion on flight dynamics, I 

constructed body models with a static flexion based on the measurement of the active 

body flexion under the visual stimuli by Dyhr, et al. (2013). Figure 4.8A-C show the 

three body models that have a straight body, a convex body and a concave body, 

respectively. Note that the abdominal angle of the convex and concave body models is 

adjusted to be approximately 15 and -15. Moreover, the differences of the moment of 

inertia in the pitch direction due the change of these abdominal angles are less than 0.5 

percent of the value of that of the straight body model. The center of mass (CoM) 

position in each body model is also shown in Fig. 4.8D. Note that the CoM position was 

calculated based on the masses and positions of all the nodes in global coordinate 

system such as: 

 
   

      
 
   

   
 
   

     
      

 
   

   
 
   

       
      

 
   

   
 
   

  (4.4) 

where mi expresses the mass of each node and xi, yi, zi the positions of each node in 
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the global coordinate system. Note that in this study, the number of all the nodes, 

including the wing base nodes is 43. 

In this study, the active body flexion is assumed to be static. Accordingly, the flight 

dynamics with active body flexion is simulated under the high stiffness condition in 

which I can treat the body as a rigid body model without passive abdominal flexion. 

Such conditions are achieved by changing the Young's modulus of all elements to 

1.0×10
5
 MPa. Furthermore, with consideration of minimizing the influence of the wing 

kinematics on flight dynamics to accurately evaluate the active body flexion, I 

performed all the simulations after an appropriate tuning of the wing kinematics. More 

details are given in section 4.2.4. 

Furthermore, I carried out an extended study on the effect of the dynamic-and 

passive-body flexion on flight dynamics by changing the Young’s moduli at the three 

joint elements between thorax and abdomen of Ej0 and Ej1 with Ej1 = 2Ej0 (Fig. 4.5B). 

Here Ej0 are set to be 0.025, 0.030, 0.045 and 0.1 MPa, respectively. The Young’s 

modulus Ej0 = 1.0×10
5
 MPa was chosen for a rigid body model as used for the active 

body flexion and was distributed uniformly across each cross section. 

 

4.2.4 Flight control system 

For a pure evaluation of the effect of active body flexion, the wing kinematics was 

refined to realize that the cycle-averaged thoracic angle of the straight body model (Fig. 

4.8A) is capable to maintain the initial thoracic angle t = 40 during free-flight. This 

‘designable’ wing kinematics was constructed via an in-house PD (Proportional- 

Derivative) flight control system, which was originally developed by Gao (2011). The 

configuration of the flight c１ontrol system is illustrated in Fig. 4.9. In this control 

system, errors between the sensed body attitude/position and the desired values that are 

set as the hovering conditions are fed back to the PD controller at the end of each 

wingbeat cycle. For the sensed data, I take the last-period-averaged values of the body 

position, the attitude, and the time derivative. The PD control algorithm is expressed as : 
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      (4.5) 

where Ow is the output values which are treated as the wing kinematic parameters; 

KP is proportional gain; KD is derivative gain; and e(t) is the error between the current 

attitude/position and the desired value. The output obtained from the controller is a set 

of slightly modified wing kinematics for the next wingbeat cycle, which is forwarded to 

the CFD solver as the input. Then a fluid-structure interaction (FSI) problem based on 

the CFD and FBD coupling is solved with the refined kinematics parameters. Note that 

the parameters used for longitudinal control are positional angle, feathering angle, 

stroke plane angle and flapping frequency. 

The body position and its attitude are fixed in the first wing beat as a tethered model 

but are released after then so as to perform the free-flight. Note that the refined wing 

kinematics and the transition from tethered flight to free-flight are adopted only to the 

active body flexion analysis. 
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4.3 Results and Discussion 

4.3.1 Refined wing kinematics via flight control system 

The refined wing kinematics are constructed using the averaged values during the 

period where can be treated as the hovering flight. Figure 4.10 shows the time course of 

the thoracic angle (Fig. 4.10A) and the trajectory of CoM in X-Z plane (Fig. 4.10B). It 

is seen that the stable state of the time course of thoracic angle after the 4th wingbeat 

cycle and the elliptical trajectory of the CoM during the period of t/T = 7 to 9. It is also 

seen that these condition are achieved in the different attitude and position from the 

initial attitude and position which are given to flight control system as the desired 

values. This is mainly due to the steady-state deviation and more accurate trimmed 

flight can be achieved with introducing PID control system. Moreover, it is seems that 

more exhaustive gain adjustment is required for more accurate trimmed flight because 

there are small oscillation of the cycle-averaged thoracic angle over the stable state. 

Although these results show room for improvement on the current control system, I 

adopted the averaged wing kinematics during the 8th and 9th wing beat cycle as the 

refined wing kinematics. The refined wing kinematics are illustrated in Fig. 4.11. Note 

that the refined stroke plane angle and frequency are 23.4 and 22.4 Hz, respectively. 

 

4.3.2 Effect of active body flexion 

Our computational results indicate that active body flexion in terms of variations in 

body posture can lead to pronounced changes in body attitude. Figure 4.12 shows the 

comparisons of the time courses of aerodynamic pitching torques acting on wings and 

body (Fig. 4.12A) and the time-averaged aerodynamic torques (Fig. 4.12B) among three 

models with different CoMs. It is seen that the positive and negative aerodynamic 

torques apparently correspond with the pitch-up and pitch-down of the body. The 

influence of these aerodynamic torques on the body attitude is further illustrated in 

Figure 4.13A and B in terms of the time courses of thoracic angles and the 

time-averaged thoracic angles over the 3rd wingbeat cycle. As shown in Fig. 4.12A, 
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there are peaks observed in the time courses of aerodynamic torques before and after the 

stroke reversal. It is seen that, even though the flapping wings generate the majority of 

the total aerodynamic torque, the body flexion also has an effect on the total 

aerodynamic torque as can be seen in the time-averaged values (Fig. 4.12B) because the 

shifts of the CoM position (Fig. 4.8D) leads to a change in the length of moment arm to 

each flapping wing. Note that the rate of the aerodynamic torque generated by the each 

body is less than 1 percent of the total aerodynamic torque in all three cases. It is also 

seen that there is the considerable difference of the time-averaged value of the 

aerodynamic torque from zero value in the straight body model (Fig. 4.12B), this may 

be due to the disappearance of the damping effect on the interaction between the 

moving body and flapping wings in tethered flight.  

Moreover, it is seen that the concave body leads to reducing the aerodynamic 

torques compared to the straight body model at supination while keeping the 

aerodynamic torque unchanged at pronation. Interestingly, while the straight body 

model generates a slight time-averaged pitch-up torque under tethered condition, the 

concave body model generates a 60 percent larger time-averaged torque, resulting in a 

significant pitch-up within a few wingbeat cycles of free-flight (Fig. 4.13A-B). On the 

other hand, the convex body can generate a pitch-down torque in a manner of 

time-averaged because the aerodynamic torque is reduced at pronation, which results in 

a rapid pitch-down in free-flight. 

 

4.3.3 Effect of passive body flexion 

Furthermore, our computational results of passive body flexion show that the body 

flexibility can affect the body attitude. Figure 4.13A and B show the time courses of the 

thoracic and abdominal angles with flexible bodies. The time-averaged thoracic angle 

and the amplitude of the oscillation of abdominal angle over the 5th cycle are also 

shown in Fig. 4.15A and B. It is seen that the thoracic angle is increased with decreasing 

stiffness from 0.1 MPa, and, interestingly, is decreased again when the body is more 

flexible than 0.03MPa. This nonlinearity is thought to be due to the non-linear 
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resonance which is demonstrated by the previous studies with flexible wings (Eldredge, 

et al., 2010, Mountcastle and Daniel, 2010). I am not going to discuss the detail of such 

phenomenon because of the complexity of the current model that simulates the 

interactions between aerodynamics, structural dynamics and flight dynamics. It is also 

seen that while the thoracic angle of the rigid abdomen is slightly increased with time 

and reaches 50 degree after 4 wingbeat cycles, the body with less flexible joint (Ej0 = 

0.1 MPa) is mostly stable, maintaining its initial thoracic angle throughout the 

free-flight simulation (Fig. 4.14A, Fig. 4.15A).  

With respect to the abdominal angle, I see a feature of scattering oscillation with 

high-frequency components in each flexible body model, which is likely a result of 

resonance. However, it is also observed that the oscillating amplitude seems to be 

increased with decreasing stiffness within the range defined here (Fig. 4.15B). Note that 

the abdominal angles of all flexible bodies are calculated to be less than 7 degree at 

highest, which are much smaller than those of the active body flexion case. Such 

deformations (Fig. 4.14B), however, can significantly affect the flight dynamics of 

hawkmoth hovering. It is still unclear yet whether such body flexibility plays a positive 

role in stabilizing the body dynamics, or merely result in some pitch-up or pitch-down 

of the body. In either case, it is of highly non-linear behaviors that are very likely 

associated with the interactions of aerodynamics and the flight dynamics of the flyer.  

 

4.4 Summary 

Flapping-wing flyers are subject to the inherent instabilities in their flight dynamics 

(Sun, et al., 2007). In this study, I have studied the effects of active and passive body 

flexion on flight dynamics by using in-house CFD and FBD solvers. Our computational 

results with active body flexion indicate that the body flexion has a significant impact 

on the flight dynamics: while the convex or concave body flexion lead to a slight 

change of CoM less than 2 percent of the body length, such a change obviously results 

in a pronounced variation in body attitude within a few wing beat cycles. This points out 

that the CoM position can be a sensitive parameter in the analysis of flight dynamics 
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and control of a flapping-wing flight, which may in case dominate the nature of 

maneuverability and flight stability. Furthermore, the free-flight simulations with 

flexible body models reveal that the body flexibility of a flapping-wing flyer can 

generate some pitch-up and pitch-down in a more complicated way than the steady body 

flexion, and, in particular, the abdominal oscillation very likely play a role in enhancing 

the flight stability.  

Furthermore, our results point to the potential and usefulness of the body flexion in 

designing a bio-inspired flapping-wing MAV. Taking into account the mechanisms of 

active / passive body flexion may be able to let us simplify the control system in 

flapping-wing flights, which can be achieved by adjusting high-speed flapping-wing 

motions. 
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Fig. 4.1 (A) Definition of three-dimensional movement of a flapping wing. (B) Wing 

kinematics of a hovering hawkmoth. 

 

 

Table 4.1  Parameters used for computational analysis 

Total mass, m (mg) 

Head, mh (mg) 

Thorax, mt (mg) 

Abdomen, ma (mg) 

Single wing mass, mw (mg) 

Mean chord length, cm (mm) 

Wing length, R (mm) 

Wingbeat frequency, f (Hz) 

Wingbeat amplitude,  (rad) 

Initial stroke plane angle  (deg) 

Density of air,  (Kg/m
3
) 

Kinematic viscosity of air,  (m
2
/s) 

Reference velocity, Uref (m/s) 

Reduced frequency, k (-) 

Reynolds number, Re (-) 

1591 

107 

596 

818 

35 

18.6 

48.8 

26.0 

1.71 

24.0 

1.225 

1.5×10
-5

 

4.34 

0.35 

5382 

( Uref = 2Rf ) 

( k = 2fcm/Uref ) 

( Re = Uref cm/ ) 
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Fig. 4.2 The orthogonal reference frame and the element reference frame. 

 

 

Fig. 4.3 Angles between current state and preceding state around y-axis. 
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Fig. 4.4 Angular displacement around zb-axis. 
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Fig. 4.5 (A) Schematic of the nodes and the beam elements. Note that the element 

number of each part is also displayed in parentheses. (B) Schematic of the beam 

elements around the joint between the thorax and abdomen. Young's modulus of the 

middle joint element (red) is termed Ej0 and each side joint elements (orange) are 

termed Ej1. All the other elements are termed Ej2 and given the same Young's modulus. 

(C) Definition of thoracic angle t and abdominal angle a. Note that thoracic angle t is 

measured from the horizon. 

 

 

 

Fig. 4.6. Configuration of coupling method using predicted value. 
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Fig. 4.7 Grid system. (A) Global grid blocks for fluid dynamics simulation with global 

coordinate system (X, Y, Z). (B) Grids of a hawkmoth model. 

 

 

 

Fig. 4.8 Active body models with static flexions. The body models are defined as: (A) 

The straight body model (Gray); (B) The convex body model (blue); and (C) The 

concave body model (red). (D) Modified center of mass in each body model due to the 

change of abdominal angle. 
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Fig. 4.9 Configuration of PD (Proportional- Derivative) control system. 

 

 

Fig. 4.10 Computational results of free flight with straight body model via flight control 

system. (A) Time course of thoracic angle. (B) Trajectory of CoM in the X-Z plane, 

starting from origin at t/T = 0. Magnified region indicate the period during t/T = 7 to 9. 
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Fig. 4.11 Refined wing kinematics (black) via flight control system. The initial wing 

kinematics (gray) is also plotted for comparison. 
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Fig. 4.12 Computational results of active body models. (A) Time courses of the 

CoM-based aerodynamic pitching torques. (B) Time-averaged aerodynamic pitching 

torques over the 1st (tethered) wing beat cycle. 

 

 

 

Fig. 4.13 Computational results of active body models. (A) Time courses of thoracic 

angles. (B) Time-averaged thoracic angles over the 3rd wingbeat cycle. 
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Fig. 4.14 Computational results of passive body models. Time courses of (A) thoracic 

angles and (B) abdominal angles. Shaded area corresponds to downstroke of each 

wingbeat cycle. 

 

 

 

Fig. 4.15 Computational results of passive body models. (A) Time-averaged thoracic 

angle over the 5th wingbeat cycle. Note that the value of that of rigid body model is also 

shown. (B) Amplitude of the oscillation of abdominal angle over the 5th wingbeat cycle. 
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Chapter 5 

Conclusions and future tasks 

 
5.1 Concluding remarks 

In the present paper, the flexibility of the wing and body of insects are focused and 

these effect on the aerodynamic performance and flight dynamics were studied with a 

bio-inspired numerical flight simulator. Moreover, the experimental study about filming 

of a hovering hawkmoth, Agrius convolvuli with the wing deformation and body flexion 

was conducted with high-speed video cameras. 

Firstly, as a simplified model for flapping wings, the revolving wing model was 

constructed and studied numerically for elucidating the novel mechanisms associated 

with flexible flapping wings in Chapter 2. 

Secondly, measuring and modeling wing deformation of a hovering hawkmoth, 

Agrius convolvuli were conducted with high-speed video cameras for reconstructing the 

dynamically morphing wing model with sufficient precision in Chapter 3. 

Finally, a flexible body dynamics solver was developed and coupled with an 

in-house computational fluid dynamics solver. Using this integrated simulator, the effect 

of flexibility of the body during flapping flight was studied in Chapter 4. 

It was revealed that the flexibility of insect's wing and body work effectively on the 

aerodynamics, flight efficiency, flight dynamics and flight stability in a separate way. 

Moreover, these results point to the potential and usefulness of the wing and body 

flexibility in designing a bio-inspired flapping-wing MAVs. 
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5.2 Future tasks 

In the study of the insect's flight dynamics and flight stability with a computational 

approach, because of the complexity of nonlinear interaction between aerodynamics and 

structural dynamics, the wing and body models are treated as a rigid models in most 

cases. In this paper, the effect of the flexibility of the wing and body are evaluated 

separately in terms of the aerodynamic performances of the flexible wing and the flight 

stability of the flexible body. 

Firstly, to aim at reproducing the realistic insect free flight with flexible wing and 

body in the computational analysis, the computational fluid dynamics solver for the 

wing and body aerodynamics, the computational structural dynamics solver for the wing 

and the flexible body dynamics solver will be coupled with manner of loose and the 

development of the newly bio-inspired simulator will be conducted.  

Secondly, using this simulator, the nonlinear flight stability with the flexible wing 

and body will be performed for revealing the effect of the flexibility on the flight 

stability. There are some reports that insects have inherent instability in pitch direction 

and they require the active neural feedback for stabilization in a computational analysis 

of the rigid models. However, there is a possibility that the inherent stability of insects 

enhance their flight stability and analysis of these effects with a computational approach 

will make it clear quantitatively. 

Finally, these results will apply to the designing of a flapping-winged MAVs and the 

development of the newly MAVs which have high stability to a gust of wind and high 

maneuverability will be conducted. 


