

Outline

- Plant Factory Project at Chiba University
- Resource Utilization Efficiency, Type A & Type A
 - CO₂, Water, Inorganic Fertilizer, Light energy and Electric energy
- Closed Plant Production systems (CPPS)
- Estimation and control of state variables
- Integrative Environment Control

Goals of our Project is Concurrent Realization of:

- High yield, high quality and high value creation
- Savings of fossil fuel-derived products, water, fertilizers, space, time, and other resources.
- Environmental conservation by minimum emission of pollutants including CO₂ gas, and by producing a number of high quality transplants
- · Comfort working environment
- · Profit-making and providing job opportunities

Features of our Plant Factory Project

- Open architecture and information disclosure
- Improvement of resource utilization efficiencies (RUE)
- Intensive use of multi-purpose heat pumps
- Recycling use of rain and drain water
- Development of Integrative environment control system
- Providing training courses for advanced growers and engineers
- Close collaboration with NPO Plant Factory Association of
 - Japan and other organizations in Japan and overseas

Resource Utilization Efficiency (RUE)

- Type A RUE
 - Amount of resource utilized in plants

Amount of resource supplied to the System

Type B RUE

Amount of resource utilized by the system

Amount of resource provided to the system

Essential resources needed for photosynthetic growth of green-colored plants

Type A Utilization efficiencies:

CUE: CO2 fixed by plants divided by

CO₂ supplied to the system

WUE: Water held in plants divided by

Water supplied to the system

IUE: Inorganic fertilizer (IF) fixed in plants

divided by IF supplied

LUE: Light energy fixed as chemical energy

in plants divided by light energy supplied

6/26/2020 T. Kozai 16

Type B Utilization efficiencies:

- Light energy emitted by lamps divided by electric energy consumed
- COP of heat pump: Heat generated for heating or cooling divided by electricity consumed
- No. of plants harvested/No. of seeds sown
- Area occupied by plants divided by floor area

6/26/2020 T. Kozai 17

Applications of RUE concept

- CO₂ enrichment based on null CO₂ balance method, resulting in 100% CO₂ utilization efficiency
- Estimation of rate variables and environmental control based on rate variables
- Integrative environmental control based on RUE and cost(/benefit) performance

Environmental control based on not only state variables but also rate variables

- State variables (without unit of time)
 - Environmental: Temp., humidity, CO2 conc., pH, EC
 - Ecological: LAI, plant weight & height, color, planting density
 - Biochemical: Vitamin C, Chlorophyll fluorescent,
- Rate variables (with unit of time)
 - Ecological: rates of net photosynthesis, dark respiration, transpiration, water uptake and nutrient uptake
 - Control variables: Supply rates of CO₂, water, light/electric energy, nutrient
 - System parameters: Rates of ventilation, heat transmission

2020/6/26

Type B Resource Utilization efficiencies

- COP of the heat pump
- Floor area utilization efficiency

Percentages of Annual Electricity Consumption by Components (Ohyama and Kozai, 2004)

Purpose	Percentage	Equipment
Lighting	80%	Fluorescent lamps 40W
Cooling	16%	Heat pumps (Air conditioners)
Others	4%	Water Pumps, Fans, etc.

The COP of the heat pump is 5.25 = (80+4)/16 = 5.25.

6/26/2020 T. Kozai 35

Application of multi-purpose heat pump

for high yield and quality with minimum consumption of resource and minimum emission of pollutants

- · Heating air, water and substrate
- · Cooling air, water and substrate
- Dehumidification of the air to control relative humidity/water vapor deficit
- Enhancement of air circulation/movement
- Collection of condensed water while cooling
- · Drying, humidifying, warm/cool heat storing

Environmental control equipments to be operated in combination with heat pumps for integrative environmental control of plant factory with solar light

- · CO2 supply unit
- Ventilation unit
- Air circulation fan
- · Shading screen
- Thermal insulation screen
- Fog or Pad & fan cooling unit
- · Nutrient solution supply unit
- Nutrient solution heating/cooling unit
- Heat storing/release unit

92% reduction in land space and 47% reduction in seedling production period by the CPPS with 4 tiers, compared with the greenhouse for production of tomato seedlings

	Greenhouse	CPPS
Floor Area	1,250 m ²	100 m ²
Production period	28 days	14 days

The seedlings are used in the greenhouse with a floor area of 2.5 ha for growing tomato plants with three-trusses at high density planting

_{5/25/2020} T. Kozai (Data by Taiyo Kogyo Coas)

古在豊樹編著 オーム社 2009年8月初版 発行 2010年12月 2刷

Conclusion

- Plant Factory Project at Chiba University has started
- Utilization Efficiencies of CO₂, Water, Inorganic Fertilizer, Light energy and Electric energy are useful concepts.
- Closed Plant Production systems (CPPS) is a useful concept to improve the resource utilization efficiencies.
- Estimation and control of state variables is essential to develop an integrative Environment Control

Thank you for your kind attention

参考文献

- ・ 古在豊樹編著 太陽光型植物工場、オーム社、2009年、186ページ
- 古在豊樹ら、最新施設園芸学、朝倉書店、 2006年、231ページ
- 古在豊樹ら、最新の苗生産実用技術、農業 電化協会、2006年、150ページ
- 古在豊樹、閉鎖型苗生産システムの開発と 利用、養賢堂、1999年、191ページ

43