
Theoretical studies on spintronics 
materials: Angle-resolved 

photoemission of Weyl semimetal 
MoTe2 and magnetoelectric effect 

of Ba2CuGe2O7
February 2021

RYOTA ONO

Graduate School of

Science and Engineering

CHIBA UNIVERSITY



Theoretical studies on spintronics 
materials: Angle-resolved 

photoemission of Weyl semimetal 
MoTe2 and magnetoelectric effect 

of Ba2CuGe2O7
February 2021

RYOTA ONO

Graduate School of

Science and Engineering

CHIBA UNIVERSITY

snct4
タイプライタ
（千葉大学審査学位論文）



iii

Contents

I Angle-resolved photoemission calculations of MoTe2 1

1 Introduction 3

2 Theory of Photoelectron Spectroscopy 5
2.1 Photoelectron Spectroscopy (PES) . . . . . . . . . . . . . . . . . 5
2.2 Photoemission three-step model . . . . . . . . . . . . . . . . . 5
2.3 Photoemission one-step model . . . . . . . . . . . . . . . . . . 9
2.4 General remarks of ARPES . . . . . . . . . . . . . . . . . . . . . 10
2.5 Selection rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Final state plane-wave approximation . . . . . . . . . . . . . . 14
2.7 Matching method . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Topological materials 17
3.1 Topological insulator . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Topological semimetals . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Weyl semimetal . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Type-I and Type-II Weyl semimetal . . . . . . . . . . . . . . . . 20
3.5 TaAs as the fist type-I Weyl semimetal . . . . . . . . . . . . . . 21
3.6 WTe2 and MoTe2 as the fist type-II Weyl semimetal . . . . . . . 22

4 Interpretations of the photocurrent intensities 25
4.1 A graphene-like box-potential . . . . . . . . . . . . . . . . . . . 26
4.2 MoTe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Calculation details . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Band structure of MoTe2 (Td) . . . . . . . . . . . . . . . 31
4.2.3 Orbital projection and polarization dependence . . . . 32
4.2.4 Comparison with an experiment . . . . . . . . . . . . . 37

4.3 Conclusion and future prospect . . . . . . . . . . . . . . . . . . 37

II Theory of magnetoelectric effect in Ba2CuGe2O7 41

5 Introduction 43

6 Multiferroics and magnetoelectric effect 47
6.1 Linear magnetoelectric effect . . . . . . . . . . . . . . . . . . . 47
6.2 Ferroelectricity induced by magnetic orders (Giant magneto-

electric effect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



iv

6.3 Microscopic mechanisms of the magnetically induced ferro-
electricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Examples of multiferroic materials . . . . . . . . . . . . . . . . 52
6.4.1 YMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4.2 TbMnO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4.3 CuFeO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Theory for strongly correlated materials 57
7.1 Hubbard model . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.1 One-electron part in d-orbital case . . . . . . . . . . . . 59
7.2 Wannier function . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2.1 Maximally localized Wannier function . . . . . . . . . 60
7.2.2 Selectively localized Wannier function . . . . . . . . . 62
7.2.3 Modified maximally localized Wannier function . . . . 62

7.3 Constrained Random Phase Approximation . . . . . . . . . . . 63
7.3.1 Practical case . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4 Spin Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.4.1 Heisenberg model . . . . . . . . . . . . . . . . . . . . . 66
7.4.2 Dzyaloshinskii-Moriya interaction . . . . . . . . . . . . 68

7.5 Superexchange theory in spin 1
2 systems . . . . . . . . . . . . . 72

7.6 Berry phase (Wannier) expression for the macroscopic elec-
tronic polarization . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.7 Superexchange theory for the magnetoelectric effect . . . . . . 77
7.8 Spin-current Mechanism . . . . . . . . . . . . . . . . . . . . . . 78

8 Magnetoelectric effect of a spiral magnet Ba2CuGe2O7 81
8.1 Multiferroic Ba2CuGe2O7 . . . . . . . . . . . . . . . . . . . . . 81
8.2 Symmetric property of Ba2CuGe2O7 . . . . . . . . . . . . . . . 83
8.3 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.4 Nonexistence of single ion contributions in spin 1/2 system . 88
8.5 5-orbital model . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.5.1 Spin spiral state . . . . . . . . . . . . . . . . . . . . . . 92
8.5.2 Without SOC . . . . . . . . . . . . . . . . . . . . . . . . 94
8.5.3 Ferroelectricity . . . . . . . . . . . . . . . . . . . . . . . 95
8.5.4 Response to external fields in collinear C-type AFM phase 99

8.6 Conclusion and future prospect . . . . . . . . . . . . . . . . . . 101

9 Summary 103

Acknowledgements 115



v

Abstract

This thesis mainly accesses theoretical analysis of Angle-Resolved-Photoelectron
Spectroscopy (ARPES) of a transition metal dichalcogenides MoTe2 by using
one-step calculation and magnetically induced magnetoelectric (ME) effect
of Ba2CuGe2O7 by using superexchange (SE) theory.

Concerning the first part, this thesis describes present theoretical meth-
ods which are sometimes used to understand the ARPES intensity. ARPES is
an experimental technique for observing electronic band structure of the ma-
terials. Peaks of the observed ARPES spectra represent electronic structure of
the material. Most often, only the peak position (band dispersion) is focused.
However, this thesis focus not only on the peak position, but also on the
ARPES intensity which contains important physical information. Namely,
spectra are depending on the experimental condition (e.g. light polarization,
photon energy) and relations between ARPES responses and physical prop-
erties of the materials are not so clear. This thesis investigates the ARPES
intensities of MoTe2 theoretically. Transitional metal dichalcogenides MoTe2
in Td phase is a candidate material of the so-called Weyl semimetal which
has energy dispersion of the Weyl fermion. Therefore, there are some ARPES
experiment done to this material until now. However, clear experimental ev-
idence of Weyl semimetalicity of this material is lacking. This thesis reveales
the specific bands for the Weyl semimetal (hole and electron pocket) can be
seleted in ARPES by choosing suitable experimental settings and which can
be qualitatively explained by initial state with dipole selection rule. After the
investigation, this thesis suggests suitable experimental settings for future
ARPES experiments in order to better investigate the Weyl semimetalicity of
the material.

Concerning the latter part, this thesis suggests so-called SE theory for the
electronic polarization and applies the theory to unveil the mechanism of the
magnetically induced ME effect of a multiferroic material Ba2CuGe2O7. ME
effect is a cross effect of usual response to the external fields. Namely, ex-
ternal magnetic (electronic) fields induce some ferroelectric (magnetic) order.
Thus, one can control electronic polarization by the external magnetic field.
The SE theory is well established theory for describing the magnetic energy
of Mott insulators. Since the electronic polarization is a property of insulating
materials, an extension of the SE theory of the Mott insulator to the electronic
polarization has been performed. Then, the theory has successfully been ap-
plied to a controversial multiferroic spiral magnet Ba2CuGe2O7. The theory
qualitatively describes its experimental behavior. In addition to those, the
theory predicts in-plane electronic polarization induced by the out-of-plane
external magnetic field which has been overlooked.





vii

List of Abbreviations

AFM AntiFerroMagnet
ARPES Angle-Resolved PhotoEmission Spectroscopy
ASA Atomic Sphere Approxiamtion
cRPA constrained Random Phase Approximation
DFT Density Functional Theory
DM Dzyaloshinskii-Moriya
DOS Density Of States
IMFP Inelastic scattering Mean Free Path
KKR Korringa-Kohn-Rostoker
LDA Local Density Approximation
LKKR Layered Korringa-Kohn-Rostoker
ME MagnetoElectric
MLWF Maximally Localized Wannier Function
MST Multiple Scattering Theory
PAW Projector-Augumented Wave
PBE Perdew-Burke-Ernzerhof
PDOS Projected Density Of States
PES PhotoEmission Spectroscopy
PWA Plane-Wave Approximation
RPA Random Phase Approximation
SE SuperExchange
SLWF Selectively Localized Wannier Function
SOC Spin Orbit Coupling
SPR-KKR Spin Polarized Relativistic-Korringa-Kohn-Rostoker
TMDC Transitional Metal DichalCogenides
TRIM Time-Reversal Invariant Momenta
VASP Vienna-Abinitio-Simulation-Package





1

Part I

Angle-resolved photoemission
calculations of MoTe2
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Chapter 1

Introduction

Angle-Resolved Photoelectron Spectroscopy (ARPES) has been extensively
used to measure kinetic energies of the electrons in materials. The mea-
surement method itself has quite a long history. Recently, the accuracy of
ARPES is growing very fast and become more efficient. For example, time
derivations of the ARPES (time-resolved ARPES), which capture ultrafast
phenomena, are receiving much attention recently. Usually, ARPES mea-
surements are performed to observe kinetic energy angle distributions of
the electrons and thus draws band structures of the materials. In addition
to the band dispersions, it is widely believed that the intensities obtained
from the ARPES measurements have rich information (e.g., orbital charac-
ter of the band structures). Indeed, an efficient interpretation of the ARPES
intensities is suggested by Puschnig et al. [1] through a simple plane-wave
approximation. However, it should be noted that the approximation used
in their work is quite limited. In the plane-wave approximation, the ARPES
final state is approximated as a single plane-wave. Meanwhile, the correct
final state wave function should have a more complicated wave function,
approximated as a plane-wave at enough distant points from the substances.
Besides the plane-wave approximation, another efficient approach is called
Layered Korringa-Kohn-Rostoker (LKKR) method [2–5]. The method uses
advantages of the multiple scattering theory, and thus, one can have correct
final states of ARPES since the multiple scattering theory can include all the
scattering processes. However, the accuracy of the multiple scattering the-
ory remains questionable when the material is a complex system. For these
reasons, an efficient calculation method for ARPES is needed.

The first part accesses a new efficient calculation method for ARPES, which
can be combined with very well established and used plane-wave basis Den-
sity Functional Theory (DFT). The plane-wave DFT method is believed to
provide accurate electronic structure except for strongly correlated systems
(in strongly correlated systems, many-body effects can not be neglected).
Therefore, a new method is expected to provide accurate results even for
complex systems. The validity of the new method will be discussed in Chap. 4
within a one-dimensional potential well which is fitted to have a graphene-
like electronic structure.

Since the first observation of the physics of a topological insulator in
HgTe [6], the exploration of new topological materials is extensively being
performed. In topological materials, edge states (in other words, "surface" in
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3D materials) are crucial. The edge states in topological materials show pe-
culiar band structures. Therefore, dedicate ARPES measurements have been
performed in such candidate topological materials recently. One interesting
example of a topological material is Weyl semimetals. In Weyl semimetals,
quasi Weyl fermion, which has not been observed in nature, is expected to
exist at the edge states of the materials. The potential existence of the Weyl
fermions gives expectations of interesting physical phenomena such as chiral
anomaly, which will not be touched deeply in this thesis. Readers interested
in it can read papers about it, e.g. [7–10]. The meaning of ARPES intensities
in such material will be discussed in Chap. 4.

This first part of the thesis is structured as follows. Chap. 2 discusses
basic concepts and shows new calculation methods for the exact final states
from plane-wave DFT codes. The next Chap. 3 briefly shows how quasi Weyl
fermions are rationalized in substances such as TaAs and WTe2, which are
nowadays found as the possible realization of two types of Weyl semimet-
als. Finally, Chap. 4 examines new theory of the ARPES calculation for the
one-dimensional periodic potential well. After that, the efficient interpreta-
tion of ARPES intensity will be discussed with respect to one of the popular
topological material Weyl semimetal MoTe2.
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Chapter 2

Theory of Photoelectron
Spectroscopy

2.1 Photoelectron Spectroscopy (PES)

To understand physical properties of the materials, it is important to know
the electronic structures of the materials [11]. In such situations, Angle-
Resolved Photoelectron Spectroscopy (ARPES) is quite useful. ARPES is
one of the experimental method of Photoelectron Spectroscopy (PES). Be-
fore speaking of ARPES, this section describes basic theory of PES. PES has
quite long history and thus quite old technique. The first development of
PES has been done by H. Hertz [12] and which is done just by emitting lights
towards the target substances and detect the energies of the excited electrons
(See Fig. 2.1 for a simple cartoon of the experimental setup). The basis of the
PES has been explained from theoretical point of view by A. Einstein [13].
The most important parameter of the PES experiments is the kinetic energy
of the electrons in the substances. From the energy conservation law, one can
determine the kinetic energies as

Ekin = h̄ω−Φ− |EB|, (2.1)

where h̄ω is the photon energy of the light, Φ is the work function (corre-
sponding the energy needed to take electrons from the substances) and |EB|
is a binding energy of the electrons. Therefore one can determine the binding
energy of the electron from obtained kinetic energy in the PES experiments.
A common setting of the binding energies consists in taking EB = 0 as the
Fermi level. A simple picture of the PES processes is that a photon impinges
on a substance, then through the photoelectric effect, an electron is excited
and escapes to the vacuum. The detector detects the electron. Following
sections describe more detailed interpretations of the photoexcited processes
which are useful for understanding the experimental results and theoretical
modelings of PES.

2.2 Photoemission three-step model

Photoemission three-step model has been recognized as one of the efficient
phenomenological interpretation of the PES process. The main concept of
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FIGURE 2.1: A schematic drawing of (Angle-resolved) PES experi-
ments. θ and φ are a polar and azimuthal angle of the emitted electron

which is excited by a light with photon energy of hν.

this three-step model is that splitting the whole process into following three
parts (the process is depicted in Fig. 2.2(a)):

1© Excitation of a photoelectron

The photon excite a N-electron initial (ground) state |ψN
i 〉 to a final (ex-

cited) state |ψN
f 〉. In the limits of the independent particle approxima-

tion, this excitation is understood as a dipole transition. The energy
conservation law during this process is estimated as

E f = h̄ω + Ei (2.2)

where E f is the final state energy and Ei is the initial state energy. By
taking the energy gain from the excisions as a perturbation, one can
have transition rate as the well known Fermi’s golden rule:

wi→ f =
2π

h̄
| 〈ψN

f |Hint|ψN
i 〉 |2 δ(EN

f − EN
i − h̄ω). (2.3)

The Hamiltonian Hint is a Hamiltonian of electron-photon interaction
which is given by

Hint =
e

2mc
(A · p+ p ·A) = − e

mc
A · p (2.4)

here the two photon process A ·A (which is considered very weak ef-
fect) is ignored and the relation A · p+ p ·A = 2A · p+ ih̄(∇ ·A) is
used with the Coulomb gauge divA = ∇ ·A = 0. By making use of
the Slater determinants, one can reduce the N-electron problem to one-
electron problem 〈ψN

f |Hint|ψN
i 〉 → 〈φ f |Hint|φi〉. This expression now
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(a) Three-step model (b) One-step model

FIGURE 2.2: Picture of (a)the three-step model and (b)the one-step
model. The figure is adopted from [11].

allows us to estimate the photocurrent intensities in the solids as

I(h̄ω) ∝ | 〈φ f |Hint|φi〉 |2δ(E f − Ei − h̄ω) = |M f i|2δ(E f − Ei − h̄ω).
(2.5)

The most important term M f i is known as the optical transition matrix
element. Furthermore, the Hamiltonian Hint can be simplified with an
approximation which will be shown below. The Hamiltonian Eq. 2.4
can be further rewritten as

Hint = −
e

mc
A0ε · p ei(k·r−ωt) (2.6)

where ε and A0 are polarization vector and amplitudes, respectively.
Taylor expansion of eik·r is given by

eik·r = 1 + ik · r− 1
2
(k · r)2 + · · · . (2.7)

Using only the first term of Eq. 2.7 in the Hamiltonian is called dipole
approximation. With the dipole approximation, the transition matrix
element M f i can be approximated as

M f i ≈ −
e

mc
A0 e−iωt 〈φ f |ε · p|φi〉 . (2.8)
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With a commutation relation

[H0, r] =
im
h̄
p, (2.9)

leads Eq. 2.8 to a simple form as

M f i = −
ie
h̄c

A0 e−iωt 〈φ f |ε · [H0, r]|φi〉 (2.10)

= − ie
h̄c

(E f − Ei)A0 e−iωt 〈φ f |ε · r|φi〉 (2.11)

= − ieω

c
A0 e−iωt 〈φ f |ε · r|φi〉 . (2.12)

As a consequence, the photocurrent intensities are represented as

I(h̄ω) ∝ | 〈φ f |ε · r|φi〉 |2δ(E f − Ei − h̄ω) (2.13)

within the dipole approximation.

2© Transport of the excited photoelectron to the surfaces

As the second process, the photoelectrons excited in the solids travel
to the surface of the solids. During this process, the excited photoelec-
trons will be mainly scattered by other electrons reside in the solids
as inelastic scatterings. The inelastic scattering mean free path (IMFP)
gives an idea how far the electrons travel on average in the solid before
they loses the kinetic energy. According to D. R. Penn [14] Inverse of
the IMFP λ−1(E) is given by

λ−1(E) =
∫ (E−EF)/h̄

0
dω τ(E, ω), (2.14)

where τ(E, ω) is the inverse of a differential mean free path which is
given via imaginary parts of dielectric functions as

τ(E, ω) =
h̄

a0πE

∫ q+

q−

dq
q

Im
(
−1

ε(q, ω)

)
. (2.15)

The term Im(−1/ε) is called energy loss function and q± are the trans-
fer limits are given from the condition

h̄ω ≤ Ek − Ek−q =
h̄2

2m
(2kq− q2), (2.16)

which gives q± = k[1±
√

1− (h̄ω/Ek)] [14].

3© Emissions of the photoelectrons to the vacuum

The last step is the emission into vacuum of the photoelectrons that
reached the surface. The emitted electron will be detected by a detector
which measures kinetic energies of the electrons Ekin. Then the binding
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energy is calculated from the conservation law Eq. 2.1. The detected
electrons in the vacuum conserve reciprocal vectors parallel to the sur-
face after the emission.

2.3 Photoemission one-step model

Another model along the same line is also used widely which is called one-
step model firstly developed by J. B. Pendry in 1976 [15]. In the one-step
model, all scattering events after the excitation of the electrons are included.
Therefore, in the process, the excited damped final states are smoothly matched
at the surface with a plane wave (Fig. 2.2(b)). Theoretical realization of the
model can be achieved via multiple scattering theory and thus, Green’s func-
tions as will be shown in the following.

The general form of the transition rate is expressed as

wi→ f =
2π

h̄
| 〈ψN

f |∆|ψ
N
i 〉 |2 δ(EN

f − EN
i − h̄ω) (2.17)

from Eq. 2.3 with a new notation for the perturbation ∆.
The perturbation ∆ can be represented by the second quantization as

∆ = ∑
αβ

∆αβ c†
αcβ (2.18)

where ∆αβ is one-electron matrix elements of electron-photon interaction be-
tween one-particle states φα and φβ. From this point, the initial and the final
states are defined as |ψN

i 〉 = |ψN
0 〉 and |ψN

f 〉 = c†
f |ψN−1

s 〉 with N-electron
ground states |ψN

0 〉 and N-1 electron excited states |ψN−1
s 〉. So-called sudden

approximation is used at this point which means the interactions between an
excited electron and the remaining N-1 electrons are ignored which is also
shown as c f |ψN

0 〉 = 0. Then the transition probability Eq. 2.17 is rewritten as

ws =
2π

h̄
| 〈ψN−1

s |∑
αβ

∆αβ c f c†
αcβ|ψN

0 〉 |2 δ(EN
s − EN

0 − h̄ω). (2.19)

With the above expression, the photocurrent intensities are evaluated as

I(h̄ω) = ∑
s

ws = ∑
αβ

∆†
f α Aαβ(EN

0 )∆β f . (2.20)

The one-electron spectral function Aαβ can further be represented as

Aαβ = − 1
π

ImGR
αβ (2.21)
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with a retarded Green’s function GR
αβ. Therefore, one obtains

I(h̄ω) = − 1
π

Im ∑
αβ

∆†
f αGR

αβ(EN
0 )∆β f . (2.22)

With a relation for the one-electron retarded Green’s function GR

GR(EN
0 ) = ∑

αβ

|φα〉GR
αβ(EN

0 ) 〈φβ| , (2.23)

thus we finally have a well known formula as the one-step photoemission

I(h̄ω) = − 1
π

Im 〈φ f |∆†GR(EN
0 )∆|φ f 〉 . (2.24)

In addition to above expressions, for the dipole approximation one can use
∆ ≈ ε · r.

2.4 General remarks of ARPES

The word "Angle-Resolved" comes from the experimental setup of ARPES.
ARPES experiments are performed by changing the angle of the light (Fig. 2.1),
Then, a detector observes the angle distributions of the photocurrent intensi-
ties. Reciprocal vector of the free electron state in the vacuum K and in the
solid k obey a conservation law for the parallel components (Fig. 2.3)

k‖ = K‖ = |K| sin θ =

√
2meEkin

h̄
sin θ. (2.25)

For vertical component K⊥ and k⊥, such conservation law is no longer appli-
cable. Instead, k⊥ can be evaluated by an energy conservation law

Ekin =
h̄2

2me
(k2
⊥ + k2

‖)−V0, (2.26)

where V0 is called inner-potential meaning determined as the bottom of ap-
proximated potential wells. In other words, it is known as the muffin-tin
zero. Eq. 2.26 leads to

k⊥ =

√
2me(Ekin cos2 θ −V0)

h̄
, (2.27)

therefore, from the ARPES, one can have k-resolved photocurrent intensities
whose peaks represent energy levels. Thus ARPES provides complete infor-
mation about the electronic structures.
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FIGURE 2.3: Picture of momentum conservation law in ARPES experi-
ments.

2.5 Selection rule

As we saw in the previous sections, calculating the photocurrent intensities
are quite complicated tasks. For the initial state, first-principle calculations
provide quite good wave functions. On the other hand, final states are still
difficult to compute. Since the final states have very complicated process in
the bulk, some approximation give qualitative description of the final states.
This section shows that analysis of symmetries of the wave functions give
additional constraints of the wave functions of the transition matrix elements
which makes the physics behind the intensities a little bit transparent.

First, let’s think of the transition matrix elements in the dipole approxima-
tion Eq. 2.13. Parities of the functions inside the integrals give a restriction
for the wave functions choices. The only possible transition in the dipole ap-
proximation is odd→ even or vice versa, because the position operator r is
odd.

As the next step, consider atomic wave functions form products of Radial
wave functions Rnl(r) and Spherical harmonics Ylm(θ, φ) as φnml = Rnl(r)Ylm(θ, φ).
The spherical harmonics can be further written as

Ylm(θ, φ) = (−1)(m+|m|)/2

√
2l + 1

2
l − |m|
l + |m|P

|m|
l (cos θ)

1√
2π

eimφ, (2.28)

where P|m|l (ζ) is a Legendre polynomial defined as

P|m|l (ζ) = (1− ζ2)
|m|
2

d|m|

dζ |m|
Pl(ζ) (2.29)
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with

Pl(ζ) =
1

2l l!
dl

dζ l (ζ
2 − 1)l. (2.30)

The spherical harmonics for −m is then given by

Yl −m(θ, φ) = (−1)mYlm(θ, φ)∗. (2.31)

Next step is to think of the parity inversion of the spherical harmonics. The
parity inversion of the spherical coordinate is achieved by changing the polar
angle θ → π/2− θ and azimuthal angle φ → φ + π (Fig. 2.4). As for the φ-
dependent part of Ylm(θ, φ), one has Φm(φ + π) = (−1)mΦm(φ). For the
θ-dependent part, using the relation

P|m|l (−ζ) = (−1)l+mP|m|l (ζ), (2.32)

it follows Θm
l (π/2− θ) = (−1)l+m Θm

l (θ). As a consequence, parity inver-
sion of the spherical harmonics gives

Ylm

(π

2
− θ, φ + π

)
= (−1)lYlm(θ, φ). (2.33)

This simply implies difference of two l-quantum numbers ∆l to be odd to the
matrix elements Eq. 2.13 have non-zero values. So far, the selection constraint
is ∆l = l′ − l to be odd. Followings show that this constraint can be more
limited.

By writing the integral more explicit, the transition matrix elements are
given by∫

φ∗l′m′n′ε · rφlmn dr (2.34)

= AB
∫ 2π

0

∫ π

0
ε · r̂ P|m

′|
l′ (cos θ) P|m|l (cos θ) ei(m−m′)φ sin θ dθdφ, (2.35)

where φl′m′n′ , φlmn, A and B are the final state wave function, the initial state
wave function, some coefficient and the radial integral term. The term for a
z component of the polarization vector ε = (εx, εy, εz) is∫

φ∗l′m′n′ εz cos θ φlmn dr (2.36)

= AB
∫ π

0
sin θ cos θ P|m

′|
l′ (cos θ) P|m|l (cos θ) dθ

∫ 2π

0
ei(m−m′)φ dφ (2.37)

which gives a condition m′ = m. The condition leads Eq. 2.37 to following
form:

2πAB
∫ 1

−1
zP|m|l′ (z) P|m|l (z)dz. (2.38)
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By substituting following recursion formula for the Legendre polynomials

zP|m|l (z) =
l −m + 1

2l + 1
P|m|l+1(z) +

l + m
2l + 1

P|m|l−1(z) (2.39)

= aP|m|l+1(z) + bP|m|l−1(z) (2.40)

one obtains

2πAB
∫ 1

−1
P|m|l′ (z)

(
aP|m|l+1(z) + bP|m|l−1(z)

)
dz. (2.41)

The orthogonality of the Legendre polynomials give the condition ∆l = ±1
with m′ = m. This is well known selection rule for the optical transitions.
As for the x and y component of the transition matrix elements, same con-
dition for ∆l (∆m = ±1 for ∆m) can be obtained by making use of cos φ =(
eiφ + e−iφ) /2 and sin φ =

(
eiφ − e−iφ) /2i. As a summary, following condi-

tions are implied to the matrix elements to have non-zero values

∆l = l′ − l = ±1 and ∆m = m′ −m = ±1 (for x and y) m′ = m (for z).
(2.42)

x

y

z

+π

(r, θ, φ)

(r, 
π

2
−θ, φ + π)

FIGURE 2.4: Inversion operation of the spherical coordinate.
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2.6 Final state plane-wave approximation

Even if the photocurrent intensity can be calculated by Eq. 2.5, the final state
wave function |φ f 〉 is left nontrivial task. Because of this difficulty, the pho-
tocurrent intensity is not investigated well and even if one tries to inves-
tigate it, strong approximations are needed. This section describes a sim-
ple and efficient approximation for the final state wave functions (which is
called final state plane-wave approximation) which is frequently used in the-
oretical analysis due to its simplicity. The approximation is simply called
plane-wave approximation in this section. The plane-wave approximation
is has been made popular by P. Puschnig et al. [1, 16] to describe the angle
dependence of the photocurrent intensities. With the plane-wave approxi-
mation, they found the photocurrent intensities map represents molecular
orbital densities of sexiphenyl and pentacene molecule (Fig. 2.5). From that
time, the plane-wave approximation has been recognized as a very simple,
but efficient approximation.

FIGURE 2.5: ARPES intensity angle distribution of (A, B) measurements
(C,D) calculated from PW approximation for sexiphenyl. (A) With bind-
ing energy EB = 1.9 eV. (B) Corresponding to (A). (C) With binding

energy EB = 0.3 eV. (D) Corresponding to (C).

In the plane-wave approximation, the final state wave function is simply
approximated as a plane wave |φ f 〉 = |p′〉 = |k′ +G′〉 (Fig. 2.6). If one use a
linear combination of plane-wave (plane-wave basis) as the initial state wave
function |φi〉 = |nk〉 = ∑G CGnk |k+G〉 , the form becomes more simple and
transparent. The transition matrix elements are then given by

M f i = 〈φ f |A · p̂|φi〉 = 〈p′|A · p̂|nk〉 = A · pCGnk|p=k+G. (2.43)
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Therefore, in the plane-wave approximation, possible final state is only p′ =
p = k+G.
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P

Real space Reciprocal space

Reciprocal cell

FIGURE 2.6: Image of the final state plane-wave approximation in real
space (left) and in reciprocal space (right).

2.7 Matching method

Despite the success of the plane-wave approximation, the plane-wave ap-
proximation is insufficient in many cases and cannot elucidate many phe-
nomena such as circular dichorism in angular distributions [17]. Multiple
scattering theory (MST) gives exact one-step final state wave functions, how-
ever, the accuracy of the MST is questionable because of the muffin-tin ap-
proximations for the crystal potential, which is generally used in combina-
tions with MST. one of the merit of the plane-wave approximation is that the
initial states can be taken as plane-wave basis set which is widely used in
DFT [18]. One of the possible procedure is making a linear combination of
possible final states and then, fit coefficients to be a plane-wave at the bound-
ary between surface and vacuum. Such approach is introduced in [19]. This
approach simply match the linearized final state wave function and a plane-
wave at the boundary, hence it is simply called Matching method from this
point. Practical procedure will be explained below.

To achieve a numerically exact final state wave function (Fig. 2.7), assume
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a linear combination of possible states (the energy and parallel crystal mo-
mentum k‖ are conserved). The linear combination is given as

φ f (r) = ∑
γ

αγφγ(r) (2.44)

where γ is a combined index of bands n and wave vectors k and the sum runs
over all possible states. The coefficient αγ is determined by the boundary
condition of surface where the combined final state coincides with a plane-
wave. For the smooth matching, the value and its first derivative will be
matched at the boundary. The conditions are given by{

∑γ αγφγ(r′) = exp(ip · r′)
∑γ αγ∇φγ(r)|r=r′ = ip exp(ip · r′)

(2.45)

where r′ is the position of the boundary between surface and vacuum which
can be presumably taken at the middle of the vacuum region between the
repeated slabs in slab model calculations. As a consequence, Eq. 2.45 is the
equation to be solved to obtain good final state wave functions.
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FIGURE 2.7: Image of the numerically exact ARPES final state wave
function in real (left) and reciprocal (right) space.
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Chapter 3

Topological materials

3.1 Topological insulator

Topological insulators are materials which are insulators in the bulk, but have
gap-less states at their edges. In normal insulators, the edge states coming
from the conduction bands come back to the conduction bands. On the other
hand, edge states of the topological insulators connect conduction and va-
lence bands (See Fig. 3.1). It should be noted that even if the insulator has
gap-less states, it can be a normal insulator. The word "topological" means
even if the form of the edge states are varied for some reasons, it still has
gap-less edge states. This feature does not depend on the details of the edge
states. Thus it is robust against perturbations from impurities. Insulators
can be characterized by so called topological Z2 number. This topological Z2
number can be computed from parities at time-reversal invariant momenta
(TRIM) [20]. In normal insulators, Z2 number is even. By contrast, topologi-
cal insulators have odd Z2 numbers.

0 k

Conduction bands

(a) Normal insulators

Valence bands

Conduction bands

(b) Topological insulators

E

0 k

Valence bands

Edge states

FIGURE 3.1: Cartoon of band structure of the edge states in (a)Normal
insulators and (b)Topological insulators.
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3.2 Topological semimetals

Only topological insulators have been focused so far, however, there is an-
other interesting topological material family which is called topological semimetal
[21]. In such materials, gapless edge states, in other words, the states where
conduction and valence bands degenerate form point or line in k-space. There
are various reasons of these degeneracies. Fig. 3.2 shows typical three types
of topological semimetals ((a)Dirac semimetal, (b)Weyl semimetal, (c)Nodal
line semimetal). (a) and (b) have cone like band structure which is called
Dirac cone. Difference between (a) and (b) is that in (b)Weyl semimetals, the
Dirac cone is non-degenerate, while it is degenerating with respect to spin in
(a)Dirac semimetal (Kramers degeneracy). This degeneracy can occur when
the system is invariant under the product operation of time-reversal opera-
tion and parity operation. Making a long story short, if the system has bro-
ken either time-reversal or parity, it becomes (b)Weyl semimetal. In (c)Nodal
line semimetals, these bands are degenerating around a curve which is called
Nodal line. One can have such Nodal lines for example when time-reversal
and parity symmetry coexist with small spin-orbit interactions (can be ig-
nored). Since later chapters are mainly focusing on the Weyl semimetals,
details of the Weyl semimetals will be discussed in the following.

Dirac cone

(c) Nodal line 

semimetal

E

k

k

(a) Dirac semimetal

(Degenerating)

or 

(b) Weyl semimetal

(Non-degenerating)

Nodal line

FIGURE 3.2: Typical three type of the semimetals. (a)Dirac semimetals
and (b)Weyl semimetals and (c)Nodal semimetals with peculiar band

crossings.

3.3 Weyl semimetal

Weyl semimetal is considered to have interesting topological features quite
notably. The Dirac cones in the Weyl semimetals in the simplest case (Fig. 3.2(b))
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can be reproduced by Weyl equation:

H±Weyl = ±vk · σ (3.1)

= ±v
(

kz kx − iky
kx + iky −kz

)
. (3.2)

Where σ is the vector of the Pauli matrices. Index ± is corresponding to
plus and minus helicity of the Weyl particles. By introducing unit momen-
tum p̂ = p/|p| and helicity operators p̂ · σ, the eigenstate corresponding
to p̂ · σ = +1 is called right-handed Fermion, while p̂ · σ = −1 is called
left-handed Fermion. From the fermion doubling theorem, Weyl points (the
crossing point at the Fermi level) form pairs [7]. This Weyl equation reduces
the 4 x 4 matrices of the Dirac equation to 2 x 2 matrices. An interesting topo-
logical feature appears when one think of Berry curvature which is given by:

B(k) = ∇k × A(k) (3.3)

with the Berry connection defined as:

A(k) = −i 〈unk|∇k|unk〉 , (3.4)

where |unk〉 is a Bloch state with a band n and a crystal momentum k [22].
About the valence band of the Weyl Hamiltonian, the Berry curvatures give

B±(k) = ∓sign(v)
k

2k3 (3.5)

for right (+) and left (-) handed Weyl fermions, respectively. As the conse-
quence, magnetic monopoles in momentum space is realized by monopole
density which is defined as

ρn(k) = ∇k · Bn(k). (3.6)

The monopole densities give

ρ±(k) = ∓2π sign(v)δ(k) (3.7)

which correspond to the magnetic monopoles at k = 0 with the strength of
±2π. They act as a sink or a source of the Berry curvature in the momentum
space. They are also called monopole and anti-monopole. The same num-
ber of the monopoles and anti-monopoles should exist in such substances
(Nielsen-Ninomiya’s theorem [7]). In addition to those, surface states appear
as a band connecting pair of the Weyl points and this band is known as sur-
face Fermi arcs (the cuttings of the 3D Weyl semimetals along kz reduces the
problem to quantum Hall insulators as one can see in the following sections)
[23].
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3.4 Type-I and Type-II Weyl semimetal

This section shows the Weyl semimetal can have another type of the band
structure which is classified as type-II Weyl semimetal [24]. In the above
discussions, Weyl semimetals are always having simple cone band structure
which is classified as type-I Weyl semimetal. Let’s think of the most general
Hamiltonian about the Weyl point Eq. (3.1):

H
′
Weyl = ∑

i=x,y,z
∑

j=0,x,y,z
ki Aijσj, (3.8)

where k is the crystal momentum, Aij is the 3 x 4 matrix of the coefficients,
σ0 is the unit matrix and σx,y,z are the Pauli matrices. With a condition

A =

 0 ±v 0 0
0 0 ±v 0
0 0 0 ±v

 , (3.9)

the equation coincides with Eq. (3.1). From this general Hamiltonian for the
Weyl points, one can have energy dispersions as

ε±(k) = ∑
i=x,y,z

ki Ai0 ±

√√√√ ∑
j=x,y,x

(
∑

i=x,y,z
ki Ai j

)2

(3.10)

= T(k)±U(k). (3.11)

T(k) and U(k) are known as kinetic and potential term, respectively. The
second term is responsible for the cone-like band dispersion, while the first
term is a linear dispersion. Competitions between these two terms give tilts
of the Dirac cones which can be realized easily below. For the sake of sim-
plicity, if one assumes

A =

 0 ±v 0 0
0 0 ±v 0
vε 0 0 ±v

 (3.12)

and kx = ky = 0, then the effective Hamiltonian becomes

H
′
Weyl =

(
(±v + vε)kz 0

0 (∓v + vε)kz

)
. (3.13)

With this Hamiltonian, as the energy spectrum, one has analytical solutions

ε±(k) = (±v + vε)kz. (3.14)

Schematic pictures of such energy spectrums are depicted in Fig. 3.3. As one
can see, with a condition vε = 0, equivalently T(k) = 0, the Dirac cones form
usual isotropic Dirac cones (Fig. 3.3(a)). On the other hand, finite values of
vε result in tilts of the Dirac cones (Fig. 3.3(b)). In addition to that, if there
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is a direction where vε, alternatively T(k) becomes dominant over v so as
U(k), say vε > v, the sign of the spectrum will be changed which results
in an electron pocket and a hole pocket around the Fermi level (Fig. 3.3(c)).
Such type of the Weyl semimetals are called type-II Weyl semimetals while
Weyl semimetals with standard isotropic Dirac cones are called type-I Weyl
semimetals.

(a) 𝑣𝜖 = 0 (b) 0 < 𝑣𝜖 < 𝑣 (c) 𝑣 < 𝑣𝜖

𝐸𝐹

Hole pocket

Electron pocket

FIGURE 3.3: Variation of a cone-like band dispersion of Weyl
semimetal. (a) Without additional vε, (b) With additional 0 < vε < v,

(c) With additional v < vε, called type-II Weyl semimetal

Another interesting aspect of the Weyl semimetals are unusual magne-
toresistances namely, changes of the electrical resistances caused by exter-
nal magnetic fields. In such type-I Weyl semimetals, the magnetoresistances
show negative values. It is quite peculiar feature. On the other hand, the
type-II Weyl semimetals are found not showing such negative magnetoresis-
tance and show giant positive magnetoresistance instead (such behavior has
been found in the first possible type-II Weyl semimetal WTe2[25]). The reason
of the tilts in real type-II Weyl semimetals have not been revealed yet, how-
ever, these tilts are understood as silent responses to the external magnetic
fields because of the behavior.

3.5 TaAs as the fist type-I Weyl semimetal

The first candidate material of possible realization of the type-I Weyl semimetal
is TaAs. TaAs has nonsymmorphic I41md crystal group which breaks par-
ity inversion symmetry that gives an anticipation to be the Weyl semimetal
(Fig. 3.4). Indeed, a critical signature of the Weyl semimetals, the Surface
Fermi Arcs are predicted from the first-principle electronic structure calcula-
tions and also in other sister materials (TaP, NbP, NbAs) [26].

After the prediction, the first observation of type-I Weyl semimetal state
has been achieved in TaAs by B. Q. Lv et. al. [28]. Their ARPES experiments
reveal the Surface Fermi Arcs are existing in TaAs (Fig. 3.5 (b)) and thus it has
been recognized as the first realization of the type-I Weyl semimetal.
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FIGURE 3.4: Ball and stick crystal model of TaAs. Blue spheres are
Ta atoms and yellow spheres are As atoms, respectively. The picture is

adopted from [27]

3.6 WTe2 and MoTe2 as the fist type-II Weyl semimetal

Layered transitional dichalcogenides WTe2 and MoTe2 which have parity in-
version broken Pmn21 crystal structure (Fig. 3.6) have been predicted be the
first type-II Weyl semimetal candidates [24]. From the first-principle elec-
tronic structure calculations, these substances are predicted to have tilted
Dirac cones [24, 29, 30].

After these predictions, ARPES experiments revealed WTe2 and MoTe2
are possible candidates of the type-II Weyl semimetal [33–35] The observed
electron and hole pocket in WTe2 and MoTe2 are shown in Fig. 3.7.
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FIGURE 3.5: A schematic picture of a pair of bulk Weyl nodes (a) and
observed surface Fermi Arc which is connecting those nodes by means

of ARPES (b). The picture is adopted from [28]

z

y
x

Te

W

y

x
z

(a) Side view of WTe2 (b) Top view of WTe2

FIGURE 3.6: Experimental crystal structure of the orthorhomobic
WTe2 [31, 32]. Gold spheres indicate Te atoms while silver spheres indi-
cate W atoms. Side view (a) and Top view (b). Substitution of Mo atoms
at the place of W atoms coincides the crystal structure of MoTe2 with

slightly different lattice parameters.
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(a) WTe2

(b) MoTe2

FIGURE 3.7: Observed electron and hole pocket in (a) WTe2 and
(b) MoTe2 by means of ARPES. The pictures are taken from [34]
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Chapter 4

Interpretations of the photocurrent
intensities

As it is described, information contained in the photocurrent intensity should
be understood with a robust calculation. So far, this thesis has accessed nu-
merical difficulties of ARPES and interesting materials, which are mainly ex-
plored by ARPES.

This chapter discusses the interpretation of the ARPES photocurrent in-
tensity, which has been overlooked, and there is no robust interpretation of it
so far. This chapter tries to find the answer of such question by using several
method (plane-wave approximation, matching method and one-step model).

Before go into the detailed discussion of the photocurrent intensity, at this
point, advantages and disadvantages of the existing methods will be sum-
marized. Here the mainly used two methods (plane-wave approximation
(PWA) and multiple scattering theory (MST), equivalently, one-step model)
are summarized in Table. 4.1.

TABLE 4.1: Comparison of widely used methods

Method Advantages Disadvantages
PWA Simple Strong approximation
MST Exact boundary condition Potential shape

As one can see from the Table 4.1, those widely used methods have sort of
"trade-off" relations. One of the possible solution to these "trade-off" relations
is the matching method which has been described in Sec. 2.7, however, still
technical problems are remaining (for instance, there is no clear road map to
implement it to powerful plane-wave basis DFT code). Therefore, in Sec. ??,
the matching method will be applied to a simple potential well in which scat-
tering problem can be solved exactly, analytically. Some benchmark between
plane-wave approximation, matching method and the exact solution will be
discussed.

One of the method which can treat the boundary condition exactly is the
one-step model. In reality, the one-step model can be achieved by solving a
multiple-scattering problem. In Sec. 4.2, the multiple scattering problem will
be solved for the Weyl semimetal candidate MoTe2. After that, meaning of
the photocurrent intensity will be discussed.
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4.1 A graphene-like box-potential

The matching method should be a new powerful method for theoretical ARPES
calculation. This method is a "newborn" method. Therefore, it has not been
implemented in a robust DFT code. This section applies the matching method
to a one-dimensional periodic single rectangle potential well. This toy-model
can be a good test-bed if one chooses proper parameters of the potential and
lattice. This model can be considered as a simplified slab model of two di-
mensional lattice where the axis of the one-dimensional model corresponds
to the axis perpendicular to the plane of the two-dimensional material (see
Fig. 4.1).

𝑉0

𝑧𝑧

(a) Slab graphene (b) 1D model 

C

FIGURE 4.1: Schematic picture of (a) a slab model graphene and (b) the
one-dimensional periodic potential well model.

As a real model, two-dimensional material graphene has been chosen as
a test material. Therefore, here this toy-model is fitted to graphene electronic
structure (corresponding graphene slab model is shown in Fig. 4.1 (a)).

Here consider the plane-wave basis to be used in the calculation of eigen-
value problem of the one-dimensional periodic potential. Then, the eigen-
states are given in the plane-wave basis as

ψnk(z) = ∑
G

CG
nkei(k+G)z. (4.1)

Then, by inserting this basis to Eq. 2.45 one can obtain matrix, however, an-
other problem is how to determine the dimension or the number of the si-
multaneous equation. This can be a problem, but in this case, only two states
(whose eigenvalues are closest to the final state energy) are chosen. Now, we
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have two equations used in a simultaneous equation. Therefore, we have a
2× 2 matrix to be diagonalized. After the diagonalization, one has two coef-
ficient α1 and α2 so as to the numerical final state wave function obtained by
matching

ψ f = α1ψnk1 + α2ψnk2 . (4.2)

Electronic structure of a supercell graphene is calculated by Vienna-Ab
initio-Simulation-Package (VASP) [18, 36]. Where the potential is treated by
projector-augumented wave (PAW) method [37] and plane-wave basis set.
Supercell size c ≈ 20 Å has been chosen. Local Density Approximation
(LDA) [38] is used in the exchange-correlation functional. The plane-wave
cut-off is set as 1200 eV and the 34 k-points mesh are used.

Obtained Density Of States (DOS) of the graphene is plotted in Fig. 4.2
along with free electron DOS ∝

√
E up to 70 eV. The obtained DOS shows

almost complete matching with the free electron DOS, meaning the supercell
size is enough where the continuum state is sufficient.

FIGURE 4.2: Calculated DOS of graphene (red) and free electron (blue).

Fig. 4.3 shows band structure along out-of-plane kz of the supercell graphene
(a), one-dimensional periodic potential (b) and free electron (c). Parameters
of the one-dimensional periodic potential are fitted based on this comparison
(its band structure to have roughly same band structure). Thus, the model is
realistic and may have some information of graphene. One may notice hardly
kz dispersive bands in the graphene DFT bands which were denoted as thin
lines. These do not have finite group velocity along z meaning bounded in
two-dimensional plane. Therefore, those can be ignored for the purpose of
this study. As one can see from the band structure, those (except free elec-
tron) have a bound state Ei = 7.2 eV which is used as an initial state.

Fig. 4.4 shows the imaginary part and the real part of the final state wave
function which is calculated by the matching method (red solid line) and ex-
act solution of the non-periodic one-dimensional potential well (dashed blue
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(a) Graphene 

DFT
(b) 1D pot. (c) Free ele.

c

FIGURE 4.3: Calculated band structure of (a) Graphene, (b) Periodic
one-dimensional potential well, (c) Free electron.

line). This final state has been chosen by a photon energy of the Hellium
I lamp h̄ω(HeI) = 21.2 eV so that the final state energy E f = Ei + 21.2 =
14.0 eV. These shows almost perfect matching. Besides those, a plane-wave
is plotted as black solid lines. As one can see from the picture, the match-
ing method wave function and exact wave function coincide with the plane-
wave at the boundary. Thus, these satisfy the boundary condition. By using
this final state wave function and initial state wave function of the selected
initial state, one can evaluate the photocurrent intensity via the transition
matrix element Eq. 2.5. If one uses a plane-wave final state, it is exactly the
final state plane-wave approximation which has been introduced in Sec. 2.6.

Fig. 4.5 indicates the photocurrent intensity calculated by the selected ini-
tial state (Ei of Fig. 4.3 and (a) of Fig. 4.4) and the final state wave function
obtained by matching (red) and a plane-wave approximation (blue). The po-
larization vector has been chosen asA = ez (unit vector along z). Intensity of
both of the matching and the plane-wave final state show similar shape pho-
ton energy dependence. However, there is a large shift. Indicating the final
state plane-wave approximation is not so reliable, especially in low energy
region. A better matching probably can be obtained if one shift the intensity
of the plane-wave approximation around -60 eV. On the other hand, the fi-
nal state wave function obtained by the matching method is probably quite
reliable except some noise at the low energy region. The noises are probably
caused by the choice of the number of states. In this calculation, only two
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FIGURE 4.4: (a) Calculated bounded initial state wave function, (b) Real
part of the final state wave function and (c) Imaginary part of the fi-
nal state wave function. Red lines indicate the result of the matching
method, blue dotted lines indicate an exact final state wave function
of non-periodic potential well and black solid line indicate plane-wave

which is matched at the boundary, respectively.

states are chosen which should be more reliable if one chooses more states.
Therefore, this problem remains as a numerical problem should be solved in
the future.

4.2 MoTe2

As it is described in Chap. 3, topological Weyl semimetal is receiving much
attentions recently. The particular interest is coming from the existence of the
mass-less Dirac fermion which is called Weyl fermion which has not been
observed in nature. This expectation is coming from the fact that the band
dispersion of such material is represented by the Weyl equation (Eq. 3.1).
Recent finding of the possibility of the tilted cone-like band dispersion has
opened incipient field of interest. The materials have such tilted cones are
called type-II Weyl semimetal and those are extensively searched recently.

The transitional metal dichalcogenides (TMDC) MoTe2 is predicted to be-
long such type-II Weyl semimetal, however, a clear experimental evidence
is still lacking. Therefore, it is known as a candidate material of the type-II
Weyl semimetal. Indeed, critical evidence is a quite difficult problem. Special
feature of such Weyl semimetal is that the cone-like tilted band dispersion al-
ways forming a pair and those are connected by a unclosed Fermi line which
is known as surface Fermi arc [21]. Therefore, direct observation of the sur-
face Fermi arc is an essential evidence of the Weyl semimetal. Therefore,
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FIGURE 4.5: Calculated photon energy dependence of the ARPES in-
tensity using the final state obtained from the matching method (red)
and the final state plane-wave approximation (Blue). Inset indicates

logarithmic scale of those.

many researchers are trying to find the surface band structure by means of
ARPES which can give direct observation of such band dispersion. While the
DFT electronic structure calculations give reliable results for such materials,
ARPES results itself should be understood by theoretical calculations with
exact boundary condition. This section provides first such ARPES calcula-
tion which will be a key of searching special surface Fermi arc of MoTe2.

MoTe2 has monoclinic centrosymmetric 1T’ structure at the room temper-
ature. Cooling down to below 240 K makes the MoTe2 to orthorhomobic Td
structure (space group Pmn21 structure). Since the orthorhomobic Td struc-
ture is breaking parity inversion symmetry, which gives a possibility of the
Weyl semimetal. Most of the research are focusing on the region where the
surface Fermi arc is expected to be found.

ARPES calculation with exact boundary condition is needed not only to
understand the experimental results, but also to suggest proper condition of
ARPES (e.g. light polarization and photon energy). For instance, if one could
predict observable bands with specific condition, future experiments would
be able to use the suggested conditions effectively.

This section tries to understand the meaning of the ARPES intensity and
suggest best ARPES condition for future experiments by means of ground
state DFT calculation and one of the most efficient "one-step" ARPES calcu-
lation.

4.2.1 Calculation details

As it is described above, this section introduce results of two types of calcula-
tions. In any case, an experimental crystal structure with the lattice parame-
ters a = 3.477 Å , b = 6.335 Å and c = 13.883 Å [39] is used. The bulk crystal
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structure is shown in Fig. 4.6 (a) and (b).
In DFT ground state calculations, a Slab structure has been constructed

with four layers of MoTe2 and 10 Å of vacuum. Out of plane lattice param-
eter c results in c = 37.8 Å. The PAW method is used as it is implemented in
VASP. Commonly adopted Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional is used. 16× 16× 1 k-points mesh is used in self-consistent field
(SCF) calculation and the plane-wave cut-off is set as 400 eV. The relativistic
spin-orbit coupling (SOC) is taken into account in all calculations.

The one-step ARPES calculation has been performed by using spin-polarized
relativistic Korringa Kohn Rostoker (SPR-KKR) package [40]. As the Slab
model DFT calculation, same experimental crystal structure is used in all
calculations and SOC is treated via Dirac equation. As the potential shape,
Atomic Sphere Approximation (ASA) is used. Angular momentum expan-
sion lmax = 3 is used. Firstly, the bulk Green function is computed, then, a
surface model is constructed. Next, the Green function of the semi-infinite
surface model is calculated from the solution of Dyson equation. In the
one-step model calculations, Layered KKR (LKKR) method is used. In the
LKKR formalism, one treats spherical waves in the layer while plane-waves
are used between the layers.

One of the problem of the one-step model is the potential shape. Since
MoTe2 has an opened crystal structure, the spaces must be filled with empty
spheres. For the bulk SPR-KKR calculation, space filling is required and
empty spheres were put both inside the MoTe2 layers and between them. In
the LKKR calculations (for ARPES) however, serious problem occurred and
could not reproduce the slab band structure. A natural choice of the empty
spheres was not applicable. Therefore, the empty spheres inside the layers
have been removed while those of between the layered are left. Then, the
quality of the electronic structure was much improved. Actually, same pro-
cedure has successfully been applied to another similar material WTe2 [41,
42].

4.2.2 Band structure of MoTe2 (Td)

Since the topologically protected tilted cone-like band structure has been ob-
served in many experiments and ab-initio calculations along Γ̄(0, 0) - X̄(0, 0.5)
point in the two-dimensional Brillouin Zone, this region will be discussed
in the followings. Fig. 4.7 shows ground state band structure calculated by
VASP (a) and the ARPES intensity map calculated by one-step calculation (b).
Both showing very similar band structure. Since the plane-wave basis DFT is
considered quite reliable theory for this kind of not strongly correlated mate-
rials, the result indicating this one-step calculation is accurate enough. Also,
characteristic bands which are called hole and electron pocket are found in
both calculations. Those are considered to form a tilted cone-like band dis-
persion. Both results are showing very good agreements with other calcula-
tions and experiments [29, 34].

One may notice that the form of the bands in one-step and ground state
DFT are not in complete agreement. This is exactly the disadvantage of the
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FIGURE 4.6: Crystal structure of MoTe2 and experimental geometry
which will be discussed in Sec. 4.2.4. Gold, purple and blue small
spheres are indicating Te atoms, Mo atoms and empty spheres, respec-
tively. Empty spheres will be used only in ARPES calculations. (a) Side

view (b) Top view (c) Experimental geometry

MST which has been explained at the beginning of this Chapter. Of course,
it is not perfect, but qualitatively agreeing. At least, the characteristic hole
pocket and electron pocket are almost same form. Therefore, we can trust
these band dispersions for the purpose of this work.

4.2.3 Orbital projection and polarization dependence

Now, let me discuss the results obtained from these two calculations. One-
step calculation should yield exact final state wave functions. Therefore, if
calculated intensities show useful information, this would be a useful guide
to future experiments. However, understanding calculated ARPES intensi-
ties is a still quite difficult task. Here, this chapter employs the l± 1 selection
rule which has already been discussed in Sec. 2.5 to understand the meaning
of ARPES photocurrent intensity and tries to provide useful guides to future
experiments.

Strategy of this subsection is following. First, consider possible initial
state as it is formally allowed by the l ± 1 selection rule. Second, predict
which part of the ARPES intensities can be pronounced based on the rule.
Finally, provide useful guides based on this analysis.

Since main interest of studies of MoTe2 is around the Fermi energy EF,
let’s focus on this region. Then, those states are clearly dominated by Te 4p-
orbital and Mo 5d-orbital as seen in Fig. 4.8.

Hence, following discussions only consider these states as the initial state.
For the sake of simplicity, this chapter considers only l − 1 transition. One
may think this is a large approximation, however, as it will be shown later in
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FIGURE 4.7: Calculated band structures along Γ̄ − X̄ in the 2D Bril-
louin Zone (a) DFT Slab bands. (b) ARPES intensity map calculated
from One-step ARPES calculation with photon energy h̄ω = 60 eV and

unpolarized light (x-pol. + y-pol. + z-pol.).
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this chapter, this is quite efficient approximation. The reason can be under-
stood as follows. As an example, consider pz initial state. In that case, the
intensity has the l − 1 transition yields s final state. Then, the intensity has
a strong cos2 θ dependence. This can be easily understood by the fact that
in general case of the light polarization is in xy-plane, the transition matrix
element in dipole approximation is given as

Mpz→s = 〈s|z|pz〉 cos θ, (4.3)

where the angle θ is the angle between the light polarization and z-axis.
Therefore, square of this is proportional to cos2 θ. However, l + 1 transition
has 5 such d-orbital final states for any light polarization. Thus, I believe this
is enough efficient analysis.

Now, let’s use only linearly polarized light along x, y and z-axis (which
this section calls x-polarization, y-polarization and z-polarization, respec-
tively). Then, list possible transitions for these light polarization.

• X-polarization: Te px → s and Mo dxz → pz

• Y-polarization: Te py → s, Mo dyz → pz and Mo dxy → px

• Z-polarization: Te pz → s and Mo dz2 → pz

These are the all possible transitions according to the l − 1 selection rule.
Another important factor is the photon energy used in the light. Here let

us use 60 eV as used in an experiment by Tamai et al. [34]. In the following
figures, ARPES intensity with x, y and z-polarization will be plotted along
with the orbital DOS projected onto the band dispersions which are possi-
ble initial states regarding the light polarization. As for the projected DOS
(PDOS), only surface Te atoms and Mo atoms are considered. Since the Mo
atoms are not exposed at the surface, damping effects are taken into account
by dividing the DOS by a factor of 2 in a simple way.

Fig. 4.9 shows the calculated ARPES with x-polarization (a) and corre-
sponding possible initial states (b) and (c). As one can see from the PDOS of
Mo dxz and Te px, those initial state analysis predict well intense points of the
ARPES intensity for x-polarization. One of the interesting character is that
with the x-polarization, characteristic hole pocket is highlighted very well.
Furthermore, it is almost solely described by the Te px initial state which
dominates the hole pocket band. As for the Mo dxz state, still the PDOS is
showing same character with the calculated x-pol. ARPES. The hole pocket
is interesting feature of type-II Weyl semimetal, thus, if one wishes to ob-
serve the hole pocket of MoTe2, one should use linear x-pol. in the ARPES
experiment. This situation can be achieved with s-polarization light along
y-axis.

Fig. 4.10 shows the calculated ARPES with y-polarization (a) and corre-
sponding possible initial states (b), (c) and (d). As seen from the calculated
ARPES, linearly dispersed bands are pronounced by y-polarized light. This
band, actually, consists of two bands. The lower part is coming from the hole
pocket while the upper part is coming from the electron pocket. Those two
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(a) x-pol. (b) Mo dxz (c) Te px

FIGURE 4.9: (a) Calculated ARPES intensity with the linear x-
polarization and photon energy h̄ω = 60 eV. and corresponding pos-

sible initial states DOS projected onto the bands (b-c).

parts can be described by Mo dyz and Mo dxy orbital. The calculated ARPES
intensity also has pronounced bands below this linearly dispersed bands.
This group of bands are mainly coming from Te py orbital. As well as the
x-polarization, y-polarization can be realized by the s-polarization, but with
the light incident in the xz-plane.

Fig. 4.11 shows the calculated ARPES with z-polarization (a) and corre-
sponding possible initial states (b) and (c). Again, the calculated ARPES in-
tensity for z-polarization is well explained by the l − 1 transition. One of
the important character of z-polarization is that the special electron pocket
is pronounced well. Possible initial states also have some weight. At the
same time, this electron pocket is possibly the surface states as seen in other
work [33]. Which is also made of these possible initial states. Another charac-
ter is an arc-like band dispersion around k = 0. As seen from the Fig. 4.11 (b),
this is the character of Mo dz2 orbital. As for the realization in experiments,
exact z-polarization is impossible. However, slightly tilted z-polarization is
possible by using p-polarization from almost grazing angle along any direc-
tion in xy-plane. With z-polarization, the intensity is much higher than that
of in-plane polarization, therefore, slightly tilted grazing angle should give
almost z-polarization.

Both of x and y polarization entirely show less intensity compare to z-
polarization because the emission angle is almost perpendicular to the light
polarization especially at the Γ̄ point. This is well known that the intensity of
the parallel emission is higher than perpendicular emission [43].

This subsection concludes if one wishes to observe the hole pocket, suit-
able condition for observing it is s-polarized light along y-axis. In contrast,
if one wishes to observe the electron pocket, the suitable light polarization
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(a) y-pol. (b) Mo dxy (c) Mo dyz (d) Te py

FIGURE 4.10: (a) Calculated ARPES intensity with the linear y-
polarization and photon energy h̄ω = 60 eV. and corresponding pos-

sible initial states DOS projected onto the bands (b-d).

(a) z-pol. (c) Te pz(b) Mo dz2

FIGURE 4.11: (a) Calculated ARPES intensity with the linear z-
polarization and photon energy h̄ω = 60 eV. and corresponding pos-

sible initial states DOS projected onto the bands (b-c).
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is perpendicular to the plane i. e. z-like p-polarized light. Of course, there
should be photon energy dependence, however, the photon energy depen-
dence does not play important roll as it will be justified in the next subsec-
tion.

4.2.4 Comparison with an experiment

Tamai et al. [34] measured ARPES with p-polarization. In their experiment,
the electron pocket is very well seen. Since the p-polarization is made of
the matrix element of z-polarization and in-plane polarization, this can be
understood as almost z-polarization (Intensity of z-polarization is around
four times higher than that of in-plane polarization). The z-polarization has
strong intensity at the electron pocket and which is in very good agreement
with the experiment by Tamai et al. [34] (see Fig. 3.7 (b)).

Here this subsection compares our analysis with an ARPES experiment
of MoTe2 done by Nakata et. al. of Chiba University. Fig. 4.12 (a) shows the
experimental ARPES result which has been performed with 6.27 eV of the
photon energy and s-polarized light (the experimental geometry is shown
in Fig. 4.6 (c)). The collected electrons correspond to the Γ̄ − X̄ line. The
light incident in the xz-plane, thus, this is same situation with y-polarization
which is considered in above discussion except the photon energy. The cal-
culated ARPES with the same condition is shown in Fig. 4.12 (b) along with
the possible initial states for y-polarization (d)-(f). Actually, there are six fea-
tures seen from the experimental ARPES marked as 1-6 in the picture. No. 1
is coming from the hole pocket while the No. 5-6 are coming from the elec-
tron pocket. As one can see from Fig. 4.12 (b), calculated ARPES are showing
they agree well with the experimental result except band No. 2 which has a
shift around 0.1 Å−1 along kx. In this case too, the ARPES intensity is ex-
plained by corresponding l − 1 transition. Another important feature is a
tilted cone-like band structure at around 0.2 Å−1 (Fig. 4.12 (c)). This is also
seen in the experiment. The tilted cone-like band dispersion is the main fea-
ture of the type-II Weyl semimetal which has been predicted and observed
in many studies [24, 29, 33, 34]. In addition to those, when one compares
Fig. 4.12 (b) and Fig. 4.10 (a), those have very similar intensity map except
magnitude of the intensity. The average intensity is over one order of the
magnitude larger than that of 60 eV. Therefore, the map itself is not changed
so much and thus, there is no large photon energy dependence compared to
polarization dependence.

4.3 Conclusion and future prospect

Firstly, this chapter have introduced some theoretical method and mecha-
nism of ARPES. The main problem in calculations of ARPES is that there is
no method which satisfies two condition exact and efficient. Of course, one
may use strong approximations such as PWA. However, as seen from Sec. 4.1,
even in the simplest one-dimensional potentials, the accuracy of the PWA is
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questionable. On the other hand, one-step calculation gives exact final state
wave function, this is the biggest advantage of MST, however, the poten-
tial shape which is imposed on the MST is the problem. Therefore, second,
this chapter have suggested a method which can resolve such situation. The
method has successfully been applied to a graphene like one-dimensional
box potential. The result showed exact boundary condition should be taken
into account for reliable ARPES calculations. Furthermore, the matching
method showed a very good agreement with the exact solution of the scatter-
ing problem. There are numerical problems to be solved to implement this
method to powerful DFT code which has been encountered even in such sim-
ple toy model case. However, if the numerical problem is completely solved,
the matching method would be a striking method. In the last part, one of the
efficient methods, one-step model has successfully been applied to a candi-
date material of type-II Weyl semimetal, MoTe2. The exact final state wave
function is quite important in such two-dimensional topological materials
because main interest of such materials is very small energy range around
the Fermi level. In this work, it is shown that the disadvantage of the one-
step model can be resolved by adjusting potential. In particular case of the
opened layered structures, one should remove empty spheres inside layers.
After that, the meaning of the ARPES intensity has been discussed by means
of the orbital projected bands and dipole l− 1 selection rule. Quite naturally,
the initial states based on the selection rule predict what band will be high-
lighted. Especially, around the Fermi level, the inherent hole and electron
pocket can be selected with suitable light polarization which should be a key
for the future ARPES experiments. At the end, the calculated results show
how these analysis is correct by making comparison with a recent ARPES
experiment. In summary, those analysis shows specific atomic orbital can be
highlighted with corresponding light polarization based on l − 1 transition.

There is still room for discussions of the information included in ARPES
intensities. To reveal the information completely, the exact final state wave
function should be taken into account in the ARPES calculation which is still
a challenging problem. If the information contained in ARPES intensity is
completely revealed, ARPES would be much more fruitful experiment.
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Part II

Theory of magnetoelectric effect in
Ba2CuGe2O7
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Chapter 5

Introduction

Controlling materials with the external (electric or magnetic) fields is highly
demanding in the context of fundamental physics and applications to new
generation electric devices. Maxwell equations suggest, the electric fields
and the magnetic fields are strongly coupled, however, the coupling between
electronic polarization and magnetization is still non-trivial. In solids, exter-
nal electric fields induce electronic polarization and external magnetic fields
induce magnetization as linear responses. P. Curie has predicted the exter-
nal electric fields induce not only the electronic polarization, but also the
magnetization and vice versa [44] (Fig. 5.1). Later I. E. Dzyaloshinskii has
predicted such effect in Cr2O3 [45]. Nowadays such effect is known as Mag-
netoelectric (ME) effect. The origin of the ME effect has been understood
from the view point of the symmetry. After the discovery of the linear ME
effect, many researchers tried to make the giant (or non-linear) ME effect
(Fig. 5.2) which should be a key for applications of such materials. The key
character to realize the giant ME effects is so-called multiferroics, namely,
spontaneous electric polarization coexists with some spontaneous magnetic
order (Fig. 5.3). Recently, such giant ME effect has been found in multifer-
roic RMnO3 (R = rare earth) [46–48]. However, microscopic understanding
of the giant ME effects is a still non-trivial task. The most widely used mech-
anisms are fully based on phenomenological theories and lacking theoretical
accurate descriptions. Indeed, the existing phenomenological theories fail
to describe giant ME effects in some proper screw magnets. Thereby effec-
tive and robust theoretical description is highly demanded and finding it is a
challenging problem.

Multiferoics part of this thesis is structured as follows. Chapter 6 dis-
cusses basic concepts of the multiferroics and the (linear and non-linear)
magnetoelectric effects. Chapter 7 describes theoretical methods used for
the analysis of the multiferroics. By the way, multiferroics is a property of
the strongly correlated materials, therefore, the Chap. 7 describes theoretical
methods usually used for strongly correlated materials. Finally, the chapter 8
describes how the controversial non-linear magnetoelectric effects are clearly
described in Ba2CuGe2O7 as an example. After the analysis, the last chapter
conclude what has been revealed already and what can be done in the future.
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Chapter 6

Multiferroics and magnetoelectric
effect

6.1 Linear magnetoelectric effect

The linear ME effect is firstly predicted by P. Curie [44]. The first discovery
of the linear ME effect was found in Cr2O3, which was predicted by I. E.
Dzyaloshinskii [45] from the viewpoint of time-reversal and parity inversion
symmetry. Soon after the prediction, the linear ME effect was realized in
Cr2O3 [49, 50]. This section shows how the linear ME effect is described from
the viewpoint of statistical mechanics.

In general, the free energy of the system is given via Landau expansion as

F(E, H) =F0 − Ps
i Ei −Ms

i Hi −
1
2

ε0εijEiEj −
1
2

µ0µijHiHj

− αijEiHj −
1
2

βijkEiHjHk −
1
2

γijkHiEjEk − · · ·
(6.1)

with spontaneous polarization Ps, spontaneous magnetization Ms, electric
susceptibilities ε̂, magnetic susceptibilities µ̂ and tensors αij, βijk, and γijk
which depend on the material’s symmetric properties. The differentiations
of the free energy are given as

Pi = −
∂F
∂Ei

= Ps
i +

1
2

ε0εijEj + αijHj +
1
2

βijkHjHk + · · ·
(6.2)

and

Mi = −
∂F
∂Hi

= Ms
i +

1
2

µ0µijHj + αijEj +
1
2

γijkEjEk + · · · ,
(6.3)

where the third terms are the linear ME effect. Therefore, in general, the
electronic polarization is linearly induced by not only the electronic fieldsE,
but also the magnetic fieldsH when the tensor α 6= 0.
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The magnetic fields and the magnetization change their signs under the
time-reversal operations, but not under the parity operations. In contrast, the
electric fields and the electric polarization change their signs under parity
operations, but not under the time-reversal operations. As a consequence,
to have finite α, broken time-reversal and parity inversion symmetry are
needed.

The microscopic origin of the linear ME effect is still controversial prob-
lem. Possible origin is believed toroidal moment, magnetic monopole and
magnetic quadrupole. However, this thesis is mainly focusing on the non-
linear ME effects. Therefore, this thesis does not elucidate those.

6.2 Ferroelectricity induced by magnetic orders (Gi-
ant magnetoelectric effect)

The linear ME effect is a rather small effect. Therefore, dedicated studies to
make large ME effects have been done recently. Possible realization of such
non-linear ME effects is achieved if the materials have spontaneous ferro-
magnetism or ferroelectricity. Moreover, roughly speaking, if there are some
relations between magnetic orders and ferroelectricities, one can switch the
electric polarization by the external magnetic fields. The non-linear ME ef-
fects are recently found in many frustrated magnets. The first discovery was
in TbMnO3 [46], which details will be described in Sec. 6.4. In which material,
the non-linear ME effect is induced by the magnetic order.

The microscopic origin of the non-linear ME effects is still not completely
understood yet. A key to understanding the non-linear ME effects is the sym-
metries of the materials. The crystal symmetry gives the following conditions
for occurrence of spontaneous electric polarization [51, 52].

• The material should not have parity inversion and/or 3, 4 or 6 fold
rotoinversion.

• If the material has n-rotational axis and/or mirror plane, only the P
parallel to the axis and/or the mirror plane is possible.

From the symmetrical point of view, if the magnetic symmetry breaks such
crystal symmetries, the material can have electronic polarization even if the
material is forbidden to have the electronic polarization by the point group
symmetry.

6.3 Microscopic mechanisms of the magnetically
induced ferroelectricity

Microscopic understanding of the non-linear ME effects is the most impor-
tant part of fundamental physics and applications. This section describes
three mechanisms that are nowadays mainly used for understanding of the
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magnetically induced ferroelectricities. As mentioned in Chap. 5, the theo-
ries are still controversial, and those theories are based on different standing
points. However, it sometimes helps us to understand the magnetically in-
duced ferroelectricities. Therefore, it is worthy of discussing those here.

• Exchange striction mechanism

There are some multiferroics in which the one-dimensional dimeriza-
tion occurs. Let’s think the substance has one-dimensional chains con-
sist of magnetic ions MA and MB (Fig. 6.1(a)). In this system, pairs of
MA and MB ions comprise spin-triplet pairs (Fig. 6.1(b)), which results
in ferroelectricity of the substance. The antiferromagnetic Hamiltonian
is then given as

HAF = ∑
i

J(i, i + 1)Si ·Si+1 (6.4)

where the exchange coupling

J(i, i + 1) ≈ J + (ui − ui+1)α. (6.5)

ui is the displacements of atoms caused to acquire energy gains due to
the dimerizations, α is a coefficient, respectively. This displacement is
known as spin-Peierls instability [53]. This dimerization gives the net
electronic polarization. As a result, one can have the following elec-
tronic polarization, which arises from isotropic interactions :

Pij ∝ Πij(Si ·Sj) (6.6)

where the vector Πij depends on the crystal structures As real mate-
rials, the exchange striction mechanism can be used to describes the
ME effect in RMnO3 (R = Ho, Y) for example [54] which will be briefly
discussed in Sec. 6.4.

• Inverse Dzyaloshinskii-Moriya mechanism (Spin current mechanism)

Another mechanism is called Inverse Dzyaloshinskii-Moriya (DM) mech-
anism. This mechanism is introduced by H. Katsura et. al. to explain
magnetically induced ferroelectricity of cycloidal magnets in 2005 [55].
In the inverse DM mechanism, by thinking of the situation where the
non-magnetic X ion is located at the center of a bond of the two mag-
netic ions M (Fig. 6.2(a)). Then the electronic dipole moment is given
by

Pij ∝ eij × (Si ×Sj) (6.7)

where the vector eij is the vector connecting two neighboring sites. This
mechanism is closely related to the Dzyaloshinskii-Moriya (DM) inter-
action of the magnetic energy which will be discussed in Sec. 7.4.2. The
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FIGURE 6.1: Schematic pictures of exchange striction mechanism and
predicted direction of the electronic polarization by the exchange stric-
tion mechanism. Red and blue spheres indicate different two magnetic
atoms are one-dimensionally aligned. (a) One-dimensional alignment
of two magnetic ions, (b) Spin induced dimerization and (c) Another

possible dimerization.
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Eq. 6.7 gives the electronic polarization when the material has the cy-
cloidal magnetic orders (See Fig. 6.2(b) and (c)). The inverse DM mech-
anism can successfully describe the ME effect of TbMnO3 [48] which
is also discussed in Sec. 6.4. The Eq. 6.7 indicates the direction of the
electronic polarization induced by spiral magnets depends on the spin
spiral propagation vectors.

(a)

(b)

Si X

P 

Sj

𝒆𝒊𝒋

P 

(c)

P 

FIGURE 6.2: Schematic pictures of the Inverse DM mechanism. The
magnetic ions and non-magnetic ligand ion is shown as red and black
spheres, respectively. Blue arrow indicate the direction of the vector
connecting neighboring two magnetic ions eij. Predicted direction of
the electronic polarization is indicated by a green arrow in each picture
(a-c). (a) The electronic polarization caused by the tilted two magnetic
moments. (b,c) Cycloidal magnetic order and direction of the electronic
polarization predicted by the inverse DM mechanism. Mirror operation

flip the spin and direction of the electronic polarization (b→c).

• d-p hybridization mechanism

The last mechanism is called d-p hybridization mechanism [56–58]. The
mechanism arises from the hybridization between d-orbital of the tran-
sition metals and p-orbital of the negative ions. This theory is based on
the fact that this hybridization is modulated by the spins.

This d-p hybridization mechanism is adopted to a multiferroic CuFeO2
which will be discussed in the following. In CuFeO2, hybridization of
Fe d-orbital and O p-orbital is modulated by the spins.
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Considering the spin-orbital interaction in a bond of the magnetic pos-
itive ions (M) and a non-magnetic negative ion (X) as shown in Fig. 6.3.
The energy level difference of lz = ±1 of d-orbital and p-orbital are
perturbed by the spin-orbit interaction. By calculating contributions
from d-orbital in a bonding orbital, one can have a spin-dependent part
[58]. This indicates the electronic polarization is depending solely on
the individual spin of a magnetic ion M which is formally given by

FIGURE 6.3: Schematic picture of the d-p hybridization between a mag-
netic ion (M) and a ligand ion (X). Bottom figure is showing the hy-
bridization of d-orbital of M and p-orbital of X caused by the SOC. The

picture is taken from [58].

Pil ∝ (Si · eil)
2eil (6.8)

where the vector eil is pointing toward the bond direction.

6.4 Examples of multiferroic materials

As is explained, the microscopic theories introduced in the last section are
based on the different standing points. However, this section shows the case
in which those theories successfully described the magnetically induced elec-
tronic polarization as an example.

6.4.1 YMnO3

A practical example of the multiferroics in which the ME effect is elucidated
by the exchange striction mechanism is orthorhombic YMnO3 [54, 59]. Crys-
tal structure of the YMnO3 is shown in (Fig. 6.4). The orthorhombic YMnO3
shows the E-type (↑↑↓↓-type) antiferromanetic spin order in the low temper-
ature phase (below 21 K). Above 50 K, it turns out to the paramagnetic phase.
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In the antiferromagnetic phase, the electronic polarization along a-axis is ob-
served in the experiments, but not in the paramagnetic phase [54, 59]. The an-
tiferromagnetic interactions generate displacements of the oxygen atoms in
the ferroelectric phase, but not in the paramagnetic phase (Fig. 6.4(c)). Thus
the microscopic origin of the electronic polarization can be understood as
the exchange striction mechanism. Direction of the electronic polarization is
expected along a-axis as is observed in the experiments.

FIGURE 6.4: A schematic pictures of the orthorhombic YMnO3. Large
pink spheres and small blue spheres indicate Mn and O atoms, respec-
tively. The expanded lattice in ab plane (a) and ac plane (b) are depicted.
A dashed lined rectangle indicates the unit cell. Green dotted arrows
and red solid arrows indicate the lattice displacements. (c) Difference of
the bonds in the paramagnetic phase (50 K) and in the antiferromagnetic
(ferroelectric) phase (21 K). Different bonds species in the antifferomag-
netic phase are shown as orange and cyan lines, separately. The pictures

are taken from [59].

6.4.2 TbMnO3

T. Kimura et. al., reported the giant ME effect in orthorhomobically distorted
perovskite TbMnO3 in 2003 [46]. The orthorhomobic TbMnO3 shows a si-
nusoidally modulated commensurate magnetic structure in 28 K < T < 41
K. It turns out to the incommensurate spin spiral structure below 28 K. In
the commensurate magnetic phase, ferroelectricity does not appear since the
magnetic structure obeys spatial inversion symmetry. On the other hand, the
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magnetic structure breaks the inversion symmetry in the spin spiral phase so
as to an emergent of the electronic polarization [48].

Another interesting point is that in addition to the multiferroicity of this
material, it shows spin spiral and electronic polarization flops upon the exter-
nal magnetic fields. Fig. 6.5(a) shows the electronic polarization along c and a
axis under various strength of the external magnetic fields along b-axis. One
can see the electronic polarization is flopped by the external magnetic field
along b-axis as P ‖ c → P ‖ a. The spin spiral plane is also flopped by 90◦

(Fig. 6.5(b)).

c

a

b

(b)(a)

H || b
P || c

P || a

FIGURE 6.5: (a) Variations of the electronic polarization upon the ex-
ternal magnetic fields at the various temperatures along c-axis (above)
and a-axis (below). This figure is taken from [46]. (b) A schematic pic-
ture of the spin plane flop and the associated electronic polarization flop

induced by the external magnetic field along the b-axis.

The inverse DM mechanism successfully describes this ME effect which
has been shown by Y. Yamasaki et. al., [60].

6.4.3 CuFeO2

Kimura et. al., found the multiferroicity in delafossite CuFeO2 [61]. Crystal
structure belongs to rhombohedral space group and the structure is shown
in Fig. 6.6. The valence of the Fe and Cu ions in this material are +3 and +1,
respectively. Thus the Fe ion is the magnetic ion in this material. The delafos-
site CuFeO2 shows a quite complicated magnetic phase. At the ground state,
this material has a collinear four-sublattice spin ordering as ↑↑↓↓ [62]. By
applying the external magnetic fields, it shows various incommensurate and
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commensurate magnetic structures [63] (Fig:6.7). The most important mag-
netic phase of this material is realized when the external field H (7 T < H <
13 T) is induced along c-axis. At this situation, the magnetic structure shows
incommensurate proper screw order. Only this phase has the spontaneous
electronic polarization hence the magnetically induced electronic polariza-
tion.

FIGURE 6.6: (a) Crystal structure of the delafossite CuFeO2. (b) 2D (001)
plane of the Fe atoms. The triangle of the Fe atoms and O atoms are pro-
jected. Oxygen atoms belong to the upper and lower oxygen layers are
shown as empty and filled blue spheres, respectively. Arrows indicate
the twofold rotation axes. Black lines with the character m indicate the
mirror planes and threefold rotation axes. The figure is taken from [58].

Important fact was that the observed electronic polarization is perpendic-
ular to the c-axis. This material has an incommensurate spin spiral (proper
screw type) magnetic order, therefore, the inverse DM should be able to de-
scribe the ME effect of this material. However, with the proper screw type
magnetic order, the inverse DM mechanism predicts no electronic polariza-
tion. Therefore this system is known as a typical case in which the inverse
DM mechanism fails to describe the ME effect. Another possibility is the ex-
change striction mechanism. However, the exchange striction mechanism is
not applicable in this case either because the ferroelectricity appears only in
the spin spiral phase and only one magnetic ion is contained in the unit cell.

T. Arima showed the d-p hybridization mechanism describes the ferro-
electricity observed in the CuFeO2 [58]. The d-p hybridization mechanism
successfully predicted the electronic polarization along c-axis as observed in
the experiments [61].
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FIGURE 6.7: Magnetic phase diagram of the delafossite CuFeO2 regard-
ing the external magnetic fields and the temperature. The figure is taken

from [61].
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Chapter 7

Theory for strongly correlated
materials

Chap. 6 described the examples of the multiferroics and already suggested
mechanisms. The multiferroicities are the property of strongly correlated
materials. Nowadays the first-principle density functional theory (DFT) is
widely used to investigate the electronic structure of various materials. DFT
is however limited when it treats the strongly correlated materials like mul-
tiferroics because of the approximation used in exchange correlation func-
tional. One possible approach is low-energy models in which the electron
correlations are taken into account properly. This chapter accesses those the-
ories which are usually used in analysis of the strongly correlated materials
and will be used to investigate multiferroic property of the spiral magnet
BaCuGe2O7 in Chap. 8.

7.1 Hubbard model

As mentioned above, accuracy of the widely used local density approxima-
tion (LDA) based DFT is questionable when it treats strongly correlated ma-
terials. J. Hubbard introduced an effective lattice model of low-energy bands
which treats the electron correlations explicitly [64]. The model is known as
Hubbard model and general form is given by

Ĥ = ∑
ij

∑
σσ′

∑
ab

tabσσ′
ij ĉ†

iaσ ĉjbσ′ +
1
2 ∑

i
∑
σσ′

∑
abcd

Uabcd ĉ†
iaσ ĉ†

icσ′ ĉibσ ĉidσ′ , (7.1)

where tabσσ′
ij , ĉ†

iaσ, ĉiaσ and Uabcd are the hopping energies of the electrons at
site i to j, the creation operator of the electron with site i, spin σ and orbital
a and b, the annihilation operator of it and the on-site screened Coulomb
interactions, respectively. Matrix elements of the Coulomb interactions are
given by

Uabcd =
∫ ∫

dr dr′φ∗a (r)φ
∗
b (r)Wr(r, r′)φc(r

′)φd(r
′) (7.2)

with the appropriately chosen atomic-like wave functions φ and partially
screened Coulomb interaction Wr(r, r′). The on-site Coulomb matrix Uabcd
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consists of following three independent parameters

Ummmm = U =
∫ ∫

dr dr′|φm(r)|2Wr(r, r′)|φm(r
′)|2 (7.3)

Ummm′m′ = U′ =
∫ ∫

dr dr′|φm(r)|2Wr(r, r′)|φm′(r
′)|2 (7.4)

Umm′m′m = J =
∫ ∫

dr dr′φ∗m(r)φm′(r)Wr(r, r′)φ∗m′(r
′)φm(r

′) (7.5)

where U and U′ are the on-site intra and inter orbital Coulomb interaction.
J is the intra atomic Hund’s exchange coupling constant. A simple cartoon
of the model is depicted in Fig. 7.1. The first term of the Eq. 7.1, the one-
electron part of the Hamiltonian, gives "band effect" which is the result of the
moves of the electrons around the lattice. The second term is the Coulomb
interactions. The diagonal elements of the one-electron part tabσσ′

ij represent
the crystal field splittings and/or relativistic spin-orbit interactions.

Orbital m

U

Orbital m’

m

U’

m’

m
J

m’

FIGURE 7.1: Schematic pictures of meanings of each Coulomb interac-
tion parameter.

Thus, the one-electron part is decomposed as :

Ĥone = Ĥkin + ĤCF + ĤSOC, (7.6)
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where Ĥkin is kinetic energy, ĤCF is crystal-field splittings and ĤSOC is the
relativistic spin-orbit interaction.

7.1.1 One-electron part in d-orbital case

This subsection shows a practical form of the the one-electron part of the
Hubbard model. Main interest of this thesis is the d-orbital, therefore, d-
orbital is chosen as the model. Here we assume the cubic symmetry, then,
the on-site term (crystal-field and spin-orbit interaction) is given as

ĤCF + ĤSOC =
µt2g 0 0 0 0

0 µt2g 0 0 0
0 0 µeg 0 0
0 0 0 µt2g 0
0 0 0 0 µeg

 σ̂0 +
ξ

2
i


0 σ̂y 0 −σ̂x 2σ̂z
−σ̂y 0 −

√
3σ̂x −σ̂z −σ̂x

0
√

3σ̂x 0 −
√

3σ̂y 0
σ̂x −σ̂z −

√
3σ̂y 0 −σ̂y

−2σ̂x iσ̂x 0 σ̂y 0

 ,

(7.7)

where µeg − µt2g is the crystal field splitting between t2g and eg orbital, σ̂0 is
the unit matrix, ξ is the spin-orbit coupling constant and σ̂ = (σ̂x, σ̂y, σ̂z) is
the vector of the Pauli matrices, respectively [65]. The orbital order of these
matrices is dxy, dyz, dz2 , dzx and dx2−y2 . This indicates the energy level is
splitted by the crystal-field, then, it will be splitted further by the spin-orbit
couplings. The kinetic energy term Ĥkin is given as the off-site term (i 6= j).

7.2 Wannier function

How to adapt the Hubbard model to real materials? Since the DFT calcula-
tions are considered enough to describe the one-electron part of the Hamil-
tonian, one of the most reliable procedure is to use the electronic structures
obtained from DFT calculations as the starting points and construct effective
low-energy models. This procedure is called realistic modeling and used
in numerous studies (e.g. [65–67]). As a practical procedure, one construct
atomic-like wave functions as the basis function from the electronic struc-
tures. Most successful and widely used function is Wannier function [68].

Main concept of the Wannier functions is the Fourier transformation of
the Bloch functions which is given by

|Rn〉 = V
(2π)3

∫
dk e−ik·R |ψnk〉 , (7.8)

so that

|ψnk〉 = ∑
R

eik·R |Rn〉 . (7.9)
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Here R is lattice vectors and V is the unit cell volume. Here R is lattice
vectors and V is the unit cell volume. The periodic part of Bloch function is
defined as

unk(r) = e−ik·rψnk(r). (7.10)

An important fact is that the Wannier function has an arbitrariness. This
can be easily realized from the Bloch function Eq. 7.10 with an arbitrary
gauge eiφn(k). Bloch function is then given by

|ψ̃nk〉 = eiφn(k) |ψnk〉 (7.11)

or equivalently

|ũnk〉 = eiφn(k) |unk〉 . (7.12)

This Bloch orbital describes the same physics. Then the Wannier function is
given as

|Rn〉 = V
(2π)3

∫
eiφn(k)e−iR·k |ψnk〉 dk. (7.13)

This Wannier function gives different shape and spreads with those of Eq. 7.8.
Namely, Wannier function is not unique, but still valid. In multi-band cases,
this gauge freedom is given by a unitary matrix as

|ψ̃nk〉 =
N

∑
m=1

U(k)
mn |ψmk〉 , (7.14)

where N is the number of bands in the set of bands and U(k)
mn is the N×N uni-

tary matrix. Algorithms to produce desired unitary matrix or, equivalently,
the set of Wannier functions will be discussed below.

7.2.1 Maximally localized Wannier function

Marzari et. al., introduced an algorithm to construct maximally localized
Wannier functions (MLWF) [69, 70]. In the MLWF procedure, Wannier func-
tions are constructed to minimize the spread functional which is defined as

Ω ≡∑
n
[〈0n|r2|0n〉 − 〈0n|r|0n〉2] = ∑

n
[〈r2〉n − r̄2

n] (7.15)

where 〈r2〉n and r̄n are the matrix elements of the position operator and the
square of the position operator. Those are generally given as

〈Rn|r|0m〉 = i
V

(2π)3

∫
dk eik·R 〈unk|∇k|umk〉 (7.16)
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and

〈Rn|r2|0m〉 = − V
(2π)3

∫
dk eik·R 〈unk|∇2

k|umk〉 , (7.17)

respectively [71]. A simple condition can be derived as the consequence by
introducing matrix elements of the Bloch functions as

M(k,b)
mn = 〈umk|un k+b〉 , (7.18)

where b is a vector connecting each k-point to its neighbors. The condition is
then given as a minimization of

G(k)
mn =

dΩ

dW(k)
mn

= 4 ∑
b

wb(A[R(k,b)
mn ]− S[T(k,b)

mn ]), (7.19)

where dW(k)
mn is an infinitesimal gauge transformation defined as

U(k)
mn = δmn + dW(k)

mn , (7.20)

R(k,b)
mn and R̃(k,b)

mn are defined as

R(k,b)
mn = dM(k,b)

mn dM(k,b)∗
nn and R̃(k,b)

mn =
dM(k,b)

mn

dM(k,b)∗
nn

, (7.21)

T(k,b)
mn is defined as

T(k,b)
mn = R̃(k,b)

mn q(k,b)
n , (7.22)

with

q(k,b)
n = Im ln M(k,b)

nn + b · r̄n (7.23)

wb is an associated weight for each shell |b| = b such that ∑b wbbαbβ = δαβ

(see Appendix B of [69] for the notations), respectively. A[R(k,b)
mn ] and S[T(k,b)

mn ]
are given by the following relations

dtr[dWB]
dW

= B, (7.24)

d Re tr[dWB]
dW

= A[B], (7.25)

d Im tr[dWB]
dW

= S[B], (7.26)

where A[B] = (B− B†)/2 and S[B] = (B + B†)/2i.
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General form of the tight-binding hopping parameters of the Hubbard
model in Eq.7.1 is given via the Wannier functions as

tnm(R) = 〈Rn|Ĥone|0m〉 , (7.27)

where Ĥone is the one-electron Hamiltonian which is used in the DFT cal-
culations. An usual setting is to use local density approximation [38] based
approximations as Ĥone = ĤLDA.

7.2.2 Selectively localized Wannier function

Another approach is introduced by Wang et. al. [72]. This approach is called
selectively localized Wannier function (SLWF) method. In the SLWF ap-
proach, with an additional constraint on the spread functional Eq. 7.15, one
can force the Wannier functions to have some condition. For example, force
the Wannier functions centers to be on the exact atomic positions. The condi-
tion of the spread functional with the additional constraint Ωc is then given
by

Ωc = ∑
n
[〈r2〉n − r̄2

n + λc(r̄n − r0n)
2] (7.28)

where λc is a Lagrange multiplier, r0n is a constraint of the nth Wannier func-
tion.

7.2.3 Modified maximally localized Wannier function

The MLWF method is the most straightforward algorithm to construct lo-
calized atomic-like Wannier functions. One problem is there is no condi-
tion regarding the crystal structures in MLWF method. This gives unphysi-
cal results because the Hamiltonian should have crystallographic symmetry
properties of the materials. Therefore, we have introduced a modification of
MLWF [73]. In this method, the spread functional of the Wannier functions
Ωmodis defined as

Ωmod ≡∑
n
〈(r− r0i)

2〉n

= ∑
n
[〈r2〉n − 2r0i · r̄n + r0i

2]

= ∑
n
[〈r2〉n − r2

0i],

(7.29)

where

r0i =
1
Ni

∑
n∈i
r̄n (7.30)

is an averaged Wannier center over a set of Ni Wannier functions of an atom
i. Minimization of the modified spread functional Eq. 7.29 is easily realized
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just by replacing a modified q(k,b)
n instead of original q(k,b)

n Eq. 7.23. q(k,b)
n in

this modified MLWF method is given by

(q(k,b)
n )mod = Im ln M(k,b)

nn + b · r0i. (7.31)

With a condition r0i = r̄n this method coincides with the original MLWF
method.

7.3 Constrained Random Phase Approximation

The remaining parameters of the model Eq. 7.1 are the on-site Hubbard U.
Since the screened U is a purely many-body effect, the question is how to
calculate U from the one-electron DFT calculations. A simple approach is
determining these parameters by hand. This approach is widely used es-
pecially in LDA+U method [74]. However, this approach is not reliable as
the parameters are adjusted just from the view point of the consistency of
the electronic structure with experiments. One of the logical procedure is
including many body effects as the screenings and downfolding degrees of
freedoms out of range of the low-energy region (far from the Fermi level).
This approach is introduced by Aryasetiawan et. al. [75, 76]. The approach is
called constrained Random Phase Approximation (cRPA).

The fully screened Coulomb interaction W in the matrix form is given by
Random Phase Approximation (RPA) as

W = v + vχ0v + vχ0vχ0v + · · · = (1− vχ0)
−1v, (7.32)

where v is the bare Coulomb interactions, χ0 is the independent particle
polarization function. By dividing the polarization function in the model
Hilbert space (d) and the rest of it (r), the polarization function is represented
as

χ0 = χd
0 + χr

0. (7.33)

Fig. 7.2 shows a schematic picture of the model and rest subspace.
From Eq. 7.32 and Eq. 7.33, one can have

W = (1− vχd
0 − vχr

0)
−1v (7.34)

=
[
εr(1− ε−1

r vχd
0)
]−1

v (7.35)

= (1− ε−1
r vχd

0)ε
−1
r v (7.36)

= (1−Wrχd
0)Wr, (7.37)

where ε is the dielectric function defined as

ε = 1− vχ0 (7.38)
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EF

Model space (d)

Rest space (r)

Rest space (r)

Polarization function 𝜒0 = 𝜒0
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𝑑
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𝑟
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FIGURE 7.2: Schematic picture of the transition between model (d) and
rest (r) subspace.

of the subspace r εr , relations

W = ε−1v (7.39)

and

Wr = (1− vχr
0)
−1v = ε−1

r v (7.40)

are used implicitly.
The Eq. 7.37 indicates the screening in the model χd

0 gives fully screened
Coulomb interaction, therefore, one can realize Wr is equivalent to Hubbard
U. Hence, the Eq. 7.2 is justified. However, in practice, the Hubbard U is fre-
quently dependent due to time dependent perturbations caused by an exter-
nal electron which result in retarded screening effects. A static limit defined
as

Wr(r, r′; 0) ≡Wr(r, r′) (7.41)

can be used in practice.

7.3.1 Practical case

A practical calculation of the Hubbard U is shown in the following.
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From the generalized relation of Eq. 7.9:

ψαk(r) = ∑
m,R

eik·RU†(k)
mα wRm(r) (7.42)

with a unitary matrix U(k)
mα and mth Wannier function wRm(r), one can have

the polarization function of the model subspace χd
0 as

χd
0(r, r′) = 2 ∑

α,β∈d
∑
k,k′

fβk′ − fαk

εβk′ − εα
ψ∗αk(r)ψβk′(r)ψ

∗
βk′(r

′)ψαk(r
′) (7.43)

= 2 ∑
m···p

∑
R1,···R4

∑
αβ∈d

∑
k,k′

fβk′ − fαk

εβk′ − εα
e−ik·(R1−R4)eik′·(R2−R3)

×
(

U†(k)
mα

)∗
U†(k′)

nβ

(
U†(k′)

oβ

)∗
U†(k)

pα w∗R1m(r)wR2n(r)w∗R3o(r
′)wR4 p(r

′),

(7.44)

where m − p, R1 −R4 and { fαk} are the orbital, the lattice indices and the
occupancies [77]. The coefficient 2 of the polarization comes from the sum of
spins. The rest of the polarization function is then calculated from Eq. 7.33
with

χ0(r, r′) = 2 ∑
α,β

∑
k,k′

fβk′ − fαk

εβk′ − εα
ψ∗αk(r)ψβk′(r)ψ

∗
βk′(r

′)ψαk(r
′). (7.45)

Then the Hubbard U is evaluated from Eq. 7.40 with bare Coulomb interac-
tion v. Matrix elements of the bare Coulomb interaction are given by

vm′n′o′p′ =
∫

drdr′w∗R1m(r)wR2n(r)
1

|r− r′|w
∗
R3o(r

′)wR4 p(r
′), (7.46)

where m′ − p′ are combined indices of m − n and R1 −R4. Then, one has
Coulomb interactions between all sites, however, for the Hubbard model,
only on-site Coulomb interactions are needed. Therefore, one can have much
simpler forms with the on-site conditionR1 = R2 = R3 = R4.

7.4 Spin Hamiltonian

Strong correlations give rise to certain magnetic orders as widely known.
Magnetism is a property of the materials. The most straightforward way to
understand the macroscopic magnetic property is evaluating it by a physical
parameter magnetization M. The magnetization M is determined from a
macroscopic average of microscopic magnetic moments {µ} as

M ∝ 〈µ〉 . (7.47)
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The microscopic magnetic moment of an atom i is given as

µi = −gµBSi, (7.48)

where g is so-called Landé g-factor (approximately g ≈ 2), µB is the Bohr
magneton which is defined as

µB =
eh̄

2mc
(7.49)

and Si is the composed spin moment concerning the atom i. As a conse-
quence, understanding microscopic spins are the essential problem of the
magnetism. In the field of the magnetism, so-called spin Hamiltonian ap-
proach is used to investigate microscopic magnetism of the materials. In the
spin Hamiltonian approach, the ground states are solely determined by spins
of the magnetic ions.

The practical form of the spin Hamiltonian will be rigorously derived
from exchange interactions in the following subsections.

7.4.1 Heisenberg model

The most widely known spin Hamiltonian is so-called Heisenberg model
which is given by

ĤHeis = −∑
i,j

JijSi ·Sj. (7.50)

This expression can be obtained from direct exchange mechanism as shown
in the following.

Consider only two electrons and its orbital φa and φb for the sake of sim-
plicity (see Fig. 7.3 for a simple cartoon). As is well known, the eigenstates
are spin-singlet (S = 0) and spin-triplet (S = 1). By introducing ket vector
for the spinor (e.g. |↑↓〉 is up spin at site a and down spin at site b), spin-
singlet and triplet states are given as :

a b

FIGURE 7.3: Simple cartoon of the two orbital model.
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• Singlet : S = 0

1√
2
(|↑↓〉 − |↓↑〉) (7.51)

• Triplet : S = 1

|↑↑〉 ,
1√
2
(|↑↓〉+ |↓↑〉),

|↓↓〉 .

(7.52)

With the orbital parts of the spin-singlet φs and spin-triplet φt

φs(r, r′) =
1√
2
(φa(r)φb(r

′) + φb(r)φa(r
′)), (7.53)

φt(r, r′) =
1√
2
(φa(r)φb(r

′)− φb(r)φa(r
′)). (7.54)

(7.55)

Coulomb interactions for singlet and triplet states are then

εsinglet = 〈φs|
1

|r− r′| |φs〉 = U′ab + Jab (7.56)

and

εtriplet = 〈φt|
1

|r− r′| |φt〉 = U′ab − Jab, (7.57)

where

U′ab =
∫ ∫

drdr′|φa(r)|2
1

|r− r′| |φb(r
′)|2 (7.58)

Jab =
∫ ∫

drdr′φ∗a (r)φb(r)
1

|r− r′|φ
∗
b (r
′)φa(r

′). (7.59)

As an explicit representation regarding spins, by a relation of the spin opera-
tors

S2 = S(S + 1) = (Sa +Sb)
2 = S2

a +S
2
b + 2Sa ·Sb =

3
2
+ 2Sa ·Sb, (7.60)

the energies can be expressed as

E = U′ab −
Jab
2
− 2JabSa ·Sb (7.61)

Sa · Sb = −3
4 and Sa · Sb = 1

4 are corresponding to spin-singlet and spin-
triplet, respectively.
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Only the last term of Eq. 7.61 is spin dependent. This term is called
isotropic Heisenberg interaction. Thus the general form of the Heisenberg
interaction is given by Eq. 7.50. A practical evaluation of the exchange pa-
rameter Jab will be shown in the following.

Another mechanism is kinetic exchange. In the kinetic exchange, energy
difference between a pair of parallel spins εp and anti-parallel spins εa is
given as

εa − εp = 2J. (7.62)

In the large U limit of Hubbard model, meaning U � t, the energy gain
acquired by virtual hopping from orbital a to b and vice versa (See Fig. 7.4
for a simple image) is given by the second order perturbation as

εa =
〈b|Ĥone|a〉 〈a|Ĥone|b〉

U′ab −Ub
=

|tab|2
U′ab −Ub

, (7.63)

with the hopping parameter tab between orbital a and b and Ub is the intra
orbital Coulomb interaction defined as

Ub =
∫ ∫

drdr′|φb(r)|2
1

|r− r′| |φb(r
′)|2. (7.64)

Since there is no hopping amplitudes for the parallel spins, J is simply given
as Eq. 7.63. Usually, Ub > U′ab, thus the antiferromagnetic interaction. If
the virtual hopping is mediated by a non-magnetic ion, the mechanism is
called superexchange mechanism. Details of the superexchange mechanism
is described in Sec. 7.5.

7.4.2 Dzyaloshinskii-Moriya interaction

Another well known interaction between spins is Dzyaloshinskii-Moriya (DM)
interaction. It is given by

Dij · (Si ×Sj) (7.65)

whereDij is so-called DM vector between the site i and j. Firstly, I. E. Dzyaloshin-
skii introduced this mechanism from the phenomenological point of view
in order to describe weak ferromagnetism in α-FeO3, MnCO3 and CoCO3
[78]. Soon after that, T. Moriya logically formulated it with respect to An-
derson’s superexchange theory [79, 80]. Therefore, this interaction is called
Dzyaloshinskii-Moriya interaction. It is also sometimes called anisotropic ex-
change interaction, while Heisenberg interaction is isotropic interaction. Mi-
croscopic origin of the DM interaction is the spin-orbit coupling. Derivation
of the DM interaction is given in the following.

As the starting point, let’s think of the kinetic exchange due to the electron
virtual hopping which coexists with the on-site spin-orbit interactions. As
the minimal model, we consider two site model. Then, the Hamiltonian is
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FIGURE 7.4: Schematic picture of the kinetic exchange. (1) Initial state
where anti-parallel spins are lied in orbital a and b, respectively. (2) Ex-
cited state where one of the electron hopped from a to b. (3) Hopping

back to the initial state alignment.

given by spin-orbit interactions and exchange interaction as

Ĥ′ = λLa ·Sa + λLb ·Sb + Vex (7.66)

where first and second term are the relativistic spin-orbit interaction and the
last term is the exchange interaction. The next step is to estimate the energy
gains by means of the perturbation theory. In the first order perturbation, the
energy gain is solely the exchange interaction which is given as 〈0|Ĥ′|0〉 =
〈Vex〉. In the explicit form, one may write the isotropic exchange interaction
as

Vex = ĴSa ·Sb. (7.67)

In the second order perturbation, intermediate states appear. By introduc-
ing ket vectors of the ground states |gagb〉 and the excited states |nanb〉, the
energy gains are given by

∆E =−∑
na

〈gagb|λLa ·Sa|nagb〉 〈nagb|Vex|gagb〉
Enagb − Egagb

+ [permutation]

−∑
nb

〈gagb|λLb ·Sb|ganb〉 〈ganb|Vex|gagb〉
Eganb − Egagb

+ [permutation],
(7.68)

where permutation meaning the term λL · S and Vex are exchanged. The
first term indicates the spin S1 is excited via the spin-orbit interaction. Then,
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the excited state comes back to the ground state via the exchange interac-
tion. Permutation indicates the spin S1 is excited via the exchange interac-
tion interaction. Then, the excited state comes back to the ground state via
the spin-orbit interaction. With the notation for the exchange interactions
〈nagb| Ĵ|gagb〉 = Jnagbgagb = Jgagbnagb , the Eq. 7.68 can be rewritten as

∆E = −2λ

[
∑
na

(
Jnagbgagb 〈ga|La|na〉

Enagb − Egagb

)
[Sa, (Sa ·Sb)]

−∑
nb

(
Jganbgagb 〈gb|Lb|nb〉

Eganb − Egagb

)
[Sb, (Sb ·Sa)]

]
.

(7.69)

By the commutation relation of the spin operators :

[Sa, (Sa ·Sb)] = −iSa ×Sb, (7.70)

one can furthermore rewrite the Eq. 7.69 in a simple form as

−2λi

[
∑
na

(
Jnagbgagb 〈ga|La|na〉

Enagb − Egagb

)
+ ∑

nb

(
Jganbgagb 〈gb|Lb|nb〉

Eganb − Egagb

)]
[Sa ×Sb] .

(7.71)

This leads to the DM interaction 7.65 with the DM vectorDab = {Dabµ} (µ =
x, y, z) given by

Dabµ = −2iλ

(
∑
na

Jnagbgagb 〈ga|Laµ|na〉
Enagb − Egagb

+ ∑
nb

Jganbgagb 〈gb|Lbµ|nb〉
Eganb − Egagb

)
. (7.72)

The DM interaction is the first-order in the spin-orbit interaction. Usually,
DM interaction is smaller than the isotropic Heisenberg interaction, how-
ever, this interaction is important as it induces important phenomena such
as spin spiral states. Stable spin structure with the DM interaction is when
the spins Sa and Sb are perpendicular to the DM vector Dab. Thus this in-
teraction breaks isotropy of the spins. Furthermore, contrary to the isotropic
Heisenberg interaction, perpendicular spin structure is stabilized by the DM
interaction.

Another important aspect of the DM interaction is the symmetric prop-
erty. Before going into detail of the symmetric property of the DM interac-
tion, let this section to introduce the symmetric property of the spin under
symmetric operations.

Crystals are periodic systems, thus they can be invariant under various
symmetric operations. Spins act as axial vectors with respect to symmetry
operations. Spin is an angular momentum, thus the time-reversal operation
reverses the spin direction. If the spin is transferred by the mirror plane
which contains the spin direction, then the spin is flipped due to the reverses
of the ring current caused by the spin (Fig. 7.5 (a)). On the other hand, if
the mirror plane is perpendicular to the spin direction, the ring current is
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not reversed so as to the same spin direction (Fig. 7.5 (b)). This fact leads to
conservation of the spin component perpendicular to the mirror plane , while
the parallel component is flipped.

(b)

Ring current

Spin

Mirror plane

(a) Mirror plane

Spin

Ring current

Spin

FIGURE 7.5: Schematic picture of the ring current model of the spin.

As is suggested, symmetric property of the DM interaction are important.
Considering the symmetric property of the spin, one should have constraints
on the DM interactions. Here the rest of this section discusses symmetric
property of the DM interaction.

For the sake of simplicity, let’s think of only two spins Sa and Sb. Assume
these are aligned along x-axis where middle of these spins are located at the
origin (Fig. 7.6 (a)).

Now introducing the chirality vector κab defined as κab = Sa × Sb. DM
interaction is then given as D · κab. If the inversion center is at the origin
x = 0 (Fig. 7.6 (b)). Spins are invariant under the parity inversion operations.
However, spins are exchanged as Sa → Sb and Sb → Sa. Since the DM
interaction should not be changed, this fact implies D = 0. This is one of
the well known constraint of the DM interaction. There are other symmetric
constraints as described in the following.

If the mirror plane is the yz-plane (Fig. 7.6 (c)), the spins are transferred
as

Sa → (Sbx,−Sby,−Sbz) (7.73)
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and the same relation concerning Sb. These imply the change of the DM
interaction as

D · κab → D · (−κabx, κaby, κabz). (7.74)

This leads to Dx = 0 meaning DM vector is in the yz-plane.
Another situation is when the mirror plane is the xy-plane (Fig. 7.6 (d)).

With this mirror operation, the site a and b will not be changed, however the
xy-components of the spins are reversed. Thus this mirror operation leads

Sa → (−Sax,−Say, Saz) (7.75)

and the same relation concerning Sb. This gives

D · κab → D · (−κabx,−κaby, κabz). (7.76)

This leads Dx = 0 and Dy = 0 meaning the DM vector is perpendicular to
the mirror plane.

Another important situation is when the rotation axes exist (Fig. 7.6 (e)).
Assuming the x-axis is the n-fold rotational axis. With this rotation, spins are
transferred

Sa → (Sax,−Say,−Saz) (7.77)

and the same relation concerning Sb as usual. This leads Dy = 0 and Dz = 0
meaning the DM vector is x-axis direction.

The last situation is when the n-fold rotational axis is along y-axis (Fig. 7.6 (f)).
Since the spin acts as an usual vector with respect to the rotational opera-
tions, n = 2 is the only possible situation in this case. In this case, the spins
are transferred as

Sa → (−Sbx, Sby,−Sbz) (7.78)

and the same relation concerning Sb as usual. This leads Dy = 0 and Dz = 0
meaning the DM vector is again x-axis direction.

These are the well known symmetric constraints of the DM interactions
derived by T. Moriya [79]. The most important point is that the symmetric
operations allowed by the crystal structures do not change the DM interac-
tion. The DM interaction is subjected to the crystallographic symmetries.

7.5 Superexchange theory in spin 1
2 systems

Solving the Hubbard model is one of the challenging problem of the strongly
correlated materials. The effective approach to this problem was invented
by P. W. Anderson [80], and is called Superexchange theory. In reality, the
magnetic ions are usually surrounded by some negative ions. His idea is that
if the electron hopping is mediated by those negative ions, anti parallel spin
can hop like that. Then, the energy gain can be estimated by the second-order
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FIGURE 7.6: Symmetric property of the DM interaction in a simple two
spin case. The blue spheres indicate magnetic sites aligned along x-axis.
(a) Spin alignment, (b) With an inversion center exists at the bond center,
(c) With a mirror plane in yz-plane, (d) With a mirror plane in xy-plane,
(e) With a n-fold rotation around x-axis and (f) With a two-fold rotation

around y-axis.
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perturbation theory with respect to this virtual electron hopping. The energy
gain can be mapped onto a general classical spin model which is given by

Ĥs = ∑
<i,j>

ei Âijej (7.79)

where Âij is the 3× 3 tensor and ei is a classical spin direction of the lowest
Kramers doublet at site i. The tensor is expressed by 9-independent parame-
ters as

Ĥs = ∑
<i,j>

(
−Jijei · ej +Dij · (ei × ej) + eiΓ̂ijej,

)
(7.80)

for the magnetic sites i and j. Where the first term indicates isotropic Heisen-
berg interactions, the second term indicates DM interaction, the last term in-
dicates traceless symmetric anisotropy, respectively. For the spin 1

2 systems,
one can introduce spin direction at site i as

ei =
〈αi|σ̂|αi〉
| 〈αi|σ̂|αi〉 |

(7.81)

with the lowest Kramers doublet αi and vector of the Pauli matrices σ̂.
In principle, the superexchange mechanism stands for the electron’s hop-

ping in the second order of the hopping parameters such as i → j → i. The
electronic structure can be mapped onto the spin model 7.80 as follows.

In the second order perturbation theory, one can estimate the kinetic en-
ergy gain caused by the virtual hopping from site i to site j and vice versa
as

τ̂ij = − 〈Gij|t̂ij

(
∑
M

P̂j |jM〉 〈jM| P̂j

EjM

)
t̂ji + [permutation]|Gij〉 (7.82)

where P̂j is the projector operator which enforces the Pauli principle, t̂ij ≡
{tab

ij } is the off-site kinetic energy which does not depend on the spin indices,
permutation indicates a term i and j are exchanged. |Gij〉 is a Slater determi-
nant in spin 1

2 case, which is given by

Gij(1, 2) =
1
2
[φi(1)φj(2)− φi(2)φj(1)], (7.83)

where φi and φj are the lowest Kramers doublet which are obtained after
diagonalizing on-site one-electron Hamiltonian ĤCF + ĤSOC.

Intermediate state is given by the possible on-site Slater determinants. In
spin 1

2 case, one can have 6C2 = 15 such Slater determinants for t2g states.
The intermediate states are obtained by diagonalizing the Coulomb interac-
tion matrix. Therefore, the intermediate state |jM〉 and energy EjM are taking
into account correct atomic multiplet structures (Mth Slater determinant of
the excited two-electron configuration at site j). There is a problem of such
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intermediate states, which is that if you have 15 such cases, these states con-
tains physically meaningless states. Namely, if one of the intermediate state
does not have the initial state of site j, it is a meaningless state. Therefore,
we need P̂j which erase meaningless states. In other words, the projection
chooses the states which contain φj at least. In practice, it projects |jM〉 onto
a subspace of the Slater determinants as

P̂j |jM(1, 2)〉 = 1√
2
[ψj(1)φj(2)− ψj(2)φj(1)], (7.84)

where ψj and φj are an unoccupied orbital and the occupied orbital, respec-
tively. The unoccupied orbital can be reached from φi via the hopping t̂ij.

Then, with the existence of the spin-orbit interaction, tensor τ̂ij is obtained
by considering all maximum projection along ±x, ±y and ±z of the linear
combination of the Kramers states these are denoted as φ1

i and φ2
i here. Then,

one can consider the linear combination of them as

φ±µ = αφ1
i + βφ2

i . (7.85)

The index µ is the direction of the pseudo spins as ±µ = ±x,±y,±z. By
finding coefficients α and β which maximize 〈φ±µ|σ|φ±µ〉, one can have 6×
6 = 36 parameters of τ̂φ±µφ±ν . This 6 tensor is mapped onto the spin-model
Eq. 7.80 by replacing spin vectors to unit unit spin vectors, one can have 9-
independent parameters which are used in Eq. 7.80. This strategy has been
applied in several papers [65–67, 73, 81–87].

7.6 Berry phase (Wannier) expression for the macro-
scopic electronic polarization

This section discusses a rigorous theory for the macroscopic electronic polar-
ization in solid systems which is introduced by King-Smith and Vanderbilt
[88]. Then, it is expanded in the Wannier basis by Resta [89, 90]. For the
convenience of the physical meanings, here this section mainly describes ex-
pression in Wannier function.

This section starts from a controversy that the definition of the electronic
polarization can not be applied to the crystal systems.

In a finite system such as molecules, the dipole moment d is defined as

d = ∑
i

qiri, (7.86)

where qi is a charge at position ri. In the continuum states, the dipole mo-
ment is given by a integral of the number density n(r) as

d =
∫

dr en(r). (7.87)
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This quantity may be defined within the unit cell volume in crystal systems.
It should be normalized by the unit cell volume.

Then, a problem arises from the arbitrariness of how one chooses the unit
cell. In the Fig. 7.7, a positive charge and a negative charge is aligned period-
ically. As one can see from the picture, there are infinite choice of the unit cell
definition. Nevertheless, the electronic polarization (dipole per an unit cell)
has a different value which depends on the choice of the unit cell.

−+ −+ −+ −+

𝑥𝑎

FIGURE 7.7: Arbitrariness of the electronic polarization in solid sys-
tems.

Another thing which we have to realize is that what is measured in a mea-
surement. According to King-Smith, Vanderbilt and Resta, only measurable
well-defined electronic polarization is a change of it. Thus, the absolute value
of it does not matter.

In one-dimensional case, one can have the absolute electronic polarization
as the sum of the point charges on the ions and centers of each occupied
Wannier function as

p =
1
a

(
∑

i
(qixi)

ions +
occ

∑
n
(qnr̄n)

WFs

)
, (7.88)

where a is a length of the unit 1D-cell, the first term is the point charges on the
ions and the second term is the electronic charge at the Wannier centers r̄n of
the occupied orbital which is given by Eq. 7.16. The second term indicates a
shift of point charges induced by an external electric field [91].
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Consequently, since the measured electronic polarization is a change of it,
well defined electronic polarization in general solids is given by

P =
e
V

occ

∑
n
r̄n =

e
V

occ

∑
n
〈wn|r|wn〉 , (7.89)

where V and wn are the volume of the unit cell and nth occupied band Wan-
nier function, respectively [89, 90, 92]. Since the position operator is defined
relative to the origin of the crstal, the sum should not be affected by the defi-
nition.

7.7 Superexchange theory for the magnetoelectric
effect

Microscopic understanding of the non-linear ME effects are still non-trivial
task. It should be done in a systematic way, however, the theories suggested
so far are mainly phenomenological theories which are sometimes efficient
and sometimes not. The most rigorous theory of the electronic polarization
is the Berry phase (Wannier) expression of the electronic polarization which
has already been described in Sec. 7.6. However, what we wish to know is the
origin (or mechanism) of the electronic polarization. Therefore, this section
shows how the spin-model of the electronic polarization is logically derived
from rigorous Berry phase expression of the electronic polarization.

At the beginning, assume the atomic-like Wannier functions are well lo-
calized. Thus, there is no overlap between Wannier functions (Fig. 7.8 (a)).
Now, think of the physical meaning of the Berry phase expression of the elec-
tronic polarization. The Berry phase expression of the electronic polarization
is the shifts of the Wannier function centers relative to the ion centers and
those are given by the Wannier densities (e.g. if one has ferromagnetic align-
ment, the Wannier density is symmetric and thus there is no electronic polar-
ization. However, if one flips the spin at the one of the neighboring sites, the
electronic polarization should be finite as the hopping amplitude will be dif-
fered Fig. 7.8 (b) and (c)). Therefore, one can logically estimate those shifts as
the first-order of the hopping so that the desired Wannier functions to have a
form

|wi〉 ≈ |αi〉+ |αi→j〉 . (7.90)

The first term is the atomic-limit Wannier function at site i and the second
term is a tail of the desired Wannier function spreading to the neighboring
site j. Practically, such tails can be obtained by the first-order of the hopping
by considering the virtual hopping to the unoccupied states at the site j and
vice versa. This is exactly the SE theory, therefore, one can estimate those
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tails as

|αi→j〉 = ∑
M

P̂j |jM〉 〈jM| P̂j

EjM
t̂ji |αi〉 . (7.91)

Then, substituting Eq. 7.90 to Eq. 7.89 allows one to write the electronic po-
larization as a pair-wise form as

P = ∑
<i,j>

Pij, (7.92)

where

Pij =
e
V
τji(〈αj→i|αj→i〉 − 〈αi→j|αi→j〉), (7.93)

where τji = Rj −Ri is a vector connecting neighboring sites.
〈αi→j|αi→j〉 is given by

〈αi→j|αi→j〉 = 〈αi|t̂ij

(
∑
M

P̂j |jM〉 〈jM| P̂j

EjM

)2

t̂ji|αi〉 . (7.94)

Therefore, one can map onto the spin model with the same analogy to the
magnetic energy. Then, we have

P = ∑
<i,j>

εji(Pijei · ej + Pij[ei × ej] + eiΠijej), (7.95)

where εji = τji/|τji| the first term is the isotropic interaction, the second term
is the antisymmetric interaction and the last term is the traceless symmetric
anisotropy, respectively. This is exactly the analogue of the spin model for
the magnetic energy, but with the directional information of the bonds εji.

7.8 Spin-current Mechanism

The inverse DM mechanism Eq. 6.7 and the second term of Eq. 7.95 are some-
times refered as the spin-current mechanism. Let’s think of the motions of the
spins. This can be understood from the Heisenberg equation of motion with
respect to Heisenberg spin Hamiltonian ĤHeis (Eq. 7.50) and spin as

dSµ
i

dt
=

i
h̄
[
ĤHeis, Sµ

i
]
= −2

x,y,z

∑
µ,α,β

∑
<i,j>

εµαβ JijSα
i Sβ

j , (7.96)

where εµαβ is the antisymmetric Levi-Civita tensor. Continuity equation gives

dSµ
i

dt
+ ∑

j
jsµ
ij = 0, (7.97)
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FIGURE 7.8: Wannier density of (a) Only atomic limit (head), (b) After
inclusion of tails and (c) After one spin is flipped. Red spheres indicate

magnetic site at the origin and neighbors (r1 and r2).
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therefore, the spin-current js
ij is given as

js
ij ∝ Si ×Sj. (7.98)

As a result, noncollinear spin alinments coupled with exchange interactions
lead to the spin-current [55, 93]. Fig. 7.9 shows the relation between the spin-
current js

ij and predicted direction of the electronic polarization by the in-
verse DM mechanism Eq. 6.7.

P 

P 

𝒋𝒊𝒋
𝒔

𝒋𝒊𝒋
𝒔

FIGURE 7.9: Schematic picture of the spin-current generated from the
noncollinear spin pairs. The green arrows indicate the direction of the

electronic polarization predicted by the inverse DM mechanism.
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Chapter 8

Magnetoelectric effect of a spiral
magnet Ba2CuGe2O7

8.1 Multiferroic Ba2CuGe2O7

One of the interesting example of the multiferroic material is Ba2XGe2O7
(X=Mn, Cu, Co). In those materials, magnetically induced non-linear ME
effect has been observed [94–97]. As we saw in Chap. 6, there are three sug-
gested mechanisms so far which can give electronic polarization induced by
the magnetic orders. Ba2XGe2O7 has a spin spiral order in the ground state,
therefore, this is a typical case where the inverse DM mechanism should
predict the correct ME effect. However, as explained in the Chap. 6, sug-
gested mechanisms are still controversial. Actually, the mechanism of the
non-linear ME effect in those materials have been described by means of
the d-p hybridization mechanism by Murakawa et. al. [97]. However, it
should be noted the d-p hybridization mechanism is an analogue of the sin-
gle ion anisotropy in magnetic energies, and it does not exist in spin 1

2 sys-
tem such as Ba2CuGe2O7. Thus it makes a conjecture that the d-p hybridiza-
tion mechanism probably does not exist in the spin 1

2 system. Indeed, as a
consequence of the Kramers degenerate, such single ion contribution in the
electronic polarization cannot exist in spin 1

2 systems. This will be justified
in Sec. 8.4. Theoretical understanding of the ME effect in Ba2CuGe2O7 is ,
hence, quite controversial. Therefore, this chapter discusses the ME effect in
spin 1

2 Ba2CuGe2O7.
Ba2CuGe2O7 crystallizes in non-polar P4̄21m (No. 113) space group [98–

100]. Crystal structure of Ba2CuGe2O7 is shown in Fig. 8.1. As seen from
Fig. 8.1 (a), the crystal structure is forming quasi two-dimensional plane
which lies in xy-plane. The P4̄21m space group contains 8 symmetry ele-
ments. This can be obtained by a combination of Ŝz

4 and Ĉx
2 + (1

2 , 1
2 , 0). These

are 4-fold rotoinversion around z-axis and 2-fold rotation around x-axis fol-
lowed by the shift in the unit of the lattice parameter a, respectively. These
symmetries imply some constraint on the DM vector which will be discussed
later.

Ba2CuGe2O7 exhibit a spin spiral state in the ground state. Besides the
multiferroicity, this material has interesting magnetic properties. The spin
spiral state is caused by the competition between isotropic Heisenberg inter-
action and anisotropic Dzyaloshinskii-Moriya interaction with the spin spiral
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FIGURE 8.1: Crystal structure of Ba2CuGe2O7. Red, green, blue and yel-
low spheres indicate Cu, Ba, Ge and Oxygen atoms, respectively. (a) Top

view and (b) Side view.

propagation vector (1+ ζ, ζ, 0) (ζ = 0.027) [101]. Another interesting obser-
vation is that when an external magnetic field is applied in the plane of spin
rotation. Upon such external magnetic field, the ground state incommensu-
rate spin structure transit to the commensurate C-type antiferromagnet [102,
103]. Indeed, such transition is due to the out-of-plane component of the DM
vectors. From a symmetriy constraint, out-of-plane component of the DM
vector should be opposite direction (Fig. 8.2). Due to this fact, the C-type
AFM is stabilized by the external magnetic field along c-axis (Fig. 8.3).

FIGURE 8.2: Direction of the in-plane and out-of plane DM interactions.
The picture is taken from [103].
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FIGURE 8.3: Observed IC-C (incommensurate-commensurate) tran-
sition of Ba2CuGe2O7 upon the external magnetic field along c-axis.
These show incommensurate phase (1 + ζ, ζ, 0) and commensurate

Néel (1, 0, 0) peak. The picture is taken from [103].

Furthermore, Ba2CuGe2O7 shows a complicated magnetic phase diagram
regarding other direction of the magnetic fields (Fig. 8.4) [104].

Ba2CuGe2O7 also shows quite interesting non-linear ME effect. By the
Ŝz

4 symmetry element alone, this material is forbidden to have spontaneous
electronic polarization. However, electronic polarization is observed. Thus,
it is magnetically induced electronic polarization. Remarkable character is
observed by Murakawa et al. [96]. Their experiment revealed that by in-
ducing the magnetic field along some direction (parallel to the quasi two
dimensional plane), one can flip the direction of the electronic polarization
as P ‖ [001]→ [001̄] (see Fig. 8.5).

This chapter investigates the controversial ME-effect in Ba2CuGe2O7 by
means of a microscopical point of view.

8.2 Symmetric property of Ba2CuGe2O7

As it is described in a very simple model in Sec. 7.4.2, spin is an axial vector,
thereby, tensor of the spin model should be subjected to symmetric properties
of crystals. This section describes symmetric properties enforced on the spin
model of Ba2CuGe2O7.

As explained in Sec. 8.1, Ba2CuGe2O7 crystallizes in P4̄21m (No. 113)
space group and it consists of Ŝz

4 and Ĉx
2 +(1

2 , 1
2 , 0) symmetry elements. There-

fore, DM vectors between the nearest-neighbor of this model have a symmet-
ric constraint as

D0j = (−1)jdxy[εj0 ×nz] + dzιj0n
z, (8.1)
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FIGURE 8.4: Magnetic phase diagram of Ba2CuGe2O7 regarding two
direction of the external magnetic fields. (a) [001] and [110]. (b) [001]

and [010]. The figure is taken from [104].
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(a) (b)

(c)

FIGURE 8.5: Flipping of the out-of plane electronic polarization by the
external magnetic fields. (a) Observed hysteresis of the electronic polar-
ization. (b) Closed view around the critical region. (c) Schematic picture
of the flipping of the electronic polarization and spin structure. The fig-

ures are adopted from [96].
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where 0 index indicates the Cu ion at the center of the unit cell while j =
−8, · · · ,+8 is the nearest-neighbors of it (see Fig. 8.6 (a) for the notations) [105].
nz is a unit vector perpendicular to the quasi-two-dimensional plane. ιj0 is
an antisymmetric scalar of the ion index which is defined as

ιij =
i− j
|i− j| (8.2)

which satisfies the condition |ιij| = 1 and ιij = −ιji. Ŝz
4 is responsible for

the [εj0 × nz] and a prefactor (−1)j, where the former indicates 4-fold rota-
tion symmetry while the latter indicates rotoinversion symmetry [105] (see
Fig. 8.6 (b)).

About the spin model of the electronic polarization which is introduced in
Sec. 7.7, it has similar properties, however, an additional prefactor compared
to the magnetic energy, the unit vector along the bonds εji = τji/|τji| leads
different behavior.

Let’s think of the nearest-neighbor sites. The isotropic (the first term of
Eq. 7.95) Pij should vanish because of the symmetry constraint of this mate-
rial. There are some other contribution from next nearest-neighboring sites
(±a/2,±a/2,±c) which are located at the different plane. Those are given
as

P0j = (−1)jιj0p0
⊥ (8.3)

where p0
⊥ is the parameter of the isotropic Heisenberg-like interaction of

Eq. 7.95, but between out-of-plane bonds which is denoted as⊥ (see Fig. 8.6 (d)
for the notations).

The antisymmetric part of the electronic polarization P ij has finite value
between the nearest neighboring sites and which is given by

P0j = (−1)j pxy
‖ ιj0εj0, (8.4)

where pxy
‖ is the parameter of such antisymmetric interactions and εji is a

unit vector which has already been defined in Sec. 7.7 (see Fig. 8.6 (c)). Fur-
thermore, we will have some contribution from the next-nearest neighboring
sites as

P0j ≈ pxy
⊥ ιj0[εj0 ×nz] + (−1)j pz

⊥n
z, (8.5)

where the approximate ≈ meaning the neglect of the small difference be-
tween x- and y-components (see Fig. 8.6 (d)).

This section concludes that these parameters for equivalent sites (e.g. four
nearest-neighbors) can be characterized with a small set of independent pa-
rameters, but should obey the symmetric properties of Ba2CuGe2O7.



8.3. Electronic structure 87

FIGURE 8.6: Symmetric property of the Ba2CuGe2O7. (a) Numbering
of the nearest-neighboring sites. (b) Direction of the in-plane DM vector
of Ba2CuGe2O7 between nearest-neighbors (Cu-Cu). (c) Direction of the
vector of the antisymmetric part of the in-plane electronic polarization
P . (d) Direction of P between out-of-plane next-nearest neighbors with

the sites numbering.

8.3 Electronic structure

As the preliminary step, plane-wave basis DFT electronic structure calcu-
lations [106] have been performed for the Ba2CuGe2O7. An experimental
crystal structure (P4̄21m (No. 113) space group) and lattice parameter a =
8.466 Å and c = 5.445 Å are used in all calculations [99]. The relativistic spin-
orbit coupling (SOC) is taken into account in all the following calculations.

Fig. 8.7 shows the electronic structure calculated by Quantum Espresso
code [107] with the ultra-soft pseudo potential [108, 109]. In the DFT cal-
culation, 10× 10× 10 k-point mesh and Perdew-Burke-Ernzerhof (PBE) ex-
change correlation potential [110–112] are used. Fig. 8.7 also shows density
of states (DOS) projected onto atomic wave function of Cu-3d along the elec-
tronic band structure. The projected DOS (PDOS) shows the states around
the Fermi level are clearly dominated by Cu-3d states are separated from
other states and thus, these states can be used in the magnetic model.

Next step is to construct the tight-binding model (Wannier function) which
will be used to construct low-energy Hubbard model (Eq. 7.1). Cu-3d states
and thus, the usual procedure of the Wannier function can be adopted eas-
ily. The most well established procedure of constructions of Wannier func-
tions is the maximally localized Wannier function method (MLWF) which
has already been described in Sec. 7.2. To construct Wannier functions by the
MLWF procedure wannier90 code is used [70, 113, 114]. As one can see from
the electronic structure of Fig. 8.7, one can have whole 3d 5-orbital model.
Therefore, the 5-orbital model is used in the following.

However, one can encounter a numerical problem, namely, the MLWF
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procedure can give physically meaningless Wannier functions as it is ex-
plained in Sec. 7.2. Indeed, such problem has been encountered in this case.
The problem can be seen from the Wannier centers which is shown in the
first column of Tab. 8.1. As it is seen from the table, the Wannier functions
constructed from MLWF method are not obeying symmetric property of the
material, therefore, Hamiltonian of this Wannier functions should be mean-
ingless.

TABLE 8.1: Wannier function centers of Cu 3d orbital constructed by
MLWF, SLWF and modified MLWF. Corresponding Cu sites are located
at (0.00000, 0.00000, 2.72250) for the first 10-orbital and (4.23300, 4.23300,
2.72250) for the rest. λ = 107 is used as the Lagrange multiplier in SLWF.

Index MLWF SLWF modified MLWF
1 (−0.006315,−0.027387, 2.550192) ( 0.000000, 0.000000, 2.722500) ( 0.000000, 0.000000, 2.722500)
2 (−0.001291,−0.348851, 2.717052) ( 0.000000, 0.000000, 2.722500) (−0.000000,−0.000000, 2.728547)
3 (−0.308735, 0.156248, 2.712695) ( 0.000000, 0.000000, 2.722499) (−0.000000, 0.000000, 2.716452)
4 (−0.001740, 0.095520, 2.879435) ( 0.000000, 0.000000, 2.722500) (−0.000000,−0.000000, 2.722500)
5 ( 0.318229, 0.124647, 2.753190) (−0.000000,−0.000000, 2.722500) ( 0.000000,−0.000000, 2.722500)
6 (−0.004957,−0.036423, 2.530031) ( 0.000000, 0.000000, 2.722500) (−0.000000,−0.000000, 2.722500)
7 ( 0.020153,−0.347561, 2.714671) (−0.000000, 0.000000, 2.722500) (−0.000000, 0.000000, 2.728547)
8 (−0.312473, 0.149647, 2.711788) ( 0.000000,−0.000000, 2.722499) ( 0.000000, 0.000000, 2.716452)
9 (−0.007079, 0.075499, 2.904120) ( 0.000000, 0.000000, 2.722499) (−0.000000,−0.000000, 2.722500)

10 ( 0.304736, 0.158933, 2.751786) (−0.000000, 0.000000, 2.722500) ( 0.000000, 0.000000, 2.722500)
11 ( 4.235473, 4.212861, 2.753223) ( 4.232999, 4.232999, 2.722500) ( 4.233000, 4.233000, 2.722500)
12 ( 4.063818, 4.535646, 2.712022) ( 4.232999, 4.232999, 2.722499) ( 4.233000, 4.233000, 2.716452)
13 ( 4.580456, 4.259862, 2.719744) ( 4.232999, 4.232999, 2.722500) ( 4.233000, 4.233000, 2.728547)
14 ( 4.118174, 4.257500, 2.682343) ( 4.232999, 4.232999, 2.722499) ( 4.233000, 4.233000, 2.722500)
15 ( 4.166723, 3.898971, 2.745528) ( 4.232999, 4.232999, 2.722500) ( 4.233000, 4.233000, 2.722500)
16 ( 4.232983, 4.253596, 2.840994) ( 4.232999, 4.232999, 2.722500) ( 4.233000, 4.233000, 2.722500)
17 ( 4.219105, 4.581820, 2.726701) ( 4.232999, 4.232999, 2.722499) ( 4.233000, 4.233000, 2.716452)
18 ( 3.926197, 4.072980, 2.731743) ( 4.232999, 4.232999, 2.722500) ( 4.233000, 4.233000, 2.728547)
19 ( 4.227884, 4.120724, 2.620337) ( 4.232999, 4.232999, 2.722499) ( 4.233000, 4.233000, 2.722500)
20 ( 4.559433, 4.135747, 2.692391) ( 4.232999, 4.232999, 2.722500) ( 4.233000, 4.233000, 2.722500)

The other possibility is selectively Localized Wannier function (SLWF)
method and modified MLWF. These obtain qualitatively good Wannier func-
tions (see the second and third column of Tab. 8.1). As seen from Tab. 8.1,
modified MLWF method gave slightly shifted Wannier functions, however,
these centers are reflecting the symmetric property of Ba2CuGe2O7. Hence,
the modified MLWF will be used in the all of the later analysis of the 5-orbital
model.

The tight-binding band structures of the 5-orbital models constructed mod-
ified MLWF are plotted is cyan solid lines in Fig. 8.7. Those are showing nice
agreement with the DFT band structure.

8.4 Nonexistence of single ion contributions in spin
1/2 system

One of the problem of the existing analyses of the Ba2CuGe2O7 is that many
people believe the d-p hybridization model can describe the non-linear ME
effect of the spin 1

2 system such as Cu+2 based oxides.
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FIGURE 8.7: Band structure and DOS of Ba2CuGe2O7. Cyan lines indi-
cate the band structure obtained from tight-binding model constructed

from modified MLWF.

The d-p hybridization mechanism is an analogue of the single ion anisotropy
in the magnetic energy. The single ion anisotropy for the spin 1

2 does not ex-
ist because of the Kramers states. This can be understood easily from the fact
that the matrix elements of the orbital angular momentum operator for the
Kramers states |+〉 and |−〉 quench [115]. This is formally allowed by the
requirement for the Kramers states 〈+|Hsoc|−〉 = 〈−|Hsoc|+〉 = 0. Since the
single ion anisotropy arises from the second order, it is zero. This fact leads
to a conjecture that the single ion contribution to the electronic polarization
does not probably exist either.

As explained in Sec. 8.1, non-linear ME effect in Ba2CuGe2O7 is investi-
gated by means of the d-p hybridization mechanism which only contains the
spin of the individual ions [97]. This means it is the single ion contribution.
The rest of this section proves the non-existence of the single ion contribution
in spin 1

2 systems.
Starting from the general Berry-phase expression for the macroscopic elec-

tronic polarization which is given by Eq. 7.89. This expression can be further
rewritten as

P = − e
V

Tr{r̂D̂}, (8.6)

where r̂ and D̂ are the position matrix and the density matrix for the hole
state |α〉 in the basis of the Kramers states [116]. This is identical to the change
caused by the d-p hybridization mechanism. The hole state |α〉 is given by a
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linear combination of the Kramers states e. g.

|α〉 = a |+〉+ b |−〉 (8.7)

with coefficients a and b. Now the density matrix of the hole state is given by

D̂ = |α〉 〈α| (8.8)
= (a |+〉+ b |−〉)(a∗ 〈+|+ b∗ 〈−|) (8.9)

=

(
|a|2 ab∗

a∗b |b|2
)

. (8.10)

The spin is rotated by SU(2) rotation matrices and the direction is given by
Eq. 7.81. This rotation changes the coefficients a and b, however, trace of the
density matrix gives |a|2 + |b|2 and is a constant. Remaining term is the po-
sition operator. Kramers states are related to each other via the time reversal
operation as T̂ |+〉 = − |−〉 and T̂ |−〉 = |+〉 where the time-reversal opera-
tor is given by T̂ = −iσ̂yK̂ with the conjugate operator K̂. For any spin-less
operator r, the Kramers states have following relations

〈+|r|+〉 = 〈−|r|−〉 (8.11)

and

〈+|r|−〉 = 〈−|r|+〉 = 0. (8.12)

The relation of the off-diagonal elements Eq. 8.12 can be realized from the fact
that a Kramers doublet with the explicit spins (↑, ↓) has following general
forms

|+〉 = |+ ↑〉+ |+ ↓〉 (8.13)

= cos
θ

2
|↑〉+ sin

θ

2
eiφ |↓〉 (8.14)

=

(
cos θ

2
sin θ

2 eiφ

)
(8.15)

and

|−〉 = |− ↑〉+ |− ↓〉 (8.16)

= − sin
θ

2
e−iφ |↑〉+ cos

θ

2
|↓〉 (8.17)

=

(
sin θ

2 e−iφ

cos θ
2

)
(8.18)
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for any spin direction θ and φ. The relation of the Kramers doublet T̂ |+〉 =
− |−〉 leads to the relations

|− ↓〉 = K̂ |+ ↑〉 (8.19)

|− ↑〉 = −K̂ |+ ↓〉 . (8.20)

Substitution of these relations to 〈+|r|−〉 gives

〈+|r|−〉 = 〈+ ↑ |r|− ↑〉+ 〈+ ↓ |r|− ↓〉
= − 〈+ ↑ |rK̂|+ ↓〉+ 〈+ ↓ |rK̂|+ ↑〉
= 0.

(8.21)

Therefore, the position operator is proportional to the unit matrix. Thus the
expectation value of position operator does not depend on the spin. As a con-
sequence, the electronic polarization from single ion contribution is written
as

P = − e
V

Tr
(
|a|2 〈+|r|+〉 0

0 |b|2 〈+|r|+〉

)
, (8.22)

and thus independent of the spin. This proof disproves the d-p hybridization
mechanism in spin 1

2 systems.

8.5 5-orbital model

In Sec. 8.3, we have introduced the 5-orbital model. This section shows how
is the spin-related property such as the magnetism and electronic polariza-
tion of this 5-orbital model in Ba2CuGe2O7.

The one-electron part of the Hubbard model is constructed from calcu-
lated modified MLWFs. After diagonalizing the one-electron part, four groups
of the crystal field splitting are obtained as -0.36, -0.34, 0.08 and 0.55 eV. First
two levels are the eg states while the rest is the t2g states.

The Coulomb interactions are calculated by the constrained RPA method
which is described in Sec. 7.40. The obtained parameters are U ≈ 0.405 eV
and J ≈ 0.97 eV.

Then, the superexchange theory is applied to this model. The practical
procedure is described in Sec. 7.5. After mapping the 3× 3 tensor onto the
general spin model Eq. 7.80, parameters are obtained as Jij = −0.430 meV,
dxy = 0.109 meV and dz = −0.007 meV. The traceless symmetric anisotropy Γ̂
is found quite small values (e.g. the largest value Γxy = 0.005 meV) and does
not play important role, therefore, it will not be considered in the following.
With those parameters, one can have a spin spiral state.

Generally, angle of the spins between nearest-neighbors caused by the
DM interaction is given as

θ =

∣∣∣∣tan−1
(

dxy

J

)∣∣∣∣ ≈ ∣∣∣∣dxy

J

∣∣∣∣ . (8.23)
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It is estimated as θ ≈ 14.5◦ in the 5-orbital model which is in good agreement
with the experimental value of Ref. [103] (9.8◦). Details of the spin spiral state
will be discussed in the following subsection.

8.5.1 Spin spiral state

DM interaction causes cants of spins. Here an analytical expression of spin-
spiral states will be discussed.

Spin spiral states are characterized by spin-spiral propagation q-vector.
The q-vector specifies the direction of spin-spiral states (Fig. 8.8). Assuming
the spins are aligned as a spiral order. Then, a very general definition of the
q-vector is

ei = n1 cos(q ·Ri) +n
2 sin(q ·Ri) (8.24)

where n1 and n2 are the unit vectors along a space where the spin plane in
spanned in. A vector Ri denotes a position of the site i which has a classical
spin ei. Generally, this state can be specified with another vector n⊥ which
is orthogonal to n1 and n2.

𝒒

𝒒

𝒏⊥

𝒏⊥

(a) Proper-screw spiral

(b) Cycloidal spiral

FIGURE 8.8: Two different type of the spin-spiral state with different
n⊥ and same q-vector. Red spheres and black arrows indicate magnetic
sites and spin direction, respectively. Those spin orders are discussed in

this chapter. (a) Proper-screw spin spiral. (b) Cycloidal spiral.

In collinear antiferromagnet state in Ba2CuGe2O7 (where two magnetic
sites are included in a unit cell, vector Ri for those sites are (±1

2 a,±1
2 a, 0)),

the q-vector in the xy-plane is given as qAFM = (2π/a, 0, 0) where a is the
lattice parameter. Therefore, one can assume that the spin cants are caused
in this plane. Then, the q-vector is generally given as

q = qAFM + δq = (
2π + δqx

a
,

δqy

a
, 0) (8.25)

with a modulation of the spins δq = (δqx/a, δqy/a, 0). To specify the modu-
lation, consider a general situation that the spins are rotating in a plane one
of the n1 or n2 is nz = (0, 0, 1) while another vector is in the xy-plane. In
such assumption, the vector normal to this plane is given by

n⊥ = (− sin φ, cos φ, 0) (8.26)
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with the azimuth angle φ [85]. Then, spin cants are given by Eq. 8.24. There-
fore, by considering only nearest-neighbors, one can have an analytical form
of the energies of isotropic Heisenberg interaction EH and DM interaction
EDM after some calculation as

EH = 2J − J
4
[(δqx)

2 + (δqy)
2] (8.27)

and

EDM = −dxy
√

2
(δqx sin φ + δqy cos φ). (8.28)

Then the energy of this system is given as EH + EDM, therefore, minimizing
it leads to the analytical expression of the ground state. The condition

∂(EH + EDM)

∂δqx
= 0 (8.29)

gives another condition

δqx = −dxy
√

2
J

sin φ. (8.30)

Similarly, another condition

∂(EH + EDM)

∂δqy
= 0 (8.31)

gives

δqy = −dxy
√

2
J

cos φ. (8.32)

This result leads to an analytical expression of the modulation of the q-vector
as

δq = δq(sin φ, cos φ, 0), (8.33)

where δq = − dxy
√

2
J . In addition to the modulation vector, minimization of

the energy with respect to φ, which is given by the condition

∂(EH + EDM)

∂φ
= 0 (8.34)

leads

tan φ =
δqx

δqy
. (8.35)
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Therefore the energy does not depend on φ in classical spin model. This can
be easily realized by calculating the modulation dependent part of the energy

δE = − J
4
(δq)2 − dxy

√
2

δq =
(dxy)2

2J
. (8.36)

This is corresponding to the energy change caused by the DM interaction.
The important fact here is that not only n⊥, but also δq depends on φ.

Because of this φ dependence, one can have several spin spiral structure. For
instance, if one chooses φ = n× π

2 + π
4 where n is an integer. In this situation,

one has n⊥ = 1√
2
(±1,±1, 0) and (δq ⊥ n⊥) which leads the cycloidal spin

spiral order. As another situation, the rotation φ = n× π
2 leads proper screw

spin spiral state with n⊥ = (±1, 0, 0) or n⊥ = (0,±1, 0) where (δq ‖ n⊥).
See Fig. 8.9 for the picture of these situation.

𝑥

𝑦

1

0

23

4

𝒏𝒄𝒚𝒄𝒍𝒐𝒊𝒅𝟏

𝒏𝒔𝒄𝒓𝒆𝒘𝟏

φ
𝒏𝒄𝒚𝒄𝒍𝒐𝒊𝒅𝟐

𝒏𝒔𝒄𝒓𝒆𝒘𝟐

δ𝒒𝒄𝒚𝒄𝒍𝒐𝒊𝒅𝟐

δ𝒒𝒄𝒚𝒄𝒍𝒐𝒊𝒅𝟏 δ𝒒𝒔𝒄𝒓𝒆𝒘𝟏

δ𝒒𝒔𝒄𝒓𝒆𝒘𝟐

FIGURE 8.9: φ dependence of the spin-spiral order in the quasi two-
dimensional plane. Direction of the δq and n⊥ are indicated by solid
and dotted arrows. By changing φ, one can have two types of the spin-

spiral order.

Indeed, this arbitrariness is a consequence of the 4-fold rotoinversion sym-
metry. If one has 4-fold rotation along z-axis instead, which leads to the
change of the symmetric property of DM interaction. This results in a cy-
cloidal spin spiral order for all φ.

8.5.2 Without SOC

Another important interaction is the isotropic interaction between layers (next-
nearest neighbors). In this case, the constant of such isotropic interaction is
found as J2

⊥ = −0.010 meV and thus the interaction between those is an-
tiferromagnetic. As for the isotropic interaction between the 1st neighbor, it
was found as J1

⊥ = 0.0001 meV and thus weakly ferromagnetic (see Fig. 8.10).
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Therefore, the combination of isotropic interactions between those sites leads
to the magnetic structure to a C-type collinear antiferromagnet without SOC.
This result coincides with the experimental result [103].

x

y

z

Cu

FIGURE 8.10: A picture when without SOC (only isotropic interac-
tions). Only Cu atoms are explicitly shown as Red spheres. Blue arrows
on the right panel are indicating the direction of spins. The isotropic
interactions stabilize a C-type AFM magnetic structure (Right panel).

8.5.3 Ferroelectricity

This section discusses the magnetically induced ferroelectricity of this mate-
rial.

Sec. 8.2 has already described that the electronic polarization has some
symmetric constraint. Owing to this constraint, the electronic polarization
between the nearest neighboring sites of this material only have antisymmet-
ric part P0j. In addition to this, the sum of the antisymmetric interactions be-
tween the nearest-neighbors ∑j∈nn P0j vanishes. Therefore, as a result, only
z-component (out-of-plane component) of the net electronic polarization Pz
survives.

The Pz consists of the isotropic interaction PI
z and the antisymmetric inter-

action PA
z . First, let’s think of the antisymmetric interaction of the electronic

polarization, the second term of Eq. 7.95. This is an analogue of the DM
interaction of the magnetic energy. This interaction is originated from the
spin-current (ei × ej). Then, adopt the same strategy with the analysis of the
spin spiral states.

Consider the vector normal to the spin rotation plane Eq. 8.26 and spin
spiral propagation vector Eq. 8.33. Furthermore, assume the spin at the site 0
is e0 = (0, 0, 1). Then, the spin at the site j can be written by using Eq. 8.24 as

ej = n1 cos(q ·Rj) +n
2 sin(q ·Rj), (8.37)
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where n1 = (0, 0, 1) and n2 = (cos φ, sin φ, 0). The next-nearest neighboring
sites at adjacent planes are given as

Rj = εj0

√
1
2

a2 + c2, (8.38)

where the unit vector εj0 for those neighbors are given as εj0 =
τj0
|τj0|

with the

vectors connecting those sites τj0 = (±1
2 a,±1

2 a,±c) (see Fig. 8.6 (d) for the
situation).

With these considerations, the outer products of spins at those sites are

e0 × ej = −nx sin φ sin(q ·Rj) +n
y cos φ sin(q ·Rj)

= n⊥ sin(q ·Rj)

≈ n⊥(q ·Rj)

= −n⊥δq

√
1
2

a2 + c2(εx
j0 sin φ + ε

y
j0 cos φ),

(8.39)

where nx and ny are the unit vector along x and y, respectively. Now, use the
analytical expression for the antisymmetric interaction between next-nearest
neighbors Eq. 8.5. Then, one can have

P0j ·n⊥ = ±pxy
⊥ n
⊥ · [εj0 ×nz]

= ∓pxy
⊥ (ε

y
j0 sin φ + εx

j0 cos φ).
(8.40)

By using this expression, one can derive analytical expression for the anti-
symmetric contribution of the electronic polarization between next-nearest
neighbors as

P0j · [e0 × ej] = ±δq
pxy
⊥

4
√

1
2 a2 + c2

(sin 2φ + (−1)j+1), (8.41)

where the relations (εx
j0)

2 = (ε
y
j0)

2 = a2

2a2+4c2 and εx
j0ε

y
j0 = (−1)j+1 a2

2a2+4c2 are
used. Then, by summing up this expression for all next-nearest neighbors,
one can have a desired form for the z-component of the net electronic polar-
ization of the antisymmetric part as

PA
z = ∑

j∈next−nn
εz

j0
(
P0j · [e0 × ej]

)
=

4pxy
⊥ ac

a2 + 2c2 δq sin 2φ

= −
4
√

2pxy
⊥ ac

a2 + 2c2
dxy

J
sin 2φ.

(8.42)

The important character is the sin 2φ dependence of the electronic polariza-
tion. This is a consequence of two different φ-dependence. Namely, the outer
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product (ei × ej) gives sin φ dependence. Besides it, the spin spiral propaga-
tion q-vector has sin φ and cos φ dependence which result in the rotoinver-
sion symmetry. Thus, these lead to the sin 2φ dependence.

Similar procedure can be applied to the isotropic part of the electronic
polarization. Now, think of the inner product of spins between next-nearest
neighbors:

e0 · ej = cos(q ·Rj)

= − cos

(
1
a

√
1
2

a2 + c2
(

εx
j0δq sin φ + ε

y
j0δq cos φ

))

≈ −1 +
(δq)2

2a2

(
1
2

a2 + c2
)
(εx

j0 sin φ + ε
y
j0 cos φ)2

= −1 +
(δq)2

8

(
1 + (−1)j+1 sin 2φ

)
(8.43)

Subsequently, z-component of the net electronic polarization of the isotropic
interaction PI

z is given by summing it up for all next-nearest neighbors as

PI
z = ∑

j∈next−nn
εz

j0P0j(e0 · ej)

= ∑
j∈next−nn

εz
j0

(
(−1)jιj0p0

⊥
(δq)2

8
(−1)j+1 sin 2φ

)

= − 2
√

2c√
a2 + c2

(
dxy

J

)2

p0
⊥ sin 2φ.

(8.44)

Again, the isotropic part also has the sin 2φ dependence.
As a consequence, the total non-zero electronic polarization Pz = PA

z +
PI

z gives sin 2φ dependence. Due to the sin 2φ dependence, this theoretical
analysis reproduces a switching of a direction of the electronic polarization
as it has been experimentally seen in Ref. [96]. With φ = π

4 , the spin spiral
structure is cycloidal and it is experimentally observed spin structure. In
such configuration, the electronic polarization of the z-component is positive.
This spin structure will be stabilized with the magnetic field for instance,
along [1̄, 1̄, 0] with a canting of spins (see Fig. 8.11 (b)). In contrast, a magnetic
field along [1, 1, 0] stabilizes the cycloidal spin spiral structure with φ = −π

4
and also cants of spins. Indeed, this spin structure gives the z-component of
the electronic polarization with the opposite sign (negative) (see Fig. 8.11 (c)).
This behavior is exactly what has been observed in Ref. [96].

Concerning the value, the value observed in the experiment [96] is |Pz| ≈
0.3 µC/m2. Theoretical values calculated from 5-orbital model are rather
small PA

z + PI
z ≈ 0.505pxy

⊥ − 0.086p0
⊥ = 0.02 µC/m2 (φ = π

4 ) with pxy
⊥ =

0.046 µC/m2 and p0
⊥ = 0.037 µC/m2 . An attention should be paid that these

values are really sensitive to details of the calculation, therefore, there are
many possibilities for the reason of this discrepancy. For example, quality
of the Wannier functions constructed from MLWF method for this material is
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FIGURE 8.11: Suggested flip of the out-of-plane electronic polarization
by the external magnetic field in the spin-spiral state. (a) Side view of
the spin-spiral states. (b) and (c) are top-view of the spin-spiral align-
ment along side with the electronic polarization suggested by the SE

theory for the electronic polarization.
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quite bad, therefore, modified MLWF method is employed. Wannier function
should play a crucial role of the models. Another possibility is the Coulomb
interaction. In this work, it has been calculated by constrained RPA method
and which also should play an important role.

Another important fact is that the antisymmetric contribution of the elec-
tronic polarization PA

z is much larger than that of the isotropic interaction PI
z .

Therefore, the magnetically induced electronic polarization of Ba2CuGe2O7
is almost solely induced by the spin-current mechanism. This is completely
different from the analysis done by Murakawa et al. [97]; their argument was
that the origin of the ME effect in Ba2CuGe2O7 is induced by the d-p hy-
bridization mechanism, but here the spin-current mechanism is the origin.

8.5.4 Response to external fields in collinear C-type AFM phase

Another interesting behavior of this material is observed when one applies a
magnetic field perpendicular to the quasi two dimensional surface, magnetic
structure transits as incommensurate spin spiral→ commensurate AFM (C-
type) [102]. This section performs a thought experiment and predict the elec-
tronic polarization caused during this incommensurate-commensurate (IC-
C) transition.

As it has been observed in the experiment [102], spins lie in the quasi
two-dimensional plane in the commensurate phase. With the C-type anti-
ferromagnet alone, the electronic polarization is not induced, however, the
external magnetic field further causes cants of spins along z-axis. In other
words, the C-type antiferromagnetic alignment lowers the the 4-fold rotoin-
version Ŝz

4 to time-reversal and 2-fold rotation T̂Ĉz
2, thus, it allows one to have

an in-plane electronic polarization Pxy [100]. Then, further cants of the spins
break this symmetry. To see this behavior more closely, a quantitative analy-
sis will be given. The spin cants are estimated by the equilibrium condition
between isotropic interaction and Zeeman effect as

ez = −µBH
8J

, (8.45)

where µB is the Bohr magneton and H is the strength of the external magnetic
perpendicular to the plane.

Since the next nearest neighbor bonds contribute to out-of-plane elec-
tronic polarization Pz, one can assume the in-plane electronic polarization
is mainly coming from the in-plane nearest neighboring bonds. Now, as-
sume the spin at the site 0 is e0 = (cos φ, sin φ, ez) and its neighboring sites
ej = (− cos φ,− sin φ, ez). This is a special case of the spin spiral where the
spin spiral q-vector is collinear antiferromagnetic. With a canting ez. The
outer product of these spins is then

e0 × ej = 2ez(sin φ,− cos φ, 0). (8.46)
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From Eq. 8.4, one can have the desired form of the in-plane electronic polar-
ization Pxy:

Pxy = ∑
j∈nn

εj0P0j[e0 × ej]

= ∑
j∈nn

εj02(−1)jez pxy
‖ (εx

j0 sin φ− ε
y
j0 cos φ)

= −
µBHpxy

‖
2J

(cos φ,− sin φ, 0).

(8.47)

The 5-orbital model gives pxy
‖ = 0.597 µC/m2. This is the linear effect as

it gives a linear dependence of the external magnetic field. In the ground
state configuration where φ = n × π

2 + π
4 where n is an integer, the C-type

AFM can have four possible formations. In all cases, this theoretical analysis
predicts several direction of the in-plane electronic polarization (Fig. 8.12).
Therefore, this subsection concludes there is another possibility of the elec-
tronic polarization controlled by external magnetic fields. This provides an-
other possibility of the application of Ba2CuGe2O7.

FIGURE 8.12: (a-d) All possible in-plane electronic polarization pre-
dicted by the SE theory for the electronic polarization caused by IC-C

transition and additional spin cants.
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8.6 Conclusion and future prospect

In the last part of this thesis, first, conventional linear ME effect has been
introduced. After that, present theories and controversy of those have been
discussed. At the end, mechanism of the non-linear ME effect in Ba2CuGe2O7
has been revealed by combining one-electron approximation and many-body
theory. Furthermore, this part showed contrary to the wide spread belief, the
single site mechanism of the electronic polarization cannot exist in spin 1

2
system such as Ba2CuGe2O7. At this point, we saw in the atomic-limit, by
expanding atomic-limit Wannier functions by means of the first order of the
hopping, one can have tails spreading to neighboring sites. By using these
tails and rigorous Berry phase expression for the electronic polarization in
solids, one can systematically derive spin model of the electronic polariza-
tion. In contrast to the present phenomenological theories, this is the first
logically derived spin model of the electronic polarization. The derived SE
theory for the electronic polarization is the analogue of the well known SE
theory for the magnetic energy. The difference is only the vector which gives
information of symmetry property of the crystal. One of the character of the
SE theory for the electronic polarization is that this theory treats isotropic
and antisymmetric contributions to the electronic polarization on an equal
footing. Moreover, the advantage is that we can use same parameters which
used in the SE theory of the magnetic energies. The theory has nicely de-
scribed the experimental multiferroic behavior of Ba2CuGe2O7. Moreover,
the theory predicts interesting in-plane polarization switching. Another in-
teresting suggestion in this part is a new algorithm for the construction of
the Wannier functions which obey symmetric property of the crystal. This is
crucially important for microscopic modelings from the first-principle calcu-
lations. This section conclude the proposed theory revealed that the origin of
the ME effect in Ba2CuGe2O7 is the spin-current mechanism.

Finally, let me discuss the future prospect. The suggested SE theory for
the electronic polarization is successfull theory, however, it seems still there
are some mechanism missing in the theory. One of the crucial assumption of
the SE theory for the electronic polarization is that the overlap between tail
and head 〈ai|r|ai→j〉 can be ignored. However, one should be careful of this
because this is the first-order of the hopping, thus, may have more contri-
bution than second-order of the hopping. Indeed, if one takes into account
such effects, one should have better agreement of the value for the electronic
polarization (it was not in agreement in the SE theory, actually). This the-
sis concludes if those controversies are solved, it would be a significant step
forward for applications in future electronic devices.
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Chapter 9

Summary

First, this thesis provided the matching method for Angle-Resolved Photoe-
mission Spectroscopy (ARPES) which can be used in combination with the
surface slab model Density Functional Theory calculations. After the sug-
gestion, the method is adopted to a graphine-like one-dimensional periodic
potential model. The result showed good agreement with the analytical so-
lution.

Next, this thesis showed how the hole and electron pocket of Td phase
MoTe2 can be selected in ARPES experiments by means of the dipole selec-
tion rule and suggested suitable ARPES setting for the future ARPES expei-
ments.

Finally, this thesis introduced a SE theory for magnetically induced elec-
tronic polarization. The theory is successfully adopted to a controversial
multiferroics Ba2CuGe2O7 and the mechanism of the magnetoelectric effect
in Ba2CuGe2O7 is explained.
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