Identification of tumor suppressive genes regulated by *miR-31-5p* and *miR-31-3p* in head and neck squamous cell carcinoma
(頭頸部扁平上皮癌における癌促進型マイクロRNA(*miR-31-5p* および *miR-31-3p*)が制御する癌抑制型遺伝子の探索)

千葉大学大学院医学薬学府

先端医学薬学専攻

(主任:鵜澤 一弘 教授)

大島 早智

Abstract

We identified the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC) tissues by RNA sequencing, in which 168 miRNAs were significantly upregulated, including both strands of the miR-31 duplex (miR-31-5p and miR-31-3p). The aims of this study were to identify networks of tumor suppressor genes regulated by miR-31-5p and miR-31-3p in HNSCC cells. Our functional assays showed that inhibition of miR-31-5p and miR-31-3p attenuated cancer cell malignant phenotypes (cell proliferation, migration, and invasion), suggesting that they had oncogenic potential in HNSCC cells. Our in silico analysis revealed 146 genes regulated by miR-31 in HNSCC cells. Among these targets, the low expression of seven genes (miR-31-5p targets: CACNB2 and IL34; miR-31-3p targets: CGNL1, CNTN3, GAS7, HOPX, and PBX1) was closely associated with poor prognosis in HNSCC. According to multivariate Cox regression analyses, the expression levels of five of those genes (*CACNB2*: *p* = 0.0189; *IL34*: *p* = 0.0425; *CGNL1*: *p* = 0.0014; *CNTN3*: *p* = 0.0304; and GAS7: p = 0.0412) were independent prognostic factors in patients with HNSCC. Our miRNA signature and miRNA-based approach will provide new insights into the molecular pathogenesis of HNSCC.

Keywords:

HNSCC

miR-31-5p

miR-31-3p

microRNA

oncogenic miRNA

tumor suppressor

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) arises from the oral cavity, larynx, or pharynx and is ranked the sixth most common cancer [1,2]. In 2018, approximately 84,000 cases of HNSCC were newly diagnosed, and more than 43,000 people died of this disease worldwide [3]. Surgery, radiation therapy, and cisplatinbased chemotherapy are the main treatment strategies for head and neck cancers. At the time of the initial diagnosis, most patients have advanced-stage disease and a poor prognosis (5-year survival rate < 60%) due to lymph node metastasis or recurrence [1]. In addition, cancer cells acquire resistance to cisplatin-based treatment, and the prognosis of patients who fail treatment is extremely poor [4]. The therapeutic effects of molecular-targeted drugs and immune checkpoint inhibitors in patients after treatment failure are poorly understood [5,6].

The Human Genome Project revealed that an extremely large number of noncoding RNAs (ncRNAs) are transcribed from the human genome, and these ncRNAs function in both normal and diseased cells [7,8]. Among ncRNAs, microRNAs (miRNAs) are endogenous single-stranded RNA molecules 19–22 nucleotides long that function as fine tuners of RNA expression in a sequence-dependent manner [9,10]. A unique feature of miRNAs is that a single miRNA negatively regulates a vast number of

4

RNA transcripts (both protein-coding RNAs and ncRNAs) in each cell [10]. Moreover, bioinformatic studies have shown that more than half of protein-coding genes are controlled by miRNAs [11]. Numerous studies have indicated that aberrantly expressed miRNAs disrupt the tightly controlled RNA networks in normal cells, and these events trigger transformation to a disease state [12,13]

Identification of differentially expressed miRNAs in the cancer tissues of interest is the initial step. The latest RNA sequencing technology has successfully resulted in identification of miRNA expression signatures in cancer tissues. Our HNSCC miRNA signature revealed that both strands of the *miR-31* duplex (*miR-31-5p* and *miR-31-3p*) are upregulated in cancer tissues. Numerous cohort data from The Cancer Genome Atlas (TCGA) confirmed that *miR-31-5p* and *miR-31-3p* are upregulated in HNSCC tissues. The aim of this study was to investigate the oncogenic roles of these miRNA strands and to identify their tumor suppressor gene targets in HNSCC cells.

Identification of differentially expressed miRNAs and their regulated molecular networks may be an effective strategy for elucidating the molecular pathogenesis of HNSCC.

2. Results

2.1. Identification of the miRNA expression signature of HNSCC by RNA

sequencing

Six cDNA libraries (derived from three HNSCC tissues and three normal oral epithelial tissues) were analyzed by RNA sequencing. After a trimming procedure, 955,347–1,927,436 reads were successfully mapped to the human miRNAs (Table S1). The clinical features of the HNSCC specimens using in this study are summarized in Table S2.

A total of 168 miRNAs were identified as upregulated (log2 fold change > 1.5) in HNSCC tissues (Figure 1A and Table S3).

2.2. Expression levels and clinical significance of *miR-31-5p* and *miR-31-3p* in HNSCC

We focused on miRNAs of which both strands (the guide strand and passenger strand) derived from pre-miRNAs were upregulated in this signature. A total of 7 premiRNAs (*miR-31*, *miR-223*, *miR-4655*, *miR-4781*, *miR-6753*, *miR-6830*, *and miR-6871*) were detected in this signature (Figure 1A and Table S3). From TCGA-HNSC database analysis, it was confirmed that *miR-31* is the only miRNA whose expression of both strands were significantly upregulated in HNSCC tissues among 7 pre-miRNAs (Figure 1B). The expression of neither miRNA was associated with worse overall survival rates in patients with HNSCC according to analysis of TCGA-HNSC data (Figure 1C).

In this study, we focused on *miR-31-5p* and *miR-31-3p*, and continued to investigate the functional aspects of these miRNAs.

2.3. Effects of inhibition of *miR-31-5p* and *miR-31-3p* expression on the proliferation, migration, and invasion of HNSCC cells

First, we measured the expression levels of m*iR-31-5p* and *miR-31-3p* in 11 HNSCC cell lines compared with fibroblast cell lines (IMR-90 and MRC-5). Detailed information on the cell lines used is shown in the Table S4. Overexpression of *miR-31-5p* and *miR-31-3p* was detected in several HNSCC cell lines, e.g., Ca9-22, HSC-2, HSC-4, and SAS (Figure S1), relative to fibroblasts. We selected two of these HNSCC cell lines, SAS and HSC-2, to investigate the oncogenic roles of these miRNAs. To suppress the expression of *miR-31-5p* and *miR-31-3p*, we used inhibitors (Anti-miRTM miRNA Inhibitor) of these miRNAs. The inhibitors were used at a concentration of 30 nM. To evaluate their effects in functional assays, we confirmed the expression of *miR-31-5p* and *miR-31-3p* after transfection of inhibitors into SAS and HSC-2 cells (Figure S2). Inhibition of *miR-31-5p* and *miR-31-3p* attenuated the proliferation (Figure 2A and Figure S3) and markedly decreased the migration and invasion (Figures 2B, 2C and Figure S4) of SAS and HSC-2 cells. These data suggest that upregulation of *miR-31-5p and miR-31-3p* has an oncogenic effect in HNSCC cells.

2.4. Screening of *miR-31-5p* and *miR-31-3p* targets in HNSCC cells

Based on our hypothesis that miR-31-5p and miR-31-3p regulate tumor suppressor genes in HNSCC cells, we screened miR-31-5p and miR-31-3p target genes using *in silico* analyses and our gene expression data (GEO accession no. GSE172120). Our strategy for identifying miR-31-5p/miR-31-3p gene targets is shown in Figure 3.

Analysis of the TargetScan database revealed that 477 genes and 2,387 genes had putative *miR-31-5p* and *miR-31-3p* binding sites, respectively, within their 3'-UTR [14]. Next, we compared these genes with those downregulated in HNSCC clinical tissues, and 146 genes were shared between the data sets (24 and 122 genes were *miR-31-5p* and *miR-31-3p* targets, respectively and they are summarized in Table 1). Furthermore, we performed a clinicopathological analysis of these candidate genes using data from TCGA-HNSC. Seven genes (*CACNB2, IL34, CGNL1, CNTN3, GAS7, HOPX,* and *PBX1*) regulated by *miR-31-5p* and *miR-31-3p* were identified as putative tumor suppressors. Of these genes, five (*CACNB2*, *IL34*, *CGNL1*, *CNTN3*, and *GAS7*) were identified as independent prognostic factors by multivariate analysis.

2.5. Clinical significance of *miR-31-5p* and *miR-31-3p* targets in HNSCC cells Among the 146 *miR-31-5p* and *miR-31-3p* gene targets, the low expression of seven (CACNB2: p = 0.0018; IL34: p = 0.0031; CGNL1: p = 0.0012; CNTN3: p = 0.0061;GAS7: p = 0.0093; HOPX: p = 0.0345; and PBX1: p = 0.0247) significantly predicted a worse prognosis in patients with HNSCC by Kaplan–Meier analysis (Figures 4 and 5). Notably, multivariate Cox regression analyses revealed that the expression levels of five of those genes (CACNB2: p = 0.0189; IL34: p = 0.0425; CGNL1: p = 0.0014; CNTN3: p= 0.0304; and GAS7: p = 0.0412) were independent prognostic factors in patients with HNSCC (Figure 6). Moreover, expression negative correlation between *miR-31* and their target genes were investigated by TCGA-HNSC database (Figure 7).

2.6. Direct Regulation of CGNL1 by miR-31-3p in HNSCC Cells

We focused on *CGNL1*, which has the most significant difference in clinical statistics, from among the five target genes of *miR-31-5p* and *miR-31-3p*, and verified the direct

regulation of *CGNL1* by *miR-31-3p*. In cells transfected with *miR-31-3p*, the levels of *CGNL1* mRNA and CGNL1 protein were significantly lower than in mock- or miR-control-transfected cells (Figure 8 A, B).

We performed dual-luciferase reporter assays to determine whether *CGNL1* was directly regulated by miR-31-3p. We used vectors encoding the partial wild-type sequences of the 3' -UTR of *CGNL1* and vector with partially deleted *CGNL1* 3' - UTR (Figure 8C). We found that luciferase activity was significantly decreased by cotransfection with miR-31-3p and the vector carrying the wild-type 3' -UTR of *CGNL1*, whereas transfection with the deletion vector blocked the decrease in luminescence in SAS cells (Figure 8D). These data showed that miR-31-3p directly bound to *CGNL1*.

3. Discussion

The latest RNA-sequencing technologies have enabled identification of genomewide miRNA expression signatures in human cancers. Our recent studies of miRNA signatures revealed that the passenger strands of some miRNA duplexes, such as *miR-99a-3p*, *miR-145-3p*, *miR-150-3p* and *miR-199a-3p*, act as tumor suppressors by directly targeting several oncogenes in HNSCC cells [15–18]. The original theory regarding miRNA biogenesis is that the guide strand of the miRNA duplex is incorporated into the RNA-induced silencing complex and functions as a negative regulator of gene expression, whereas the passenger strand is degraded in the cytoplasm and nonfunctional [10,11]. However, numerous in silico studies (involving over 5,200 patients with 14 types of cancers) have shown that both strands (5p and 3p) of some miRNA duplexes (e.g., *miR-30a, miR-139, miR-143,* and *miR-145)* function together to regulate pivotal targets and pathways in several types of cancers [19]. Studies on the passenger strands of miRNAs will reveal novel molecular mechanisms of cancer pathogenesis.

In this study, we focused on *miR-31-5p* and *miR-31-3p* based on our miRNA signatures. Upregulation of *miR-31-5p* and *miR-31-3p* in HNSCC tissues was confirmed by TCGA data analysis. Our functional assays indicated that these miRNAs act as oncogenic miRNAs in HNSCC cells. Previous studies demonstrated that *miR-31* has opposing roles (oncogene vs. tumor suppressor) depending on the type of cancer [20]. In esophageal squamous cell carcinoma, *miR-31* was upregulated in clinical specimens and acted as an oncogenic miRNA by targeting the tumor suppressor gene *LATS2*, which is involved in the Hippo pathway [21]. Upregulation of *miR-31* was reported in HNSCC tissues, and its expression activated the hypoxia-inducible factor pathway by

11

targeting factor-inhibiting hypoxia-inducible factor [22,23]. Signaling via epidermal growth factor and its receptor is an essential oncogenic pathway in HNSCC and oral squamous cell carcinoma (OSCC), and this signaling pathway enhanced AKT activation and upregulated C/EBP β expression in OSCC [24]. These events induced upregulation of *miR-31* in OSCC cells [24]. Interestingly, a previous study showed that exogenous expression of *miR-31* and telomerase reverse transcriptase transformed normal oral keratinocytes into immortalized cells [25]. Those previous and our present results indicate that upregulation of *miR-31* downregulates genes/pathways intricately involved in malignant transformation of HNSCC and OSCC.

Our other aim was to clarify the novel molecular pathways regulated by *miR-31-5p* and *miR-31-3p* in HNSCC cells. Our *in silico* analysis revealed that five genes (*CACNB2, IL34, CGNL1, CNTN3,* and *GAS7*) are closely associated with HNSCC molecular pathogenesis. Functional analyses of these genes are needed to reveal the molecular mechanisms of HNSCC malignant phenotypes.

Of the five genes, *GAS7* was initially cloned from serum-starved mouse NIH3T3 cells, and it consists of a series of different functional domains from the N- to C-termini: Src homology 3 domain, WW domain, and FES-CIP4 homology domain [26]. *GAS7* regulates the dynamic activities of the membrane, actin cytoskeleton, and microtubules [26,27]. Downregulation of *GAS7* has been reported in several cancer types, and ectopic expression of *GAS7* inhibited the migration of lung and breast cancer cells [28]. More recently, it was reported that loss of *GAS7* expression accelerated metastasis of neuroblastoma harboring *MYCN* overexpression or amplification [29]. Previous studies indicated that *GAS7* acts as a tumor suppressor in human cancers.

Analysis of TCGA data showed that *IL34* is downregulated in HNSCC tissues, and its low expression significantly predicts a poor prognosis in patients with HNSCC. *IL34* stimulates the differentiation of monocytes into macrophages via the CSF-1 receptor [30]. *IL34* is also a ligand of the macrophage colony stimulating factor receptor [31]. Recent studies showed that *IL34* is expressed in various types of cancers and is involved in cancer progression and metastasis [32]. In the future, it is necessary to investigate the functional significance of *IL34* in HNSCC.

CGNL1 is a paralogue of cingulin, which is ubiquitously expressed in endothelial cells and localized at tight junctions [33,34]. A previous study showed that cingulin binds to actin filament bundles to bridge tight junctions and actin filaments [35]. *CGNL1* is localized on actin filament bundles and has multiple roles depending on its binding partner [35]. Previous reports showed that *CGNL1* is an inhibitor of RhoA activity in tight junctions but is also involved in Rac1 activation in Madin–Darby canine

13

kidney epithelial cells [36,37]. *CGNL1* likely has various functions by interacting with different types of GEFs and GAPs in each cell. Few detailed functional analyses of *CGNL1* have been performed in cancer cells. Expression of *CGNL1* was downregulated in HNSCC tissues compared with normal epithelial tissues in numerous TCGA datasets. GEPIA2 database (http://gepia2.cancer-pku.cn/#index accessed on 20 April, 2021) analyses showed that expression of *CGNL1* was significantly downregulated in cervical squamous cell carcinoma, esophageal carcinoma, and lung squamous cell carcinoma, suggesting that *CGNL1* plays a tumor suppressor role in HNSCC cells [38]. Sufficient functional analysis of *CGNL1* in HNSCC remains unresolved in this study. By clarifying the tumor suppressive function of this gene in the future, a part of the molecular mechanism of HNSCC will be clarified.

We newly created the miRNA expression signature of HNSCC by RNA sequencing. Analysis of the signature revealed that both strands of pre-*miR-31* (the guide strand of *miR-31-5p* and the passenger strand of *miR-31-3p*) acted as oncogenic miRNAs in HNSCC cells. Our *in silico* analysis showed that a total of 5 genes (*CACNB2, IL34, CGNL1, CNTN3,* and *GAS7*) were independent prognostic factors in patients with HNSCC. Our HNSCC miRNA signature and miRNA-based analyses will

14

provide important insights into the molecular pathogenesis of HNSCC.

4. Materials and Methods

4.1. Clinical HNSCC and Normal Epithelial Tissue Specimens and HNSCC Cell Lines

Six specimens (three HNSCC tissues and three normal oral epithelial tissues) were analyzed by RNA sequencing to determine the HNSCC miRNA signature. The clinical features of HNSCC patients are summarized in Table S2.

All specimens used were obtained by surgical resection at Chiba University Hospital. All patients provided written informed consent for the use of their specimens. This study was approved by the Bioethics Committee of Chiba University (approval number: 28–65, 10 February, 2015).

Two human HNSCC cell lines (HSC-2 and SAS) were obtained from the RIKEN BioResource Center (Tsukuba, Ibaraki, Japan) and used in this study.

4.2. Determination of the miRNA Expression Signature in HNSCC by RNA Sequencing

Small RNAs were sequenced to determine the miRNA expression signature of

HNSCC. The RNA sequencing procedure was described in our previous studies [39–42].

4.3. RNA Extraction and Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR)

RNA was extracted from clinical specimens and cell lines [15–18] and subjected to qRT-PCR for miRNA expression analysis [15–18] as described previously. The TaqMan probes, primers used in this study are listed in Table S5.

4.4. Transfection of Mirnas Precursors and Inhibitors into HNSCC Cells

The procedures used for transfection of miRNA precursors and inhibitors into HNSCC cells have been described previously [15–18]. The reagents used in this study are listed in Table S5.

4.5. Functional Assays (Cell Proliferation, Migration, and Invasion) in HNSCC

Cells

The procedures used for the functional assays in cancer cells (proliferation, migration, and invasion) have been described in our previous studies [15–18]. Cells

were transfected with 30 nM miRNA inhibitors. Cell proliferation was evaluated by XTT assay. Migration assays were performed using uncoated transwell polycarbonate membrane filters, and invasion assays were conducted using modified Boyden chambers.

4.6. Analysis of the Clinical Significance of HNSCC Patients Using TCGA-HNSC Data

The strategy used to identify miRNA target genes is presented in Figure 3. We selected putative target genes with *miR-31-5p* and *miR-31-3p* binding sites using TargetScanHuman ver. 7.2 (http://www.targetscan.org/vert_72/; data were downloaded on 10 July 2020). The expression profiles of HNSCC clinical specimens (genes downregulated in HNSCC tissues) were used for screening miRNA target genes[14]. Our expression data were deposited in the GEO database (accession number: GSE172120). Furthermore, we narrowed down the candidate genes by factoring in clinical information from TCGA-HNSC analyses.

For the Kaplan–Meier survival analysis, we downloaded TCGA-HNSC clinical data (TCGA, Firehose Legacy) from cBioportal (https://www.cbioportal.org) on 10 April, 2020. Gene expression data for each gene were collected from OncoLnc

(http://www.oncolnc.org accessed on 20 April, 2021) [43]. For the log-rank test, we used R ver. 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria), and "survival" and "survminer" packages.

Multivariate Cox regression analyses were also performed using TCGA-HNSC clinical data and survival data according to the expression level of each gene from OncoLnc to identify factors associated with HNSCC patient survival [43]. In addition to gene expression, the tumor stage, pathological grade, and age were evaluated as potential independent prognostic factors. The multivariate analyses were performed using JMP Pro 15.0.0 (SAS Institute Inc., Cary, NC, USA).

4.7. Western Blotting

Cell lysates were prepared 48 h after transfection with RIPA buffer (Nacalai Tesque, Chukyo-ku, Kyoto, Japan). Then, 20 µg of protein lysates were separated on 4–12% Bis-Tris gel and transferred to nitrocellulose membranes (Invitrogen, Carlsbad, CA) and blocked for 1 hour at room temperature with Blocking One (Nacalai Tesque, Inc., Kyoto, Japan). The antibodies used in this study are shown in Table S5.

4.8. Plasmid Construction and Dual-Luciferase Reporter Assays

The partial wild-type sequence of the *CGNL1* 3'-untranslated region (3'-UTR) was inserted between the XhoI-PmeI restriction sites in the 3'-UTR of the hRluc gene in the psiCHECK-2 vector (C8021; Promega, Madison, WI, USA). Alternatively, we used sequences that were missing the *miR-31-3p* target sites. The synthesized DNA was cloned into the psiCHECK-2 vector. SAS cells were transfected with 50 ng of the vector, 10 nM microRNAs, and 0.5 µl Lipofectamine 2000 in 50 µl Opti-MEM (both from Invitrogen, Carlsbad,CA).

4.9. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 7 (GraphPad Software, La Jolla, CA, USA) and JMP Pro 15 (SAS Institute Inc., Cary, NC, USA). Dunnet's test were used for multiple group comparisons. For correlation analyses, Spearman's test was applied. A *p* value less than 0.05 was considered statistically significant. Bar graphs (Figure 2, 8A, 8D, S1 and S2) showed mean value and standard error.

5. Conclusions

In this study, we focused on *miR-31-5p* and *miR-31-3p* based on our miRNA signatures. Our functional assays indicated that these miRNAs play an oncogenic role in

HNSCC cells. Using in silico database analysis to identify gene targets regulated by *miR-31-5p and miR-31-3p*, we rapidly identified candidate tumor suppressor genes in HNSCC. Our HNSCC miRNA signature and miRNA-based analyses will provide important insights into the molecular pathogenesis of HNSCC.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the Decla ration of Helsinki, and approved by the Bioethics Committee of Chiba University (approval number: 28–65, 10 February, 2015).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Our expression data were deposited in the GEO database (accession number: GSE172120).

Acknowledgments: The results shown here are in part based upon data generated by

the TCGA Research Network: https://www.cancer.gov/tcga.

Conflicts of Interest: The author declare no conflict of interest.

Citations

This doctoral dissertation was written with citations from our papers published in

International Journal of Molecular Sciences [44].

References

- 1. Leemans, C. R.; Braakhuis, B. J.; Brakenhoff, R. H., The molecular biology of head and neck cancer. Nat. Rev. Cancer 2011, 11, 9-22.
- Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal., A., Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7-33.
- 3. Chow, L. Q. M., Head and Neck Cancer. N. Engl. J. Med. 2020, 382, 60-72.
- Bonner, J. A.; Harari, P. M.; Giralt, J.; Cohen, R. B.; Jones, C. U.; Sur, R. K.; Raben, D.; Baselga, J.; Spencer, S. A.; Zhu, J et al., Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010, 11, 21-8.
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.C.; et al.Nivolumab for recurrent squamous-cell carcinoma of the head and neck. Br. Dent. J. 2016, 221, 632.
- Hsieh, J. C.; Wang, H. M.; Wu, M. H.; Chang, K. P.; Chang, P. H.; Liao, C. T.; Liau, C. T., Review of emerging biomarkers in head and neck squamous cell carcinoma in the era of immunotherapy and targeted therapy. Head Neck 2019, 41 Suppl 1, 19-45.
- Betel, D.; Wilson, M.; Gabow, A.; Marks, D. S.; Sander, C., The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008, 36, (Database issue), D149-53.
- Anfossi, S.; Babayan, A.; Pantel, K.; Calin, G. A., Clinical utility of circulating noncoding RNAs - an update. Nat. Rev. Clin. Oncol. 2018, 15, 541-563.

- Krek, A.; Grün, D.; Poy, M. N.; Wolf, R.; Rosenberg, L.; Epstein, E. J.; MacMenamin, P.; da Piedade, I.; Gunsalus, K. C.; Stoffel, M et al., Combinatorial microRNA target predictions. Nat. Genet. 2005, 37,495-500.
- Gebert, L. F. R.; MacRae, I. J., Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019, 20, 21-37.
- Ha, M.; Kim, V. N., Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509-24.
- 12. Rupaimoole, R.; Slack, F. J., MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16,203-222.
- Iorio, M. V.; Croce, C. M., MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 2012, 4, 43-59.
- Agarwal, V.; Bell, G. W.; Nam, J. W.; Bartel, D. P., Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015, 4.
- Okada, R.; Koshizuka, K.; Yamada, Y.; Moriya, S.; Kikkawa, N.; Kinoshita, T.; Hanazawa, T.; Seki, N., Regulation of Oncogenic Targets by miR-99a-3p (Passenger Strand of miR-99a-Duplex) in Head and Neck Squamous Cell Carcinoma. Cells 2019, 8, 1535.
- Yamada, Y.; Koshizuka, K.; Hanazawa, T.; Kikkawa, N.; Okato, A.; Idichi, T.; Arai, T.; Sugawara, S.; Katada, K.; Okamoto, Y et al., Passenger strand of miR-145-3p acts as a tumor-suppressor by targeting MYO1B in head and neck squamous cell carcinoma. Int. J. Oncol. 2018, 52, 166-178.
- Koshizuka, K.; Hanazawa, T.; Kikkawa, N.; Katada, K.; Okato, A.; Arai, T.; Idichi,
 T.; Osako, Y.; Okamoto, Y.; Seki, N., Antitumor miR-150-5p and miR-150-3p

inhibit cancer cell aggressiveness by targeting SPOCK1 in head and neck squamous cell carcinoma. Auris Nasus Larynx 2018, 45, 854-865.

- Koshizuka, K.; Hanazawa, T.; Kikkawa, N.; Arai, T.; Okato, A.; Kurozumi, A.; Kato, M.; Katada, K.; Okamoto, Y.; Seki, N., Regulation of ITGA3 by the anti-tumor miR-199 family inhibits cancer cell migration and invasion in head and neck cancer. Cancer Sci. 2017, 108, 1681-1692.
- 19. Mitra, R.; Adams, C. M.; Jiang, W.; Greenawalt, E.; Eischen, C. M., Pan-cancer analysis reveals cooperativity of both strands of microRNA that regulate tumorigenesis and patient survival. Nat Commun 2020, 11, 968.
- Yu, T.; Ma, P.; Wu, D.; Shu, Y.; Gao, W., Functions and mechanisms of microRNA-31 in human cancers. Biomed. Pharmacother. 2018, 108, 1162-1169.
- 21. Gao, Y.; Yi, J.; Zhang, K.; Bai, F.; Feng, B.; Wang, R.; Chu, X.; Chen, L.; Song, H., Downregulation of MiR-31 stimulates expression of LATS2 via the hippo pathway and promotes epithelial-mesenchymal transition in esophageal squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2017, 36, 161.
- Liu, C. J.; Tsai, M. M.; Hung, P. S.; Kao, S. Y.; Liu, T. Y.; Wu, K. J.; Chiou, S. H.; Lin, S. C.; Chang, K. W., miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res. 2010, 70, 1635-44.
- Zhu, B.; Cao, X.; Zhang, W.; Pan, G.; Yi, Q.; Zhong, W.; Yan, D., MicroRNA-31-5p enhances the Warburg effect via targeting FIH. FASEB J. 2019, 33, 545-556.
- 24. Lu, W. C.; Kao, S. Y.; Yang, C. C.; Tu, H. F.; Wu, C. H.; Chang, K. W.; Lin, S. C., EGF up-regulates miR-31 through the C/EBPβ signal cascade in oral carcinoma. PLoS One 2014, 9, e108049.

- 25. Hung, P. S.; Tu, H. F.; Kao, S. Y.; Yang, C. C.; Liu, C. J.; Huang, T. Y.; Chang, K. W.; Lin, S. C., miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes. Carcinogenesis 2014, 35, 1162-71.
- 26. She, B. R.; Liou, G. G.; Lin-Chao, S., Association of the growth-arrest-specific protein Gas7 with F-actin induces reorganization of microfilaments and promotes membrane outgrowth. Exp. Cell Res. 2002, 273, 34-44.
- Gotoh, A.; Hidaka, M.; Hirose, K.; Uchida, T., Gas7b (growth arrest specific protein 7b) regulates neuronal cell morphology by enhancing microtubule and actin filament assembly. J. Biol. Chem. 2013, 288, 34699-706.
- 28. Tseng, R. C.; Chang, J. W.; Mao, J. S.; Tsai, C. D.; Wu, P. C.; Lin, C. J.; Lu, Y. L.; Liao, S. Y.; Cheng, H. C.; Hsu, H. S et al., Growth-arrest-specific 7C protein inhibits tumor metastasis via the N-WASP/FAK/F-actin and hnRNP U/β-TrCP/β-catenin pathways in lung cancer. Oncotarget 2015, 6, 44207-21.
- 29. Dong, Z.; Yeo, K. S.; Lopez, G.; Zhang, C.; Dankert Eggum, E. N.; Rokita, J. L.; Ung, C. Y.; Levee, T. M.; Her, Z. P.; Howe, C. J et al., GAS7 Deficiency Promotes Metastasis in MYCN-driven Neuroblastoma. Cancer Res. 2021.
- Wang, T.; Kono, T.; Monte, M. M.; Kuse, H.; Costa, M. M.; Korenaga, H.; Maehr, T.; Husain, M.; Sakai, M.; Secombes, C. J., Identification of IL-34 in teleost fish: differential expression of rainbow trout IL-34, MCSF1 and MCSF2, ligands of the MCSF receptor. Mol. Immunol. 2013, 53, 398-409.
- Ushach, I.; Zlotnik, A., Biological role of granulocyte macrophage colonystimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J. Leukoc. Biol. 2016, 100, 481-9.

- Lelios, I.; Cansever, D.; Utz, S. G.; Mildenberger, W.; Stifter, S. A.; Greter, M., Emerging roles of IL-34 in health and disease. J. Exp. Med. 2020, 21.
- Van Itallie, C. M.; Anderson, J. M., Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 2014, 36, 157-65.
- 34. Chrifi, I.; Hermkens, D.; Brandt, M. M.; van Dijk, C. G. M.; Bürgisser, P. E.; Haasdijk, R.; Pei, J.; van de Kamp, E. H. M.; Zhu, C.; Blonden, L et al., Cgnl1, an endothelial junction complex protein, regulates GTPase mediated angiogenesis. Cardiovasc. Res. 2017, 113, 1776-1788.
- 35. Paschoud, S.; Guillemot, L.; Citi, S., Distinct domains of paracingulin are involved in its targeting to the actin cytoskeleton and regulation of apical junction assembly. J. Biol. Chem. 2012, 287, 13159-69.
- Citi, S.; Guerrera, D.; Spadaro, D.; Shah, J., Epithelial junctions and Rho family GTPases: the zonular signalosome. Small GTPases 2014, 5, 1-15.
- Guillemot, L.; Paschoud, S.; Jond, L.; Foglia, A.; Citi, S., Paracingulin regulates the activity of Rac1 and RhoA GTPases by recruiting Tiam1 and GEF-H1 to epithelial junctions. Mol. Biol. Cell 2008, 19, 4442-53.
- 38. Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z., GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019, 47, (W1), W556-w560.
- 39. Koshizuka, K.; Nohata, N.; Hanazawa, T.; Kikkawa, N.; Arai, T.; Okato, A.; Fukumoto, I.; Katada, K.; Okamoto, Y.; Seki, N., Deep sequencing-based microRNA expression signatures in head and neck squamous cell carcinoma: dual strands of premiR-150 as antitumor miRNAs. Oncotarget 2017, 8, 30288-30304.

- 40. Toda, H.; Kurozumi, S.; Kijima, Y.; Idichi, T.; Shinden, Y.; Yamada, Y.; Arai, T.; Maemura, K.; Fujii, T.; Horiguchi, J et al., Molecular pathogenesis of triple-negative breast cancer based on microRNA expression signatures: antitumor miR-204-5p targets AP1S3. J. Hum. Genet. 2018, 63, 1197-1210.
- Toda, H.; Seki, N.; Kurozumi, S.; Shinden, Y.; Yamada, Y.; Nohata, N.; Moriya, S.; Idichi, T.; Maemura, K.; Fujii, T.; Horiguchi, J.; et al.,RNA-sequence-based microRNA expression signature in breast cancer: tumor-suppressive miR-101-5p regulates molecular pathogenesis. Mol. Oncol. 2020, 14, 426-446.
- Wada, M.; Goto, Y.; Tanaka, T.; Okada, R.; Moriya, S.; Idichi, T.; Noda, M.; Sasaki, K.; Kita, Y.; Kurahara, H et al.,RNA sequencing-based microRNA expression signature in esophageal squamous cell carcinoma: oncogenic targets by antitumor miR-143-5p and miR-143-3p regulation. J. Hum. Genet. 2020, 65, 1019-1034.
- Anaya, J., OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs.
 Peerj Comput Sci 2016.
- 44. Oshima, S.; Asai, S.; Seki, N.; Minemura, C.; Kinoshita, T.; Goto, Y.; Kikkawa, N.; Moriya, S.; Kasamatsu, A.; Hanazawa, T.; Uzawa, K., Identification of Tumor Suppressive Genes Regulated by miR-31-5p and miR-31-3p in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021, 22, (12).

Figure legends

Figure 1. Clinical significance of *miR-31-5p* and *miR-31-3p* expression in HNSCC clinical specimens.

(A) Heat maps of the 168 upregulated miRNAs in HNSCC clinical specimens. The color scale was based on Z-score of miRNA-seq expression data. (B) Expression levels of *miR-31-5p* and *miR-31-3p* were evaluated using TCGA-HNSC data. (C) Kaplan–Meier survival analyses of HNSCC patients using data from TCGA-HNSC. Patients were divided into two groups according to the median miRNA expression level: high and low expression groups. The red and blue lines represent the high and low expression groups, respectively [44].

Figure 2. Functional assays of *miR-31-5p* and *miR-31-3p* in HNSCC cell lines (SAS and HSC-2).

(A) Cell proliferation was assessed using XTT assays at 72 h after the inhibitor transfection. (B) Cell migration was assessed using a membrane culture system at 48 h after seeding the inhibitor-transfected cells into the chambers. (C) Cell invasion was determined using Matrigel invasion assays at 48 h after seeding the inhibitor-transfected cells into the chambers [44].

Figure 3. Flow chart of the strategy used to identify putative tumor suppressor genes regulated by *miR-31-5p* and *miR-31-3p* in HNSCC cells [44].

Figure 4. Expression levels of seven target genes (*CACNB2, IL34, CGNL1, CNTN3, GAS7, HOPX,* and *PBX1*) in HNSCC clinical specimens from TCGA-HNSC. All genes were found to be downregulated in HNSCC tissues (n = 518) compared with normal tissues (n = 44) [44].

Figure 5. Clinical significance of seven target genes (*CACNB2, IL34, CGNL1, CNTN3, GAS7, HOPX*, and *PBX1*) according to TCGA-HNSC data analysis.

(A) Kaplan–Meier curves of the 5-year overall survival rate according to the expression of each gene are presented. Low expression of all seven genes was significantly predictive of a worse prognosis in patients with HNSCC. Patients were divided into two groups according to the median miRNA expression level: high and low expression groups. The red and blue lines represent the high and low expression groups, respectively. (B) Kaplan–Meier curves of the 5-year disease free survival rate according to the expression of each gene are presented. Low expression of six genes other than *CACNB2* was significantly predictive of a worse prognosis in patients with HNSCC [44].

Figure 6. Forest plot showing the multivariate analysis results for the five target genes (*CACNB2, IL34, CGNL1, CNTN3*, and *GAS7*) identified by analysis of TCGA-HNSC data.

The multivariate analysis determined that the expression levels of five genes were independent prognostic factors in terms of the 5-year overall survival rate after the adjustment for tumor stage, age, and pathological stage (p < 0.05) [44].

Figure 7. Expression correlation between *miR-31* and their target genes in HNSCC clinical specimens.

Spearman's rank test indicated negative correlations of miR-31-5p expression with their targets (*CACNB2/miR-31-5p*: p < 0.001, r = -0.3748; *IL34/miR-31-5p*: p < 0.001, r = -0.5296). Similarly, negative correlations were detected in miR-31-3p expression with their targets (*CGNL1/miR-31-3p*: p < 0.001, r = -0.5145; *CNTN3/miR-31-3p*: p < 0.001, r = -0.3601; *GAS7/miR-31-3p*: p < 0.001, r = -0.3170) [44]. **Figure 8.** Expression of *CGNL1* was regulated directly by *miR-31-3p* in HNSCC cells. (A) Expression of *CGNL1* mRNA was significantly suppressed in *miR-31-3p* transfected SAS cells (48 h after transfection). (B) Expression of CGNL1 protein was reduced in *miR-31-3p*-transfected HNSCC cells (48 h after transfection). GAPDH was used as a loading control. (C) The Target Scan Human database predicted one putative *miR-31-3p*-binding site in the 3'-UTR of *CGNL1* [14]. (D) Dual-luciferase reporter assays showed decreased luminescence activity in SAS cells co-transfected with *miR-31-3p* together with a vector harboring the "wild-type". Normalized data were calculated as Renilla/firefly luciferase activity ratios [44].

Supplementary Figure 1. Up-regulation of *miR-31-5p/-3p* in HNSCC cell lines To investigate the status of the *miR-31-5p/-3p* expression as a cancer-related miRNAs, we conducted qRT-PCR analysis with 11 HNSCC-derived cell lines and 2 Fibroblast cell lines(IMR-90 and MRC-5). *miR-31-5p/-3p* expression was up-regulated significantly in HNSCC-derived cell lines other than FaDu and HO-1-u-1 compared with the IMR-90 [44].

Supplementary Figure 2. Effects of transfection with inhibitor

In cells transfected with *miR-31-5p/-3p* inhibitor, the expression levels *of miR-31-5p* and *miR-31-3p* were significantly lower than in mock- or miR-control-transfected cells [44].

Supplementary Figure 3. Proliferation assay with inhibitor

To evaluate the effect of *miR-31-5p/3p* inhibition on cellular proliferation, we analyzed cellular growth in and *miR-31-5p/3p* inhibit cells, mock cells and negative control cells. These cells were seeded in 6-well plates at a density of 5×10^4 viable cells. At the indicated time points, the cells were trypsinized and counted in triplicate using the cell counter(Thermo Fisher Scientific) The number of cells was counted for each hour. All experiments were carried out in triplicate. *p < 0.05 [44].

Supplementary Figure 4. Photomicrographs of migration and invasion assay following *miR-31-5p/3p* inhibitor transfection into HNSCC cells.

Inhibition of *miR-31-5p* and *miR-31-3p* attenuated the markedly decreased the migration and invasion of SAS and HSC-2 cells. [44].

		А		
Entrez	Cours South 1	Com Norre	Fold Change	Total
Gene ID	Gene Symbol	Gene Name	(log2 <-2.0)	sites
5563	PRKAA2	protein kinase, AMP-activated, alpha 2 catalytic subunit	-4.56	1
83699	SH3BGRL2	SH3 domain binding glutamate-rich protein like 2	-4.45	1
6517	SLC2A4	solute carrier family 2 (facilitated glucose transporter), member 4	-4.29	1
2252	FGF7	fibroblast growth factor 7	-3.81	1
55607	PPP1R9A	protein phosphatase 1, regulatory subunit 9A	-3.73	1
5549	PRELP	proline/arginine-rich end leucine-rich repeat protein	-3.66	2
5083	PAX9	paired box 9	-3.62	1
26084	ARHGEF26	Rho guanine nucleotide exchange factor (GEF) 26	-3.58	1
252995	FNDC5	fibronectin type III domain containing 5	-3.50	1
51209	RAB9B	RAB9B, member RAS oncogene family	-3.23	1
2899	GRIK3	glutamate receptor, ionotropic, kainate 3	-2.88	1
401474	SAMD12	sterile alpha motif domain containing 12	-2.84	1
60529	ALX4	ALX homeobox 4	-2.63	1
64399	HHIP	hedgehog interacting protein	-2.53	1
146433	IL34	interleukin 34	-2.45	1
84144	SYDE2	synapse defective 1, Rho GTPase, homolog 2 (C. elegans)	-2.44	2
619279	ZNF704	zinc finger protein 704	-2.40	1
783	CACNB2	calcium channel, voltage-dependent, beta 2 subunit	-2.34	1
5493	PPL	periplakin	-2.27	1
3670	ISL1	ISL LIM homeobox 1	-2.24	2
389208	TMPRSS11F	transmembrane protease, serine 11F	-2.17	1
168667	BMPER	BMP binding endothelial regulator	-2.16	1
1983	EIF5	eukaryotic translation initiation factor 5	-2.14	1
5100	PCDH8	protocadherin 8	-2.06	2
		В		
Entrez	Cono Symbol	Cone Nome	Fold Change	Total
Gene ID	Gene Symbol	Gene Mane	(log2 <-2.0)	sites
420	ART4	ADP-ribosyltransferase 4 (Dombrock blood group)	-6.92	1
5075	PAX1	paired box 1	-6.47	1
1805	DPT	dermatopontin	-5.69	1

angiopoietin-like 7

10218 ANGPTL7

Table 1. A. Candidate target genes regulated by *miR-31-5p*. B. Candidate target genes regulated by *miR-31-3p*.

1

-5.09

2315	MLANA	melan-A	-4.81	1
55286	C4orf19	chromosome 4 open reading frame 19	-4.76	1
8839	WISP2	WNT1 inducible signaling pathway protein 2	-4.72	1
440854	CAPN14	calpain 14	-4.70	1
6422	SFRP1	secreted frizzled-related protein 1	-4.70	1
114905	C1QTNF7	C1q and tumor necrosis factor related protein 7	-4.66	1
9068	ANGPTL1	angiopoietin-like 1	-4.56	1
5563	PRKAA2	protein kinase, AMP-activated, alpha 2 catalytic subunit	-4.56	2
5104	SERPINA5	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 5	-4.45	1
148213	ZNF681	zinc finger protein 681	-4.27	1
127435	PODN	podocan	-4.20	1
53405	CLIC5	chloride intracellular channel 5	-4.16	1
85477	SCIN	scinderin	-4.09	1
255798	SMCO1/C3orf43	single-pass membrane protein with coiled-coil domains 1	-4.01	1
53353	LRP1B	low density lipoprotein receptor-related protein 1B	-4.00	1
23242	COBL	cordon-bleu WH2 repeat protein	-3.89	1
5570	PKIB	protein kinase (cAMP-dependent, catalytic) inhibitor beta	-3.84	1
440730	TRIM67	tripartite motif containing 67	-3.83	1
2252	FGF7	fibroblast growth factor 7	-3.81	1
84525	НОРХ	HOP homeobox	-3.81	1
389432	SAMD5	sterile alpha motif domain containing 5	-3.79	1
8736	MYOM1	myomesin 1	-3.68	1
5549	PRELP	proline/arginine-rich end leucine-rich repeat protein	-3.66	2
137735	ABRA	actin-binding Rho activating protein	-3.58	1
785	CACNB4	calcium channel, voltage-dependent, beta 4 subunit	-3.57	3
79442	LRRC2	leucine rich repeat containing 2	-3.55	2
339512	Clorf110	chromosome 1 open reading frame 110	-3.50	1
10894	LYVE1	lymphatic vessel endothelial hyaluronan receptor 1	-3.43	1
3768	KCNJ12	potassium channel, inwardly rectifying subfamily J, member 12	-3.36	1
171024	SYNPO2	synaptopodin 2	-3.35	1
114786	XKR4	XK, Kell blood group complex subunit-related family, member 4	-3.33	1
84952	CGNL1	cingulin-like 1	-3.30	2
55335	NIPSNAP3B	nipsnap homolog 3B (C. elegans)	-3.27	1
3479	IGF1	insulin-like growth factor 1 (somatomedin C)	-3.26	2
2690	GHR	growth hormone receptor	-3.20	1

8522	GAS7	growth arrest-specific 7	-3.18	1
2066	ERBB4	erb-b2 receptor tyrosine kinase 4	-3.14	2
202333	CMYA5	cardiomyopathy associated 5	-3.13	1
22865	SLITRK3	SLIT and NTRK-like family, member 3	-3.13	1
51666	ASB4	ankyrin repeat and SOCS box containing 4	-3.08	1
22871	NLGN1	neuroligin 1	-3.08	1
4958	OMD	osteomodulin	-3.08	1
5178	PEG3	paternally expressed 3	-3.06	1
29119	CTNNA3	catenin (cadherin-associated protein), alpha 3	-3.04	2
8529	CYP4F2	cytochrome P450, family 4, subfamily F, polypeptide 2	-3.01	1
343450	KCNT2	potassium channel, sodium activated subfamily T, member 2	-3.00	1
5087	PBX1	pre-B-cell leukemia homeobox 1	-2.98	1
387758	FIBIN	fin bud initiation factor homolog (zebrafish)	-2.96	1
57689	LRRC4C	leucine rich repeat containing 4C	-2.96	1
79071	ELOVL6	ELOVL fatty acid elongase 6	-2.95	1
6542	SLC7A2	solute carrier family 7 (cationic amino acid transporter, y+ system), member 2	-2.94	1
6450	SH3BGR	SH3 domain binding glutamate-rich protein	-2.93	1
7276	TTR	transthyretin	-2.92	2
23732	FRRS1L/C9orf4	ferric-chelate reductase 1-like	-2.89	1
220963	SLC16A9	solute carrier family 16, member 9	-2.88	1
55	ACPP	acid phosphatase, prostate	-2.84	1
401474	SAMD12	sterile alpha motif domain containing 12	-2.84	1
8153	RND2	Rho family GTPase 2	-2.83	1
7135	TNNI1	troponin I type 1 (skeletal, slow)	-2.82	1
340596	LHFPL1	lipoma HMGIC fusion partner-like 1	-2.77	1
26974	ZNF285	zinc finger protein 285	-2.74	1
2053	EPHX2	epoxide hydrolase 2, cytoplasmic	-2.73	1
386618	KCTD4	potassium channel tetramerization domain containing 4	-2.73	1
1183	CLCN4	chloride channel, voltage-sensitive 4	-2.69	1
201	SI C2514	solute carrier family 25 (mitochondrial carrier; adenine nucleotide	2.68	1
291	SEC25A4	translocator), member 4	-2.08	1
4023	LPL	lipoprotein lipase	-2.65	1
32	ACACB	acetyl-CoA carboxylase beta	-2.64	1
55244	SLC47A1	solute carrier family 47 (multidrug and toxin extrusion), member 1	-2.64	1
84620	ST6GAL2	ST6 beta-galactosamide alpha-2,6-sialyltranferase 2	-2.62	1
26032	SUSD5	sushi domain containing 5	-2.61	1

6857	SYT1	synaptotagmin I	-2.61	2
6301	SDHC	succinate dehydrogenase complex, subunit C, integral membrane protein,	2 60	1
0391	SDIIC	15kDa	-2.00	1
5506	PPP1R3A	protein phosphatase 1, regulatory subunit 3A	-2.58	2
367	AR	androgen receptor	-2.57	2
64399	HHIP	hedgehog interacting protein	-2.53	1
56898	BDH2	3-hydroxybutyrate dehydrogenase, type 2	-2.52	2
9077	DIRAS3	DIRAS family, GTP-binding RAS-like 3	-2.52	1
154661	RUNDC3B	RUN domain containing 3B	-2.52	1
8796	SCEL	sciellin	-2.52	1
50937	CDON	cell adhesion associated, oncogene regulated	-2.49	1
6660	SOX5	SRY (sex determining region Y)-box 5	-2.48	1
56172	ANKH	ANKH inorganic pyrophosphate transport regulator	-2.46	1
6092	ROBO2	roundabout, axon guidance receptor, homolog 2 (Drosophila)	-2.46	1
158326	FREM1	FRAS1 related extracellular matrix 1	-2.45	1
10345	TRDN	triadin	-2.45	1
158866	ZDHHC15	zinc finger, DHHC-type containing 15	-2.44	1
55283	MCOLN3	mucolipin 3	-2.42	1
653316	FAM153C	family with sequence similarity 153, member C, pseudogene	-2.41	1
348158	ACSM2B	acyl-CoA synthetase medium-chain family member 2B	-2.39	1
11227	GALNT5	polypeptide N-acetylgalactosaminyltransferase 5	-2.39	1
3169	FOXA1	forkhead box A1	-2.37	1
284716	RIMKLA	ribosomal modification protein rimK-like family member A	-2.37	2
253559	CADM2	cell adhesion molecule 2	-2.36	1
144453	BEST3	bestrophin 3	-2.35	1
2258	FGF13	fibroblast growth factor 13	-2.35	1
57863	CADM3	cell adhesion molecule 3	-2.34	1
140456	ASB11	ankyrin repeat and SOCS box containing 11, E3 ubiquitin protein ligase	-2.32	2
346389	MACC1	metastasis associated in colon cancer 1	-2.30	2
9378	NRXN1	neurexin 1	-2.30	1
151887	CCDC80	coiled-coil domain containing 80	-2.29	2
266977	GPR110	G protein-coupled receptor 110	-2.28	1
3481	IGF2	insulin-like growth factor 2	-2.27	1
57554	LRRC7	leucine rich repeat containing 7	-2.27	1
80310	PDGFD	platelet derived growth factor D	-2.25	1
342926	ZNF677	zinc finger protein 677	-2.25	1

5067CNTN3contactin 3 (plasmacytoma associated)-2.2214919ROR1receptor tyrosine kinase-like orphan receptor 1-2.201948CD36CD36 molecule (thrombospondin receptor)-2.19123171GPD1Lglycerol-3-phosphate dehydrogenase 1-like-2.18164102TNMDtenomodulin-2.18255638SYBUsyntabulin (syntaxin-interacting)-2.1716586SLIT3Slit homolog 3 (Drosophila)-2.1322247FGF2fibroblast growth factor 2 (basic)-2.111115827RAB3CRAB3C, member RAS oncogene family-2.101203859ANO5anoctamin 5-2.10180110ZNF614Zinc finger protein 614-2.031115265DDIT4LDNA-damage-inducible transcript 4-like-2.031	341640	FREM2	FRAS1 related extracellular matrix protein 2	-2.24	1
4919ROR1receptor tyrosine kinase-like orphan receptor 1-2.201948CD36CD36 molecule (thrombospondin receptor)-2.19123171GPD1Lglycerol-3-phosphate dehydrogenase 1-like-2.18164102TNMDtenomodulin-2.18255638SYBUsyntabulin (syntaxin-interacting)-2.1716586SLIT3slit homolog 3 (Drosophila)-2.1322247FGF2fibroblast growth factor 2 (basic)-2.111115827RAB3CRAB3C, member RAS oncogene family-2.10180110ZNF614zinc finger protein 614-2.001115265DDIT4LDNA-damage-inducible transcript 4-like-2.031	5067	CNTN3	contactin 3 (plasmacytoma associated)	-2.22	1
948CD36CD36 molecule (thrombospondin receptor)-2.19123171GPD1Lglycerol-3-phosphate dehydrogenase 1-like-2.18164102TNMDtenomodulin-2.18255638SYBUsyntabulin (syntaxin-interacting)-2.1716586SLIT3slit homolog 3 (Drosophila)-2.1322247FGF2fibroblast growth factor 2 (basic)-2.111115827RAB3CRAB3C, member RAS oncogene family-2.101203859AN05anoctamin 5-2.10180110ZNF614Zinc finger protein 614-2.031115265DDIT4LDNA-damage-inducible transcript 4-like-2.031	4919	ROR1	receptor tyrosine kinase-like orphan receptor 1	-2.20	1
23171GPD1Lglycerol-3-phosphate dehydrogenase 1-like-2.18164102TNMDtenomodulin-2.18255638SYBUsyntabulin (syntaxin-interacting)-2.1716586SLIT3slit homolog 3 (Drosophila)-2.1322247FGF2fibroblast growth factor 2 (basic)-2.111115827RAB3CRAB3C, member RAS oncogene family-2.112203859ANO5anoctamin 5-2.10180110ZNF614Zinc finger protein 614-2.101115265DDIT4LDNA-damage-inducible transcript 4-like-2.031	948	CD36	CD36 molecule (thrombospondin receptor)	-2.19	1
64102TNMDtenomodulin-2.18255638SYBUsyntabulin (syntaxin-interacting)-2.1716586SLIT3slit homolog 3 (Drosophila)-2.1322247FGF2fibroblast growth factor 2 (basic)-2.111115827RAB3CRAB3C, member RAS oncogene family-2.112203859ANO5anoctamin 5-2.10180110ZNF614zinc finger protein 614-2.031115265DDIT4LDNA-damage-inducible transcript 4-like-2.031	23171	GPD1L	glycerol-3-phosphate dehydrogenase 1-like	-2.18	1
55638SYBUsyntabulin (syntaxin-interacting)-2.1716586SLIT3slit homolog 3 (Drosophila)-2.1322247FGF2fibroblast growth factor 2 (basic)-2.111115827RAB3CRAB3C, member RAS oncogene family-2.112203859ANO5anoctamin 5-2.10180110ZNF614zinc finger protein 614-2.101115265DDIT4LDNA-damage-inducible transcript 4-like-2.031	64102	TNMD	tenomodulin	-2.18	2
6586SLIT3slit homolog 3 (Drosophila)-2.1322247FGF2fibroblast growth factor 2 (basic)-2.111115827RAB3CRAB3C, member RAS oncogene family-2.112203859ANO5anoctamin 5-2.10180110ZNF614zinc finger protein 614-2.101115265DDIT4LDNA-damage-inducible transcript 4-like-2.031	55638	SYBU	syntabulin (syntaxin-interacting)	-2.17	1
2247 FGF2 fibroblast growth factor 2 (basic) -2.11 1 115827 RAB3C RAB3C, member RAS oncogene family -2.11 2 203859 AN05 anoctamin 5 -2.10 1 80110 ZNF614 zinc finger protein 614 -2.00 1 115265 DDIT4L DNA-damage-inducible transcript 4-like -2.03 1	6586	SLIT3	slit homolog 3 (Drosophila)	-2.13	2
115827 RAB3C RAB3C, member RAS oncogene family -2.11 2 203859 AN05 anoctamin 5 -2.10 1 80110 ZNF614 zinc finger protein 614 -2.10 1 115265 DDIT4L DNA-damage-inducible transcript 4-like -2.03 1	2247	FGF2	fibroblast growth factor 2 (basic)	-2.11	1
203859 ANO5 anoctamin 5 -2.10 1 80110 ZNF614 zinc finger protein 614 -2.10 1 115265 DDIT4L DNA-damage-inducible transcript 4-like -2.03 1	115827	RAB3C	RAB3C, member RAS oncogene family	-2.11	2
80110 ZNF614 zinc finger protein 614 -2.10 1 115265 DDIT4L DNA-damage-inducible transcript 4-like -2.03 1	203859	ANO5	anoctamin 5	-2.10	1
115265DDIT4LDNA-damage-inducible transcript 4-like-2.031	80110	ZNF614	zinc finger protein 614	-2.10	1
	115265	DDIT4L	DNA-damage-inducible transcript 4-like	-2.03	1

This table was taken from a paper published in IJMS [44].

This figure was taken from a paper published in IJMS[44].

This figure was taken from a paper published in IJMS[44].

Figure 3

This figure was taken from a paper published in IJMS[44].

Figure 4

This figure was taken from a paper published in IJMS[44].

Figure 5

This figure was taken from a paper published in IJMS[44].

Figure 6

This figure was taken from a paper published in IJMS[44].

This figure was taken from a paper published in IJMS[44].

Figure 7

This figure was taken from a paper published in IJMS[44].

Supplementary Figure 1

This figure was taken from a paper published in IJMS[44].

This figure was taken from a paper published in IJMS[44].

Supplementary Figure 3

This figure was taken from a paper published in IJMS[44].

Supplementary Figure 4

Migration assay

This figure was taken from a paper published in IJMS[44].

HNSCC samples	#1 Tumor	#2 Tumor	#3 Tumor	#1 Nomal	#2 Normal	#3 Normal
	Reads	Reads	Reads	Reads	Reads	Reads
miRNA	1,927,436	955,347	1,784,461	1,420,029	995,314	1,685,013
hairpin	1,526	1,151	2,089	1,391	1,033	1,705
piRNA	120,860	60,626	66,316	46,319	33,461	62,261
rRNA	879,223	461,714	967,151	583,531	631,930	973,907
tRNA	825,736	321,573	564,120	537,867	138,961	489,230
mRNA	77,883	46,664	132,667	44,704	80,172	122,284
otherRNA	165,967	140,018	222,072	130,446	118,261	177,196
notCharacterized_Mappable	337,098	160,699	180,877	120,931	111,466	149,892
notCharacterized_notMappable	1,603,108	656,629	464,700	207,388	184,508	245,709

Supplementary Table 1. Annotation of reads aligned to small RNAs

This table was taken from a paper published in IJMS [44].

Supplementary Table 2. Clinical features of 3 HNSCC patients

Sample No.	Age	Sex	Location	сT	cN	сM	cStage	pТ	pN	Differentiation
#1	49	М	tongue	3	0	0	Ш	4a	3b	well
#2	30	F	tongue	2	0	0	Ш	3	0	well
#3	60	М	tongue	4a	2c	0	ΝA	4a	2c	modearte

This table was taken from a paper published in IJMS [44].

miRNA	miR base accesion	chromosome	guide / passenger	Fold Change $(122 \ge 1.5)$	<i>p</i> value
			strand	(log 2 > 1.5)	
miR-6715b-5p	MIMAT0025842	chromosome10	Passenger	3.8476	0.0204
miR-4320	MIMAT0016871	chromosome18	Guide	3.8185	0.0117
miR-3129-5p	MIMAT0014992	chromosome2	Guide	3.6274	0.0054
miR-1236-5p	MIMAT0022945	chromosome6	Passenger	3.5145	0.0113
miR-1323	MIMAT0005795	chromosome19	Guide	3.4522	0.0237
miR-1587	MIMAT0019077	chromosomeX	Guide	3.4482	0.0047
miR-3150b-5p	MIMAT0019226	chromosome8	Passenger	3.1411	0.0099
miR-647	MIMAT0003317	chromosome20	Guide	3.1401	0.0127
miR-4507	MIMAT0019044	chromosome14	Guide	3.0719	0.0033
miR-6882-3p	MIMAT0027665	chromosome15	Passenger	3.0551	0.0112
miR-8073	MIMAT0031000	chromosome13	Guide	3.0269	0.0007
miR-1269a	MIMAT0005923	chromosome4	Guide	3.0086	0.0110
miR-6804-3p	MIMAT0027509	chromosome19	Passenger	2.9721	0.0003
miR-223-3p	MIMAT0000280	chromosomeX	Guide	2.9499	0.0013
miR-5189-3p	MIMAT0027088	chromosome16	Passenger	2.9408	0.0061
miR-1197	MIMAT0005955	chromosome14	Guide	2.9297	0.0374
miR-6796-5p	MIMAT0027492	chromosome19	Guide	2.9204	0.0185
miR-6819-5p	MIMAT0027538	chromosome22	Guide	2.8192	0.0121
miR-187-3p	MIMAT0000262	chromosome18	Guide	2.7916	0.0017
miR-4448	MIMAT0018967	chromosome3	Guide	2.7884	0.0172
miR-18b-3p	MIMAT0004751	chromosomeX	Passenger	2.7411	0.0192
miR-3936	MIMAT0018351	chromosome5	Guide	2.7144	0.0062
miR-4442	MIMAT0018960	chromosome3	Guide	2.6512	0.0016
miR-6792-3p	MIMAT0027485	chromosome19	unknown	2.6370	0.0277
miR-6080	MIMAT0023705	chromosome17	Guide	2.5645	0.0025
miR-4655-3p	MIMAT0019722	chromosome7	Passenger	2.5591	0.0318
miR-4681	MIMAT0019766	chromosome10	Guide	2.5539	0.0024
miR-3124-5p	MIMAT0014986	chromosome1	Guide	2.5526	0.0203

Supplementary Table 3. Upregulated miRNAs in HNSCC clinical specimens

miR-1204	MIMAT0005868	chromosome8	Guide	2.4880	0.0499
miR-613	MIMAT0003281	chromosome12	Guide	2.4880	0.0461
miR-548an	MIMAT0019079	chromosomeX	Guide	2.4879	0.0439
miR-6084	MIMAT0023709	chromosome1	Guide	2.4754	0.0438
miR-373-5p	MIMAT0000725	chromosome19	Passenger	2.4746	0.0045
miR-6501-3p	MIMAT0025459	chromosome21	Passenger	2.4648	0.0015
miR-766-5p	MIMAT0022714	chromosomeX	Passenger	2.4557	0.0017
miR-4646-5p	MIMAT0019707	chromosome6	Guide	2.4538	0.0037
miR-3937	MIMAT0018352	chromosomeX	Guide	2.4411	0.0195
miR-411-3p	MIMAT0004813	chromosome14	Passenger	2.4294	0.0224
miR-4768-5p	MIMAT0019920	chromosomeX	Guide	2.4243	0.0289
miR-4781-5p	MIMAT0019942	chromosome1	Passenger	2.4238	0.0144
miR-4751	MIMAT0019888	chromosome1	Guide	2.3967	0.0099
miR-7158-5p	MIMAT0028226	chromosome2	Passenger	2.3845	0.0043
miR-1250-3p	MIMAT0026740	chromosome17	Passenger	2.3824	0.0256
miR-6798-3p	MIMAT0027497	chromosome19	Guide	2.3669	0.0366
miR-6508-3p	MIMAT0025473	chromosome21	Guide	2.2912	0.0441
miR-6851-5p	MIMAT0027602	chromosome9	Guide	2.2630	0.0480
miR-6871-3p	MIMAT0027643	chromosome20	Passenger	2.2589	0.0400
miR-6753-3p	MIMAT0027407	chromosome11	Guide	2.2545	0.0465
miR-5011-5p	MIMAT0021045	chromosome18	Passenger	2.2534	0.0323
miR-1182	MIMAT0005827	chromosome1	Guide	2.2501	0.0029
miR-3713	MIMAT0018164	chromosome15	Guide	2.2451	0.0081
miR-4290	MIMAT0016921	chromosome9	Guide	2.2446	0.0455
miR-3155a	MIMAT0015029	chromosome10	Guide	2.2363	0.0294
miR-7109-3p	MIMAT0028116	chromosome22	Guide	2.2330	0.0246
miR-4656	MIMAT0019723	chromosome7	Guide	2.2239	0.0222
miR-6788-3p	MIMAT0027477	chromosome18	Passenger	2.2226	0.0066
miR-4538	MIMAT0019081	chromosome14	Guide	2.2206	0.0118
miR-1825	MIMAT0006765	chromosome20	Guide	2.2188	0.0482
miR-6739-5p	MIMAT0027379	chromosome1	Guide	2.2177	0.0441
miR-4436a	MIMAT0018952	chromosome2	Guide	2.1907	0.0087
miR-8078	MIMAT0031005	chromosome18	Guide	2.1793	0.0233
miR-1228-3p	MIMAT0005583	chromosome12	Guide	2.1645	0.0056
miR-520d-3p	MIMAT0002856	chromosome19	Passenger	2.1608	0.0197
miR-4670-3p	MIMAT0019751	chromosome9	Guide	2.1580	0.0385

miR-4718	MIMAT0019831	chromosome16	Guide	2.1576	0.0262
miR-1286	MIMAT0005877	chromosome22	Guide	2.1547	0.0168
miR-4781-3p	MIMAT0019943	chromosome1	Guide	2.1485	0.0194
miR-875-3p	MIMAT0004923	chromosome8	Guide	2.1311	0.0481
miR-525-3p	MIMAT0002839	chromosome19	Passenger	2.1214	0.0193
miR-4486	MIMAT0019020	chromosome11	Guide	2.1161	0.0485
miR-3131	MIMAT0014996	chromosome2	Guide	2.0967	0.0161
miR-4444	MIMAT0018962	chromosome2	Guide	2.0822	0.0089
miR-623	MIMAT0003292	chromosome13	Guide	2.0818	0.0206
miR-6729-5p	MIMAT0027359	chromosome1	Guide	2.0780	0.0117
miR-1253	MIMAT0005904	chromosome17	Guide	2.0659	0.0238
miR-202-3p	MIMAT0002811	chromosome10	Guide	2.0636	0.0119
miR-6859-3p	MIMAT0027619	chromosome1	Passenger	2.0549	0.0191
miR-4664-3p	MIMAT0019738	chromosome8	Passenger	2.0539	0.0247
miR-6511a-5p	MIMAT0025478	chromosome16	Passenger	2.0487	0.0310
miR-4258	MIMAT0016879	chromosome1	Guide	2.0426	0.0142
miR-31-5p	MIMAT0000089	chromosome9	Guide	2.0320	0.0273
miR-518e-3p	MIMAT0002861	chromosome19	Guide	2.0076	0.0323
miR-31-3p	MIMAT0004504	chromosome9	Passenger	1.9997	0.0449
miR-3612	MIMAT0017989	chromosome12	Guide	1.9945	0.0235
miR-3122	MIMAT0014984	chromosome1	Guide	1.9929	0.0342
miR-4735-5p	MIMAT0019860	chromosome1	Guide	1.9880	0.0429
miR-6827-5p	MIMAT0027554	chromosome3	Guide	1.9810	0.0218
miR-1180-5p	MIMAT0026735	chromosome17	Passenger	1.9692	0.0139
miR-3160-5p	MIMAT0019212	chromosome11	Passenger	1.9619	0.0388
miR-4778-5p	MIMAT0019936	chromosome2	Passenger	1.9597	0.0247
miR-4738-3p	MIMAT0019867	chromosome17	Guide	1.9583	0.0170
miR-3622b-3p	MIMAT0018006	chromosome8	Guide	1.9509	0.0035
miR-6781-5p	MIMAT0027462	chromosome17	Passenger	1.9454	0.0218
miR-21-5p	MIMAT0000076	chromosome17	Guide	1.9405	0.0147
miR-6732-3p	MIMAT0027366	chromosome1	Guide	1.9352	0.0129
miR-6068	MIMAT0023693	chromosome1	Guide	1.9311	0.0031
miR-6875-5p	MIMAT0027650	chromosome7	Guide	1.9244	0.0158
miR-1281	MIMAT0005939	chromosome22	Guide	1.9184	0.0133
miR-2681-5p	MIMAT0013515	chromosome13	Passenger	1.9146	0.0434
miR-6862-5p	MIMAT0027625	chromosome16	Guide	1.9065	0.0245

miR-3972	MIMAT0019357	chromosome1	Guide	1.9057	0.0106
miR-5587-3p	MIMAT0022290	chromosome16	Guide	1.9035	0.0486
miR-6874-3p	MIMAT0027649	chromosome7	Guide	1.9031	0.0367
miR-765	MIMAT0003945	chromosome1	Guide	1.9021	0.0112
miR-6864-3p	MIMAT0027629	chromosome17	Passenger	1.9020	0.0453
miR-1226-5p	MIMAT0005576	chromosome3	Passenger	1.8917	0.0260
miR-4417	MIMAT0018929	chromosome1	Guide	1.8845	0.0069
miR-6846-5p	MIMAT0027592	chromosome8	Guide	1.8702	0.0263
miR-4647	MIMAT0019709	chromosome6	Guide	1.8697	0.0231
miR-6816-5p	MIMAT0027532	chromosome22	Passenger	1.8663	0.0034
miR-6830-3p	MIMAT0027561	chromosome5	Guide	1.8609	0.0237
miR-4655-5p	MIMAT0019721	chromosome7	Guide	1.8476	0.0163
miR-1913	MIMAT0007888	chromosome6	Guide	1.8316	0.0102
miR-5006-3p	MIMAT0021034	chromosome13	Guide	1.8311	0.0324
miR-6786-3p	MIMAT0027473	chromosome17	Guide	1.8239	0.0310
miR-1238-3p	MIMAT0005593	chromosome19	Guide	1.8175	0.0298
miR-4761-3p	MIMAT0019909	chromosome22	Passenger	1.8152	0.0407
miR-7108-3p	MIMAT0028114	chromosome19	Passenger	1.7966	0.0313
miR-7846-3p	MIMAT0030421	chromosome1	Guide	1.7931	0.0225
miR-6871-5p	MIMAT0027642	chromosome20	Guide	1.7922	0.0295
miR-646	MIMAT0003316	chromosome20	Guide	1.7763	0.0190
miR-6865-3p	MIMAT0027631	chromosome17	Passenger	1.7763	0.0352
miR-6857-5p	MIMAT0027614	chromosomeX	Passenger	1.7653	0.0157
miR-2355-3p	MIMAT0017950	chromosome2	Guide	1.7535	0.0071
miR-6876-5p	MIMAT0027652	chromosome8	Guide	1.7526	0.0347
miR-595	MIMAT0003263	chromosome7	Guide	1.7458	0.0069
miR-3911	MIMAT0018185	chromosome9	Guide	1.7333	0.0286
miR-7114-3p	MIMAT0028126	chromosome9	Passenger	1.7245	0.0282
miR-659-5p	MIMAT0022710	chromosome22	Guide	1.7226	0.0438
miR-4658	MIMAT0019725	chromosome7	Guide	1.7155	0.0284
miR-135b-5p	MIMAT0000758	chromosome1	Guide	1.7126	0.0494
miR-5685	MIMAT0022475	chromosome6	Guide	1.7091	0.0370
miR-6830-5p	MIMAT0027560	chromosome5	Passenger	1.7070	0.0146
miR-6753-5p	MIMAT0027406	chromosome11	Passenger	1.7023	0.0140
miR-8085	MIMAT0031012	chromosome19	Guide	1.7005	0.0190
miR-3155b	MIMAT0019012	chromosome10	Guide	1.6917	0.0413

miR-5000-5p	MIMAT0021019	chromosome2	Passenger	1.6908	0.0233
miR-4749-5p	MIMAT0019885	chromosome19	Guide	1.6895	0.0493
miR-6861-5p	MIMAT0027623	chromosome12	Passenger	1.6788	0.0195
miR-7161-3p	MIMAT0028233	chromosome6	Passenger	1.6768	0.0182
miR-668-3p	MIMAT0003881	chromosome14	Guide	1.6714	0.0198
miR-3681-3p	MIMAT0018109	chromosome2	Guide	1.6464	0.0383
miR-223-5p	MIMAT0004570	chromosomeX	Passenger	1.6422	0.0170
miR-5572	MIMAT0022260	chromosome15	Guide	1.6403	0.0265
miR-1225-5p	MIMAT0005572	chromosome16	Guide	1.6403	0.0111
miR-4687-5p	MIMAT0019774	chromosome11	Passenger	1.6308	0.0205
miR-147b	MIMAT0004928	chromosome15	Guide	1.6253	0.0428
miR-4259	MIMAT0016880	chromosome1	Guide	1.6202	0.0158
miR-193a-3p	MIMAT0000459	chromosome17	Guide	1.6166	0.0085
miR-4740-5p	MIMAT0019869	chromosome17	Guide	1.6153	0.0130
miR-6747-5p	MIMAT0027394	chromosome11	Passenger	1.6018	0.0229
miR-6891-3p	MIMAT0027683	chromosome6	Passenger	1.5936	0.0337
miR-4700-5p	MIMAT0019796	chromosome12	Guide	1.5920	0.0338
miR-4748	MIMAT0019884	chromosome19	Guide	1.5829	0.0222
miR-3670	MIMAT0018093	chromosome16	Guide	1.5761	0.0244
miR-6165	MIMAT0024782	chromosome17	Guide	1.5692	0.0183
miR-4303	MIMAT0016856	chromosome12	Guide	1.5648	0.0205
miR-421	MIMAT0003339	chromosomeX	Guide	1.5640	0.0147
miR-4251	MIMAT0016883	chromosome1	Guide	1.5600	0.0336
miR-4265	MIMAT0016891	chromosome2	Guide	1.5505	0.0172
miR-1229-5p	MIMAT0022942	chromosome5	Passenger	1.5457	0.0131
miR-634	MIMAT0003304	chromosome17	Guide	1.5195	0.0406
miR-3667-5p	MIMAT0018089	chromosome22	Guide	1.5180	0.0202
miR-412-5p	MIMAT0026557	chromosome14	Guide	1.5141	0.0085
miR-2276-5p	MIMAT0026921	chromosome13	Passenger	1.5101	0.0152
miR-4523	MIMAT0019061	chromosome17	Guide	1.5083	0.0359
miR-6766-5p	MIMAT0027432	chromosome15	Passenger	1.5075	0.0427
miR-33b-3p	MIMAT0004811	chromosome17	Passenger	1.5044	0.0241

This table was taken from a paper published in IJMS [44].

TaqMan primers and probes	Assay ID		Company		
hsa-miR-31	2279		Thermo Fisher Scientific, Waltham, Massachusetts, USA		
hsa-miR-31*	2113		Thermo Fisher Scientific, Waltham, Massachusetts, USA		
RNU48	1006		Thermo Fisher Scientific, Waltham, Massachusetts, USA		
CGNL1	Hs00262671_m1		Applied Biosystems, Waltham, Massachusetts, USA		
GAPDH	Hs02786624_g1		Applied Biosystems, Waltham, Massachusetts, USA		
Anti-miR™ miRNA Inhibitor	Assay ID	Concentration			
miR-31-5p	AM11465	30nM	Thermo Fisher Scientific, Waltham, Massachusetts, USA		
miR-31-3p	AM12887	30nM	Thermo Fisher Scientific, Waltham, Massachusetts, USA		
Pre-miR [™] miRNA Precursor	Assay ID	Concentration			
miR-31-3p	PM12887	10nM	Thermo Fisher Scientific, Waltham, Massachusetts, USA		
negative control miRNA #2	AM17111	10nM	Thermo Fisher Scientific, Waltham, Massachusetts, USA		
antibody	catalog number	dilution			
anti-CGNL1	ab204500	1/250	Abcam, Cambridge, UK		
GAPDH	sc-3223	1/1000	Santa Cruz Biotechnology, Santa Cruz, CA, USA		

Supplementary Table 4. Reagents used in this study

This table was taken from a paper published in IJMS [44].

Supplementary Table 5. Features of Fibro blast and HNSC Cell lines

Cell line Name	Location	Age	Sex	Virus infection
IMR-90	lung	embryo	Female	Unverified
MRC-5	tongue	embryo	Male	Unverified
Ca9-22	gingiva	not listed	Male	-
Fadu	hypopharynx	not listed	not listed	not listed
HSC-2	oral floor	69	Male	-
HSC-3	tongue	64	Male	-
HSC-3-M3	metastasise to lymph(tongue)	64	Male	-
HSC-4	tongue	64	Male	-
KOSC-2	oral floor	58	male	-
Sa3	upper gingiva	63	male	-

SAS	tongue	not listed	not listed	-
HO-1-N-1	buccal mucosa	not listed	not listed	-
HO-1-u-1	oral floor	72	Male	-

This table was taken from a paper published in IJMS [44].

International Journal of Molecular Sciences Vol. 22(12) No.6199 2021年6月8日 公開済 DOI: 10.3390/ijms22126199