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Abstract 

Background:  

The relevance of lysophosphatidylcholine acyltransferase1 (LPCAT1), a cytosolic enzyme in 

the remodeling pathway of phosphatidylcholine metabolism, in oral squamous cell carcinoma 

(OSCC) is unknown. We investigated LPCAT1 expression and its functional mechanism in 

OSCCs. 

 

Methods:  

We analyzed LPCAT1 mRNA and protein expression levels in OSCC-derived cell lines. 

Immunohistochemistry was performed to identify correlations between LPCAT1 expression 

levels and primary OSCCs clinicopathological status. We established LPCAT1 knockdown 

models of the OSCC-derived cell lines (SAS, Ca9-22) for functional analysis and examined the 

association between LPCAT1 expression and the platelet-activating factor (PAF) concentration 

and PAF-receptor (PAFR) expression.   

 

Results:  

LPCAT1 mRNA and protein were up-regulated significantly (p<0.05) in OSCC-derived cell 

lines compared with human normal oral keratinocytes. Immunohistochemistry showed 



significantly (p<0.05) elevated LPCAT1 expression in primary OSCCs compared with normal 

counterparts and a strong correlation between LPCAT1-positive OSCCs and tumoral size and 

regional lymph node metastasis. In LPCAT1 knockdown cells, cellular proliferation and 

invasiveness decreased significantly (p<0.05); cellular migration was inhibited compared with 

control cells. Down-regulation of LPCAT1 resulted in a decreased intercellular PAF 

concentration and PAFR expression. 

 

Conclusion:  

LPCAT1 was overexpressed in OSCCs and correlated with cellular invasiveness and migration. 

LPCAT1 may contribute to tumoral growth and metastasis in oral cancer.   

  



Introduction 

Lysophosphatidylcholine acyltransferase1 (LPCAT1) is a cytosolic enzyme that catalyzes the 

conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC) in remodeling the 

pathway of PC biosynthesis. LPCAT1 is expressed constantly in lung tissue, especially in type 

II alveolar cells, and plays a fundamental role in generating dipalmitoyl-PC of pulmonary 

surfactant [1]. To date, LPCAT1 overexpression has been reported in hepatocellular carcinoma 

[2], colorectal adenocarcinoma [3], and prostate cancer [4-6] and has been described as 

contributing to cancer progression, metastasis, and recurrence. We previously reported the gene 

expression profile of OSCC to identify cancer-related genes, and LPCAT was up-regulated in 

OSCC-derived cell lines [7]. Recently, LPCAT1 was found catalyzing the biosynthesis of 

platelet-activating factor (PAF) (1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) with its 

lyso-PAF acetyltransferase activity [8, 9]. 

PAF is a lipid mediator involved in numerous biologic responses, including platelet 

activation, airway construction, and hypotension [9]. In the normal state, PAF is conditioned in 

very low concentrations, but in cases with some types of stimulation such as inflammation, PAF 

is produced immediately in several cellular types such as leukocytes, platelets, macrophages, 

and endothelial and renal cells [10, 11]. PAF is biosynthesized through two independent 

pathways called the de novo and remodeling pathways by lyso-PAF acetyltransferase [8]. There 



are two lyso-PAF acetyltransferases, LPCAT1 and LPCAT2, both of which produce PAF via 

remodeling pathway. LPCAT2 is the first detected lyso-PAF acetyltransferase 

 that catalyzes PAF biosynthesis in inflammatory cells such as macrophages, leukocytes, 

and neutrophils. This enzyme is Ca2+ dependent and activated in response to lipopolysaccharide 

or Toll-like receptor stimulation. In contrast, LPCAT1, recently recognized as another lyso-PAF 

acetyltransferase, is predominantly expressed in lung tissue and its activity is Ca2+ independent. 

Moreover, LPCAT1 is neither activated nor up-regulated by inflammatory stimulation. Thus, 

LPCAT1 have been thought to be non-inflammatory/constitutive lyso-PAF acetyltransferase. 

However, the role of PAF constitutively produced by LPCAT1 was still unknown.  

When cells are exposed to PAF, it binds to a specific receptor, PAF receptor (PAFR), 

which has restricted expression in key target cells of the inflammatory, immune, and hemostatic 

systems [12, 13]. PAFR belongs to the G protein-coupled receptor protein family, and activated 

tyrosine kinase transduces cellular signals via Erk [14], Janus kinase 2 [15], RhoA, p38MAPK 

[16], and other mediators. Activation of the PAF/PAFR pathway induces cellular proliferation 

in human epithelial cells, skin fibroblasts [17], and pulmonary vascular smooth cell [18]. 

Recently, numerous studies have evaluated the relation between PAF/PAFR and carcinogenesis 

and tumoral malignancies and reported some essential effects of PAF in the tumoral 

microenvironment [19]. 



In the current study, LPCAT1 was overexpressed in OSCC-derived cell lines and primary 

OSCCs. We also analyzed the correlation between LPCAT1 expression and clinicopathological 

characteristics. Furthermore, we assumed that LPCAT1 affects the functional characteristics of 

OSCC via PAF production and performed functional analysis to define the biologic effects and 

molecular mechanism of LPCAT1.   

 

MATERIALS AND METHODS 

Ethical statement.  

The Ethical Committee of the Graduate School of Medicine, Chiba University approved the 

study protocol (approval number, 236), which was performed in accordance with the ethical 

standards of the Declaration of Helsinki. All patients provided written informed consent. 

 

OSCC-derived cell lines and tissue samples.  

RIKEN (Ibaraki, Japan) provided the Sa3, HO-1-u-1, KOSC-2, Ca9-22, HO-1-N-1, HSC-2, and 

HSC-3 cell lines through the National Bio-Resource Project of the Ministry of Education, 

Culture, Sports, Science and Technology, Tokyo, Japan. Short tandem repeat profiles confirmed 

the cellular identity. All OSCC-derived cells were grown in Dulbecco’s modified Eagle’s 

medium (DMEM) (Sigma, St. Louis, MO, USA) supplemented with 10% fetal bovine serum 



(FBS) (Sigma) and 50 units/ml of penicillin and streptomycin (Sigma). Primary cultured human 

normal oral keratinocytes (HNOKs) were used as normal controls [20, 21]. The HNOKs were 

healthy oral mucosal epithelial specimens collected from young patients aged 22-34 at Chiba 

University Hospital. These independent HNOKs were primary cultured and maintained in 

Keratinocyte-SFM (Gibco, Life Technologies, Carlsbad, CA, USA) comprised of 5 ml of oral 

keratinocyte growth supplement (ScienCell Research Laboratories, Carlsbad, CA, USA) and 

5ml of penicillin/streptomycin solution (ScienCell Research Laboratories).  

Fifty-five pairs of primary OSCCs samples and corresponding normal oral epithelial 

tissues were obtained intraoperatively at Chiba University Hospital. The resected tissues were 

divided for RNA isolation and immunohistochemistry (IHC); the former tissues were frozen 

immediately and stored at -80°C, the latter tissues were fixed in 20% buffered formaldehyde 

solution. Each tissue specimen was diagnosed histopathologically according to the World 

Health Organization criteria by the tumor-node-metastases classification of the International 

Union against Cancer. All OSCC samples were confirmed histologically that tumor was present 

in over 90% of the specimens. 

 

Preparation of cDNA and protein.  



Total RNA was isolated using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA), according to 

the manufacturer’s instructions. cDNA was generated from 1 µg of total RNA using ReverTra 

Ace (TOYOBO CO., LTD., Osaka, Japan), according to the instruction manual. The cells were 

washed twice with cold phosphate-buffered saline (PBS) and centrifuged briefly. The cell 

pellets were incubated at 4°C for 30 min in a lysis buffer (7 M urea, 2 M thiourea, 4% [w/v] 

CHAPS, and 10 mM Tris, pH 7.4) with a proteinase inhibitor cocktail (Roche Diagnostics, 

Mannheim, Germany). The protein concentration was measured using a commercial Bradford 

reagent (BioRad, Richmond, CA, USA). 

 

mRNA expression analysis.  

Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was 

performed to evaluate the expression level of the target gene (LPCAT1) in the OSCC-derived 

cell lines and HNOKs. qRT-PCR was performed with one method using LightCycler 480 

Probes Master kit (Roche Diagnostics). Primers were designated using the ProbeFinder qPCR 

assay design software accessible at the Universal ProbeLibrary 

(http://qpcr.probefinder.com/roche3.html). The nucleotide sequences of gene-specific primers 

for qRT-PCR amplification were used: LPCAT1, forward, 

5’-CACAACCAAGTGGAAATCGAG-3’; and reverse 5’-GCACGTTGCTGGCATACA-3’, 



(universal probe #35). All qRT-PCR analyses were performed using the LightCycler 480 PCR 

system (Roche Diagnostics). The reaction mixture was loaded onto a PCR plate and subjected to 

an initial denaturation at 95°C for 10 minutes, followed by 60 cycles of amplification, at 95°C 

for 10 seconds for denaturation, at 60°C for 30 seconds for primer annealing, and 72°C for 1 

second for extension, followed by a cooling step at 50°C for 30 seconds. The transcript amounts 

for the target genes were estimated from the respective standard curves and normalized to the 

glyceraldehyde-3-phospate dehydrogenase (GAPDH, forward, 

5’-CATCTCTGCCCCCTCTGCTGA-3’; reverse, 5’-GGATGACCTTGCCCACAGCCT-3’; 

and universal probe #60). The transcript amount for LPCAT1 was estimated from the respective 

standard curves and normalized with the GAPDH transcript amount determined in 

corresponding samples. 

 

Immunoblot analysis.  

Protein extracts (20 µg) were electrophoresed in 4-12% Bis-Tris gel (Invitrogen), transferred to 

polyvinylidene difluoride membranes (Invitrogen), and blocked for 1 hour at room temperature 

in Blocking One (Nacalai Tesque Kyoto, Japan). The membrane were washed three times with 

0.1% Tween-20 in Tris-buffered saline and incubated with 1.0 µg/ml affinity-purified rabbit 

anti-human LPCAT1 polyclonal antibody (Proteintech, Chicago, IL, USA) (1:1000 dilution in 



TBS-T), and goat anti-PAFR polyclonal antibody (Santa Cruz Biotechnology. Inc., CA, USA) 

(1:100 dilution in TBS-T) overnight at 4°C. The membranes were washed with 0.1% Tween20 

in Tris-buffered saline and incubated with a secondary antibody and coupled to horseradish 

peroxidase-conjugated anti-rabbit or anti-goat IgG (Promega, Madison, WI, USA) for 1 hour at 

room temperature. Finally, the membranes were detected using SuperSignal West Pico 

Chemiluminescent substrate (Thermo Fischer Scientific, Rockford, IL, USA) and 

immunoblotting was visualized by exposing the membranes to ATTO Light-Capture II (ATTO, 

Tokyo, Japan). Signal intensities were quantitated using the CS Analyzer version 3.0 software 

(ATTO). Densitometric LPCAT1 protein data were normalized to GAPDH protein levels. 

 

IHC.  

IHC was performed on 4-µm sections of paraffin-embedded specimens using rabbit 

anti-LPCAT1 polyclonal antibody (Proteintech) or anti-LPCAT2 polyclonal antibody (Santa 

Cruz Biotechnology). Briefly, after deparaffinization and hydration, the endogenous peroxidase 

activity was quenched by a 30-minute incubation in a mixture of 3% hydrogen peroxide 

solution (diluted in distilled water), after which the sections were blocked for 1 hour at room 

temperature with 1.0% bovine serum albumin in PBS before reaction overnight with anti 

LPCAT1 antibody at 4°C in a moist chamber. Upon incubation with the primary antibody, the 



specimens were washed three times with PBS and treated with Envision reagent (DAKO, 

Carpentaria, CA, USA) or HRP-rabelled rabbit anti-goat IgG polycronal antibody (Abcam Ltd. 

Cambridge UK ) followed by color development in 3,3’-diaminobenzine tetrahydrochloride 

(DAKO). The slides then were counterstained lightly with hematoxylin, dehydrated with 

ethanol, cleaned with xylene, and mounted with Malinol (Muto Pure Chemicals Co., Tokyo, 

Japan). In order to confirm the reaction of antibody, we stained mouse lung tissues and mouse 

pancreatic tissue as positive controls for LPCAT1 and LPCAT2 respectively. While, 

non-specific bindings of an antibody to proteins other than the antigen sometimes occurred. As 

a negative control, the slides were immunostained without exposure to primary antibodies, 

which confirmed the staining specificity. To quantify the status of the LPCAT1 protein 

expression in those components, we used an IHC scoring system described previously [22-26]. 

This scoring system was established for semiquantitative evaluation of IHC staining. The 

intensities of the LPCAT1 immunoreaction in the cell were scored as follows: 1+, weak; 2+, 

moderate; and 3+, intense. The cellular numbers and the staining intensities then were 

multiplied to produce a LPCAT1 IHC score. Cases with a LPCAT1 IHC score exceeding 61.8 

(+3 standard deviation [SD] score for normal tissue) were defined as LPCAT1-positive. The 

±3-SD cutoff, which statistically is just 0.2% of the measurement and is expected to fall outside 

this range, was used because it was unlikely to be affected by a random experimental error 



produced by a sample manipulation [27]. Two independent pathologists, neither of whom had 

knowledge of the patients’ clinical status, made these judgments. 

 

 

Transfection with shRNA plasmid.  

OSCC-derived cells (SAS and Ca9-22) were stably transfected with the LPCAT1 shRNA 

(shLPCAT1, Santa Cruz Biotechnology) or the control shRNA (shMock, Santa Cruz 

Biotechnology) construct by Lipofectamine LTX and Plus Reagents (Invitrogen). After 

transfection, the stable transfectants were isolated by a culture medium containing 2µg/ml of 

Puromycin (Invitrogen). Two to three weeks after transfection, viable colonies were transferred 

to new dishes. shLPCAT1- and shMock-transfected cells were used for further experiments. 

 

Proliferation assay.  

To evaluate the effect of LPCAT1 knockdown on cellular proliferation, we analyzed cellular 

growth in shLPCAT1- and shMock-transfected cells. These transfectants were seeded in 6-cm 

dishes at a density of 1×104 viable cells per dishes. The experiments were carried out for 192 

hours by counting the cells every 24 hours. At the indicated time points, the cells were 

trypsinized and counted using a hemocytometer in triplicate samples. We compared the 



numbers of the shLPCAT1- and shMock-transfected cells. 

 

Invasiveness assay.  

To evaluate the effect of LPCAT1 knockdown on invasiveness, a total of 2.5×105 cells 

resuspended in the serum-free medium were seeded on a 0.8-µm polyethylene terephthalate 

membrane insert in a transwell apparatus (Becton-Dickinson Labware, Franklin Lakes, NJ, 

USA). In the lower chamber, 2 ml of DMEM with 10% FBS was added as a chemoattractant. 

After the cells were incubated for 48 hours at 37°C, the insert was washed with PBS, and the 

cells on the top surface of the insert were removed with cotton swabs. Cells adhering to the 

lower surface of the membrane were fixed with methanol and stained with crystal violet. The 

number of cells that invaded through the pores in five random fields was counted using a light 

microscope at ×100 magnification. 

 

Wound healing assay.  

To evaluate the effect of LPCAT1 knockdown on migration, we performed a wound healing 

assay as described previously [28, 29]. Briefly, after uniform wounds were made in confluent 

culture of shLPCAT1- and shMock-transfected cells, the extent of closure was monitored 

visually every 3 hours for 24 hours. The results were visualized by measuring the wound spaces 



using the Lenaraf220 software (http://www.vector.co.jp/soft/dl/win95/art/se312811.html). The 

mean value was calculated from data from three separate chambers. 

 

ELISA of PAF.  

To assess the effect of LPCAT1 knockdown on PAF production, we performed an 

enzyme-linked immunosorbent assay (ELISA) on PAF using an ELISA kit for PAF 

(Cloud-Clone Corp, Houston, TX, USA), according to the instruction manual with some 

modification. Briefly, after cells were cultured to confluence in serum-supplemented DMEM 

and washed three times with ice-cold PBS and then scraped off. The harvested cells were 

diluted with 500 µl of PBS and the cellular membranes were broken by a freezing and thawing 

method. The cellular lysates were centrifuged for 5 minutes at 5,000 g in 4°C, and the collected 

supernatants were assayed. This ELISA kit used the competitive inhibition enzyme technique, 

and absorbance at 450 nm was determined with microplate reader (Benchmark Plus, Bio-Rad, 

Hercules, CA, USA). To standardize the values, we used a protein concentration of samples as 

an internal control.  

 

Statistical analysis.  

All statistical analyses were performed using the Microsoft Excel (Microsoft, Redmond, WA, 



USA). The statistical significance of the LPCAT1 expression levels was evaluated using the 

Mann-Whitney U-test. Fischer’s exact tests were used to compare categorical variables. All 

tests were two-sided. P<0.05 was considered statistically significant. The data are expressed as 

the mean ±standard error of the mean. 

 

Results 

LPCAT1 mRNA and protein up-regulation in OSCC-derived cell 

lines.  

To analyze the LPCAT1 expression status, we performed qRT-PCR and immunoblotting 

analysis using OSCC-derived cell lines (HSC-2, HSC-3, HSC-4, Ca9-22, KOSC2, SAS, Sa3, 

HO-1-u1, and HO-1-N1) and HNOKs. LPCAT1 mRNA was significantly (p<0.05) up-regulated 

in almost all OSCC-derived cell lines except for KOSC2 compared with the HNOKs (Fig. 1A). 

Fig. 1B shows representative results of immunoblotting analysis of LPCAT1 protein expression 

compared with the HNOKs. A significant increase in LPCAT1 protein expression was seen in 

all OSCC-derived cell lines compared with the HNOKs. Expression analysis indicated that 

translational products of this molecule were highly expressed in OSCC-derived cell lines.  

Fig. 1. Expression profiles of LPCAT1 in OSCC-derived cell lines and OSCC samples. (A) 

Quantification of LPCAT1 mRNA levels in OSCC-derived cell lines by qRT-PCR analysis. To 



determine the mRNA expression status of LPCAT1, we performed qRT-PCR analysis using 9 

OSCC-derived cell lines (HSC-2, HSC-3, HSC-4, Sa3, SAS, Ca9-22, KOSC2, HO-1-N-1, and 

HO-1-u-1), and HNOKs. LPCAT1 mRNA is significantly up-regulated in the nine OSCC-derived cell 

lines compared with the HNOKs. The data are expressed as the mean ±SEM of values from three 

assays (*p<0.05, Mann-Whitney U test). (B) Immunoblot analysis of LPCAT1 in the OSCC-derived 

cells lines and HNOKs. To investigate the protein expression status of LPCAT1, we performed 

immunoblot analysis in the same OSCC-derived cell lines and HNOKs. The LPCAT1 protein 

expression level is significantly up-regulated in all OSCC-derived cell lines compared with the 

HNOKs. Densitometric LPCAT1 protein data are normalized to the GAPDH protein levels. The 

values are expressed as a percentage of the HNOKs. (C) IHC of LPCAT1 on primary OSCC samples. 

Representative IHC results are shown for LPCAT1 protein in normal oral tissue (a, b) and primary 

OSCCs (c, d). The original magnifications are 100×(a, c), and 400×(b, d). Strong LPCAT1 

immunoreactivity is detected in the primary OSCCs. (D) The status of LPCAT1 protein expression in 

primary OSCCs (n=55) and the normal counterparts. The LPCAT1 IHC scores are calculated as 

follows: IHC score = 1×(number of weakly stained cells in the field) + 2×(number of moderately 

stained cells in the field) + 3×(number of intensely stained cells in the fields). The LPCAT1 IHC 

scores for normal oral tissues range from 0.5 to 68.5 and that of primary OSCCs range from 23.7 to 

205.9. The LPCAT1 protein expression levels in OSCCs are significantly (*p<0.01, Mann-Whitney U 



test) higher than those in normal oral tissues.  

 

Overexpression of LPCAT1 in primary OSCCs. To determine the LPCAT1 expression status 

in primary OSCCs and its relevance to the clinicopathological characteristics, we analyzed the 

LPCAT1 protein expression in primary OSCCs and paired normal oral tissues from 55 patients 

using the IHC scoring system. We also examined IHC for LPCAT2 protein expression in 

primary OSCCs, but there was no significant immunoreaction (Supplementary Fig. 1). Fig. 1C 

shows representative IHC results for LPCAT1 protein in normal oral tissues and primary 

OSCCs. Strong LPCAT1 immunoreactivity was detected in the cytoplasm in the OSCCs 

(Fig.1C: c, d), while the normal tissues showed negative immunostaining (Fig. 1C: a, b). The 

LPCAT1 IHC scores ranged from 23.7 to 205.9 in OSCCs (median, 84.5) and from 0.5 to 68.5 

in normal counterparts (median, 15.17). The IHC scores in primary OSCCs were significantly 

(p<0.05) higher than those in the normal oral tissues (Fig. 1D). After statistical analysis, 36 

(65%) of 55 OSCC samples were considered LPCAT1-positive. We then analyzed the 

correlations between the clinicopathological characteristics of the patients with OSCC and the 

status of the LPCAT1 protein expression using the IHC scoring system (Table 1). Among the 

clinical classifications, the LPCAT1-positive OSCCs were correlated significantly (p<0.05 for 

all comparisons) with larger tumors, frequent regional lymph node metastasis, and advanced 



clinical stages. No significant relations were found with age, gender, histopathological type, or 

tumoral site. 

  



Table 1.  Correlation between clinicopathological parameters of patients with OSCC and LPCAT1 

protein expression 

 Result of immunostaining 
Parameter No. of patients/ (%)  

 Total LPCAT1(–)
（−） 

LPCAT1(+) p value 
Age at surgery (year)       

＜60 14 4 (29%) 10 (71%) 0.816 
60～70 16 5 (31%) 11 (69%)  
＞70 25 10 (40%) 15 (60%)  Gender       Male 34 11 (32%) 23 (68%) 0.663 

Female 21 8 (38%) 13 (62%)  T-primary tumor       1 2 1 (50%) 1 (50%) 0.005 * 
2 34 17 (50%) 17 (50%)  3 11 1 (9%) 10 (91%)  4 8 0 (0%) 8 (100%)  N-regional lymph node       – 32 16 (50%) 16 (50%) 0.009 * 
+ 23 3 (13%) 20 (87%)  Stage       Ⅰ 2 1 (50%) 1 (50%) 0.001 * 
Ⅱ 24 14 (58%) 10 (42%)  Ⅲ 11 3 (27%) 8 (73%)  Ⅳ 18 1 (6%) 17 (94%)  Histopathologic type       Well 37 12 (32%) 25 (68%) 0.811 

Moderate 14 5 (36%) 9 (64%)  Poor 4 2 (50%) 2 (50%)  Tumor site       Tongue 35 14 (40%) 21 (60%) 0.263 
Gingiva 15 2 (13%) 13 (87%)  Buccal mucosa 2 0 (0%) 2 (100%)  Soft palate 2 2 (100%) 0 (0%)  Oral floor 1 1 (100%) 0 (0%)  

* p<0.05  



Establishment of LPCAT1 knockdown cells.  

To investigate the LPCAT1 function in vitro, we established LPCAT1 knockdown cells using 

shRNA system. LPCAT1 shRNA (shLPCAT1) and the control shRNA (shMock) were 

transfected in the OSCC-derived cell lines, SAS and Ca9-22, respectively. The expression levels 

of LPCAT1 mRNA and protein in shLPCAT1-transfected cells were significantly (p<0.05) 

lower than those in shMock-transfected cells (Fig. 2A, B).  

 

Fig. 2. Establishment of shLPCAT1-transfected cells. (A) Expression of LPCAT1 mRNA in 

shMock- and shLPCAT1-transfected cells (SAS- and Ca9-22-derived transfectants). LPCAT1 mRNA 

expression in shLPCAT1-transfected cells is significantly (*p<0.05, Mann-Whitney U test) lower than 

in the shMock-transfected cells. (B) Immunoblot analysis of LPCAT1 protein in shMock- and 

shLPCAT1-transfected cells (SAS- and Ca9-22-derived transfectants). The LPCAT1 protein 

expression in shLPCAT1-transfected cells is decreased markedly compared with the 

shMock-transfected cells. 

 

Decreased cellular proliferation, migration, invasiveness in 

LPCAT1 knockdown cells.  

To investigate the effect of LPCAT1 on cellular proliferation, we monitored cellular growth for 



168 hours. SAS and Ca9-22 shLPCAT1-transfected cells had significant (p<0.05) decreases in 

cellular growth compared with the shMock-transfected cells (Fig. 3A, B). We also performed 

cellular migration and invasiveness assays to study the biologic effects of LPCAT1 in relation 

to metastatic capability. In a migration assay, when we visually monitored the area of uniform 

wounds in confluent cell culture, the wounds in the shLPCAT1-transfected cells closed later 

than those in the shMock-transfected cells in both cell lines (Fig. 3C, D). In the invasiveness 

assay, the number of penetrating shLPCAT1-transfected cells decreased compared with 

shMock-transfected cells (Fig. 3E, F). Therefore, shLPCAT1-transfected cells showed 

decreased migration and invasiveness capabilities. 

 

Fig. 3. Effect of LPCAT1 knockdown on OSCC-derived cell lines. (A, B) Proliferation assay of 

shMock- and shLPCAT1-transfected cells (SAS- and Ca9-22-derived transfectants). To determine the 

effect of shLPCAT1 on cellular proliferation, shLPCAT1- and shMock-transfected cells were seeded 

in 6-cm dishes at a density of 1×104 viable cells/well. Both transfected cells were counted on seven 

consecutive days. The cellular growth of shLPCAT1-transfected cells (SAS- and Ca9-22- derived 

transfectants) is inhibited significantly compared with the shMock-transfected cells after 5 days (120 

hours). The results are expressed as the mean ±SEM of values from three assays. The asterisks 

indicate significant (*p<0.05, Mann-Whitney U test) differences between the shLPCAT1- and 



shMock-transfected cells. (C, D) Migration assay of shMock- and shLPCAT1-transfected cells (SAS- 

and Ca9-22-derived transfectants). To evaluate the effect of LPCAT1 knockdown on migration, 

uniform wounds were made in confluent culture of the shLPCAT1- and shMock-transfected cells 

(SAS- and Ca9-22-derived transfectants) and the extent of closure was monitored visually every 3 

hours for 24 hours. The mean value was calculated from data obtained from three separate chambers. 

The wound area was decreased significantly (*p<0.05, Mann-Whitney U test) in the culture of 

shMock-transfected cells after 12 hours, whereas a gap remained in the shLPCAT1-transfected cells. 

(E, F) Invasiveness assay of shMock- and shLPCAT1-transfected cells (SAS- and Ca9-22-derived 

transfectants). To evaluate the effect of LPCAT1 knockdown on invasiveness, we seeded 2.5×105 

cells in the serum-free medium of a 0.8-µm polyethylene terephthalate membrane insert in a transwell 

apparatus and added serum-supplemented medium in the lower chamber as a chemoattractant. After 

incubation at 37°C for 48 hours, cells that penetrated through the pores were fixed, stained, and 

counted using a light microscope at ×100 magnification. The mean value was calculated from data 

obtained from three separate chambers. The number of shLPCAT1-transfected cells penetrating 

through the pores is decreased significantly (*p<0.05, Mann-Whitney U test) compared with the 

shMock-transfected cells. 

 

Knockdown of LPCAT1 and suppressed PAF synthesis and PAFR 



expression in OSCC-derived cell lines. 

 The biosynthesis of PAF has been studied extensively in various cells and tissues, and 

LPCAT1 catalyzed PAF biosynthesis [8]. Numerous studies also have been performed to 

investigate the effects of PAF on tumoral characteristics [19]. To explain the relation between 

overexpressed LPCAT1 and cancer malignancy, we investigated the intracellular PAF 

concentration. To determine the PAF concentrations in shLPCAT1- and shMock-transfected 

cells, ELISA was carried out using cell lysates. The results showed that the intracellular PAF 

concentration decreased significantly (p<0.05) in shLPCAT1-transfected cells compared with 

shMock-transfected cells (Fig. 4A). The levels of intracellular PAF were represented as the 

normalized index, which was standardized by protein concentration and calculated as the 

percentage of the PAF concentration relative to that in the shMock-transfected cells. 

PAF affects cellular function via binding to and activating PAFR, and PAFR is also 

overexpressed in response to PAF stimulation [19]. Considering these findings, we conducted 

further immunoblotting analysis on shLPCAT1- and shMock-transfected cells to detect the 

status of the PAFR expression. The results showed that LPCAT1 knockdown caused markedly 

decreased levels of PAFR protein expression (Fig. 4B). Thus, the intracellular PAF 

concentration and PAFR expression were down-regulated in shLPCAT1-transfected cells. 

 



Fig. 4. Reduced PAF synthesis and PAFR expression in shLPCAT1-transfected cells. (A) 

Evaluation of intracellular PAF concentration in shMock- and shLPCAT1-transfected cells (SAS- and 

Ca9-22-derived transfectants). To determine the intercellular PAF concentrations, we examined 

cellular lysates using ELISA and normalized with protein concentration. The mean value was 

calculated from the data obtained from three independent samples. The relative PAF concentration in 

the shLPCAT1-transfected cells is decreased significantly (*p<0.05, the Mann-Whitney U test) 

compared with the shMock-transfected cells. (B) Evaluation of PAFR expression in shMock- and 

shLPCAT1-transfected cells (SAS- and Ca9-22-derived transfectants). Immunoblot analysis shows 

that PAFR protein expression in the shLPCAT1-transfected cells is decreased markedly compared 

with the shMock-transfected cells. 

 

Discussion 

In the current study, we report here that LPCAT1 often is overexpressed in OSCC-derived cell 

lines and primary OSCC specimens. Moreover, LPCAT1 protein expression levels in primary 

OSCCs were correlated significantly (p<0.05) with tumoral size, regional lymph node 

metastasis, and clinical stages. Functional analysis using LPCAT1 knockdown cells showed that 

down-regulation of LPCAT1 repressed not only cellular proliferation but also invasiveness and 

migration. These findings supported the prospect that overexpressed LPCAT1 may contribute to 



tumoral growth and metastasis in OSCCs. Past studies have reported overexpressed LPCAT1 in 

cancers and mentioned the close interaction between overexpressed LPCAT1 and malignancies, 

such as vigorous tumoral growth, frequent metastasis, early recurrence, and poor prognosis 

[2-6]. However, the molecular mechanisms and detailed function of LPCAT1 in OSCC 

progression remained unclear. 

Xu et al. (2013) reported a relationship between LPCAT1 and PAF in prostatic cancers 

and suggested that PAF may play an important role in accelerating progression of aggressive 

phenotypes. PAF is a phospholipid mediator with pleotropic and potent biologic effects and 

functions through binding to and activating its specific receptor PAFR[30, 31]. Until now, PAF 

and PAFR were extensively studied in relation to carcinogenesis and malignancies [32-36]. 

PAFR-dependent pathways are activated during experimental tumoral growth, modifying the 

microenvironment and the phenotype of the tumoral macrophages in ways that favor tumoral 

growth [32]. The activated endothelium and/or cancer cells are thought to introduce PAF into 

the tumoral microenvironment [19, 33]. PAFR induces activation of G-proteins and tyrosine 

kinases, and the signals are transduced to downstream pathways, including NFκB, MAPKs, 

AKT, PI3, and Src [19, 35]. NFκB enhances tumoral metastasis and augments angiogenesis 

through activation of matrix metalloproteases (MMPs) and vascular endothelial growth factor 

[37-41]. PAF also directly activates endothelial cells, causes angiogenesis, and promotes 



vascular permeability leading to metastasis [35]. PAF/PAFR decreased PTEN activity, leading 

to phosphorylation of AKT and MAPKs. AKT plays a central role in various oncogenic 

processes including cellular growth, proliferation, motility, and epithelial mesenchymal 

transition (EMT) [38, 42]. PAF-induced activation of MAPKs, p38 and ERK1/2, occurred via 

MMP-dependent cleavage of heparin-binding epidermal growth factor and subsequent 

activation of the EGF receptor, increase proliferation [35, 43]. Thus, the PAF/PAFR pathway 

causes cellular growth, proliferation, motility, EMT, and angiogenesis in cancers. Furthermore, 

PAF can activate cancer cells and endothelial cells to amplify PAF production and PAFR 

expression on their membranes, in autocrine, endocrine, paracrine and juxtracrine interactions 

[19]. 

We thus assumed that the interaction between LPCAT1 with activated PAF/PAFR affects 

the cellular characteristics in OSCC-derived cells and examined the intracellular PAF 

concentration using ELISA and PAFR expression using immunoblot analysis. Consistent with 

our hypothesis, the PAF concentration decreased significantly in LPCAT1 knockdown cells 

compared with control cells, which suggested that intracellular PAF synthesis may be restricted 

due to down-regulation of LPCAT1. Moreover, immunoblot analysis showed that PAFR 

expression also was down-regulated markedly in LPCAT1 knockdown cells. These findings 

indicated that PAFR amplification weakened because of reduced PAF synthesis and stimulation 



in LPCAT1 knockdown cells; previous studies reported a similar tendency [6, 19]. Therefore, 

an intervention in PAF/PAFR pathway activation was possible in relation to overexpression of 

LPCAT1 and promotion of tumoral growth, invasiveness, and migration in OSCC-derived cell 

lines.  

In conclusion, our data indicated that LPCAT1 might be associated with tumoral 

progression and metastasis by synthesis of PAF and follow up-regulation of PAFR expression 

in OSCC. Although further studies are needed to understand the interaction between LPCAT1 

and the PAF/PAFR pathway and its functions in the cancer microenvironment, LPCAT1 is a 

potential biomarker of aggressive tumoral progression in human primary OSCCs. 
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Supporting Information 

Supplementary Fig. 1. Expression profiles of LPCAT2 in OSCC samples. (A) IHC of LPCAT2 on 

primary OSCC samples. Representative IHC results are shown for LPCAT2 protein in positive control 

(mouse pancreatic tissue) (a), normal oral tissue (b) and primary OSCCs (c). The original 

magnifications are 400×(a), 100×(b, c). There are only weak immunoreactions in both of normal 

oral tissues and primary OSCCs in comparison with positive control. (B) The status of LPCAT2 

protein expression in primary OSCCs (n=30) and the normal counterparts (n=30). IHC scores of 

LPCAT2 were calculated and its states are shown in the chart. The LPCAT2 IHC scores for normal 

oral tissues range from 1.83 to 22.33 and that of primary OSCCs range from 2.67 to 23.00. There is no 

significant difference between LPCAT2 protein expression levels in OSCCs and those in normal oral 

tissues (p=0.191). 
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