千葉大学大学院融合理工学府

博士論文

回転分子モータータンパク質 V-ATPase の

一方向回転機構の解明

令和3年2月提出

先進理化学専攻

化学コース

生体構造化学研究室

丸山 慎太郎

要旨

第一章 緒言

V-ATPase は ATP の化学エネルギーを利用して、親水性の触媒頭部回転モーターV₁部 分の中心軸 DF 複合体を回転させて膜内在性のイオン輸送ローターリング V。部分でイ オンの能動輸送を行い、細胞や生体の恒常性維持に重要な役割を果たすタンパク質複合 体である。ATP 駆動型の回転分子モーターの一種である V₁-ATPase は、リング状の触 媒ドメインである A₃B₃複合体とその中心軸である DF 複合体から構成されている。A₃B₃ 複合体は同一の A₁B₁ユニットがN 末端のβバレルドメインでクラウン構造を形成して 会合し、3 組がリング状に集合した複合体であるにも関わらず、ヌクレオチド結合時、 非結合時ともにユニークな非対称構造を形成していた。

Enterococcus hirae 由来の V₁-ATPase についてこれまで構造生物学的な研究や生化学 的解析が行われてきており、V₁複合体および A₃B₃複合体について X 線結晶構造解析に よっていくつかの結晶構造が明らかとなったが、V₁-ATPase が回転分子モーターとして 駆動される回転メカニズムや、A₃B₃複合体、DF 複合体それぞれが回転触媒機能の中で 担う役割は未だに明らかとなっておらず、生体内のエネルギー変換機構は依然として不 明のままである。本研究では、第2章において、A₃B₃複合体が非対称構造を形成するメ カニズムおよびその意義について報告し、第3章において回転を生み出す協同的構造変 化メカニズムについて報告する。本研究は V-ATPase をはじめとする複合体タンパク質

i

が複雑な四次構造を形成する機構、また、ATP の化学エネルギーが V₁-ATPase をはじ めとする回転分子モーターを利用して回転トルクへと変換されるメカニズムの理解に 重要な知見となるものであると考えられる。

第二章 V-ATPase 加水分解触媒ドメインの非対称構造形成メカニズム

X 線結晶構造解析によって V₁-ATPase の触媒ドメインである A₃B₃ 複合体がヌクレオ チドの有無にかかわらず非対称構造を形成することが明らかとなっていた。ところが、 非対称構造が形成されるメカニズムや意義は明らかとなっていなかった。そこで、本研 究では、A₃B₃ 複合体の非対称構造形成メカニズムを明らかにするために、βバレルドメ インによる会合を弱めるような変異型 A₃B₃(A₃B_{(L65Y)3})複合体を作製し、その構造を高速 AFM と X 線結晶構造解析によって明らかにした。A₃B_{(L65Y)3} はヌクレオチド非結合時、 野生型よりも対称性の高い構造を形成していた。さらにヌクレオチドが結合することで クラウン構造が崩壊し、密な螺旋状複合体を形成していた。これらの結果から、野生型 A₃B₃ はクラウン構造の制約によって不安定な A₁B₁ ユニットを含んだ非対称で負荷のか かった構造を形成していることが示唆された。本研究によって回転分子モータータンパ ク質がどのようにして協働的に構造変化し、その機能を発揮しているのかについての根 本原理についての新たな知見がもたらされた。

第三章 V₁-ATPaseの回転における親和性変化モデル

V₁-ATPase についてこれまで結晶構造解析や一分子観察実験など様々な方法によっ て回転メカニズムモデルが提唱されてきた。だが、触媒ドメインである A3B3 複合体の 構造変化や、それに連動した DF 複合体の回転運動を生み出す駆動力が何によってもた らされているのかは、これまで明らかとされていなかった。そこで、本研究では、V₁-ATPase のサブユニット間の結合親和性の変化を表面プラズモン共鳴法によって測定し た。A サブユニットに ATP が結合することで、A、B サブユニット間の親和性が高まり っており、ATPの結合は A₁B₁ ユニットの密な構造形成に寄与していることが明らかと なった。さらに、DF 複合体はチップ上にヌクレオチドを用いて再構成された密な構造 をとる A1B1 ユニットと高い親和性で結合しており、DF 軸は A3B3 複合体の中で1 組の A₁B₁ユニットに主に結合していることが示唆された。本研究によって、V₁-ATPaseの回 転メカニズムについて、熱揺らぎの中でそれぞれのサブユニット間の親和性が変化する ことで駆動されているという親和性変化モデルを構築することができた。回転分子モー タータンパク質 V₁-ATPase は ATP の化学エネルギーを用いて、親和性を変化させ、熱 揺らぎの中で運動の方向性を制御しながら、回転していることが示唆された。

第四章 V₁-ATPaseの回転触媒機構の分子メカニズム

V₁-ATPaseの ATP 加水分解メカニズムとしてこれまで、A₃B₃ 複合体における ATP 加 水分解に伴う協同的な構造変化に伴い、DF 複合体が一方向に回転するという回転触媒 機構が提唱されている。しかし、どのような分子メカニズムで回転触媒としての機能を 発揮しているのかは明らかになっていなかった。そこで、本研究ではシステイン架橋に よる安定化変異体(A(s23C)B(N64C)複合体)を作製し、X線結晶構造解析と高速 AFM 観察 を組み合わせることによって、回転触媒機構の分子メカニズムを明らかにすることを目 指した。X線結晶構造解析によって A(s23c)B(N64C)複合体のそれぞれの ATP 加水分解ステ ップに相当する3種類の結晶構造が明らかとなった。さらに、高速 AFM 観察によって A(s23C)B(N64C)複合体はヌクレオチドが3分子結合した状態と2分子結合した状態の2状 態を遷移し、その構造変化が一方向性をもって協同的に回転伝搬している様子を捉える ことができた。そして、結晶構造をスナップショットとして高速 AFM によって得られ た回転ダイナミクスの動画に対応させることで、触媒ドメインである A3B3 複合体の回 転ダイナミクスについて分子レベルで詳細なメカニズムモデルを構築した。さらに、得 られた A₃B₃ 複合体の回転メカニズムを軸が結合した V₁-ATPase の回転メカニズムと比 較することで、V1-ATPase を構成している A3B3 複合体および DF 複合体それぞれの役 割が回転触媒機構の中で担う役割が明らかとなった。

第五章 結語

本研究によって、*Enterococcus hirae* 由来の V₁-ATPase の触媒ドメインである A₃B₃ 複 合体の非対称構造形成メカニズムが明らかとなり、さらに、A₃B₃ 複合体の回転触媒機構 に伴う反応段階ごとの詳細な構造変化が分子レベルで明らかになった。今回得られた知 見によって、V₁-ATPase をはじめとする複雑な四次構造を形成するタンパク質はそれぞ れの構成サブユニット間での絶妙なバランスの中で、協同的に動作し機能を発揮してい ることが示唆された。このような複合体タンパク質の詳細な構造生物学的研究は、V₁-ATPase の性状の理解にとどまらず、タンパク質が複合体を形成して複雑な四次構造を 形成するメカニズムの理解や、生体内におけるエネルギー変換メカニズムの解明に向け た大きな一歩であると考えられる。

- 要旨
- 目次
- 第一章 緒言
- 第二章 V-ATPase 加水分解触媒ドメインの非対称構造形成メカニズム
- 第二章第一節 実験
- 第二章第二節 結果と考察
- 第二章第三節 結論
- 第三章 V₁-ATPase の親和性変化モデル
- 第二章第一節 実験
- 第二章第二節 結果と考察
- 第二章第三節 結論
- 第四章 V₁-ATPaseの回転触媒機構の分子メカニズム
- 第二章第一節 実験
- 第二章第二節 結果と考察
- 第二章第三節 結論
- 第五章 結語
- 謝辞
- 参考文献
- 略称

第一章 緒言

F-、A-、V-ATPaseは回転分子モータータンパク質であり、協同的に機能するリング 状の触媒ドメインを有し、ATP加水分解のエネルギーを利用してイオン輸送を行う (Fig. 1-1)^{1.2}。F-ATPaseは、ミトコンドリアや葉緑体においてATP合成を担う³。古細菌 では、A-ATPaseがF-ATPaseのようにはたらき、その構造やサブユニット構成はV-ATPaseに類似する⁴。V-ATPaseは、真核生物の様々なオルガネラ膜や原核生物の細胞 膜などに存在し、ATP加水分解反応と共役したカチオンポンプとして機能する^{1.5}。こ れらのATPaseは親水性の球状触媒ドメイン (F₁、A₁、V₁)とイオン輸送を担う疎水性 の膜内在性ドメイン(F₀、A₀、V₀)から構成されている^{4.6}。これらのATPaseの回転触媒 機構について、三次元構造や、一分子観察実験など様々な研究がなされてきたが、協 同的構造変化メカニズムやエネルギー変換機構の解明には至っていない⁶⁻¹⁴。

V-ATPaseは細菌にも存在し、これまでEnterococcus hirae (E. hirae)由来のV-ATPaseに ついて発現精製系が確立され、研究が進められてきた^{5,15-20}。この酵素は生理的にNa⁺ポ ンプとして機能しており、真核生物由来のV-ATPaseと相同なアミノ酸配列を持った9つ のサブユニットから構成されている²¹。V₁部分はA、B、D、Fが3:3:1:1のストイキオメト リーで構成されており、A₁B₁ユニットがリング状に3組集合したA₃B₃複合体とその中心 軸となるDF複合体から形成されている。A、BサブユニットはいずれもN末端側βバレル ドメイン、中央部のα/βドメイン、C末端側ヘリカルドメインから構成されており、N末 端側βバレルドメインでの相互作用によってクラウン構造を形成し、A₃B₃複合体のリン グ構造を保持している(Fig. 1-2a-c)。V₁複合体は一分子観察によって、ATP 1分子の加水 分解に対応してDF軸が120°回転することが確認されている回転分子モータータンパク 質である^{22,23}。近年の報告により、この120°回転にはF₁-ATPase同様40°、80°のサブステ ップが存在することが明らかとなっている²⁴。V₁-ATPaseでは各A₁B₁ユニットでATPを順 次加水分解し、その際の構造変化によってDF軸およびV₀ローターリングへ回転運動が 伝搬され、そのエネルギーを利用して濃度勾配に逆らってNa⁺を輸送すると考えられて いるが、その詳細な分子メカニズムは未だに明らかとされていない(Fig. 1-2d-f)⁵。

V-ATPaseにおいて一方向回転に重要な役割を果たしていると考えられるA₃B₃複合体 について、これまでにいくつかの結晶構造は明らかとなっている(Fig. 1-2)¹⁹。一般に、 同一ペアのサブユニット(A₁B₁ユニット)3組から組み上がる複合体は3回対称軸を有す ると期待される。しかし、A₃B₃複合体はA₁B₁ユニットが3組集合した六量体であるにも かかわらず、3回対称軸を持たない非対称構造を形成していることが明らかとなった (Fig. 1-2d)¹⁹。ヌクレオチド非結合時、A₃B₃複合体のそれぞれのA₁B₁ユニットは、"empty" (ATP結合不可)、"bindable" (ATP結合可能)、"bound" (ATP結合時と同様)フォームを形 成していた(以後eA₃B₃と表記)(Fig. 1-2d)¹⁹。また、AMP-PNP(ATPの非加水分解性アナ ログ)と共結晶化した構造では、"empty"、"bound"、"bound"フォームを形成し、3箇所存 在するヌクレオチド結合部位のうち"bound"フォームの2箇所にしかAMP-PNPが結合で きないことが明らかとなった(以後bA₃B₃と表記)(Fig. 1-2e)¹⁹。こうした非対称構造を 形成することが明らかとなったことで、A₃B₃複合体はヌクレオチドの結合解離に応じて 協同的に非対称構造から別の非対称構造へ一方向的に変化し、ATP加水分解の順序を制 御していることが示唆された。さらに、中心軸となるDF複合体の結合によってもA₃B₃ 複合体の構造は非対称に変化し、A₁B₁ユニットはそれぞれ"empty"、"bound"、"tight"と いう構造を形成していた。軸と結合したA₁B₁ユニットがとる密な"tight"フォームは回転 触媒機構の中でATP加水分解を触媒すると考えられている。しかし、A₃B₃複合体の非対 称構造が形成されるメカニズムや意義、そして、回転触媒中に非対称な構造変化が生じ、 それが一方向的に伝播していくメカニズムについては、明らかになっていなかった。

第二章では、A₃B₃ 複合体の非対称構造形成メカニズムおよび、協同的構造変化メカニ ズムを明らかにするために、非対称構造が生じる要因となっていると考えられるクラウ ン構造における相互作用を弱めて各サブユニットの会合を弱めた A₃B_{(L65Y)3} を作製した。 本研究では、ヌクレオチド非存在下での結晶化スクリーニングを行い分解能 3.4Å でヌ クレオチド非結合型 A₃B_{(L65Y)3}の結晶構造を決定した。また、過剰量(6 mM)の AMP-PNP 存在下での A₃B_{(L65Y)3} について、分解能 2.1 Å で AMP-PNP 結合型 A₃B_{(L65Y)3}の構造を決 定した。さらに野生型 A₃B₃ と変異型 A₃B_{(L65Y)3}の溶液中での構造を明らかにするため、 野生型 A₃B₃ と変異型 A₃B_{(L65Y)3} それぞれについて HS-AFM 観察を行った。また変異型 A₃B_{(L65Y)3} の生化学的性質を調べるために ATPase 活性測定を測定し野生型と比較した。 第二章ではこれらの実験結果に基づいて、V-ATPase が非対称な複合体を形成するメカ ニズム、ひいては、V-ATPase をはじめとするタンパク質が複雑な四次構造を形成する 根本原理について議論する²⁵。

第三章では、A₃B₃複合体の構造を変化させ、V₁-ATPase の軸の回転を生み出している 要因を明らかにするために、東京理科大学山登研究室、白石研究室との共同研究により、 SPR 解析によってサブユニット間の親和性の変化を測定した。はじめに、ヌクレオチド 存在下でのA、Bサブユニット間の結合親和性を測定した。次に、A₁B₁ユニットとヌク レオチドの見かけの親和性を測定した。これらの結果から、A、Bサブユニット間の結 合親和性は結合しているヌクレオチドの種類によって変化するということが示唆され た。さらに、DF 複合体と密な"tight"フォームを形成している A₁B₁ユニットの親和性は 非常に高く、今回得られた知見から V₁-ATPas の回転メカニズムについて親和性変化モ デルを提唱する²⁶。

第四章では、A₃B₃ 複合体の非対称構造が回転触媒機構中にどのように構造変化して いくのかを観察するために、システイン変異によって複合体を安定化した変異型 A₃B₃ 複合体(A_(523C)B_(N64C)複合体)を作製し、金沢大学安藤研究室との共同研究により、A₃B₃ 複合体について高速原子間力顕微鏡(HS-AFM)を用いた回転観察実験を行った⁹。これに よって観察された構造変化の HS-AFM 像に A_(523C)B_(N64C)複合体についての結晶構造を詳 細なスナップショットとして対応させることによって、回転触媒機構の詳細な構造変化

4

の遷移についての知見を得た。これらの構造生物学的知見とATPase 活性測定等による 生化学的な知見から、V-ATPase の回転触媒機構の分子メカニズムにつて議論する。さ らに、これまでの中心軸 DF が結合した V₁-ATPase に関する研究と中心軸 DF が結合し ていない A₃B₃ 複合体それぞれの ATP 加水分解触媒機構を比較することで、タンパク質 超分子複合体のそれぞれの構成ユニット、V₁ 複合体、A₃B₃ 複合体、そして DF 複合体の 役割について議論する。

本研究によって E. hirae 由来 V₁-ATPase について、ATP の化学エネルギーの変換を担 う触媒ドメイン A₃B₃ 複合体の非対称構造形成メカニズムが明らかとなり、さらに、触 媒ドメインによる回転触媒機構についてこれまでよりも詳細な分子メカニズムが明ら かとなった。本研究によって得られた知見は、V₁-ATPase をはじめとする種々の分子モ ータータンパク質の協同的な動作機構の理解の手助けとなると考えられる。

Fig.1-1 Enterococcus hirae 由来 V-ATPase の構造模式図

腸球菌 V-ATPase の構造を模式図で表した。腸球菌由来の V-ATPase は触媒ドメインであ る A₃B₃ 複合体で生じる ATP 加水分解反応に伴う構造変化で、DF 軸および V₀ドメインを回 転させ、その運動エネルギーによって、膜内在性ドメインである V₀ 複合体で濃度勾配に逆 らって Na⁺を輸送する膜間電気ポテンシャルを生み出す。

Fig. 1-2 A₃B₃ 複合体および V₁ (A₃B₃DF) 複合体の結晶構造

(a) ヌクレオチド結合型 A₃B₃ 複合体結晶構造の側面図。N 末端ドメイン(A サブユニット 残基番号 1-71、B サブユニット残基番号 1-77)、中央ドメイン(A サブユニット残基番号 72-449、B サブユニット残基番号: 78-362)、C 末端ドメイン(A サブユニット: 残基番号 450-593、 B サブユニット: 残基番号 363-458)の 3 領域で線引きした。A サブユニットを青、B サブユ ニットを紫で表した。(b-f) N 末端側 β バレルドメイン (クラウン構造)の上面図(b)、中央 ドメイン(c)、ヌクレオチド非結合型 A₃B₃ 複合体の C 末端ドメイン(d)、AMP-PNP 結合型 A₃B₃ 複合体の C 末端ドメイン(e)、AMP-PNP 結合型 V₁ 複合体の C 末端ドメイン(f)を N 末 端側から見てサーフェス表示。ヌクレオチド結合部位を赤い三角形で指し示した。結合した AMP-PNP 分子を赤の球体表示、DF 軸を緑で示した。 第二章 V-ATPase 加水分解触媒ドメインの非対称構造形成メカニズム

第二章第一節 実験

2.1.1 変異型 A₃B_{(L65Y)3} 複合体の発現・精製

 A_3B_3 複合体の結晶構造に基づいて N 末端側 β バレルドメインの疎水性相互作用を弱 めるような 1 残基変異を導入した変異体を作成した 18,19,27,28 。PyMOL で eA_3B_3 の構造か ら変異導入の候補となる残基を選択し、いくつか変異遺伝子を作製してその代表として $A_3B_{(L65Y)3}$ を用いた。

発現は理化学研究所生命機能科学研究センターとの共同研究によって大腸菌無細胞 合成系を用い、A₃B_{(L65Y)3} 複合体および D_(T60CL67C)F 複合体を発現させた ^{6,12}。発現させた A₃B₃ 複合体を含む溶液を、A バッファー(20 mM Tris-HCl、1 M NaCl、20 mM Imidazole; pH 8.5)で平衡化させた His Trap HP カラム(GE Healthcare)にあてがい、His-tag の付い た A₃B₃ 複合体を吸着させ、B バッファー(20 mM Tris-HCl、500 mM NaCl、500 mM Imidazole; pH 8.0)で溶出させた。タグを取り除いたサンプルを得るために TEV プロテ アーゼを加えて 4 °Cで一晩反応させた。その後反応液を C バッファー(20 mM Tris-HCl、 500 mM NaCl、20 mM Imidazole、2 mM dithiothreitol; pH 8.5)で一晩透析した。透析後の 溶液を A バッファーで平衡化させた His Trap HP カラムにアプライし、B バッファーで 溶出し、フロースルーを回収した。D バッファー(20 mM Tris-HCl、20 mM NaCl、2 mM dithiothreitol; pH 8.5)にバッファー交換し、D バッファーで平衡化した HiTrap Q HP カラ

8

ムで 20-1000 mM NaCl のグラディエント溶出を行った。

A₃B₃ および A₃B_{(L65Y)3} は E バッファー(20 mM Tris-HCl、10% glycerol、100 mM NaCl、 2 mM dithiothreitol; pH 7.5)で平衡化した HiLoad 16/60 Superdex 200 pg カラムを用いて精 製した。得られた精製標品は Amicon Ultra-15 10000MWCO フィルターで濃縮した。

D_(T60C/L67C)F は F バッファー(20 mM Tris-HCl、10% glycerol、150 mM NaCl、2 mM dithiothreitol; pH 8.0)で平衡化した HiLoad 16/60 Superdex 75 pg カラムを用いて精製した。 得られた精製標品は Amicon Ultra-15 3000MWCO フィルターで濃縮した。

2.1.2 電子顕微鏡観察と画像処理

精製した A₃B₃ 複合体および A₃B_{(L65Y)3} 複合体をグロー放電カーボンコーティングされ た銅グリッド上に分注した。それぞれのグリッドを 2.0% (w/v)の酢酸ウラニルでネガテ ィブ染色した。顕微鏡画像は 200 kV で FEI Tecnai G2 F20 (FEI, Hilsboro, OR, USA)を使 用して電子直接検出機(FEI Falcon II)を用いて収集した。粒子画像を EMAN2 パッケージ の e2boxer.py を用いて 2D クラス平均化し、RELION ソフトウェアで加工した ^{30,31}。

2.1.3 ATPase 活性測定

A₃B₃ 複合体および A₃B_{(L65Y)3} 複合体(10 mg/mL)を G バッファー(100 mM MES, 5 mM MgSO₄, 100 mM NaCl, 10% glycerol; pH 6.0) 中で DF 複合体(5 mg/mL)と氷上でインキュ

ベートし、A₃B₃DF 複合体として再構成させた¹⁸。A₃B₃ および、再構成された A₃B₃DF 複合体の ATPase 活性は ATP 再生系を用いて測定した^{19,20}。反応溶液は 1 mM ATP/MgSO₄、 2.5 mM phosphoenolpyruvate、50 µg/mL pyruvate kinase、50 µg/mL lactate dehydrogenase、 0.2 mM β-NADH (dipotassium salt)、そして 2 µg または 20 µg の A₃B₃ もしくは A₃B_{(L65Y)3} 複合体を含む。ATP 加水分解反応を ATP/MgSO₄ の添加で開始し、340 nm での吸光度の 減少を計測した。

2.1.4 HS-AFM 観察

HS-AFM 観察を行うために、金沢大学安藤研究室と共同研究を行い、A₃B₃ 複合体を ATPES とグルタルアルデヒドで処理して固定化した。マイカ基板を使用直前に切り出 し、ATPES を超純水で 10 万倍希釈した後に 3 分間マイカ基板上でインキュベートし た。さらに、0.025%のグルタルアルデヒドを 3 分間インキュベートし、マイカ基板を作 成した。その後マイカ基板を観察溶液(20 mM Tris-HCl pH7.5, 100 mM NaCl, 2mM DTT and 10 % glycerol)で数回洗浄した。その後 A₃B₃、もしくは A₃B_{(L65Y)3}を 5 分間インキュ ベートし、観察溶液で数回洗浄した後、3-5 frame/sec、測定範囲を 50 nm × 50 nm (150 px × 150 px)または 50 nm × 40 nm (150 px × 120 px)で HS-AFM 観察を行った ^{32,33}。

2.1.5 結晶化

296 K でのシッティングドロップ蒸気拡散法を用いて全ての結晶化を行った。得られ た結晶は glycerol 濃度を 20-22.5%まで高めたクライオ溶液にソーキング後、クライオル ープ(Hampton Research)ですくい取り、液体窒素で瞬間冷却した ^{19,20}。

ヌクレオチド非結合型 A₃B_{(L65Y)3}溶液(10 mg/mL in 20 mM Tris-HCl, pH 7.5, 100 mM NaCl, 10%(v/v) glycerol)と結晶化溶液(0.1 M NaCl, 0.1 M ammonium acetate, 0.1 M Bis-Tris propane, pH 6.5, and 28% (w/v) PEG 3350)を 0.3 μL ずつ等量混合し、結晶を成長させた。

2.1.6 X線回折実験と結晶構造解析

全てのX線回折像は極低温で単結晶から収集した^{19,20}。

A₃B_{(L65Y)3} ヌクレオチド非結合型:X 線回折実験は Photon Factory (茨城県)のBL-17A (λ =0.98 Å)で行った^{34,35}。得られた回折像は XDS で 3.4 Å までスケーリングした^{36,37}。構 造は MOLREP を用いて eA₃B₃(PDB ID: 3VR2)をサーチモデルとして分子置換した³⁸。 Coot で分子構築を行い³⁹、REFMAC5⁴⁰や PHENIX⁴¹を用いて構造精密化を行った。精 密化後の構造の評価には RAMPAGE を用いた⁴²。全ての r.m.s.d.は C_a 原子で計算した。 構造の作成には PyMOL (The PyMOL Molecular Graphics System, Version 1.3 & Version 2.4, Schrodinger, LLC.)を用いた。コンタクトサーフェスの計算には PDBePISA を用いた⁴³。

A₃B_{(L65Y)3}AMP-PNP 結合型:前任者により、Photon Factory(茨城県)の BL-1A (λ=1.1 Å)で、回折像が得られていた。得られた回折像を基に 2.1 Å までスケーリングした ^{36,38}。 本研究では、MOLREP を用いて bV1(PDB ID: 3VR6)をサーチモデルとして分子置換した。Coot で分子構築を行い³⁹、REFMAC5⁴⁰や PHENIX⁴¹を用いて構造精密化を行った。 精密化後の構造の評価には RAMPAGE を用いた⁴²。全ての r.m.s.d.は C_a 原子で計算した。構造の作成には PyMOL および Chimera を用いた⁴⁴。コンタクトサーフェスの計算には PDBePISA を用いた⁴³。

2.1.7 その他の方法

タンパク質濃度は BCA Protein Assay Kit (Bio-Rad Laboratories)を用い、BSA をスタン ダードとして決定した。SDS-PAGE は Laemmli らの方法 ⁴⁵に従い、ゲルは CBB で染色 した。

第二章第二節 結果と考察

2.2.1 A₃B₃ 複合体および A₃B_{(L65Y)3} 複合体の発現精製と ATPase 活性測定

E. hirae A₃B₃ 複合体のクラウン構造を弱めるために、三次元構造に基づいて各 A₁B₁ ユ ニットが疎水性相互作用している部位に変異を導入した。B サブユニットの 65 番目の ロイシンをより親水性が高く嵩高いチロシンへと置換した。L65Y 変異 B サブユニット はクラウン構造での疎水性相互作用が弱まっているために、複合体としての会合能が低 下していると予想された。我々は変異型 B サブユニットと野生型 A サブユニットを大 腸菌無細胞合成系にて発現させ、野生型と同様に精製を行った(Fig.2-1a-c)。変異型 A₃B_{(L65Y)3} 複合体はクラウン構造が弱まっているにも関わらず野生型 A₃B₃ 複合体と同様 に精製された。さらに、溶液中における複合体の構成サブユニットのストイキオメトリ ーを調べるために、理化学研究所生命機能科学研究センターとの共同研究により、 Tecnai F20 を用いてネガティブ染色電子顕微鏡観察を行った。それによって A、B サブ ユニットは野生型変異型ともに 3:3 のストイキオメトリーで複合体を形成していること が確認された(Fig.2-2)。

精製された A₃B₃ 複合体および A₃B_{(L65Y)3} 複合体の ATPase 活性を測定した(Fig. 2-1d)。 結果、変異体の反応初速度は野生型の 40%ほどに低下していた。その後、変異体の反応 速度は急速に低下していった。次に DF 複合体とインキュベートして A₃B₃DF として再 構成すると、野生型では比活性が 2.8 倍に上昇し、V₁複合体として再構成されているこ とが示唆された。A₃B_{(L65Y)3} 複合体も同様に DF 複合体のインキュベーションによる活性 の上昇がみられ、DF 複合体との結合能は失われていないことが示された。しかし、野 生型ほど活性は上昇せず、また時間経過で活性を喪失していくことが明らかとなった。 これらの結果から、A₃B_{(L65Y)3} は DF 軸との結合能を保持しているが、不安定化している ことが示唆された。

2.2.2 HS-AFMを用いた野生型A₃B₃と変異型A₃B_{(L65Y)3}の構造比較

HS-AFMはタンパク質や核酸、細胞、オルガネラ等の構造や動きを可視化する装置で あり、本研究では金沢大学の安藤研究室との共同研究により、野生型A₃B₃と変異型 A₃B_{(L6SY)3}の溶液中におけるヌクレオチド非存在下での構造をHS-AFMによって観察し た(Fig.2-3a)^{46,47}。A₃B₃、A₃B_{(L6SY)3}複合体をグルタルアルデヒドで固定化した後にAPTES で処理したマイカ基板上に流すことで、電荷相互作用によりN末端領域が基板にトラッ プされ、A₃B₃複合体およびA₃B_{(L6SY)3}複合体のC末端側を観察することができた(Fig.2-3b, c)。X線結晶構造解析によりAサブユニットはBサブユニットよりも大きさが大きい(A サブユニットの方がBサブユニットよりも約140残基長い)ため、野生型、変異体ともに Aサブユニットに相当する3点の明るい輝点が観察された(Fig.2-3d-g)。A、Bサブユニッ トの高さの差は野生型A₃B₃複合体では0.1-0.5 nm、変異型A₃B_{(L6SY)3}複合体では0.55 nmで あった。HS-AFM観察におけるノイズを低減するためにそれぞれの分子についてHS- AFM画像の平均化処理を行った。Fig. 2-3e, gにコントラストを強くした像を示した。コ ントラストを強くすることで、野生型A₃B₃複合体の1つのAサブユニットが低く(暗く) 観察された。野生型A₃B₃複合体では最も高いAサブユニットと最も低いものではその高 さに0.3 ± 0.1 nmの差があった。これは野生型A₃B₃複合体が水溶液中でも結晶中と同様 に非対称構造を形成していることを強く示唆するものと考えた¹⁹。これに対して変異型 A₃B_{(L65Y)3}複合体では3つのAサブユニットの高さに明確な差がなく、水溶液中で対称性 が向上していることが示唆された。BサブユニットのL65Yの変異によってA、Bサブユ ニット間の相互作用を弱まり、A₃B_{(L65Y)3}複合体はより対称性の高い構造を形成するよう になったと考えられた。

2.2.3 ヌクレオチド非結合型 A3B(L65Y)3 複合体の X 線結晶構造解析

変異型 $A_{3}B_{(L65Y)3}$ の詳細な立体構造を決定するために結晶化を行い(以後 $eA_{3}B_{(L65Y)3}$ と 表記)、X 線結晶構造解析によって分解能 3.4 Å で結晶構造解析を行った (Table 2-1; PDB ID: 5ZEA)。 $eA_{3}B_{(L65Y)3}$ は結晶格子中でヌクレオチド非結合時の野生型 $A_{3}B_{3}$ 複合体(以 後 $eA_{3}B_{3}$ と表記)に類似したヘテロ六量体としての全体構造を形成していた(Fig.2-4a-c)。 単位胞に 2 分子の六量体が含まれており、それぞれ $eA_{3}B_{(L65Y)3}$ -1 (chain A-F)、 $eA_{3}B_{(L65Y)3}$ -2 (chain G-L)と分別する。これら 2 分子の構造はよく似ていた(r. m. s. d. = 1.30)ため、以 後全ての図、議論には $eA_{3}B_{(L65Y)3}$ -1 のデータを用いた。

変異を導入したBサブユニットの65番目の残基にはチロシン残基に相当する電子密 度がみられ、野生型 A₃B₁ 複合体の変異導入前のロイシン残基と重ね合わせると変異箇 所の残基の角度が変化し、この部分の疎水性相互作用が失われていることが示唆された (Fig. 2-5)。この変異により留め金としての負荷が緩み、各サブユニットの会合が弱まっ てC末端側がより開いた構造を示していると考えられた。(Fig. 2-4c)。eA₃B_{(L65Y)3}の3つ のA、B サブユニットの構造はそれぞれよく似た構造を形成していた(Fig. 2-4d-f)。野生 型 A₃B₃ 複合体はヌクレオチド非結合時それぞれの A₁B₁ ペアがそれぞれ"empty"、 "bindable"、"bound"フォームを形成し、非対称構造を形成していたのに対し、eA₃B_{(L65Y)3} は HS-AFM で観察されたようにそれぞれの A1B(L65Y)1ペアが開いた対称構造を形成して いた(Fig. 2-3d-g)。RMSD 値(Table 2-2)、接触表面積(Table 2-3)、そしてヌクレオチド結合 部位の構造を比較(Fig. 2-6)したところ、eA₃B(L65Y)3の3つのA₁B(L65Y)1ユニットは全て、 eA₃B₃における"bindable"フォームによく類似していた。A₁B₁ ユニットのヌクレオチド 結合部位は、A サブユニットの保存された P ループ(リン酸結合ループ:GXXXXGKT(S))、 アーム部分(261-275残基:構造変化を起こす α ヘリックス)、また B サブユニットの Arg350 (ATPase における Arg-finger) からなり、 $eA_3B_{(L65Y)3}$ の3組の $A_1B_{(L65Y)1}$ ペアは、 eA₃B_{(L65Y)3}の"bindable"フォームをとる A₁B₁ペアと同程度まで開いて、A サブユニット のアーム部分の Arg262 が B サブユニットの Arg350 と離れていた。全体として、 eA₃B_{(L65Y)3}はより開いて、完全対称ではないが対称性の高い構造を形成していた(Fig. 24f, Fig. 2-6).

これまでの研究や本研究での結果より、 β バレルドメインにおけるクラウン構造の留 め金としての強さが弱まり、負荷が小さくなった場合の A_1B_1 ユニットはヌクレオチド 非結合時、"bindable"フォームを基底構造として形成する傾向にあると示唆された。変 異型 $A_3B_{(L65Y)3}$ 複合体で留め金が弱まっているために、 A_1B_1 ユニット間の接触表面積は 約 2700 Å² で野生型とほとんど差がないが、 A_1B_1 ユニット肉での接触表面積が野生型 A_3B_3 複合体の 4837.0 Å² から変異型 $A_3B_{(L65Y)3}$ 複合体の 4547.3 Å²に減少し、複合体への 拘束が緩み、C 末端側がより開いて 3 組全ての A_1B_1 ユニットが"bindable"フォームを形 成することができたと考えられる(Table 2-4)。

2.2.4 AMP-PNP 結合型 A₃B_{(L65Y)3} 複合体の結晶構造

次に A₃B_{(L65Y)3} 複合体に AMP-PNP が結合した際の詳細な構造を得るため、過剰量(6 mM)の AMP-PNP 存在下で A₃B_{(L65Y)3} 複合体の結晶化を試み(以後 bA₃B_{(L65Y)3} と表記)、分 解能 2.1 Åで分子置換法によって結晶構造を決定した(Table 2-1, Fig. 2-7; PDB ID 5ZE9)。 得られた結晶構造は見た目には 2 分子の AMP-PNP が結合した野生型 A₃B₃ 複合体 (bA₃B₃ と表記)と同じく六量体を形成していたが、クラウン構造に変異を導入した 3 箇 所のうち 1 箇所においてクラウンが切断され、3 つの A₁B₁ ペア単位が螺旋状に連なっ た螺旋状六量体であった(Fig. 2-7a-d)。電子密度マップで示すように(Fig. 2-8)、3 組全て の $A_1B_{(L6SY)1}$ ユニットのヌクレオチド結合部位には AMP-PNP とマグネシウムイオン (Mg^{2+})が結合していた。2 組の $A_1B_{(L6SY)1}$ ユニットに結合している AMP-PNP の γ リン酸 の電子密度が他の1 組のそれよりも弱いのは、AMP-PNP が部分的に加水分解を受けて いるからであると考えられた。AMP-PNP は弱酸性条件では AMP-PN とリン酸イオンへ と分解を受ける性質があり、結晶化条件の pH6.0 の溶液中で AMP-PNP と加水分解を受 けて AMP-PN となった分子が結晶中で共に存在していたためであると考えられた。

結合したヌクレオチドは A サブユニットの P ループの 238 番リジン、アーム部分の 262 番アルギニン、B サブユニットの 350 番アルギニンと相互作用する¹⁹。3 組中 2 組 の A₁B_{(L65Y)1} ユニットでは、350 番アルギニンの C α 原子が結合しているヌクレオチドに bA₃B₃ の"bound"フォームよりも約 1.2 A接近しており、より強く相互作用していた (Fig.2-8)。この差は接触表面積の差(Table2-3)や RMSD 値の差(Table2-5)にも現れていた。 このような A、B サブユニットが密に相互作用した構造は、これまで V₁ 複合体におい て DF 軸と相互作用していた A₁B₁ ユニットの"tight"フォームでのみみられていた構造 に相当する。RMSD 値やヌクレオチド結合部位の構造を"tight"フォームと比較すると、 bA₃B_{(L65Y)3} の 2 組の A₁B_{(L65Y)1} ユニットは"tight"フォームとよく似ていた(Table2-5, Fig. 2-9)。これらの結果から、AMP-PNP は A₁B₁ ユニットを閉じさせる接着剤のようにはたら き、AMP-PNP が結合した A₁B₁ ユニットは安定な基底構造として"tight"フォームを形成 することが示唆された。密に閉じて"tight"フォームを形成しようとする作用は非常に強 く、変異導入によって弱まった留め金は 3 箇所全てのヌクレオチド結合部位に AMP-PNP が結合して構造が収縮しようとする際の負荷に耐え切ることができない。その結 果、留め金は負荷を逃そうと割れて、クラウン構造が崩壊した螺旋状構造を形成したの だと考えられた(Fig. 2-7a)。bA₃B_{(L65Y)3}の"bound"フォームは、クラウン構造の切れ目で 形成されており、切れ目の反対に位置する A₁B_{(L65Y)1}ユニットとの相互作用と負荷によ って生じた構造であり、"tight"フォームよりも不安定な構造であると考えられる。

2.2.5 A₃B₃ 複合体の非対称構造形成メカニズム

一般に同一ユニットが複数集合して形成される複合体は、対称軸を有した対称構造を 示すと考えられる。ところが、ヌクレオチド非存在下の A3B3 複合体はβバレルドメイ ンでクラウンが形成された非対称な六量体構造を形成していた。本研究では、HS-AFM によってヌクレオチド非結合時野生型 A3B3 複合体が非対称な六量体を形成し、変異型 A₃B_{(L65Y)3} 複合体はより対称性の高い構造を形成していることが明らかとなった。そし て、X線結晶構造解析によって、対称性の高いA3B(L65Y)3複合体はヌクレオチド非存在 下では全ての A₁B₁ ユニットが"bindable"フォームを形成していることが明らかとなっ た。これらの結果から、ヌクレオチド非結合状態の A3B3 複合体における A1B1 ユニット は"bindable"フォームを基底構造として形成する傾向にあることが示唆された。さらに、 AMP-PNP が結合した A₃B_{(L65Y)3} 複合体はクラウン構造が崩壊して密に閉じた螺旋状六 量体を形成することが明らかとなった。このことから、AMP-PNP が結合した A₃B₃ 複合 体における A₁B₁ ユニットは"tight"フォームを安定な基底構造として形成することが示 唆された。

これまで得られた結果に基づいて、なぜ、どのように V-ATPase の A₃B₃ 複合体がヌク レオチド非存在下で非対称構造を形成していたのか、その理由を解明することはタンパ ク質が協同的に動作するメカニズムを知る上で重要である。A₃B_{(L65Y)3} 複合体の変異が 導入されたクラウン構造は留め金としての作用が弱まっており、中央ドメインにおける

20

A、B(L65Y)サブユニットの接触が軽減され、それによって生じていた負荷が低減され る。それによって全ての A₁B_{(L65Y)1} ユニットが基底構造である"bindable"フォームを形成 する(Fig.2-10a)。野生型 A₃B₃ 複合体の留め金による拘束は強く、リング状複合体のリン グ径や構造が厳しく制限されている。そのため、A3B3 複合体は強い負荷がかかった中央 ドメインで密に閉じて A、B サブユニットが接触した構造を形成する(Fig. 2-10b)。もし、 それぞれの A₁B₁ ユニットや A、B サブユニットがその構造を柔軟に、そして任意に変 化させることができるのであれば、六量体は強い負荷がかかった中でも対称構造を形成 すると考えられる。ところが、A1B1ユニットは eA3B3や bA3B3で見られるように、離散 的にしか構造を変化させることができない。そのため、A1B1ユニットがA3B3複合体と して集合する際に、それぞれが閉じたり開いたりして全体として非対称構造を形成する。 この時、野生型 A3B3 複合体は留め金による拘束によって、それぞれの A1B1 ユニットが 開いた基底構造である"bindable"フォームと閉じた不安定構造である"empty"フォーム や"bound"フォームを形成した準安定状態が生み出されるのであると考えられる(Fig. 2-10b)

AMP-PNP 結合時、A₁B₁ユニットは"tight"フォームを形成する傾向にある。変異導入 によって弱まった留め金では、3 組の A₁B₁ユニットが"tight"フォームを形成しようとす る際の収縮の負荷に耐えきれずに、クラウン構造の一部が崩壊して A₃B_{(L65Y)3} 複合体は 螺旋状六量体を形成する(Fig. 2-10c)。野生型 A₃B₃ 複合体は留め金がリング径やリング

21

構造を維持するには十分に強いため、中央ドメインによる接触によって負荷がかかって もリング状六量体の構造を維持することができる。その代わりに、1 組の A₁B1 ユニッ トは結合していたヌクレオチドを解離して"empty"フォームを形成する。ヌクレオチド を解離した A₁B₁ユニットは、留め金によってリング径が厳しく制約されているために、 より開いた"bindable"フォームを形成することはできず、少しだけ閉じた"empty"フォー ムを形成する。ヌクレオチドが結合した 2 組の A₁B₁ ユニットもリング径の制約を受け て密に閉じた"tight"フォームではなく、少しだけ開いた"bound"フォームを等価に形成 する。この時、ヌクレオチドを解離した A₁B₁ ユニットが"bindable"フォームや"bound" フォームではなく、"empty"フォームを形成することには機能面でメリットが存在する。 "empty"フォームはヌクレオチドに対する親和性が低く、ATP や AMP-PNP が結合する ことができないが、もし、"bindable"フォームや"bound"フォームが形成された場合、そ こにヌクレオチドが結合してしまうために、3 分子めの ATP が結合してしまうこととな り、六量体の構造が収縮して崩壊してしまう。野生型の留め金は強く、リングに制約を かけるため、"bindable"フォームではなく"empty"フォームを形成させることで、クラウ ン構造が崩壊してしまうことが防がれている。このように、留め金は複合体全体の構造 やその振る舞いを制約しており、その様はまるで西遊記に登場する孫悟空の頭の輪、緊 箍児のようである。(物語の中で、孫悟空が悪事をはたらこうとすると頭の輪が締まり、 正しい行動をとらせようとする。) V₁-ATPase のように協同的に動作するタンパク質が 複雑な四次構造を形成する必要があるのは、このように、複合体に負荷を内包した準安 定状態を生み出すためであるという可能性が考えられる。

第二章第三節 結論

A₃B₃ 複合体に軸が結合した V₁-ATPase では、それぞれの A₁B₁ ユニットは、ヌクレオ チドの結合にかかわらず"empty"、"bound"、"tight"の構造をとる。"empty"フォームと "bound"フォームは上述の通り、負荷によって生み出された不安定構造であると考えら れる。V₁-ATPase は、負荷によって生じる準安定状態の間を遷移しながら構造変化する ことで協同的な機能を発揮することができるということが示唆された 25。また、バクテ リア由来 V₁/A₁-ATPase や F₁-ATPase だけでなく、真核生物由来 V₁-ATPase や F₁-ATPase も同様に非対称構造を形成することから、その他の ATP 加水分解酵素も同様のメカニ ズムで協同的な機能を発揮していると推察される。回転分子モータータンパク質はいく つかの非対称な準安定状態を遷移しながら、決して最安定構造に落ち着くことができず に構造変化し続けることで、ATP 加水分解の機能を発揮し続けられるのだと考えられ る。本研究によって、複合体内部に負荷を内包するメカニズムは複雑な四次構造を形成 するタンパク質が、協同的に機能を発揮することができることの根本原理なのであると いうことが示唆された。

Table 2-1 A3B)	L65Y3 複合体の)データ収集・	精密化の統計値
----------------	------------	---------	---------

	eA3B(L65Y)3	bA3B(L65Y)3
Data collection		
Space group	<i>P</i> 2 ₁	P212121
Cell dimensions		
Unit cell a, b, c (Å)	180.84, 107.77, 193.37	105.37, 151.37, 235.49
Unit cell α, β, γ (°)	90, 99.39, 90	90, 90, 90
Resolution (Å)	50-3.38 (3.58-3.38)	60-2.10 (2.23-2.10)
R _{sym} or R _{merge}	0.102 (0.610)	0.124 (0.837)
Mean $I / \sigma(I)$	12.23 (2.01)	11.32 (2.11)
Completeness (%)	99.1 (95.9)	99.5 (97.5)
Redundancy	3.9 (2.6)	6.6 (6.2)
Refinement		
Resolution (Å)	48.20-3.38	54.87-2.10
No. reflections	1017960	218240
$R_{ m work}$ / $R_{ m free}$	0.2151/0.2575	0.1659/0.1955
No. atoms		
Protein	47887	24467
Ligand/ion	0	342
Water	100	1299
B-factors		
Protein	108.80	38.63
Ligand/ion	-	54.25
Water	53.43	40.55
R.m.s. d.		
Bond lengths (Å)	0.002	0.006
Bond angles (°)	0.435	0.774
Ramachandran favoured (%)	98.0	98.7
Ramachandran allowed (%)	1.9	1.3
Ramachandran outliers (%)	0.0	0.0
PDB ID	5ZEA	5ZE9

構造	フォーム	eA ₃ B _{(L65Y)3}		
	A1B1 unit	Bindable(1)	Bindable(2)	Bindable(3)
	Empty	1.30	1.65	2.29
eA3B3	Bindable	1.02	0.88	1.21
	Bound	3.58	3.26	2.87
	Empty	1.33	1.60	2.16
bA ₃ B ₃	Bound(1)	3.84	3.59	3.35
	Bound ₍₂₎	4.01	3.76	3.52
	Empty	1.56	1.83	2.39
\mathbf{bV}_1	Bound	4.12	3.85	3.54
	Tight	4.79	4.61	4.48
eA3B(L65Y)3	Bindable(1)	0	0.75	1.46
	Bindable(2)	0.75	0	1.14
	Bindable ₍₃₎	1.46	1.14	0

Table 2-2 eA₃B_{(L65Y)3}のそれぞれの A₁B₁ユニットを A₃B₃ 複合体および V₁ 複合体と重ね合わせた

計算は全て Ca 炭素原子に対して行った。

際の RMSD 値

構造	フォーム	接触表面積(Ų)
eA ₃ B ₃	Empty	2243.2
	Bindable	1812.7
	Bound	2293.7
	Empty	2379.9
bA ₃ B ₃	Bound(1)	2448.2
	Bound ₍₂₎	2560.6
bV_1	Empty	2291.0
	Bound	2488.0
	Tight	3130.7
	Bindable(1)	1998.6
eA ₃ B _{(L65Y)3}	Bindable(2)	1959.1
	Bindable ₍₃₎	1982.4
	Tight(1)	3026.5
bA3B(L65Y)3	Bound	2265.0
	Tight ₍₂₎	2923.4

Table 2-3 各 A₁B₁フォーム中の A、B サブユニット間の接触表面積(Å²)

Table 2-4 A₃B₃ 複合体中央ドメインにおける接触表面積(Å²)

構造	接触表面積(Ų)	
	A1B1 ユニット内	A1B1ユニット間
eA ₃ B ₃	4837.0	2662.4
bA ₃ B ₃	5561.0	2809.0
eA3B(L65Y)3	4547.3	2772.1
bA3B(L65Y)3	5717.0	2596.1

中央ドメインでのA、Bサブユニット間の接触表面積の和を示した
構造	フォーム	bA3B(L65Y)3		
	A1B1 ユニット	Tight(1)	Bound	Tight ₍₂₎
eA3B3	Empty	4.70	4.17	4.76
	Bindable	4.79	3.98	4.84
	Bound	2.35	1.53	2.39
bA3B3	Empty	4.52	3.98	4.55
	Bound(1)	1.75	0.94	1.81
	Bound ₍₂₎	1.63	0.92	1.69
bV1	Empty	4.54	4.01	4.59
	Bound	1.69	1.00	1.74
	Tight	0.91	1.63	0.59
eA3B(L65Y)3	Bindable(1)	4.75	3.99	4.80
	Bindable(2)	4.54	3.76	4.60
	Bindable ₍₃₎	4.39	3.52	4.44
bA3B(L65Y)3	Tight ₍₁₎	0.00	1.54	0.79
	Bound	1.54	0.00	1.55
	Tight ₍₂₎	0.79	1.55	0.00

Table 2-5 bA₃B_{(L65Y)3}のそれぞれの A₁B₁ ユニットを A₃B₃ 複合体および V₁ 複合体と重ね合わせ た際の RMSD 値

計算は全て Ca 炭素原子に対して行った。

Fig. 2-1 A₃B₃ 複合体、A₃B_{(L65Y)3} 複合体、DF 複合体の精製と ATPase 活性測定

(a-c) HiLoad 16/60 Superdex 200 pg(a, b)または HiLoad 16/60 Superdex 75 pg (c)カラムを用い たゲル濾過プロファイル (A_3B_3 (a)、 $A_3B_{(L65Y)3}$ (b)、DF (c))。精製フラクションの SDS-PAGE 結果を右に示した。ゲル濾過フラクションの四角で囲った部分が SDS-PAGE の四角で囲っ た部分に対応している。(d) 精製標品の ATPase 活性を ATP 再生系によって測定した。23°C で 340 nm での吸光度から NADH の酸化率を算出し、ATP 加水分解量を求めた。野生型の A_3B_3 複合体は活性が低いが DF 複合体の添加によって V₁複合体として再構成され、活性が 上昇している。変異型 $A_3B_{(L65Y)3}$ 複合体は非常に活性が低いが、野生型と同様 DF 複合体の 添加によって活性が上昇する。標準誤差をグラフ中にバーで表示した。

Fig. 2-2 野生型および変異型 A₃B₃ 複合体のネガティブ染色電子顕微鏡画像

野生型 A₃B₃ 複合体(a)と変異型 A₃B_{(L65Y)3} 複合体(b)のネガティブ染色電子顕微鏡画像を示 した。スケールバーは 100 nm に対応している。手動で粒子を選び、野生型について 12 画 像から 5097 粒子、変異型については 60 画像から 15933 粒子を選び出した。野生型 A₃B₃ 複 合体(c)と変異型 A₃B_{(L65Y)3} 複合体(d)の 2D クラス分けを行い、2 つもしくは 3 つのクラスに 分けられた。

Fig. 2-3 野生型および変異型 A₃B₃ 複合体の高速 AFM 画像

(a) 高速 AFM を用いた A_3B_3 複合体の観察の模式図を N 末端ドメインを下に向けた側面 図で表した。カンチレバー先端にチップが付けられている。(b, c)野生型 A_3B_3 複合体(b)と変 異型 $A_3B_{(L65Y)3}$ 複合体(c)の高速 AFM 画像で 50 nm × 50 nm の範囲を表示している。白線部 分の高さ情報を示したプロファイルを挿入図として示した。(d, e)野生型 A_3B_3 複合体の平均 化画像を高さのカラーテーブルのコントラストを変更した図とともに 5 分子掲載している。 (d)の#1 に A サブユニット (高いサブユニット) と B サブユニット (低いサブユニット)を 示した。(f, g)同様に変異型 $A_3B_{(L65Y)3}$ 複合体の平均化画像を掲載した。

Fig. 2-4 ヌクレオチド非結合型 A₃B_{(L65Y)3} 複合体の結晶構造

(a) ヌクレオチド非結合型変異 $A_3B_{(L65Y)3}$ 複合体の N 末端 β バレルドメイン (クラウン構造)の上面図。変異導入箇所を黄色で示した。(b) ヌクレオチド非結合型変異 $A_3B_{(L65Y)3}$ 複合体の中央ドメインの上面図。(c) ヌクレオチド非結合型変異 $A_3B_{(L65Y)3}$ 複合体の C 末端ドメインをヌクレオチド非結合型野生型 A_3B_3 複合体"bindable"フォーム(chain B & E)の N 末端ベータバレルドメインで重ね合わせた上面図。(d, e) ヌクレオチド非結合型変異 $A_3B_{(L65Y)3}$ 複合体の A サブユニット(青色)と B サブユニット(紫色)をそれぞれ Ca 原子で重ね合わせた構造。P ループを黄色、アーム領域を白色で表示している。緑色の枠はヌクレオチド結合部位をズームインした図。

Fig. 2-5 野生型 A₃B₃ 複合体と変異型 A₃B_{(L65Y)3} 複合体のクラウン構造の比較

野生型 A₃B₃ 複合体と変異型 A₃B_{(L65Y)3} 複合体を"bindable"フォームで重ね合わせた β バレ ルドメイン (クラウン構造)の上面図。変異型 A₃B_{(L65Y)3} 複合体を青と紫でカラー表示、野 生型 A₃B₃ 複合体を白黒表示している。中央図のオレンジ色の枠は変異箇所を示している。 周囲のオレンジ色の枠で囲われた図は黄色で示した変異残基(L65Y)付近をズームインして 表示している。L65Y 残基の $|F_0|$ - $|F_c|$ オミットマップを 4.0 シグマで赤色(ネガティブ)と緑 色(ポジティブ)で表示している。

Fig. 2-6 eA₃B_{(L65Y)3} 複合体の"bindable"フォームのヌクレオチド結合部位の拡大図

ヌクレオチド結合部位を周辺の保存された残基とともに表示している。P ループとアーム 領域をそれぞれ黄色と白色のリボン表示で表してしている。右側の 3 枚の図は一番左の図 を 90°回転させて、A-B サブユニットのインターフェースが見やすいように表示している。 変異型 A₃B_{(L65Y)3} 複合体の"bindable"フォームを白黒で表示した野生型 A₃B₃ 複合体のそれぞ れ"empty" (a)、"bindable" (b)、"bound" (c)の A サブユニット (残基番号 67-593) で重ね合 わせている。

Fig. 2-7 AMP-PNP 結合型 A₃B_{(L65Y)3} 複合体の結晶構造

(a) AMP-PNP 結合型変異型 A₃B_{(L65Y)3} 複合体(bA₃B_{(L65Y)3})の上側面図。N 末端ドメインをサ
ーフェス表示し、それ以外の中央ドメイン、C 末端ドメインをリボン表示した。(b, c) N 末
端ドメイン(b)と中央ドメイン(c)の上面図。(d) bA₃B_{(L65Y)3}のC 末端ドメイン。

Fig. 2-8 AMP-PNP 結合型 A₃B_{(L65Y)3} 複合体のヌクレオチド結合部位周辺構造の比較

ヌクレオチド結合部位をズームインして表した図。P ループとアーム領域をそれぞれ黄色 と白色で表示している。 $bA_3B_{(L65Y)3}$ の"bound"(a)、"tight₍₁₎"(b)、"tight₍₂₎"(c)に対応してい る。右側の図は左の図を 90°回転させて、A-B サブユニットのインターフェースが見やすい ように表示している。結合ポケットの AMP-PNP と Mg^{2+} を取り除いて計算した $|F_0| - |F_c|$ マッ プを 4.0 シグマで赤色(ネガティブ)と緑色(ポジティブ)で表示している。

Fig. 2-9 変異型 A₃B_{(L65Y)3} 複合体の野生型 A₃B₃ 複合体とのヌクレオチド結合部位周辺構造の比較

AMP-PNP 結合型変異型 A₃B_{(L65Y)3} 複合体(bA₃B_{(L65Y)3})の"bound" (**a**)、"tight₍₁₎" (**b**)、"tight₍₂₎" (**c**)フォームの結合部位。AMP-PNP 結合型 A₃B₃ 複合体の"bound"フォーム、もしくは AMP-PNP 結合型変異型 V₁ 複合体の"tight"フォームの A サブユニット(残基番号 67-593) で重ね 合わせ。

Fig. 2-10 野生型 A₃B₃ 複合体と変異型 A₃B_{(L65Y)3} 複合体の構造モデル

A₃B₃ 複合体を切り開いて内側から見た展開図。A サブユニットを青色、B サブユニット を紫色で表示している。クラウン構造を黄色で示している。点線部は切断面を表す。変異型 (a, c)と野生型(b, d) A₃B₃ 複合体のヌクレオチドの結合に応じた協同的構造変化 (a から c と b から d) 構造変化をモデル化した。クラウン構造部分の黄色い半円は L65Y 変異を示す。 変異導入によって弱まったクラウンはカーブしており(a)、崩落してクラウンが崩壊する(c)。 AMP-PNP は黒色の四角で表した。ヌクレオチド結合部位は白い空白となっている。"empty" フォームはヌクレオチド親和性が非常に低い。そのため、ヌクレオチド結合部位を台形で表 示した。それぞれの A₁B₁ ユニットの構造はモデル図の下部に、preferable form (stable form) であるのか、less stable form であるのかとともに記した。

第三章 V₁-ATPase の親和性変化モデル

第三章第一節 実験

3.1.1 A₃B₃ 複合体および DF 複合体の発現精製

SPR 解析を行うために、B サブユニットの N 末端側に GST タグを融合した。A サブ ユニットを融合した B サブユニットとともに大腸菌合成系で発現させた。B サブユニ ットはグルタチオンアフィニティー精製キットと A バッファー(20 mM Tris-HCl, pH 8.0, 10% glycerol, 50 mM KCl, 5 mM MgSO4, 0.1 mM DTT)用い、A サブユニット、DF 複合体 はそれぞれ B バッファー(20 mM MES-Tris, pH 6.5, 10% glycerol, 50 mM KCl, 5 mM MgSO4, 0.1 mM DTT)と C バッファー(20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 2 mM DTT)を用いて 以前報告された方法に従って精製した¹⁸。

3.1.2. SPR を用いた結合親和性測定

 A_1B_1 ユニットへの DF 軸やヌクレオチドの結合を調べるために、Biacore T100(GE Healthcare Bio-sciences, AB, Sweden)を用いて SPR 解析を行った。抗 GST 抗体を用いた GST キャプチャーキットによって 50 µg/mL の GST タグ付き B サブユニットをリガン ドとして CM5 チップにトラップした。様々な濃度(5-5500 µg/mL)の A サブユニットを 過剰量のヌクレオチド(1 mM ATP もしくは 0.6 mM ADP)とともにアナライトとして B バッファー中で 30 µL/min で流し、時間 0 s から A、B サブユニット間の結合親和性を 測定した。300 s 後、A サブユニットを含まず、ヌクレオチドを含んだ B バッファーを 流した。A サブユニットの濃度に依存したレスポンスをプロットし、A、B サブユニッ ト間の結合親和性を算出した。フローセルにはタンパク質を含まないものをネガティブ コントロールとして用いた。得られたセンサグラムは Biacore T100 evaluation software を 用いて速度定数より、*kon/kog* を求めた。平衡解離定数(*K*_D)はラングミュラー結合モデル (1:1 結合モデル)を用いて求めた。測定系の再生には 10 mM グリシン塩酸塩 pH2.0 で2 分間洗浄した後、10 mM NaOH で 30 秒間洗浄を行った。

A₁B₁ ユニットのヌクレオチドに対する親和性を求めるために、100 μg/mL の GST タ グ付き B サブユニットと 500 μg/mL の A サブユニットを 0.02 mM ATP を含んだ D バッ ファー(20 mM MES-Tris pH6.5, 150 nM NaCl, 5 mM MgSO₄, 0.1 mM DTT)を 30 μL/min で 流し、チップ上に A₁B₁ ユニットを再構成した。その後、220 s の時点で A サブユニット も ATP も含まない D バッファーを流し、300 s の時点で様々な濃度の ADP や AMP-PNP を含んだ D バッファーを流し、A、B サブユニットの解離速度の逓減を解析した。220 s でのレスポンスから 0 s でのレスポンスを引いたものを相対レスポンスファクター (RRF)とした。解離速度定数はヌクレオチド非存在下から減算して、ヌクレオチド濃度 に依存した単一指数関数フィッティングで算出した。A₁B₁ ユニットのヌクレオチドに 対する見かけの親和性はラマチャンドランプロットを用いて、Prism8 software を用いて 求めた。600 s でヌクレオチドを再び取り除いた。 A_1B_1 ユニットの DF 複合体に対する親和性を算出するために、上述の方法で 2 mM の ATP を含んだ B バッファーを用いてチップ上に A_1B_1 ユニットを再構成し、10 μ L/min で 0.02 mM の AMP-PNP を含んだ B バッファーで ATP を AMP-PNP に置換した。その 後、0 s で 0.37-30 μ g/mL (11-860 nM)の DF 複合体を 0.02 mM AMP-PNP とともに 300 秒 間流し、ヌクレオチド存在下での DF 複合体の A_1B_1 ユニットに対する親和性を求めた。 センサグラムは 256-295 レスポンスユニット(RU)である結合した A サブユニットの量 で正規化した。 K_D はラングミュラー結合モデル (1:1 結合モデル) を用いて求めた。

3.1.3 その他の方法

タンパク質濃度は DC Protein Assay Kit (Bio-Rad Laboratories, CA)を用いて、ウシ血清 アルブミンを基準として求めた^{18,27}。GST キャプチャーキットおよびグルタチオン親和 性精製キットは GE Healthcare, AB, Sweden から購入した。精製段階を確認するために行 った SDS-PAGE は、試料を CBB で染色し、レムリーらの方法に従った⁴⁵。34235 6786制限酵素は Nippon Gene Japan, New England BioLabs Japan K.K.もしくは Wako Pure Chemical Industries Ltd.で購入した。

第三章第二節 結果と考察

3.2.1. 様々なヌクレオチド条件でのA、Bサブユニットの結合親和性測定

東京理科大学の山登研究室、白石研究室との共同研究によって、A、B サブユニット 間のヌクレオチド存在下での結合親和性を、Biacore チップに固定した GST タグの付い た B サブユニットを用いて求めた(Fig. 3-1a)。GST タグの付いた B サブユニットを抗 GST 抗体を用いて CM5 チップに固定化し、過剰量の ATP もしくは ADP とともに A サ ブユニットをアナライトとして流した。

溶液中で A、B サブユニットはヌクレオチド存在下では A₁B₁ ユニットとして再構成 されるが、ヌクレオチド非存在下では再構成されない¹⁸。ATP 存在下での A、B サブユ ニットの会合速度定数 k_{on} は 4.2×10³ で、解離速度定数 k_{off} は 8.6×10⁴ と算出された(Fig. 3-1b)。これに対して、ADP 存在下での A、B サブユニットの会合速度定数 k_{on} は 1.2× 10² で、解離速度定数 k_{off} は 4.0×10⁴ であった(Fig. 3-1c)。A、B サブユニット間の親和 性(解離定数 K_D)は ATP 存在下で 86 nM、ADP 存在下で 3.4 μ M と見積もられた(Fig. 3-1b, c)。ATP は A、B サブユニットの間で ADP よりもおよそ 40 倍強い接着剤のよう にはたらいていると考えられた。ATP のように γ リン酸を有するヌクレオチドが A、B サブユニットの会合を誘起すると考えられる。解離速度定数は ATP 存在下でも ADP 存 在下でも近い値をとっており、これは A₁B₁ ユニットが ATP の結合によって ATP 加水 分解の触媒遷移構造である tight フォームを形成することに起因すると考えられる^{19,25}。

43

基質である ATP が、A サブユニット単体に結合しても加水分解を受けないが、A₁B₁ユ ニットに結合すると tight フォームが形成され、加水分解を受けて反応生成物である ADP が生じる¹⁸。本結果から、A₁B₁ユニットの安定性は結合しているヌクレオチドの 種類に依存していることが示唆された。

3.2.2. A₁B₁ユニットに対するヌクレオチドの結合親和性測定

チップ上に再構成された A₁B₁ ユニットは、ヌクレオチドを取り除き A サブユニット を含む溶液を流すと、A サブユニットは ATP 結合時には $k_{off} = 1.1 \times 10^2$ (/s)、ADP 結合 時には $k_{off} = 1.2 \times 10^2$ で単一指数関数的に速やかに解離した(Fig. 3-2a)。この結果は、 ADP は、ATP が加水分解を受けて生成した ADP も含めて、A₁B₁ ユニットから解離し、 A₁B₁ ユニットがヌクレオチドを失ったことで不安定下して速やかに A サブユニットが 解離していることを示唆している。ATP は A₁B₁ ユニットを再構成させ(Fig. 3-1b)、加水 分解後は ADP として速やかに解離する(Fig. 3-2a)ことから、次の実験操作では ATP を 用いて A₁B₁ ユニットをチップ上に再構成することとした。

次に、チップ上に再構成した A₁B₁ ユニットに対するヌクレオチドの結合親和性を調 べるために、Fig. 3-2b における A サブユニットの解離フェーズ中に ADP を添加するこ とで、ヌクレオチド濃度に依存した解離速度の逓減効果を測定した。ADP を使用した 際の解離速度の減衰曲線は単一指数関数で表され、そこから解離速度を算出した。解離 速度はヌクレオチド濃度に依存していた(Fig. 3-2c)。そこから、A₁B₁ユニットと ADP の 見かけの親和性は 9.7 nM と算出された。この値は、ITC 測定で得られた V₁ 複合体の "tight"フォームや"bound"フォームといった高親和性構造に相当していた ²⁰。さらに、 ADP を取り除くと A サブユニットは再び 1.0×10^{-2} (/s)で解離し始めた。

同様に ATP の非加水分解性のアナログである AMP-PNP を用いて、結合親和性を測 定した。AMP-PNPの場合は、単一指数関数的な逓減効果は見られず、AMP-PNPの解離 が遅すぎるために平衡状態に達していないことが示唆された。このような制限はあるが、 ADP と同様に解析を行った。測定後期(500-590s)において減衰曲線は直線的になったた め、その時間での曲線から解離速度を算出し、見かけの親和性を求めた。A₁B1ユニット と AMP-PNP の見かけの親和性は ADP 同様 4.7 nM と高く(Fig. 3-2e)、この値は V₁ 複合 体の"tight"フォームや"bound"フォームといった高親和性構造(9.4 nM と 40 nM)に対応 していた²⁰。再び AMP-PNP を取り除いた際の解離速度は 5.3 × 10⁴ (/s)と AMP-PNP 存 在時と同程度に遅く、これはおそらく AMP-PNP が加水分解を受けず A₁B₁ ユニット中 で強く残り続けていたためと考えられる。これらの結果は、2章で議論した A₁B1 ユニ ットにヌクレオチドが結合した際の基底構造が"tight"フォームであるという留め金を 緩めた A₃B_{(L65Y)3} 複合体の研究から得られた知見に一致していた。従って、本研究では チップ上に再構成された A₁B₁ユニットは"tight"フォームを形成していると結論づけた。

3.2.3. A1B1 ユニットに対する DF 複合体の結合親和性

チップ上で"tight"フォームを形成して再構成された A₁B₁ ユニットに対する DF 複合 体の結合親和性を測定した(Fig. 3-3a)。再構成された A₁B₁ ユニットからの A サブユニッ トの解離速度は、Fig. 3-2d で示したように非常に遅いため、3.2.2.と同様に ATP を用い て A₁B₁ ユニットを再構成した後に、様々な濃度の DF 複合体を AMP-PNP とともに流 した(Fig. 3-3b)。DF 複合体と"tight"フォームを形成している A₁B₁ ユニットの結合親和 性は、SPR 定常状態のレスポンスと DF 濃度のプロットから、K_D=55 nM と求められた (Fig. 3-3c)。先行研究によって DF 複合体と A₃B₃ 複合体の結合親和性は K_D = 1.8 nM と 求められていた²⁷。DF 複合体と A₃B₃ 複合体(3 組の A₁B₁ ユニットが会合した複合体) の結合親和性が 1.8 nM であることを鑑みれば、DF 複合体はヌクレオチドと結合して "tight"フォームを形成しているたった1組の A₁B₁ ユニットと非常に強く相互作用して おり、A₃B₃ 複合体中で DF 複合体は"tight"フォームを形成している A₁B₁ ユニットに対 して主に結合していると考えられた。DF 複合体と"tight"フォームを形成している A₁B₁ ユニットの結合親和性が高いという結果は、"tight"フォームがヌクレオチドが非存在下 において V₁複合体では形成されるが、A₃B₃複合体では形成されないという以前の結果 と一致している¹⁹。DF 複合体はまるでヌクレオチドが存在しなくても A₁B₁ユニットを "tight"フォームとする留め具のようにはたらいている。さらに、A3B3 複合体はA、B サ ブユニットから再構成する際にヌクレオチド存在下で濃縮した後にヌクレオチドを取 り除く必要があるのに対し、V₁ 複合体の再構成はヌクレオチド存在下で濃縮するだけ で可能である¹⁸。これらの結果から再構成された A₁B₁DF 複合体が V₁ (A₃B₃DF)複合体 の会合の核となると考えられる。

Fig. 3-3b のセンサグラムは 2 相性を示しており、この要因としていくつかの可能性が 考えられるが、主な原因として以下のようなものが考えられる。本実験ではバックグラ ウンドコントロールとして DF を加えないセンサグラムを用いた。AMP-PNP の存在下 での A サブユニットの解離は非常に遅く(Fig. 3-2d)、また、DF 複合体が留め具のように 機能している状態では DF 複合体と強固に結合した A₁B₁ ユニットの方がより安定であ った。そのため、DF 複合体と結合している A サブユニットの解離は、結合していない バックグラウンドコントロールよりもはるかに遅く、A サブユニットの解離が少ないた めであると考えられるが、これらの解離の割合について算出することはできなかった。

3.2.4. V₁-ATPase の回転における親和性変化モデル

E. hirae V₁-ATPase について結晶構造解析や生化学的解析、生物物理学的知見に基づ いた回転メカニズムモデルがこれまでに提唱されてきた^{48,49}。ここでは、これまでの回 転メカニズムモデルに、今回明らかとなったサブユニット間の親和性が変化するという 知見を組み合わせて、より詳細な分子メカニズムモデルを提唱する。Fig. 3-4a は"ATP 加水分解待ち"構造で基質である ATP の加水分解待ちの状態であり、Fig. 3-4b は"ATP

47

結合待ち"で次の基質である ATP の結合待ちの状態であり、Fig. 3-4c は"ADP 解離待ち" 構造で生成物である ADP の解離待ちの状態であり、Fig. 3-4d は"遷移状態"であり軸の 回転待ちの状態である。この"遷移状態"の結晶構造は得られていないが、DF 軸のない A₃B₃ 複合体のヌクレオチド結合型の結晶構造(A₁B₁ ユニットはそれぞれ"empty"、 "bound"、"tight"フォームを形成)が相当すると考えた。

まず、"ATP 加水分解待ち"から"ATP 結合待ち"にかけて、ATP 分子は V₁-ATPase の 3 箇所のヌクレオチド結合部位のうち 2 箇所に結合し、"tight"フォームで加水分解を受 ける¹⁹。ATP 加水分解後、"tight"フォームからリン酸イオンが脱離し、"ADP-bound"フ ォームが形成される。この構造変化は隣の"empty"フォームを形成している A₁B₁ユニッ トの協同的な構造変化を引き起こし、"bindable-like"フォームが形成される。さらに、こ の時の構造は軸の正方向への回転が妨げられるようになっている²⁰。

"ATP 結合待ち"から"ADP 解離待ち"にかけての構造変化は、"bindable-like"フォーム への ATP の結合によって駆動される。本研究で示唆されたように ATP は A、B サブユ ニット間で強い接着剤のようにはたらくので、ATP が結合すると"bindable-like"フォー ムはさらに閉じて"half-closed"フォームを形成する。この構造変化では、さらに隣の A₁B₁ ユニットの構造が"ADP-bound"フォームから"tight-like"フォームへと変化する。"ADPbound"フォームを形成している A₁B₁ユニットは、結合しているヌクレオチドが ADP で あるため、A、B サブユニットが解離して開きやすくなっているが、DF 軸が留め具のよ うに A₁B₁ ユニットを安定化させている。この構造変化は、一分子観察実験における 40° の回転サブステップに相当する²⁴。構造変化前の"ATP 結合待ち"の構造よりも"ADP 解 離待ち"の構造の方が、DF 軸の周りの構造が密となっており、DF 軸の反対方向への回 転が阻害されているように考えられるので、モデル図では"half-closed"フォームの A₁B₁ ユニット軸と接触しているように表した。

"ADP 解離待ち"から"遷移状態"にかけて、ATP は強い接着剤のようにはたらくので、 "half-closed"フォームはさらに閉じて"bound"フォームを形成しようとする。この時、こ の閉じようとする動きと連動するように、留め金の制約の中で"tight-like"フォームに結 合していた ADP が ATP の自由エネルギーを利用して解離する²⁵。ADP 分子の V₁複合 体中のそれぞれの A₁B₁ ユニットに対する結合親和性は、2ADPV1 の 2 箇所の結合部位に ついてはそれぞれ 6.7 nM と 13 nM であり、3ADPV1 の 3 箇所めの結合部位については 3.4 μM と低い²⁰。ADP の接着剤としての強さは ATP のおよそ 40 分の 1 であるため、この 協同的な構造変化と親和性の変化に伴って、ADP と結合している"tight-like"フォームを 形成している A₁B1 ユニットが開かされて、小分子である ADP は速やかに解離する。 ADP が解離するとヌクレオチドが結合していない時の A、B サブユニットの親和性は 低いために A₁B₁ユニットは開いて"empty"フォームを形成する。そのため"tight-like"フ ォームを形成している A1B1 ユニットに主に結合していた DF 軸が離れ、遷移状態とな る。

49

"遷移状態"から"ATP 加水分解待ち"にかけて、DF 軸はブラウン運動の中で ATP と結 合している A₁B₁ ユニットと高い親和性で引き合い、結果として反時計回り方向の回転 運動となる ⁴⁸⁻⁵⁰。このステップは一分子観察実験で観察された 80°のサブステップに対 応する ²⁴。DF 軸が"bound"フォームに到達すると、"tight"フォームへと構造が変化し、 この構造変化による安定化によって自由エネルギーランドスケープは深く落ち込み、軸 の回転トルクが生み出されている。この回転機構はサーマルラチェット機構の一種であ り、有機化合物の分子モーターの回転機構に類似している。

第三章第三節 結論

本研究では、これまでに得られていた構造生物学的知見に本研究で明らかとなった生 化学的性質を加えることで、V₁-ATPaseの回転メカニズムについて親和性変化モデルを 提案することができた²⁶。A サブユニットへのヌクレオチドの結合によって A、B サブ ユニット間の親和性が変化する。それと連動するように、A₁B₁ユニットと DF 軸の親和 性が変化する。形に取り込まれた ATP のエネルギーは親和性の変化と運動方向の選択 に利用され、こうした動きの駆動力は熱揺らぎのエネルギーに由来している。親和性変 化モデルは回転分子モーターV₁-ATPase の回転機構の根本原理となる可能性が考えら れる。

Fig. 3-1 ヌクレオチド存在下での A、B サブユニット間の結合親和性測定

(a) SPR 測定の模式図。CM5 チップ上のリガンドとして GST タグ(橙色)の付いた B サブユ ニットを紫で表し、過剰量のヌクレオチド(赤色)とともに穴ライトとして流した A サブユニ ットを青色で表した。 (b, c) ATP (b) もしくは ADP (c)の濃度に依存したセンサグラムを示し た。A サブユニット (アナライト)の濃度を右側に示した。(i)でヌクレオチドとともに A サブ ユニットを流し、(ii)で A サブユニットを含まないヌクレオチド溶液を流した。

Fig. 3-2 A1B1 ユニットのヌクレオチド結合親和性測定

(a) ヌクレオチド非存在下での A_1B_1 ユニットからの A サブユニットの解離。(i)で 0.5 mg/mL の A サブユニットを 0.03 mM ATP とともに D バッファー中でアナライトとして 0 s で流し(赤 色)、5.5 mg/mL の A サブユニットを 0.6 mM ADP とともに流した(橙色)。(ii)でチップ上に再 構成された A_1B_1 ユニットに D バッファーを流した。 (b, c) ADP による A サブユニットの解離 速度の逓減効果。(b) 右側に ADP 濃度を記載した。(c) 解離速度の逓減効果を表した。(d, e) AMP-PNP による A サブユニットの解離速度の逓減効果。(i)で A サブユニットを ATP とともに 流し、(ii)で A サブユニットも ATP も含まないバッファーを流した。(iii)で様々な濃度の ADP (b)もしくは AMP-PNP (d)を流し、(iv)で再び A サブユニットもヌクレオチドも含まないバッフ ァーを流した。

Fig. 3-3 A1B1 ユニットに対する DF 複合体の結合親和性測定

(a) DF 複合体の結合親和性測定の模式図を Figure 3-1a 同様に表した。DF 複合体を緑色で表 した。(b) DF 複合体の濃度を右側に示した。(i)で DF 複合体を含むバッファーを AMP-PNP と ともに流した。(ii)で DF 複合体を含まないバッファーを流した。 (c) DF 複合体結合の定常状態 で、様々な濃度の DF 複合体を加えてから 280 秒後のレスポンスをプロットした。

Fig. 3-4 V1-ATPase 回転モデルの模式図

上図は V₁ および A₃B₃ 複合体の結晶構造の C 末端ドメインを N 末端側から見た上面図であ り、左から 2ATPV1 (ATP 加水分解待ち)(a)、2ADPV1 (ATP 結合待ち)(b)、3ADPV1 (ADP 解離待 ち)(c)、2ATPA3B3 (回転の遷移状態)(d)、120°回転した 2ATPV1 (ATP 加水分解待ち)(e)を示し た。結合した AMP-PNP 分子を赤色、ADP 分子を橙色、リン酸イオンアナログ(SO4²)を茶色で 球体表示した。下図は上図の構造モデルに基づいた ATP 加水分解と DF 軸の 120°回転モデルを 模式化し表したものである。A サブユニットを青色、B サブユニットを緑色、DF 複合体を緑 色、ATP 分子を赤色、ADP 分子を橙色でそれぞれ示した。各サブユニットの構造変化の動きを 水色の矢印で示し、回転の動きを緑色の巻き矢印で示した。

第四章 V₁-ATPaseの回転触媒機構の分子メカニズム

第四章第一節 実験

4.1.1 A(S23C)3B(N64C)3 複合体の発現・精製

A₃B₃ 複合体の結晶構造に基づいて N 末端側βバレルドメインで A₁B₁ ペア間にシステ イン架橋を生じさせるよう変異体をデザインした^{18,19,27,28}。PyMOL を用いて eA₃B₃の構 造から変異導入の候補となる残基を選択し、A_{(\$23C)3}B_{(N64C)3}を作製した。

X 線結晶構造解析用、および HS-AFM 観察用サンプルの発現は理化学研究所生命機 能科学研究センターとの共同研究にて、大腸菌無細胞合成系として確立された方法に従 い、A_{(S23C)3}B_{(N64C)3} 複合体を発現させた^{6,12}。また、それ以外の活性測定などの機能解析 用サンプルの発現は大腸菌(BL21(DE3))を用いて大腸菌合成系によって発現させた^{22,51}。

4.1.2 ATPase 活性測定

基本的な操作は 2.1.2.に従った。 A_3B_3 および $A_{(S23C)3}B_{(N64C)3}$ 複合体(10 mg/mL)を G バッ ファー(100 mM MES, 5 mM MgSO₄, 100 mM NaCl, 10% glycerol; pH 6.0) 中で DF 複合体 (5 mg/mL)と氷上でインキュベートし、 A_3B_3DF 複合体として再構成させた ¹⁸。 A_3B_3 およ び、再構成された A_3B_3DF 複合体の ATPase 活性を ATP 再生系を用いて測定した ^{19,20}。 反応溶液は 400 μ M ATP/MgSO₄、2.5 mM phosphoenolpyruvate、50 μ g/mL pyruvate kinase、 50 µg/mL lactate dehydrogenase、0.2 mM β-NADH (dipotassium salt)、そして 1 µg の A₃B₃ もしくは A_{(S23C)3}B_{(N64C)3} 複合体を含む。ATP 加水分解反応は ATP/MgSO₄の添加によって 開始され、340 nm での吸光度の減少を捉えた。

4.1.3 結晶化条件

296 K でのシッティングドロップ蒸気拡散法を用いて全ての結晶化を行った。得られ た結晶は glycerol 濃度を 20%ないし 22.5%まで高めたクライオ溶液にソーキング後、ク ライオループ(Hampton Research)ですくい取り、液体窒素で瞬間冷却した^{19,20}。

A_{(S23C)3}B_{(N64C)3}溶液(11 mg/mL in 20 mM Tris-HCl, pH 7.5, 100 mM NaCl, 10%(v/v) glycerol) と結晶化溶液(0.1 M NaCl, 0.1 MES-Tris pH 8.0, and 25% (w/v) PEG 3350)を 0.3 μL ずつ等 量混合し、ヌクレオチド非結合型 A_{(S23C)3}B_{(N64C)3}の結晶を成長させた。

A_{(S23C)3}B_{(N64C)3}溶液(11 mg/mL in 20 mM Tris-HCl, pH 7.5, 100 mM NaCl, 10%(v/v) glycerol) と結晶化溶液(0.1 M NaCl, 0.1 M NH4OAc, 0.1 M Tris pH 7.5, and 27% (w/v) PEG 3350)を 0.3 μL ずつ等量混合し、AMP-PNP 結合型 A_{(S23C)3}B_{(N64C)3}の結晶を成長させた。

4.1.4 X線回折実験と結晶構造解析

全てのX線回折像は極低温で単結晶から収集した^{19,20}。

ヌクレオチド非結合型 A₃B_{(L65Y)3}の X 線回折実験は PF の BL-17A (λ=0.98 Å)で行った

^{34,35}。得られた回折像を XDS で 2.7 Å までスケーリングした ^{36,37}。構造は MOLREP を用 いて eA₃B₃ (PDB ID: 3VR2)をサーチモデルとして分子置換した ³⁸。

AMP-PNP 結合型 A_{(S23C)3}B_{(N64C)3}の X 線回折実験は PF の BL-1A (λ=1.1 Å)で行った^{34,35}。 得られた回折像を XDS で 3.4 Å までスケーリングした ^{36,37}。構造は MOLREP を用いて bA₃B₃ (PDB ID: 3VR3)をサーチモデルとして分子置換した ³⁸。

ADP 結合型 $A_{(s23C)3}B_{(N64C)3}$ の X 線回折実験は前任者により、PF の BL-17A (λ =1.1 Å)で 行われた ^{34,35}。得られた回折像を XDS で 2.7 Å までスケーリングした ^{36,37}。構造は MOLREP を用いて _{3ADP}V₁ (PDB ID: 5KNC)をサーチモデルとして分子置換した ³⁸。

Coot で分子構築を行い³⁹、REFMAC5⁴⁰ や PHENIX⁴¹ を用いて構造精密化した。精密 化後の構造の評価には RAMPAGE を用いた⁴²。全ての r.m.s.d.は C_a 原子で計算した。構 造の作成には PyMOL を用いた。接触表面積の計算には PDBePISA を用いた⁴³。

4.1.5 HS-AFM 観察

HS-AFM 観察を行うために、A_{(\$23C)3}B_{(N64C)3} 複合体を N 末端側の His タグを用いて固 定した。マイカ基板を使用直前に切り出し、ATPES を超純水で 10 万倍希釈した後に 3 分間マイカ上でインキュベートした。さらに、0.025%のグルタルアルデヒドを 3 分間イ ンキュベートししマイカ基板を作成した。その後マイカ基板を観察溶液(20 mM Tris-HCl pH7.5, 100 mM NaCl, 2mM DTT and 10 % glycerol)で数回洗浄した。その後 A₃B₃、もしく

58

は A_{(S23C)3}B_{(N64C)3}を5分間インキュベートし、観察溶液で数回洗浄した後、10-12 frame/sec、 測定範囲を 50 nm × 50 nm (150 px × 150 px) もしくは 50 nm × 40 nm (150 px × 120 px) で 観察を行った ³²。

4.1.6 その他の方法

その他の方法に関しては 2.1.7.と同様に行った。

第四章第二節 結果と考察

4.2.1 A₃B₃ 複合体および A_{(S23C)3}B_{(N64C)3} 複合体の発現精製と ATPase 活性測定

V₁-ATPase の触媒ドメインである A₃B₃ 複合体はヌクレオチド存在下で A₁B₁ 二量体 へと解離してしまうため、高速 AFM によって加水分解反応に伴う構造変化を長時間 観察することが困難である。そこで N 末端側で A₁B1 二量体が非極性相互作用によっ て会合しているドメインに変異を導入することによって、A₃B₃ 複合体を安定化した。 本稿第二章で述べた通り、これまでに A₁B1二量体の会合を弱めた変異体を以前作製し ているため、同様の領域の A サブユニットの 23 番目のセリン、および B サブユニッ トの 64 番目のアスパラギンに変異を導入し、A₁B₁ 二量体をシステイン架橋すること によって A₃B₃ 複合体を安定化した。²⁵ この変異箇所は共に N 末端側 β バレルドメイン に位置しており、互いがジスルフィド結合を形成するのに十分近い距離に位置してい る¹⁹。こうして作製した A_{(S23C)3}B_{(N64C)3} 複合体を E. coli.タンパク質発現系または E. coli. タンパク質無細胞発現系で発現、精製することにより、精製標品を得た(Fig. 4-1a, b)。 得られた精製標品の A₃B₃ 複合体、A_{(S23C)3}B_{(N64C)3} 複合体の ATP 加水分解活性を測定 することによって野生型と変異型の機能の比較を行った。野生型 A3B3 複合体は速やか に失活するのに対して A(523C)3B(N64C)3 複合体は失活が非常に緩やかであった(Fig. 4-1c)。 A₃B₃ 複合体および A_{(S23C)3}B_{(N64C)3} 複合体に DF 複合体をインキュベートすることによっ て V₁(A₃B₃DF もしくは A_{(S23C)3}B_{(N64C)3}DF)として再構成したものは共に持続的な活性を

示した(Fig. 4-1c)。また、変異型 $A_{(S23C)3}B_{(N64C)3}$ 複合体の活性初速度は野生型 A_3B_3 複合体の 33 倍であったが、 V_1 として再構成した $A_{(S23C)3}B_{(N64C)3}DF$ の活性は A_3B_3DF の 1.1 倍と大きな差は見られなかった(Table 4-1)。これらの結果から、変異型 $A_{(S23C)3}B_{(N64C)3}$ 複合体が安定化しており、さらに DF 複合体との結合能を保持していることが示唆された。

4.2.2. ヌクレオチド非結合型 A(s23C)3B(N64C)3 複合体の結晶構造

ヌクレオチド非結合状態での A_{(\$23C)3}B_{(N64C)3} 複合体の結晶化を行い、分子置換法によ り分解能 2.7 Å で結晶構造を決定した (Table 4-2)。全体構造は野生型のヌクレオチド非 結合型 A₃B₃ 複合体と同様に N 末端側 β バレルドメインで会合した 6 量体として集合し ていた(Fig. 4-2a-c)。システイン架橋に相当する電子密度が観測され、変異を導入した 2 残基のシステインによる安定化を結晶構造からも確認することができた(Fig. 4-4)。

それぞれの A_1B_1 ユニットの構造は野生型 A_3B_3 複合体と近い構造であったが、1 組の A_1B_1 ユニットの構造が"bound"フォームから"half-closed"フォームへと変化していた (Table 4-4, Fig. 4-4)。これは N 末端側 β バレルドメインにおける会合部分に変異を導入 したことにより、第 2 章で議論したようなストレス均衡が変化して一部の構造が変化し たものだと考えられた ²⁵。全体として、 $A_{(S23C)3}B_{(N64C)3}$ 複合体は野生型同様非対称構造を 示していた(Fig. 4-2b, c)。

4.2.3 AMP-PNP 結合型 A(S23C)3B(N64C)3 複合体の結晶構造

A(s23C)3B(N64C)3 複合体に AMP-PNP が結合した状態の構造を明らかにするために、過剰 量(6 mM)の AMP-PNP 存在下で結晶化を行い、分子置換法によって結晶構造を 3.4 Å で 決定した(Table 4-2, Fig. 4-2d-f)。1つの単位胞中に2分子の六量体が観測されたが、それ ら 2 分子の構造は類似していた(r.m.s.d. = 0.896 Å²)。得られた AMP-PNP 結合型 A(s23C)3B(N64C)3 複合体の構造は野生型と同様に"empty"、"bound"、"bound"フォームを形 成し、2 組の"bound"フォームのヌクレオチド結合部位に AMP-PNP 由来の電子密度が 観測され、"empty"フォームのヌクレオチド結合部位にはヌクレオチドに相当する電子 密度は観測されなかった(Table 4-5, Fig. 4-5)。野生型の A₃B₃の AMP-PNP 結合構造と同 様の構造を形成していることから、本構造も ATP 結合状態の A(S23C)3B(N64C)3 複合体の構 造に相当すると考えられる。結晶中では"tight"フォームの形成はみられなかったが、ATP や AMP-PNP は A-B サブユニット間で強い接着剤としてはたらきタイトな A₁B₁のコン フォメーションを形成させようとするため、溶液中などの揺らぎの中では"bound"フォ ームが"tight"フォームへと変化し、ATP加水分解が触媒されると考えられた^{19,25}。

4.2.4 ADP 結合型 A(\$23C)3B(N64C)3 複合体の結晶構造

過剰量(6 mM)の ADP 存在下で結晶化させた A(s23C)3B(N64C)3 複合体の X 線回折測定を

62

行い、ADP 結合型の A_{(S23C)3}B_{(N64C)3} 複合体の結晶構造を 2.7 Å で決定した(Table 3-3, Fig. 4-2g-i)。3 箇所のヌクレオチド結合部位のうち 2 箇所にしかヌクレオチドが結合しなかった AMP-PNP 結合型構造とは異なり、ADP 結合型構造では、3 箇所全ての結合部位に ヌクレオチド由来の電子密度が観測された(Fig. 4-6)。A₁B₁ ユニットの構造はそれぞれ "half-closed"、"bound"、"ADP-bound"であった(Table 4-6, Fig. 4-2g, i, Fig. 4-6)。今回得ら れた ADP 結合型 A_{(S23C)3}B_{(N64C)3} 複合体は ADP 解離待ちの V₁の(_{3ADP}V₁、PDB ID: 5KNC) 構造に似ていた ²⁰。

3 箇所のヌクレオチド結合部位のうち"half-closed"フォームを形成していた1箇所の A₁B₁には ADP だけではなく、SO4²に相当する電子密度が観測され、SO4²がリン酸イオ ンのアナログとして結合していると考えられた(Fig. 4-6)。"half-closed"を形成した A₁B₁ ユニットに結合した ADP 分子とリン酸イオンアナログは ATP 分子を模倣するように結 合していたことから、この $_{3ADP}A_{(s23C)3}B_{(N64C)3}$ 複合体は $_{3ADP}V_1$ 同様、ADP 解離待ちのステ ップに相当すると考えられた。上述のように、ヌクレオチドの結合によって A_{(s23C)3}B_{(N64C)3} 複合体が V₁(A₃B₃DF)複合体と同様の構造変化を示すことから、回転触媒 中の構造変化は軸の結合解離にかかわらず、触媒ドメインによってもたらされているこ とが示唆された。

4.2.5 A(S23C)3B(N64C)3 複合体の高速 AFM 観察

63

A(S23C)3B(N64C)3 複合体をヒスチジンタグを介してマイカ基板上に接着し、HS-AFM 観察 を行った。はじめに、結晶構造と HS-AFM 像を対応させるために、ヌクレオチド非存 在下、過剰量(6 mM)AMP-PNP 存在下、過剰量(6 mM)ADP 存在下での A(s23C)3B(N64C)3 複 合体の HS-AFM 像をそれぞれ観察した。先述した結晶構造よりヌクレオチド非存在下 での高速 AFM 像は、結晶構造におけるヌクレオチド非結合型 A(s23C)3B(N64C)3 複合体に対 応し、過剰量(6 mM)AMP-PNP 存在下、過剰量(6 mM)ADP 存在下での構造はそれぞれ AMP-PNP 結合型 A(s23C)3B(N64C)3 複合体、ADP 結合型 A(s23C)3B(N64C)3 複合体の結晶構造に 対応すると考えられる。A(s23C)3B(N64C)3 複合体の3つのA サブユニットの最も明るい輝 点をそれぞれ結び三角形を描き、その面積を算出することで、それぞれの構造を解析し た(Fig. 4-7a)。ヌクレオチド非結合型 A(s23C)3B(N64C)3 複合体では三角形の面積が平均して 約 26 nm²、AMP-PNP 結合型 A_{(S23C)3}B_{(N64C)3} 複合体(ヌクレオチドが 2 分子結合した状 態) では約 19 nm²、ADP 結合型 A_{(\$23C)3}B_{(N64C)3} 複合体ヌクレオチドが 3 分子結合した状 態) では約16 nm²とヌクレオチドの結合数が増加するにつれて A(s23C)3B(N64C)3 複合体が より小さな構造を形成することが示唆された。

次に ATP_γS 加水分解の回転触媒に伴う $A_{(S23C)3}B_{(N64C)3}$ 複合体の構造変化を観察するた めに、HS-AFM を用いて 2 μ M の ATP_γS 存在下で $A_{(S23C)3}B_{(N64C)3}$ 複合体の観察を行った。 $A_{(S23C)3}B_{(N64C)3}$ 複合体の 3 つの A サブユニットの最も明るい輝点を結んで描いた三角形 の重心から最も離れた頂点がどのように移り変わっていくのかをプロットすることで、
回転ステップの解析を行った。三角形の重心から最も離れた頂点は概ね反時計回りに遷 移しており、途中それぞれの頂点が重心からほとんど同一の距離をとるような構造もみ られた(Fig. 4-7b)。ATPγS加水分解に伴う、3つのAサブユニットをプロットした三角 形の面積の変化を解析すると、三角形の面積はおよそ21 nm²と17 nm²の2成分で推移 していることが示唆された(Fig. 4-7c)。このことから、A_{(\$23C)3}B_{(N64C)3}複合体は回転触媒 中にヌクレオチドが2分子結合した状態と3分子結合した状態で構造変化を繰り返し ていることが示唆された。このことから、回転触媒中に加水分解後生成物である ADP が脱離する前に次の ATP 分子が結合するステップが先に生じていると考えられる。

4.2.6 V₁-ATPase 触媒ドメイン(A₃B₃ 複合体)の一方向回転触媒メカニズム

これまで V₁(A₃B₃DF)複合体の回転メカニズムに関して一分子観察実験や X 線結晶構 造解析から様々な議論がなされてきた。V₁複合体は AMP-PNP の結合の有無にかかわら ず"empty"、"bound"、"tight"の非対称構造を形成する¹⁹。"tight"に結合した ATP は加水 分解を受けて ADP とリン酸イオンが生成される。生成されたリン酸イオンは速やかに 解離し、"tight"フォームは"ADP-bound"フォームへと変化する²⁰。この構造変化に連動 してさらに隣の A₁B₁ ユニットが"empty"から"bindable-like"へと変化し、ATP が結合す ることが可能となる。この"bindable-like"へ次の ATP 分子が結合すると、"half-closed"フ ォームへの構造変化が生じ、隣の A₁B₁ ユニットが運動して"ADP-bound"から"tight-like" へと構造変化する。この"tight-like"に結合している ADP 分子が解離すると、軸は次の "bound"フォームを形成している A_1B_1 ユニットへ向かって移動し、回転する。軸と結合 した A_1B_1 ユニットは、軸との結合によって"tight"フォームを形成する。こうして生じ た構造は元の"empty"、"bound"、"tight"が反時計回りに 120°回転したものとなっており、 このようにそれぞれの A_1B_1 ユニットが協同的に構造変化することで、軸の回転運動が 生じているのだと考えられていた ^{19,20}。

 $A_{(523C)3}B_{(N64C)3}$ 複合体でも V₁複合体と同様に ATP 加水分解後、リン酸イオンが解離し、 ADP と結合している A₁B₁ ユニットは"ADP-bound"フォームを形成し、それに伴って隣 接する"empty"は"bindable-like"へと構造変化すると考えられる(Fig. 4-1)。加水分解直前 の結晶構造は A₃B₃ 複合体 (A_{(523C)3}B_{(N64C)3} 複合体) と V₁ 複合体で異なり、V₁複合体では ヌクレオチドが結合している A₁B₁ ユニットの構造はそれぞれ"bound"と"tight"で異なる のに対して、A₃B₃ 複合体および A_{(523C)3}B_{(N64C)3} 複合体ではどちらの A₁B₁ ユニットも等価 に"bound"を形成していた。この構造変化では A サブユニットはほとんど動いておらず、 A_{(523C)3}B_{(N64C)3} 複合体の高速 AFM 観察では検知されていないが、V₁ 複合体において本加 水分解触媒ステップに相当する結晶構造から、おそらく V₁ でも A₃B₃ 複合体でも同様に 回転ステップが進行すると考えられる²⁴。このステップは一分子観察実験で観察された DF 軸の 40°回転のサブステップに相当すると考えられている²⁴。次に"bindable-like"へ 次の ATP 分子が結合することによって"half-closed"への構造変化が誘起される。この構

66

造は A_{(S23C3}B_{(N64C3} 複合体の高速 AFM 観察で見られていた、ヌクレオチドが 3 分子結合 した状態の構造であると考えられ、3ADPA(s23C)3B(N64C)3 複合体の結晶構造に対応する。ま た、このステップに相当する結晶構造は A₃B₃ 複合体と V₁ 複合体で類似していた(Fig. 4-2, 4-6)。ATP が結合していることにより、A、B サブユニット間の結合親和性が高い状 態となり、"half-closed"を形成している A₁B₁ユニットはさらに閉じた構造を形成しよう とする²⁶。ADP と結合して"tight-like"を形成している A₁B₁ ユニットは、ATP が結合し ている時よりも親和性が約40倍低下しているために、"half-closed"の構造変化と連動す るように協同的に構造変化し、"tight-like"は ADP を解離して開いて"empty"となり、 "half-closed"はさらに閉じて"bound"となる²⁶。 V_1 複合体においては、それまで軸が結合 していた A1B1ユニットが、軸との親和性の低い"empty"へと構造変化したことで、軸が 解離し、ATP が結合して"bound"を形成している隣の A1B1 ユニットと強く相互作用して そちらに向かって揺らぎの中で一分子観察実験で観察された 80°回転のサブステップに 相当する動きが生じる^{24,26}。A(s23C)3B(N64C)3 複合体については DF 軸が存在しないために、 軸が動作する本ステップは観察されていないが、DF 軸がなくとも A₃B₃ 複合体および A(s23C)3B(N64C)3 複合体は V1 複合体とほとんど同様に構造変化しており、加水分解触媒ド メインである A₃B₃ 複合体の構造は、DF 軸がなくとも協同的な構造変化し、軸はそうし た協同的な構造変化に伴って回転の方向性が制御されているということが示唆された 9,26

このように A₃B₃ 複合体の協同的構造変化モデルは、軸が結合した V₁ 複合体とほとん ど同様の構造変化を示していた。協同的な構造変化は軸の結合の有無にかかわらず、ヌ クレオチドの結合解離に応答して生じており、F₁-ATPase におけるデモクラティックモ デルと同様に、V1-ATPase も協同的に構造変化していることが示唆された⁹。これまで に V₁-ATPase の回転メカニズムについて X 線結晶構造解析と一分子観察実験から様々 な議論がなされてきたが、今回の A3B3 複合体(A(S23C)3B(N64C)3 複合体)の X 線結晶構造 解析と HS-AFM から明らかとなった知見から回転メカニズムにおいて DF 軸の果たす 役割を考察したい。HS-AFM で観察された A(s23C)3B(N64C)3 複合体の ATP(ATP y S)加水分 解に伴う回転の一方向性は、一分子観察実験で観察された V₁ 複合体のものよりも低下 していた。これは A₃B₃ 複合体(A_{(S23C)3}B_{(N64C)3} 複合体)と V₁ 複合体の構造の違いによる ものであると考えられる。先述の通り、ATP 加水分解のステップにおける結晶構造は、 V₁ 複合体では A₁B₁ ユニットの構造は"empty"、"bound"、"tight"それぞれ異なる構造を 形成するが、A₃B₃複合体および A_{(S23C)3}B_{(N64C)3}複合体では"empty"、"bound"、"bound"と "bound"を等価に形成していた。V1 複合体では加水分解が生じる A1B1 ユニットが軸と 強く結合している"tight"フォームに限定されている。これに対して、A(s23C)3B(N64C)3 複合 体では ATP の結合によって A、B サブユニット間の親和性が高まっているため、"bound" フォームが揺らぎの中で加水分解遷移構造である"tight"フォームへと変化し、ATPの加 水分解が生じる。さらに、A(s23C)3B(N64C)3 複合体はシステイン架橋によって留め金が強ま

っており、2 箇所の"bound"フォームで同時に加水分解が生じる可能性があり、ADP の 脱離箇所2箇所存在することによって、時計回り、もしくは反時計回りの2種類の構造 変化が生じる可能性があり、これが逆回転ステップ生じさせる一因となっていると考え られる。DF 軸の結合によって"empty"、"bound"、"tight"と全ての A1B1 ユニットが異な る構造を形成することができ、ATP 加水分解が生じる活性部位が1箇所に制限されてい ると考えられる。ATP 加水分解活性を比較すると A(s23C)3B(N64C)3 複合体の非活性の初速 度は A(s23C)₃B(N64C)₃DF 複合体よりも 1.1 倍高く、軸の結合によって活性が低下している。 これは A(s23C)3B(N64C)3 複合体では 3 箇所のうち 2 箇所の活性部位で同時に ATP 加水分解 反応が生じ得るのに対して、A(s23C)3B(N64C)3DFでは3箇所のう1箇所の活性部位でしか 加水分解反応が生じ得ないからであると考えられる。本研究によって、触媒ドメインで ある A₃B₃ 複合体は基質であるヌクレオチドの結合解離に応答して協同的にその構造が 変化する入力装置のようにはたらき、中心軸である DF 複合体は運動を制御し回転の一 方向性を高める制御装置のようにはたらいているということが示唆された。

第四章第三節 結論

本研究では、軸のない触媒ドメイン(A₃B₃複合体)の ATP 加水分解に伴う回転ダイ ナミクスを HS-AFM によって観察し、X 線結晶構造解析によってその各ステップの詳 細構造を明らかにすることで、詳細な分子構造の変化を捉えることに成功した。HS-AFM 像からは A(s23C)3B(N64C)3 複合体はヌクレオチドが2 分子結合した ATP 加水分解中に ATP 加水分解待ち、もしくは ATP 結合待ちの構造と3分子結合した ADP 解離待ちの2 状態を遷移していることが示された。このことから、A(s23C)3B(N64C)3 複合体は軸がなくと も V₁とほとんど同様のメカニズムで回転し、ヌクレオチドが二分子結合した ATP 結合 待ち状態を経て、ヌクレオチドが 3 分子結合した ADP 解離待ち構造を形成、つまり次 の ATP が結合して初めて ADP が脱離するという ADP 後抜けモデルにて回転ステップ が進行することが示唆された⁴⁹。さらに A₃B₃ 複合体(A_{(S23C)3}B_{(N64C)3} 複合体)と V₁ 複合 体の構造、構造変化メカニズムを比較することによって、触媒ドメインである A₃B₃ 複 合体が基質や生成物の結合解離に協同的な構造変化をもって応答し、中心軸である DF 複合体はその構造変化を制御し、回転方向を制御している。V1-ATPase をはじめ回転分 子モータータンパク質は、それぞれの構成サブユニットのバランスの中で、回転モータ ーとしての機能が生み出されているということが示唆された。

	ATP 添加後 60 秒間の比活性 (µmol Pi min ⁻¹ mg ⁻¹)		
$A_{(S23C)3}B_{(N64C)3} + DF$	18 ± 0.21		
A(s23c)3B(n64c)3	23 ± 0.31		
$A_3B_3 + DF$	15 ± 0.19		
A ₃ B ₃	0.68 ± 0.083		

Table 4-1 A₃B₃ 複合体および A_{(\$23C)3}B_{(N64C)3} 複合体の ATP 添加後 60 秒間の比活性

	$eA_{(S23C)3}B_{(N64C)3}$	$_{2AMPPNP}A_{(S23C)3}B_{(N64C)3}$	
Data collection			
Space group	<i>P</i> 2 ₁	<i>P</i> 2 ₁	
Cell dimensions			
Unit cell a, b, c (Å)	122.080, 121.830, 129.110	117.570, 123.380, 230.280	
Unit cell α, β, γ (°)	90.00, 90.22, 90.00	90.00, 90.07, 90.00	
Resolution (Å)	50-2.70 (2.87-2.71)	50-3.38 (3.59-3.38)	
R _{sym} or R _{merge}	0.077 (0.711)	0.185 (0.679)	
Mean $I / \sigma(I)$	15.06 (2.03)	7.84 (2.04)	
Completeness (%)	99.8 (99.3)	99.7 (98.8)	
Redundancy	4.0 (4.1)	4.2 (4.3)	
Refinement			
Resolution (Å)	44.30-2.71	49.37-3.38	
No. reflections	102917	91940	
$R_{ m work}$ / $R_{ m free}$	0.2342/0.2661	0.207/0.2845	
No. atoms			
Protein	23490	46400	
Ligand/ion	84	80	
Water	286	16	
B-factors			
Protein	83.77	79.95 39.43	
Ligand/ion	110.49		
Water	61.61	17.39	
R.m.s. deviations			
Bond lengths (Å)	0.002	0.003	
Bond angles (°)	0.576	0.607	
Ramachandran favored (%)	98.0	98.7	
Ramachandran allowed (%)	2.0	1.3	
Ramachandran outliers (%)	0.0	0.0	
PDB ID	7DQC	7DQD	

Table 4-2 A(s23C)3B(N64C)3 複合体のデータ収集・精密化の統計値

3ADPA(\$23C)3B(N64C)3	
Data collection	
Space group	P212121
Cell dimensions	
Unit cell a, b, c (Å)	120.030, 121.090, 231.470
Unit cell α, β, γ (°)	90, 90, 90
Resolution (Å)	50-2.70 (2.86-2.69)
R _{sym} or R _{merge}	0.155 (0.640)
Mean $I / \sigma(I)$	8.71 (2.09)
Completeness (%)	98.7 (98.1)
Redundancy	3.4 (3.4)
Refinement	
Resolution (Å)	47.63-2.69
No. reflections	92582
R _{work} / R _{free}	0.2241/0.2519
No. atoms	
Protein	23808
Ligand/ion	89
Water	191
B-factors	
Protein	39.00
Ligand/ion	33.09
Water	25.37
R.m.s. deviations	
Bond lengths (Å)	0.003
Bond angles (°)	0.646
Ramachandran favored (%)	98.2
Ramachandran allowed (%)	1.8
Ramachandran outliers (%)	0.0
PDB ID	7DQE

Table 4-3 ADP 結合型 A_{(\$23C)3}B_{(N64C)3} 複合体のデータ収集・精密化の統計値

構造	フォーム	eA ₃ B ₃		
	A1B1 ユニット	Empty	Bindable	Bound
	Empty	0.79	1.42	3.45
eA(s23C)3B(N64C)3	Bindable	1.76	0.60	3.32
	Half-closed	2.57	1.64	2.36

Table 4-4 eA_{(S23C)3}B_{(N64C))3}のそれぞれの A₁B₁ユニットを eA₃B₃と重ね合わせた際の RMSD 値

計算は全て Ca 炭素原子に対して行った。

Table 4-5 2AMP-PNPA(S23C)3B(N64C))3のそれぞれの A1B1ユニットを bA3B3 と重ね合わせた際の RMSD

值					
	構造	フォーム	・オーム bA3B3		
		A1B1ユニット	Empty	Bound(1)	Bound(2)
		Empty	1.06	3.90	4.05
1	$bA_{(S23C)3}B_{(N64C)3}$	Bound ₍₁₎	3.86	0.91	0.96
		Bound ₍₂₎	4.23	1.39	1.25

計算は全て Ca 炭素原子に対して行った。

構造	フォーム	3ADPV1		
	A1B1 ユニット	Half-closed	Bound	Tight-like
3ADPA(\$23C)3B(N64C)3	Half-closed	2.07	3.36	3.63
	Bound	2.73	1.30	1.53
	Tight-like	3.08	1.81	0.80

Table 4-6 eA_{(S23C)3}B_{(N64C))3}のそれぞれの A₁B₁ユニットを _{3ADP}V₁と重ね合わせた際の RMSD 値

計算は全て Ca 炭素原子に対して行った。

(a) HiLoad 16/60 Superdex 200 pg カラムを用いた A_{(\$23C)3}B_{(N64C)3} 複合体のゲル濾過プロファイル。
 (b) 精製フラクションの SDS-PAGE。四角で囲った部分がそれぞれのフラクションに対応する。
 (c) ATP 再生系を用いた精製サンプルの ATPase 活性測定。23°Cで 340 nm での吸光度から NADH の酸化率を算出し、ATP 加水分解量を求めた。標準誤差をバーで表示した。

Fig. 4-2 A_{(S23C)3}B_{(N64C)3} 複合体の結晶構造

変異型 A_{(S23C)3}B_{(N64C)3} 複合体結晶構造の上面図。A サブユニットを青色、B サブユニットを紫 色で表示した。結合している AMP-PNP、ADP、リン酸アナログ(SO4²⁻)を球体表示した。ヌクレ オチド非結合型 A_{(S23C)3}B_{(N64C)3} 複合体(**a-c**)、AMP-PNP 結合型 A_{(S23C)3}B_{(N64C)3} 複合体(**d-f**)、ADP 結 合型 A_{(S23C)3}B_{(N64C)3} 複合体(**g-i**)の結晶構造。(**a, d, g**) A_{(S23C)3}B_{(N64C)3} 複合体の側面図をリボン表示し、 C 末端ドメイン(A: 450-593, B: 363-458)を透過したサーフェス表示した。A サブユニットを青色、 B サブユニットを紫色で表示した。(**b, e, h**)N 末端側から見た A_{(S23C)3}B_{(N64C)3} 複合体の上面図。(**c, f, i**) C 末端側から見た A_{(S23C)3}B_{(N64C)3} 複合体の上面図。AMP-PNP、ADP、SO4²⁻をそれぞれ赤色、 オレンジ色、黄色の球体表示で表している。

Fig. 4-3 A(s23C)3B(N64C)3 複合体クラウン構造部分のシステイン架橋

野生型 A_3B_3 複合体と変異型 $A_{(S23C)3}B_{(N64C)3}$ 複合体の β バレルドメイン (クラウン構造)の上面 図。変異型 $A_{(S23C)3}B_{(N64C)3}$ 複合体を青と紫でカラー表示した。中央図のオレンジ色の枠は変異箇 所を示している。周囲のオレンジ色の枠で囲われた図は黄色で示した変異残基(A-S23C、B-N64C) 付近をズームインして表示している。A-S23C、B-N64C 残基の $|F_0|$ - $|F_c|$ オミットマップを 4.0 シグ マで赤色(ネガティブ)と緑色(ポジティブ)で表示している。

Fig. 4-4 ヌクレオチド非結合型 A(s23C)3B(N64C)3 複合体のヌクレオチド結合部位の拡大図

(a) ヌクレオチド非結合型変異 A(s23C)3B(N64C)3 複合体の A サブユニット(青色)(a)と B サブユ ニット(紫色)(b)をそれぞれ Ca 原子で重ね合わせた構造。P ループを黄色、アーム領域を白色 で表示している。緑色の枠はヌクレオチド結合部位を示している。(c-e) a の緑色の枠部分に対応 するヌクレオチド結合部位をズームインした図。右側には左の図を 90°回転させて、A-B サブユ ニットのインターフェースが見やすいように表示し、ヌクレオチド非結合型 A3B3 複合体の "empty"、"bindable"、"bound"の A サブユニット(残基番号 67-593、白黒で表示)と重ね合わせ た図を掲載している。

Fig. 4-5 AMP-PNP 結合型 A(s23C)3B(N64C)3 複合体のヌクレオチド結合部位の拡大図

AMP-PNP 型変異 $A_{(s23C)3}B_{(N64C)3}$ 複合体の A サブユニット (青色) (a) と B サブユニット (紫色) (b)をそれぞれ Ca 原子で重ね合わせた構造。P ループを黄色、アーム領域を白色で表示している。 緑色の枠はヌクレオチド結合部位を示している。(c-e) a の緑色の枠部分に対応するヌクレオチド 結合部位をズームインした図。右側には左の図を 90°回転させて、A-B サブユニットのインター フェースが見やすいように表示し、AMP-PNP 結合型 A₃B₃ 複合体の"empty"、"bound(1)"、"bound(2)" の A サブユニット (残基番号 67-593、白黒で表示) と重ね合わせた図を掲載している。

Fig. 4-6 ADP 結合型 A_{(\$23C)3}B_{(N64C)3} 複合体のヌクレオチド結合部位の拡大図

ADP 結合型 A_{(S23C)3}B_{(N64C)3} 複合体の A サブユニット(青色)(a)と B サブユニット(紫色)(b) をそれぞれ Ca 原子で重ね合わせた構造。P ループを黄色、アーム領域を白色で表示している。 緑色の枠はヌクレオチド結合部位を示している。(c-e) a の緑色の枠部分に対応するヌクレオチド 結合部位をズームインした図。右側には左の図を 90°回転させて、A-B サブユニットのインター フェースが見やすいように表示し、ADP 結合型 V₁ 複合体の"half-closed"、"bound"、"tight-like" の A サブユニット(残基番号 67-593、白黒で表示)と重ね合わせた図を掲載している。結合ポ ケットの ADP と Mg²⁺を取り除いて計算した $|F_0| - |F_0|$ マップを 4.0 シグマで、赤色(ネガティブ) と緑色(ポジティブ)で表示している。

Fig. 4-7 ATP-γS 加水分解に伴う A(S23C)3B(N64C)3 複合体の協同的構造変化

(a) ヌクレオチド非存在下、過剰量 AMP-PNP 存在下、過剰量 ADP 存在下 A(s23C)3B(N64C)3 複合 体のそれぞれの A サブユニットの最も明るい輝点を結んで描かれる三角形の面積の大きさ。ヌ クレオチド非存在下の面積の平均を青色の破線で左図に表し、過剰量 AMP-PNP 存在下、過剰量 ADP 存在下を同様にそれぞれ緑色、赤色で示した。(b) ATPγS の加水分解に伴う変異型 A(s23C)3B(N64C)3 複合体の協同的構造変化を捉えた高速 AFM 像。結晶構造の"empty"フォームに対 応する A サブユニットを緑色の丸で囲った。(c) A サブユニットで最も明るい輝点を結んだ三角 形の面積の時間変化。生データを明るい青色で、スムージング処理したデータを深い青色で表し た。

Fig. 4-8 A₃B₃ 複合体および V₁ 複合体の協同的構造変化の回転伝搬分子メカニズム

高速 AFM 像と結晶構造に基づいた A₃B₃ 複合体の協同的構造変化モデル。(a) A₃B₃ 複合体 (A_{(\$23C)3}B_{(N64C)3} 複合体)の結晶構造を C 末端ドメインを N 末端側から見た上面図。協同的構造 変化メカニズムモデルに基づいて並べた。(b) V₁ 複合体の結晶構造を(a)同様に示し、回転メカニ ズムモデルに基づいて並べた。(c) V₁ 複合体の一方向回転メカニズムモデルを Figure 3-4 同様に 結晶構造に基づいて模式図で示した。

第四章 結語

本研究では、*E. hirae* 由来 V₁-ATPase について、主に構造生物学的知見や生化学的解析に基づいて、生化学的解析の知見等を組み合わせることで、一方向回転メカニズムの解明を目指した。

第2章では、触媒ドメインである A₃B₃ 複合体の非対称構造メカニズムについて主に 報告した。非対称な野生型 A₃B₃ 複合体と対称性の高い A₃B_{(L65Y)3} 複合体の構造、機能を 比較することで、非対称構造が V₁-ATPase が酵素として ATP 加水分解に連続的に触媒 として機能するために重要な役割を果たしていることが明らかとなった。

第3章では SPR 法を用いて測定した V₁-ATPase のそれぞれのサブユニット間の親和 性の変化について報告した。基質である ATP は A、B サブユニット間で強い接着剤の ようにはたらき、ATP の結合によって A₁B₁ ユニットを密に閉じさせるような構造変化 が生じることが示唆された。さらに、A₃B₃ 複合体の中でも、密に閉じた 1 組の A₁B₁ ユ ニットと DF 軸が主に結合していることが示唆され、V₁-ATPase の回転は熱揺らぎによ って駆動され、ATP のエネルギーは親和性の変化と運動の方向性の選択に用いられてい ることが示唆された。

第4章ではX線結晶構造解析とHS-AFM 観察を組み合わせることで明らかとなった、 ATP 加水分解反応に伴う V₁-ATPase 触媒ドメインの詳細な構造変化を報告した。ATP 加 水分解反応に伴って ADP 後抜けモデルに従い触媒ドメインである A₃B₃ 複合体の構造

85

が協同的に変化することで、回転が生み出されることが示唆された。さらに、A₃B₃複合体(A_{(S23C)3}B_{(N64C)3}複合体)と V₁複合体のメカニズムを比較することで、A₃B₃複合体、 DF 複合体それぞれが果たす役割も明らかとなった。

本研究によって V₁-ATPase について構造が明らかとなった後も不明のままであった 非対称構造形成のメカニズムや一方向回転のメカニズムを理解する上での重要な知見 を持たせることができた。本研究は V₁-ATPase の性状の理解にとどまらず、タンパク質 の四次構造形成メカニズムの理解や、生体内エネルギー変換メカニズムの解明に向けた 一歩としても重要であると考えられる。 本研究を遂行するにあたり、終始適切なご助言を賜り、丁寧にご指導くださった千葉 大学大学院理学研究院の村田武士教授に心より感謝いたします。また、ご親切に議論に 取り組んでくださり、ご指導ご鞭撻を賜りました東京理科大学基礎工学部の山登一郎教 授に感謝いたします。さらに、理化学研究所生命機能科学研究センタータンパク質機能・ 構造研究チームの白水美香子部門長、石塚(桂)芳子技師、染谷友美技師、沖縄科学技 術大学院大学(OIST)の松波秀行研究員、金沢大学バイオ AFM 先端研究センター高速 AFM 研究開発部門の安藤敏夫部門長、イメージング研究部門の古寺哲幸部門長、名古 屋大学理学研究科の内橋貴之教授、Weil Cornel Medicine Anesthesiology の今村元紀博士、 横浜市立大学生命医科学研究科の水谷健二助教、東京理科大学基礎工学部の白石充典准 教授、新井聡史博士、斎藤靖子様、そして千葉大学生体構造化学研究室の小笠原論特任 准教授、安田賢司特任助教、鈴木七緒博士、今井(薬師寺)・ファビアナ・リカ博士、

本研究の放射光実験は茨城県つくば市の PF で行いました(proposals 2014G-171, 2014R-51, 2016G048, and 2016R-19)。PF では BL-1A 及び BL-17A の方々にご協力いただ き、感謝申し上げます。分子描画及び分子解析ソフトとして Pymol、UCSF Chimera パ ッケージ (Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIGMS P41-

87

GM103311))を使用しました。また、生化学的解析のために、Biacore T100 evaluation、 Anabel、Prism 8 のソフトを使用しました。

本研究は日本学術振興会(特別研究員 DC2(R2 年度))、科研費(特別研究員奨励費: 20J11683)、公益財団法人双葉電子記念財団(平成 31 年度博士後期課程奨学金)、千葉 大学 SEEDS 基金(千葉大学国際交流事業(2019 年度))、の支援を受けたものです。

最後に、共に実験に携わり、支えてくださった生体構造化学研究室の皆様、そして、 あらゆる面で私を支えてくださった友人達と家族に心より感謝申し上げます。

参考文献

- Forgac, M. Vacuolar ATPases: Rotary proton pumps in physiology and pathophysiology. *Nat. Rev. Mol. Cell Biol.* 8, 917–929 (2007).
- Mulkidjanian, A. Y., Makarova, K. S., Galperin, M. Y. & Koonin, E. V. Inventing the dynamo machine: The evolution of the F-type and V-type ATPases. *Nat. Rev. Microbiol.* 5, 892–899 (2007).
- 3. Walker, J. E. The ATP synthase: The understood, the uncertain and the unknown. *Biochem. Soc. Trans.* **41**, 1–16 (2013).
- Grüber, G., Manimekalai, M. S. S., Mayer, F. & Müller, V. ATP synthases from archaea: The beauty of a molecular motor. *Biochim. Biophys. Acta - Bioenerg.* 1837, 940–952 (2014).
- 5. Taguchi, J. & Kitao, A. Operating principles of rotary molecular motors: Differences between F1 and V1 motors. *Biophys. Physicobiol.* **13**, 117–126 (2016).
- Zhao, J., Benlekbir, S. & Rubinstein, J. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. *Nature* 521, 241–245 (2015).
- Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Direct observation of the rotation of F1-ATPase. *Nature* 386, 299–302 (1997).
- Suzuki, T., Tanaka, K., Wakabayashi, C., Saita, E. I. & Yoshida, M. Chemomechanical coupling of human mitochondrial F₁-ATPase motor. *Nat. Chem. Biol.* 10, 930–936

(2014).

- Uchihashi, T., Iino, R., Ando, T. & Noji, H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F₁-ATPase. *Science (80-.).* 333, 755–758 (2011).
- Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria. *Nature* 370, 621–628 (1994).
- Kabaleeswaran, V., Puri, N., Walker, J. E., Leslie, A. G. W. & Mueller, D. M. Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1ATPase. *EMBO J.* (2006) doi:10.1038/sj.emboj.7601410.
- Cingolani, G. & Duncan, T. M. Structure of the ATP synthase catalytic complex (F1) from Escherichia coli in an autoinhibited conformation. *Nat. Struct. Mol. Biol.* (2011) doi:10.1038/nsmb.2058.
- Morales-Rios, E., Montgomery, M. G., Leslie, A. G. W. & Walker, J. E. Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution. *Proc. Natl. Acad. Sci. U. S. A.* 112, 13231–13236 (2015).
- Oot, R. A., Kane, P. M., Berry, E. A. & Wilkens, S. Crystal structure of yeast V₁ ATPase in the autoinhibited state. *EMBO J.* 35, 1694–1706 (2016).
- Kakinuma, Y., Yamato, I. & Murata, T. Structure and function of vacuolar Na⁺ translocating ATPase in *Enterococcus hirae*. J. Bioenerg. Biomembr. 31, 7–14 (1999).

- Imamura, H. *et al.* Rotation scheme of V₁-motor is different from that of F₁-motor. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 17929–17933 (2005).
- Murata, T., Yamato, I. & Kakinuma, Y. Structure and mechanism of Na⁺-translocating ATPase from *Enterococcus hirae*. *J.Bioenerg.Biomemb.* 37, 411–413 (2005).
- Arai, S. *et al.* Reconstitution in vitro of the catalytic portion (NtpA₃-B₃-D-G complex) of *Enterococcus hirae* V-type Na⁺-ATPase. *Biochem. Biophys. Res. Commun.* 390, 698– 702 (2009).
- Arai, S. *et al.* Rotation mechanism of Enterococcus hirae V₁-ATPase based on asymmetric crystal structures. *Nature* **493**, 703–707 (2013).
- 20. Suzuki, K. *et al.* Crystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor. *Nat. Commun.* **7**, 13235 (2016).
- Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G. W. & Walker, J. E. Structure of the rotor of the V-type Na⁺-ATPase from *Enterococcus hirae*. *Science (80-.).* 308, 654–659 (2005).
- Minagawa, Y. *et al.* Basic properties of rotary dynamics of the molecular motor *Enterococcus hirae* V₁-ATPase. J. Biol. Chem. 288, 32700–32707 (2013).
- Iino, R., Ueno, H., Minagawa, Y., Suzuki, K. & Murata, T. Rotational mechanism of Enterococcus hirae V1-ATPase by crystal-structure and single-molecule analyses. *Curr.*

Opin. Struct. Biol. **31**, 49–56 (2015).

- Iida, T. *et al.* Single-molecule analysis reveals rotational substeps and chemomechanical coupling scheme of *Enterococcus hirae* V₁-ATPase. *J. Biol. Chem.* 294, 17017–17030 (2019).
- 25. Maruyama, S. *et al.* Metastable asymmetrical structure of a shaftless V₁ motor. *Sci. Adv.*5, eaau8149 (2019).
- Arai, S., Maruyama, S., Shiroishi, M., Yamato, I. & Murata, T. An affinity change model to elucidate the rotation mechanism of V₁-ATPase. *Biochem. Biophys. Res. Commun.* 533, 1413–1418 (2020).
- Alam, M. J. *et al.* Loose Binding of the DF Axis with the A₃B₃ Complex Stimulates the Initial Activity of Enterococcus hirae V₁-ATPase. *PLoS One* 8, 1–9 (2013).
- Saijo, S. *et al.* Crystal structure of the central axis DF complex of the prokaryotic V-ATPase. *Proc. Natl. Acad. Sci.* 108, 19955–19960 (2011).
- 29. Kigawa, T. *et al.* Preparation of Escherichia coli cell extract for highly productive cellfree protein expression. *J. Struct. Funct. Genomics* **5**, 63–68 (2004).
- Tang, G. *et al.* EMAN2: An extensible image processing suite for electron microscopy.
 J. Struct. Biol. 157, 38–46 (2007).
- 31. Scheres, S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM

structure determination. J. Struct. Biol. 180, 519-530 (2012).

- Kodera, N., Sakashita, M. & Ando, T. Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. *Rev. Sci. Instrum.* 77, 10.1063/1.2336113 (2006).
- 33. Uchihashi, T., Kodera, N. & Ando, T. Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. *Nat. Protoc.*7, 1193–1206 (2012).
- Hiraki, M., Yamada, Y., Chavas, L. M. G., Wakatsuki, S. & Matsugaki, N. Improvement of an automated protein crystal exchange system PAM for high-throughput data collection. *J. Synchrotron Radiat.* 20, 890–893 (2013).
- 35. Hiraki, M. *et al.* High-throughput operation of sample-exchange robots with double tongs at the Photon Factory beamlines. *J. Synchrotron Radiat.* **15**, 300–303 (2008).
- 36. Kabsch, W. XDS. Acta Crystallogr D 66, 125–132 (2010).
- Kabsch, W. Integration, scaling, space-group assignment and post-refinement. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 66, 133–144 (2010).
- Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 22–25 (2010).
- 39. Emsley, P. et al. Coot : model-building tools for molecular graphics. Acta Crystallogr.

Sect. D Biol. Crystallogr. D60, 2126–2132 (2004).

- Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. *Acta Crystallogr. Sect. D-Biological Crystallogr.* D53, 240–255 (1997).
- 41. Adams, P. D. *et al.* PHENIX: A comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. Sect. D Biol. Crystallogr.* D66, 213–221 (2010).
- 42. Lovell, S. C. *et al.* Structure validation by Cα geometry: φ, ψ and Cβ deviation. *Proteins Struct. Funct. Genet.* **50**, 437–450 (2003).
- Krissinel, E. & Henrick, K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 372, 774–797 (2007).
- Pettersen, E. F. *et al.* UCSF Chimera--A Visualization System for Exploratory Research and Analysis. *J Comput Chem* 25, 1605–1612 (2004).
- LAEMMLI, U. K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. *Nature* 227, (1970).
- 46. Ando, T. High-speed atomic force microscopy and its future prospects. *Biophys. Rev.* 10, 285–292 (2018).
- 47. Ando, T., Uchihashi, T. & Scheuring, S. Filming biomolecular processes by high-speed

atomic force microscopy. Chem. Rev. 114, 3120-3188 (2014).

- Yamato, I., Murata, T. & Khrennikov, A. Energy flow in biological system: Bioenergy transduction of V₁-ATPase molecular rotary motor from *E. hirae. Prog. Biophys. Mol. Biol.* 130, 33–38 (2017).
- 49. Singharoy, A. *et al.* Rotational mechanism model of the bacterial V1 motor based on structural and computational analyses. *Front. Physiol.* **10**, 1–12 (2019).
- Yamato, I. & Murata, T. Rotation Mechanism Revealed From the Three Dimensional Structure and Single Molecule Observation of V₁-ATPase From *E. Hirae*. VI, 177–184 (2020).
- 51. Ueno, H. *et al.* Torque generation of enterococcus hirae V-ATPase. *J. Biol. Chem.* **289**, 31212–31223 (2014).

略称

- ADP: Adenosine 5'-diphosphate
- AMP-PNP: 5'-Adenylylimido-diphosphate
- ATP: Adenosine 5'-triphosphate
- ATP_YS: Adenosine 5'-O-(3-thio)triphosphate
- ATPES: 3-aminopropyl-triethoxysilane
- BCA: Bicinchoninic acid
- Bis-Tris: Bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane
- BSA: Bovine Serum Albumin
- CBB: Coomassie Brilliant Blue
- CCP4: Collaborative Computational Project No. 4
- DTT: Dithiothreitol
- HEPES: 2-[4-(2-Hydroxyethyl)-1-piperaziny]ethanesulfonic acid
- HS-AFM: High-Speed Atomic Force Microscopy
- Imidazole: 1,3-Diaza-2,4-cyclopentadiene
- GST: Glutathione S-transferase
- LDH: Lactate Dehydrogenase
- MES: 2-Morpholinoethanesulfonic acid

PEG: Polyethylene glycol

Phenix: Python-based Hierarchical Environment for Integrated Xtallography

Pi: Inorganic Phosphate

PK: Pyruvate Kinase

RMSD: root mean square deviation

SDS-PAGE: Sodium dodecyl sulfate- Polyacrylamide Gel Electrophoresis

SPR: Surface Plasmon Resounance

TEV: Tobacco Etch Virus

Tris: Tris (hydroxymethyl) aminomethane

XDS: X-ray Detector Software