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Abstract

Quantum error-correction is a theory for protecting quantum information and is one of the
essential factors in quantum information theory. Since its first construction by Shor in 1995,
many quantum codes that can correct arbitrary unitary errors have been constructed. On the
other hand, quantum insertion/deletion errors have only started to attract attention in 2020,
and further research is expected.

This thesis discusses quantum error-correcting codes for various types of quantum inser-
tion/deletion errors. First, the Nakayama-Hagiwara conditions are discussed, which are known
as the conditions for constructing single deletion error-correcting codes, and examples of the new
codes are given. Next, the construction conditions of quantum deletion codes with permutation-
invariance are presented and their decoding method is described. This is the first construction
of quantum codes that can correct multiple deletion errors. Furthermore, systematic construc-
tion of single insertion error-correcting codes is presented, including a decoding method. The
conditions used in this construction are described only in terms of combinatorics, which means
that the problem of quantum insertion errors is attributed to the problem of classical com-
binatorics. Finally, the equivalence between the correctability of deletions and insertions of
separable states in quantum codes is proved using the Knill-Laflamme conditions, known as
quantum error-correction conditions.
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Chapter 1

Introduction

1.1 Background

1.1.1 Quantum computing

Quantum information technology, including quantum computers, is a new ICT field that fully
utilizes the quantum mechanical properties of matter, and is expected to achieve things that
conventional computers cannot, such as large-scale molecular design [6] and information retrieval
systems that completely protect privacy [26]. In the field of quantum information, there is fierce
competition at the national level in Europe, the U.S., China, and other countries around the
world, and full-scale research and development are also underway in Japan.

Quantum computing began in 1980 when physicist Paul Benioff proposed a quantum me-
chanical model of Turing machines [7]. Later, Richard Feynman [24], Yuri Manin [42], and
others suggested that quantum computers might be able to simulate what classical computers
could not. In 1994, Peter Shor developed a quantum algorithm for factoring integers that may
be able to break RSA-encrypted transmissions [71]. Since then, a great deal of research has been
carried out.

Quantum computers have made tremendous progress in recent years, and in 2019, a Google
research team announced that they had created a device with 53-qubit, which surpassed a
supercomputer in “specific tasks” [4]. However, it has also been pointed out that the “specific
task” is a very favorable problem setting for quantum computers and the view that we are
still far from achieving practical computation [60]. A small-scale, noisy quantum computer
like the one used in this demonstration is called a NISQ (Noisy Intermediate Scale Quantum)
computer. In the future, it will be necessary to overcome a number of challenges in order to
realize the full-scale practical use of quantum computers. To this end, a wide range of approaches
are currently underway simultaneously, including basic research on hardware development and
applied research for business applications.

1.1.2 Protection of quantum information

The most essential technology for realizing a quantum computer is error tolerance technology.
There is an enormous difference in the amount of noise that can occur in quantum information
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processing and classical information processing. In classical information processing, errors oc-
curred less frequently, and in some cases, processing could be done without much concern for
errors. However, in quantum information processing, the frequency of errors is very high, and it
is known that only small-scale calculations can be performed without error countermeasures. In
order to put quantum information processing to practical use on a large scale, it is necessary to
perform error tolerance processing of quantum information and to protect quantum information
from noise.

One method of error handling in quantum information processing is to use quantum error-
correcting codes. Quantum error-correcting codes encode qubits redundantly so that even if some
errors occur, they can be corrected by decoding. This is the only method known to be capable
of scalable error tolerance processing so far and is predicted to be an essential technology for
the practical application of large-scale quantum information processing in the future. However,
due to the inevitable increase in the number of qubits required for encoding and the number of
processes in decoding, it is believed that it will still take time to realize error tolerance processing
using quantum error-correction.

In addition, we have to take into account the fact that the quantum circuits must be well
designed so that quantum error-correction still succeeds, assuming that the error is amplified
during the decoding of the quantum error. Such a method is called fault-tolerant quantum
computation (FTQC) [3, 22, 29]. According to this theory, as long as the probability of error is
kept below a certain threshold, any length of calculation is possible. This is called threshold
theorem, and it is one of the greatest achievements of quantum information theory [50]. Thus,
the use of quantum error-correction in quantum computers must be discussed from various points
of view.

1.1.3 Quantum error-correcting codes

To understand the meaning of quantum error-correcting codes, we introduce the communication
channel model. The communication channel model is also an important concept in classical
coding theory and was given by Shannon in 1948 as a concise and rational model for ensuring the
transmission of information [63,64]. A visual representation of Shannon’s communication channel
model is shown in Figure 1.1. The information source selects the message to be transmitted,
turns it into a signal by the encoder, and sends it to the receiver through the communication
channel. During this transmission process, the information may be interfered with in various
ways and may not be transmitted accurately. This model defines it as noise. The receiver
decodes the signal received by the decoder back into a message and understands the message
sent by the information source. When the message of the sender and the decoded message of the
receiver match, the communication has been established. Weaver used Shannon’s communication
channel model for machines as a model to explain communication between humans, and discussed
it. In 1949, Shannon and Weaver co-authored a book titled “The Mathematical Theory of
Communication” [65].

The theory of error-correcting codes aims to efficiently and accurately perform two operations
for situations where errors are expected to occur: adding information so that it can be corrected
even if an error occurs (encoding) and inferring the original information from the incorrect
information (decoding). In quantum error-correcting codes, the information to be transmitted
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Figure 1.1: Shannon’s communication channel model

is called a quantum state, which is represented as a density matrix. In addition, restrictions
are placed on the encoding and decoding processes based on quantum mechanics. Therefore,
the construction of quantum error-correcting codes is more difficult than that of classical error-
correcting codes, and this is an area where further research for practical application is expected
in the future.

In classical coding theory, errors in the original information have been corrected by adding
redundancy to it, as in so-called repetition codes. On the other hand, because of the no-
cloning theorem in quantum mechanics [78], it has been thought that such redundancy cannot
be added in quantum error-correction. However, since 1995, when Shor explicitly denied the
conjecture by providing an example of a quantum error-correcting code [72], many quantum
codes have been devised, including Calderbank-Shor-Steane (CSS) codes [17, 75], the stabilizer
codes [15,16,27,28], and surface codes [25]. Here, CSS code is a special case of the stabilizer code.
Furthermore, the translation between quantum codes and linear spaces over finite field [15, 16]
allows us to apply research results on classical codes to quantum codes. These results were later
extended to non-binary quantum codes [5, 11,46].

One attempt in quantum coding theory that is not found in classical codes is the use of quan-
tum teleportation. Quantum teleportation is the transfer of a quantum state to a remote location
using classical means of information transmission and the effects of quantum entanglement [8].
Although it is called teleportation, it does not mean that a particle moves instantaneously to
another location in space, but rather that the observation of one state of two particles in a
quantum entanglement relationship instantly reveals the definite state of the other. For a long
time, experiments were considered difficult, but in 1997, D. Bouwmeester and his group were
the first to successfully perform a quantum teleportation experiment [12]. Even recently, many
successful experiments have been reported, and a variety of applications are expected [39,61,76].
Quantum teleportation can be interpreted as the transmission of quantum information through
the sharing of quantum entanglement [20]. Along this line, the entanglement-assisted quan-
tum error-correcting code was proposed [13, 77], which enables transmission of more quantum
information at the cost of shared quantum entanglement.

Quantum error-correcting codes were also used in cryptography as a tool to prove the security
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of quantum key distribution (QKD) [73]. They were also used as an example of quantum
secret sharing [30, 43]. Thus, as research on quantum error-correcting codes progresses, new
applications, including cryptography, are expected in the future. In other words, it has been
suggested that quantum error-correcting codes have sufficient potential for applications other
than quantum computers.

There are good survey papers on the topic of quantum error-correcting codes, for example,
see Reference [45].

1.1.4 Quantum insertion/deletion codes

In classical coding theory, since the first example was devised by Levenshtein in 1966 [41], many
insertion/deletion error-correcting codes have been studied [14,23,32,33,36,74]. Indeed, classical
insertion/deletion codes have received invigorated attention because of interesting applications
such as DNA storage [14], and racetrack memories [18]. What this thesis deal with is a quantum
version of this classical insertion/deletion code.

In quantum communication, the quantum state is transmitted through a quantum channel
with possible errors, and it is naturally expected that some of the underlying qubits will be inad-
vertently lost during this process. This can be caused by temporary interruption, misalignment,
or destruction of the transmitted signal. If we knew which qubit was lost, we could correct it
as a quantum erasure error [9, 31], but in realistic scenarios, we often do not know which qubit
was lost, which is the concept of a quantum deletion error. In quantum coding theory, erasure
errors can be modeled using a partial trace where the traced qubits are known, but for deletion
errors, we do not know what the traced qubits are. We can also interpret deletion errors as
erasure errors implemented by an adversary who hides information about which qubits were
erased. Hence, correcting deletion errors is harder than correcting erasure errors. Quantum
deletion error-correction is a problem of determining the quantum state in the entire quantum
system from a quantum state in a partial system. Therefore, it is related to various topics such
as quantum secret sharing [43], purification of quantum state [37], and quantum cloud comput-
ing [10]. Similar to deletion errors, an insertion error occurs when a quantum state is inserted
at unknown locations within a quantum code. As for quantum insertion codes, although they
are mathematically very interesting as it relates to deletion, a detailed discussion of their ap-
plicability in realistic scenarios has not yet been given. However, it can also be said that it has
many possibilities.

The quantum insertion/deletion error is a concept that was first introduced by Leahy et
al. in 2019 [40]. They provided a way to turn quantum insertion/deletion errors into errors
that can be handled by conventional methods under certain assumptions. Since then, quantum
insertion/deletion error-correction has attracted the attention of researchers.

The first example of quantum deletion codes in a general scenario was given by Nakayama in
2020 [48]. Nakayama’s 8-qubit code is capable of correcting a single deletion error, and this fact
is shown by specifically defining the encoding and decoding. The second example of quantum
deletion codes was given by Hagiwara in 2020 [35]. Hagiwara’s 4-qubit code can correct a single
deletion error, and it has been confirmed that this is a quantum deletion code with an optimal
code length. In other words, the shortest code length of a quantum code that can correct deletion
errors is 4. This is an interesting result compared to the shortest code length of a quantum code
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that can correct unitary errors, which is 5 [50]. Hagiwara’s 4-qubit code can also be regarded as
Ouyang’s (2, 2, 1) gnu code [51].

Later, in 2020, a systematic construction method of single quantum deletion codes including
the two examples above was given by Nakayama and Hagiwara [49]. One idea for constructing
quantum deletion codes is to use classical deletion codes. In fact, it was pointed out that
quantum codes can be constructed from any classical code by using the framework of Movassagh
and Ouyang [47]. However, the quantum deletion codes by Nakayama and Hagiwara, which were
discovered for the first time, were derived based on a novel approach. According to Nakayama
and Hagiwara, the three conditions (C1), (C2), and (C3) (the NH conditions) are introduced for
two sets of bit sequences; those three conditions are described in combinatorial terms only. In
their study, they proved that single quantum deletion error-correcting codes can be constructed
by using two sets that satisfy the NH conditions. However, the NH conditions were complex and
no new codes were presented in their paper. The NH conditions were studied by Shibayama,
and many examples satisfying the conditions were given [66,67]. This will be discussed in detail
in Chapter 3 of this thesis. To distinguish them from the conditions of the insertion version,
which will be explained later, the NH conditions for deletion will be denoted as (C1)−, (C2)−,
and (C3)− with a minus character “−” as a superscript in this thesis.

Quantum error-correcting codes that can correct two or more deletion errors were first pro-
posed in 2021 by Ouyang [53] and Shibayama [68], who studied them independently, respectively.
Both of their methods focus on permutation-invariant codes, which are invariant under any per-
mutation of the underlying particles. Permutation-invariant quantum codes have been studied
as codes that can correct errors represented by unitary matrices [47, 51, 52, 55, 56, 59, 62]. Re-
cently, permutation-invariant quantum codes have been explored for applications such as for
quantum storage [54] and robust quantum metrology [58]. These are expected to be applied
to physically realistic scenarios [79]. Since it is clear that erasure error and deletion error are
equivalent in permutation-invariant codes, we can see that the permutation-invariant quantum
codes that can correct quantum erasure errors, which have already been studied, are also quan-
tum deletion codes. Ouyang [53] gave detailed discussions of permutation-invariant quantum
deletion codes, which are defined by encodings formed by superpositions over states called Dicke
states, described in Section 2.2.3 below, using quantum circuits. On the other hand, Shibayama
and Hagiwara [68] proposed three conditions (D1), (D2), and (D3) that can correct multiple
deletion errors for permutation-invariant codes defined by encodings that do not specify coeffi-
cients but are expressed in a more general form. Their method is a practical one that directly
defines the decoder, and the details will be explained in Chapter 4 of this thesis. Later, further
permutation-invariant deletion codes were given by Matsumoto and Hagiwara [44].

Several examples of quantum deletion codes have been given in the last two years, but
quantum insertion codes seem to be more difficult than deletion. The first example is a 4-qubit
code given by Hagiwara in 2021 [34], which is also known as a deletion code [35]. The Hagiwara
code is a single insertion error-correcting code, and its decoding method for insertion errors is
much more technical than that for deletion errors. Then, very recently, a systematic construction
method for single quantum insertion codes was proposed by Shibayama and Hagiwara [69]. This
construction can be regarded as an insertion version of the method using the Nakayama-Hagiwara
conditions described earlier, and the conditions used in the insertion codes are named (C1)+,
(C2)+, and (C3)+. These conditions are described only in terms of classical combinatorics,
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not in terms of quantum information. It means that the problem of quantum insertion errors is
attributed to the problem of classical combinatorics. This construction method will be discussed
in detail in Chapter 5 of this thesis.

In classical insertion/deletion codes, the most mathematically interesting fact is that a code
that can correct t deletion errors can correct t1 insertion errors and t2 deletion errors if t = t1+t2.
This implies the equivalence of correctability of insertion and deletion errors in classical codes.
This fact was shown by Levenshtein in 1966 when the insertion/deletion code was first introduced
[41]. It can be explained using the concept of Levenshtein distance [36]. It is conjectured that
this equivalence, which holds for classical codes, also holds for quantum codes.

Conjecture 1. For any positive integer t, and a quantum code Q, the followings are equivalent.

1. Q is a t-deletion error-correcting code.

2. Q is a t-insertion error-correcting code.

To date, in quantum codes, the equivalence has not been shown, which is an open problem.
However, a partial solution to this conjecture was given by Shibayama and Ouyang in 2021 [70].
Their method is to represent the Kraus operators for quantum deletion errors and quantum
insertion errors and discuss them using the KL conditions, which are known as necessary and
sufficient conditions for quantum error-correction. Here they discuss t-insertion, which is the
repeated insertion of a single qubit state t times. In other words, they have not completely solved
the problem in that they have not taken into account the insertion of quantum entangled states.
However, it does provide a significant contribution in that it provides the first step towards this
important conjecture. The details will be discussed in Chapter 6 of this thesis. Since then,
research using the Kraus operator for quantum deletion errors and quantum insertion errors has
gradually progressed [1, 2].

As mentioned above, quantum insertion/deletion codes are a very new field, and further
research is expected in the future, including basic research. In the question and answer session
of “An Introduction to Quantum Computation” by Chitambar, one of the tutorials at the 2020
IEEE Information Theory Workshop (ITW2020) held in April 2021, there was an exchange in
which he predicted that deletion errors would be the focus of the next few years in the field of
quantum codes [19]. Quantum insertion/deletion codes are an area that is gradually gaining
attention.

1.2 Organization of the thesis

This thesis is organized as follows. In Chapter 2, the knowledge assumed in this research is ex-
plained. Specifically, it starts with the fundamentals of quantum information theory based on the
postulates of quantum mechanics, and finally gives the definition of quantum insertion/deletion
error-correcting codes. Chapter 3 gives the discussion related to the single quantum deletion
error-correcting codes proposed by Nakayama and Hagiwara [49]. After giving explicit sets satis-
fying the Nakayama-Hagiwara (NH) conditions and proposing new codes, it is analyzed the NH
conditions using the adjacency matrices of graphs. In Chapter 4, focusing on quantum codes with
permutation-invariance, error-correction conditions for quantum codes that can correct multiple
deletion errors are proposed and discussed, including their coding and decoding. In addition, it
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is given several examples of quantum codes that satisfy the error-correcting conditions and pro-
posed the first quantum code that can correct two or more deletion errors. Chapter 5 proposes
a systematic construction of single quantum insertion error-correcting codes. This method can
be regarded as an insertion version of the method by Nakayama and Hagiwara. It can be said
that this construction makes a significant contribution to the field of quantum insertion codes,
for which only one example had been presented. In Chapter 6, quantum deletion errors and
quantum insertion errors are discussed using the Kraus operators, which allows us to apply the
Knill-Laflamme conditions, a necessary and sufficient condition for quantum error-correction.
In particular, using this technique, we show that in quantum codes, the ability to correct dele-
tions and insertions of separable states is equivalent. This can be said to give a partial solution
for the quantum version of the famous result in classical insertion/deletion codes. At last, the
conclusion is stated in Chapter 7.
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Chapter 2

Fundamentals for quantum
insertion/deletion error-correcting
codes

The bit is the fundamental concept of classical computation and classical information. Quantum
computation and quantum information are built on the similar concept of a quantum bit or a
qubit for short. There are two possible states of a qubit, |0〉 and |1〉, which correspond to the
states 0 and 1 for a classical bit. The notation ‘| 〉’ is the standard notation for states in quantum
mechanics, and is called the Dirac notation [21]. The Dirac notation is used in this thesis. The
purpose of this chapter is, to begin with, an explanation of the fundamental concepts of quantum
information, including single qudit state, quantum system, projective measurement, etc., and
finally to define quantum insertion/deletion codes.

2.1 Fundamental concepts of quantum information

Let N be a positive integer and [N ] := {1, 2, . . . , N}. The set of the non-negative integers is
denoted by N := {n ∈ Z | n ≥ 0}. Given an N -tuple x = x1x2 . . . xN ∈ NN , we use the notation
wt(x) to denote the Hamming weight of x, i.e.,

wt(x) := |{i ∈ [N ] | xi 6= 0}|. (2.1)

Here, we denote |X| as the size of a finite set X. For an N1-tuple x = x1x2 . . . xN1 ∈ NN1

and an N2-tuple y = y1y2 . . . yN2 ∈ NN2 with positive integers N1, N2, we simply denote by
xy := x1x2 . . . xN1y1y2 . . . yN2 ∈ NN1+N2 the (N1+N2)-tuple formed by concatenating x and y.

We denote by Cl the l-dimensional vector space over a complex field C. In this thesis, the
inner product (·, ·) on Cl is defined as

(x,y) := x1y1 + x2y2 + · · ·+ xlyl ∈ C (2.2)

for x = (x1, x2, . . . , xl)
⊤ ∈ Cl and y = (y1, y2, . . . , yl)

⊤ ∈ Cl. Here, ⊤ is the transpose operation,
and c is the conjugate of the complex number c ∈ C.
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2.1.1 Quantum message

A quantum message is assumed to be a complex vector in Cl. A standard notation for a quantum
message is |ψ〉, which is called ψ-ket. Assume that the length of the quantum message |ψ〉 is 1,
i.e., ‖|ψ〉‖ = 1. Here, the length of |ψ〉 is defined as the positive square root of the inner product
with itself, i.e.,

‖|ψ〉‖2 = (|ψ〉, |ψ〉). (2.3)

For a quantum message |ψ〉 ∈ Cl, we define 〈ψ| as the conjugate transpose of |ψ〉, i.e., 〈ψ| := |ψ〉†,
and 〈ψ| is called ψ-bra. Here, † is the conjugate transpose operation. Note that the inner product
of quantum states |ψ1〉 and |ψ2〉 is denoted by 〈ψ1|ψ2〉, i.e.,

〈ψ1|ψ2〉 := (|ψ1〉, |ψ2〉) (2.4)

= 〈ψ1||ψ2〉. (2.5)

The product in Equation (2.5) is the product as matrices, which is easily derived by calculating
it according to the definition of the inner product in Equation (2.2).

An l-dimensional vector |ψ〉 ∈ Cl with ‖|ψ〉‖ = 1 is called a qudit. In particular, let
|0〉, |1〉, . . . , |l − 1〉 be the standard orthonormal basis of Cl, and call them zero-ket, one-ket,
. . . , (l − 1)-ket, respectively. That is,

|0〉 := (1, 0, 0, . . . , 0)⊤, |1〉 := (0, 1, 0, . . . , 0)⊤, . . . , |l − 1〉 := (0, 0, 0, . . . , 1)⊤. (2.6)

In general, any qudit can be written in the form α0|0〉 + α1|1〉 + · · · + αl−1|l − 1〉 ∈ Cl, where
|α0|2 + |α1|2 + · · · + |αl−1|2 = 1. Here, |c| is the absolute value of the complex number c ∈ C.
Qudits |ψ1〉, |ψ2〉 are considered to be the same if |ψ1〉 = c|ψ2〉 for some constant c ∈ C. Note
that |c| = 1 holds since qudits have the same length.

In this thesis, we mainly deal with the case of l = 2, and in this case, we use the term qubit
instead of qudit. In particular, for qubits, zero-ket and one-ket are written as |0〉 := (1, 0)⊤ ∈ C2

and |1〉 := (0, 1)⊤ ∈ C2, respectively.

2.1.2 Density matrix and single qudit state

For a square matrix M over the complex field C, the sum of the diagonal elements of M is
denoted by Tr(M) and is called the trace of M .

A square matrix M satisfying the following three conditions is called a density matrix:

• It is positive semi-definite, i.e., any eigenvalue is non-negative.
• It is Hermitian, i.e., M =M †.
• Its trace is equal to 1, i.e., Tr(M) = 1.

The set of all density matrices of order l is denoted by S(Cl). An element of S(Cl) is called a
single qudit state.

In general, for any positive integer t, any qudits |ψ1〉, |ψ2〉, . . . , |ψt〉 ∈ Cl, and any non-
negative real numbers p1, p2, . . . , pt ∈ R with p1 + p2 + · · ·+ pt = 1,

t∑
i=1

pi|ψi〉〈ψi| (2.7)
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is a density matrix. In particular, any qudit |ψ〉 ∈ Cl corresponds to the density matrix |ψ〉〈ψ| ∈
S(Cl). In fact, for a qudit |ψ〉 ∈ Cl and a constant c ∈ C with |c| = 1, the density matrix
corresponding to |ψ〉 ∈ Cl and c|ψ〉 ∈ Cl are the same. A single qudit state is called pure if
it can be represented in the form |ψ〉〈ψ| ∈ S(Cl) using some qudit |ψ〉 ∈ Cl. We also use a
complex vector |ψ〉 ∈ Cl for representing a pure single qudit state |ψ〉〈ψ| ∈ S(Cl). Conversely,
a single qudit state that is not pure is called mixed. Note that the quantum message described
in Section 2.1.1 is defined as a pure single qudit state.

2.1.3 Quantum system

In a physical implementation of a quantum message, a single qudit corresponds to the state of
a single particle. Conversely, any single particle can be represented as a vector of length one in
a complex vector space H. This vector space H is called the quantum system of the particle. If
the dimension of H is l, the quantum system is said to be of level l.

Let Hi be the quantum system of the single particle pi for i ∈ [N ]. The quantum system of
N particles p1, p2, . . . , pN is described by

H1 ⊗H2 ⊗ · · · ⊗ HN , (2.8)

where ⊗ is the tensor product operation. For simplicity, a quantum system Cl ⊗ Cl ⊗ · · · ⊗ Cl

for N particles is denoted by (Cl)⊗N . Set |x〉 := |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xN 〉 ∈ (Cl)⊗N for an
N -tuple x = x1x2 . . . xN ∈ {0, 1, . . . , l − 1}N . Since the standard orthonormal basis of (Cl)⊗N

is {|x〉 ∈ (Cl)⊗N | x ∈ {0, 1, . . . , l − 1}N}, we can regard (Cl)⊗N and ClN as isomorphic vector
spaces. A lN -dimensional vector |ψ〉 ∈ (Cl)⊗N with ‖|ψ〉‖ = 1 is called an N -qudit.

If the single qudit of the single particle pi is represented by a vector |ψi〉 ∈ Hi for i =

1, 2, . . . , N , the quantum state of the N particles p1, p2, . . . , pN is

|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN 〉 ∈ H1 ⊗H2 ⊗ · · · ⊗ HN . (2.9)

In this way, when an N -qudit can be represented in the form of a tensor product of N single
qudits, the N -qudit is called separable. Conversely, an N -qudit that is not separable is called
entangled. For example,

|Ψ〉 := |00〉+ |11〉√
2

∈ (C2)⊗2 (2.10)

cannot be expressed in the form of |ψ1〉 ⊗ |ψ2〉 ∈ (C2)⊗2, thus |Ψ〉 is an entangled 2-qubit.

The set of quantum states in a quantum system (Cl)⊗N is denoted by S((Cl)⊗N ), which is
defined as the set of all density matrices of order lN , that is, S(ClN ). An element of S((Cl)⊗N )
is called an N -qudit state, which represents a quantum state of N particles p1, p2, . . . , pN . For
the N -qudit state, pure and mixed are defined in the same way as for the single qudit state.
That is, an N -qudit state is called pure if it can be represented in the form |ψ〉〈ψ| ∈ S((Cl)⊗N )
using some qudit |ψ〉 ∈ (Cl)⊗N , and an N -qudit state that is not pure is called mixed.

Furthermore, for quantum states represented as density matrices, a separable state, and an
entangled state are defined as in the case of qudit represented as vectors. In other words, the
definition is as follows. If the single quantum state of the single particle pi is represented by a

10



Figure 2.1: Action of the partial trace Tr2 on a quantum state of five particles

density matrix ρi ∈ S(Hi) for i = 1, 2, . . . , N , the quantum state of the N particles p1, p2, . . . , pN
is

ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN ∈ S(H1)⊗ S(H2)⊗ · · · ⊗ S(HN ). (2.11)

In this way, when an N -qudit state can be represented in the form of a tensor product of N
single qudit states, the N -qudit state is called separable. Conversely, an N -qudit state that is
not separable is called entangled.

Now we explain the quantum subsystem. For N particles with a quantum state M ∈
S((Cl)⊗N ), we want to describe the state of their sub-particles. The quantum state M is
re-written as

M =
∑

x,y∈{0,1,...,l−1}N
mx,y|x1〉〈y1| ⊗ |x2〉〈y2| ⊗ · · · ⊗ |xN 〉〈yN | (2.12)

with mx,y ∈ C. For an integer i ∈ [N ], define the map Tri : S((Cl)⊗N ) → S((Cl)⊗(N−1)) as

Tri(M) :=
∑

x,y∈{0,1,...,l−1}N
mx,y · Tr(|xi〉〈yi|)

|x1〉〈y1| ⊗ · · · ⊗ |xi−1〉〈yi−1| ⊗ |xi+1〉〈yi+1| ⊗ · · · ⊗ |xN 〉〈yN |. (2.13)

The map Tri is called a partial trace. The state of N − 1 particles p1, . . . , pi−1, pi+1, . . . , pN is
described as Tri(M) ∈ S((Cl)⊗(N−1)). In other words, the partial trace Tri describes the state
of the subsystem of N − 1 particles p1, . . . , pi−1, pi+1, . . . , pN . For example, when a partial trace
is applied to a quantum state consisting of five particles, it means that one particle is deleted
and four particles are left, as shown in Figure 2.1.

2.1.4 Projective measurement

In quantum communication, the sender encodes a quantum message into particles. The receiver
of the transmitted particles will read the whole or part of the message from the particles. Reading
the message from the particles is called measurement. A Hermitian matrix P satisfying P 2 = P

is called a projection matrix. In this study, a measurement called projective measurement, which
is represented by the projection matrices, is used in the decoding process.

Let Ω be the set of all outcomes that can be obtained by the projective measurement. A
projective measurement is defined by a set P := {Pk | k ∈ Ω} of complex matrices of order lN .
Here, each element of P is a projection matrix and is assumed to satisfy the equation∑

k∈Ω
Pk = I, (2.14)
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where I is the identity matrix of order lN . Note that N here is the number of particles that
the receiver has, not necessarily the code length. The index k ∈ Ω refers to the measurement
outcomes that may occur in the experiment. If the quantum state is ρ ∈ S((Cl)⊗N ) immediately
before the measurement then the probability that outcome k occurs is given by Tr(Pkρ), and
the quantum state after the measurement ρ′ is

ρ′ :=
PkρPk
Tr(Pkρ)

. (2.15)

Note here that the receiver can only know the outcome of the measurement, but not the received
quantum state itself.

2.1.5 The postulates of quantum mechanics

To begin with, quantum information is a theory that uses the fundamental postulates of quan-
tum mechanics as a starting point for constructing the basic operating principles of quantum
computers. At the end of this section, we will confirm that the concepts of quantum information
set up above satisfy the postulates of quantum mechanics.

The following four are the most basic postulates of quantum mechanics; for more details
about them, see e.g., Nielsen-Chuang [50].

Postulate 1. Associated to any isolated physical system is a complex vector space with an
inner product (that is, a Hilbert space) known as the state space of the system. The
system is completely described by its density operator, which is a positive operator ρ with
trace one, acting on the state space of the system. If a quantum system is in the state ρi
with probability pi, then the density operator for the system is

∑
i piρi.

Postulate 2. The evolution of a closed quantum system is described by a unitary transfor-
mation. That is, the state ρ of the system at time t1 is related to the state ρ′ of the system
at time t2 by a unitary operator U which depends only on the time t1 and t2,

ρ′ = UρU † (2.16)

Postulate 3. Quantum measurements are described by a collection {Mk} of measurement
operators. These are operators acting on the state space of the system being measured.
The index k refers to the measurement outcomes that may occur in the experiment then
the probability that result k occurs is given by

p(k) = Tr(M †
kMkρ), (2.17)

and the state of the system after the measurement is

MkρM
†
k

Tr(M †
kMkρ)

. (2.18)

The measurement operators satisfy the completeness equation,∑
k

M †
kMk = I, (2.19)

where I is the identity operator.
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Postulate 4. The state-space of a composite physical system is the tensor product of the
state spaces of the component physical systems. Moreover, if we have systems numbered
1 through N , and system number i is prepared in the state ρi, then the joint state of the
total system is

ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN . (2.20)

In particular, the contents described in Sections 2.1.1, 2.1.2, and Section 2.1.3 satisfy Pos-
tulate 1 and Postulate 4, respectively. The projective measurements defined in Section 2.1.4
satisfy Postulate 3. Note that P †P = P , since the projection matrix P is a Hermitian matrix
satisfying P 2 = P .

In quantum information theory, the operation of acting a unitary matrix on a quantum state
can be performed as Equation (2.16). Here, a square matrix U is called a unitary matrix if UU † is
the identity matrix. For any unitary matrix U of order lN and any quantum state ρ ∈ S((Cl)⊗N ),
ρ′ := UρU † is a quantum state. Also, for any two quantum states ρ1, ρ2 ∈ S((Cl)⊗N ), there
exists a unitary matrix U of order lN such that ρ′ = UρU †. These can be easily checked by
calculation as matrices.

2.2 Quantum error-correcting codes for unitary errors

This section explains errors in quantum communication and defines error-correcting codes, which
are known as techniques to protect quantum information from such errors. In particular, we
define gnu codes, which appear several times in this thesis.

2.2.1 Unitary errors

This thesis focuses on deletion and insertion errors and does not deal in depth with the widely
known unitary errors, including bit-flip and phase errors. The errors described by unitary
matrices are briefly explained here, especially using a qubit system as an example.

The Pauli operators are introduced as basic quantum operations that act on a single qubit.
The operators, which are represented by the following four unitary matrices, are called the Pauli
matrices:

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
. (2.21)

A unitary error in quantum information is described as the action of a unitary matrix on a
quantum state. For example, when an error corresponding to X occurs, we get

X|0〉 = |1〉, X|1〉 = |0〉, (2.22)

which represents a bit-flip error. Also, when an error corresponding to Z occurs, we get

Z|0〉 = |0〉, Z|1〉 = −|1〉, (2.23)
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which represents a phase error. Any unitary matrix of order 2 is represented by a linear combi-
nation of I, X, Y , and Z. In fact, the Pauli matrices in Equation (2.21) form a basis of the set
of 2-by-2 matrices over the complex field C:(

a b

c d

)
=
a+ c

2
I +

b+ d

2
X +

b− d

2
iY +

a− c

2
Z. (2.24)

A single unitary error for an N -qudit |ψ〉 ∈ (Cl)⊗N is represented as

(I⊗ · · · ⊗ I⊗ U ⊗ I⊗ · · · ⊗ I)|ψ〉 (2.25)

for some unitary matrix U of order l. Here, I is the identity matrix of order l. For example, for
a single bit-flip error I ⊗X ⊗ I, we get

(I ⊗X ⊗ I)|000〉 = |010〉, (I ⊗X ⊗ I)|111〉 = |101〉, (2.26)

which confirms that a bit-flip error has indeed occurred for the second qubit. Note that when
a unitary error occurs for a quantum state represented by a density matrix, the unitary matrix
acts as in Equation (2.16).

An error obtained by combining single unitary errors t times is called a t-qudit unitary error.

2.2.2 Quantum error-correcting codes

Let us define a quantum error-correcting code. A quantum message is usually defined as a single
qudit state associated with a single particle, but here we define it more generally as a K-qudit
state associated with K particles.

Let E be the set of all errors that we want to correct here. That is, each element of E is
a map that maps an N -qudit state ρ ∈ S((Cl)⊗N ) to an N ′-qudit state ρ′ ∈ S((Cl)⊗N ′

) with
some N ′. Note here that the number of particles may change before and after the error, so that
N 6= N ′ may be possible.

Definition 2.1 (Quantum error-correcting code). We call an image of Enc an ((N,K)) quantum
error-correcting code for the error E if the following conditions hold:

1. There exists a map Enc : (Cl)⊗K → (Cl)⊗N defined as enc ◦ padN,K , that is, the compo-
sition of two maps padN,K and enc. Here, the map padN,K : (Cl)⊗K → (Cl)⊗N is defined
by

padN,K(|ψ〉) := |ψ〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
N−K times

(2.27)

for a pure K-qudit state |ψ〉 ∈ (Cl)⊗K , and the map enc : (Cl)⊗N → (Cl)⊗N is a unitary
transformation acting on (Cl)⊗N .

2. There exists a map Dec defined by the operations allowed by quantum mechanics, and

Dec ◦ E ◦ Enc(|ψ〉) = |ψ〉 (2.28)

holds for any error E ∈ E and any pure K-qudit state |ψ〉 ∈ (Cl)⊗K .
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The maps Enc and Dec are called the encoder and decoder for the quantum error-correcting code,
respectively.

If we take as E the set consisting of all t-qudit unitary errors acting on N -qudit, then
an ((N,K)) quantum error-correcting code for the error E is called an ((N,K)) t-qudit error-
correcting code or simply a t-qudit code. It is clear that a t-qudit code is an s-qudit code for
any non-negative integer 0 ≤ s ≤ t. In other words, the t-qudit code can be interpreted as a
code that can correct any unitary error that occurs in t or fewer arbitrary particles.

There are three types of quantum mechanical operations used in the decoder in this thesis:
projective measurements, actions of a unitary matrix, and partial traces.

In particular, to construct an encoder Enc for an ((N, 1)) quantum error-correcting code, it is
enough to choose vectors |0L〉, |1L〉, . . . , |l − 1L〉 ∈ (Cl)⊗N of length 1 orthogonal to each other,
and the encoder is defined as a linear map Enc such that Enc(|ψ〉) := |Ψ〉,

|ψ〉 := α0|0〉+ α1|1〉+ · · ·+ αl−1|l − 1〉 ∈ Cl, (2.29)

|Ψ〉 := α0|0L〉+ α1|1L〉+ · · ·+ αl−1|l − 1L〉 ∈ (Cl)⊗N . (2.30)

Here, these vectors |0L〉, |1L〉, . . . , |l − 1L〉 are called a logical 0, a logical 1, . . . , and a logical
l − 1, respectively. These l vectors are collectively called logical codewords. In fact, since

padN,1(|ψ〉) = (α0|0〉+ α1|1〉+ · · ·+ αl−1|l − 1〉)⊗ |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
N−1 times

(2.31)

= α0|00 . . . 0〉+ α1|10 . . . 0〉+ · · ·+ αl−1|(l − 1)0 . . . 0〉 (2.32)

holds, if we define enc as the unitary transformation that maps |i0 . . . 0〉 ∈ (Cl)⊗N to |iL〉 ∈
(Cl)⊗N for each integer 0 ≤ i ≤ l− 1, we can easily check that Enc(|ψ〉) = enc ◦ padN,1(|ψ〉) for
any quantum message |ψ〉 ∈ Cl.

In other words, in order to construct an ((N, 1)) quantum error-correcting code, the problems
are how to define logical codewords |0L〉, |1L〉, . . . , |l− 1L〉 and how to define a decoder Dec that
satisfies Equation (2.28).

2.2.3 Ouyang ∆-shifted gnu codes

An N -qudit state is called permutation-invariant if its state is invariant under any permutation
of N particles. A quantum code is called a permutation-invariant code if its state after encoding
is permutation-invariant. The term permutation-invariant is also called “PI” for short.

Here, the definition of gnu codes, which appears often in this thesis, is explained. Ouyang
introduced gnu codes in 2014 as a family of permutation-invariant quantum codes [51]. The
precise definition of permutation-invariant quantum codes will be given in Chapter 4. Ouyang
succeeded in generalizing gnu codes and constructing further quantum codes in 2017 [52]. Among
them, shifted gnu codes for qubit systems, which have similar properties to gnu codes, have been
proposed in 2021 [53]. This code has four parameters ∆, g, n, and u, where the shift ∆ is a
non-negative integer, and the code gap g and the occupancy n are positive integers, and the
rational number u = N

gn ≥ 1 is a scaling factor that determines the length of the quantum code.
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The corresponding logical codewords are

|0L〉 =
∑

0≤j≤n
j even

√ (
n
j

)
2n−1

|Dgnu+∆
gj+∆ 〉, |1L〉 =

∑
0≤j≤n
j odd

√ (
n
j

)
2n−1

|Dgnu+∆
gj+∆ 〉, (2.33)

where |DN
w 〉 is called Dicke states and is defined as

|DN
w 〉 := 1√(

N
w

) ∑
x1x2...xN∈{0,1}N
x1+x2+···+xN=w

|x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xN 〉. (2.34)

Here, w is the weight of the Dicke state and counts the Hamming weights of its constituent
computation basis states’ labels. The Dicke states for qubit states are labeled by only their
weights, of which there are only N + 1 possibilities. The quantum code defined by the logical
codewords in Equation (2.33) is called a ∆-shifted gnu code and is denoted by ∆− (g, n, u) with
these parameters. In particular, in the case of ∆ = 0, a 0-shifted gnu code is simply called a
gnu code.

Fact 2.2 (Ouyang [52]). Fix t as a non-negative integer. Let ∆ be a non-negative integer, g, n
be integers, and u be a rational number, and suppose that

g ≥ 2t+ 1, n ≥ 2t+ 1, u ≥ 1. (2.35)

Then, the ∆− (g, n, u) code is an ((N, 1)) t-qudit error-correcting code with N = gnu+∆.

Example 2.3. The 0− (3, 3, 1) gnu code is a ((9, 1)) 1-qudit error-correcting code, and its logical
codewords are

|0L〉 =
|D9

0〉+
√
3|D9

6〉
2

, |1L〉 =
√
3|D9

3〉+ |D9
9〉

2
. (2.36)

This quantum code is called the Ruskai code [62].

2.3 Quantum error-correcting codes for insertion/deletion errors

This section explains the concept of quantum insertion and deletion errors and then gives the
definition of quantum insertion codes and quantum deletion codes, respectively.

2.3.1 Quantum insertion/deletion errors

Recall that in classical coding theory, for an integer 1 ≤ t < N , a t-deletion error is defined as
a map from a sequence of length N to its subsequence of length N − t. In addition, insertion
errors are defined as the inverse of deletion errors. That is, an insertion error maps a sequence
x of length N to a sequence x′ of length N + t, where x is a subsequence of x′.

In quantum coding theory, deletion errors and insertion errors are defined for quantum states
represented by density matrices in the same way as for classical codes.
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Figure 2.2: Relationship between deletion and insertion errors acting on particles

Definition 2.4 (Quantum deletion error DP ). Let 1 ≤ t < N be a positive integer and let
P = {p1, p2, . . . , pt} ⊂ [N ] be a set satisfying 1 ≤ p1 < p2 < · · · < pt ≤ N . Let us define a map
DP : S((Cl)⊗N ) → S((Cl)⊗(N−t)) as

DP (ρ) := Trp1 ◦ Trp2 ◦ · · · ◦ Trpt︸ ︷︷ ︸
t times

(ρ), (2.37)

where ρ ∈ S((Cl)⊗N ) is a quantum state. Here the symbol ◦ indicates the composition of maps.
We call the map DP a t-deletion error with the deletion position P . The cardinality |P | is called
the number of deletions for DP .

In Definition 2.4, especially in the case of P = {p} (i.e., |P | = 1), we denote Dp instead of
D{p} and call the map Dp a single deletion error. In other words, a single deletion error Dp is a
partial trace Trp. The identity map for quantum states is also called the 0-deletion error.

As explained in Section 2.1.3, For a quantum state ρ ∈ S((Cl)⊗N ) corresponding to N parti-
cles p1, p2, . . . , pN , the state DP (ρ) ∈ S((Cl)⊗(N−t)) represents the quantum state corresponding
to N − t particles, excluding the particles labeled with P .

Definition 2.5 (Quantum insertion error IP ). Let t ≥ 1 be a positive integer and let P =

{p1, p2, . . . , pt} ⊂ [N + t] be a set satisfying 1 ≤ p1 < p2 < · · · < pt ≤ N + t. For each quantum
state ρ ∈ S((Cl)⊗N ), a map IP : S((Cl)⊗N ) → S((Cl)⊗(N+t)) such that

DP ◦ IP (ρ) = ρ (2.38)

is called a t-insertion error for quantum state ρ with the insertion position P . The cardinality
|P | is called the number of insertions for IP .

According to Definition 2.5, an insertion error is defined as the inverse correspondence of
a deletion error. In Equation (2.38), if ρ is a quantum state consisting of three particles and
P = {2, 5}, then DP (IP (ρ)) is a 3-qubit state, and therefore IP (ρ) is a 5-qubit state. In other
words, IP (ρ) can be regarded as the addition of two particles to the original three. Figure 2.2
shows the transformation of the particles in this case.

In Definition 2.5, in the case of P = {p} (i.e., |P | = 1), as with the deletion error, we denote
Ip instead of I{p} and call the map Ip a single insertion error. Although the characteristics of
the inserted particles should be written in the subscript of the map, to avoid complications, only
the insertion positions are written here for a general definition. The identity map for quantum
states is also called the 0-insertion error.
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For any quantum state ρ ∈ S((Cl)⊗N ), there exists a non-negative integer k and a pure state
ρ′ ∈ S((Cl)⊗(N+k)) such that D[k](ρ

′) = ρ. This means that an arbitrary quantum state can
always be regarded as a pure state by adding an external system. This procedure is called the
purification of a quantum state, which is a type of quantum insertion error.

If we limit a quantum state before an insertion error occurs to the pure state, the insertion
error IP in Definition 2.5 is expressed in a clean form as in Fact 2.6. This fact was shown by
Reference [69] in 2021.

Fact 2.6. Let t ≥ 1 be a positive integer and let P = {p1, p2, . . . , pt} ⊂ [N + t] be a set satisfying
1 ≤ p1 < p2 < · · · < pt ≤ N + t. A t-insertion error for a pure state |ψ〉 ∈ (Cl)⊗N with the
insertion position P can be expressed as

IP (|ψ〉〈ψ|) = τ(σ ⊗ |ψ〉〈ψ|) (2.39)

with some quantum state σ ∈ S((Cl)⊗t) and a permutation τ ∈ SN+t acting on the quantum
system of the N+ t particles p1, p2, . . . , pN+t. Here, SN+t is the symmetry group of degree N+ t,
and the permutation τ maps the ith particle to the pith if i ∈ [t], and preserves the order of the
particles if i /∈ [t].

Fact 2.6 means that the original state ρ and the state σ to be inserted are not quantum
entangled, assuming that the state ρ after encoding is a pure state ρ = |ψ〉〈ψ|. Without the
assumption that the quantum state ρ is pure, quantum insertion errors cannot be expressed in a
simple form. For example, as mentioned earlier, the purification of a quantum state is a type of
quantum insertion error, but when ρ is a mixed state, then σ⊗ ρ is also a mixed state, and thus
the purification cannot be expressed in the form of Equation (2.39). However, the assumption
that the quantum state after encoding is pure is not strong in practice. This is because most of
the codes known to date encode to a pure state. This thesis will also be discussed under this
assumption from now on.

An error consisting of a combination of quantum deletion errors and quantum insertion errors
is called a quantum insertion/deletion error. Since this thesis does not deal with quantum codes
that can simultaneously correct general insertion and deletion errors, the definitions of quantum
insertion/deletion errors are kept to a brief description. However, since insertion errors of a
special case and deletion errors occur simultaneously will be discussed in Section 6, we will
redefine quantum insertion/deletion errors in that section.

2.3.2 Quantum insertion/deletion error-correcting codes

This thesis deals with quantum deletion codes and quantum insertion codes, which are defined
as follows.

Definition 2.7 (Quantum deletion error-correcting code). Let us define

Dt := {DP : S((Cl)⊗N ) → S((Cl)⊗(N−t)) | P ⊂ [N ], |P | = t}. (2.40)

Then, an ((N,K)) quantum error-correcting code for Dt is called an ((N,K)) t-deletion error-
correcting code or simply a t-deletion code.

18



It is clear that a t-deletion code is an s-deletion code for any non-negative integer 0 ≤ s ≤ t.
In practice, we can choose N − t particles from N − s particles, and then apply the decoder for
the t-deletion code. Namely, the t-deletion code can be interpreted as a code that can correct
for the loss of t particles or less.

Definition 2.8 (Quantum insertion error-correcting code). Let us define

It := {IP : S((Cl)⊗N ) → S((Cl)⊗(N+t)) | P ⊂ [N + t], |P | = t}. (2.41)

Then, an ((N,K)) quantum error-correcting code for It is called an ((N,K)) t-insertion error-
correcting code or simply a t-insetion code.

For any non-negative integer 0 ≤ s ≤ t, it is also clear that a t-insertion code is an s-insertion
code, as in the case of a deletion code. In other words, the t-insertion code may be interpreted
as a code that can correct any insertion error of t or less.
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Chapter 3

Quantum error-correcting codes for
single deletion errors

The main purpose of this chapter is to discuss the Nakayama-Hagiwara conditions, which are
known as the construction conditions for single quantum deletion codes [49]. In particular, in
Sections 3.2 and 3.3, we describe the contents presented at the 2020 International Symposium on
Information Theory and Its Applications (ISITA2020) and published in the journal “Quantum
Information Processing”, respectively.

3.1 Code construction using the Nakayama-Hagiwara conditions

According to Nakayama and Hagiwara [49], the problem of single quantum deletion error can be
attributed to the problem of classical combinatorics. This section briefly describes their results,
which are prior work. In addition, two examples are introduced and their error-correction
conditions are explained.

3.1.1 Nakayama-Hagiwara conditions

This chapter deals only with encoders that are expressed as in Definition 3.1. That is, logical 0
and logical 1 should be the uniform superpositions over sets A and B respectively.

Definition 3.1 (Encoder EncA,B and Code QA,B). Let A,B ⊂ {0, 1}N be non-empty sets with
A ∩ B = ∅. Define an encoder as a linear map EncA,B : C2 → (C2)⊗N . For a quantum state
|ψ〉 = α|0〉+ β|1〉 ∈ C2, EncA,B maps the state |ψ〉 to the state |Ψ〉 := α|0L〉+ β|1L〉 ∈ (C2)⊗N ,
where

|0L〉 :=
1√
|A|

∑
a∈A

|a〉, |1L〉 :=
1√
|B|

∑
b∈B

|b〉. (3.1)

Set QA,B as the image of EncA,B, i.e.,

QA,B := {EncA,B(|ψ〉) | |ψ〉 ∈ C2, |ψ〉〈ψ| ∈ S(C2)}. (3.2)

It can be checked by straightforward calculations that ‖|0L〉‖ = ‖|1L〉‖ = 1 and 〈0L|1L〉 = 0

hold for logical codewords defined by Equation (3.1).
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The following Definitions 3.2 and 3.3 are given by Nakayama and Hagiwara [49].

Definition 3.2 (Deletion set ∆−
i,b). Let i ∈ [N ] be an integer and let b ∈ {0, 1} be a bit. For a

non-empty set A ⊂ {0, 1}N , define a set ∆−
i,b(A) ⊂ {0, 1}N−1 as

∆−
i,b(A) := {a1 . . . ai−1ai+1 . . . aN ∈ {0, 1}N−1 | a1 . . . ai−1bai+1 . . . aN ∈ A}. (3.3)

In other words, ∆−
i,b(A) is the set of bit sequences that deleting the ith component “b” from each

sequence a ∈ {a1a2 . . . aN ∈ A | ai = b} gives. We call the set ∆−
i,b(A) an (i, b) deletion set of A.

Definition 3.3 (Nakayama-Hagiwara conditions). For two non-empty sets A,B ⊂ {0, 1}N ,
define three conditions (C1)−, (C2)−, and (C3)− as follows:

(C1)− (Ratio condition) For any non-empty set I ⊂ [N ] and any bit b ∈ {0, 1},

|A||B−
I,b| = |B||A−

I,b|, (3.4)

where

A−
I,b :=

⋂
i∈I

∆−
i,b(A) ∩

⋂
i∈Ic

∆−
i,b(A)

c, B−
I,b :=

⋂
i∈I

∆−
i,b(B) ∩

⋂
i∈Ic

∆−
i,b(B)c (3.5)

and Xc denotes the complement of a set X, in particular,

∆−
i,b(A)

c = {0, 1}N−1 \∆−
i,b(A), Ic = [N ] \ I. (3.6)

(C2)− (Outer distance condition) For any integers i1, i2 ∈ [N ] and any bits b1, b2 ∈ {0, 1},

|∆−
i1,b1

(A) ∩∆−
i2,b2

(B)| = 0. (3.7)

(C3)− (Inner distance condition) For any integers i1, i2 ∈ [N ],

|∆−
i1,0

(A) ∩∆−
i2,1

(A)| = 0, |∆−
i1,0

(B) ∩∆−
i2,1

(B)| = 0. (3.8)

The conditions (C1)−, (C2)−, and (C3)− are collectively called the Nakayama-Hagiwara condi-
tions or simply the NH conditions.

The condition (C2)− was also considered independently by Ouyang and Rengaswamy under
the name “1-disjointness condition” [57]. The sets A and B in Definition 3.3 satisfy the NH
conditions even if they are exchanged, thus we consider the two pairs (A,B) and (B,A) to be
identical, and in particular, assume that |A| ≤ |B| in this thesis. Since the NH conditions are
very complicated, we will show two examples later in Examples 3.5 and 3.6. There, we will
deepen our understanding by observing the examples and making sure that the three conditions
are satisfied.

Fact 3.4 (Nakayama and Hagiwara [49]). Let A,B ⊂ {0, 1}N be non-empty sets satisfying the
Nakayama-Hagiwara conditions. Then, the code QA,B is an ((N, 1)) single quantum deletion
error-correcting code.

Fact 3.4 means that the NH conditions are sufficient conditions for constructing a single
quantum deletion code. However, they are not shown to be necessary conditions. Therefore, the
code construction in this study also does not characterize all possible single deletion codes, but
rather a special family. For more information about the definition of the decoding method, please
refer to Reference [49]. What is important here is that problems that correct the deletion errors
for quantum states are reduced to problems that find the sets satisfying the three conditions
just mentioned, namely the NH conditions.
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Table 3.1: Deletion sets of A,B that give the Nakayama code

∆−
i,b

A = {00001001, 01101111} B = {00001111, 01101001}
b = 0 b = 1 b = 0 b = 1

i = 1 {0001001, 1101111} ∅ {0001111, 1101001} ∅
i = 2 {0001001} {0101111} {0001111} {0101001}
i = 3 {0001001} {0101111} {0001111} {0101001}
i = 4 {0001001, 0111111} ∅ {0001111, 0111001} ∅
i = 5 ∅ {0000001, 0110111} ∅ {0000111, 0110001}
i = 6 {0000101} {0110111} {0110101} {0000111}
i = 7 {0000101} {0110111} {0110101} {0000111}
i = 8 ∅ {0000100, 0110111} ∅ {0000111, 0110100}

Table 3.2: Deletion sets of A,B that give the Hagiwara code

∆−
i,b

A = {0000, 1111} B = {0011, 0101, 0110, 1001, 1010, 1100}
b = 0 b = 1 b = 0 b = 1

i = 1 {000} {111} {011, 101, 110} {001, 010, 100}
i = 2 {000} {111} {011, 101, 110} {001, 010, 100}
i = 3 {000} {111} {011, 101, 110} {001, 010, 100}
i = 4 {000} {111} {011, 101, 110} {001, 010, 100}

3.1.2 Two known examples

Since Definition 3.3 is very complicated, Nakayama and Hagiwara [49] provide only two examples
of sets that satisfy the NH conditions. These two examples are described below.

Example 3.5. If N = 8 and the sets A,B ⊂ {0, 1}8 are defined as

A = {00001001, 01101111}, B = {00001111, 01101001}, (3.9)

then A and B satisfy the NH conditions.

Table 3.1 expresses the (i, b) deletion sets of A and B defined by Equation (3.9) for each
integer i ∈ [8] and each bit b ∈ {0, 1}; by observing it, we can check that the two sets A and B
satisfy the three conditions. The 8-qubit code obtained from Example 3.5 is the first example
of quantum deletion codes, given in 2020. [48]. We call this code the Nakayama code.

Example 3.6. If N = 4 and the sets A,B ⊂ {0, 1}4 are defined as

A = {0000, 1111}, B = {0011, 0101, 0110, 1001, 1010, 1100}, (3.10)

then A and B satisfy the NH conditions.

Similar to the previous example, by observing Table 3.2, we can check that the two sets A
and B defined by Equation (3.10) satisfy the three conditions. According to the table, it can be
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seen that (i, b) deletion sets ∆−
i,b(A) and ∆−

i,b(B) are constant regardless of each integer i ∈ [4].
The 4-qubit code obtained from Example 3.6 is a single quantum deletion error-correcting code
with the optimal length [35]. We call this code the Hagiwara code. From Equations (3.1) and
(3.10), the logical codewords are

|0L〉 =
1√
2
(|0000〉+ |1111〉) = 1√

2
|D4

0〉+
1√
2
|D4

4〉, (3.11)

|1L〉 =
1√
6
(|0011〉+ |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉) = |D4

2〉. (3.12)

By comparing these with Equation (2.33), we can check that the Hagiwara code is the 0−(2, 2, 1)

gnu code.

At the time when the construction by Nakayama-Hagiwara was proposed [49], only the two
examples above were shown as examples of sets satisfying these conditions, and since these two
examples gave already known codes, no new codes had been proposed. However, many examples
satisfying the NH conditions were given by Shibayama at about the same time [66]. An attempt
was also made to consider the NH conditions from the viewpoint of matrices, which led to further
research [67]. From the following sections, we will describe these results in detail.

Note that observing Tables 3.1 and 3.2 above is also helpful in understanding the proof of
this chapter.

3.2 Construction of sets that satisfy the NH conditions

This section gives examples of constructing sets of bit sequences that satisfy the Nakayama-
Hagiwara conditions. The contents of Section 3.2 were presented at the 2020 International
Symposium on Information Theory and Its Applications (ISITA2020) [66].

3.2.1 Construction 1 (Sets with the optimal cardinalities)

The following Lemma 3.7 gives a necessary condition for (C1)− and (C2)−. It provides lower
bounds on the cardinalities of the two sets A and B.

Lemma 3.7. Suppose that non-empty sets A,B ⊂ {0, 1}N satisfy the conditions (C1)− and
(C2)−. Then, |A| ≥ 2 and |B| ≥ 2.

Proof. Suppose |A| = 1, then (|∆−
i,0(A)|, |∆

−
i,1(A)|) = (0, 1) or (1, 0) holds for any integer i ∈ [N ].

For a bit b ∈ {0, 1} such that |∆−
i,b(A)| = 0, we have |B−

{i},b| = 0 by the condition (C1)−. If
|∆−

i,b(B)| 6= 0, we can take a sequence b′ ∈ ∆−
i,b(B). Then, there is a subset I ⊂ [N ] where i ∈ I

and b′ ∈ B−
I,b. Hence, we have |A||B−

I,b| 6= 0 and |B||A−
I,b| = 0; this contradicts the condition

(C1)−. Thus, |∆−
i,b(A)| = 0 implies |∆−

i,b(B)| = 0 for any integer i ∈ [N ] and any bit b ∈ {0, 1}.
Therefore, for any sequence b ∈ B, the ith component of b is equal to the ith component of
unique sequence a ∈ A for any integer i ∈ [N ]. Thus, B = A holds; this contradicts the
condition (C2)−. Therefore, we obtain |A| ≥ 2. Similarly, |B| ≥ 2 holds.

The following Theorem 3.8 gives a series of sets A and B with |A| = |B| = 2, which is the
smallest cardinality by Lemma 3.7. The previously known Example 3.5 is also derived from
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Equation (3.14), in which

x1 = 000, x2 = 011, y1 = 001, y2 = 111. (3.13)

In other words, Theorem 3.8 is a generalization of the Nakayama code [48].

Theorem 3.8. Suppose that |wt(x1)−wt(x2)| ≥ 2 and |wt(y1)−wt(y2)| ≥ 2 for bit sequences
x1,x2 ∈ {0, 1}m1 and bit sequences y1,y2 ∈ {0, 1}m2 with integers m1 ≥ 2 and m2 ≥ 2. Then,
the sets

A := {x101y1,x201y2}, B := {x101y2,x201y1} (3.14)

and the sets

A := {x110y1,x210y2}, B := {x110y2,x210y1} (3.15)

satisfy the NH conditions.

Proof. By symmetry, it is enough to show only the case of Equation (3.14). Set N1, N2 ⊂
[m1 +m2 + 2] as N1 := [m1 + 1], N2 := [m1 +m2 + 2] \ [m1 + 1] respectively.

By |A| = |B| = 2, in order to show (C1)−, it is enough to prove |A−
I,b| = |B−

I,b| for any
non-empty set I ⊂ [m1 + m2 + 2] and any bit b ∈ {0, 1}. Here, fix a bit b ∈ {0, 1}. By the
assumptions |wt(x1)− wt(x2)| ≥ 2 and |wt(y1)− wt(y2)| ≥ 2, we have

∣∣∣∣ ⋂
i∈I

∆−
i,b(A)

∣∣∣∣ = ∣∣∣∣ ⋂
i∈I

∆−
i,b(B)

∣∣∣∣ =


∣∣∣∣ ⋂
i∈I

∆−
i,b({x10,x20})

∣∣∣∣ if I ⊂ N1,∣∣∣∣ ⋂
i∈I

∆−
i−m−1,b({1y1, 1y2})

∣∣∣∣ if I ⊂ N2,

0 otherwise.

(3.16)

Note that in the case i1 ∈ N1 and i2 ∈ N2, for every element in ∆−
i1,b

(A), its (m1+1)th component
is equal to 1, on the other hand, for every element in ∆−

i2,b
(A), its (m1+1)th component is equal

to 0.

Thus, if I ∩N1 6= ∅ and I ∩N2 6= ∅, |A−
I,b| = |B−

I,b| = 0 holds. It is enough to consider the
case I ⊂ N1 and the case I ⊂ N2. By symmetry, we can assume that I ⊂ N1. Then,

|A−
I,b| =

∣∣∣∣ ⋂
i∈I

∆−
i,b(A) ∩

⋂
i∈Ic

∆−
i,b(A)

c

∣∣∣∣ (3.17)

=

∣∣∣∣ ⋂
i∈I

∆−
i,b(A) ∩

⋂
i∈N1\I

∆−
i,b(A)

c ∩
⋂
i∈N2

∆−
i,b(A)

c

∣∣∣∣ (3.18)

=

∣∣∣∣ ⋂
i∈I

∆−
i,b(A) ∩

⋂
i∈N1\I

∆−
i,b(A)

c

∣∣∣∣ (3.19)

=

∣∣∣∣ ⋂
i∈I

∆−
i,b({x10,x20}) ∩

⋂
i∈N1\I

∆−
i,b({x10,x20})c

∣∣∣∣ (3.20)

holds. What is important here is that |A−
I,b| depends only on x1, x2, and N1. The same

calculation can be done for |B−
I,b|. Thus, we obtain |A−

I,b| = |B−
I,b| for any non-empty set

I ⊂ [m1 +m2 + 2] and any bit b ∈ {0, 1}. Therefore, (C1)− holds.
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We consider the case i1, i2 ∈ N1. Suppose that |∆−
i1,b1

(A) ∩∆−
i2,b2

(B)| 6= 0 for bits b1, b2 ∈
{0, 1}. Then, ∆−

i1,b1
({x10}) = ∆−

i2,b2
({x20}) 6= ∅ or ∆−

i1,b1
({x20}) = ∆−

i2,b2
({x10}) 6= ∅ holds.

This contradicts the assumption |wt(x10) − wt(x20)| ≥ 2. Therefore, we obtain |∆−
i1,b1

(A) ∩
∆−
i2,b2

(B)| = 0. The case i1, i2 ∈ N2 is similar. In the case i1 ∈ N1 and i2 ∈ N2, we have
|∆−

i1,b1
(A)∩∆−

i2,b2
(B)| = 0 by comparing (m1+1)th components. The case i1 ∈ N2 and i2 ∈ N1

is similar. Therefore, (C2)− holds.

In the case i1, i2 ∈ N1, we have |∆−
i1,0

(A) ∩ ∆−
i2,1

(A)| = |∆−
i1,0

({x10}) ∩ ∆−
i2,1

({x10})| +
|∆−

i1,0
({x20}) ∩ ∆−

i2,1
({x20})| = 0 by the assumptions. The case i1, i2 ∈ N2 is similar. In the

case i1 ∈ N1 and i2 ∈ N2, we have |∆−
i1,0

(A)∩∆−
i2,1

(A)| = 0 by comparing (m1+1)th components.
The case i1 ∈ N2 and i2 ∈ N1 is similar. Furthermore, for any integers i1, i2 ∈ [m1 +m2 + 2],
|∆−

i1,0
(B) ∩∆−

i2,1
(B)| = 0 is given in the same way. Therefore, (C3)− holds.

3.2.2 Construction 2 (Permutation-invariant sets)

The following Theorem 3.9 provides a family of sets A and B that give permutation-invariant
quantum codes for deletion errors. They have the property that ∆−

i,b(A) and ∆−
i,b(B) are con-

stant, respectively, regardless of each integer i ∈ [N ]. See Table 3.2 for an example. The
previously known Example 3.6 is also derived from Equation (3.21), in which NA = {0, 4} and
NB = {2}. In other words, Theorem 3.9 is a generalization of the Hagiwara code [35].

Theorem 3.9. Suppose that two sets NA, NB ⊂ {0, 1, . . . , N} with NA ∩ NB = ∅ satisfy the
following three conditions:

1. w ∈ NA =⇒ N − w ∈ NA.

2. w ∈ NB =⇒ N − w ∈ NB.

3. |w1 − w2| > 1, for any integers w1, w2 ∈ NA ∪NB with w1 6= w2.

Then, the sets

A :=
⋃

w∈NA

WN (w), B :=
⋃

w∈NB

WN (w) (3.21)

satisfy the NH conditions. Here, for an integer w ∈ {0, 1, . . . , N},

WN (w) := {a ∈ {0, 1}N | wt(a) = w}. (3.22)

Proof. For any integer i ∈ [N ], it is clear that

∆−
i,0(W

N (w)) =

{
WN−1(w) if w ∈ {0, 1, . . . , N − 1},
∅ if w = N,

(3.23)

∆−
i,1(W

N (w)) =

{
∅ if w = 0,

WN−1(w − 1) if w ∈ {1, 2, . . . , N}.
(3.24)

Thus, for any integers i1, i2 ∈ [N ] and any bit b ∈ {0, 1}, ∆−
i1,b

(A) = ∆−
i2,b

(A) holds.

In the case I 6= [N ], we have

A−
I,b =

⋂
i∈I

∆−
i,b(A) ∩

⋂
i∈Ic

∆−
i,b(A)

c = ∆−
1,b(A) ∩∆−

1,b(A)
c = ∅ (3.25)
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for any non-empty subset I ⊂ [N ] and any bit b ∈ {0, 1}. Similarly, B−
I,b = ∅ holds. Thus, (C1)−

holds. In the case I = [N ], we have A−
I,b = ∆−

i,b(A) and B−
I,b = ∆−

i,b(B) for any integer i ∈ [N ]

and any bit b ∈ {0, 1}. In order to show (C1)−, it is enough to prove the equation

|A||∆−
i,b(B)| = |B||∆−

i,b(A)| (3.26)

for any integer i ∈ [N ] and any bit b ∈ {0, 1}. By the assumption w ∈ NA =⇒ N −w ∈ NA, we
obtain

|∆−
i,0(A)| =

∑
w∈NA\{N}

|WN−1(w)| =
∑

w∈NA\{N}

(
N − 1

w

)
, (3.27)

|∆−
i,1(A)| =

∑
w∈NA\{0}

|WN−1(w − 1)| =
∑

w∈NA\{0}

(
N − 1

w − 1

)
=

∑
w′∈NA\{N}

(
N − 1

w′

)
, (3.28)

where w′ := N − w. Hence, |∆−
i,0(A)| = |∆−

i,1(A)| holds. On the other hand, we have

|∆−
i,0(A)|+ |∆−

i,1(A)| =
∑

w∈NA\{N}

(
N − 1

w

)
+

∑
w∈NA\{0}

(
N − 1

w − 1

)
(3.29)

=


∑

w∈NA\{0,N}

{(
N − 1

w

)
+

(
N − 1

w − 1

)}
+ 2 if 0 ∈ NA

∑
w∈NA\{0,N}

{(
N − 1

w

)
+

(
N − 1

w − 1

)}
otherwise

(3.30)

=


∑

w∈NA\{0,N}

(
N

w

)
+ 2 if 0 ∈ NA

∑
w∈NA\{0,N}

(
N

w

)
otherwise

(3.31)

=
∑
w∈NA

(
N

w

)
(3.32)

= |A|. (3.33)

Thus |∆−
i,b(A)| = |A|/2 holds for any integer i ∈ [N ] and any bit b ∈ {0, 1}. Similarly, |∆−

i,b(B)| =
|B|/2 holds. Therefore, Equation (3.26) holds for any integer i ∈ [N ] and any bit b ∈ {0, 1}.

By the assumption, N ′
A ∩N ′

B = ∅ holds, where

N ′
A := NA ∪ {w − 1 | w ∈ NA, w ≥ 1}, (3.34)

N ′
B := NB ∪ {w − 1 | w ∈ NB, w ≥ 1}. (3.35)

Then, we have⋃
i∈[N ]
b∈{0,1}

∆−
i,b(A) ∩

⋃
i∈[N ]
b∈{0,1}

∆−
i,b(B) =

⋃
w∈N ′

A

WN−1(w) ∩
⋃

w∈N ′
B

WN−1(w) = ∅. (3.36)

Therefore, (C2)− holds.

Suppose that |∆−
i1,0

(A) ∩ ∆−
i2,1

(A)| 6= 0 holds for integers i1, i2 ∈ [N ], then we can take
an element a′ ∈ ∆−

i1,0
(A) ∩∆−

i2,1
(A). Thus, the set A contains two sequences whose Hamming
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weights are wt(a′) and wt(a′)+1; this contradicts the assumption. Hence, we obtain |∆−
i1,0

(A)∩
∆−
i2,1

(A)| = 0 for any integers i1, i2 ∈ [N ]. Similarly, |∆−
i1,0

(B)∩∆−
i2,1

(B)| = 0 holds. Therefore,
(C3)− holds.

3.2.3 Recursive construction

The following Theorem 3.10 means that if we find two sets A,B ⊂ {0, 1}N which satisfy the
NH conditions, then we can construct new sets A′, B′ ∈ {0, 1}N+1 that also satisfy the NH
conditions. Constructing a new code from a certain code by Theorem 3.10 is called extending
the code.

For a set A ⊂ {0, 1}N and a bit x ∈ {0, 1}, we denote Ax := {ax ∈ {0, 1}N+1 | a ∈ A} and
xA := {xa ∈ {0, 1}N+1 | a ∈ A}.

Theorem 3.10. Suppose that non-empty sets A,B ⊂ {0, 1}N satisfy the NH conditions. Then,
for any bit x ∈ {0, 1}, the sets Ax,Bx ⊂ {0, 1}N+1 and the sets xA, xB ⊂ {0, 1}N+1 also satisfy
the NH conditions, respectively.

Proof. By symmetry, it is enough to show only that the sets Ax,Bx ⊂ {0, 1}N+1 satisfy the
three conditions. It is clear that

∆−
N+1,b(Ax) =

{
A if b = x,

∅ otherwise,
(3.37)

∆−
N+1,b(Bx) =

{
B if b = x,

∅ otherwise,
(3.38)

and |Ax| = |A|, |Bx| = |B| for any bits b, x ∈ {0, 1}. In order to show (C1)−, it is enough to
prove that

|A||∅ ∩ (Bx)−I,b| = |B||∅ ∩ (Ax)−I,b|, (3.39)

|A||B ∩ (Bx)−I,x| = |B||A ∩ (Ax)−I,x| (3.40)

for any set I ∈ [N ] and any bits b, x ∈ {0, 1} with b 6= x, and

|A||∅c ∩ (Bx)−I,b| = |B||∅c ∩ (Ax)−I,b|, (3.41)

|A||Bc ∩ (Bx)−I,x| = |B||Ac ∩ (Ax)−I,x| (3.42)

for any non-empty set I ∈ [N ] and any bits b, x ∈ {0, 1} with b 6= x. Equation (3.39) clearly
holds. We obtain |∅c ∩ (Ax)−I,b| = |(Ax)−I,b| = |{ax | a ∈ A−

I,b}| = |A−
I,b|, similarly, we have

|∅c ∩ (Bx)−I,b| = |B−
I,b|. Hence, Equation (3.41) holds by the hypothesis of induction. Thus, we

now show Equations (3.40) and (3.42).

In the case N ∈ I, we obtain |A ∩ (Ax)−I,x| = |(Ax)−I,x| = |A−
I,x| and |Ac ∩ (Ax)−I,x| = 0

by ∆−
n,x(Ax) ⊂ A for any bit x ∈ {0, 1} and any non-empty set I ⊂ [N ]. Similarly, we have

|B ∩ (Bx)I,x| = |BI,x| and |Bc ∩ (Bx)I,x| = 0. Therefore, Equations (3.40) and (3.42) hold by
the hypothesis of induction.

We consider the case N /∈ I. In the case I 6= ∅, we can see the Nth component of every ele-
ment in A∩∆−

n,x(Ax)
c is not equal to x and theNth component of every element in

⋂
i∈I ∆

−
i,x(Ax)
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is equal to x. Hence, |A ∩ (Ax)−I,x| = 0 holds. Similarly, we have |B ∩ (Bx)−I,x| = 0. On the
other hand, in the case I = ∅, we have

|A ∩ (Ax)−∅,x| = |{a1a2 . . . aN ∈ A | aN 6= x}| (3.43)

= |∆−
N,b(A)| (3.44)

=
∑

J⊂[N−1]

∣∣∣∣ ∆−
N,b(A) ∩

⋂
j∈J

∆−
j,b(A) ∩

⋂
j∈[N−1]\J

∆−
j,b(A)

c

∣∣∣∣ (3.45)

=
∑

J⊂[N−1]

∣∣AJ∪{N},b
∣∣ , (3.46)

where b 6= x. Note that in Equation (3.45), for subsets J ⊂ [N − 1], the sets
⋂
j∈J ∆

−
j,b(A) ∩⋂

j∈[N−1]\J ∆
−
j,b(A)

c gives the partition of {0, 1}N . Similarly, |B∩(Bx)−∅,x| =
∑

J⊂[N−1] |B
−
J∪{N},b|

holds. By the hypothesis of induction, we get

|A||B ∩ (Bx)−∅,x| =
∑

J⊂[N−1]

|A||B−
J∪{N},b| =

∑
J⊂[N−1]

|B||A−
J∪{N},b| = |B||A ∩ (Ax)−∅,x|. (3.47)

Hence, Equation (3.40) holds. Since |∆−
i,x(Ax) ∩ ∆−

N,x(Ax)
c ∩ Ac| = |∆−

i,x(Ax) ∩ ∆−
N,x(Ax)

c|
holds for any integer i ∈ [N − 1], we have

|Ac ∩ (Ax)I,x| =
∣∣∣∣ ⋂
i∈I

∆−
i,x(Ax) ∩

⋂
i∈[N−1]\I

∆−
i,x(Ax)

c ∩∆−
N,x(Ax)

c ∩Ac
∣∣∣∣ (3.48)

=

∣∣∣∣ ⋂
i∈I

∆−
i,x(Ax) ∩

⋂
i∈[N−1]\I

∆−
i,x(Ax)

c ∩∆−
N,x(Ax)

c

∣∣∣∣ (3.49)

= |(Ax)−I,x| (3.50)

= |A−
I,x| (3.51)

for any non-empty set I ⊂ [N ]. Similarly, |Bc ∩ (Bx)I,x| = |BI,x| holds. Therefore, Equation
(3.42) holds by the hypothesis of induction.

From the above, it is shown that (C1)− is satisfied.

By the assumption, it is clear that |∆−
i1,b1

(Ax)∩∆−
i2,b2

(Bx)| = 0 for any i1, i2 ∈ [N ] and any
b1, b2 ∈ {0, 1}. By Equations (3.37) and (3.38), in order to show (C2)−, it is enough to prove
that the following equations hold for any i ∈ [N ]:

|(∆−
i,0(Ax) ∪∆−

i,1(Ax)) ∩B| = 0, (3.52)

|(∆−
i,0(Bx) ∪∆−

i,1(Bx)) ∩A| = 0. (3.53)

If we take a sequence b ∈ (∆−
i,0(Ax) ∪ ∆−

i,1(Ax)) ∩ B, there is a sequence a ∈ A whose ith
component is y ∈ {0, 1}, such that ax maps to b ∈ B if we delete “y” at i. Then, there exists
a sequence b′ ∈ ∆−

i,y(A) ∩∆−
N,x(B) such that b ∈ B maps to b′ if we delete “x” at N . Hence,

∆−
i,y(A) ∩ ∆N,x(B) 6= ∅; this contradicts the assumption. Therefore, Equation (3.52) holds.

Equation (3.53) is also proved similarly. Therefore, (C2)− holds.

By Equations (3.37) and (3.38), in order to show satisfying (C3)−, it is enough to prove that
A ∩∆−

i,b(Ax) = ∅ and B ∩∆−
i,b(Bx) = ∅ for any i ∈ [N ] and any b, x ∈ {0, 1} with b 6= x. By

the assumption and by comparison of the Nth component, we have

A ∩∆−
i,b(Ax) = (∆−

N,x(Ax) ∩∆−
i,b(Ax)) ∪ {(A\∆−

N,x(Ax)) ∩∆−
i,b(Ax)} = ∅, (3.54)
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and similarly, B ∩∆−
i,b(Bx) = ∅. Therefore, (C3)− holds.

3.3 Discussion of the NH conditions using adjacency matrices

This section gives a discussion of the Nakayama-Hagiwara conditions using adjacency matrices.
The contents of Section 3.3 were originally published in the journal “Quantum Information
Processing” in 2021 [67].

3.3.1 Characterization of distance conditions via adjacency matrices

Here, we describe the inner and outer distance conditions in terms of matrices in order to further
consider the sets that satisfy the NH conditions. First, we describe the (i, b) deletion sets using
matrices.

Definition 3.11 (Deletion Matrix). Let i ∈ [N ] be an integer. Define two 2N−1-by-2N matrices
Di,⟨0|, Di,⟨1| as

Di,⟨0| := I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
i−1 times

⊗〈0| ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
N−i times

, (3.55)

Di,⟨1| := I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
i−1 times

⊗〈1| ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
N−i times

(3.56)

respectively, where I2 is the identity matrix of order 2. For a matrix Di,⟨b| with a bit b ∈ {0, 1},
let the pth row correspond to the unique sequence x = x1x2 . . . xN−1 ∈ {0, 1}N−1 such that

N−1∑
k=1

xN−k2
k−1 = p− 1, (3.57)

and let the qth column correspond to the unique sequence y = y1y2 . . . yN ∈ {0, 1}N such that

N∑
k=1

yN−k+12
k−1 = q − 1. (3.58)

In this case, we denote the (x,y) entry (i.e., the (p, q) entry) of the matrix Di,⟨b| by Di,⟨b|(x,y).
We call a matrix Di,⟨b| an (i, b) deletion matrix.

The deletion matrix Di,⟨b| defined above can be regarded as a special case of matrices Dn
P,⟨Ψ|,

described later at the beginning of Section 6.2.1.

As you can see in Example 3.14, each row and column is naturally labeled using the binary
system. We can check the elements of the (i, b) deletion set ∆−

i,b(A) for a set A ⊂ {0, 1}N by
observing the (i, b) deletion matrix Di,⟨b|, since it is easy to see that for sequences x′ ∈ {0, 1}N−1

and x ∈ {0, 1}N ,

Di,⟨b|(x
′,x) =

{
1 if x′ ∈ ∆−

i,b({x}),
0 otherwise.

(3.59)
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Lemma 3.12. Sets A,B ⊂ {0, 1}N satisfy the condition (C2)−, if and only if the (a, b) entry
of the matrix AC2

N is equal to 0 for any sequences a ∈ A and b ∈ B, where

AC2
N :=

N∑
i=1

(
Di,⟨0| +Di,⟨1|

)⊤ N∑
j=1

(
Dj,⟨0| +Dj,⟨1|

)
. (3.60)

We call the square matrix AC2
N of order 2N a (C2)-adjacency matrix.

Proof. Lemma 3.12 clearly holds. Note that for integers i, j ∈ [N ] and sequences a, b ∈ {0, 1}N ,
the (a, b) entry of the matrix (Di,⟨0|+Di,⟨1|)

⊤(Dj,⟨0|+Dj,⟨1|) is not equal to 0, if and only if the
subsequence obtained by deleting the ith and jth elements of sequences a and b respectively are
the same.

Lemma 3.13. A set A ⊂ {0, 1}N satisfies the condition (C3)−, if and only if the (a1,a2) entry
of the matrix AC3

N is equal to 0 for any sequences a1,a2 ∈ A, where

AC3
N :=

N∑
i=1

Di,⟨0|
⊤

N∑
j=1

Dj,⟨1| +
N∑
i=1

Di,⟨1|
⊤

N∑
j=1

Dj,⟨0|. (3.61)

We call the square matrix AC3
N of order 2N a (C3)-adjacency matrix.

Proof. Lemma 3.13 also clearly holds. Note that for integers i, j ∈ [N ] and sequences a1,a2 ∈
{0, 1}N , the (a1,a2) entry of the matrix Di,⟨0|

⊤Dj,⟨1| is not equal to 0, if and only if the sub-
sequence obtained by deleting the ith element “0” and jth element “1” of sequences a1 and a2

respectively are the same.

Example 3.14. Let N = 3. Simple calculations show that AC2
3 and AC3

3 are as shown in Figure
3.1. The sequence written on the right side of each row is the labeling for that row. Note that
the columns are also labeled in the same way.

It is easy to check that the (x,y) entry of the matrix AC2
3 is equal to the number of paths

with length 2 from x ∈ {0, 1}3 to y ∈ {0, 1}3 of the graph in Figure 3.2. Furthermore, we can
see that the (x1,x2) entry of the matrix AC3

3 is equal to the number of paths from x1 ∈ {0, 1}3

to x2 ∈ {0, 1}3 that can be formed using only one solid line and one dashed line. From this
observation, it is easy to understand that Lemmas 3.12 and 3.13 hold.

Let us explain in detail the graph that Figure 3.2 represents. The graph has as vertex set
{0, 1}2 ∪ {0, 1}3, with two vertices x′ ∈ {0, 1}2 and x ∈ {0, 1}3 adjacent if and only if x′ is
obtained by deleting the ith element of the sequence x for an integer i ∈ [3]. For each vertex
x ∈ {0, 1}3, there are three positions that can be deleted, thus there are a total of 3 × 8 = 24

edges. Also note that the edges formed by deleting “0” are shown as solid lines, and the edges
formed by deleting “1” are shown as dashed lines.

3.3.2 All examples of sets with length 5 or less

Using the adjacency matrices defined above, we want to examine two sets of small lengths that
satisfy the NH condition. First, we show that there are no examples of sets with a length less
than 4.
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AC2
3 =



9 3 3 0 3 0 0 0

3 5 3 4 1 2 0 0

3 3 3 2 3 2 2 0

0 4 2 5 0 3 1 3

3 1 3 0 5 2 4 0

0 2 2 3 2 3 3 3

0 0 2 1 4 3 5 3

0 0 0 3 0 3 3 9



000

001

010

011

100

101

110

111

AC3
3 =



0 3 3 0 3 0 0 0

3 0 0 4 0 2 0 0

3 0 0 2 0 2 2 0

0 4 2 0 0 0 0 3

3 0 0 0 0 2 4 0

0 2 2 0 2 0 0 3

0 0 2 0 4 0 0 3

0 0 0 3 0 3 3 0



000

001

010

011

100

101

110

111

Figure 3.1: The (C2)-adjacency matrix AC2
3 and the (C3)-adjacency matrix AC3

3

Figure 3.2: The graph representing how a single deletion occurs from {0, 1}3

Lemma 3.15. For an integer N ∈ {2, 3}, there is no pair of non-empty sets A,B ⊂ {0, 1}N

that satisfy the NH conditions.

Proof. Since it is clear that Lemma 3.15 holds for N = 2, we consider the case N = 3. By
Lemmas 3.7 and 3.12, observation of the matrix AC2

3 shows that there are only the following
two possible pairs of sets (A,B) that satisfy the conditions (C1)− and (C2)−:

(A,B) = ({000, 001}, {110, 111}), ({000, 100}, {011, 111}). (3.62)

However, we can see by observing the matrix AC3
3 that none of these two pairs satisfy the

condition (C3)−.

Here, we have shown the non-existence of codes of length 3 or less in Nakayama and Hagi-
wara’s construction method, but more generally, it is already known that there is no single
quantum deletion error-correcting code of length 3 or less [35].
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The necessary and sufficient conditions for (C2)− and (C3)− could be given in terms of adja-
cency matrices, however (C1)− is the most complicated of the three conditions and it is difficult
to give this necessary and sufficient condition. Here, we give a simple necessary condition.

Lemma 3.16. Suppose that non-empty sets A,B ⊂ {0, 1}N satisfy the condition (C1)−. Then,

|A|
∑
b∈B

b = |B|
∑
a∈A

a. (3.63)

Note that we use the same rules as in the N -dimensional complex vector space CN to calculate
the sum of the bit sequences.

For example, for the sets A,B ⊂ {0, 1}8 in Equation (3.9), we can check that Lemma 3.16
is indeed satisfied, since

|A|
∑
b∈B

b = 2 · (00001111 + 01101001) = 2 · 01102112 = 02204224 ∈ C8, (3.64)

|B|
∑
a∈A

a = 2 · (00001001 + 01101111) = 2 · 01102112 = 02204224 ∈ C8. (3.65)

Proof. It is enough to show that |A||∆−
i,1(B)| = |B||∆−

i,1(A)| for any integer i ∈ [N ]. We have

|∆−
i,b(A)| =

∑
J⊂[N ]\{i}

∣∣∣∣ ∆−
i,b(A) ∩

⋂
j∈J

∆−
j,b(A) ∩

⋂
j∈[N ]\(J∪{i})

∆−
j,b(A)

c

∣∣∣∣ (3.66)

=
∑

J⊂[N ]\{i}

∣∣∣A−
J∪{i},b

∣∣∣ (3.67)

for any integer i ∈ [N ] and any bit b ∈ {0, 1}. Note that in Equation (3.66), there are 2N−1

ways to take a subset J ⊂ [N ] \ {i}, and the sets
⋂
j∈J ∆

−
j,b(A) ∩

⋂
j∈[N ]\(J∪{i})∆

−
j,b(A)

c give a

partition of {0, 1}N . Similarly, |∆−
i,b(B)| =

∑
J⊂[N ]\{i}

∣∣∣B−
J∪{i},b

∣∣∣ holds. Therefore, we obtain

|B||∆−
i,b(A)| =

∑
J⊂[N ]\{i}

|B||A−
J∪{i},b| =

∑
J⊂[N ]\{i}

|A||B−
J∪{i},b| = |A||∆−

i,b(B)| (3.68)

by the condition (C1)−.

Using Lemma 3.16, we can determine the set A,B ⊂ {0, 1}N with N = 4 by examining
the adjacency matrices as in the case of N = 3. Lemma 3.17 means that in Nakayama and
Hagiwara’s construction, there is no code with the optimal length other than the Hagiwara
code.

Lemma 3.17. Let N = 4. Suppose that sets A,B ⊂ {0, 1}4 satisfy the NH conditions. Then,

A = {0000, 1111}, B = {0011, 0101, 0110, 1001, 1010, 1100}. (3.69)

Proof. Simple calculations shows that AC2
4 and AC3

4 are as shown in Figure 3.3.

For an integer i ∈ [N ] and a bit b ∈ {0, 1}, set Γi,b := {x1x2x3x4 | xi = b}. By Lemma 3.7, we
have |A| ≥ 2 and |B| ≥ 2. In the case |A∩Γ1,0| ≥ 2 and |B∩Γ1,0| ≥ 2, by observation of the ma-
trixAC2

4 , we have (A∩Γ1,0, B∩Γ1,0) = ({0000, 0001}, {0110, 0111}), ({0000, 0100}, {0011, 0111}).
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AC2
4 =



16 4 4 0 4 0 0 0 4 0 0 0 0 0 0 0

4 10 4 6 1 3 0 0 1 3 0 0 0 0 0 0

4 4 6 2 5 3 4 0 1 1 2 0 0 0 0 0

0 6 2 8 0 4 2 6 0 2 0 2 0 0 0 0

4 1 5 0 6 2 4 0 4 1 3 0 2 0 0 0

0 3 3 4 2 4 3 3 0 3 2 3 0 2 0 0

0 0 4 2 4 3 6 3 0 0 3 1 2 1 3 0

0 0 0 6 0 3 3 10 0 0 0 4 0 1 1 4

4 1 1 0 4 0 0 0 10 3 3 0 6 0 0 0

0 3 1 2 1 3 0 0 3 6 3 4 2 4 0 0

0 0 2 0 3 2 3 0 3 3 4 2 4 3 3 0

0 0 0 2 0 3 1 4 0 4 2 6 0 5 1 4

0 0 0 0 2 0 2 0 6 2 4 0 8 2 6 0

0 0 0 0 0 2 1 1 0 4 3 5 2 6 4 4

0 0 0 0 0 0 3 1 0 0 3 1 6 4 10 4

0 0 0 0 0 0 0 4 0 0 0 4 0 4 4 16



0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

AC3
4 =



0 4 4 0 4 0 0 0 4 0 0 0 0 0 0 0

4 0 0 6 0 3 0 0 0 3 0 0 0 0 0 0

4 0 0 2 0 3 4 0 0 1 2 0 0 0 0 0

0 6 2 0 0 0 0 6 0 0 0 2 0 0 0 0

4 0 0 0 0 2 4 0 0 1 3 0 2 0 0 0

0 3 3 0 2 0 0 3 0 0 0 3 0 2 0 0

0 0 4 0 4 0 0 3 0 0 0 1 0 1 3 0

0 0 0 6 0 3 3 0 0 0 0 0 0 0 0 4

4 0 0 0 0 0 0 0 0 3 3 0 6 0 0 0

0 3 1 0 1 0 0 0 3 0 0 4 0 4 0 0

0 0 2 0 3 0 0 0 3 0 0 2 0 3 3 0

0 0 0 2 0 3 1 0 0 4 2 0 0 0 0 4

0 0 0 0 2 0 0 0 6 0 0 0 0 2 6 0

0 0 0 0 0 2 1 0 0 4 3 0 2 0 0 4

0 0 0 0 0 0 3 0 0 0 3 0 6 0 0 4

0 0 0 0 0 0 0 4 0 0 0 4 0 4 4 0



0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Figure 3.3: The (C2)-adjacency matrix AC2
4 and the (C3)-adjacency matrix AC3

4
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However, both of them do not satisfy the condition (C3)−. In the case |A∩Γ1,0| = 0, by Equation
(3.68), we obtain

|A||B ∩ Γ1,0| = |A||∆−
1,0(B)| = |B||∆−

1,0(A)| = |B||A ∩ Γ1,0|. (3.70)

Hence, |B ∩ Γ1,0| = 0 holds. From Lemma 3.7, |A ∩ Γ1,1| ≥ 2 and |B ∩ Γ1,1| ≥ 2 holds, and
therefore a contradiction follows from the same argument as above.

Now we just need to consider the case |A ∩ Γ1,0| = 1 and |B ∩ Γ1,0| ≥ 1.

If |B ∩ Γ1,0| = 1, then |A| = |B| = 2 by Equation (3.70). By Lemma 3.12, there are 9 ways
to take A ∩ Γ1,0 and B ∩ Γ1,0. Examining them, the sets A,B satisfying (C2)−, (C3)−, and
Lemma 3.16 can be narrowed down to the 3 possibilities (A,B) = ({0000, 1111}, {0011, 1100}),
({0000, 1111}, {0101, 1010}), ({0000, 1111}, {0110, 1001}). However, all of them do not satisfy
the condition (C1)−.

If |B ∩ Γ1,0| = 2, then |A| = 2 and |B| = 4 by Equation (3.70). Then, using the same
method as above, we can see that there are 6 ways to take A ∩ Γ1,0 and B ∩ Γ1,0, from
which we can find the following 3 possibilities (A,B) = ({0000, 1111}, {0011, 0101, 1100, 1010}),
({0000, 1111}, {0011, 0110, 1100, 1001}), ({0000, 1111}, {0101, 0110, 1010, 1001}). However, all
of them do not satisfy the condition (C1)−.

If |B ∩ Γ1,0| = 3, then |A| = 2 and |B| = 6 by Equation (3.70). Then, using the same
method as above, we find that there are 2 ways to take A ∩ Γ1,0 and B ∩ Γ1,0, from which we
get (A,B) = ({0000, 1111}, {0011, 0101, 0110, 1001, 1010, 1100}). This satisfies the conditions
(C1)−, (C2)−, and (C3)− from Theorem 3.9.

If |B ∩ Γ1,0| ≥ 4, we cannot take B ∩ Γ1,0 to satisfy (C3)−.

Lemma 3.17 can be proved by counting directly as above, but it is a tough calculation. By
using a computer to calculate it, we can find out more quickly. In fact, using a computer, by
examining the adjacency matrices AC2

4 and AC3
4 , we can check that there are 187 different pairs

of sets (A,B) that satisfy the conditions (C2)− and (C3)−. Note that the interchange of two
sets A and B are not distinguished and that the sets given by sequences in reverse order are
considered identical. If we check whether (C1)− is satisfied for all of them, we find that only
the Hagiwara code is applicable.

Similarly, the case N = 5 can be examined using a computer.

Lemma 3.18. Let N = 5. Suppose that sets A,B ⊂ {0, 1}5 satisfy the NH conditions. Then
the pair of sets (A,B) is one of the following:

A = {00000, 01111}, B = {00011, 00101, 00110, 01001, 01010, 01100}, (3.71)

A = {10000, 11111}, B = {10011, 10101, 10110, 11001, 11010, 11100}, (3.72)

A = {00000, 11110}, B = {00110, 01010, 01100, 10010, 10100, 11000}, (3.73)

A = {00001, 11111}, B = {00111, 01011, 01101, 10011, 10101, 11001}. (3.74)

Proof. The proof is by computer. Examining the adjacency matrix AC3
4 , we can check that there

are 4143 ways to take a set A ⊂ {0, 1}5 with |A| ≥ 2 satisfying (C2)−. Note here that a set
given in reverse order is considered to be the same as the original set. For each case, examining
the adjacency matrices AC2

4 and AC3
4 , we find that there are 162499 pairs of sets A and B such
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that (C2)− and (C3)− are satisfied, without distinguishing between the interchange of A and B.
By examining all of these, we can check that only the four examples above are applicable.

The four examples obtained in Lemma 3.18 are all extensions of the Hagiwara code by
Theorem 3.10. The codes obtained from these four pairs of sets are called the extended Hagiwara
codes. Lemmas 3.15, 3.17 and 3.18 can be summarized as Theorem 3.19 below. This theorem
gives us all the examples of length 5 or less.

Theorem 3.19. A single quantum deletion code with length 5 or less constructed by Fact 3.4 is
the Hagiwara code or one of the four extended Hagiwara codes.

It should be noted that in Theorem 3.19, we restrict ourselves to encoders expressed in the
form of Definition 3.1, and furthermore, we are discussing the code construction of Nakayama
and Hagiwara. For example, the 0− (2, 2, 5/4) gnu code [53] is one of the single deletion codes
with length 5, but of course, it is not included in Lemma 3.18. The correctability for deletion
errors of gnu codes defined in Section 2.2.3 is described in detail later in Chapter 4.

3.4 Examples

Several examples of sets discussed in Section 3.2 that have a length of 8 or less are represented in
Table 3.3. Lemma 3.15 shows that there are no sets with length 3 or less. Using the method in
Section 3.2, we can always construct sets that satisfy the NH conditions with length 4 or more.
From Lemma 3.17, we see that the only example of sets with length 4 is the Hagiwara code, and
from Lemma 3.18, we see that the only examples of sets with length 5 are the four extended
Hagiwara codes. Many more examples of sets with lengths 6 or more can be constructed other
than those listed in Table 3.3.

Note that the ∆ − (g, n, u) code in the Remarks of Table 3.3 represents the parameters of
the ∆-shifted gnu code defined in Section 2.2.3.

Example 3.20. Assuming that

A =W 6(1) ∪W 6(5), B =W 6(3), (3.75)

the logical codewords of the code QA,B are

|0L〉 =
1√
12

∑
x∈{0,1}6

wt(x)∈{1,5}

|x〉 = 1√
2
|D6

1〉+
1√
2
|D6

5〉, (3.76)

|1L〉 =
1√
20

∑
x∈{0,1}6
wt(x)∈{3}

|x〉 = |D6
3〉 (3.77)

from Equation (3.1). By comparing these with Equation (2.33), we can check that the code QA,B
is the 1− (2, 2, 5/4) gnu code.

The single quantum deletion codes constructed in this chapter include some of the ∆-shifted
gnu codes such that n = 2, but none with n greater than 2. From Fact 2.2, ∆-shifted gnu codes

35



Table 3.3: Several examples of sets A,B with short lengths

N Theorem A B Remarks
4 3.9 W 4(0) ∪W 4(4) W 4(2) Hagiwara code

0− (2, 2, 1) code
Equation (3.10)
Equation (3.69)

5 3.10 0{W 4(0) ∪W 4(4)} 0{W 4(2)} Equation (3.71)
1{W 4(0) ∪W 4(4)} 1{W 4(2)} Equation (3.72)
{W 4(0) ∪W 4(4)}0 {W 4(2)}0 Equation (3.73)
{W 4(0) ∪W 4(4)}1 {W 4(2)}1 Equation (3.74)

6 3.8 {000100, 110111} {000111, 110100} Equation (3.78)
{001000, 111011} {001011, 111000} Equation (3.79)

3.9 W 6(0) ∪W 6(6) W 6(3) 0− (3, 2, 1) code
W 6(1) ∪W 6(5) W 6(3) 1− (2, 2, 5/4) code

Equation (3.75)
W 6(0) ∪W 6(6) W 6(2) ∪W 6(4)

3.10 00{W 4(0) ∪W 4(4)} 00{W 4(2)}
1{W 4(0) ∪W 4(4)}0 1{W 4(2)}0
{W 4(0) ∪W 4(4)}01 {W 4(2)}01 etc.

7 3.8 {0001000, 1101111} {0001111, 1101000}
{0000100, 1100111} {0000111, 1100100}
{0010100, 1110111} {0010111, 1110100} etc.

3.9 W 7(0) ∪W 7(7) W 7(2) ∪W 7(5)

3.10 {0001001, 1101111} {0001111, 1101001}
{W 6(0) ∪W 6(6)}1 {W 6(2) ∪W 6(4)}1
1{W 4(0) ∪W 4(4)}01 1{W 4(2)}01 etc.

8 3.8 {00001001, 01101111} {00001111, 01101001} Nakayama code
Equation (3.9)
Equation (3.80)

{01001001, 11101111} {01001111, 11101001}
{00010100, 10110111} {00010111, 10110100} etc.

3.9 W 8(1) ∪W 8(7) W 8(4) 1− (3, 2, 7/6) code
W 8(0) ∪W 8(8) W 8(2) ∪W 8(4) ∪W 8(6)

W 8(0) ∪W 8(4) ∪W 8(8) W 8(2) ∪W 8(6) etc.
3.10 {00010010, 11011110} {00011110, 11010010}

1{W 7(0) ∪W 7(7)} 1{W 7(2) ∪W 7(5)}
01{W 4(0) ∪W 4(4)}01 01{W 4(2)}01 etc.

36



with n > 2 and g > 2 can correct any single unitary error, but no single deletion code that can
correct single unitary errors has been found in the construction of this chapter.

The sets given in Theorem 3.8 that have the shortest length are

A = {000100, 110111}, B = {000111, 110100} (3.78)

and

A = {001000, 111011}, B = {001011, 111000}. (3.79)

From Theorem 3.19, these two are important examples because they have the minimum length
among sets that are neither permutation-invariant nor extended permutation-invariant.

By Theorem 3.10, for sets A,B ⊂ {0, 1}6 in Equation (3.78),

0A1 = {00001001, 01101111}, 0B1 = {00001111, 01101001} (3.80)

also satisfy the NH conditions. These are exactly the two sets presented in Equation (3.9),
which provide the Nakayama code. Nakayama’s 8-qubit code can be regarded as an example of
Theorem 3.8, but it can also be constructed in terms of extension in this way.
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Chapter 4

Permutation-invariant quantum codes
for multiple deletion errors

The purpose of this chapter is to construct quantum error-correcting codes for multiple deletion
errors by focusing on permutation-invariance. The contents of Chapter 4 were presented at the
2021 International Symposium on Information Theory (ISIT2021) [68].

In this chapter, an integer 1 ≤ t < N is fixed and denotes the number of deletions, and a set
P ⊂ [N ] denotes the deletion position satisfying |P | = t.

4.1 Code construction using the conditions (D1), (D2), and (D3)

This section proposes the conditions, named (D1), (D2), and (D3), for constructing multiple
deletion error-correcting codes, and gives a code construction using these conditions and proves
their error-correctability.

4.1.1 Deletion error-correcting conditions for permutation-invariant codes

The following Definition 4.1 gives a sufficient condition for constructing an ((N, 1)) t-deletion
error-correcting code. The method of constructing a quantum code using these conditions is
described in Definition 4.2. Note that for binomial coefficients, if w < 0 or N < w, we define(
N
w

)
:= 0.

Definition 4.1 (Conditions (D1), (D2), and (D3)). For non-empty sets A,B ⊂ {0, 1, . . . , N}
and a map f : A ∪ B → C, define three conditions (D1), (D2), and (D3) as follows:

(D1) The following equation holds:∑
w∈A

|f(w)|2
(
N

w

)
=
∑
w∈B

|f(w)|2
(
N

w

)
= 1. (4.1)

(D2) For any integer 0 ≤ k ≤ t,∑
w∈A

|f(w)|2
(
N − t

w − k

)
=
∑
w∈B

|f(w)|2
(
N − t

w − k

)
6= 0. (4.2)
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(D3) For any integers w1, w2 ∈ A ∪B,

w1 6= w2 =⇒ |w1 − w2| > t. (4.3)

Definition 4.2 (Encoder EncfA,B and code QfA,B). Let A,B ⊂ {0, 1, . . . , N} be non-empty sets
with A ∩ B = ∅ and f : A ∪ B → C be a map satisfying the conditions (D1), (D2), and
(D3). Define an encoder as a linear map EncfA,B : C2 → (C2)⊗N . For a quantum state |ψ〉 =
α|0〉+ β|1〉 ∈ C2, EncfA,B maps the state |ψ〉 to the state |Ψ〉 := α|0L〉+ β|1L〉 ∈ (C2)⊗N , where

|0L〉 :=
∑

a∈{0,1}N
wt(a)∈A

f(wt(a))|a〉, |1L〉 :=
∑

b∈{0,1}N
wt(b)∈B

f(wt(b))|b〉. (4.4)

Set QfA,B as the image of EncfA,B, i.e.,

QfA,B := {EncfA,B(|ψ〉) | |ψ〉 ∈ C2, |ψ〉〈ψ| ∈ S(C2)}. (4.5)

For logical 0 and logical 1 defined by Equation (4.4), it is clear from the condition (D3) that
〈0L|1L〉 = 0 holds. Furthermore, from the condition (D1), we have

‖|0L〉‖2 =
∑

a∈{0,1}N
wt(a)∈A

|f(wt(a))|2〈a|a〉 =
∑
w∈A

|f(w)|2
(
N

w

)
= 1, (4.6)

‖|1L〉‖2 =
∑

b∈{0,1}N
wt(b)∈B

|f(wt(b))|2〈b|b〉 =
∑
w∈B

|f(w)|2
(
N

w

)
= 1. (4.7)

The condition (D1) can be regarded as the condition that the length of both logical 0 and logical
1 is equal to 1.

The code QfA,B defined by Equation (4.5) is a permutation-invariant code regardless of the
choice of A,B and f . The fact that the code QfA,B is an ((N, 1)) t-deletion error-correcting code,
i.e., Theorem 4.9, which will be explained later, is the main result of this chapter.

4.1.2 State after deletion errors

The following Lemma 4.3 describes the state after a t-deletion error for a permutation-invariant
state.

Lemma 4.3. Let |Ψ〉 ∈ (C2)⊗N be a pure permutation-invariant state with

|Ψ〉 :=
∑

x∈{0,1}N
c(wt(x))|x〉 (4.8)

for a map c : {0, 1, . . . , N} → C. For an integer 0 ≤ k ≤ t, let

|Ψk〉 :=
∑

x∈{0,1}N−t

c(wt(x) + k)|x〉. (4.9)

Then, for any deletion position P ⊂ [N ] satisfying |P | = t,

DP (|Ψ〉〈Ψ|) =
t∑

k=0

(
t

k

)
|Ψk〉〈Ψk|. (4.10)
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Proof. By Equations (4.8) and (4.9), it is clear that

|Ψ〉 =
∑

y∈{0,1}t

(
|y〉 ⊗ |Ψwt(y)〉

)
(4.11)

for any integer 1 ≤ t < N . By the permutation-invariance of |Ψ〉 and the definition of the partial
trace,

DP (|Ψ〉〈Ψ|) = Tr1 ◦ · · · ◦ Tr1︸ ︷︷ ︸
t times

(|Ψ〉〈Ψ|) (4.12)

=
∑

y∈{0,1}t
|Ψwt(y)〉〈Ψwt(y)| (4.13)

=

t∑
k=0

(
t

k

)
|Ψk〉〈Ψk| (4.14)

holds for any deletion position P ⊂ [N ].

Note that the state |Ψ〉 := α|0L〉 + β|1L〉 defined in Equation (4.4) can be obtained in
Equation (4.8) by setting

c(w) =


αf(w) if w ∈ A,
βf(w) if w ∈ B,
0 otherwise.

(4.15)

The state |Ψk〉 ∈ (C2)⊗(N−t) in Equation (4.9) for the state |Ψ〉 ∈ (C2)⊗N encoded by Definition
4.2 can be expressed in a convenient form by the following Lemma 4.4. While the condition
(D1) was described as a condition for satisfying Equations (4.6) and (4.7), the conditions (D2)
and (D3) can be considered as an adaptation of the Knill-Laflamme (KL) conditions [38] to
permutation-invariant codes for quantum deletion errors. Here, the KL conditions will be ex-
plained in detail later in Chapter 6.

Lemma 4.4. Let A,B ⊂ {0, 1, . . . , N} be non-empty sets with A ∩ B = ∅ and f : A ∪ B → C
be a map satisfying the conditions (D2) and (D3). Then for any integer 0 ≤ k ≤ t, there exist a
real number lk 6= 0 and unit vectors |uk1〉, |uk2〉 ∈ (C2)⊗(N−t) that satisfy the following:

1. For a vector |Ψk〉 defined by Equations (4.9) and (4.15),

|Ψk〉 = lk(α|uk1〉+ β|uk2〉). (4.16)

2. For integers k1, k2 ∈ {0, 1, . . . , t} and b1, b2 ∈ {1, 2},

〈uk1b1 |u
k2
b2
〉 =

{
1 if (k1, b1) = (k2, b2),

0 otherwise.
(4.17)

Proof. For an integer 0 ≤ k ≤ t, suppose that

|Uk1 〉 :=
∑
w∈A

( ∑
a∈{0,1}N−t

wt(a)=w−k

f(w)|a〉

)
, |Uk2 〉 :=

∑
w∈B

( ∑
b∈{0,1}N−t

wt(b)=w−k

f(w)|b〉

)
. (4.18)
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By the condition (D2), we have 〈Uk1 |Uk1 〉 = 〈Uk2 |Uk2 〉 6= 0. Set real number lk 6= 0 and pure states
|uk1〉, |uk2〉 ∈ (C2)⊗(N−t) as

lk :=
√
〈Uk1 |Uk1 〉, |uk1〉 :=

|Uk1 〉
lk

, |uk2〉 :=
|Uk2 〉
lk

. (4.19)

Hence, we have

|Ψk〉 = α|Uk1 〉+ β|Uk2 〉 = lk(α|uk1〉+ β|uk2〉) (4.20)

by Equations (4.9) and (4.15), In the case (k1, b1) 6= (k2, b2), we obtain 〈uk1b1 |u
k2
b2
〉 = 0 by the

condition (D3).

4.1.3 Decoding algorithm

The projective measurement used for decoding the code QfA,B is expressed in the following
Definition 4.5.

Definition 4.5 (Projective measurement PA,B). Let A,B ⊂ {0, 1, . . . , N} be sets. For an integer
0 ≤ k ≤ t, suppose that

Wk := {x ∈ {0, 1}N−t | wt(x) + k ∈ A ∪ B}. (4.21)

Then, we define a set PA,B := {P0, P1, . . . , Pt, P∅} of projection matrices, where

Pk :=



∑
x∈Wk

|x〉〈x| if k ∈ {0, 1, . . . , t},

I−
t∑

k=0

Pk if k = ∅.
(4.22)

Here, I is the identity matrix of order 2N−t.

If non-empty sets A,B ⊂ {0, 1, . . . , N} satisfy the condition (D3), the set PA,B is clearly a
projective measurement. The following Lemma 4.6 shows the results of the projective measure-
ment PA,B under the state after a deletion error in the code QfA,B.

Lemma 4.6. Let A,B ⊂ {0, 1, . . . , N} be non-empty sets with A∩B = ∅ and f : A∪B → C be
a map satisfying the conditions (D1), (D2), and (D3). Let |Ψ〉 and |Ψk〉 for an integer 0 ≤ k ≤ t

be defined by Equations (4.8), (4.9) and (4.15). If we perform the projective measurement PA,B
under the quantum state DP (|Ψ〉〈Ψ|) ∈ S((C2)⊗(N−t)) for any deletion position P ⊂ [N ], the
probability p(k) of getting outcome k ∈ {0, 1, . . . , t, ∅} is

p(k) =


(
t

k

)
lk

2 if k ∈ {0, 1, . . . , t},

0 if k = ∅.
(4.23)

When the outcome k ∈ {0, 1, . . . , t} is obtained, the quantum state ρ(k) ∈ S((C2)⊗(N−t)) after
the measurement is

ρ(k) =
1

lk
2 |Ψk〉〈Ψk|. (4.24)
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Proof. In the case k ∈ {0, 1, . . . , t}, we have

p(k) = Tr(PkDP (|Ψ〉〈Ψ|)) (4.25)

= Tr

 ∑
x∈Wk

|x〉〈x|
t∑

k′=0

(
t

k′

)
|Ψk′〉〈Ψk′ |

 (4.26)

= Tr

((
t

k

)
|Ψk〉〈Ψk|

)
(4.27)

= Tr

((
t

k

)
lk

2(α|uk1〉+ β|uk2〉)(α〈uk1|+ β〈uk2|)
)

(4.28)

=

(
t

k

)
lk

2
(
|α|2〈uk1|uk1〉+ |β|2〈uk2|uk2〉

)
(4.29)

=

(
t

k

)
lk

2 (4.30)

by Lemmas 4.3 and 4.4. In the case k = ∅, it is clear that p(∅) = Tr(P∅DP (|Ψ〉〈Ψ|)) = 0.

If we obtain an outcome k ∈ {0, 1, . . . , t}, then by Lemma 4.3, the quantum state immediately
after the measurement is

PkDP (|Ψ〉〈Ψ|)Pk
Tr(PkDP (|Ψ〉〈Ψ|))

=
Pk
(∑t

k′=0

(
t
k′

)
|Ψk′〉〈Ψk′ |

)
Pk(

t
k

)
lk

2
(4.31)

=

(
t
k

)
|Ψk〉〈Ψk|(
t
k

)
lk

2
(4.32)

=
1

lk
2 |Ψk〉〈Ψk| (4.33)

for any deletion position P ⊂ [N ].

Note that in the proof above, the properties of projective measurements described in Section
2.1.4 are used.

Definition 4.7 (Error-correcting operator Uk). Suppose that the assumptions of Lemma 4.4 are
satisfied. Then, for integers k ∈ {0, 1, . . . , t} and m ∈ {1, 2}, we can choose a unitary matrix Uk
of order 2N−t whose mth row is 〈ukm|. We call the matrix Uk an error-correcting operator. For
that unitary matrix Uk, the mth row for 3 ≤ m ≤ 2N−t is also denoted as 〈ukm|.

Definition 4.7 represents the unitary matrix used for decoding. Here, we have defined the
unitary matrix Uk by specifying the structure, in other words, the action of this unitary matrix
Uk of order 2N−t is defined as the unitary transformation such that

|uk1〉 7→ |0 . . . 00〉, |uk2〉 7→ |0 . . . 01〉. (4.34)

The decoder for the code QfA,B is defined by combining the projective measurement PA,B,
the error-correcting operator Uk, and the partial trace Tr1 as follows.

Definition 4.8 (Decoder DecfA,B). Let A,B ⊂ {0, 1, . . . , N} be non-empty sets with A ∩ B = ∅
and f : A ∪ B → C be a map satisfying the conditions (D1), (D2), and (D3). Define a decoder
DecfA,B as a map from ρ ∈ S((C2)⊗(N−t)) to σ ∈ S(C2) constructed by the following steps:
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(Step 1) Perform the projective measurement PA,B under the quantum state ρ. Assume that
the outcome is k and that the state after the measurement is ρ(k).

(Step 2) Let ρ̃ := Ukρ(k)U
†
k . Here Uk is the error-correcting operator corresponding to the

obtained outcome k.

(Step 3) At last, return σ := Tr1 ◦ · · · ◦ Tr1︸ ︷︷ ︸
N−t−1 times

(ρ̃).

The proof that the code QfA,B is indeed error-correctable by the decoder DecfA,B, i.e., that it
satisfies Equation (2.28), is given in Section 4.1.4.

4.1.4 Proof of error-correctability

The following Theorem 4.9 is the main theorem of this chapter and the first given as a systematic
method of constructing multiple deletion error-correcting codes.

Theorem 4.9. Let A,B ⊂ {0, 1, . . . , N} be non-empty sets with A ∩ B = ∅ and f : A ∪ B → C
be a map satisfying the conditions (D1), (D2), and (D3). Then, the code QfA,B is an ((N, 1))

t-deletion error-correcting code with the encoder EncfA,B and the decoder DecfA,B.

In other words, for any pure quantum message |ψ〉 ∈ C2 and any deletion position P ⊂ [N ],

DecfA,B ◦DP ◦ EncfA,B(|ψ〉) = |ψ〉 (4.35)

holds.

Proof. Set |Ψ〉 := EncfA,B(|ψ〉) ∈ S((C2)⊗N ) for a pure quantum state |ψ〉 ∈ C2. For an in-
teger k ∈ {0, 1, . . . , t} and integers i, j ∈ [2N−t], we denote the (i, j) element of the matrix
Uk

(
1
lk

2 |Ψk〉〈Ψk|
)
U †
k by uk(i, j). By Lemma 4.4, we have

uk(i, j) = 〈uki |
(

1

lk
2 |Ψk〉〈Ψk|

)
|ukj 〉 (4.36)

= 〈uki |(α|uk1〉+ β|uk2〉)(α〈uk1|+ β〈uk2|)|ukj 〉 (4.37)

= (α〈uki |uk1〉+ β〈uki |uk2〉)(α〈uk1|ukj 〉+ β〈uk2|ukj 〉) (4.38)

=



|α|2 if (i, j) = (1, 1),

αβ if (i, j) = (1, 2),

αβ if (i, j) = (2, 1),

|β|2 if (i, j) = (2, 2),

0 otherwise.

(4.39)

By Lemmas 4.3, 4.6, Definition 4.8, and Equation (4.39),

DecfA,B ◦DP ◦ EncfA,B(|ψ〉〈ψ|) = DecfA,B ◦DP (|Ψ〉〈Ψ|) (4.40)

= DecfA,B

(
t∑

k=0

(
t

k

)
|Ψk〉〈Ψk|

)
(4.41)

= Tr1 ◦ · · · ◦ Tr1
(
Uk

(
1

lk
2 |Ψk〉〈Ψk|

)
U †
k

)
(4.42)
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= Tr1 ◦ · · · ◦ Tr1(|0〉〈0| ⊗ · · · ⊗ |0〉〈0| ⊗ |ψ〉〈ψ|) (4.43)

= |ψ〉〈ψ| (4.44)

holds for any pure quantum message |ψ〉 ∈ C2 and any deletion position P ∈ [N ]. Equation
(4.44) is exactly the original quantum message.

4.2 Examples

By Theorem 4.9, we can construct a permutation-invariant quantum code for deletion errors by
finding two non-empty sets A,B ⊂ {0, 1, . . . , N} with A ∩ B = ∅ and a map f : A ∪ B → C
that satisfy the three conditions (D1), (D2), and (D3). we give two families of our codes in this
section.

4.2.1 Example 1 (Multiple deletion error-correcting codes)

First, we introduce a key combinatorial equation in giving the first example. Lemma 4.10 below
is Lemma 1 in Reference [51].

Lemma 4.10. Let n be a positive integer. Then for all integers 0 ≤ t ≤ n− 1,

n∑
j=0

(
n

j

)
jt(−1)j = 0. (4.45)

Lemma 4.10 can be easily shown by induction using the binomial identity

n∑
j=0

(
n

j

)(
j

t

)
(−1)j = 0, (4.46)

which holds for any integer 0 ≤ t < n.

The following Theorem 4.11 gives quantum codes for multiple deletion errors. This is an
interesting example that can be proved by good use of the combinatorial equation above. Here,
we fix an integer 1 ≤ t < N .

Theorem 4.11. Let g, n be integers and u be a rational number with

g ≥ t+ 1, n ≥ t+ 1, u :=
N

gn
≥ 1. (4.47)

Suppose that sets A,B ⊂ {0, 1, . . . , N} and a map f : A ∪ B → C are set as

A := {gj | 0 ≤ j ≤ n, j : even}, (4.48)

B := {gj | 0 ≤ j ≤ n, j : odd}, (4.49)

f(gj) :=

√√√√ (
n
j

)
2n−1

(
gnu
gj

) . (4.50)

Then, QfA,B is an ((N, 1)) t-deletion error-correcting code.
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Proof. It is clear that A 6= ∅, B 6= ∅, and A∩B = ∅. Hence, it is enough to prove that the three
conditions (D1), (D2), and (D3) hold by Theorem 4.9.

Simple calculations show that∑
w∈A

|f(w)|2
(
N

w

)
=

1

2n−1

∑
0≤j≤n
j even

(
n

j

)
= 1. (4.51)

Similarly,
∑

w∈B |f(w)|2
(
N
w

)
= 1. Therefore, (D1) holds.

For an integer 0 ≤ k ≤ t, we obtain∑
w∈A

|f(w)|2
(
N − t

w − k

)
−
∑
w∈B

|f(w)|2
(
N − t

w − k

)
=

n∑
j=0

(
n
j

)
2n−1

(
gnu
gj

)(gnu− t

gj − k

)
(−1)j = 0 (4.52)

by the assumption n ≥ t + 1 and Lemma 4.10. Note that the ratio of binomial coefficients(
gnu−t
gj−k

)
/
(
gnu
gj

)
is a polynomial in j of order t. On the other hand, it is obvious that∑

w∈A
|f(w)|2

(
N − t

w − k

)
6= 0. (4.53)

Therefore, (D2) holds.

It is clear that (D3) holds by the assumption g ≥ t+ 1.

The quantum code constructed by Theorem 4.11 is the already known 0 − (g, n, u) code.
However, the tolerance to deletion errors is mentioned here for the first time. Theorem 4.11
claims that any 0 − (g, n, u) code is a t-deletion error-correcting code if g ≥ t + 1, n ≥ t + 1,
and u ≥ 1. The smallest example is precisely Hagiwara’s 4-qubit single deletion code that is the
(2, 2, 1) code [35].

Theorem 4.11 is also the first published method for constructing multiple deletion error-
correcting codes. Furthermore, from Fact 2.2, when g ≥ 2t + 1, n ≥ 2t + 1, and u ≥ 1, we can
see that the 0 − (g, n, u) code can correct t-qubit errors and 2t-deletion errors if they do not
occur simultaneously. Thus, Theorem 4.11 is novel also in that we propose quantum codes that
are tolerant to two types of errors, including deletion errors. Previous quantum deletion codes
could only correct one of them, even if they were not simultaneous. The smallest example is
precisely Ruskai’s 9-qubit code [62], which is the 0− (3, 3, 1) code introduced in Example 2.3. It
was already known that this code can correct 1-qubit errors, but it was shown here for the first
time that it can also correct 2-deletion errors.

The relationship with Ouyang’s work on permutation-invariant deletion codes [53], which
was published at the same time as Theorem 4.11 in this thesis, is explained here. He pointed
out that having t-deletion errors is equivalent to having t-erasure errors on any permutation-
invariant code. Furthermore, from the fact that any t-qudit error-correcting code is a 2t-erasure
error-correcting code [31], the following fact can be derived from Fact 2.2.

Fact 4.12 (Ouyang [53]). Fix t as a non-negative integer. Let ∆ be a non-negative integer, g,
n be positive integers, and u be a rational number, and suppose that

g ≥ t+ 1, n ≥ t+ 1, u ≥ 1. (4.54)

Then, the ∆− (g, n, u) code is an ((N, 1)) t-deletion error-correcting code with N = gnu+∆.
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Fact 4.12 is seemingly a better result than Theorem 4.11 of this thesis in that it takes the
shift ∆ into account. However, of course, the ∆-shifted gnu codes that take the shift ∆ into
account are also included in our framework and can be checked by calculations. Our argument
is also practical in that we proved error-correctability by giving a systematic decoder as in
References [35,48]. Ouyang pointed out that deletion errors can be corrected not only for level 2
qubit systems but also for level 3 and higher qudit systems. In addition, Ouyang gave a detailed
discussion of encoding and decoding for the special case, the ∆-shifted gnu code. Thus, although
some of the results in References [68] and [53] are the same, each has its uniqueness, and both
were accepted and presented at the same conference, the 2021 International Symposium on
Information Theory (ISIT2021).

4.2.2 Example 2 (Single deletion error-correcting codes)

Here, we introduce 1-deletion error-correcting codes. The codes constructed by Theorem 4.13
below are already known as examples [66] of the code construction given by Nakayama and
Hagiwara [49] and are the same codes described in Theorem 3.9. However, they are also one of
the codes constructed in this chapter. Note that Theorem 4.13 has the same content as Theorem
3.9, but the proof is slightly simpler.

Theorem 4.13. Suppose that two non-empty sets A,B ⊂ {0, 1, . . . , N} with A ∩ B = ∅ satisfy
following:

1. w ∈ A =⇒ N − w ∈ A,

2. w ∈ B =⇒ N − w ∈ B,

3. |w1 − w2| > 1, for any integers w1, w2 ∈ A ∪ B with w1 6= w2.

and that the map f : A ∪ B → C is set as

f(w) :=


(∑

w′∈A
(
N
w′

))− 1
2

if w ∈ A,(∑
w′∈B

(
N
w′

))− 1
2

if w ∈ B.
(4.55)

Then, QfA,B is an ((N, 1)) 1-deletion error-correcting code.

Proof. It is clear that (D1) and (D3) hold by the assumptions. Hence we show that (D2) holds.
By the assumption, we have ∑

w∈A

(
N − 1

w − 0

)
=
∑
w∈A

(
N − 1

w − 1

)
, (4.56)

∑
w∈A

(
N − 1

w − 0

)
+
∑
w∈A

(
N − 1

w − 1

)
=
∑
w∈A

(
N

w

)
. (4.57)

Similarly, the same equations for B are obtained. Hence,

∑
w∈A

|f(w)|2
(
N − t

w − k

)
−
∑
w∈B

|f(w)|2
(
N − t

w − k

)
=

∑
w∈A

(
N−1
w−k

)∑
w′∈A

(
N
w′

) −
∑

w∈B
(
N−1
w−k

)∑
w′∈B

(
N
w′

) (4.58)
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=
1

2
− 1

2
(4.59)

= 0 (4.60)

holds for any integer 0 ≤ k ≤ 1. Therefore, (D2) holds.

4.3 Further considerations

This section gives two considerations for the permutation-invariant quantum codes that we have
discussed. First, we describe the construction of the codes such that the number of particles in
the quantum message is increased. This is a generalization of the permutation-invariant deletion
codes constructed in Section 4.1. Second, we give an argument when an adversary performs a
measurement on the deleted qubit and the state is changed.

4.3.1 Generalization of code construction

Here, we discuss constructions of ((N,K)) t-deletion error-correcting codes for any positive integer
K. Let l be a positive integer and A0,A1, . . . ,Al−1 ⊂ {0, 1, . . . , N} be mutually disjoint non-
empty sets and f :

⋃l−1
i=0Ai → C be a map which satisfy the following three conditions:

(D1)* For any integer i ∈ {0, 1, . . . , l − 1},∑
w∈Ai

|f(w)|2
(
N

w

)
= 1. (4.61)

(D2)* For any integer 0 ≤ k ≤ t and any integers i, j ∈ {0, 1, . . . , l − 1},∑
w∈Ai

|f(w)|2
(
N − t

w − k

)
=
∑
w∈Aj

|f(w)|2
(
N − t

w − k

)
6= 0. (4.62)

(D3)* For any integers w1, w2 ∈
⋃l−1
i=0Ai,

w1 6= w2 =⇒ |w1 − w2| > t. (4.63)

Each of the three conditions above is an extension of conditions (D1), (D2), and (D3) proposed
in Definition 4.1.

Let us define an encoder as a linear map Encf{Ai} : Cl → (C2)⊗N . As shown in Equation
(2.6), let |0〉, |1〉, . . . , |l − 1〉 be the standard orthonormal basis of Cl, and set the quantum
state |ψ〉 to |ψ〉 =

∑l−1
i=0 αi|i〉 ∈ Cl. The encoder Encf{Ai} maps the state |ψ〉 to the state

|Ψ〉 := α0|0L〉+ α1|1L〉+ · · ·+ αl−1|l − 1L〉, where the logical cordword is

|iL〉 :=
∑

a∈{0,1}N
wt(a)∈Ai

f(wt(a))|a〉 (4.64)

for each integer 0 ≤ i ≤ l − 1. Note that this encoder is an extension of Definition 4.2. We
claim that the image of Encf{Ai} is a t-deletion error-correcting code for an integer 1 ≤ t < N . A
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detailed explanation is not given here, but it can be proved using the same method as in Section
4.1. In particular, for the case l = 2K , we obtain an ((N,K)) t-deletion error-correcting code.

By extending Theorem 4.13, we can construct ((N,K)) 1-deletion codes with any positive
integer K, if we take the code length N to be sufficiently large.

Corollary 4.14. Suppose that mutually disjoint non-empty sets A0,A1, . . . ,Al−1 ⊂ {0, 1, . . . , N}
satisfy following:

1. w ∈ Ai =⇒ N − w ∈ Ai, for any integer 0 ≤ i ≤ l − 1,

2. |w1 − w2| > 1, for any integers w1, w2 ∈
⋃l−1
i=0Ai with w1 6= w2.

and that the map f :
⋃l−1
i=0Ai → C is set as

f(w) :=

( ∑
w′∈Ai

(
N

w′

) )− 1
2

if w ∈ Ai. (4.65)

Then, the conditions (D1)*, (D2)*, and (D3)* are satisfied.

Corollary 4.14 is immediately derived from Theorem 4.13. Here, one example is given.

Example 4.15. Assuming that N = 12 and

A0 = {0, 12}, A1 = {2, 10}, A2 = {4, 8}, A3 = {6}, (4.66)

f(0) = f(12) =
1√
2
, f(2) = f(10) =

1√
132

, f(4) = f(8) =
1√
990

, f(6) =
1√
924

(4.67)

in Corollary 4.14, from Equation (4.64), the logical codewords are as follows:

|0L〉 :=
1√
2

∑
a∈{0,1}12

wt(a)∈{0,12}

|a〉, |1L〉 :=
1√
132

∑
a∈{0,1}12

wt(a)∈{2,10}

|a〉, (4.68)

|2L〉 :=
1√
990

∑
a∈{0,1}12

wt(a)∈{4,8}

|a〉, |3L〉 :=
1√
924

∑
a∈{0,1}12
wt(a)∈{6}

|a〉. (4.69)

Then, by direct calculations, it can be checked that (D1)*, (D2)*, and (D3)* are satisfied. That
is, we can construct a ((12, 2)) 1-deletion error-correcting code by defining the encoder as a linear
map that maps the state

α0|00〉+ α1|01〉+ α2|10〉+ α3|11〉 ∈ (C2)⊗2 (4.70)

to the state

α0|0L〉+ α1|1L〉+ α2|2L〉+ α3|3L〉 ∈ (C2)⊗12. (4.71)

Here, we have extended the number of particles that form a quantum message in a level
2 qubit system. This does not mean that we have increased the level of the quantum system
we are considering. Such an extension in the deletion error-correcting codes was first given in
Reference [35]. The general conditions to realize this extension are (D1)*, (D2)*, and (D3)*.
However, to date, no ((N,K)) t-deletion code with K ≥ 2 and t ≥ 2 has been reported. Hence,
further research is expected in the future.
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4.3.2 Error-correctability for artificial deletions

Here, we consider the case where an adversary performs a measurement on the deleted qubit and
the quantum state changes. Our code can also decode exactly in such a case using the decoder
defined in Definition 4.8.

We explain using the Hagiwara code as an example. The code with (g, n, u) = (2, 2, 1) in
Theorem 4.11 is the Hagiwara code, whose logical codewords are

|0L〉 =
1√
2
(|0000〉+ |1111〉), (4.72)

|1L〉 =
1√
6
(|0011〉+ |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉) (4.73)

from Equation (4.4). For any two mutually perpendicular unit vectors α1|0〉 + β1|1〉, α2|0〉 +
β2|1〉 ∈ C2, the state after encoding is

|Ψ〉 = α|0L〉+ β|1L〉 (4.74)

= |0〉 ⊗ |Ψ0〉+ |1〉 ⊗ |Ψ1〉 (4.75)

= (α1|0〉+ β1|1〉)⊗ (α1|Ψ0〉+ β1|Ψ1〉) + (α2|0〉+ β2|1〉)⊗ (α2|Ψ0〉+ β2|Ψ1〉). (4.76)

Note that

|Ψ0〉 =
α√
2
|000〉+ β√

6
(|011〉+ |101〉+ |110〉), (4.77)

|Ψ1〉 =
α√
2
|111〉+ β√

6
(|001〉+ |010〉+ |100〉) (4.78)

from Equation (4.9). According to Equation (4.76), when a measurement is performed on the
deleted 1-qubit, the state after the measurement of the remaining 3-qubit state is expressed
in the form of a linear combination of |Ψ0〉 and |Ψ1〉. Therefore, by performing the projective
measurement in Definition 4.5, the state after the measurement is always in the form of Equation
(4.24), and thus the decoding can be performed correctly.

Here we have used the Hagiwara code, but the general case can also be expressed as a linear
combination of |Ψk〉 for 0 ≤ k ≤ t, thus decoding is possible in the same way.
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Chapter 5

Quantum error-correcting codes for
single insertion errors

The purpose of this chapter is to construct quantum error-correcting codes for single insertion
errors. The contents of Chapter 5 were presented at the 44th Symposium on Information Theory
and its Applications (SITA2021) in Japanese.

5.1 Code construction using the conditions (C1)+, (C2)+, and
(C3)+

This section introduces two sets A,B of bit sequences to construct quantum insertion codes, and
proposes the sufficient conditions (C1)+, (C2)+, and (C3)+ for single insertion error-correction
for the sets A,B. We also give a code construction using these conditions and prove their
error-correctability.

5.1.1 Single insertion error-correcting conditions

We assume that the state after encoding is pure. That is, from Fact 2.6, a single insertion error
can be defined as follows.

Definition 5.1 (Single insertion error Inp,σ). Let us denote the N -qudit state M ∈ S((Cl)⊗N )
as

M =
∑

x,y∈{0,1,...,l−1}N
mx,y|x1〉〈y1| ⊗ |x2〉〈y2| ⊗ · · · ⊗ |xN 〉〈yN | (5.1)

with mx,y ∈ C. For an integer i ∈ [N + 1] and a quantum state σ ∈ S(Cl), define the map
Ini,σ : S((Cl)⊗N ) → S((Cl)⊗(N+1)) as

Ini,σ(M) :=
∑

x,y∈{0,1,...,l−1}N
mx,y

|x1〉〈y1| ⊗ · · · ⊗ |xi−1〉〈yi−1| ⊗ σ ⊗ |xi〉〈yi| ⊗ · · · ⊗ |xN 〉〈yN |. (5.2)

The map Ini,σ is called a single insertion error.
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In the above, we defined single insertion errors in a qudit system, however, this chapter will
consider a level 2 qubit system in particular.

The encoder and the code used in this chapter are the ones defined in Chapter 3, i.e. EncA,B
and QA,B in Definition 3.1. The problem is to give conditions on sets A,B such that the quantum
code QA,B defined above is tolerant of insertion errors, and to define the corresponding decoder.
The following Definition 5.2 is an insertion version of the deletion set ∆−

i,b introduced in Definition
3.2.

Definition 5.2 (Insertion set ∆+
i,b). Let i ∈ [N +1] be an integer and let b ∈ {0, 1} be a bit. For

a non-empty set A ⊂ {0, 1}N , define a set ∆+
i,b(A) ⊂ {0, 1}N+1 as

∆+
i,b(A) :={a1 . . . ai−1bai . . . aN ∈ {0, 1}N+1 | a1 . . . ai−1ai . . . aN ∈ A}. (5.3)

In other words, ∆+
i,b(A) is the set of bit sequences obtained by inserting “b” into the ith component

of each sequence a ∈ A. We call the set ∆+
i,b(A) an (i, b) insertion set of A.

Definition 5.3 (Conditions (C1)+, (C2)+, and (C3)+). For two non-empty sets A,B ⊂ {0, 1}N ,
define three conditions (C1)+, (C2)+, and (C3)+ as follows:

(C1)+ (Ratio condition) For any non-empty set I ⊂ [N + 1] and any bit b ∈ {0, 1},

|A||B+
I,b| = |B||A+

I,b|, (5.4)

where

A+
I,b :=

⋂
i∈I

∆+
i,b(A) ∩

⋂
i∈Ic

∆+
i,b(A)

c, B+
I,b :=

⋂
i∈I

∆+
i,b(B) ∩

⋂
i∈Ic

∆+
i,b(B)c (5.5)

and Xc denotes the complement of a set X, in particular,

∆+
i,b(A)

c = {0, 1}N+1 \∆+
i,b(A), Ic = [N + 1] \ I. (5.6)

(C2)+ (Outer distance condition) For any integers i1, i2 ∈ [N + 1] and any bits b1, b2 ∈
{0, 1},

|∆+
i1,b1

(A) ∩∆+
i2,b2

(B)| = 0. (5.7)

(C3)+ (Inner distance condition) For any integers i1, i2 ∈ [N + 1],

|∆+
i1,0

(A) ∩∆+
i2,1

(A)| = 0, |∆+
i1,0

(B) ∩∆+
i2,1

(B)| = 0. (5.8)

For the symbols defined in Chapter 3, by replacing the symbol “−” with the symbol “+”, it
means that we are considering an insertion version of the concept dealt with in the deletion. As
in the case of the NH conditions, the two pairs (A,B) and (B,A) are considered to be identical,
and thus we assume in particular that |A| ≤ |B|.

The conditions (C1)+, (C2)+, and (C3)+ represented by Definition 5.3 are very complicated,
and examples of sets satisfying them are not easy to find. Examples satisfying these conditions
are given in section 5.3.
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5.1.2 Decoding algorithm

The projective measurement used for decoding the code QA,B for single insertion errors is ex-
pressed in Definition 5.4.

Definition 5.4 (Projective measurement P+
A,B). For non-empty sets A,B ⊂ {0, 1}N , suppose

that P̃+
A,B := {PI,b | I ⊂ [N + 1], I 6= ∅, b ∈ {0, 1}}, where

PI,b :=
∑

a∈A+
I,b

|a〉〈a|+
∑

b∈B+
I,b

|b〉〈b|. (5.9)

Then, we define a set P+
A,B := P̃+

A,B ∪ {P∅} of projection matrices, where

P∅ := I−
∑

P∈P̃+
A,B

P. (5.10)

Here, I is the identity matrix of order 2N+1.

If non-empty sets A,B ⊂ {0, 1}N satisfy the conditions (C2)+ and (C3)+, the set P+
A,B is

clearly a projective measurement.

Definition 5.5 (Error-correcting operator UI,b). For a non-empty set I ⊂ [N + 1], a bit b ∈
{0, 1}, and integer m ∈ {1, 2}, we can choose a unitary matrix UI,b of order 2N+1 whose mth
row is 〈umI,b|, where

|u1I,b〉 :=
1√
|A+

I,b|

∑
a∈A+

I,b

|a〉, |u2I,b〉 :=
1√
|B+

I,b|

∑
b∈B+

I,b

|b〉. (5.11)

We call the matrix UI,b an error-correcting operator. For that unitary matrix UI,b, the mth row
for 3 ≤ m ≤ 2N+1 is also denoted as 〈ukI,b|.

From the condition (C2)+, it is clear that 〈uiI,b|u
j
I,b〉 = δi,j holds for any integers i, j ∈ {1, 2}.

Here, δi,j is the Kronecker delta. Thus, there exists a unitary matrix UI,b for any non-empty set
I ⊂ [N+1] and any bit b ∈ {0, 1}. Definition 5.5 represents the unitary matrix used for decoding.
Here we have defined the unitary matrix UI,b by specifying the structure, in other words, the
action of this unitary matrix UI,b of order 2N+1 is defined as the unitary transformation such
that

|u1I,b〉 7→ |0 . . . 00〉, |u2I,b〉 7→ |0 . . . 01〉. (5.12)

The decoder for the code QA,B is defined by combining the projective measurement P+
A,B,

the error-correcting operator UI,b, and the partial trace Tr1 as follows.

Definition 5.6 (Decoder DecA,B). Let A,B ⊂ {0, 1}N be non-empty sets satisfying the condi-
tions (C1)+, (C2)+, and (C3)+. Define a decoder DecA,B as a map from ρ ∈ S((C2)⊗(N+1)) to
σ ∈ S(C2) constructed by the following steps:

(Step 1) Perform the projective measurement P+
A,B under the quantum state ρ. Assume that

the outcome is (I, b) and that the state after the measurement is ρ(I, b).
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(Step 2) Let ρ̃ := UI,bρ(I, b)U
†
I,b. Here UI,b is the error-correcting operator corresponding

to the obtained outcome (I, b).

(Step 3) At last, return σ := Tr1 ◦ · · · ◦ Tr1︸ ︷︷ ︸
N times

(ρ̃).

Proof that the decoder DecA,B is indeed error-correctable, i.e., satisfies Equation (2.28), is
given in Section 5.1.3.

5.1.3 Proof of error-correctability

The following Theorem 5.7 is the main theorem of this chapter and describes the first systematic
construction of quantum insertion error-correcting codes with an explicit decoder.

Theorem 5.7. Let A,B ⊂ {0, 1}N be non-empty sets satisfying the conditions (C1)+, (C2)+,
and (C3)+. Then, the code QA,B is an ((N, 1)) single quantum insertion error-correcting code
with the encoder EncA,B and the decoder DecA,B.

In other words, for any pure quantum message |ψ〉 ∈ C2, any single qubit state σ ∈ S(C2),
and any insertion position p ∈ [N + 1],

DecA,B ◦ Inp,σ ◦ EncA,B(|ψ〉) = |ψ〉 (5.13)

holds.

Proof. Set |Ψ〉 := EncA,B(|ψ〉) ∈ S((C2)⊗N ) for a pure quantum state |ψ〉 ∈ C2. If we denote

σ :=

(
p00 p01
p10 p11

)
= p00|0〉〈0|+ p01|0〉〈1|+ p10|1〉〈0|+ p11|1〉〈1| ∈ S(C2), (5.14)

then we have p00 + p11 = 1 from Tr(σ) = 1. Then, from Definitions 5.1 and 3.1, the state after
the insertion error Inp,σ is

Inp,σ(|Ψ〉〈Ψ|) =
∑

b0∈{0,1}
b1∈{0,1}

pb0b1

(
|α|2

|A|
∑

a∈∆+
p,b0

(A)

ã∈∆+
p,b1

(A)

|a〉〈ã|+ αβ̄√
|A||B|

∑
a∈∆+

p,b0
(A)

b̃∈∆+
p,b1

(B)

|a〉〈b̃|

+
ᾱβ√
|A||B|

∑
b∈∆+

p,b0
(B)

ã∈∆+
p,b1

(A)

|b〉〈ã|+ |β|2

|B|
∑

b∈∆+
p,b0

(B)

b̃∈∆+
p,b1

(B)

|b〉〈b̃|

)
. (5.15)

Observe Equation (5.15) and calculate the probability of getting each outcome when the
projective measurement P+

A,B is performed on the quantum state Inp,σ(|Ψ〉〈Ψ|).
From the definition of A+

I,b, i.e., Equation (5.5), we get⋃
∅≠I⊂[N+1]
b∈{0,1}

A+
I,b =

⋃
i∈[N+1]
b∈{0,1}

∆+
i,b(A). (5.16)

Therefore, the probability of getting the outcome ∅ is Tr (P∅Inp,σ(|Ψ〉〈Ψ|)) = 0. We also calculate
the probability of getting the outcome (I, b) for any non-empty set I ⊂ [N + 1] and any bit
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b ∈ {0, 1}. In the case of p /∈ I, we have Tr (PI,bInp,σ(|Ψ〉〈Ψ|)) = 0 since a /∈ A+
I,b for any

a ∈ ∆+
i,b(A). On the other hand, in the case of p ∈ I, we have

Tr (PI,bInp,σ(|Ψ〉〈Ψ|)) = pbb

(
|α|2

|A|
|A+

I,b|+
|β|2

|B|
|B+

I,b|
)

= pbb
|A+

I,b|
|A|

(5.17)

since A+
I,b ⊂ ∆+

p,b(A) and the condition (C1)+ are satisfied.

In the case of Tr (PI,bInp,σ(|Ψ〉〈Ψ|)) 6= 0, the state ρ(I, b) after performing the projective
measurement P+

A,B and obtaining the outcome (I, b) can be expressed as

PI,bInp,σ(|Ψ〉〈Ψ|)PI,b
Tr(PI,bInp,σ(|Ψ〉〈Ψ|))

=
|α|2

|A+
I,b|

∑
a∈A+

I,b

ã∈A+
I,b

|a〉〈ã|+ αβ̄√
|A+

I,b||B
+
I,b|

∑
a∈A+

I,b

b̃∈B+
I,b

|a〉〈b̃|

+
ᾱβ√

|A+
I,b||B

+
I,b|

∑
b∈B+

I,b

ã∈A+
I,b

|b〉〈ã|+ |β|2

|B+
I,b|

∑
b∈B+

I,b

b̃∈B+
I,b

|b〉〈b̃| (5.18)

= |ΦI,b〉〈ΦI,b| (5.19)

from Equations (5.15) and (5.17), where

|ΦI,b〉 := α|u1I,b〉+ β|u2I,b〉 ∈ (C2)⊗(N+1). (5.20)

For integers i, j ∈ [2N+1], we denote the (i, j) element of the matrix UI,b|ΦI,b〉〈ΦI,b|U †
I,b by

uI,b(i, j). We have

uI,b(i, j) = 〈uiI,b|ΦI,b〉〈ΦI,b|u
j
I,b〉 (5.21)

= 〈uiI,b|(α|u1I,b〉+ β|u2I,b〉)(ᾱ〈u1I,b|+ β̄〈u2I,b|)|u
j
I,b〉 (5.22)

= (α〈uiI,b|u1I,b〉+ β〈uiI,b|u2I,b〉)(ᾱ〈u1I,b|u
j
I,b〉+ β̄〈u2I,b|u

j
I,b〉) (5.23)

=



|α|2 if (i, j) = (1, 1)

αβ if (i, j) = (1, 2)

αβ if (i, j) = (2, 1)

|β|2 if (i, j) = (2, 2)

0 otherwise

(5.24)

by Definition 5.5. Therefore,

DecA,B ◦ Inp,σ ◦ EncA,B(|ψ〉〈ψ|) = DecA,B ◦ Inp,σ(|Ψ〉〈Ψ|) (5.25)

= Tr1 ◦ · · · ◦ Tr1(UI,b|ΦI,b〉〈ΦI,b|U †
I,b) (5.26)

= Tr1 ◦ · · · ◦ Tr1(|0〉〈0| ⊗ · · · ⊗ |0〉〈0| ⊗ |ψ〉〈ψ|) (5.27)

= |ψ〉〈ψ| (5.28)

holds for any pure quantum message |ψ〉 ∈ C2, any single qubit state σ ∈ S(C2), and any
insertion position p ∈ [N + 1] from Definition 5.6. Equation (5.28) is exactly the original
quantum message.
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5.2 Relationship to the Nakayama-Hagiwara conditions

This section discusses the relationship between the Nakayama-Hagiwara conditions (C1)−, (C2)−,
and (C3)−, which are known as error-correction conditions for single quantum deletion errors
introduced in Definition 3.3, and the three conditions (C1)+, (C2)+, and (C3)+ in Definition
5.3.

Lemma 5.8. The following properties hold:

1. The condition (C2)+ is equivalent to the condition (C2)−.

2. The condition (C3)+ is equivalent to the condition (C3)−.

Proof. The equivalence of the conditions (C2)+ and (C2)− is clear from the equivalence of
classical insertion codes and classical deletion codes, hence here we only show the equivalence
of the conditions (C3)+ and (C3)−.

In the following, we can assume that i1 ≤ i2. Take a bit sequence x ∈ ∆+
i1,0

(A) ∩∆+
i2,1

(A)

and denote

x = x1 . . . xi1−10xi1+1 . . . xi2−11xi2+1 . . . xN+1 ∈ {0, 1}N+1. (5.29)

Then, x′ ∈ ∆−
i2−1,1(A) ∩∆−

i1,0
(A) holds for the sequence

x′ := x1 . . . xi1−1xi1+1 . . . xi2−1xi2+1 . . . xN+1 ∈ {0, 1}N−1. (5.30)

Therefore, if (C3)−, then (C3)+ holds.

On the other hand, take a bit sequence y = y1y2 . . . yN−1 ∈ ∆−
i1,0

(A) ∩ ∆−
i2,1

(A). Then,
y′ ∈ ∆+

i2+1,1(A) ∩∆+
i1,0

(A) holds for the sequence

y′ := y1 . . . yi1−10yi1 . . . yi2−11yi2 . . . yN−1. (5.31)

Therefore, if (C3)+, then (C3)− holds.

In connection with Lemma 5.8, it can be checked that the conditions (C1)+ and (C1)− are
not equivalent. According to Example 3.6, it is checked that the sets

A = {0000, 1111}, B = {0011, 0101, 0110, 1001, 1010, 1100} (5.32)

satisfy the condition (C1)−, but for these sets A,B, we know that the condition (C1)+ is not
satisfied because A+

[5],0 = {00000} and B+
[5],0 = ∅ hold from Table 5.1. In other words, the

proposition “ (C1)− =⇒ (C1)+ ” does not hold.

Although the 4-qubit code constructed by A,B defined in Equation (5.32) cannot be decoded
at least by our method, it has been reported that the code is tolerant to single quantum insertion
errors by technical decoding [34]. Namely, the non-equivalence between the conditions (C1)+

and (C1)− does not conclude the non-equivalence between correctability of insertion errors and
deletion errors in quantum codes.

Lemmas 3.12 and 3.13, discussed in Section 3.3, can also be used in the case where the
conditions (C2)+ and (C3)+ are assumed respectively, by Lemma 5.8. However, it is a rather
more natural idea to define the adjacency matrix of the insertion version and proceed with a
similar discussion as in Section 3.3. No study using that approach has been reported yet, and it
is future work.
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Table 5.1: Insertion sets of A,B that give the Hagiwara code

∆+
i,b

A = {0000, 1111} B = {0011, 0101, 0110, 1001, 1010, 1100}
b = 0 b = 1 b = 0 b = 1

i = 1 {00000, 01111} {10000, 11111} {00011, 00101, 00110,
01001, 01010, 01100}

{10011, 10101, 10110,
11001, 11010, 11100}

i = 2 {00000, 10111} {01000, 11111} {00011, 00101, 00110,
10001, 10010, 10100}

{01011, 01101, 01110,
11001, 11010, 11100}

i = 3 {00000, 11011} {00100, 11111} {00011, 01001, 01010,
10001, 10010, 11000}

{00111, 01101, 01110,
10101, 10110, 11100}

i = 4 {00000, 11101} {00010, 11111} {00101, 01001, 01100,
10001, 10100, 11000}

{00111, 01011, 01110,
10011, 10110, 11010}

i = 5 {00000, 11110} {00001, 11111} {00110, 01010, 01100,
10010, 10100, 11000}

{00111, 01011, 01101,
10011, 10101, 11001}

5.3 Examples

This section gives examples of sets A,B ⊂ {0, 1}N of bit sequences that satisfy the conditions
(C1)+, (C2)+, and (C3)+.

It was stated in Theorem 3.8 that the set A,B of bit sequences constructed by the following
Theorem 5.9 satisfies the Nakayama-Hagiwara conditions. In other words, the quantum code
QA,B constructed by these sets A,B is a single deletion error-correcting code. Theorem 5.9 shows
that this code is also tolerant of single quantum insertion errors. Assuming that the receiver
can count the number of particles received, he can decide whether to use a deletion decoder or
an insertion decoder. Therefore, the quantum code given in Theorem 5.9 is an error-correcting
code that can correct a single insertion error or a single deletion error, whichever occurs once in
total.

Theorem 5.9. Suppose that |wt(x1)−wt(x2)| ≥ 2 and |wt(y1)−wt(y2)| ≥ 2 for bit sequences
x1,x2 ∈ {0, 1}m1 and bit sequences y1,y2 ∈ {0, 1}m2 with integers m1 ≥ 2 and m2 ≥ 2. Then,
the set

A := {x101y1,x201y2}, B := {x101y2,x201y1} (5.33)

and the sets

A := {x110y1,x210y2}, B := {x110y2,x210y1} (5.34)

satisfy the conditions (C1)+, (C2)+, and (C3)+.

Proof. Since |A| = |B| = 2 by the assumption, it is enough to show |A+
I,b| = |B+

I,b| for any
non-empty set I ⊂ [m1 +m2 +3] and any bit b ∈ {0, 1}. In the following, we fix a bit b ∈ {0, 1}
and let

N0 := [m1 + 2− b], N1 := [m1 +m2 + 3] \ [m1 + 2− b]. (5.35)

56



Table 5.2: Insertion sets of A = {000100, 110111} and B = {000111, 110100}

∆+
i,b

A = {000100, 110111} B = {000111, 110100}
b = 0 b = 1 b = 0 b = 1

i = 1 {0000100, 0110111} {1000100, 1110111} {0000111, 0110100} {1000111, 1110100}
i = 2 {0000100, 1010111} {0100100, 1110111} {0000111, 1010100} {0100111, 1110100}
i = 3 {0000100, 1100111} {0010100, 1110111} {0000111, 1100100} {0010111, 1110100}
i = 4 {0000100, 1100111} {0001100, 1101111} {0000111, 1100100} {0001111, 1101100}
i = 5 {0001000, 1101011} {0001100, 1101111} {0001011, 1101000} {0001111, 1101100}
i = 6 {0001000, 1101101} {0001010, 1101111} {0001101, 1101000} {0001111, 1101010}
i = 7 {0001000, 1101110} {0001001, 1101111} {0001110, 1101000} {0001111, 1101001}

In the case of i ∈ Nb′ , the m1 + 2 component of any bit sequence in ∆+
i,b(A) is b′ ∈ {0, 1}.

Hence, if I ∩ N0 6= ∅ and I ∩ N1 6= ∅, then |
⋂
i∈I ∆

+
i,b(A)| = 0 holds. Therefore, we obtain

|A+
I,b| = |B+

I,b| = 0.

On the other hand, for a bit b′ ∈ {0, 1}, if I ⊂ Nb′ , we can express

|A+
I,b| =

∣∣∣∣∣ ⋂
i∈I

∆+
i,b(A) ∩

⋂
i∈Nb′\I

∆+
i,b(A)

c

∣∣∣∣∣ (5.36)

=



∣∣∣∣∣ ⋂
i∈I

∆+
i,b(S0) ∩

⋂
i∈N0\I

∆+
i,b(S0)

c

∣∣∣∣∣ if b′ = 0,∣∣∣∣∣ ⋂
i∈I′

∆+
i,b(S1) ∩

⋂
i∈N ′

1\I′
∆+
i,b(S1)

c

∣∣∣∣∣ if b′ = 1,

(5.37)

where S0 := {x10,x20}, S1 := {1y1, 1y2}, I ′ := {i −m1 − 1 | i ∈ I}, and N ′
1 := {i −m1 − 1 |

i ∈ N1}. The same result was obtained for |B+
I,b|, and it was shown that |A+

I,b| = |B+
I,b| for any

non-empty set I ∈ [m1 +m2 + 3]. From the above, the condition (C1)+ is satisfied.

Furthermore, since the sets A,B satisfy the conditions (C2)− and (C3)− from Theorem 3.8,
the conditions (C2)+ and (C3)+ are also satisfied from Lemma 5.8.

It is a well-known fact that in classical codes any deletion code is also an insertion code,
but in general decoding for insertion errors is more difficult than decoding for deletion errors.
However, for the quantum codes given in Theorem 5.9, deletions and insertions can be decoded
with almost the same effort.

Note also that Theorem 5.9 gives the first example of a quantum insertion code that is not
permutation-invariant. The sets A,B ⊂ {0, 1}N given in Theorem 5.9 that have the shortest
length are

A = {000100, 110111}, B = {000111, 110100} (5.38)

and

A = {001000, 111011}, B = {001011, 111000}, (5.39)
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where N = 6. In particular, the fact that the sets A,B in Equation (5.38) satisfy the conditions
(C1)+, (C2)+, and (C3)+ can be understood by observing Table 5.2. The first quantum deletion
code reported by Nakayama [48] was also given as an example of Theorem 59, and it was shown
that this code can also correct single quantum insertion errors.

From Fact 2.6 stated earlier and Theorem 6.5 to be discussed later, it follows that the
correctability of a single insertion error and a single deletion error are equivalent in quantum
codes. In other words, all the quantum codes constructed in Chapter 3 are also single insertion
codes. The main contribution of this chapter is the construction of a quantum code with a
simple decoder for single insertion errors.
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Chapter 6

The equivalence between correctability
of deletions and insertions of separable
states in quantum codes

The quantum states we deal with in this chapter are not limited to level 2 qubits. That is, let l
be any integer greater than or equal to 2, and consider the elements in S(Cl) to be single qudit
states. As a set of qudit labeling, fix the set L := {0, 1, . . . , l − 1} for the integer l ≥ 2.

Chapter 6 is summarized as the contents presented at the 2021 Information Theory Workshop
(ITW2021) [70].

6.1 Quantum error-correction using the Kraus operators

This section describes the quantum insertion and deletion errors in the form of quantum channels
represented by linear operators to use the Knill-Laflamme conditions known as quantum error-
correction conditions.

6.1.1 Knill-Laflamme conditions

Here, we review the Knill-Laflamme quantum error-correction criterion [38]. This section rep-
resents the quantum process as a quantum channel that maps a density matrix to a density
matrix. A linear map Φ : S((Cl)⊗N ) → S((Cl)⊗N ′

) with positive integers N,N ′ is a quantum
channel, if and only if it is completely positive and trace-preserving. For any quantum channel
Φ : S((Cl)⊗N ) → S((Cl)⊗N ′

), there exist linear operators Ai such that for every N -qudit state
ρ ∈ S((Cl)⊗N ),

Φ(ρ) =
∑
i

AiρA
†
i (6.1)

holds and
∑

iA
†
iAi is the identity operator on S((Cl)⊗N ). The linear operators Ai are known

as the Kraus operators of Φ and their representation is not unique. Given a quantum channel
N , a subspace C of (Cl)⊗N is a quantum code that corrects all errors introduced by N , if and
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only if there exists a quantum channel R such that

R(N (ρ)) = ρ (6.2)

for every density matrix ρ supported on C. Fact 6.1 below, which gives the necessary and
sufficient conditions for quantum error-correction, was originally proved in 1997 by Knill and
Laflamme [38].

Fact 6.1 (Knill and Laflamme [38]). Let C be a d-dimensional subspace of the complex Hilbert
space (Cl)⊗N with orthogonal basis vectors |0L〉, |1L〉, . . . , |d− 1L〉. Let N be a quantum channel
with the Kraus operators Ai. Suppose that for all i, j there exist gi,j ∈ C such that the following
conditions hold:

1. (Orthogonality condition) For any a, b ∈ {0, 1, . . . , d− 1} with a 6= b,

〈aL|A†
iAj |bL〉 = 0. (6.3)

2. (Non-deformation condition) For any a ∈ {0, 1, . . . , d− 1},

〈aL|A†
iAj |aL〉 = gi,j (6.4)

Then, for every density matrix ρ supported on C, there exists a quantum channel R such that
R(N (ρ)) = ρ. The two conditions above are collectively called the Knill-Laflamme conditions or
simply the KL conditions.

6.1.2 Quantum insertion/deletion channels

This section also defines the single insertion error and single deletion error for the N-qudit
state as in Equations (5.2) and (2.13), respectively. Note in particular that we assume that the
quantum state before insertion is pure. In this section, the number of particles before insertion
or deletion errors is written as a superscript for the maps Inp1,σ and Trp2 . In other words, we
denote

InNp1,σ(M) := Inp1,σ(M), TrNp2(M) := Trp2(M), (6.5)

for integers p1 ∈ [N + 1], p2 ∈ [N ], a single qudit state σ ∈ S(Cl), and an N -qudit state
M ∈ S((Cl)⊗N ).

The t-insertion error and the t-deletion error are already defined in Definitions 2.4 and 2.5,
respectively, but here they are described as quantum channels in order to use the KL conditions
as follows.

Definition 6.2 (t-insertion channel InsNt ). Let t be a positive integer and let

σ = σ1 ⊗ σ2 ⊗ · · · ⊗ σt ∈ S((Cl)⊗t), (6.6)

where σi ∈ S(Cl) is a single qudit state for every i ∈ [t]. For a non-empty set P = {p1, p2, . . . , pt} ⊂
[N + t] with 1 ≤ p1 < p2 < · · · < pt ≤ N + t, define a map InsNP,σ : S((Cl)⊗N ) → S((Cl)⊗(N+t))

as

InsNP,σ(ρ) := InN+t−1
pt,σt ◦ · · · ◦ InN+1

p2,σ2 ◦ In
N
p1,σ1︸ ︷︷ ︸

t times

(ρ), (6.7)
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Figure 6.1: Insertion of a separable 2-qubit Figure 6.2: Insertion of an entangled 2-qubit

where ρ ∈ S((Cl)⊗N ) is an N -qudit state. We call the map InsNP,σ a (t, P, σ)-insertion error. We
define a t-insertion channel InsNt as a convex combination of all (t, P, σ)-insertion errors, where
a positive integer t is fixed and |P | = t, i.e.,

InsNt (ρ) :=

∫
σ∈S((Cl)⊗t)

µ(σ)
∑
|P |=t

pσ(P )Ins
N
P,σ(ρ)dσ, (6.8)

where µ(σ) and pσ(P ) are probability distributions. Note that µ is a measure.

From Fact 2.6, we should consider insertions of arbitrary t-qudit states σ ∈ S((Cl)⊗t), but
here we only consider special insertions restricted to states σ1 ⊗ σ2 ⊗ · · · ⊗ σt ∈ S((Cl)⊗t) that
are not quantum entangled. This means that operations such as the insertion of two 1-qubit
states σ1, σ2 ∈ S(Cl) independent of other particles twice, as in Figure 6.1, are allowed, but
the insertion of one entangled 2-qubit σ ∈ S((Cl)⊗2), as in Figure 6.2, is not considered in this
study. It is a future task to give a more general definition of the insertion channel for further
discussion. Here, we discuss using this definition, which is limited to the insertion of separable
states.

Definition 6.3 (t-deletion channel DelNt ). Let t < N be a positive integer. For a non-empty set
P = {p1, p2, . . . , pt} ⊂ [N ] with 1 ≤ p1 < p2 < · · · < pt < N , define a map EraNP : S((Cl)⊗N ) →
S((Cl)⊗(N−t)) as

EraNP (ρ) := TrN−t+1
p1 ◦ · · · ◦ TrN−1

pt−1
◦ TrNpt︸ ︷︷ ︸

t times

(ρ), (6.9)

where ρ ∈ S((Cl)⊗N ) is an N -qudit state. We call the map EraNP a (t, P )-erasure error. We
define a t-deletion channel DelNt as a convex combination of all (t, P )-erasure errors, where a
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positive integer t is fixed and |P | = t, i.e.,

DelNt (ρ) :=
∑
|P |=t

p(P )EraNP (ρ), (6.10)

where p(P ) is a probability distribution.

The map EraNP in Equation (6.9) is exactly the same as the map DP in Equation (2.37),
although the notation is different. Here it is rewritten as Equation (6.10) to contrast with
Definition 6.2. That is, we explicitly state that the t-deletion channel does not depend on the
deletion position P , but only on the number of deletions t. Extending Definitions 6.2 and 6.3,
the 0-insertion and 0-deletion channels are both defined as identity maps. An insertion/deletion
channel is defined by combining the insertion and deletion channels defined above.

Definition 6.4 ((t1, t2)-insertion/deletion channel InsDelNt1,t2). Let t1, t2 be non-negative inte-
gers with t2 < N . We define a (t1, t2)-insertion/deletion channel InsDelNt1,t2 : S((Cl)⊗N ) →
S((Cl)⊗(N+t1−t2)) as

InsDelNt1,t2(ρ) := InsN−t2
t1

◦DelNt2 (ρ), (6.11)

where ρ ∈ S((Cl)⊗N ) is an N -qudit state. An insertion/deletion channel is also simply called
an insdel channel.

Note that Definition 6.4 represents a special insertion/deletion channel that only considers
the insertion of separable states.

6.2 Relationship between deletions and insertions of separable
states

A (t1, t2)-insdel error-correcting code is a quantum code that can perfectly correct errors in-
troduced by any (t1, t2)-insdel channel for non-negative integers t1, t2 with t2 < N . In other
words, the (t1, t2)-insdel error-correcting code is defined as any error E ∈ E in Equation (2.28)
changed to the map InsDelNt1,t2 . We denote by C ⊂ (Cl)⊗N the d-dimensional (t1, t2)-insdel
error-correcting code spanned by the orthonormal logical codewords |0L〉, |1L〉, . . . , |d−1L〉. Our
main theorem in this chapter concerns (t1, t2)-insdel error-correcting codes. In particular, we
describe the equivalence between insertion and deletion error-correction capability, a well-known
result in classical codes [41], from the perspective of quantum codes.

Theorem 6.5. Let t1, t2, s1, s2 be non-negative integers satisfying t1 + t2 = s1 + s2. Then, any
(t1, t2)-insdel code is an (s1, s2)-insdel code.

Obviously, any (t1, t2)-insdel code is a (u1, u2)-insdel code if u1 ≤ t1 and u2 ≤ t2, therefore,
Theorem 6.5 means that any (t1, t2)-insdel code can correct errors that occur as a combination
of no more than t1 + t2 single deletions or single insertions in total. The remaining part of this
chapter is devoted to proving Theorem 6.5.
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6.2.1 Lemmas of tensor product calculation

Here, we introduce the rules of tensor product calculations necessary for the proof of Theorem
6.5.

Let n ≥ 0, t ≥ 1 be integers and let |Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψt〉 ∈ (Cl)⊗t, where |ψi〉 ∈ Cl

for every i ∈ [t]. For a set P = {p1, p2, . . . , pt} ⊂ [n+ t] with 1 ≤ p1 < p2 < · · · < pt ≤ n+ t, we
define qn+t-by-qn matrix InP,|Ψ⟩ and qn-by-qn+t matrix Dn

P,⟨Ψ| as

InP,|Ψ⟩ := A1 ⊗A2 ⊗ · · · ⊗An+t, Dn
P,⟨Ψ| := B1 ⊗B2 ⊗ · · · ⊗Bn+t, (6.12)

respectively, where

Aj :=

{
|ψi〉 if j = pi ∈ P,

Il if j /∈ P,
Bj :=

{
〈ψi| if j = pi ∈ P,

Il if j /∈ P,
(6.13)

for j ∈ [n + t]. Here, Il denotes the identity matrix of order l. Note that the superscript n of
these matrices represents the number of Il’s included as a factor of the tensor product, which is
important for the matrix operations used in later discussions. Namely, we have been treating N
as the code length, but n here has a slightly different meaning. When t = 1, we simply denote
In{p1},|Ψ⟩ and Dn

{p1},⟨Ψ| as Inp1,|ψ1⟩ and Dn
p1,⟨ψ1|, respectively. It is clear that

InP,|Ψ⟩ = Dn
P,⟨Ψ|

†, Dn
P,⟨Ψ| = InP,|Ψ⟩

† (6.14)

from the definitions of the matrices InP,|Ψ⟩ and Dn
P,⟨Ψ|.

The following Lemmas 6.6 and 6.7 are basic calculation rules and can be easily shown by
direct calculations as matrices.

Lemma 6.6. Let n ≥ 0, t ≥ 1 be integers. Suppose that P = {p1, p2, . . . , pt} ⊂ [n + t] with
1 ≤ p1 < p2 < · · · < pt ≤ n+ t and |Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψt〉 ∈ (Cl)⊗t. Then,

InP,|Ψ⟩ = In+t−1
pt,|ψt⟩ I

n+t−2
pt−1,|ψt−1⟩ . . . I

n+1
p2,|ψ2⟩I

n
p1,|ψ1⟩, (6.15)

Dn
P,⟨Ψ| = Dn

p1,⟨ψ1|D
n+1
p2,⟨ψ2| . . . D

n+t−2
pt−1,⟨ψt−1|D

n+t−1
pt,⟨ψt| . (6.16)

Proof. Lemma 6.6 is proved by induction on t. It clearly holds for t = 1. Let k be a positive
integer, and it is enough to prove that

InPk+1,|Ψk+1⟩ = In+kpk+1,|ψk+1⟩I
n+k−1
pk,|ψk⟩ I

n+k−2
pk−1,|ψk−1⟩ . . . I

n+1
p2,|ψ2⟩I

n
p1,|ψ1⟩, (6.17)

where Pk+1 = {p1, p2, . . . , pk, pk+1} ∈ [n+k+1] and |Ψk+1〉 = |ψ1〉⊗|ψ2〉⊗· · ·⊗ |ψk〉⊗|ψk+1〉 ∈
(Cl)⊗(k+1). By the hypothesis of induction, we have

InPk,|Ψk⟩ = In+k−1
pk,|ψk⟩ I

n+k−2
pk−1,|ψk−1⟩ . . . I

n+1
p2,|ψ2⟩I

n
p1,|ψ1⟩, (6.18)

where Pk = Pk+1 \ {pk+1} and |Ψk〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉 ∈ (Cl)⊗k. On the other hand, by
simple calculation, we get

In+kpk+1,|ψk+1⟩I
n
Pk,|Ψk⟩ (6.19)
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= (Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
pk+1−1

⊗|ψk+1〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−pk+1+k+1

)(I
pk+1−k−1
Pk

⊗ I1 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−pk+1+k+1

) (6.20)

= I
pk+1−k−1
Pk

⊗ |ψk+1〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−pk+1+k+1

(6.21)

= InPk+1,|Ψk+1⟩. (6.22)

Hence, Equation (6.17) holds from Equations (6.18) and (6.22). Therefore, Equation (6.15) is
proved by induction, and Equation (6.16) is easily shown from Equation (6.14).

Lemma 6.7. Let n be a non-negative integer and p1, p2 ∈ [n+1] be integers with 1 ≤ p1 ≤ p2 ≤
n+ 1, and let |ψ1〉, |ψ2〉 ∈ Cl. Then,

In+1
p1,|ψ1⟩I

n
p2,|ψ2⟩ = In+1

p2+1,|ψ2⟩I
n
p1,|ψ1⟩, (6.23)

Dn
p2,⟨ψ2|D

n+1
p1,⟨ψ1| = Dn

p1,⟨ψ1|D
n+1
p2+1,⟨ψ2|. (6.24)

Proof. Simple calculations give

In+1
p1,|ψ1⟩I

n
p2,|ψ2⟩ = (Il ⊗ · · · ⊗ Il︸ ︷︷ ︸

p1−1

⊗|ψ1〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p2−p1

⊗Il ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p2+1

)

(Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p1−1

⊗I1 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p2−p1

⊗|ψ2〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p2+1

) (6.25)

= Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p1−1

⊗|ψ1〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p2−p1

⊗|ψ2〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p2+1

(6.26)

and

In+1
p2+1,|ψ2⟩I

n
p1,|ψ1⟩ = (Il ⊗ · · · ⊗ Il︸ ︷︷ ︸

p1−1

⊗Il ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p2−p1

⊗|ψ2〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p2+1

)

(Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p1−1

⊗|ψ1〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p2−p1

⊗I1 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p2+1

) (6.27)

= Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p1−1

⊗|ψ1〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p2−p1

⊗|ψ2〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p2+1

. (6.28)

Hence, we obtain In+1
p1,|ψ1⟩I

n
p2,|ψ2⟩ = In+1

p2+1,|ψ2⟩I
n
p1,|ψ1⟩ from Equations (6.26) and (6.28). Equation

(6.24) is easily shown from Equation (6.14).

The following Lemmas 6.8 and 6.9 give commutation rules for the insertion Kraus operators
I and the deletion Kraus operators D, and the proof is by simple algebraic calculations.

Lemma 6.8. Let n be a non-negative integer and p1, p2 ∈ [n+1] be integers and let |ψ1〉, |ψ2〉 ∈
Cl. Then,

Dn
p2,⟨ψ2|I

n
p1,|ψ1⟩ =


In−1
p1,|ψ1⟩D

n−1
p2−1,⟨ψ2| if p1 < p2,

〈ψ2|ψ1〉Iln if p1 = p2,

In−1
p1−1,|ψ1⟩D

n−1
p2,⟨ψ2| if p1 > p2.

(6.29)
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Proof. When p1 < p2, simple calculations give

Dn
p2,⟨ψ2|I

n
p1,|ψ1⟩ = (Il ⊗ · · · ⊗ Il︸ ︷︷ ︸

p1−1

⊗Il ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p2−p1−1

⊗〈ψ2| ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p2+1

)

(Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p1−1

⊗|ψ1〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p2−p1−1

⊗Il ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p2+1

) (6.30)

= Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p1−1

⊗|ψ1〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p2−p1−1

⊗〈ψ2| ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p2+1

(6.31)

and

In−1
p1,|ψ1⟩D

n−1
p2−1,⟨ψ2| = (Il ⊗ · · · ⊗ Il︸ ︷︷ ︸

p1−1

⊗|ψ1〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p2−p1−1

⊗I1 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p2+1

)

(Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p1−1

⊗I1 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p2−p1−1

⊗〈ψ2| ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p2+1

) (6.32)

= Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p1−1

⊗|ψ1〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p2−p1−1

⊗〈ψ2| ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p2+1

. (6.33)

Hence, we obtain Dn
p2,⟨ψ2|I

n
p1,|ψ1⟩ = In−1

p1,|ψ1⟩D
n−1
p2−1,⟨ψ2| from Equations (6.31) and (6.33).

The case p1 > p2 is shown similarly, and the case p1 = p2 trivially holds.

Lemma 6.9. Let n be a non-negative integer and p1, p2 ∈ [n+1] be integers and let |ψ1〉, |ψ2〉 ∈
Cl. Then,

Inp1,|ψ1⟩D
n
p2,⟨ψ2| =

D
n+1
p2+1,⟨ψ2|I

n+1
p1,|ψ1⟩ if p1 ≤ p2,

Dn+1
p2,⟨ψ2|I

n+1
p1+1,|ψ1⟩ if p1 ≥ p2.

(6.34)

Proof. Lemma 6.9 can be derived immediately from Lemma 6.8.

Note that in the case of p1 = p2, the equation Dn+1
p2+1,⟨ψ2|I

n+1
p1,|ψ1⟩ = Dn+1

p2,⟨ψ2|I
n+1
p1+1,|ψ1⟩ holds,

because |ψ1〉 ⊗ 〈ψ2| = 〈ψ2| ⊗ |ψ1〉 = |ψ1〉〈ψ2| for any |ψ1〉, |ψ2〉 ∈ Cl.

6.2.2 Kraus operators for insertion/deletion errors

Here, we elucidate the properties of the Kraus operators of insdel channels. Recall that L :=

{0, 1, . . . , l − 1} for the integer l ≥ 2.

Lemma 6.10. For any N -qudit state ρ ∈ S((Cl)⊗N ), the state after inserting a separable t-qudit
state σ ∈ S((Cl)⊗t) in the positions labeled by P ⊂ [N + t] can be expressed as

InsNP,σ(ρ) =
∑
a∈Lt

p(a)INP,U |a⟩ρI
N
P,U |a⟩

† (6.35)

with some probability distribution p(a) for a ∈ Lt and unitary matrix U .

Proof. For any n ≥ 1, p ∈ [n+ 1], |ψ〉 ∈ Cl, and x ∈ Ln,

Inp,|ψ⟩|x〉 = (Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
p−1

⊗|ψ〉 ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p+1

)(|x1 . . . xp−1〉 ⊗ I1 ⊗ |xp . . . xn〉) (6.36)
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= |x1〉 ⊗ · · · ⊗ |xp−1〉 ⊗ |ψ〉 ⊗ |xp〉 ⊗ · · · ⊗ |xn〉 (6.37)

holds. Let τ =
∑

i∈L ci|ψi〉〈ψi| be the spectral decomposition of τ ∈ S(Cl), where ci are
probabilities and 〈ψi|ψj〉 = δi,j for i, j ∈ L. Here, δi,j is the Kronecker delta function. Note
that there exists a unitary matrix U such that |ψi〉 = U |i〉 for every i ∈ L. For a quantum state
ρ =

∑
x,y∈Ln mx,y|x〉〈y|,

Innp,τ (ρ) =
∑
i∈L

ci

( ∑
x,y∈Ln

mx,y|xi〉〈yi|

)
(6.38)

=
∑
i∈L

ciI
n
p,|ψi⟩

( ∑
x,y∈Ln

mx,y|x〉〈y|

)
Inp,|ψi⟩

† (6.39)

=
∑
i∈L

ciI
n
p,U |i⟩ρI

n
p,U |i⟩

† (6.40)

holds, where

|xi〉 = |x1〉 ⊗ · · · ⊗ |xp−1〉 ⊗ |ψi〉 ⊗ |xp〉 ⊗ · · · ⊗ |xn〉, (6.41)

|yi〉 = |y1〉 ⊗ · · · ⊗ |yp−1〉 ⊗ |ψi〉 ⊗ |yp〉 ⊗ · · · ⊗ |yn〉. (6.42)

Assume that σ = σ1 ⊗ σ2 ⊗ · · · ⊗ σt and σk =
∑

i∈L c
k
i |ψki 〉〈ψki | and |ψki 〉 = Uk|i〉 for k ∈ [t]. By

Definition 6.2 and Lemma 6.6, we obtain

InsNP,σ(ρ) = InN+t−1
pt,σt ◦ · · · ◦ InN+1

p2,σ2 ◦ In
N
p1,σ1(ρ) (6.43)

=
∑
it∈L

· · ·
∑
i2∈L

∑
i1∈L

ctit . . . c
2
i2c

1
i1

IN+t−1
pt,Ut|it⟩ . . . I

N+1
p2,U2|i2⟩I

N
p1,U1|i1⟩ρI

N
p1,U1|i1⟩

†
IN+1
p2,U2|i2⟩

†
. . . IN+t−1

pt,Ut|it⟩
† (6.44)

=
∑
a∈Lt

p(a)INP,U |a⟩ρI
N
P,U |a⟩

†
, (6.45)

where p(a) = c1a1c
2
a2 . . . c

t
at and U = U1 ⊗ U2 ⊗ · · · ⊗ Ut.

From Definition 6.2 and Lemma 6.10, we get the Kraus form for insertion channels, which
is represented as

InsNt (ρ) =

∫
U

∑
P,a

µ1(U,P,a)I
N
P,U |a⟩ρI

N
P,U |a⟩

†
dU, (6.46)

where µ1 is a probability distribution.

Lemma 6.11. For any N -qudit state ρ ∈ S((Cl)⊗N ), the state after deleting the qudits labeled
by P ⊂ [N ] is

EraNP (ρ) =
∑
a∈Lt

DN−t
P,⟨a|ρD

N−t
P,⟨a|

†
. (6.47)

Proof. For any n ≥ 2, p ∈ [n], a ∈ L, and x ∈ Ln, we have

Dn−1
p,⟨a||x〉 = (Il ⊗ · · · ⊗ Il︸ ︷︷ ︸

p−1

⊗〈a| ⊗ Il ⊗ · · · ⊗ Il︸ ︷︷ ︸
n−p

)(|x1 . . . xp−1〉 ⊗ |xp〉 ⊗ |xp+1 . . . xn〉) (6.48)
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= |x1〉 ⊗ · · · ⊗ |xp−1〉 ⊗ 〈a|xp〉 ⊗ |xp+1〉 ⊗ · · · ⊗ |xn〉 (6.49)

= 〈a|xp〉|x1〉 ⊗ · · · ⊗ |xp−1〉 ⊗ |xp+1〉 · · · ⊗ |xn〉. (6.50)

For a quantum state ρ =
∑

x,y∈Ln mx,y|x〉〈y|,

Trnp (ρ) =
∑

x,y∈Ln

mx,yTr(|xp〉〈yp|)|x′〉〈y′| (6.51)

=
∑

x,y∈Ln

mx,y

(∑
a∈L

〈a|xp〉〈yp|a〉

)
|x′〉〈y′| (6.52)

=
∑
a∈L

∑
x,y∈Ln

mx,y〈a|xp〉|x′〉〈y′|〈yp|a〉 (6.53)

=
∑
a∈L

Dn−1
p,⟨a|

( ∑
x,y∈Ln

mx,y|x〉〈y|

)
Dn−1
p,⟨a|

† (6.54)

=
∑
a∈L

Dn−1
p,⟨a|ρD

n−1
p,⟨a|

† (6.55)

holds, where

|x′〉 = |x1〉 ⊗ · · · ⊗ |xp−1〉 ⊗ |xp+1〉 ⊗ · · · ⊗ |xn〉, (6.56)

|y′〉 = |y1〉 ⊗ · · · ⊗ |yp−1〉 ⊗ |yp+1〉 ⊗ · · · ⊗ |yn〉. (6.57)

Therefore, we have

EraNP (ρ) = TrN−t+1
p1 ◦ · · · ◦ TrN−1

pt−1
◦ TrNpt(ρ) (6.58)

=
∑
a1∈L

· · ·
∑

at−1∈L

∑
at∈L

DN−t
p1,⟨a1| . . . D

N−2
pt−1,⟨at−1|D

N−1
pt,⟨at|ρD

N−1
pt,⟨at|

†
DN−2
pt−1,⟨at−1|

†
. . . DN−t

p1,⟨a1|
† (6.59)

=
∑
a∈Lt

DN−t
P,⟨a|ρD

N−t
P,⟨a|

† (6.60)

by Definition 6.3 and Lemma 6.6.

From Definition 6.3 and Lemma 6.11, we get the Kraus form for deletion channels, which is
represented as

DelNt (ρ) =
∑
P,a

p(P )DN−t
P,⟨a|ρD

N−t
P,⟨a|

† (6.61)

=

∫
U

∑
P,a

µ2(U,P,a)D
N−t
P,⟨a|U†ρD

N−t
P,⟨a|U†

†
dU. (6.62)

Note that by writing in integral form with a probability distribution µ2 as in Equation (6.62),
the deletion channel can be regarded as having an infinite number of Kraus operators, just like
the insertion channel expressed in Equation (6.46).

Lemma 6.12 below describes the intuitive result that deleting an inserted qudit leaves the
original state unchanged. This can be proved by calculating according to the definition, but it
can also be easily shown by calculating using the Kraus operators. This lemma indicates that
the operation of deleting after insertion is also included in the insdel error described in Definition
6.4.
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Lemma 6.12. Let P = {p} ⊂ [N + 1] and σ ∈ S(Cl). Then, for any N -qudit state ρ ∈
S((Cl)⊗N ),

EraN+1
P ◦ InsNP,σ(ρ) = ρ. (6.63)

Proof. Let σ =
∑

i∈L ci|ψi〉〈ψi| be the spectral decomposition of σ ∈ S(Cl), where ci are proba-
bilities and 〈ψi|ψj〉 = δi,j for i, j ∈ L. Simple calculations show that

EraN+1
P ◦ InsNP,σ(ρ) =

∑
a∈L

DN
p,⟨a|

(∑
i∈L

ciI
N
p,|ψi⟩ρI

N
p,|ψi⟩

†
)
DN
p,⟨a|

† (6.64)

=
∑
a∈L

∑
i∈L

ciD
N
p,⟨a|I

N
p,|ψi⟩ρI

N
p,|ψi⟩

†
DN
p,⟨a|

† (6.65)

=
∑
a∈L

∑
i∈L

ci〈a|ψi〉IlNρIlN †〈ψi|a〉 (6.66)

= ρ
∑
a∈L

∑
i∈L

ci〈a|ψi〉〈ψi|a〉 (6.67)

= ρ
∑
i∈L

ciTr(|ψi〉〈ψi|) (6.68)

= ρ
∑
i∈L

ci (6.69)

= ρ (6.70)

from Equations (6.40) and (6.55) and Lemma 6.8. Therefore, Lemma 6.12 holds.

For any N -qudit state ρ ∈ S((Cl)⊗N ), the state after insdel error described in Definition 6.4
can be calculated as

InsDelNt1,t2(ρ) =

∫∫
U,V

∑
P,Q,a,b

µuI
N−t2
P,U |a⟩D

N−t2
Q,⟨b|V †ρD

N−t2
Q,⟨b|V †

†
IN−t2
P,U |a⟩

†
dUdV, (6.71)

where µu is a non-negative value that depends on u = (U, V, P,Q,a, b) by Equations (6.46) and
(6.62). We can easily calculate the matrix IN−t2

P,U |a⟩D
N−t2
Q,⟨b|V † such as in the example below.

Example 6.13. Let N = 4, t1 = 3, t2 = 2, P = {2, 3, 5}, Q = {1, 3}, and let

U |a〉 = |Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉 ∈ (C2)⊗3, (6.72)

V |b〉 = |Φ〉 = |ϕ1〉 ⊗ |ϕ2〉 ∈ (C2)⊗2. (6.73)

Then, I2P,U |a⟩D
2
Q,⟨b|V † is one of the Kraus operators corresponding to the action of inserting the

second, third, and fifth components after deleting the first and third components as follows:

|x1x2x3x4〉 → |x2x4〉 → |x2ψ1ψ2x4ψ3〉. (6.74)

The matrices I2P,U |a⟩ and D2
Q,⟨b|V † can be expressed as

I2P,|Ψ⟩ = I2 ⊗ |ψ1〉 ⊗ |ψ2〉 ⊗ I2 ⊗ |ψ3〉, (6.75)

D2
Q,⟨Φ| = 〈ϕ1| ⊗ I2 ⊗ 〈ϕ2| ⊗ I2. (6.76)
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Note that in Equations (6.75) and (6.76) the numbers of identity matrices I2 included as factors
of the tensor product in the matrices I2P,|Ψ⟩ and D2

Q,⟨Φ| are both 2, and they are aligned in the
same column. Therefore, we obtain

I2P,|Ψ⟩D
2
Q,⟨Φ| = 〈ϕ1| ⊗ I2 ⊗ |ψ1〉 ⊗ |ψ2〉 ⊗ 〈ϕ2| ⊗ I2 ⊗ |ψ3〉. (6.77)

Note that xy† = x⊗ y† = y† ⊗ x holds for any vectors x,y.

6.2.3 Proof of the equivalence

Here, we will give the proof of Theorem 6.5, the main theorem of this chapter. From Equation
(6.71) and Lemma 6.6, the Kraus operator Au for the (t1, t2)-insdel channels can be expressed
as a product of t1 + t2 block matrices

Au =
√
µuI

N−t2
P,U |a⟩D

N−t2
Q,⟨b|V †

=
√
µuI

N−t2+t1−1
pt1 ,|ψt1 ⟩

. . . IN−t2+1
p2,|ψ2⟩ IN−t2

p1,|ψ1⟩D
N−t2
q1,⟨ϕ1|D

N−t2+1
q2,⟨ϕ2| . . . DN−1

qt2 ,⟨ϕt2 |
, (6.78)

where

U |a〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψt1〉 ∈ (Cl)⊗t1 , (6.79)

V |b〉 = |ϕ1〉 ⊗ |ϕ2〉 ⊗ · · · ⊗ |ϕt2〉 ∈ (Cl)⊗t2 . (6.80)

Therefore, the KL conditions for the (t1, t2)-insdel channel can be written as

〈iL|DN−t2
Q,⟨b|V †

†
IN−t2
P,U |a⟩

†
IN−t2
P ′,U ′|a′⟩D

N−t2
Q′,⟨b′|V ′† |jL〉 = δi,jgu,v. (6.81)

for all u = (U, V, P,Q,a, b),v = (U ′, V ′, P ′, Q′,a′, b′) and all i, j ∈ {0, 1, . . . , d− 1}.
The following two lemmas will help us establish the equivalence of insertion and deletions

errors under the KL conditions.

Lemma 6.14. For non-negative integers t1, t2 with t1 ≥ 1, any (t1, t2)-insdel quantum code is
a (t1 − 1, t2 + 1)-insdel quantum code.

Proof. From Equation (6.78), we denote any two Kraus operators Bu, Bv for the (t1−1, t2+1)-
insdel channel as

Bu = I
N−(t2+1)
P,U |a⟩ D

N−(t2+1)

Q,⟨b|V †

= IN−t2+t1−3
pt1−1,|ψt1−1⟩ . . . I

N−t2
p2,|ψ2⟩I

N−t2−1
p1,|ψ1⟩︸ ︷︷ ︸

(t1−1) matrices

DN−t2−1
q1,⟨ϕ1| DN−t2

q2,⟨ϕ2| . . . D
N−1
qt2+1,⟨ϕt2+1|︸ ︷︷ ︸

(t2+1) matrices

, (6.82)

Bv = I
N−(t2+1)
P ′,U ′|a′⟩ D

N−(t2+1)

Q′,⟨b′|V ′†

= IN−t2+t1−3
p′t1−1,|ψ′

t1−1⟩
. . . IN−t2

p′2,|ψ′
2⟩
IN−t2−1
p′1,|ψ′

1⟩︸ ︷︷ ︸
(t1−1) matrices

DN−t2−1
q′1,⟨ϕ′1|

DN−t2
q′2,⟨ϕ′2|

. . . DN−1
q′t2+1,⟨ϕ′t2+1|︸ ︷︷ ︸

(t2+1) matrices

, (6.83)

where

U |a〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψt1−1〉 ∈ (Cl)⊗(t1−1), (6.84)
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B†
uBv = D† . . . D†D† I† I† . . . I† I† I† I I I . . . I I D D . . . D

= I . . . I I D D . . . D D D I I I . . . I I D D . . . D

= I . . . I D I D . . . D D D I I I . . . I D I D . . . D

= I . . . I D D I . . . D D D I I I . . . D I I D . . . D

= . . .

= I . . . I D D D . . . I D D I I D . . . I I I D . . . D

= I . . . I D D D . . . D I D I D I . . . I I I D . . . D

= I . . . I D D D . . . D D I D I I . . . I I I D . . . D

= I . . . I D D D . . . D D D I I I . . . I I I D . . . D

= D† . . . D† I† I† I† . . . I† I† I† I I I . . . I I I D . . . D.

Figure 6.3: Calculation of B†
uBv

V |b〉 = |ϕ1〉 ⊗ |ϕ2〉 ⊗ · · · ⊗ |ϕt2+1〉 ∈ (Cl)⊗(t2+1), (6.85)

U ′|a′〉 = |ψ′
1〉 ⊗ |ψ′

2〉 ⊗ · · · ⊗ |ψ′
t1−1〉 ∈ (Cl)⊗(t1−1), (6.86)

V ′|b′〉 = |ϕ′1〉 ⊗ |ϕ′2〉 ⊗ · · · ⊗ |ϕ′t2+1〉 ∈ (Cl)⊗(t2+1). (6.87)

Note that when considering the KL condition, we can ignore the constant multiple of the Kraus
operator. By noting Equation (6.14) and using Lemma 6.9 repeatedly, we can calculate B†

uBv

using Figure 6.3. Here, superscripts and subscripts are omitted to avoid confusion. However, if
we consider the superscripts, we can use Lemma 6.9 in each matrix operation.

Thus, B†
uBv can be expressed as

B†
uBv = D† . . . D†︸ ︷︷ ︸

t2+1

I† . . . I†︸ ︷︷ ︸
t1−1

I . . . I︸ ︷︷ ︸
t1−1

D . . . D︸ ︷︷ ︸
t2+1

(6.88)

= D† . . . D†︸ ︷︷ ︸
t2

I† . . . I†︸ ︷︷ ︸
t1

I . . . I︸ ︷︷ ︸
t1

D . . . D︸ ︷︷ ︸
t2

. (6.89)

Furthermore, repeatedly applying Lemma 6.7 gives B†
uBv = A†

u′Av′ for some Kraus operators
Au′ , Av′ of the (t1, t2)-insdel channel. From Equation (6.81), we get

〈iL|B†
uBv|jL〉 = δi,jgu′,v′ (6.90)

for all i, j ∈ {0, 1, . . . , d − 1} and all u′,v′. Since the pair (u′,v′) is uniquely determined by
(u,v), the KL conditions for the (t1− 1, t2+1)-insdel code hold for every u,v. Fact 6.1 implies
that C is a (t1 − 1, t2 + 1)-insdel code.

Lemma 6.15. For non-negative integers t1, t2 with t2 ≥ 1, any (t1, t2)-insdel quantum code is
a (t1 + 1, t2 − 1)-insdel quantum code.

Proof. As in the proof of Lemma 6.14, denote any two Kraus operators Cu, Cv for the (t1 +

1, t2 − 1)-insdel channel as

Cu = I
N−(t2−1)
P,U |a⟩ D

N−(t2−1)

Q,⟨b|V † (6.91)

70



C†
uCv = D† . . . D† I† I† I† . . . I† I† I† I I I . . . I I I D . . . D

= I . . . I D D D . . . D D D I I I . . . I I I D . . . D

= I . . . I D D D . . . D D I D I I . . . I I I D . . . D

= I . . . I D D D . . . D D I I D I . . . I I I D . . . D

= I . . . I D D D . . . D D I I I D . . . I I I D . . . D

= . . .

= I . . . I D D D . . . D D I I I I . . . D I I D . . . D

= I . . . I D D D . . . D D I I I I . . . I D I D . . . D

= I . . . I D D D . . . D D I I I I . . . I I D D . . . D

= I . . . I D D D . . . D I D I I I . . . I I D D . . . D

= I . . . I D D D . . . I D D I I I . . . I I D D . . . D

= . . .

= I . . . I D D I . . . D D D I I I . . . I I D D . . . D

= I . . . I D I D . . . D D D I I I . . . I I D D . . . D

= I . . . I I D D . . . D D D I I I . . . I I D D . . . D

= D† . . . D†D† I† I† . . . I† I† I† I I I . . . I I D D . . . D.

Figure 6.4: Calculation of C†
uCv

= IN−t2+t1+1
pt1+1,|ψt1+1⟩ . . . I

N−t2
p2,|ψ2⟩I

N−t2+1
p1,|ψ1⟩︸ ︷︷ ︸

(t1+1) matrices

DN−t2+1
q1,⟨ϕ1| DN−t2

q2,⟨ϕ2| . . . D
N−1
qt2−1,⟨ϕt2−1|︸ ︷︷ ︸

(t2−1) matrices

, (6.92)

Cv = I
N−(t2−1)
P ′,U ′|a′⟩ D

N−(t2−1)

Q′,⟨b′|V ′† (6.93)

= IN−t2+t1+1
p′t1+1,|ψ′

t1+1⟩
. . . IN−t2

p′2,|ψ′
2⟩
IN−t2+1
p′1,|ψ′

1⟩︸ ︷︷ ︸
(t1+1) matrices

DN−t2+1
q′1,⟨ϕ′1|

DN−t2
q′2,⟨ϕ′2|

. . . DN−1
q′t2−1,⟨ϕ′t2−1|︸ ︷︷ ︸

(t2−1) matrices

. (6.94)

This time using Lemma 6.8 repeatedly, we can calculate C†
uCv as Figure 6.4.

Note that, by Lemma 6.8, DI = 〈ψ2|ψ1〉Iln may occur in the middle of the calculation. Thus,
using cu,v ∈ C depending on (u,v), C†

uCv can be expressed as

C†
uCv = D† . . . D†︸ ︷︷ ︸

t2−1

I† . . . I†︸ ︷︷ ︸
t1+1

I . . . I︸ ︷︷ ︸
t1+1

D . . . D︸ ︷︷ ︸
t2−1

(6.95)

=



cu,vD
† . . . D†︸ ︷︷ ︸
t2−1

I† . . . I†︸ ︷︷ ︸
t1

I . . . I︸ ︷︷ ︸
t1

D . . . D︸ ︷︷ ︸
t2−1

,

cu,vD
† . . . D†︸ ︷︷ ︸
t2−1

I† . . . I†︸ ︷︷ ︸
t1−1

I . . . I︸ ︷︷ ︸
t1

D . . . D︸ ︷︷ ︸
t2

,

D† . . . D†︸ ︷︷ ︸
t2

I† . . . I†︸ ︷︷ ︸
t1

I . . . I︸ ︷︷ ︸
t1

D . . . D︸ ︷︷ ︸
t2

.

(6.96)

By repeatedly applying Lemma 6.7, we obtain C†
uCv = cu,vA

†
u′Av′ for some Kraus operators

Au′ , Av′ for the (t1, t2)-insdel channel. Note that for any non-negative integers s1 ≤ t1 and
s2 ≤ t2, the (t1, t2)-insdel code is an (s1, s2)-insdel code. From Equation (6.81), we get

〈iL|C†
uCv|jL〉 = δi,jcu,vgu′,v′ (6.97)
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for all i, j ∈ {0, 1, . . . , d − 1} and all u′,v′. Since the pair (u′,v′) is uniquely determined by
(u,v), the KL conditions for the (t1 + 1, t2 − 1)-insdel code hold for every u,v. From Fact 6.1,
it is shown that C is a (t1 + 1, t2 − 1)-insdel code.

By Lemmas 6.14 and 6.15, we have completed the proof of Theorem 6.5. From the proof
above, it can be seen that Equation (6.81) is satisfied for permutation-invariant codes for example
[51,52]. The analysis of decoding methods for insertion errors in permutation-invariant codes is
a future task.
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Chapter 7

Conclusion

In this thesis, quantum error-correcting codes for insertion/deletion errors were discussed. First,
the fundamentals of quantum information theory based on quantum mechanical properties were
explained, and the definition of quantum insertion/deletion codes was given.

In Chapter 3, the Nakayama-Hagiwara conditions, known as the error-correcting conditions
for single quantum deletion errors, were discussed and examples of new codes were given. Fur-
thermore, by analyzing the NH conditions in terms of the adjacency matrices of graphs, the NH
codes whose length is less than or equal to 5 were determined.

Chapter 4 focused on quantum codes with permutation-invariance and gave the construction
conditions for quantum codes that are tolerant to multiple deletion errors. Furthermore, we
gave examples that satisfy these conditions, and for the first time, we constructed quantum
codes that can correct two or more deletion errors. This construction includes multiple deletion
error-correcting codes that can also correct unitary errors, and it is the first example from that
perspective as well. The reason why we focused on permutation-invariance in this work is that
the state after deletions does not depend on the deletion position, so there is a high possibility
that it can be easily decoded. It is a future task to construct non-PI multiple-deletion codes by
considering the state after 2-deletions of codes that do not have permutation-invariance. A clue
is the decoding algorithm for Hagiwara’s 4-qubit insertion codes. This code is a rare example
of successful decoding in a technical way, even though the state after insertion error depends on
the insertion position, so it has potential for application to other codes.

Chapter 5 gave a systematic construction method of quantum codes for single insertion errors
and succeeded in discovering many quantum insertion codes, of which only one example had been
found before. We also described the relationship between the three conditions introduced here
and the NH conditions. The insertion codes presented here have been found in fewer numbers
than the codes constructed based on the NH conditions, and it is expected that the present
conditions will be studied in more detail in the future.

Chapter 6 showed the equivalence between the correctability of deletions and special in-
sertions in quantum codes. This was proved by defining the Kraus operators for deletion and
insertion errors and using the Knill-Laflamme conditions, which is also novel in itself. However,
the fact that the general insertion error is not represented by the Kraus operators in this study
is still controversial and is a future task. It should also be mentioned that all cases of single
insertion errors are considered when the quantum state before insertion is assumed to be pure.
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In other words, due to the facts shown in Chapter 6, we can say that the already known single
deletion error-correcting codes can also correct single insertion errors. In addition, if we go
into the proof of the Knill-Laflamme conditions, we may be able to understand the method of
decoding, however, it is generally difficult to describe the decoder simply. For example, for the
decoding of deletion errors given in Chapters 3 and 4, there is naturally a decoder for insertions,
but how to represent it is not known, and we would like to study it in the future. In this respect,
the decoder for insertion errors given in Chapter 5 can be described with the same simplicity as
that for deletion errors, which is also an advantage in terms of practicality.
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